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CONVERSIONS BETWEEN U.S. CUSTOMARY UNITS AND SI UNITS

Times conversion factor

U.S. Customary unit Equals Sl unit
Accurate Practical

Acceleration (linear)

foot per second squared ft/s? 0.3048* 0.305 meter per second squared ~ m/s?

inch per second squared in./s? 0.0254* 0.0254 meter per second squared  m/s?
Area

square foot ft? 0.09290304* 0.0929 square meter m?

square inch in.2 645.16* 645 square millimeter mm?
Density (mass)

slug per cubic foot slug/ft® 515.379 515 kilogram per cubic meter  kg/m®
Density (weight)

pound per cubic foot Ib/ft 157.087 157 newton per cubic meter N/m?®

pound per cubic inch Ib/in.3 271.447 271 kilonewton per cubic

meter kN/m?

Energy; work

foot-pound ft-1b 1.35582 1.36 joule (N-m) J

inch-pound in.-lb 0.112985 0.113 joule J

kilowatt-hour kWh 3.6* 3.6 megajoule MJ

British thermal unit Btu 1055.06 1055 joule J
Force

pound Ib 4.44822 4.45 newton (kg-m/s?) N

kip (1000 pounds) k 4.44822 4.45 kilonewton kN
Force per unit length

pound per foot Ib/ft 14.5939 14.6 newton per meter N/m

pound per inch Ib/in. 175.127 175 newton per meter N/m

kip per foot k/ft 14.5939 14.6 kilonewton per meter kN/m

kip per inch k/in. 175.127 175 kilonewton per meter kN/m
Length

foot ft 0.3048* 0.305 meter m

inch in. 25.4* 254 millimeter mm

mile mi 1.609344* 1.61 kilometer km
Mass

slug Ib-s?/ft 14.5939 14.6 kilogram kg
Moment of a force; torque

pound-foot Ib-ft 1.35582 1.36 newton meter N-m

pound-inch Ib-in. 0.112985 0.113 newton meter N:m

kip-foot k-ft 1.35582 1.36 kilonewton meter kN-m

kip-inch k-in. 0.112985 0.113 kilonewton meter kN-m

Copyright 2004 Thomson Learning, Inc. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.




CONVERSIONS BETWEEN U.S. CUSTOMARY UNITS AND SI UNITS (Continued)

Times conversion factor

U.S. Customary unit Equals SI unit
Accurate Practical

Moment of inertia (area)

inch to fourth power in* 416,231 416,000 millimeter to fourth

power mm?*

inch to fourth power in4 0.416231 X 10°© 0.416 X 10~ | meter to fourth power m*
Moment of inertia (mass)

slug foot squared slug-ft? 1.35582 1.36 kilogram meter squared kg-m?
Power

foot-pound per second ft-1b/s 1.35582 1.36 watt (J/s or N-m/s) W

foot-pound per minute ft-1b/min 0.0225970 0.0226 watt W

horsepower (550 ft-1b/s) hp 745.701 746 watt W
Pressure; stress

pound per square foot psf 47.8803 47.9 pascal (N/m?) Pa

pound per square inch psi 6894.76 6890 pascal Pa

Kip per square foot ksf 47.8803 47.9 kilopascal kPa

Kip per square inch ksi 6.89476 6.89 megapascal MPa
Section modulus

inch to third power in® 16,387.1 16,400 millimeter to third power mm®

inch to third power in.3 16.3871 X 107° 16.4 X 107® | meter to third power m?
Velocity (linear)

foot per second ft/s 0.3048* 0.305 meter per second m/s

inch per second in./s 0.0254* 0.0254 meter per second m/s

mile per hour mph 0.44704* 0.447 meter per second m/s

mile per hour mph 1.609344* 1.61 kilometer per hour km/h
\Volume

cubic foot ft* 0.0283168 0.0283 cubic meter m?

cubic inch in2 16.3871 X 107 16.4 X 10°® | cubic meter m?

cubic inch in2 16.3871 16.4 cubic centimeter (cc) cm?®

gallon (231 in.%) gal. 3.78541 3.79 liter L

gallon (231 in.%) gal. 0.00378541 0.00379 cubic meter m?

*An asterisk denotes an exact conversion factor
Note: To convert from SI units to USCS units, divide by the conversion factor

Temperature Conversion Formulas  T(°C) = %[T("F) - 32] = T(K) — 273.15

T(K) = g[T(°F) —32] + 273.15 = T(C) + 273.15

TCF) = %T("C) +32= %T(K) ~ 459.67
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Preface

Mechanics of materials is a basic engineering subject that must be
understood by anyone concerned with the strength and physical
performance of structures, whether those structures are man-made or
natural. The subject matter includes such fundamental concepts as
stresses and strains, deformations and displacements, elasticity and
inelasticity, strain energy, and load-carrying capacity. These concepts
underlie the design and analysis of a huge variety of mechanical and
structural systems.

At the college level, mechanics of materials is usually taught during
the sophomore and junior years. The subject is required for most
students majoring in mechanical, structural, civil, aeronautical, and aero-
space engineering. Furthermore, many students from such diverse fields
as materials science, industrial engineering, architecture, and agricul-
tural engineering also find it useful to study this subject.

About this Book

The main topics covered in this book are the analysis and design of
structural members subjected to tension, compression, torsion, and
bending, including the fundamental concepts mentioned in the first
paragraph. Other topics of general interest are the transformations of
stress and strain, combined loadings, stress concentrations, deflections
of beams, and stability of columns.

Specialized topics include the following: Thermal effects, dynamic
loading, nonprismatic members, beams of two materials, shear centers,
pressure vessels, discontinuity (singularity) functions, and statically
indeterminate beams. For completeness and occasional reference,
elementary topics such as shear forces, bending moments, centroids, and
moments of inertia also are presented.

Much more material than can be taught in a single course is
included in this book, and therefore instructors have the opportunity to
select the topics they wish to cover. As a guide, some of the more
specialized topics are identified in the table of contents by stars.

xiii
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PREFACE

Considerable effort has been spent in checking and proofreading the
text so as to eliminate errors, but if you happen to find one, no matter
how trivial, please notify me by e-mail (jgere@ce.stanford.edu). Then
we can correct any errors in the next printing of the book.

Examples

Examples are presented throughout the book to illustrate the theoretical
concepts and show how those concepts may be used in practical
situations. The examples vary in length from one to four pages, depending
upon the complexity of the material to be illustrated. When the emphasis
is on concepts, the examples are worked out in symbolic terms so as to
better illustrate the ideas, and when the emphasis is on problem-solving,
the examples are numerical in character.

Problems

In all mechanics courses, solving problems is an important part of the
learning process. This textbook offers more than 1,000 problems for
homework assignments and classroom discussions. The problems are
placed at the end of each chapter so that they are easy to find and don’t
break up the presentation of the main subject matter. Also, an unusually
difficult or lengthy problem is indicated by attaching one or more stars
(depending upon the degree of difficulty) to the problem number, thus
alerting students to the time necessary for solution. Answers to all
problems are listed near the back of the book.

Units

Both the International System of Units (SI) and the U.S. Customary
System (USCS) are used in the examples and problems. Discussions of
both systems and a table of conversion factors are given in Appendix A.
For problems involving numerical solutions, odd-numbered problems
are in USCS units and even-numbered problems are in Sl units. This
convention makes it easy to know in advance which system of units is
being used in any particular problem. (The only exceptions are problems
involving the tabulated properties of structural-steel shapes, because the
tables for these shapes are presented only in USCS units.)

References and Historical Notes

References and historical notes appear immediately after the last chapter
in the book. They consist of original sources for the subject matter plus
brief biographical information about the pioneering scientists, engineers,
and mathematicians who created the subject of mechanics of materials.
A separate name index makes it easy to look up any of these historical
figures.
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PREFACE XV

Appendixes

Reference material appears in the appendixes at the back of the book.
Much of the material is in the form of tables—properties of plane areas,
properties of structural-steel shapes, properties of structural lumber,
deflections and slopes of beams, and properties of materials (Appen-
dixes D through H, respectively).

In contrast, Appendixes A and B are descriptive—the former gives a
detailed description of the SI and USCS systems of units, and the latter
presents the methodology for solving problems in mechanics. Included
in the latter are topics such as dimensional consistency and significant
digits. Lastly, as a handy time—saver, Appendix C provides a listing of
commonly used mathematical formulas.

S.P.Timoshenko (1878-1972)

Many readers of this book will recognize the name of Stephen P.
Timoshenko—probably the most famous name in the field of applied
mechanics. Timoshenko appeared as co-author on earlier editions of this
book because the book began at his instigation. The first edition, pub-
lished in 1972, was written by the present author at the suggestion of
Professor Timoshenko. Although he did not participate in the actual
writing, Timoshenko provided much of the book’s contents because the
first edition was based upon his earlier books titled Strength of Materials.
The second edition of this book, a major revision of the first, was written
by the present author, and each subsequent edition has incorporated
numerous changes and improvements.

Timoshenko is generally recognized as the world’s most outstanding
pioneer in applied mechanics. He contributed many new ideas and
concepts and became famous for both his scholarship and his teaching.
Through his numerous textbooks he made a profound change in the
teaching of mechanics not only in this country but wherever mechanics
is taught. (A brief biography of Timoshenko appears in the first
reference at the back of the book.)

Acknowledgments

To acknowledge everyone who contributed to this book in some manner
is clearly impossible, but I owe a major debt to my former Stanford
teachers, including (besides Timoshenko) those other pioneers in
mechanics, Wilhelm Fligge, James Norman Goodier, Miklds Hetényi,
Nicholas J. Hoff, and Donovan H. Young. | am also indebted to my
Stanford colleagues—especially Tom Kane, Anne Kiremidjian, Helmut
Krawinkler, Kincho Law, Peter Pinsky, Haresh Shah, Sheri Sheppard,
and the late Bill Weaver. They provided me with many hours of discus-
sions about mechanics and educational philosophy. My thanks also to
Bob Eustis, friend and Stanford colleague, for his encouragement with
each new edition of this book.
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Finally, I am indebted to the many teachers of mechanics and
reviewers of the book who provided detailed comments concerning the
subject matter and its presentation. These reviewers include:

P. Weiss, Valpariso University

R. Neu, Georgia Tech

A. Fafitis, Arizona State University

M.A. Zikry, North Carolina State University

T. Vinson, Oregon State University

K.L. De Vries, University of Utah

V. Panoskaltsis, Case University

A. Saada, Case Western University

D. Schmucker, Western Kentucky University

G. Kostyrko, California State University—Sacramento

R. Roeder, Notre Dame University

C. Menzemer, University of Akron

G. Tsiatas, University of Rhode Island

T. Kennedy, Oregon State University

T. Kundu, Univerity of Arizona

P. Qiao, University of Akron

T. Miller, Oregon State University

L. Kjerengtroen, South Dakota School of Mines

M. Hansen, South Dakota School of Mines

T. Srivatsan, University of Akron

With each new edition, their advice has resulted in significant
improvements in both content and pedagogy.

The editing and production aspects of the book were a source of
great satisfaction to me, thanks to the talented and knowledgeable
personnel of the Brooks/Cole Publishing Company (now a part of
Wadsworth Publishing). Their goal was the same as mine—to produce
the best possible results without stinting on any aspect of the book,
whether a broad issue or a tiny detail.

The people with whom | had personal contact at Brooks/Cole and
Wadsworth are Bill Stenquist, Publisher, who insisted on the highest
publishing standards and provided leadership and inspiration throughout
the project; Rose Kernan of RPK Editorial Services, who edited the
manuscript and designed the pages; Julie Ruggiero, Editorial Assistant,
who monitored progress and kept us organized; Vernon Boes, Creative
Director, who created the covers and other designs throughout the book;
Marlene Veach, Marketing Manager, who developed promotional material;
and Michael Johnson, Vice President of Brooks/Cole, who gave us his
full support at every stage. To each of these individuals | express my
heartfelt thanks not only for a job well done but also for the friendly and
considerate way in which it was handled.

Finally, | appreciate the patience and encouragement provided by
my family, especially my wife, Janice, throughout this project.

To all of these wonderful people, | am pleased to express my gratitude.

James M. Gere
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Symbols

area

dimensions, distances

centroid, compressive force, constant of integration

distance from neutral axis to outer surface of a beam

diameter, dimension, distance

modulus of elasticity

reduced modulus of elasticity; tangent modulus of elasticity
eccentricity, dimension, distance, unit volume change (dilatation)
force

shear flow, shape factor for plastic bending, flexibility, frequency (Hz)
torsional flexibility of a bar

modulus of elasticity in shear

acceleration of gravity

height, distance, horizontal force or reaction, horsepower
moment of inertia (or second moment) of a plane area
moments of inertia with respect to x, y, and z axes

moments of inertia with respect to x, and y, axes (rotated axes)
product of inertia with respect to xy axes

product of inertia with respect to x,y, axes (rotated axes)

polar moment of inertia

principal moments of inertia

torsion constant

stress-concentration factor, bulk modulus of elasticity, effective length
factor for a column

spring constant, stiffness, symbol for V P/EI
torsional stiffness of a bar

length, distance
Xvii
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XViii SYMBOLS

o

v
o

=<

— v v = Tao O o O

—
b
Ccr—r—<_|

Ups U
\%
v

V', V", etc.

r!

effective length of a column

natural logarithm (base e); common logarithm (base 10)
bending moment, couple, mass

plastic moment for a beam; yield moment for a beam
moment per unit length, mass per unit length

axial force

factor of safety, integer, revolutions per minute (rpm)
origin of coordinates

center of curvature

force, concentrated load, power

allowable load (or working load)

critical load for a column

plastic load for a structure; yield load for a structure

reduced-modulus load for a column; tangent-modulus load for a column

pressure (force per unit area)

force, concentrated load, first moment of a plane area
intensity of distributed load (force per unit distance)
reaction, radius

radius, radius of gyration (r = VI/A)

section modulus of the cross section of a beam, shear center
distance, distance along a curve

tensile force, twisting couple or torque, temperature
plastic torque; yield torque

thickness, time, intensity of torque (torque per unit distance)
strain energy

strain-energy density (strain energy per unit volume)
modulus of resistance; modulus of toughness

shear force, volume, vertical force or reaction
deflection of a beam, velocity

dv/dx, d2v/dx?, etc.

force, weight, work

load per unit of area (force per unit area)

rectangular axes (origin at point O)

rectangular axes (origin at centroid C)

coordinates of centroid

plastic modulus of the cross section of a beam
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SYMBOLS Xix

angle, coefficient of thermal expansion, nondimensional ratio
angle, nondimensional ratio, spring constant, stiffness
rotational stiffness of a spring

shear strain, weight density (weight per unit volume)

shear strains in xy, yz, and zx planes

shear strain with respect to x,y, axes (rotated axes)

shear strain for inclined axes

deflection of a beam, displacement, elongation of a bar or spring
temperature differential

plastic displacement; yield displacement

normal strain

normal strains in x, y, and z directions

normal strains in x, and y, directions (rotated axes)

normal strain for inclined axes

principal normal strains

lateral strain in uniaxial stress

thermal strain

yield strain

angle, angle of rotation of beam axis, rate of twist of a bar in torsion
(angle of twist per unit length)

angle to a principal plane or to a principal axis
angle to a plane of maximum shear stress
curvature (k = 1/p)

distance, curvature shortening

Poisson’s ratio

radius, radius of curvature (p = 1/k), radial distance in polar
coordinates, mass density (mass per unit volume)

normal stress

normal stresses on planes perpendicular to x, y, and z axes

normal stresses on planes perpendicular to x,y; axes (rotated axes)
normal stress on an inclined plane

principal normal stresses

allowable stress (or working stress)

critical stress for a column (o, = P_,/A)

proportional-limit stress

residual stress
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SYMBOLS

gy, Oy
TX

y Ty Tox

T
X1y1

Tallow

ST

thermal stress
ultimate stress; yield stress
shear stress

shear stresses on planes perpendicular to the x, y, and z axes and acting
parallel to the y, z, and x axes

shear stress on a plane perpendicular to the x, axis and acting parallel to

the y, axis (rotated axes)

shear stress on an inclined plane
allowable stress (or working stress) in shear
ultimate stress in shear; yield stress in shear
angle, angle of twist of a bar in torsion

angle, angle of rotation

angular velocity, angular frequency (w = 27f)

*A star attached to a section number indicates a specialized or advanced topic.
One or more stars attached to a problem number indicate an increasing level of
difficulty in the solution.
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Greek Alphabet

Alpha
Beta
Gamma
Delta
Epsilon
Zeta
Eta
Theta
lota
Kappa
Lambda
Mu
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Nu

Xi
Omicron
Pi

Rho
Sigma
Tau
Upsilon
Phi

Chi

Psi
Omega
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Tension, Compression,
and Shear

1.1 INTRODUCTION TO MECHANICS OF MATERIALS

Mechanics of materials is a branch of applied mechanics that deals
with the behavior of solid bodies subjected to various types of loading.
Other names for this field of study are strength of materials and
mechanics of deformable bodies. The solid bodies considered in this
book include bars with axial loads, shafts in torsion, beams in bending,
and columns in compression.

The principal objective of mechanics of materials is to determine the
stresses, strains, and displacements in structures and their components
due to the loads acting on them. If we can find these quantities for all val-
ues of the loads up to the loads that cause failure, we will have a
complete picture of the mechanical behavior of these structures.

An understanding of mechanical behavior is essential for the safe
design of all types of structures, whether airplanes and antennas, build-
ings and bridges, machines and motors, or ships and spacecraft. That is
why mechanics of materials is a basic subject in so many engineering
fields. Statics and dynamics are also essential, but those subjects deal
primarily with the forces and motions associated with particles and rigid
bodies. In mechanics of materials we go one step further by examining
the stresses and strains inside real bodies, that is, bodies of finite dimensions
that deform under loads. To determine the stresses and strains, we use the
physical properties of the materials as well as numerous theoretical laws
and concepts.

Theoretical analyses and experimental results have equally important
roles in mechanics of materials. We use theories to derive formulas
and equations for predicting mechanical behavior, but these expressions
cannot be used in practical design unless the physical properties of the
materials are known. Such properties are available only after careful
experiments have been carried out in the laboratory. Furthermore, not all

1
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practical problems are amenable to theoretical analysis alone, and in such
cases physical testing is a necessity.

The historical development of mechanics of materials is a fascinat-
ing blend of both theory and experiment—theory has pointed the way to
useful results in some instances, and experiment has done so in others.
Such famous persons as Leonardo da Vinci (1452-1519) and Galileo
Galilei (1564-1642) performed experiments to determine the strength of
wires, bars, and beams, although they did not develop adequate theories
(by today’s standards) to explain their test results. By contrast, the
famous mathematician Leonhard Euler (1707-1783) developed the
mathematical theory of columns and calculated the critical load of a col-
umn in 1744, long before any experimental evidence existed to show the
significance of his results. Without appropriate tests to back up his theo-
ries, Euler’s results remained unused for over a hundred years, although
today they are the basis for the design and analysis of most columns.*

Problems

When studying mechanics of materials, you will find that your efforts
are divided naturally into two parts: first, understanding the logical
development of the concepts, and second, applying those concepts to
practical situations. The former is accomplished by studying the deriva-
tions, discussions, and examples that appear in each chapter, and the
latter is accomplished by solving the problems at the ends of the chap-
ters. Some of the problems are numerical in character, and others are
symbolic (or algebraic).

An advantage of numerical problems is that the magnitudes of all
quantities are evident at every stage of the calculations, thus providing an
opportunity to judge whether the values are reasonable or not. The
principal advantage of symbolic problems is that they lead to
general-purpose formulas. A formula displays the variables that affect
the final results; for instance, a quantity may actually cancel out of the
solution, a fact that would not be evident from a numerical solution. Also,
an algebraic solution shows the manner in which each variable affects the
results, as when one variable appears in the numerator and another
appears in the denominator. Furthermore, a symbolic solution provides
the opportunity to check the dimensions at every stage of the work.

Finally, the most important reason for solving algebraically is to
obtain a general formula that can be used for many different problems. In
contrast, a humerical solution applies to only one set of circumstances.
Because engineers must be adept at both kinds of solutions, you will find a
mixture of numeric and symbolic problems throughout this book.

Numerical problems require that you work with specific units of
measurement. In keeping with current engineering practice, this book uti-

*The history of mechanics of materials, beginning with Leonardo and Galileo, is given in
Refs. 1-1, 1-2, and 1-3.
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SECTION 1.2 Normal Stress and Strain 3

lizes both the International System of Units (SI) and the U.S. Customary
System (USCS). A discussion of both systems appears in Appendix A,
where you will also find many useful tables, including a table of
conversion factors.

All problems appear at the ends of the chapters, with the problem
numbers and subheadings identifying the sections to which they belong.
In the case of problems requiring numerical solutions, odd-numbered
problems are in USCS units and even-numbered problems are in Sl units.
The only exceptions are problems involving commercially available
structural-steel shapes, because the properties of these shapes are tabu-
lated in Appendix E in USCS units only.

The techniques for solving problems are discussed in detail in
Appendix B. In addition to a list of sound engineering procedures,
Appendix B includes sections on dimensional homogeneity and signifi-
cant digits. These topics are especially important, because every equation
must be dimensionally homogeneous and every numerical result must be
expressed with the proper number of significant digits. In this book, final
numerical results are usually presented with three significant digits when
a number begins with the digits 2 through 9, and with four significant
digits when a number begins with the digit 1. Intermediate values are
often recorded with additional digits to avoid losing numerical accuracy
due to rounding of numbers.

1.2 NORMAL STRESS AND STRAIN

FIG. 1-1 Structural members subjected to
axial loads. (The tow bar is in tension
and the landing gear strut is in
compression.)

The most fundamental concepts in mechanics of materials are stress and
strain. These concepts can be illustrated in their most elementary form
by considering a prismatic bar subjected to axial forces. A prismatic
bar is a straight structural member having the same cross section
throughout its length, and an axial force is a load directed along the axis
of the member, resulting in either tension or compression in the bar.
Examples are shown in Fig. 1-1, where the tow bar is a prismatic mem-
ber in tension and the landing gear strut is a member in compression.
Other examples are the members of a bridge truss, connecting rods in
automobile engines, spokes of bicycle wheels, columns in buildings, and
wing struts in small airplanes.

Tow bar
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FIG. 1-2 Prismatic bar in tension:

(a) free-body diagram of a segment of
the bar, (b) segment of the bar before
loading, (c) segment of the bar after
loading, and (d) normal stresses in the
bar

For discussion purposes, we will consider the tow bar of Fig. 1-1
and isolate a segment of it as a free body (Fig. 1-2a). When drawing this
free-body diagram, we disregard the weight of the bar itself and assume
that the only active forces are the axial forces P at the ends. Next we
consider two views of the bar, the first showing the same bar before the
loads are applied (Fig. 1-2b) and the second showing it after the loads
are applied (Fig. 1-2¢). Note that the original length of the bar is denoted
by the letter L, and the increase in length due to the loads is denoted by
the Greek letter 6 (delta).

The internal actions in the bar are exposed if we make an imaginary
cut through the bar at section mn (Fig. 1-2c). Because this section is taken
perpendicular to the longitudinal axis of the bar, it is called a cross section.

We now isolate the part of the bar to the left of cross section mn as a
free body (Fig. 1-2d). At the right-hand end of this free body (section
mn) we show the action of the removed part of the bar (that is, the part
to the right of section mn) upon the part that remains. This action con-
sists of continuously distributed stresses acting over the entire cross
section, and the axial force P acting at the cross section is the resultant
of those stresses. (The resultant force is shown with a dashed line in
Fig. 1-2d.)

Stress has units of force per unit area and is denoted by the Greek
letter o (sigma). In general, the stresses o acting on a plane surface may
be uniform throughout the area or may vary in intensity from one point
to another. Let us assume that the stresses acting on cross section mn
(Fig. 1-2d) are uniformly distributed over the area. Then the resultant of
those stresses must be equal to the magnitude of the stress times the
cross-sectional area A of the bar, that is, P = oA. Therefore, we obtain
the following expression for the magnitude of the stresses:

g =

P
A (1-1)

This equation gives the intensity of uniform stress in an axially loaded,
prismatic bar of arbitrary cross-sectional shape.

When the bar is stretched by the forces P, the stresses are tensile
stresses; if the forces are reversed in direction, causing the bar to be
compressed, we obtain compressive stresses. Inasmuch as the stresses
act in a direction perpendicular to the cut surface, they are called normal
stresses. Thus, normal stresses may be either tensile or compressive.
Later, in Section 1.6, we will encounter another type of stress, called
shear stress, that acts parallel to the surface.

When a sign convention for normal stresses is required, it is customary
to define tensile stresses as positive and compressive stresses as negative.

Because the normal stress o is obtained by dividing the axial force
by the cross-sectional area, it has units of force per unit of area. When
USCS units are used, stress is customarily expressed in pounds per
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SECTION 1.2 Normal Stress and Strain 5

square inch (psi) or kips per square inch (ksi).* For instance, suppose
that the bar of Fig. 1-2 has a diameter d of 2.0 inches and the load P has
a magnitude of 6 kips. Then the stress in the bar is
p P 6k
TTAT md%4 T #R0in)Y4
In this example the stress is tensile, or positive.

When Sl units are used, force is expressed in newtons (N) and area
in square meters (m?). Consequently, stress has units of newtons per
square meter (N/m?), that is, pascals (Pa). However, the pascal is such a
small unit of stress that it is necessary to work with large multiples,
usually the megapascal (MPa).

To demonstrate that a pascal is indeed small, we have only to note
that it takes almost 7000 pascals to make 1 psi.** As an illustration, the
stress in the bar described in the preceding example (1.91 ksi) converts
to 13.2 MPa, which is 13.2 X 10° pascals. Although it is not recom-
mended in SI, you will sometimes find stress given in newtons per
square millimeter (N/mm?), which is a unit equal to the megapascal
(MPa).

= 1.91 ksi (or 1910 psi)

Limitations

The equation o = P/A is valid only if the stress is uniformly distributed
over the cross section of the bar. This condition is realized if the axial
force P acts through the centroid of the cross-sectional area, as demon-
strated later in this section. When the load P does not act at the centroid,
bending of the bar will result, and a more complicated analysis is neces-
sary (see Sections 5.12 and 11.5). However, in this book (as in common
practice) it is understood that axial forces are applied at the centroids of
the cross sections unless specifically stated otherwise.

The uniform stress condition pictured in Fig. 1-2d exists throughout
the length of the bar except near the ends. The stress distribution at the
end of a bar depends upon how the load P is transmitted to the bar. If the
load happens to be distributed uniformly over the end, then the stress
pattern at the end will be the same as everywhere else. However, it is
more likely that the load is transmitted through a pin or a bolt, producing
high localized stresses called stress concentrations.

One possibility is illustrated by the eyebar shown in Fig. 1-3. In this
instance the loads P are transmitted to the bar by pins that pass through
the holes (or eyes) at the ends of the bar. Thus, the forces shown in the
figure are actually the resultants of bearing pressures between the pins
and the eyebar, and the stress distribution around the holes is quite com-
plex. However, as we move away from the ends and toward the middle

*One kip, or kilopound, equals 1000 Ib.

**Conversion factors between USCS units and S| units are listed in Table A-5, Appendix A.
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of the bar, the stress distribution gradually approaches the uniform dis-
tribution pictured in Fig. 1-2d.

As a practical rule, the formula ¢ = P/A may be used with good
accuracy at any point within a prismatic bar that is at least as far away
from the stress concentration as the largest lateral dimension of the bar. In
other words, the stress distribution in the steel eyebar of Fig. 1-3 is uni-
form at distances b or greater from the enlarged ends, where b is the width
of the bar, and the stress distribution in the prismatic bar of Fig. 1-2 is
uniform at distances d or greater from the ends, where d is the diameter of
the bar (Fig. 1-2d). More detailed discussions of stress concentrations pro-
duced by axial loads are given in Section 2.10.

Of course, even when the stress is not uniformly distributed, the
equation o = P/A may still be useful because it gives the average nor-
mal stress on the cross section.

Normal Strain

As already observed, a straight bar will change in length when loaded
axially, becoming longer when in tension and shorter when in compression.
For instance, consider again the prismatic bar of Fig. 1-2. The elongation &
of this bar (Fig. 1-2c) is the cumulative result of the stretching of all
elements of the material throughout the volume of the bar. Let us assume
that the material is the same everywhere in the bar. Then, if we consider half
of the bar (length L/2), it will have an elongation equal to &/2, and if we
consider one-fourth of the bar, it will have an elongation equal to §/4.

In general, the elongation of a segment is equal to its length divided
by the total length L and multiplied by the total elongation . Therefore, a
unit length of the bar will have an elongation equal to 1/L times 8. This
quantity is called the elongation per unit length, or strain, and is denoted
by the Greek letter € (epsilon). We see that strain is given by the equation

€= % (1-2)

If the bar is in tension, the strain is called a tensile strain, representing
an elongation or stretching of the material. If the bar is in compression,
the strain is a compressive strain and the bar shortens. Tensile strain is
usually taken as positive and compressive strain as negative. The strain
e is called a normal strain because it is associated with normal stresses.

Because normal strain is the ratio of two lengths, it is a dimension-
less quantity, that is, it has no units. Therefore, strain is expressed
simply as a number, independent of any system of units. Numerical val-
ues of strain are usually very small, because bars made of structural
materials undergo only small changes in length when loaded.
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FIG. 1-4 Uniform stress distribution in a
prismatic bar: (a) axial forces P, and (b)
cross section of the bar

SECTION 1.2 Normal Stress and Strain 7

As an example, consider a steel bar having length L equal to 2.0 m.
When heavily loaded in tension, this bar might elongate by 1.4 mm,
which means that the strain is

6 1.4mm
€ =—=

= = 0. = x 107
1 om 0.0007 = 700 x 10

In practice, the original units of & and L are sometimes attached to the
strain itself, and then the strain is recorded in forms such as mm/m,
pm/m, and in./in. For instance, the strain e in the preceding illustration
could be given as 700 wm/m or 70010~ ° in./in. Also, strain is some-
times expressed as a percent, especially when the strains are large. (In
the preceding example, the strain is 0.07%.)

Uniaxial Stress and Strain

The definitions of normal stress and normal strain are based upon purely
static and geometric considerations, which means that Egs. (1-1) and
(1-2) can be used for loads of any magnitude and for any material. The
principal requirement is that the deformation of the bar be uniform
throughout its volume, which in turn requires that the bar be prismatic,
the loads act through the centroids of the cross sections, and the material
be homogeneous (that is, the same throughout all parts of the bar). The
resulting state of stress and strain is called uniaxial stress and strain.

Further discussions of uniaxial stress, including stresses in directions
other than the longitudinal direction of the bar, are given later in Section
2.6. We will also analyze more complicated stress states, such as biaxial
stress and plane stress, in Chapter 7.

Line of Action of the Axial Forces
for a Uniform Stress Distribution

Throughout the preceding discussion of stress and strain in a prismatic
bar, we assumed that the normal stress o was distributed uniformly over
the cross section. Now we will demonstrate that this condition is met if
the line of action of the axial forces is through the centroid of the cross-
sectional area.

Consider a prismatic bar of arbitrary cross-sectional shape subjected
to axial forces P that produce uniformly distributed stresses o (Fig. 1-4a).
Also, let p, represent the point in the cross section where the line of
action of the forces intersects the cross section (Fig. 1-4b). We construct
a set of xy axes in the plane of the cross section and denote the coordi-
nates of point p; by X and y. To determine these coordinates, we observe
that the moments M, and M, of the force P about the x and y axes,
respectively, must be equal to the corresponding moments of the uni-
formly distributed stresses.
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(b)
FIG. 1-4 (Repeated)

The moments of the force P are
M, = Py M, = —PX (a,b)

in which a moment is considered positive when its vector (using the
right-hand rule) acts in the positive direction of the corresponding axis.*
The moments of the distributed stresses are obtained by integrating
over the cross-sectional area A. The differential force acting on an
element of area dA (Fig. 1-4b) is equal to ¢dA. The moments of this
elemental force about the x and y axes are oydA and —oxdA, respectively,
in which x and y denote the coordinates of the element dA. The total
moments are obtained by integrating over the cross-sectional area:

Mc=[oydA M, =—[oxdA (c,d)

These expressions give the moments produced by the stresses o.

Next, we equate the moments M, and M, as obtained from the
force P (Egs. a and b) to the moments obtained from the distributed
stresses (Egs. ¢ and d):

Py = [oydA  PX=[oxdA

Because the stresses o are uniformly distributed, we know that they are
constant over the cross-sectional area A and can be placed outside the
integral signs. Also, we know that o is equal to P/A. Therefore, we
obtain the following formulas for the coordinates of point p;:

fydA B jdi
A T A

These equations are the same as the equations defining the coordinates
of the centroid of an area (see Eqgs. 12-3a and b in Chapter 12). There-
fore, we have now arrived at an important conclusion: In order to have
uniform tension or compression in a prismatic bar, the axial force must
act through the centroid of the cross-sectional area. As explained previ-
ously, we always assume that these conditions are met unless it is
specifically stated otherwise.

The following examples illustrate the calculation of stresses and
strains in prismatic bars. In the first example we disregard the weight of
the bar and in the second we include it. (It is customary when solving
textbook problems to omit the weight of the structure unless specifically
instructed to include it.)

y = (1-3a,b)

*To visualize the right-hand rule, imagine that you grasp an axis of coordinates with your
right hand so that your fingers fold around the axis and your thumb points in the positive
direction of the axis. Then a moment is positive if it acts about the axis in the same direc-
tion as your fingers.
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SECTION 1.2 Normal Stress and Strain 9

Example 1-1

FIG. 1-5 Example 1-1. Hollow aluminum
post in compression

A short post constructed from a hollow circular tube of aluminum supports a
compressive load of 26 kips (Fig. 1-5). The inner and outer diameters of the
tube are d; = 4.0 in. and d, = 4.5 in., respectively, and its length is 16 in. The
shortening of the post due to the load is measured as 0.012 in.

Determine the compressive stress and strain in the post. (Disregard the
weight of the post itself, and assume that the post does not buckle under the
load.)

Solution

Assuming that the compressive load acts at the center of the hollow tube,
we can use the equation o = P/A (Eq. 1-1) to calculate the normal stress. The
force P equals 26 k (or 26,000 Ib), and the cross-sectional area A is

A= %(d% —d?) = % (45in.)2 — (4.0in.)?| = 3.338 in.2

Therefore, the compressive stress in the post is

P 26,000 Ib

= — =" - i <=
7= A 33382 0P
The compressive strain (from Eq. 1-2) is
6 0.012in.
=—=—""=750x%x10"° <=
=T T1ein 20X

Thus, the stress and strain in the post have been calculated.

Note: As explained earlier, strain is a dimensionless quantity and no units
are needed. For clarity, however, units are often given. In this example, e could
be written as 750 X 10 % in./in. or 750 win./in.
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Example 1-2

FIG.1-6 Example 1-2. Steel rod support-

ing a weight W

A circular steel rod of length L and diameter d hangs in a mine shaft and holds
an ore bucket of weight W at its lower end (Fig. 1-6).

(a) Obtain a formula for the maximum stress omay in the rod, taking into
account the weight of the rod itself.

(b) Calculate the maximum stress if L = 40 m, d = 8 mm, and W =
1.5 kN.

Solution

(a) The maximum axial force F, in the rod occurs at the upper end and is
equal to the weight W of the ore bucket plus the weight W, of the rod itself. The
latter is equal to the weight density y of the steel times the volume V of the rod,
or

Wo =W = ~AL (1-4)

in which A is the cross-sectional area of the rod. Therefore, the formula for the
maximum stress (from Eq. 1-1) becomes

Frmax W + yAL '
mx T AT T A A

+ 9L (1-5) <=

(b) To calculate the maximum stress, we substitute numerical values into
the preceding equation. The cross-sectional area A equals 7d?/4, where d = 8
mm, and the weight density v of steel is 77.0 kN/m® (from Table H-1 in Appen-
dix H). Thus,

1.5 kN
Omax = W + (77.0 kN/m3)(4O m)
= 29.8 MPa + 3.1 MPa = 32.9 MPa <=

In this example, the weight of the rod contributes noticeably to the maximum
stress and should not be disregarded.

1.3 MECHANICAL PROPERTIES OF MATERIALS

The design of machines and structures so that they will function prop-
erly requires that we understand the mechanical behavior of the
materials being used. Ordinarily, the only way to determine how materials
behave when they are subjected to loads is to perform experiments in
the laboratory. The usual procedure is to place small specimens of the
material in testing machines, apply the loads, and then measure the
resulting deformations (such as changes in length and changes in diameter).
Most materials-testing laboratories are equipped with machines capable
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FIG. 1-7 Tensile-test machine with
automatic data-processing system.
(Courtesy of MTS Systems Corporation)
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of loading specimens in a variety of ways, including both static and
dynamic loading in tension and compression.

A typical tensile-test machine is shown in Fig. 1-7. The test speci-
men is installed between the two large grips of the testing machine and
then loaded in tension. Measuring devices record the deformations, and
the automatic control and data-processing systems (at the left in the
photo) tabulate and graph the results.

A more detailed view of a tensile-test specimen is shown in Fig. 1-8
on the next page. The ends of the circular specimen are enlarged where
they fit in the grips so that failure will not occur near the grips them-
selves. A failure at the ends would not produce the desired information
about the material, because the stress distribution near the grips is not
uniform, as explained in Section 1.2. In a properly designed specimen,
failure will occur in the prismatic portion of the specimen where the
stress distribution is uniform and the bar is subjected only to pure ten-
sion. This situation is shown in Fig. 1-8, where the steel specimen has
just fractured under load. The device at the left, which is attached by
two arms to the specimen, is an extensometer that measures the elonga-
tion during loading.
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12 CHAPTER 1 Tension, Compression, and Shear

FIG. 1-8 Typical tensile-test specimen
with extensometer attached; the
specimen has just fractured in tension.
(Courtesy of MTS Systems Corporation)

In order that test results will be comparable, the dimensions of test
specimens and the methods of applying loads must be standardized.
One of the major standards organizations in the United States is the
American Society for Testing and Materials (ASTM), a technical society
that publishes specifications and standards for materials and testing.
Other standardizing organizations are the American Standards Associa-
tion (ASA) and the National Institute of Standards and Technology
(NIST). Similar organizations exist in other countries.

The ASTM standard tension specimen has a diameter of 0.505 in.
and a gage length of 2.0 in. between the gage marks, which are the
points where the extensometer arms are attached to the specimen (see
Fig. 1-8). As the specimen is pulled, the axial load is measured and
recorded, either automatically or by reading from a dial. The elongation
over the gage length is measured simultaneously, either by mechanical
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SECTION 1.3 Mechanical Properties of Materials 13

gages of the kind shown in Fig. 1-8 or by electrical-resistance strain
gages.

In a static test, the load is applied slowly and the precise rate of
loading is not of interest because it does not affect the behavior of the
specimen. However, in a dynamic test the load is applied rapidly and
sometimes in a cyclical manner. Since the nature of a dynamic load
affects the properties of the materials, the rate of loading must also be
measured.

Compression tests of metals are customarily made on small speci-
mens in the shape of cubes or circular cylinders. For instance, cubes
may be 2.0 in. on a side, and cylinders may have diameters of 1 in. and
lengths from 1 to 12 in. Both the load applied by the machine and the
shortening of the specimen may be measured. The shortening should be
measured over a gage length that is less than the total length of the spec-
imen in order to eliminate end effects.

Concrete is tested in compression on important construction proj-
ects to ensure that the required strength has been obtained. One type of
concrete test specimen is 6 in. in diameter, 12 in. in length, and 28 days
old (the age of concrete is important because concrete gains strength as
it cures). Similar but somewhat smaller specimens are used when per-
forming compression tests of rock (Fig. 1-9, on the next page).

Stress-Strain Diagrams

Test results generally depend upon the dimensions of the specimen being
tested. Since it is unlikely that we will be designing a structure having
parts that are the same size as the test specimens, we need to express
the test results in a form that can be applied to members of any size. A
simple way to achieve this objective is to convert the test results to
stresses and strains.

The axial stress o in a test specimen is calculated by dividing the
axial load P by the cross-sectional area A (Eq. 1-1). When the initial
area of the specimen is used in the calculation, the stress is called the
nominal stress (other names are conventional stress and engineering
stress). A more exact value of the axial stress, called the true stress, can
be calculated by using the actual area of the bar at the cross section
where failure occurs. Since the actual area in a tension test is always less
than the initial area (as illustrated in Fig. 1-8), the true stress is larger
than the nominal stress.

The average axial strain e in the test specimen is found by dividing
the measured elongation & between the gage marks by the gage length L
(see Fig. 1-8 and Eq. 1-2). If the initial gage length is used in the calcu-
lation (for instance, 2.0 in.), then the nominal strain is obtained. Since
the distance between the gage marks increases as the tensile load is
applied, we can calculate the true strain (or natural strain) at any value
of the load by using the actual distance between the gage marks. In
tension, true strain is always smaller than nominal strain. However, for
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FIG. 1-9 Rock sample being tested in
compression. (Courtesy of MTS
Systems Corporation)

most engineering purposes, hominal stress and nominal strain are ade-
quate, as explained later in this section.

After performing a tension or compression test and determining the
stress and strain at various magnitudes of the load, we can plot a dia-
gram of stress versus strain. Such a stress-strain diagram is a
characteristic of the particular material being tested and conveys impor-
tant information about the mechanical properties and type of behavior.*

*Stress-strain diagrams were originated by Jacob Bernoulli (1654-1705) and J. V. Pon-
celet (1788-1867); see Ref. 1-4.
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FIG. 1-10 Stress-strain diagram for
a typical structural steel in tension

(not to scale)
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The first material we will discuss is structural steel, also known as
mild steel or low-carbon steel. Structural steel is one of the most widely
used metals and is found in buildings, bridges, cranes, ships, towers,
vehicles, and many other types of construction. A stress-strain diagram
for a typical structural steel in tension is shown in Fig. 1-10. Strains are
plotted on the horizontal axis and stresses on the vertical axis. (In order
to display all of the important features of this material, the strain axis in
Fig. 1-10 is not drawn to scale.)

The diagram begins with a straight line from the origin O to point A,
which means that the relationship between stress and strain in this initial
region is not only linear but also proportional.* Beyond point A, the
proportionality between stress and strain no longer exists; hence the
stress at A is called the proportional limit. For low-carbon steels, this
limit is in the range 30 to 50 ksi (210 to 350 MPa), but high-strength
steels (with higher carbon content plus other alloys) can have propor-
tional limits of more than 80 ksi (550 MPa). The slope of the straight
line from O to A is called the modulus of elasticity. Because the slope
has units of stress divided by strain, modulus of elasticity has the same
units as stress. (Modulus of elasticity is discussed later in Section 1.5.)

With an increase in stress beyond the proportional limit, the strain
begins to increase more rapidly for each increment in stress. Conse-
quently, the stress-strain curve has a smaller and smaller slope, until, at
point B, the curve becomes horizontal (see Fig. 1-10). Beginning at this
point, considerable elongation of the test specimen occurs with no

£
.
Ultimate— | =D .
stress F
Yield stress B C E
AW Fracture

Proportional
limit

o]

‘ €
) Perfect Strain Necking

Linear  Plasticity  hardening
region  Or yielding

*Two variables are said to be proportional if their ratio remains constant. Therefore, a
proportional relationship may be represented by a straight line through the origin. How-
ever, a proportional relationship is not the same as a linear relationship. Although a
proportional relationship is linear, the converse is not necessarily true, because a rela-
tionship represented by a straight line that does not pass through the origin is linear but
not proportional. The often-used expression “directly proportional” is synonymous with
“proportional” (Ref. 1-5).
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FIG. 1-11 Necking of a mild-steel bar in
tension

noticeable increase in the tensile force (from B to C). This phenomenon
is known as yielding of the material, and point B is called the yield
point. The corresponding stress is known as the yield stress of the steel.

In the region from B to C (Fig. 1-10), the material becomes perfectly
plastic, which means that it deforms without an increase in the applied
load. The elongation of a mild-steel specimen in the perfectly plastic
region is typically 10 to 15 times the elongation that occurs in the linear
region (between the onset of loading and the proportional limit). The
presence of very large strains in the plastic region (and beyond) is the
reason for not plotting this diagram to scale.

After undergoing the large strains that occur during yielding in the
region BC, the steel begins to strain harden. During strain hardening,
the material undergoes changes in its crystalline structure, resulting in
increased resistance of the material to further deformation. Elongation of
the test specimen in this region requires an increase in the tensile load,
and therefore the stress-strain diagram has a positive slope from C to D.
The load eventually reaches its maximum value, and the corresponding
stress (at point D) is called the ultimate stress. Further stretching of the
bar is actually accompanied by a reduction in the load, and fracture
finally occurs at a point such as E in Fig. 1-10.

The yield stress and ultimate stress of a material are also called the
yield strength and ultimate strength, respectively. Strength is a general
term that refers to the capacity of a structure to resist loads. For instance,
the yield strength of a beam is the magnitude of the load required to
cause yielding in the beam, and the ultimate strength of a truss is the
maximum load it can support, that is, the failure load. However, when
conducting a tension test of a particular material, we define load-carrying
capacity by the stresses in the specimen rather than by the total loads
acting on the specimen. As a result, the strength of a material is usually
stated as a stress.

When a test specimen is stretched, lateral contraction occurs, as
previously mentioned. The resulting decrease in cross-sectional area is
too small to have a noticeable effect on the calculated values of the
stresses up to about point C in Fig. 1-10, but beyond that point the
reduction in area begins to alter the shape of the curve. In the vicinity of
the ultimate stress, the reduction in area of the bar becomes clearly visi-
ble and a pronounced necking of the bar occurs (see Figs. 1-8 and 1-11).

If the actual cross-sectional area at the narrow part of the neck is
used to calculate the stress, the true stress-strain curve (the dashed line
CE' in Fig. 1-10) is obtained. The total load the bar can carry does indeed
diminish after the ultimate stress is reached (as shown by curve DE), but
this reduction is due to the decrease in area of the bar and not to a loss in
strength of the material itself. In reality, the material withstands an
increase in true stress up to failure (point E"). Because most structures are
expected to function at stresses below the proportional limit, the conven-
tional stress-strain curve OABCDE, which is based upon the original
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FIG. 1-12 Stress-strain diagram for a
typical structural steel in tension (drawn
to scale)
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FIG. 1-13 Typical stress-strain diagram
for an aluminum alloy
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FIG. 1-14 Arbitrary yield stress
determined by the offset method
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cross-sectional area of the specimen and is easy to determine, provides
satisfactory information for use in engineering design.

The diagram of Fig. 1-10 shows the general characteristics of the
stress-strain curve for mild steel, but its proportions are not realistic
because, as already mentioned, the strain that occurs from B to C may be
more than ten times the strain occurring from O to A. Furthermore, the
strains from C to E are many times greater than those from B to C. The
correct relationships are portrayed in Fig. 1-12, which shows a stress-
strain diagram for mild steel drawn to scale. In this figure, the strains
from the zero point to point A are so small in comparison to the strains
from point A to point E that they cannot be seen, and the initial part of
the diagram appears to be a vertical line.

The presence of a clearly defined yield point followed by large plas-
tic strains is an important characteristic of structural steel that is
sometimes utilized in practical design (see, for instance, the discussions
of elastoplastic behavior in Sections 2.12 and 6.10). Metals such as
structural steel that undergo large permanent strains before failure are
classified as ductile. For instance, ductility is the property that enables a
bar of steel to be bent into a circular arc or drawn into a wire without
breaking. A desirable feature of ductile materials is that visible distor-
tions occur if the loads become too large, thus providing an opportunity
to take remedial action before an actual fracture occurs. Also, materials
exhibiting ductile behavior are capable of absorbing large amounts of
strain energy prior to fracture.

Structural steel is an alloy of iron containing about 0.2% carbon,
and therefore it is classified as a low-carbon steel. With increasing
carbon content, steel becomes less ductile but stronger (higher yield
stress and higher ultimate stress). The physical properties of steel are
also affected by heat treatment, the presence of other metals, and manu-
facturing processes such as rolling. Other materials that behave in a
ductile manner (under certain conditions) include aluminum, copper,
magnesium, lead, molybdenum, nickel, brass, bronze, monel metal,
nylon, and teflon.

Although they may have considerable ductility, aluminum alloys
typically do not have a clearly definable yield point, as shown by the
stress-strain diagram of Fig. 1-13. However, they do have an initial
linear region with a recognizable proportional limit. Alloys produced for
structural purposes have proportional limits in the range 10 to 60 ksi
(70 to 410 MPa) and ultimate stresses in the range 20 to 80 ksi (140 to
550 MPa).

When a material such as aluminum does not have an obvious yield
point and yet undergoes large strains after the proportional limit is
exceeded, an arbitrary yield stress may be determined by the offset
method. A straight line is drawn on the stress-strain diagram parallel to
the initial linear part of the curve (Fig. 1-14) but offset by some standard
strain, such as 0.002 (or 0.2%). The intersection of the offset line and
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FIG. 1-15 Stress-strain curves for two
kinds of rubber in tension

the stress-strain curve (point A in the figure) defines the yield stress.
Because this stress is determined by an arbitrary rule and is not an
inherent physical property of the material, it should be distinguished
from a true yield stress by referring to it as the offset yield stress. For a
material such as aluminum, the offset yield stress is slightly above the
proportional limit. In the case of structural steel, with its abrupt transi-
tion from the linear region to the region of plastic stretching, the offset
stress is essentially the same as both the yield stress and the proportional
limit.

Rubber maintains a linear relationship between stress and strain up to
relatively large strains (as compared to metals). The strain at the propor-
tional limit may be as high as 0.1 or 0.2 (10% or 20%). Beyond the
proportional limit, the behavior depends upon the type of rubber (Fig. 1-15).
Some kinds of soft rubber will stretch enormously without failure, reaching
lengths several times their original lengths. The material eventually offers
increasing resistance to the load, and the stress-strain curve turns
markedly upward. You can easily sense this characteristic behavior by
stretching a rubber band with your hands. (Note that although rubber
exhibits very large strains, it is not a ductile material because the strains
are not permanent. It is, of course, an elastic material; see Section 1.4.)

The ductility of a material in tension can be characterized by its
elongation and by the reduction in area at the cross section where frac-
ture occurs. The percent elongation is defined as follows:

L
Percent elongation = % (100) (1-6)
0

in which Ly is the original gage length and L, is the distance between
the gage marks at fracture. Because the elongation is not uniform over
the length of the specimen but is concentrated in the region of necking,
the percent elongation depends upon the gage length. Therefore, when
stating the percent elongation, the gage length should always be given.
For a 2 in. gage length, steel may have an elongation in the range from
3% to 40%, depending upon composition; in the case of structural steel,
values of 20% or 30% are common. The elongation of aluminum alloys
varies from 1% to 45%, depending upon composition and treatment.

The percent reduction in area measures the amount of necking
that occurs and is defined as follows:

A
Percent reduction in area = % (100) (1-7)
0

in which Ay is the original cross-sectional area and A, is the final area at
the fracture section. For ductile steels, the reduction is about 50%.
Materials that fail in tension at relatively low values of strain are
classified as brittle. Examples are concrete, stone, cast iron, glass,
ceramics, and a variety of metallic alloys. Brittle materials fail with only
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FIG.1-16 Typical stress-strain diagram
for a brittle material showing the propor-
tional limit (point A) and fracture stress
(point B)
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little elongation after the proportional limit (the stress at point A in
Fig. 1-16) is exceeded. Furthermore, the reduction in area is insignifi-
cant, and so the nominal fracture stress (point B) is the same as the true
ultimate stress. High-carbon steels have very high yield stresses—over
100 ksi (700 MPa) in some cases—but they behave in a brittle manner
and fracture occurs at an elongation of only a few percent.

Ordinary glass is a nearly ideal brittle material, because it exhibits
almost no ductility. The stress-strain curve for glass in tension is essen-
tially a straight line, with failure occurring before any yielding takes
place. The ultimate stress is about 10,000 psi (70 MPa) for certain kinds
of plate glass, but great variations exist, depending upon the type of
glass, the size of the specimen, and the presence of microscopic defects.
Glass fibers can develop enormous strengths, and ultimate stresses over
1,000,000 psi (7 GPa) have been attained.

Many types of plastics are used for structural purposes because of
their light weight, resistance to corrosion, and good electrical insulation
properties. Their mechanical properties vary tremendously, with some
plastics being brittle and others ductile. When designing with plastics it
is important to realize that their properties are greatly affected by both
temperature changes and the passage of time. For instance, the ultimate
tensile stress of some plastics is cut in half merely by raising the temper-
ature from 50° F to 120° F. Also, a loaded plastic may stretch gradually
over time until it is no longer serviceable. For example, a bar of
polyvinyl chloride subjected to a tensile load that initially produces a
strain of 0.005 may have that strain doubled after one week, even
though the load remains constant. (This phenomenon, known as creep,
is discussed in the next section.)

Ultimate tensile stresses for plastics are generally in the range 2 to
50 ksi (14 to 350 MPa) and weight densities vary from 50 to 90 Ib/ft® (8
to 14 kN/m3). One type of nylon has an ultimate stress of 12 ksi (80
MPa) and weighs only 70 Ib/ft® (11 kN/m®), which is only 12% heavier
than water. Because of its light weight, the strength-to-weight ratio for
nylon is about the same as for structural steel (see Prob. 1.3-4).

A filament-reinforced material consists of a base material (or
matrix) in which high-strength filaments, fibers, or whiskers are embed-
ded. The resulting composite material has much greater strength than the
base material. As an example, the use of glass fibers can more than dou-
ble the strength of a plastic matrix. Composites are widely used in
aircraft, boats, rockets, and space vehicles where high strength and light
weight are needed.

Compression

Stress-strain curves for materials in compression differ from those in
tension. Ductile metals such as steel, aluminum, and copper have pro-
portional limits in compression very close to those in tension, and the
initial regions of their compressive and tensile stress-strain diagrams are
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FIG. 1-17 Stress-strain diagram for
copper in compression

0.8

about the same. However, after yielding begins, the behavior is quite
different. In a tension test, the specimen is stretched, necking may occur,
and fracture ultimately takes place. When the material is compressed, it
bulges outward on the sides and becomes barrel shaped, because friction
between the specimen and the end plates prevents lateral expansion.
With increasing load, the specimen is flattened out and offers greatly
increased resistance to further shortening (which means that the stress-
strain curve becomes very steep). These characteristics are illustrated in
Fig. 1-17, which shows a compressive stress-strain diagram for copper.
Since the actual cross-sectional area of a specimen tested in compres-
sion is larger than the initial area, the true stress in a compression test is
smaller than the nominal stress.

Brittle materials loaded in compression typically have an initial
linear region followed by a region in which the shortening increases at
a slightly higher rate than does the load. The stress-strain curves for
compression and tension often have similar shapes, but the ultimate
stresses in compression are much higher than those in tension. Also,
unlike ductile materials, which flatten out when compressed, brittle
materials actually break at the maximum load.

Tables of Mechanical Properties

Properties of materials are listed in the tables of Appendix H at the back
of the book. The data in the tables are typical of the materials and are
suitable for solving problems in this book. However, properties of mate-
rials and stress-strain curves vary greatly, even for the same material,
because of different manufacturing processes, chemical composition,
internal defects, temperature, and many other factors.

For these reasons, data obtained from Appendix H (or other tables
of a similar nature) should not be used for specific engineering or design
purposes. Instead, the manufacturers or materials suppliers should be
consulted for information about a particular product.

1.4 ELASTICITY, PLASTICITY, AND CREEP

Stress-strain diagrams portray the behavior of engineering materials
when the materials are loaded in tension or compression, as described in
the preceding section. To go one step further, let us now consider what
happens when the load is removed and the material is unloaded.
Assume, for instance, that we apply a load to a tensile specimen so
that the stress and strain go from the origin O to point A on the stress-
strain curve of Fig. 1-18a. Suppose further that when the load is
removed, the material follows exactly the same curve back to the origin
O. This property of a material, by which it returns to its original dimen-
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sions during unloading, is called elasticity, and the material itself is said
to be elastic. Note that the stress-strain curve from O to A need not be
linear in order for the material to be elastic.

Now suppose that we load this same material to a higher level, so
that point B is reached on the stress-strain curve (Fig. 1-18b). When
unloading occurs from point B, the material follows line BC on the dia-
gram. This unloading line is parallel to the initial portion of the loading
curve; that is, line BC is parallel to a tangent to the stress-strain curve at
the origin. When point C is reached, the load has been entirely removed,
but a residual strain, or permanent strain, represented by line OC,
remains in the material. As a consequence, the bar being tested is longer
than it was before loading. This residual elongation of the bar is called
the permanent set. Of the total strain OD developed during loading
from O to B, the strain CD has been recovered elastically and the strain
OC remains as a permanent strain. Thus, during unloading the bar
returns partially to its original shape, and so the material is said to be
partially elastic.

Between points A and B on the stress-strain curve (Fig. 1-18b), there
must be a point before which the material is elastic and beyond which
the material is partially elastic. To find this point, we load the material
to some selected value of stress and then remove the load. If there is no
permanent set (that is, if the elongation of the bar returns to zero), then
the material is fully elastic up to the selected value of the stress.

The process of loading and unloading can be repeated for succes-
sively higher values of stress. Eventually, a stress will be reached such
that not all the strain is recovered during unloading. By this procedure, it
is possible to determine the stress at the upper limit of the elastic region,
for instance, the stress at point E in Figs. 1-18a and b. The stress at this
point is known as the elastic limit of the material.

Many materials, including most metals, have linear regions at the
beginning of their stress-strain curves (for example, see Figs. 1-10 and
1-13). The stress at the upper limit of this linear region is the propor-
tional limit, as explained in the preceeding section. The elastic limit is
usually the same as, or slightly above, the proportional limit. Hence, for
many materials the two limits are assigned the same numerical value. In
the case of mild steel, the yield stress is also very close to the propor-
tional limit, so that for practical purposes the yield stress, the elastic
limit, and the proportional limit are assumed to be equal. Of course, this
situation does not hold for all materials. Rubber is an outstanding exam-
ple of a material that is elastic far beyond the proportional limit.

The characteristic of a material by which it undergoes inelastic
strains beyond the strain at the elastic limit is known as plasticity. Thus,
on the stress-strain curve of Fig. 1-18a, we have an elastic region fol-
lowed by a plastic region. When large deformations occur in a ductile
material loaded into the plastic region, the material is said to undergo
plastic flow.
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FIG.1-20 Creep in a bar under constant
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Reloading of a Material

If the material remains within the elastic range, it can be loaded,
unloaded, and loaded again without significantly changing the behavior.
However, when loaded into the plastic range, the internal structure of
the material is altered and its properties change. For instance, we have
already observed that a permanent strain exists in the specimen after
unloading from the plastic region (Fig. 1-18b). Now suppose that the
material is reloaded after such an unloading (Fig. 1-19). The new load-
ing begins at point C on the diagram and continues upward to point B,
the point at which unloading began during the first loading cycle. The
material then follows the original stress-strain curve toward point F.
Thus, for the second loading, we can imagine that we have a new stress-
strain diagram with its origin at point C.

During the second loading, the material behaves in a linearly elastic
manner from C to B, with the slope of line CB being the same as the slope
of the tangent to the original loading curve at the origin O. The propor-
tional limit is now at point B, which is at a higher stress than the original
elastic limit (point E). Thus, by stretching a material such as steel or alu-
minum into the inelastic or plastic range, the properties of the material
are changed—the linearly elastic region is increased, the proportional
limit is raised, and the elastic limit is raised. However, the ductility is
reduced because in the “new material” the amount of yielding beyond
the elastic limit (from B to F) is less than in the original material (from
EtoF).*

Creep

The stress-strain diagrams described previously were obtained from
tension tests involving static loading and unloading of the specimens,
and the passage of time did not enter our discussions. However, when
loaded for long periods of time, some materials develop additional
strains and are said to creep.

This phenomenon can manifest itself in a variety of ways. For
instance, suppose that a vertical bar (Fig. 1-20a) is loaded slowly by a
force P, producing an elongation equal to &y. Let us assume that the load-
ing and corresponding elongation take place during a time interval of
duration ty (Fig. 1-20b). Subsequent to time t,, the load remains constant.
However, due to creep, the bar may gradually lengthen, as shown in Fig.
1-20b, even though the load does not change. This behavior occurs with
many materials, although sometimes the change is too small to be of
concern.

*The study of material behavior under various environmental and loading conditions is
an important branch of applied mechanics. For more detailed engineering information
about materials, consult a textbook devoted solely to this subject.
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As another manifestation of creep, consider a wire that is stretched
between two immovable supports so that it has an initial tensile stress oy
(Fig. 1-21). Again, we will denote the time during which the wire is
initially stretched as ty. With the elapse of time, the stress in the wire
gradually diminishes, eventually reaching a constant value, even though
the supports at the ends of the wire do not move. This process, is called
relaxation of the material.

Creep is usually more important at high temperatures than at
ordinary temperatures, and therefore it should always be considered in
the design of engines, furnaces, and other structures that operate at
elevated temperatures for long periods of time. However, materials such
as steel, concrete, and wood will creep slightly even at atmospheric
temperatures. For example, creep of concrete over long periods of time
can create undulations in bridge decks because of sagging between the
supports. (One remedy is to construct the deck with an upward camber,
which is an initial displacement above the horizontal, so that when creep
occurs, the spans lower to the level position.)

1.5 LINEAR ELASTICITY, HOOKE’S LAW, AND POISSON’S RATIO

Many structural materials, including most metals, wood, plastics, and
ceramics, behave both elastically and linearly when first loaded.
Consequently, their stress-strain curves begin with a straight line passing
through the origin. An example is the stress-strain curve for structural
steel (Fig. 1-10), where the region from the origin O to the proportional
limit (point A) is both linear and elastic. Other examples are the regions
below both the proportional limits and the elastic limits on the diagrams
for aluminum (Fig. 1-13), brittle materials (Fig. 1-16), and copper
(Fig. 1-17).

When a material behaves elastically and also exhibits a linear
relationship between stress and strain, it is said to be linearly elastic.
This type of behavior is extremely important in engineering for an obvi-
ous reason—~by designing structures and machines to function in this
region, we avoid permanent deformations due to yielding.

Hooke’s Law
The linear relationship between stress and strain for a bar in simple
tension or compression is expressed by the equation

o= FEe (1-8)

in which o is the axial stress, € is the axial strain, and E is a constant of
proportionality known as the modulus of elasticity for the material. The
modulus of elasticity is the slope of the stress-strain diagram in the
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FIG. 1-22 Axial elongation and lateral
contraction of a prismatic bar in tension:
(a) bar before loading, and (b) bar after
loading. (The deformations of the bar
are highly exaggerated.)

linearly elastic region, as mentioned previously in Section 1.3. Since
strain is dimensionless, the units of E are the same as the units of stress.
Typical units of E are psi or ksi in USCS units and pascals (or multiples
thereof) in SI units.

The equation o = Ee is commonly known as Hooke’s law, named
for the famous English scientist Robert Hooke (1635-1703). Hooke was
the first person to investigate scientifically the elastic properties of
materials, and he tested such diverse materials as metal, wood, stone,
bone, and sinew. He measured the stretching of long wires supporting
weights and observed that the elongations “always bear the same
proportions one to the other that the weights do that made them” (Ref.
1-6). Thus, Hooke established the linear relationship between the
applied loads and the resulting elongations.

Equation (1-8) is actually a very limited version of Hooke’s law
because it relates only to the longitudinal stresses and strains developed
in simple tension or compression of a bar (uniaxial stress). To deal with
more complicated states of stress, such as those found in most structures
and machines, we must use more extensive equations of Hooke’s law
(see Sections 7.5 and 7.6).

The modulus of elasticity has relatively large values for materials
that are very stiff, such as structural metals. Steel has a modulus of
approximately 30,000 ksi (210 GPa); for aluminum, values around
10,600 ksi (73 GPa) are typical. More flexible materials have a lower
modulus—values for plastics range from 100 to 2,000 ksi (0.7 to
14 GPa). Some representative values of E are listed in Table H-2,
Appendix H. For most materials, the value of E in compression is nearly
the same as in tension.

Modulus of elasticity is often called Young’s modulus, after
another English scientist, Thomas Young (1773-1829). In connection
with an investigation of tension and compression of prismatic bars,
Young introduced the idea of a “modulus of the elasticity.” However,
his modulus was not the same as the one in use today, because it
involved properties of the bar as well as of the material (Ref. 1-7).

Poisson’s Ratio

When a prismatic bar is loaded in tension, the axial elongation is
accompanied by lateral contraction (that is, contraction normal to the
direction of the applied load). This change in shape is pictured in Fig. 1-22,
where part (a) shows the bar before loading and part (b) shows it after load-
ing. In part (b), the dashed lines represent the shape of the bar prior to
loading.

Lateral contraction is easily seen by stretching a rubber band, but in
metals the changes in lateral dimensions (in the linearly elastic region)
are usually too small to be visible. However, they can be detected with
sensitive measuring devices.
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SECTION 1.5 Linear Elasticity, Hooke’s Law, and Poisson’s Ratio 25

The lateral strain €' at any point in a bar is proportional to the axial
strain e at that same point if the material is linearly elastic. The ratio of
these strains is a property of the material known as Poisson’s ratio. This
dimensionless ratio, usually denoted by the Greek letter » (nu), can be
expressed by the equation

_ _ lateral strain _ € (1-9)

axial strain €

The minus sign is inserted in the equation to compensate for the fact that
the lateral and axial strains normally have opposite signs. For instance,
the axial strain in a bar in tension is positive and the lateral strain is
negative (because the width of the bar decreases). For compression we
have the opposite situation, with the bar becoming shorter (negative
axial strain) and wider (positive lateral strain). Therefore, for ordinary
materials Poisson’s ratio will have a positive value.

When Poisson’s ratio for a material is known, we can obtain the
lateral strain from the axial strain as follows:

€ = —ve (1-10)

When using Egs. (1-9) and (1-10), we must always keep in mind that
they apply only to a bar in uniaxial stress, that is, a bar for which the
only stress is the normal stress o in the axial direction.

Poisson’s ratio is named for the famous French mathematician
Siméon Denis Poisson (1781-1840), who attempted to calculate this
ratio by a molecular theory of materials (Ref. 1-8). For isotropic
materials, Poisson found » = 1/4. More recent calculations based upon
better models of atomic structure give » = 1/3. Both of these values are
close to actual measured values, which are in the range 0.25 to 0.35 for
most metals and many other materials. Materials with an extremely low
value of Poisson’s ratio include cork, for which v is practically zero, and
concrete, for which v is about 0.1 or 0.2. A theoretical upper limit for
Poisson’s ratio is 0.5, as explained later in Section 7.5. Rubber comes
close to this limiting value.

A table of Poisson’s ratios for various materials in the linearly elastic
range is given in Appendix H (see Table H-2). For most purposes, Pois-
son’s ratio is assumed to be the same in both tension and compression.

When the strains in a material become large, Poisson’s ratio
changes. For instance, in the case of structural steel the ratio becomes
almost 0.5 when plastic yielding occurs. Thus, Poisson’s ratio remains
constant only in the linearly elastic range. When the material behavior
is nonlinear, the ratio of lateral strain to axial strain is often called the
contraction ratio. Of course, in the special case of linearly elastic be-
havior, the contraction ratio is the same as Poisson’s ratio.
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FIG. 1-22 (Repeated)

Limitations

For a particular material, Poisson’s ratio remains constant throughout
the linearly elastic range, as explained previously. Therefore, at any
given point in the prismatic bar of Fig. 1-22, the lateral strain remains
proportional to the axial strain as the load increases or decreases.
However, for a given value of the load (which means that the axial
strain is constant throughout the bar), additional conditions must be met
if the lateral strains are to be the same throughout the entire bar.

First, the material must be homogeneous, that is, it must have the
same composition (and hence the same elastic properties) at every point.
However, having a homogeneous material does not mean that the elastic
properties at a particular point are the same in all directions. For
instance, the modulus of elasticity could be different in the axial and
lateral directions, as in the case of a wood pole. Therefore, a second
condition for uniformity in the lateral strains is that the elastic properties
must be the same in all directions perpendicular to the longitudinal axis.
When the preceding conditions are met, as is often the case with metals,
the lateral strains in a prismatic bar subjected to uniform tension will be
the same at every point in the bar and the same in all lateral directions.

Materials having the same properties in all directions (whether
axial, lateral, or any other direction) are said to be isotropic. If the
properties differ in various directions, the material is anisotropic (or
aeolotropic).

In this book, all examples and problems are solved with the assump-
tion that the material is linearly elastic, homogeneous, and isotropic,
unless a specific statement is made to the contrary.

Example 1-3

A steel pipe of length L = 4.0 ft, outside diameter d, = 6.0 in., and inside
diameter d; = 4.5 in. is compressed by an axial force P =140 k (Fig. 1-23). The
material has modulus of elasticity E = 30,000 ksi and Poisson’s ratio » = 0.30.

Determine the following quantities for the pipe: (a) the shortening &, (b) the
lateral strain €', (c) the increase Ad, in the outer diameter and the increase Ad,
in the inner diameter, and (d) the increase At in the wall thickness.

Solution
The cross-sectional area A and longitudinal stress o are determined as
follows:

A= %T (d5—df)= %T (6.0in.)? — (4.5in.)?2| = 12.37 in.2
= - B = — LOI( - _ . i
777 A 12.37in.2 11.32 ksi (compression)
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FIG. 1-23 Example 1-3. Steel pipe in
compression

SECTION 1.5 Linear Elasticity, Hooke’s Law, and Poisson’s Ratio 27

Because the stress is well below the yield stress (see Table H-3, Appendix H),
the material behaves linearly elastically and the axial strain may be found from
Hooke’s law:

g —-11.32 kSI -6
E 30,000 ksi 377.3 % 10

The minus sign for the strain indicates that the pipe shortens.
(a) Knowing the axial strain, we can now find the change in length of the
pipe (see Eqg. 1-2):

8= el = (—377.3 X 10°9)(4.0 ft)(12 in./ft) = —0.018 in.  <mm

The negative sign again indicates a shortening of the pipe.
(b) The lateral strain is obtained from Poisson’s ratio (see Eq. 1-10):

€= —ve= —(0.30)(—377.3 X 1076 = 1132 X 10°¢ <

The positive sign for e’ indicates an increase in the lateral dimensions, as
expected for compression.
(c) The increase in outer diameter equals the lateral strain times the diameter:

Ad, = €d,=(113.2 X 10 9)(6.0 in.) = 0.000679 in. <=
Similarly, the increase in inner diameter is
Ad; = €d, = (113.2 X 10 %)(4.5 in.) = 0.000509 in. <=

(d) The increase in wall thickness is found in the same manner as the
increases in the diameters; thus,

At = €t = (113.2x107°)(0.75 in.) = 0.000085 in. <=

This result can be verified by noting that the increase in wall thickness is equal
to half the difference of the increases in diameters:

Ad, — Ad
At = % = %(0.000679 in. — 0.000509 in.) = 0.000085 in.

as expected. Note that under compression, all three quantities increase (outer
diameter, inner diameter, and thickness).

Note: The numerical results obtained in this example illustrate that the
dimensional changes in structural materials under normal loading conditions
are extremely small. In spite of their smallness, changes in dimensions
can be important in certain kinds of analysis (such as the analysis of statically
indeterminate structures) and in the experimental determination of stresses and
strains.
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1.6 SHEAR STRESS AND STRAIN

(b)

FIG. 1-24 Bolted connection in which the
bolt is loaded in double shear

In the preceding sections we discussed the effects of normal stresses
produced by axial loads acting on straight bars. These stresses are called
“normal stresses” because they act in directions perpendicular to the
surface of the material. Now we will consider another kind of stress,
called a shear stress, that acts tangential to the surface of the material.

As an illustration of the action of shear stresses, consider the bolted
connection shown in Fig. 1-24a. This connection consists of a flat bar A,
a clevis C, and a bolt B that passes through holes in the bar and clevis.
Under the action of the tensile loads P, the bar and clevis will press
against the bolt in bearing, and contact stresses, called bearing
stresses, will be developed. In addition, the bar and clevis tend to shear
the bolt, that is, cut through it, and this tendency is resisted by shear
stresses in the bolt.

To show more clearly the actions of the bearing and shear stresses,
let us look at this type of connection in a schematic side view (Fig.
1-24b). With this view in mind, we draw a free-body diagram of the bolt
(Fig. 1-24c). The bearing stresses exerted by the clevis against the bolt
appear on the left-hand side of the free-body diagram and are labeled 1
and 3. The stresses from the bar appear on the right-hand side and are

() (d) (e)
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SECTION 1.6  Shear Stress and Strain 29

labeled 2. The actual distribution of the bearing stresses is difficult to
determine, so it is customary to assume that the stresses are uniformly
distributed. Based upon the assumption of uniform distribution, we can
calculate an average bearing stress oy, by dividing the total bearing
force Fy, by the bearing area Ay:

- (1-11)

Oh

The bearing area is defined as the projected area of the curved bearing
surface. For instance, consider the bearing stresses labeled 1. The pro-
jected area A, on which they act is a rectangle having a height equal to
the thickness of the clevis and a width equal to the diameter of the bolt.
Also, the bearing force Fy, represented by the stresses labeled 1 is equal
to P/2. The same area and the same force apply to the stresses labeled 3.

Now consider the bearing stresses between the flat bar and the bolt
(the stresses labeled 2). For these stresses, the bearing area Ay is a rec-
tangle with height equal to the thickness of the flat bar and width equal
to the bolt diameter. The corresponding bearing force Fy, is equal to the
load P.

The free-body diagram of Fig. 1-24c shows that there is a tendency
to shear the bolt along cross sections mn and pg. From a free-body
diagram of the portion mnpq of the bolt (see Fig. 1-24d), we see that
shear forces V act over the cut surfaces of the bolt. In this particular
example there are two planes of shear (mn and pq), and so the bolt is
said to be in double shear. In double shear, each of the shear forces is
equal to one-half of the total load transmitted by the bolt, that is, V =
P/2.

The shear forces V are the resultants of the shear stresses distributed
over the cross-sectional area of the bolt. For instance, the shear stresses
acting on cross section mn are shown in Fig. 1-24e. These stresses act
parallel to the cut surface. The exact distribution of the stresses is not
known, but they are highest near the center and become zero at certain
locations on the edges. As indicated in Fig. 1-24e, shear stresses are cus-
tomarily denoted by the Greek letter 7 (tau).

A bolted connection in single shear is shown in Fig. 1-25a, on the
next page, where the axial force P in the metal bar is transmitted to the
flange of the steel column through a bolt. A cross-sectional view of the
column (Fig. 1-25b) shows the connection in more detail. Also, a sketch
of the bolt (Fig. 1-25c) shows the assumed distribution of the bearing
stresses acting on the bolt. As mentioned earlier, the actual distribution of
these bearing stresses is much more complex than shown in the figure.
Furthermore, bearing stresses are also developed against the inside sur-
faces of the bolt head and nut. Thus, Fig. 1-25c is not a free-body
diagram—only the idealized bearing stresses acting on the shank of the
bolt are shown in the figure.
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30 CHAPTER 1 Tension, Compression, and Shear

FIG. 1-25 Bolted connection in which the
bolt is loaded in single shear

@)
_ qf
W .
.
| g
(b) (c) (d)

By cutting through the bolt at section mn we obtain the diagram
shown in Fig. 1-25d. This diagram includes the shear force V (equal to
the load P) acting on the cross section of the bolt. As already pointed
out, this shear force is the resultant of the shear stresses that act over the
cross-sectional area of the bolt.

The deformation of a bolt loaded almost to fracture in single shear
is shown in Fig. 1-26 (compare with Fig. 1-25c).

In the preceding discussions of bolted connections we disregarded
friction (produced by tightening of the bolts) between the connecting
elements. The presence of friction means that part of the load is carried
by friction forces, thereby reducing the loads on the bolts. Since friction
forces are unreliable and difficult to estimate, it is common practice to
err on the conservative side and omit them from the calculations.

The average shear stress on the cross section of a bolt is obtained
by dividing the total shear force V by the area A of the cross section on
which it acts, as follows:

<

(1-12)

Taver —

>
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FIG. 1-26 Failure of a bolt in single shear
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FIG. 1-27 Small element of material
subjected to shear stresses

SECTION 1.6  Shear Stress and Strain 31

Load

Y

ALHES

Load

In the example of Fig. 1-25, which shows a bolt in single shear, the
shear force V is equal to the load P and the area A is the cross-sectional
area of the bolt. However, in the example of Fig. 1-24, where the bolt is
in double shear, the shear force V equals P/2.

From Eq. (1-12) we see that shear stresses, like normal stresses,
represent intensity of force, or force per unit of area. Thus, the units of
shear stress are the same as those for normal stress, namely, psi or ksi in
USCS units and pascals or multiples thereof in Sl units.

The loading arrangements shown in Figs. 1-24 and 1-25 are examples
of direct shear (or simple shear) in which the shear stresses are created by
the direct action of the forces in trying to cut through the material. Direct
shear arises in the design of bolts, pins, rivets, keys, welds, and glued
joints.

Shear stresses also arise in an indirect manner when members are
subjected to tension, torsion, and bending, as discussed later in Sections
2.6, 3.3, and 5.8, respectively.

Equality of Shear Stresses on Perpendicular Planes

To obtain a more complete picture of the action of shear stresses, let us
consider a small element of material in the form of a rectangular paral-
lelepiped having sides of lengths a, b, and ¢ in the x, y, and z directions,
respectively (Fig. 1-27).* The front and rear faces of this element are
free of stress.

Now assume that a shear stress 7 is distributed uniformly over the
right-hand face, which has area bc. In order for the element to be in
equilibrium in the y direction, the total shear force 7;bc acting on the
right-hand face must be balanced by an equal but oppositely directed

*A parallelepiped is a prism whose bases are parallelograms; thus, a parallelepiped has
six faces, each of which is a parallelogram. Opposite faces are parallel and identical par-
allelograms. A rectangular parallelepiped has all faces in the form of rectangles.
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FIG. 1-27 (Repeated)

(b)

FIG. 1-28 Element of material subjected
to shear stresses and strains

Tension, Compression, and Shear

shear force on the left-hand face. Since the areas of these two faces are
equal, it follows that the shear stresses on the two faces must be equal.

The forces mbc acting on the left- and right-hand side faces (Fig.
1-27) form a couple having a moment about the z axis of magnitude
mabc, acting counterclockwise in the figure.* Equilibrium of the ele-
ment requires that this moment be balanced by an equal and opposite
moment resulting from shear stresses acting on the top and bottom faces
of the element. Denoting the stresses on the top and bottom faces as 7,
we see that the corresponding horizontal shear forces equal mac. These
forces form a clockwise couple of moment mabc. From moment
equilibrium of the element about the z axis, we see that mabc equals
Tabc, or

(1-13)

™ = T2

Therefore, the magnitudes of the four shear stresses acting on the ele-
ment are equal, as shown in Fig. 1-28a.

In summary, we have arrived at the following general observations
regarding shear stresses acting on a rectangular element:

1. Shear stresses on opposite (and parallel) faces of an element are
equal in magnitude and opposite in direction.

2. Shear stresses on adjacent (and perpendicular) faces of an element
are equal in magnitude and have directions such that both stresses
point toward, or both point away from, the line of intersection of the
faces.

These observations were obtained for an element subjected only to shear
stresses (no normal stresses), as pictured in Figs. 1-27 and 1-28. This
state of stress is called pure shear and is discussed later in greater detail
(Section 3.5).

For most purposes, the preceding conclusions remain valid even
when normal stresses act on the faces of the element. The reason is that
the normal stresses on opposite faces of a small element usually are
equal in magnitude and opposite in direction; hence they do not alter the
equilibrium equations used in reaching the preceding conclusions.

Shear Strain

Shear stresses acting on an element of material (Fig. 1-28a) are accom-
panied by shear strains. As an aid in visualizing these strains, we note
that the shear stresses have no tendency to elongate or shorten the

*A couple consists of two parallel forces that are equal in magnitude and opposite in

direction.
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element in the x, y, and z directions—in other words, the lengths of the
sides of the element do not change. Instead, the shear stresses produce a
change in the shape of the element (Fig. 1-28b). The original element,
which is a rectangular parallelepiped, is deformed into an oblique paral-
lelepiped, and the front and rear faces become rhomboids.*

Because of this deformation, the angles between the side faces
change. For instance, the angles at points g and s, which were 7/2 before
deformation, are reduced by a small angle yto #/2 — y (Fig. 1-28b). At
the same time, the angles at points p and r are increased to #/2 + . The
angle yis a measure of the distortion, or change in shape, of the element
and is called the shear strain. Because shear strain is an angle, it is
usually measured in degrees or radians.

Sign Conventions for Shear Stresses and Strains

As an aid in establishing sign conventions for shear stresses and strains,
we need a scheme for identifying the various faces of a stress element
(Fig. 1-28a). Henceforth, we will refer to the faces oriented toward the
positive directions of the axes as the positive faces of the element. In
other words, a positive face has its outward normal directed in the posi-
tive direction of a coordinate axis. The opposite faces are negative faces.
Thus, in Fig. 1-28a, the right-hand, top, and front faces are the positive
X, ¥, and z faces, respectively, and the opposite faces are the negative X,
y, and z faces.

Using the terminology described in the preceding paragraph, we may
state the sign convention for shear stresses in the following manner:

A shear stress acting on a positive face of an element is positive if it acts in
the positive direction of one of the coordinate axes and negative if it acts in
the negative direction of an axis. A shear stress acting on a negative face of
an element is positive if it acts in the negative direction of an axis and neg-
ative if it acts in a positive direction.

Thus, all shear stresses shown in Fig. 1-28a are positive.
The sign convention for shear strains is as follows:

Shear strain in an element is positive when the angle between two positive
faces (or two negative faces) is reduced. The strain is negative when the
angle between two positive (or two negative) faces is increased.

Thus, the strains shown in Fig. 1-28b are positive, and we see that posi-
tive shear stresses are accompanied by positive shear strains.

*An oblique angle can be either acute or obtuse, but it is not a right angle. A rhomboid
is a parallelogram with oblique angles and adjacent sides not equal. (A rhombus is a par-
allelogram with oblique angles and all four sides equal, sometimes called a
diamond-shaped figure.)
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Hooke’s Law in Shear

The properties of a material in shear can be determined experimentally
from direct-shear tests or from torsion tests. The latter tests are per-
formed by twisting hollow, circular tubes, thereby producing a state of
pure shear, as explained later in Section 3.5. From the results of these
tests, we can plot shear stress-strain diagrams (that is, diagrams of
shear stress 7 versus shear strain ). These diagrams are similar in shape
to tension-test diagrams (o versus €) for the same materials, although
they differ in magnitudes.

From shear stress-strain diagrams, we can obtain material properties
such as the proportional limit, modulus of elasticity, yield stress, and
ultimate stress. These properties in shear are usually about half as large
as those in tension. For instance, the yield stress for structural steel in
shear is 0.5 to 0.6 times the yield stress in tension.

For many materials, the initial part of the shear stress-strain diagram
is a straight line through the origin, just as it is in tension. For this lin-
early elastic region, the shear stress and shear strain are proportional,
and therefore we have the following equation for Hooke’s law in shear:

7=Gy (1-14)

in which G is the shear modulus of elasticity (also called the modulus
of rigidity).

The shear modulus G has the same units as the tension modulus E,
namely, psi or ksi in USCS units and pascals (or multiples thereof) in SI
units. For mild steel, typical values of G are 11,000 ksi or 75 GPa; for
aluminum alloys, typical values are 4000 ksi or 28 GPa. Additional values
are listed in Table H-2, Appendix H.

The moduli of elasticity in tension and shear are related by the
following equation:

E

G 21 + v) (1-19)
in which v is Poisson’s ratio. This relationship, which is derived later in
Section 3.6, shows that E, G, and v are not independent elastic proper-
ties of the material. Because the value of Poisson’s ratio for ordinary
materials is between zero and one-half, we see from Eq. (1-15) that G
must be from one-third to one-half of E.

The following examples illustrate some typical analyses involving
the effects of shear. Example 1-4 is concerned with shear stresses in a
plate, Example 1-5 deals with bearing and shear stresses in pins and
bolts, and Example 1-6 involves finding shear stresses and shear strains
in an elastomeric bearing pad subjected to a horizontal shear force.
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Example 1-4

FIG. 1-29 Example 1-4. Punching a hole
in a steel plate

A punch for making holes in steel plates is shown in Fig. 1-29a. Assume that a
punch having diameter d = 20 mm is used to punch a hole in an 8-mm plate, as
shown in the cross-sectional view (Fig. 1-29b).

If a force P= 110 kN is required to create the hole, what is the average
shear stress in the plate and the average compressive stress in the punch?

2

lPleO kN

— k—d =20 mm

| t=8.0 mm

(a) (b)

Solution

The average shear stress in the plate is obtained by dividing the force P by
the shear area of the plate. The shear area A is equal to the circumference of the
hole times the thickness of the plate, or

A = 7dt = 77(20 mm)(8.0 mm) = 502.7 mm?

in which d is the diameter of the punch and t is the thickness of the plate. There-
fore, the average shear stress in the plate is

P 110 kN
= =_——"7" M <=
Taver = .~ 502.7 mm? 219 MPa

The average compressive stress in the punch is

P P 110 kN
= = = — 350 MP =
7 Powen  md%4 (20 mm)?4 a

in which Apunch is the cross-sectional area of the punch.

Note: This analysis is highly idealized because we are disregarding impact
effects that occur when a punch is rammed through a plate. (The inclusion of
such effects requires advanced methods of analysis that are beyond the scope of
mechanics of materials.)
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Example 1-5

FIG. 1-30 Example 1-5. (a) Pin connec-
tion between strut S and base plate B.
(b) Cross section through the strut S.

A steel strut S serving as a brace for a boat hoist transmits a compressive force
P = 12 k to the deck of a pier (Fig. 1-30a). The strut has a hollow square cross
section with wall thickness t = 0.375 in. (Fig. 1-30b), and the angle 8 between
the strut and the horizontal is 40°. A pin through the strut transmits the
compressive force from the strut to two gussets G that are welded to the base
plate B. Four anchor bolts fasten the base plate to the deck.

The diameter of the pin is dpin = 0.75 in., the thickness of the gussets is
tg = 0.625 in., the thickness of the base plate is tz = 0.375 in., and the diameter
of the anchor bolts is dyo;; = 0.50 in.

Determine the following stresses: (a) the bearing stress between the strut
and the pin, (b) the shear stress in the pin, (c) the bearing stress between the pin
and the gussets, (d) the bearing stress between the anchor bolts and the base
plate, and (e) the shear stress in the anchor bolts. (Disregard any friction
between the base plate and the deck.)

/

Pin

(a) (b)

Solution

(a) Bearing stress between strut and pin. The average value of the bearing
stress between the strut and the pin is found by dividing the force in the strut by
the total bearing area of the strut against the pin. The latter is equal to twice the
thickness of the strut (because bearing occurs at two locations) times the diame-
ter of the pin (see Fig. 1-30b). Thus, the bearing stress is

P 12 k .
= = =213k <=
Ob1 2tdin 3 ksi

This bearing stress is not excessive for a strut made of structural steel.
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(b) Shear stress in pin. As can be seen from Fig. 1-30b, the pin tends to
shear on two planes, namely, the planes between the strut and the gussets.
Therefore, the average shear stress in the pin (which is in double shear) is equal
to the total load applied to the pin divided by twice its cross-sectional area:

p 12k .
o= - ~ 136k <=
W T a2 jh 27 Q75inye ook

The pin would normally be made of high-strength steel (tensile yield stress
greater than 50 ksi) and could easily withstand this shear stress (the yield stress
in shear is usually at least 50% of the yield stress in tension).

(c) Bearing stress between pin and gussets. The pin bears against the gus-
sets at two locations, so the bearing area is twice the thickness of the gussets
times the pin diameter; thus,

p 12 k .
= = =128k <=
72 7 Dt doin S

which is less than the bearing stress between the strut and the pin (21.3 ksi).

(d) Bearing stress between anchor bolts and base plate. The vertical com-
ponent of the force P (see Fig. 1-30a) is transmitted to the pier by direct bearing
between the base plate and the pier. The horizontal component, however, is
transmitted through the anchor bolts. The average bearing stress between the
base plate and the anchor bolts is equal to the horizontal component of the force
P divided by the bearing area of four bolts. The bearing area for one bolt is
equal to the thickness of the base plate times the bolt diameter. Consequently,
the bearing stress is

_ Pcosd0’ _ (12 K)(cos 40°)
Atg dpoyt

= 12.3 ksi <=

Oh3

(e) Shear stress in anchor bolts. The average shear stress in the anchor
bolts is equal to the horizontal component of the force P divided by the total
cross-sectional area of four bolts (note that each bolt is in single shear). There-
fore,

_ Pcosd40° _ (12Kk)(cos40°) _ . -
ool = g7 Jh  4m(050inye | nT ksl

Any friction between the base plate and the pier would reduce the load on the
anchor bolts.
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Example 1-6

FIG. 1-31 Example 1-6. Bearing pad in
shear

A bearing pad of the kind used to support machines and bridge girders consists
of a linearly elastic material (usually an elastomer, such as rubber) capped by a
steel plate (Fig. 1-31a). Assume that the thickness of the elastomer is h, the
dimensions of the plate are a X b, and the pad is subjected to a horizontal shear
force V.

Obtain formulas for the average shear stress 7., in the elastomer and the
horizontal displacement d of the plate (Fig. 1-31b).

e — d v

Solution

Assume that the shear stresses in the elastomer are uniformly distributed
throughout its entire volume. Then the shear stress on any horizontal plane
through the elastomer equals the shear force V divided by the area ab of the
plane (Fig. 1-31a):

\Y
Taver = E (1'16) <=

The corresponding shear strain (from Hooke’s law in shear; Eq. 1-14) is

Taver V
=—=— 1-17
Y776, T anG, (1-17)
in which G is the shear modulus of the elastomeric material. Finally, the hori-
zontal displacement d is equal to h tan +y (from Fig. 1-31b):

d=htan y=htan( ) (1-18) <=m

\
abG,
In most practical situations the shear strain v is a small angle, and in such cases
we may replace tan y by y and obtain

hv
abG,

d=hy= (1-19) <=

Equations (1-18) and (1-19) give approximate results for the horizontal dis-
placement of the plate because they are based upon the assumption that the
shear stress and strain are constant throughout the volume of the elastomeric
material. In reality the shear stress is zero at the edges of the material (because
there are no shear stresses on the free vertical faces), and therefore the deforma-
tion of the material is more complex than pictured in Fig. 1-31b. However, if
the length a of the plate is large compared with the thickness h of the elastomer,
the preceding results are satisfactory for design purposes.
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1.7 ALLOWABLE STRESSES AND ALLOWABLE LOADS

Engineering has been aptly described as the application of science to the
common purposes of life. In fulfilling that mission, engineers design a
seemingly endless variety of objects to serve the basic needs of society.
These needs include housing, agriculture, transportation, communica-
tion, and many other aspects of modern life. Factors to be considered in
design include functionality, strength, appearance, economics, and envi-
ronmental effects. However, when studying mechanics of materials, our
principal design interest is strength, that is, the capacity of the object to
support or transmit loads. Objects that must sustain loads include
buildings, machines, containers, trucks, aircraft, ships, and the like. For
simplicity, we will refer to all such objects as structures; thus, a struc-
ture is any object that must support or transmit loads.

Factors of Safety

If structural failure is to be avoided, the loads that a structure is capable
of supporting must be greater than the loads it will be subjected to when
in service. Since strength is the ability of a structure to resist loads, the
preceding criterion can be restated as follows: The actual strength of a
structure must exceed the required strength. The ratio of the actual
strength to the required strength is called the factor of safety n:

Actual strength
Required strength

Factor of safety n = (1-20)

Of course, the factor of safety must be greater than 1.0 if failure is to be
avoided. Depending upon the circumstances, factors of safety from
slightly above 1.0 to as much as 10 are used.

The incorporation of factors of safety into design is not a simple
matter, because both strength and failure have many different meanings.
Strength may be measured by the load-carrying capacity of a structure,
or it may be measured by the stress in the material. Failure may mean
the fracture and complete collapse of a structure, or it may mean that the
deformations have become so large that the structure can no longer per-
form its intended functions. The latter kind of failure may occur at loads
much smaller than those that cause actual collapse.

The determination of a factor of safety must also take into account
such matters as the following: probability of accidental overloading of
the structure by loads that exceed the design loads; types of loads (static
or dynamic); whether the loads are applied once or are repeated; how
accurately the loads are known; possibilities for fatigue failure; inaccu-
racies in construction; variability in the quality of workmanship;
variations in properties of materials; deterioration due to corrosion or
other environmental effects; accuracy of the methods of analysis;
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whether failure is gradual (ample warning) or sudden (no warning); con-
sequences of failure (minor damage or major catastrophe); and other
such considerations. If the factor of safety is too low, the likelihood of
failure will be high and the structure will be unacceptable; if the factor is
too large, the structure will be wasteful of materials and perhaps unsuit-
able for its function (for instance, it may be too heavy).

Because of these complexities and uncertainties, factors of safety
must be determined on a probabilistic basis. They usually are
established by groups of experienced engineers who write the codes and
specifications used by other designers, and sometimes they are even
enacted into law. The provisions of codes and specifications are
intended to provide reasonable levels of safety without unreasonable
costs.

In aircraft design it is customary to speak of the margin of safety
rather than the factor of safety. The margin of safety is defined as the
factor of safety minus one:

Margin of safety =n — 1 (1-21)

Margin of safety is often expressed as a percent, in which case the value
given above is multiplied by 100. Thus, a structure having an actual
strength that is 1.75 times the required strength has a factor of safety of
1.75 and a margin of safety of 0.75 (or 75%). When the margin of safety
is reduced to zero or less, the structure (presumably) will fail.

Allowable Stresses

Factors of safety are defined and implemented in various ways. For
many structures, it is important that the material remain within the
linearly elastic range in order to avoid permanent deformations when the
loads are removed. Under these conditions, the factor of safety is
established with respect to yielding of the structure. Yielding begins
when the yield stress is reached at any point within the structure. There-
fore, by applying a factor of safety with respect to the yield stress (or
yield strength), we obtain an allowable stress (or working stress) that
must not be exceeded anywhere in the structure. Thus,

Yield strength

Allowable stress = —————— 1-22
Factor of safety (1-22)
or, for tension and shear, respectively,
Tallow — Al and  Taiow = il (1-23a,b)
ny 2

in which oy and 7, are the yield stresses and n; and n, are the
corresponding factors of safety. In building design, a typical factor of
safety with respect to yielding in tension is 1.67; thus, a mild steel
having a yield stress of 36 ksi has an allowable stress of 21.6 ksi.
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Sometimes the factor of safety is applied to the ultimate stress
instead of the yield stress. This method is suitable for brittle materials,
such as concrete and some plastics, and for materials without a clearly
defined vyield stress, such as wood and high-strength steels. In these
cases the allowable stresses in tension and shear are

(Y T
Oallow = — and Taiow = — (1-24a,b)
N3 N,

in which oy and 7, are the ultimate stresses (or ultimate strengths).
Factors of safety with respect to the ultimate strength of a material are
usually larger than those based upon yield strength. In the case of mild
steel, a factor of safety of 1.67 with respect to yielding corresponds to a
factor of approximately 2.8 with respect to the ultimate strength.

Allowable Loads

After the allowable stress has been established for a particular material
and structure, the allowable load on that structure can be determined.
The relationship between the allowable load and the allowable stress
depends upon the type of structure. In this chapter we are concerned
only with the most elementary kinds of structures, namely, bars in
tension or compression and pins (or bolts) in direct shear and bearing.

In these kinds of structures the stresses are uniformly distributed (or
at least assumed to be uniformly distributed) over an area. For instance,
in the case of a bar in tension, the stress is uniformly distributed over the
cross-sectional area provided the resultant axial force acts through the
centroid of the cross section. The same is true of a bar in compression
provided the bar is not subject to buckling. In the case of a pin subjected
to shear, we consider only the average shear stress on the cross section,
which is equivalent to assuming that the shear stress is uniformly
distributed. Similarly, we consider only an average value of the bearing
stress acting on the projected area of the pin.

Therefore, in all four of the preceding cases the allowable load
(also called the permissible load or the safe load) is equal to the
allowable stress times the area over which it acts:

Allowable load = (Allowable stress)(Area) (1-25)

For bars in direct tension and compression (no buckling), this equa-
tion becomes

Patlow = Faiow A (1-26)

in which oy IS the permissible normal stress and A is the cross-
sectional area of the bar. If the bar has a hole through it, the net area is
normally used when the bar is in tension. The net area is the gross
cross-sectional area minus the area removed by the hole. For compression,

Copyright 2004 Thomson Learning, Inc. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



42 CHAPTER 1

Tension, Compression, and Shear

the gross area may be used if the hole is filled by a bolt or pin that can
transmit the compressive stresses.
For pins in direct shear, Eq. (1-25) becomes

Pallow = Tatiow A (1'27)

in which 70w IS the permissible shear stress and A is the area over which
the shear stresses act. If the pin is in single shear, the area is the cross-
sectional area of the pin; in double shear, it is twice the cross-sectional
area.

Finally, the permissible load based upon bearing is

Pallow = 01Ap (1'28)

in which gy, is the allowable bearing stress and Ay is the projected area
of the pin or other surface over which the bearing stresses act.

The following example illustrates how allowable loads are deter-
mined when the allowable stresses for the material are known.

Example 1-7

A steel bar serving as a vertical hanger to support heavy machinery in a factory
is attached to a support by the bolted connection shown in Fig. 1-32. The main
part of the hanger has a rectangular cross section with width b, = 1.5 in. and
thickness t = 0.5 in. At the connection the hanger is enlarged to a width b, =
3.0 in. The bolt, which transfers the load from the hanger to the two gussets, has
diameter d = 1.0 in.

Determine the allowable value of the tensile load P in the hanger based
upon the following four considerations:

(a) The allowable tensile stress in the main part of the hanger is 16,000 psi.

(b) The allowable tensile stress in the hanger at its cross section through the
bolt hole is 11,000 psi. (The permissible stress at this section is lower because
of the stress concentrations around the hole.)

(c) The allowable bearing stress between the hanger and the bolt is 26,000 psi.

(d) The allowable shear stress in the bolt is 6,500 psi.

Solution

(a) The allowable load P, based upon the stress in the main part of the
hanger is equal to the allowable stress in tension times the cross-sectional area
of the hanger (Eq. 1-26):

P = callowA = Fanowb1t = (16,000 psi)(1.5 in. X 0.5in.) = 12,000 Ib

A load greater than this value will overstress the main part of the hanger, that is,
the actual stress will exceed the allowable stress, thereby reducing the factor of
safety.

(b) At the cross section of the hanger through the bolt hole, we must make
a similar calculation but with a different allowable stress and a different area.
The net cross-sectional area, that is, the area that remains after the hole is drilled
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FIG. 1-32 Example 1-7. Vertical hanger
subjected to a tensile load P: (a) front

view of bolted connection, and (b) side

view of connection
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through the bar, is equal to the net width times the thickness. The net width is
equal to the gross width b, minus the diameter d of the hole. Thus, the equation
for the allowable load P, at this section is

Py = OattowA = Tatow(D2 — d)t = (11,000 psi)(3.0 in. — 1.0 in.)(0.5 in.)
— 11,000 Ib

(c) The allowable load based upon bearing between the hanger and the bolt
is equal to the allowable bearing stress times the bearing area. The bearing area
is the projection of the actual contact area, which is equal to the bolt diameter
times the thickness of the hanger. Therefore, the allowable load (Eq. 1-28) is

Ps = apA = apdt = (26,000 psi)(1.0in.)(0.5 in.) = 13,000 Ib

(d) Finally, the allowable load P, based upon shear in the bolt is equal to
the allowable shear stress times the shear area (Eq. 1-27). The shear area is
twice the area of the bolt because the bolt is in double shear; thus:

Py = TatowA = Taow(2)(7d?/4) = (6,500 psi)(2)(7)(1.0 in.)%/4 = 10,200 Ib

We have now found the allowable tensile loads in the hanger based upon all
four of the given conditions.

Comparing the four preceding results, we see that the smallest value of the
load is

Paiow = 10,200 Ib <=

This load, which is based upon shear in the bolt, is the allowable tensile load in
the hanger.

i TR L _
\ .
b2:3.0 n. L
L Id =1.0in.
—— Bolt S I
T Washer
Gusset N
Hanger/
— > |—t=05in.
b]_ =1.5in.

@ (b)
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1.8 DESIGN FOR AXIAL LOADS AND DIRECT SHEAR

In the preceding section we discussed the determination of allowable
loads for simple structures, and in earlier sections we saw how to find
the stresses, strains, and deformations of bars. The determination of such
quantities is known as analysis. In the context of mechanics of materi-
als, analysis consists of determining the response of a structure to loads,
temperature changes, and other physical actions. By the response of a
structure, we mean the stresses, strains, and deformations produced by
the loads.

Response also refers to the load-carrying capacity of a structure; for
instance, the allowable load on a structure is a form of response.

A structure is said to be known (or given) when we have a complete
physical description of the structure, that is, when we know all of its
properties. The properties of a structure include the types of members
and how they are arranged, the dimensions of all members, the types of
supports and where they are located, the materials used, and the properties
of the materials. Thus, when analyzing a structure, the properties are
given and the response is to be determined.

The inverse process is called design. When designing a structure,
we must determine the properties of the structure in order that the struc-
ture will support the loads and perform its intended functions. For
instance, a common design problem in engineering is to determine the
size of a member to support given loads. Designing a structure is usually
a much lengthier and more difficult process than analyzing it—indeed,
analyzing a structure, often more than once, is typically part of the
design process.

In this section we will deal with design in its most elementary form
by calculating the required sizes of simple tension and compression
members as well as pins and bolts loaded in shear. In these cases the
design process is quite straightforward. Knowing the loads to be trans-
mitted and the allowable stresses in the materials, we can calculate the
required areas of members from the following general relationship
(compare with Eq. 1-25):

Required area = Load to be transmitted (1-29)

This equation can be applied to any structure in which the stresses are
uniformly distributed over the area. (The use of this equation for finding
the size of a bar in tension and the size of a pin in shear is illustrated in
Example 1-8, which follows.)

In addition to strength considerations, as exemplified by Eqg. (1-29),
the design of a structure is likely to involve stiffness and stability. Stiff-
ness refers to the ability of the structure to resist changes in shape (for
instance, to resist stretching, bending, or twisting), and stability refers to

Copyright 2004 Thomson Learning, Inc. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



SECTION 1.8 Design for Axial Loads and Direct Shear 45

the ability of the structure to resist buckling under compressive stresses.
Limitations on stiffness are sometimes necessary to prevent excessive
deformations, such as large deflections of a beam that might interfere with
its performance. Buckling is the principal consideration in the design of
columns, which are slender compression members (Chapter 11).

Another part of the design process is optimization, which is the
task of designing the best structure to meet a particular goal, such as
minimum weight. For instance, there may be many structures that will
support a given load, but in some circumstances the best structure will
be the lightest one. Of course, a goal such as minimum weight usually
must be balanced against more general considerations, including the
aesthetic, economic, environmental, political, and technical aspects of
the particular design project.

When analyzing or designing a structure, we refer to the forces that
act on it as either loads or reactions. Loads are active forces that are
applied to the structure by some external cause, such as gravity, water
pressure, wind, amd earthquake ground motion. Reactions are passive
forces that are induced at the supports of the structure—their magni-
tudes and directions are determined by the nature of the structure itself.
Thus, reactions must be calculated as part of the analysis, whereas loads
are known in advance.

Example 1-8, on the following pages, begins with a review of free-
body diagrams and elementary statics and concludes with the design of
a bar in tension and a pin in direct shear.

When drawing free-body diagrams, it is helpful to distinguish reac-
tions from loads or other applied forces. A common scheme is to place a
slash, or slanted line, across the arrow when it represents a reactive
force, as illustrated in Fig. 1-34 of the example.
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Example 1-8

FIG. 1-33 Example 1-8. Two-bar truss
ABC supporting a sign of weight W

The two-bar truss ABC shown in Fig. 1-33 has pin supports at points A and C,
which are 2.0 m apart. Members AB and BC are steel bars, pin connected at
joint B. The length of bar BC is 3.0 m. A sign weighing 5.4 kN is suspended
from bar BC at points D and E, which are located 0.8 m and 0.4 m, respectively,
from the ends of the bar.

Determine the required cross-sectional area of bar AB and the required
diameter of the pin at support C if the allowable stresses in tension and shear are
125 MPa and 45 MPa, respectively. (Note: The pins at the supports are in dou-
ble shear. Also, disregard the weights of members AB and BC.)

0.4m
W =5.4 kN

v

Solution

The objectives of this example are to determine the required sizes of bar
AB and the pin at support C. As a preliminary matter, we must determine the
tensile force in the bar and the shear force acting on the pin. These quantities are
found from free-body diagrams and equations of equilibrium.

Reactions. We begin with a free-body diagram of the entire truss (Fig. 1-34a).
On this diagram we show all forces acting on the truss—namely, the loads from
the weight of the sign and the reactive forces exerted by the pin supports at A
and C. Each reaction is shown by its horizontal and vertical components, with
the resultant reaction shown by a dashed line. (Note the use of slashes across the
arrows to distinguish reactions from loads.)

The horizontal component Ray of the reaction at support A is obtained by
summing moments about point C, as follows (counterclockwise moments are
positive):

>Mc =0 Rpq(2.0m) — (2.7 kN)(0.8 m) — (2.7 kN)(2.6 m) =0
Solving this equation, we get

Ran = 4.590 kN
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FIG. 1-34 Free-body diagrams for
Example 1-8
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(b)

Next, we sum forces in the horizontal direction and obtain
SFroriz=0  Rep = Rap = 4590 kN

To obtain the vertical component of the reaction at support C, we may use
a free-body diagram of member BC, as shown in Fig. 1-34b. Summing moments
about joint B gives the desired reaction component:

SMg=0  —Rey(3.0m) + (2.7kN)(2.2m) + (2.7 kN)(0.4m) = 0
Rey = 2.340 kN

Now we return to the free-body diagram of the entire truss (Fig. 1-34a) and
sum forces in the vertical direction to obtain the vertical component Ry of the
reaction at A:

ZFvert =0 RAV + RCV —27kN—-27kN=0
Rav = 3.060 kN

As a partial check on these results, we note that the ratio Ray/Ran Of the forces
acting at point A is equal to the ratio of the vertical and horizontal components
of line AB, namely, 2.0 m/3.0 m, or 2/3.

Knowing the horizontal and vertical components of the reaction at A, we
can find the reaction itself (Fig. 1-34a):

Ra= V(Ran)? + (Rav)? = 5.516 kN

Similarly, the reaction at point C is obtained from its componets Rc and Rey,

as follows:
Rc = V(Reh)® + (Rev)® = 5.152 kN

continued
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Tensile force in bar AB. Because we are disregarding the weight of bar AB,
the tensile force Fag in this bar is equal to the reaction at A (see Fig.1-34):

FAB = RA = 5516 kN

Shear force acting on the pin at C. This shear force is equal to the reaction
Rc (see Fig. 1-34); therefore,

Ve = Re = 5.152 kN

Thus, we have now found the tensile force Fg in bar AB and the shear force V¢
acting on the pin at C.

Required area of bar. The required cross-sectional area of bar AB is calcu-
lated by dividing the tensile force by the allowable stress, inasmuch as the stress
is uniformly distributed over the cross section (see Eq. 1-29):

Fas _ 5516 kN
Tallow 125 MPa

Apg= = 44.1 mm? <=

Bar AB must be designed with a cross-sectional area equal to or greater than
44.1 mm? in order to support the weight of the sign, which is the only load we
considered. When other loads are included in the calculations, the required area
will be larger.

Required diameter of pin. The required cross-sectional area of the pin at C,
which is in double shear, is

Ve 5152kN

= = = 57.2 mm?
" 27aow  2(45 MPa)

A

from which we can calculate the required diameter:
dpin =V 4Apin/77 = 8.54 mm <=

A pin of at least this diameter is needed to support the weight of the sign with-
out exceeding the allowable shear stress.

Notes: In this example we intentionally omitted the weight of the truss
from the calculations. However, once the sizes of the members are known, their
weights can be calculated and included in the free-body diagrams of Fig. 1-34.

When the weights of the bars are included, the design of member AB
becomes more complicated, because it is no longer a bar in simple tension.
Instead, it is a beam subjected to bending as well as tension. An analogous situ-
ation exists for member BC. Not only because of its own weight but also
because of the weight of the sign, member BC is subjected to both bending and
compression. The design of such members must wait until we study stresses in
beams (Chapter 5).

In practice, other loads besides the weights of the truss and sign would
have to be considered before making a final decision about the sizes of the bars
and pins. Loads that could be important include wind loads, earthquake loads,
and the weights of objects that might have to be supported temporarily by the
truss and sign.
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PROBLEMS CHAPTER 1

Normal Stress and Strain

1.2-1 A solid circular post ABC (see figure) supports a load
P, = 2500 Ib acting at the top. A second load P, is
uniformly distributed around the shelf at B. The diameters
of the upper and lower parts of the post are dag = 1.25 in.
and dgc = 2.25 in., respectively.

(a) Calculate the normal stress oag in the upper part of
the post.

(b) If it is desired that the lower part of the post have
the same compressive stress as the upper part, what should
be the magnitude of the load P,?

Py
A
P,
Bl : 4
A W

PROB. 1.2-1

1.2-2 Calculate the compressive stress o, in the circular
piston rod (see figure) when a force P = 40 N is applied to
the brake pedal.

Assume that the line of action of the force P is parallel
to the piston rod, which has diameter 5 mm. Also, the other
dimensions shown in the figure (50 mm and 225 mm) are
measured perpendicular to the line of action of the force P.

Piston rod

PROB. 1.2-2

1.2-3 A steel rod 110 ft long hangs inside a tall tower and
holds a 200-pound weight at its lower end (see figure).

If the diameter of the circular rod is 1/4 inch, calculate
the maximum normal stress omax in the rod, taking into
account the weight of the rod itself. (Obtain the weight
density of steel from Table H-1, Appendix H.)

110 ft

PROB. 1.2-3

1.2-4 A circular aluminum tube of length L = 400 mm is
loaded in compression by forces P (see figure). The out-
side and inside diameters are 60 mm and 50 mm,
respectively. A strain gage is placed on the outside of the
bar to measure normal strains in the longitudinal direction.

(a) If the measured strain is e = 550 X 10~%, what is
the shortening & of the bar?

(b) If the compressive stress in the bar is intended to
be 40 MPa, what should be the load P?

Strain gage
P_,< — 9(_'3
Li L =400 mm 44

PROB. 1.2-4

Copyright 2004 Thomson Learning, Inc. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



50 CHAPTER 1 Tension, Compression, and Shear

1.2-5 The cross section of a concrete pier that is loaded
uniformly in compression is shown in the figure.

(a) Determine the average compressive stress o in the
concrete if the load is equal to 2500 k.

(b) Determine the coordinates X and y of the point
where the resultant load must act in order to produce uni-
form normal stress.

y

20in. ‘

48in.| o - *o .| 16in.
RN 7 16in.

o[ 20in. |16in, X

PROB. 1.2-5

1.2-6 A car weighing 130 kN when fully loaded is pulled
slowly up a steep inclined track by a steel cable (see figure).
The cable has an effective cross-sectional area of 490 mm?,
and the angle « of the incline is 30°.

Calculate the tensile stress o in the cable.

Cable

PROB. 1.2-6

1.2-7 Two steel wires, AB and BC, support a lamp weigh-
ing 18 Ib (see figure). Wire AB is at an angle o = 34° to the
horizontal and wire BC is at an angle 8 = 48°. Both wires
have diameter 30 mils. (Wire diameters are often expressed
in mils; one mil equals 0.001 in.)

Determine the tensile stresses oag and ogc in the two
wires.

PROB. 1.2-7

1.2-8 A long retaining wall is braced by wood shores set at
an angle of 30° and supported by concrete thrust blocks, as
shown in the first part of the figure. The shores are evenly
spaced, 3 m apart.

For analysis purposes, the wall and shores are ideal-
ized as shown in the second part of the figure. Note that the
base of the wall and both ends of the shores are assumed to
be pinned. The pressure of the soil against the wall is
assumed to be triangularly distributed, and the resultant
force acting on a 3-meter length of the wall is F = 190 kN.

If each shore has a 150 mm X 150 mm square cross
section, what is the compressive stress o in the shores?

Soil Retaining
wall

Concrete
Shore  thrust

PROB. 1.2-8

1.2-9 A loading crane consisting of a steel girder ABC sup-
ported by a cable BD is subjected to a load P (see the figure
on the next page). The cable has an effective cross-
sectional area A = 0.471 in?. The dimensions of the crane
areH=9ft, Ly =12ft,and L, = 4 ft.

(a) If the load P = 9000 Ib, what is the average tensile
stress in the cable?
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(b) If the cable stretches by 0.382 in., what is the aver-
age strain?

PROBS. 1.2-9 and 1.2-10

1.2-10 Solve the preceding problem if the load P = 32 kN;
the cable has effective cross-sectional area A = 481 mm?;
the dimensions of the crane are H=16 m, L; = 3.0 m,
and L, = 1.5 m; and the cable stretches by 5.1 mm.

*1.2-11 A reinforced concrete slab 8.0 ft square and 9.0
in. thick is lifted by four cables attached to the corners, as
shown in the figure. The cables are attached to a hook at a
point 5.0 ft above the top of the slab. Each cable has an
effective cross-sectional area A = 0.12 in?.

Determine the tensile stress o in the cables due to the
weight of the concrete slab. (See Table H-1, Appendix H,
for the weight density of reinforced concrete.)

Reinforced
concrete slab

PROB. 1.2-11
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*1,2-12 A round bar ACB of length 2L (see figure) rotates
about an axis through the midpoint C with constant angular
speed w (radians per second). The material of the bar has
weight density y.

(a) Derive a formula for the tensile stress o in the bar
as a function of the distance x from the midpoint C.

(b) What is the maximum tensile stress ommax?

4\(1)
. o=, 0

\ L L \

PROB. 1.2-12

Mechanical Properties and Stress-Strain Diagrams

1.3-1 Imagine that a long steel wire hangs vertically from a
high-altitude balloon.

(a) What is the greatest length (feet) it can have with-
out yielding if the steel yields at 40 ksi?

(b) If the same wire hangs from a ship at sea, what is
the greatest length? (Obtain the weight densities of steel
and sea water from Table H-1, Appendix H.)

1.3-2 Imagine that a long wire of tungsten hangs vertically
from a high-altitude balloon.

(a) What is the greatest length (meters) it can have
without breaking if the ultimate strength (or breaking
strength) is 1500 MPa?

(b) If the same wire hangs from a ship at sea, what is
the greatest length? (Obtain the weight densities of tungsten
and sea water from Table H-1, Appendix H.)

1.3-3 Three different materials, designated A, B, and C, are
tested in tension using test specimens having diameters of
0.505 in. and gage lengths of 2.0 in. (see figure). At failure,
the distances between the gage marks are found to be 2.13,
2.48, and 2.78 in., respectively. Also, at the failure cross
sections the diameters are found to be 0.484, 0.398, and
0.253 in., respectively.

Determine the percent elongation and percent reduc-
tion in area of each specimen, and then, using your own
judgment, classify each material as brittle or ductile.

Gage

g =y

PROB. 1.3-3
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52 CHAPTER 1 Tension, Compression, and Shear

1.3-4 The strength-to-weight ratio of a structural material
is defined as its load-carrying capacity divided by its
weight. For materials in tension, we may use a characteris-
tic tensile stress (as obtained from a stress-strain curve) as a
measure of strength. For instance, either the yield stress or
the ultimate stress could be used, depending upon the
particular application. Thus, the strength-to-weight ratio
Rsw for a material in tension is defined as

o
Rew = —

in which o is the characteristic stress and vy is the weight
density. Note that the ratio has units of length.

Using the ultimate stress oy, as the strength parameter,
calculate the strength-to-weight ratio (in units of meters)
for each of the following materials: aluminum alloy
6061-T6, Douglas fir (in bending), nylon, structural steel
ASTM-A572, and a titanium alloy. (Obtain the material
properties from Tables H-1 and H-3 of Appendix H. When
a range of values is given in a table, use the average value.)

1.3-5 A symmetrical framework consisting of three pin-
connected bars is loaded by a force P (see figure). The
angle between the inclined bars and the horizontal is a =
48°. The axial strain in the middle bar is measured as
0.0713.

Determine the tensile stress in the outer bars if they
are constructed of aluminum alloy having the stress-strain
diagram shown in Fig. 1-13. (Express the stress in USCS
units.)

PROB. 1.3-5

1.3-6 A specimen of a methacrylate plastic is tested in ten-
sion at room temperature (see figure), producing the
stress-strain data listed in the accompanying table.

Plot the stress-strain curve and determine the propor-
tional limit, modulus of elasticity (i.e., the slope of the

initial part of the stress-strain curve), and yield stress at
0.2% offset. Is the material ductile or brittle?

P
-~ )
| P
/\
PROB. 1.3-6
STRESS-STRAIN DATA FOR PROBLEM 1.3-6
Stress (MPa) Strain
8.0 0.0032
17.5 0.0073
25.6 0.0111
311 0.0129
39.8 0.0163
44.0 0.0184
48.2 0.0209
53.9 0.0260
58.1 0.0331
62.0 0.0429
62.1 Fracture

*1.3-7 The data shown in the accompanying table were
obtained from a tensile test of high-strength steel. The test
specimen had a diameter of 0.505 in. and a gage length of
2.00 in. (see figure for Prob. 1.3-3). At fracture, the elonga-
tion between the gage marks was 0.12 in. and the minimum
diameter was 0.42 in.

Plot the conventional stress-strain curve for the steel
and determine the proportional limit, modulus of elasticity
(i.e., the slope of the initial part of the stress-strain curve),
yield stress at 0.1% offset, ultimate stress, percent elonga-
tion in 2.00 in., and percent reduction in area.

TENSILE-TEST DATA FOR PROBLEM 1.3-7

Load (Ib) Elongation (in.)
1,000 0.0002
2,000 0.0006
6,000 0.0019

10,000 0.0033
12,000 0.0039
12,900 0.0043
13,400 0.0047
13,600 0.0054
13,800 0.0063
14,000 0.0090
14,400 0.0102
15,200 0.0130
16,800 0.0230
18,400 0.0336
20,000 0.0507
22,400 0.1108
22,600 Fracture
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Elasticity and Plasticity

1.4-1 A bar made of structural steel having the stress-strain
diagram shown in the figure has a length of 48 in. The yield
stress of the steel is 42 ksi and the slope of the initial linear
part of the stress-strain curve (modulus of elasticity) is
30 x 10° ksi. The bar is loaded axially until it elongates
0.20 in., and then the load is removed.

How does the final length of the bar compare with
its original length? (Hint: Use the concepts illustrated in
Fig. 1-18b.)

7 (Ksi)
60

40

20

0 0.002 0.004 0.006

PROB. 1.4-1

1.4-2 A bar of length 2.0 m is made of a structural steel
having the stress-strain diagram shown in the figure. The
yield stress of the steel is 250 MPa and the slope of the
initial linear part of the stress-strain curve (modulus of
elasticity) is 200 GPa. The bar is loaded axially until it
elongates 6.5 mm, and then the load is removed.

How does the final length of the bar compare with
its original length? (Hint: Use the concepts illustrated in
Fig. 1-18b.)

o (MPa)
300

200

100

0 0.002 0.004 0.006

PROB. 1.4-2

1.4-3 An aluminum bar has length L = 4 ft and diameter
d = 1.0 in. The stress-strain curve for the aluminum is

CHAPTER 1 Problems 53

shown in Fig. 1-13 of Section 1.3. The initial straight-line
part of the curve has a slope (modulus of elasticity) of
10 X 10° psi. The bar is loaded by tensile forces P = 24 k
and then unloaded.

(a) What is the permanent set of the bar?

(b) If the bar is reloaded, what is the proportional
limit? (Hint: Use the concepts illustrated in Figs. 1-18b and
1-19.)

1.4-4 A circular bar of magnesium alloy is 800 mm long.
The stress-strain diagram for the material is shown in the
figure. The bar is loaded in tension to an elongation of
5.6 mm, and then the load is removed.

(a) What is the permanent set of the bar?

(b) If the bar is reloaded, what is the proportional
limit? (Hint: Use the concepts illustrated in Figs. 1-18b and
1-19.)

200
[
o (MPa)
%
100
0
0 0.005 0.010

PROB. 1.4-4

*1.4-5 A wire of length L = 4 ft and diameter d = 0.125
in. is stretched by tensile forces P = 600 Ib. The wire is
made of a copper alloy having a stress-strain relationship
that may be described mathematically by the following
equation:

18,000¢€
1+ 300e

g

0=€=0.03 (o= ksi)

in which e is nondimensional and o has units of kips per
square inch (ksi).

(a) Construct a stress-strain diagram for the material.

(b) Determine the elongation of the wire due to the
forces P.

(c) If the forces are removed, what is the permanent set
of the bar?

(d) If the forces are applied again, what is the propor-
tional limit?
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54 CHAPTER 1 Tension, Compression, and Shear

Hooke’s Law and Poisson’s Ratio

When solving the problems for Section 1.5, assume that the
material behaves linearly elastically.

1.5-1 A high-strength steel bar used in a large crane has
diameter d = 2.00 in. (see figure). The steel has modulus of
elasticity E = 29 X 10° psi and Poisson’s ratio » = 0.29.
Because of clearance requirements, the diameter of the bar
is limited to 2.001 in. when it is compressed by axial
forces.

What is the largest compressive load P, that is
permitted?

P_,( #

PROB. 1.5-1

1.5-2 A round bar of 10 mm diameter is made of
aluminum alloy 7075-T6 (see figure). When the bar is
stretched by axial forces P, its diameter decreases by 0.016
mm.

Find the magnitude of the load P. (Obtain the material
properties from Appendix H.)

A

7075-T6/ f

PROB. 1.5-2

1.5-3 A nylon bar having diameter d, = 3.50 in. is placed
inside a steel tube having inner diameter d, = 3.51 in. (see
figure). The nylon bar is then compressed by an axial
force P.

At what value of the force P will the space between
the nylon bar and the steel tube be closed? (For nylon,
assume E = 400 ksi and » = 0.4.)

Steel
tube

d dp

Nylon
bar

PROB. 1.5-3

1.5-4 A prismatic bar of circular cross section is loaded by
tensile forces P (see figure). The bar has length L = 1.5 m
and diameter d = 30 mm. It is made of aluminum alloy
with modulus of elasticity E = 75 GPa and Poisson’s ratio
v=1/3.

If the bar elongates by 3.6 mm, what is the decrease in
diameter Ad? What is the magnitude of the load P?

P g e
P

PROBS. 1.5-4 and 1.5-5

A

1.5-5 A bar of monel metal (length L = 8 in., diameter
d = 0.25in.) is loaded axially by a tensile force P = 1500 Ib
(see figure). Using the data in Table H-2, Appendix H, deter-
mine the increase in length of the bar and the percent
decrease in its cross-sectional area.

1.5-6 A tensile test is peformed on a brass specimen 10
mm in diameter using a gage length of 50 mm (see figure).
When the tensile load P reaches a value of 20 kN, the dis-
tance between the gage marks has increased by 0.122 mm.
(a) What is the modulus of elasticity E of the brass?
(b) If the diameter decreases by 0.00830 mm, what is
Poisson’s ratio?

PROB. 1.5-6

1.5-7 A hollow steel cylinder is compressed by a force P
(see figure). The cylinder has inner diameter d; = 3.9 in.,
outer diameter d, = 4.5 in., and modulus of elasticity
E = 30,000 ksi. When the force P increases from zero to
40 k, the outer diameter of the cylinder increases by
455 x 10~ % in.

(a) Determine the increase in the inner diameter.

(b) Determine the increase in the wall thickness.

(c) Determine Poisson’s ratio for the steel.
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PROB. 1.5-7

*1.5-8 A steel bar of length 2.5 m with a square cross sec-
tion 100 mm on each side is subjected to an axial tensile
force of 1300 kN (see figure). Assume that E = 200 GPa
andv =0.3.

Determine the increase in volume of the bar.

100 mm
|

v g_»
1300 kN ‘ T ‘ 1300 kN
\

| /
‘ 25m

100 mm
pd

PROB. 1.5-8

Shear Stress and Strain

1.6-1 An angle bracket having thickness t = 0.5 in. is
attached to the flange of a column by two 5/8-inch diameter
bolts (see figure). A uniformly distributed load acts on the
top face of the bracket with a pressure p = 300 psi. The top
face of the bracket has length L = 6 in. and width b = 2.5 in.

Determine the average bearing pressure oy, between
the angle bracket and the bolts and the average shear stress
Taver IN the bolts. (Disregard friction between the bracket
and the column.)
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11>
-

7
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1

-

PROB. 1.6-1

1.6-2 Three steel plates, each 16 mm thick, are joined by
two 20-mm diameter rivets as shown in the figure.

(a) If the load P = 50 kN, what is the largest bearing
stress acting on the rivets?

(b) If the ultimate shear stress for the rivets is 180
MPa, what force Py, is required to cause the rivets to fail in
shear? (Disregard friction between the plates.)

P/2 4@}_‘ P
P/2 - —
— T T

PROB. 1.6-2

1.6-3 A bolted connection between a vertical column and a
diagonal brace is shown in the figure on the next page. The
connection consists of three 5/8-in. bolts that join two 1/4-in.
end plates welded to the brace and a 5/8-in. gusset plate
welded to the column. The compressive load P carried by
the brace equals 8.0 k.

Determine the following quantities: (a) The average
shear stress 7, in the bolts, and (b) the average bearing
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56 CHAPTER 1 Tension, Compression, and Shear

stress oy, between the gusset plate and the bolts. (Disregard
friction between the plates.)
/ P

Column

Brace

End plates
for brace

Gusset
plate

PROB. 1.6-3

1.6-4 A hollow box beam ABC of length L is supported at
end A by a 20-mm diameter pin that passes through the
beam and its supporting pedestals (see figure). The roller
support at B is located at distance L/3 from end A.

(a) Determine the average shear stress in the pin due to
a load P equal to 10 kN.

(b) Determine the average bearing stress between the
pin and the box beam if the wall thickness of the beam is
equal to 12 mm.

P
Box beam
B rc
000
‘ L ‘ 2L
! 3 ! 3
Box beam

‘/Pin at support A

PROB. 1.6-4

1.6-5 The connection shown in the figure consists of
five steel plates, each 3/16 in. thick, joined by a single
1/4-in. diameter bolt. The total load transferred between
the plates is 1200 Ib, distributed among the plates as shown.

(a) Calculate the largest shear stress in the bolt, disre-
garding friction between the plates.

(b) Calculate the largest bearing stress acting against
the bolt.

3601b 600 Ib
480 Ib )_bL» 600 Ib
360 Ib 47‘/ [ '
PROB. 1.6-5

1.6-6 A steel plate of dimensions 2.5 X 1.2 X 0.1 m is
hoisted by a cable sling that has a clevis at each end (see
figure). The pins through the clevises are 18 mm in diame-
ter and are located 2.0 m apart. Each half of the cable is at
an angle of 32° to the vertical.

For these conditions, determine the average shear
stress Taver iN the pins and the average bearing stress oy,
between the steel plate and the pins.

| 20m

Steel plate
(2.5%1.2x0.1m)

PROB. 1.6-6

1.6-7 A special-purpose bolt of shank diameter d =
0.50 in. passes through a hole in a steel plate (see figure on
the next page). The hexagonal head of the bolt bears
directly against the steel plate. The radius of the circumscribed
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circle for the hexagon is r = 0.40 in. (which means that
each side of the hexagon has length 0.40 in.). Also, the
thickness t of the bolt head is 0.25 in. and the tensile force
P in the bolt is 1000 Ib.

(a) Determine the average bearing stress oy, between
the hexagonal head of the bolt and the plate.

(b) Determine the average shear stress 7y, in the head
of the bolt.

Steel plate

ld

Tf
2r

T —

‘

PROB. 1.6-7

1.6-8 An elastomeric bearing pad consisting of two steel
plates bonded to a chloroprene elastomer (an artificial rub-
ber) is subjected to a shear force V during a static loading
test (see figure). The pad has dimensions a = 150 mm and
b = 250 mm, and the elastomer has thickness t = 50 mm.
When the force V equals 12 kN, the top plate is found to
have displaced laterally 8.0 mm with respect to the bottom
plate.

What is the shear modulus of elasticity G of the
chloroprene?

PROB. 1.6-8

1.6-9 A joint between two concrete slabs A and B is filled
with a flexible epoxy that bonds securely to the concrete
(see figure). The height of the joint is h = 4.0 in., its length
is L = 40 in., and its thickness is t = 0.5 in. Under the
action of shear forces V, the slabs displace vertically
through the distance d = 0.002 in. relative to each other.
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(a) What is the average shear strain yaye, in the epoxy?
(b) What is the magnitude of the forces V if the shear
modulus of elasticity G for the epoxy is 140 ksi?

|
I

PROB. 1.6-9

1.6-10 A flexible connection consisting of rubber pads
(thickness t = 9 mm) bonded to steel plates is shown in the
figure. The pads are 160 mm long and 80 mm wide.

(a) Find the average shear strain 7y, in the rubber if
the force P = 16 kN and the shear modulus for the rubber
is G = 1250 kPa.

(b) Find the relative horizontal displacement &
between the interior plate and the outer plates.

p 160 mmﬂ Rubb d
> X< ubber pa
S / P
=: —
P N "\Rubber pad
2
80 mm;’\i/t =9mm
——— == el
Section X-X
PROB. 1.6-10

1.6-11 A spherical fiberglass buoy used in an underwater
experiment is anchored in shallow water by a chain
[see part (a) of the figure on the next page]. Because the
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buoy is positioned just below the surface of the water, it is
not expected to collapse from the water pressure. The
chain is attached to the buoy by a shackle and pin [see
part (b) of the figure]. The diameter of the pin is 0.5 in.
and the thickness of the shackle is 0.25 in. The buoy has a
diameter of 60 in. and weighs 1800 Ib on land (not includ-
ing the weight of the chain).

() Determine the average shear stress 7aye, in the pin.

(b) Determine the average bearing stress oy, between
the pin and the shackle.

(b)

PROB. 1.6-11

*1.6-12 The clamp shown in the figure is used to support a
load hanging from the lower flange of a steel beam. The
clamp consists of two arms (A and B) joined by a pin at C.
The pin has diameter d = 12 mm. Because arm B straddles
arm A, the pin is in double shear.

Line 1 in the figure defines the line of action of the
resultant horizontal force H acting between the lower
flange of the beam and arm B. The vertical distance from
this line to the pin is h = 250 mm. Line 2 defines the line
of action of the resultant vertical force V acting between the
flange and arm B. The horizontal distance from this line to
the centerline of the beam is ¢ = 100 mm. The force condi-
tions between arm A and the lower flange are symmetrical
with those given for arm B.

Determine the average shear stress in the pin at C
when the load P = 18 kN.

PROB. 1.6-12

*1.6-13 A specially designed wrench is used to twist a cir-
cular shaft by means of a square key that fits into slots (or
keyways) in the shaft and wrench, as shown in the figure on
the next page. The shaft has diameter d, the key has a
square cross section of dimensions b X b, and the length of
the key is c. The key fits half into the wrench and half into
the shaft (i.e., the keyways have a depth equal to b/2).

Derive a formula for the average shear stress ayer in
the key when a load P is applied at distance L from the
center of the shaft.

Hints: Disregard the effects of friction, assume that the
bearing pressure between the key and the wrench is uni-
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formly distributed, and be sure to draw free-body diagrams
of the wrench and key.

Key

PROB. 1.6-13

**1,6-14 A bicycle chain consists of a series of small
links, each 12 mm long between the centers of the pins (see
figure). You might wish to examine a bicycle chain and
observe its construction. Note particularly the pins, which
we will assume to have a diameter of 2.5 mm.

In order to solve this problem, you must now make
two measurements on a bicycle (see figure): (1) the length
L of the crank arm from main axle to pedal axle, and (2) the
radius R of the sprocket (the toothed wheel, sometimes
called the chainring).

(a) Using your measured dimensions, calculate the ten-
sile force T in the chain due to a force F = 800 N applied
to one of the pedals.

(b) Calculate the average shear stress 7, in the pins.
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Links Pin
N
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J21 JTEL JFaT T
q - - T « 3 3
tzmmf ]
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PROB. 1.6-14

**1.6-15 A shock mount constructed as shown in the fig-
ure is used to support a delicate instrument. The mount
consists of an outer steel tube with inside diameter b, a cen-
tral steel bar of diameter d that supports the load P, and a
hollow rubber cylinder (height h) bonded to the tube and
bar.

(a) Obtain a formula for the shear stress in the rubber
at a radial distance r from the center of the shock mount.

(b) Obtain a formula for the downward displacement &
of the central bar due to the load P, assuming that G is the
shear modulus of elasticity of the rubber and that the steel
tube and bar are rigid.

Steel tube
P
Steel bar
— Rubber

SR N

PROB. 1.6-15
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Allowable Loads

1.7-1 A bar of solid circular cross section is loaded in ten-
sion by forces P (see figure). The bar has length L = 16.0
in. and diameter d = 0.50 in. The material is a magnesium
alloy having modulus of elasticity E = 6.4 X 10° psi. The
allowable stress in tension is oow = 17,000 psi, and the
elongation of the bar must not exceed 0.04 in.

What is the allowable value of the forces P?

PROB. 1.7-1

1.7-2 A torque T, is transmitted between two flanged
shafts by means of four 20-mm bolts (see figure). The
diameter of the bolt circle isd = 150 mm.

If the allowable shear stress in the bolts is 90 MPa,
what is the maximum permissible torque? (Disregard fric-
tion between the flanges.)

PROB. 1.7-2

1.7-3 A tie-down on the deck of a sailboat consists of a
bent bar bolted at both ends, as shown in the figure. The
diameter dg of the bar is 1/4 in., the diameter dyy of the
washers is 7/8 in., and the thickness t of the fiberglass deck
is 3/8in.

If the allowable shear stress in the fiberglass is 300 psi,
and the allowable bearing pressure between the washer and
the fiberglass is 550 psi, what is the allowable load P 0w
on the tie-down?

dB l«— l —> dB
I | |
Qi ft i
PROB. 1.7-3

1.7-4 An aluminum tube serving as a compression brace in
the fuselage of a small airplane has the cross section shown
in the figure. The outer diameter of the tube is d = 25 mm
and the wall thickness is t = 2.5 mm. The yield stress for
the aluminum is ov = 270 MPa and the ultimate stress is
oy = 310 MPa.

Calculate the allowable compressive force Pyow if the
factors of safety with respect to the yield stress and the
ultimate stress are 4 and 5, respectively.

4

——d—

PROB. 1.7-4

1.7-5 A steel pad supporting heavy machinery rests on four
short, hollow, cast iron piers (see figure on the next page).
The ultimate strength of the cast iron in compression is
50 ksi. The outer diameter of the piers isd = 4.5 in. and the
wall thickness ist = 0.40 in.

Using a factor of safety of 3.5 with respect to the
ultimate strength, determine the total load P that may be
supported by the pad.
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PROB. 1.7-5

1.7-6 A long steel wire hanging from a balloon carries a
weight W at its lower end (see figure). The 4-mm diameter
wire is 25 m long.

What is the maximum weight W,. that can safely be
carried if the tensile yield stress for the wire is oy =
350 MPa and a margin of safety against yielding of 1.5 is
desired? (Include the weight of the wire in the calcula-
tions.)

PROB. 1.7-6

1.7-7 A lifeboat hangs from two ship’s davits, as shown in
the figure. A pin of diameter d = 0.80 in. passes through
each davit and supports two pulleys, one on each side of the
davit.
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Cables attached to the lifeboat pass over the pulleys
and wind around winches that raise and lower the lifeboat.
The lower parts of the cables are vertical and the upper
parts make an angle o« = 15° with the horizontal. The
allowable tensile force in each cable is 1800 Ib, and the
allowable shear stress in the pins is 4000 psi.

If the lifeboat weighs 1500 Ib, what is the maximum
weight that should be carried in the lifeboat?

PROB. 1.7-7

1.7-8 A ship’s spar is attached at the base of a mast by a
pin connection (see figure on the next page). The spar is a
steel tube of outer diameter d, = 80 mm and inner diameter
d; = 70 mm. The steel pin has diameter d = 25 mm, and
the two plates connecting the spar to the pin have thickness
t=12mm.

The allowable stresses are as follows: compressive
stress in the spar, 70 MPa; shear stress in the pin, 45 MPa;
and bearing stress between the pin and the connecting
plates, 110 MPa.

Determine the allowable compressive force Pujow in
the spar.
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Mast

PROB. 1.7-8

1.7-9 What is the maximum possible value of the clamping
force C in the jaws of the pliers shown in the figure if a =
3.751in., b = 1.60 in., and the ultimate shear stress in the
0.20-in. diameter pin is 50 ksi?

What is the maximum permissible value of the applied
load P if a factor of safety of 3.0 with respect to failure of
the pin is to be maintained?

i

Pin

P a ! b |

PROB. 1.7-9

1.7-10 A metal bar AB of weight W is suspended by a sys-
tem of steel wires arranged as shown in the figure. The
diameter of the wires is 2 mm, and the yield stress of the
steel is 450 MPa.

Determine the maximum permissible weight W, for
a factor of safety of 1.9 with respect to yielding.

0.75m 0.75m
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PROB. 1.7-10

1.7-11 Two flat bars loaded in tension by forces P are
spliced using two rectangular splice plates and two 5/8-in.
diameter rivets (see figure). The bars have width b = 1.0 in.
(except at the splice, where the bars are wider) and thickness
t = 0.4 in. The bars are made of steel having an ultimate
stress in tension equal to 60 ksi. The ultimate stresses in
shear and bearing for the rivet steel are 25 ksi and 80 ksi,
respectively.

Determine the allowable load Py, if a safety factor
of 2.5 is desired with respect to the ultimate load that can
be carried. (Consider tension in the bars, shear in the rivets,
and bearing between the rivets and the bars. Disregard fric-
tion between the plates.)

P Q O T P
\

Bar Splice plate

PROB. 1.7-11

*1.7-12 A solid bar of circular cross section (diameter d)
has a hole of diameter d/4 drilled laterally through the center
of the bar (see figure on the next page). The allowable aver-
age tensile stress on the net cross section of the bar is oaow-
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(a) Obtain a formula for the allowable load Py, that
the bar can carry in tension.

(b) Calculate the value of Py, if the bar is made of
brass with diameter d = 40 mm and o0w = 80 MPa.

(Hint: Use the formulas of Case 15, Appendix D.)

d
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d
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PROB. 1.7-12

*1,7-13 A solid steel bar of diameter d; = 2.25 in. has a
hole of diameter d, = 1.125 in. drilled through it (see fig-
ure). A steel pin of diameter d, passes through the hole and
is attached to supports.

Determine the maximum permissible tensile load
Paow in the bar if the yield stress for shear in the pin is
7, = 17,000 psi, the yield stress for tension in the bar is
oy = 36,000 psi, and a factor of safety of 2.0 with respect
to yielding is required. (Hint: Use the formulas of Case 15,
Appendix D.)

PROB. 1.7-13

*1.7-14 The piston in an engine is attached to a connect-
ing rod AB, which in turn is connected to a crank arm BC
(see figure). The piston slides without friction in a cylinder
and is subjected to a force P (assumed to be constant) while
moving to the right in the figure. The connecting rod,
which has diameter d and length L, is attached at both ends
by pins. The crank arm rotates about the axle at C with the
pin at B moving in a circle of radius R. The axle at C,
which is supported by bearings, exerts a resisting moment
M against the crank arm.

(@) Obtain a formula for the maximum permissible
force P.ow based upon an allowable compressive stress
o, in the connecting rod.

(b) Calculate the force P 0w for the following data:
o. = 160 MPa, d = 9.00 mm, and R = 0.28L.
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Cylinder  Piston Connecting rod
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PROB. 1.7-14

Design for Axial Loads and Direct Shear

1.8-1 An aluminum tube is required to transmit an axial
tensile force P = 34 k (see figure). The thickness of the
wall of the tube is to be 0.375 in.

What is the minimum required outer diameter d;, if
the allowable tensile stress is 9000 psi?

ld
i

Py

PROB. 1.8-1

——r

1.8-2 A steel pipe having yield stress o, = 270 MPa is to
carry an axial compressive load P = 1200 kN (see figure).
A factor of safety of 1.8 against yielding is to be used.

If the thickness t of the pipe is to be one-eighth of
its outer diameter, what is the minimum required outer
diameter dp,in?

PROB. 1.8-2

1.8-3 A horizontal beam AB supported by an inclined strut
CD carries a load P = 2500 Ib at the position shown in the
figure on the next page. The strut, which consists of two
bars, is connected to the beam by a bolt passing through the
three bars meeting at joint C.

If the allowable shear stress in the bolt is 14,000 psi,
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64 CHAPTER 1 Tension, Compression, and Shear
what is the minimum required diameter d,;,, of the bolt?
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PROB. 1.8-3

1.8-4 Two bars of rectangular cross section (thickness t =
15 mm) are connected by a bolt in the manner shown in the
figure. The allowable shear stress in the bolt is 90 MPa and
the allowable bearing stress between the bolt and the bars is
150 MPa.

If the tensile load P = 31 kN, what is the minimum
required diameter d,;, of the bolt?

R s e N LI
M e
o
— Q —

PROBS. 1.8-4 and 1.8-5

1.8-5 Solve the preceding problem if the bars have thickness
t =5/16 in., the allowable shear stress is 12,000 psi, the
allowable bearing stress is 20,000 psi, and the load P =
1800 Ib.

1.8-6 A suspender on a suspension bridge consists of a
cable that passes over the main cable (see figure) and sup-
ports the bridge deck, which is far below. The suspender is
held in position by a metal tie that is prevented from sliding
downward by clamps around the suspender cable.

Let P represent the load in each part of the suspender
cable, and let 6 represent the angle of the suspender cable
just above the tie. Finally, let 0w represent the allowable
tensile stress in the metal tie.

(a) Obtain a formula for the minimum required cross-
sectional area of the tie.

(b) Calculate the minimum area if P = 130 kN, 0 =
75°, and oy 10w = 80 MPa.

Collar

PROB. 1.8-6

1.8-7 A square steel tube of length L = 20 ft and width
b, = 10.0 in. is hoisted by a crane (see figure on the next
page). The tube hangs from a pin of diameter d that is held
by the cables at points A and B. The cross section is a
hollow square with inner dimension b, = 8.5 in. and outer
dimension b, = 10.0 in. The allowable shear stress in the
pin is 8,700 psi, and the allowable bearing stress between
the pin and the tube is 13,000 psi.

Determine the minimum diameter of the pin in order to
support the weight of the tube. (Note: Disregard the
rounded corners of the tube when calculating its weight.)
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PROBS. 1.8-7 and 1.8-8

1.8-8 Solve the preceding problem if the length L of the
tube is 6.0 m, the outer width is b, = 250 mm, the inner
dimension is by = 210 mm, the allowable shear stress in the
pin is 60 MPa, and the allowable bearing stress is 90 MPa.

1.8-9 A pressurized circular cylinder has a sealed cover plate
fastened with steel bolts (see figure). The pressure p of the
gas in the cylinder is 290 psi, the inside diameter D of the
cylinder is 10.0 in., and the diameter dg of the bolts is 0.50 in.

If the allowable tensile stress in the bolts is 10,000 psi,
find the number n of bolts needed to fasten the cover.

Cover plate

(TN TN

Steel bolt

<~ Cylinder

ANV
/ I\

f—-D——
PROB. 1.8-9

1.8-10 A tubular post of outer diameter d, is guyed by two
cables fitted with turnbuckles (see figure). The cables are
tightened by rotating the turnbuckles, thus producing ten-
sion in the cables and compression in the post. Both cables
are tightened to a tensile force of 110 kN. Also, the angle
between the cables and the ground is 60°, and the allowable
compressive stress in the post is o, = 35 MPa.
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If the wall thickness of the post is 15 mm, what is the
minimum permissible value of the outer diameter d,?

‘\600 7

PROB. 1.8-10

1.8-11 A cage for transporting workers and supplies on a
construction site is hoisted by a crane (see figure). The
floor of the cage is rectangular with dimensions 6 ft by 8 ft.
Each of the four lifting cables is attached to a corner of the
cage and is 13 ft long. The weight of the cage and its
contents is limited by regulations to 9600 Ib.

Determine the required cross-sectional area Ac of a
cable if the breaking stress of a cable is 91 ksi and a factor
of safety of 3.5 with respect to failure is desired.

T

PROB. 1.8-11
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66 CHAPTER 1 Tension, Compression, and Shear

1.8-12 A steel column of hollow circular cross section is
supported on a circular steel base plate and a concrete
pedestal (see figure). The column has outside diameter
d = 250 mm and supports a load P = 750 kN.

(a) If the allowable stress in the column is 55 MPa, what
is the minimum required thickness t? Based upon your result,
select a thickness for the column. (Select a thickness that is an
even integer, such as 10, 12, 14, . . ., in units of millimeters.)

(b) If the allowable bearing stress on the concrete
pedestal is 11.5 MPa, what is the minimum required
diameter D of the base plate if it is designed for the allowable
load P that the column with the selected thickness can
support?

Column lP

Base plate t

PROB. 1.8-12

1.8-13 A bar of rectangular cross section is subjected to an
axial load P (see figure). The bar has width b = 2.0 in. and
thickness t = 0.25 in. A hole of diameter d is drilled
through the bar to provide for a pin support. The allowable
tensile stress on the net cross section of the bar is 20 ksi,
and the allowable shear stress in the pin is 11.5 ksi.

(a) Determine the pin diameter d,, for which the load P
will be a maximum.

(b) Determine the corresponding value P, of the
load.

—r |! p
l : : —

1 T
PROBS. 1.8-13 and 1.8-14

*1.8-14 A flat bar of width b = 60 mm and thickness
t = 10 mm is loaded in tension by a force P (see figure).
The bar is attached to a support by a pin of diameter d that
passes through a hole of the same size in the bar. The
allowable tensile stress on the net cross section of the bar is
o1 = 140 MPa, the allowable shear stress in the pin is
75 = 80 MPa, and the allowable bearing stress between the
pin and the bar is oz = 200 MPa.

(a) Determine the pin diameter d,, for which the load P
will be a maximum.

(b) Determine the corresponding value Py Of the
load.

**1.8-15 Two bars AB and BC of the same material sup-
port a vertical load P (see figure). The length L of the
horizontal bar is fixed, but the angle # can be varied by
moving support A vertically and changing the length of bar
AC to correspond with the new position of support A. The
allowable stresses in the bars are the same in tension and
compression.

We observe that when the angle 6 is reduced, bar AC
becomes shorter but the cross-sectional areas of both bars
increase (because the axial forces are larger). The opposite
effects occur if the angle 6 is increased. Thus, we see that
the weight of the structure (which is proportional to the vol-
ume) depends upon the angle 6.

Determine the angle 6 so that the structure has mini-
mum weight without exceeding the allowable stresses in
the bars. (Note: The weights of the bars are very small
compared to the force P and may be disregarded.)

PROB. 1.8-15
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Axially Loaded Members

2.1 INTRODUCTION

Structural components subjected only to tension or compression are
known as axially loaded members. Solid bars with straight longitudinal
axes are the most common type, although cables and coil springs also
carry axial loads. Examples of axially loaded bars are truss members,
connecting rods in engines, spokes in bicycle wheels, columns in build-
ings, and struts in aircraft engine mounts. The stress-strain behavior of
such members was discussed in Chapter 1, where we also obtained
equations for the stresses acting on cross sections (o = P/A) and the
strains in longitudinal directions (e = &/L).

In this chapter we consider several other aspects of axially loaded
members, beginning with the determination of changes in lengths caused
by loads (Sections 2.2 and 2.3). The calculation of changes in lengths is
an essential ingredient in the analysis of statically indeterminate struc-
tures, a topic we introduce in Section 2.4. Changes in lengths also must
be calculated whenever it is necessary to control the displacements of a
structure, whether for aesthetic or functional reasons. In Section 2.5, we
discuss the effects of temperature on the length of a bar, and we introduce
the concepts of thermal stress and thermal strain. Also included in this
section is a discussion of the effects of misfits and prestrains.

A generalized view of the stresses in axially loaded bars is presented
in Section 2.6, where we discuss the stresses on inclined sections (as
distinct from cross sections) of bars. Although only normal stresses act
on cross sections of axially loaded bars, both normal and shear stresses
act on inclined sections.

We then introduce several additional topics of importance in
mechanics of materials, namely, strain energy (Section 2.7), impact
loading (Section 2.8), fatigue (Section 2.9), stress concentrations (Section
2.10), and nonlinear behavior (Sections 2.11 and 2.12). Although these

67
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68 CHAPTER 2 Axially Loaded Members

subjects are discussed in the context of members with axial loads, the
discussions provide the foundation for applying the same concepts to
other structural elements, such as bars in torsion and beams in bending.

2.2 CHANGES IN LENGTHS OF AXIALLY LOADED MEMBERS

Pl __p

FIG. 2-1 Spring subjected to an axial
load P

..}q. . "\5\
.. \P

FIG. 2-2 Elongation of an axially loaded
spring

When determining the changes in lengths of axially loaded members, it
is convenient to begin with a coil spring (Fig. 2-1). Springs of this type
are used in large numbers in many kinds of machines and devices—for
instance, there are dozens of them in every automobile.

When a load is applied along the axis of a spring, as shown in Fig. 2-1,
the spring gets longer or shorter depending upon the direction of the load.
If the load acts away from the spring, the spring elongates and we say that
the spring is loaded in tension. If the load acts toward the spring, the spring
shortens and we say it is in compression. However, it should not be
inferred from this terminology that the individual coils of a spring are
subjected to direct tensile or compressive stresses; rather, the coils act
primarily in direct shear and torsion (or twisting). Nevertheless, the overall
stretching or shortening of a spring is analogous to the behavior of a bar in
tension or compression, and so the same terminology is used.

Springs

The elongation of a spring is pictured in Fig. 2-2, where the upper part
of the figure shows a spring in its natural length L (also called its
unstressed length, relaxed length, or free length), and the lower part of
the figure shows the effects of applying a tensile load. Under the action
of the force P, the spring lengthens by an amount 6 and its final length
becomes L + 4. If the material of the spring is linearly elastic, the load
and elongation will be proportional:

P=ké 5=1P (2-1a,b)

in which k and f are constants of proportionality.

The constant k is called the stiffness of the spring and is defined as
the force required to produce a unit elongation, that is, k = P/6. Simi-
larly, the constant f is known as the flexibility and is defined as the
elongation produced by a load of unit value, that is, f = &/P. Although
we used a spring in tension for this discussion, it should be obvious that
Egs. (2-1a) and (2-1b) also apply to springs in compression.

From the preceding discussion it is apparent that the stiffness and
flexibility of a spring are the reciprocal of each other:

_1 = _1 2-2a,b
k f f K ( )
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FIG. 2-3 Prismatic bar of circular
Cross section

O [

Solid cross sections

O L

Hollow or tubular cross sections

L

Thin-walled open cross sections

FIG. 2-4 Typical cross sections of
structural members

FIG.2-5 Elongation of a prismatic bar in
tension
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The flexibility of a spring can easily be determined by measuring the
elongation produced by a known load, and then the stiffness can be
calculated from Eq. (2-2a). Other terms for the stiffness and flexibility
of a spring are the spring constant and compliance, respectively.

The spring properties given by Egs. (2-1) and (2-2) can be used in
the analysis and design of various mechanical devices involving springs,
as illustrated later in Example 2-1.

Prismatic Bars

Axially loaded bars elongate under tensile loads and shorten under
compressive loads, just as springs do. To analyze this behavior, let us
consider the prismatic bar shown in Fig. 2-3. A prismatic bar is a struc-
tural member having a straight longitudinal axis and constant cross
section throughout its length. Although we often use circular bars in our
illustrations, we should bear in mind that structural members may have a
variety of cross-sectional shapes, such as those shown in Fig. 2-4.

The elongation & of a prismatic bar subjected to a tensile load P is
shown in Fig. 2-5. If the load acts through the centroid of the end cross
section, the uniform normal stress at cross sections away from the ends
is given by the formula o = P/A, where A is the cross-sectional area.
Furthermore, if the bar is made of a homogeneous material, the axial
strain is € = 8/L, where § is the elongation and L is the length of the bar.

Let us also assume that the material is linearly elastic, which means
that it follows Hooke’s law. Then the longitudinal stress and strain are
related by the equation o = Ee, where E is the modulus of elasticity.
Combining these basic relationships, we get the following equation for
the elongation of the bar:

_PL

=
EA

(2-3)

This equation shows that the elongation is directly proportional to the
load P and the length L and inversely proportional to the modulus of
elasticity E and the cross-sectional area A. The product EA is known as
the axial rigidity of the bar.

Although Eqg. (2-3) was derived for a member in tension, it applies
equally well to a member in compression, in which case 6 represents the
shortening of the bar. Usually we know by inspection whether a member
gets longer or shorter; however, there are occasions when a sign
convention is needed (for instance, when analyzing a statically indeter-
minate bar). When that happens, elongation is usually taken as positive
and shortening as negative.

The change in length of a bar is normally very small in comparison
to its length, especially when the material is a structural metal, such as
steel or aluminum. As an example, consider an aluminum strut that is
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70 CHAPTER 2 Axially Loaded Members

FIG.2-6 Typical arrangement of strands
and wires in a steel cable

75.0 in. long and subjected to a moderate compressive stress of 7000
psi. If the modulus of elasticity is 10,500 ksi, the shortening of the strut
(from Eqg. 2-3 with P/A replaced by o) is § = 0.050 in. Consequently,
the ratio of the change in length to the original length is 0.05/75, or
1/1500, and the final length is 0.999 times the original length. Under
ordinary conditions similar to these, we can use the original length of a
bar (instead of the final length) in calculations.

The stiffness and flexibility of a prismatic bar are defined in the
same way as for a spring. The stiffness is the force required to produce a
unit elongation, or P/§, and the flexibility is the elongation due to a unit
load, or 6/P. Thus, from Eq. (2-3) we see that the stiffness and flexi-
bility of a prismatic bar are, respectively,

== - (2-4a,b)

Stiffnesses and flexibilities of structural members, including those given
by Egs. (2-4a) and (2-4b), have a special role in the analysis of large
structures by computer-oriented methods.

Cables

Cables are used to transmit large tensile forces, for example, when
lifting and pulling heavy objects, raising elevators, guying towers, and
supporting suspension bridges. Unlike springs and prismatic bars, cables
cannot resist compression. Furthermore, they have little resistance to
bending and therefore may be curved as well as straight. Nevertheless, a
cable is considered to be an axially loaded member because it is
subjected only to tensile forces. Because the tensile forces in a cable are
directed along the axis, the forces may vary in both direction and magni-
tude, depending upon the configuration of the cable.

Cables are constructed from a large number of wires wound in some
particular manner. While many arrangements are available depending
upon how the cable will be used, a common type of cable, shown in
Fig. 2-6, is formed by six strands wound helically around a central
strand. Each strand is in turn constructed of many wires, also wound
helically. For this reason, cables are often referred to as wire rope.

The cross-sectional area of a cable is equal to the total cross-
sectional area of the individual wires, called the effective area or
metallic area. This area is less than the area of a circle having the same
diameter as the cable because there are spaces between the individual
wires. For example, the actual cross-sectional area (effective area) of a
particular 1.0 inch diameter cable is only 0.471 in.?, whereas the area of
a 1.0 in. diameter circle is 0.785 in.?
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Under the same tensile load, the elongation of a cable is greater than
the elongation of a solid bar of the same material and same metallic
cross-sectional area, because the wires in a cable “tighten up” in the
same manner as the fibers in a rope. Thus, the modulus of elasticity
(called the effective modulus) of a cable is less than the modulus of the
material of which it is made. The effective modulus of steel cables is
about 20,000 ksi (140 GPa), whereas the steel itself has a modulus of
about 30,000 ksi (210 GPa).

When determining the elongation of a cable from Eq. (2-3), the
effective modulus should be used for E and the effective area should be
used for A.

In practice, the cross-sectional dimensions and other properties of
cables are obtained from the manufacturers. However, for use in solving
problems in this book (and definitely not for use in engineering applica-
tions), we list in Table 2-1 the properties of a particular type of cable.
Note that the last column contains the ultimate load, which is the load
that would cause the cable to break. The allowable load is obtained from
the ultimate load by applying a safety factor that may range from 3 to
10, depending upon how the cable is to be used. The individual wires in
a cable are usually made of high-strength steel, and the calculated
tensile stress at the breaking load can be as high as 200,000 psi (1400
MPa).

The following examples illustrate techniques for analyzing simple
devices containing springs and bars. The solutions require the use of
free-body diagrams, equations of equilibrium, and equations for changes
in length. The problems at the end of the chapter provide many addi-
tional examples.

TABLE 2-1 PROPERTIES OF STEEL CABLES*

Nominal Approximate Effective Ultimate
diameter weight area load
in. (mm) | Ib/ft  (N/m) in.2 (mm?) Ib (kN)

0.50 (12) 0.42 (6.1) | 0.119 (76.7) 23,100 (102)
0.75 (20) 095 (13.9) | 0.268 (173) 51,900 (231)
1.00 (25) 1.67 (24.4) | 0471 (304) 91,300 (406)
1.25 (32) 2.64 (38.5) | 0.745 (481) | 144,000 (641)
1.50 (38) 383 (55.9) | 1.08 (697) | 209,000 (930)
1.75 (44) 524  (76.4) | 1.47 (948) | 285,000 (1260)
2.00 (50) 6.84 (99.8) | 1.92 (1230) | 372,000 (1650)

* To be used solely for solving problems in this book.
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72 CHAPTER 2 Axially Loaded Members

Example 2-1

A rigid L-shaped frame ABC consisting of a horizontal arm AB (length b =
10.5 in.) and a vertical arm BC (length ¢ = 6.4 in.) is pivoted at point B, as
shown in Fig. 2-7a. The pivot is attached to the outer frame BCD, which stands
on a laboratory bench. The position of the pointer at C is controlled by a spring
(stiffness k = 4.2 Ib/in.) that is attached to a threaded rod. The position of the
threaded rod is adjusted by turning the knurled nut.

The pitch of the threads (that is, the distance from one thread to the next) is
p = 1/16 in., which means that one full revolution of the nut will move the rod
by that same amount. Initially, when there is no weight on the hanger, the nut is
turned until the pointer at the end of arm BC is directly over the reference mark
on the outer frame.

If a weight W = 2 Ib is placed on the hanger at A, how many revolutions of
the nut are required to bring the pointer back to the mark? (Deformations of the
metal parts of the device may be disregarded because they are negligible
compared to the change in length of the spring.)

o

Hanger

Frame

FIG. 2-7 Example 2-1. (a) Rigid
L-shaped frame ABC attached to outer
frame BCD by a pivot at B, and
(b) free-body diagram of frame ABC (b)
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SECTION 2.2 Changes in Lengths of Axially Loaded Members 73

Solution

Inspection of the device (Fig. 2-7a) shows that the weight W acting down-
ward will cause the pointer at C to move to the right. When the pointer moves to
the right, the spring stretches by an additional amount—an amount that we can
determine from the force in the spring.

To determine the force in the spring, we construct a free-body diagram of
frame ABC (Fig. 2-7b). In this diagram, W represents the force applied by the
hanger and F represents the force applied by the spring. The reactions at the
pivot are indicated with slashes across the arrows (see the discussion of reac-
tions in Section 1.8).

Taking moments about point B gives

F=— @

The corresponding elongation of the spring (from Eq. 2-1a) is

F_ Wb

k ck

(b)

To bring the pointer back to the mark, we must turn the nut through enough
revolutions to move the threaded rod to the left an amount equal to the elonga-
tion of the spring. Since each complete turn of the nut moves the rod a distance
equal to the pitch p, the total movement of the rod is equal to np, where n is the
number of turns. Therefore,

Wb
np= 6= ©

from which we get the following formula for the number of revolutions of the
nut:

_wo
n= ckp (d) <=

Numerical results. As the final step in the solution, we substitute the given
numerical data into Eq. (d), as follows:

_Wb _ (21b)(10.5in.)

- — 12,5 revoluti =
ckp _ (6.4in.)(4.2 Ib/in)(1/16 in.) revolutions

This result shows that if we rotate the nut through 12.5 revolutions, the threaded
rod will move to the left an amount equal to the elongation of the spring caused
by the 2-Ib load, thus returning the pointer to the reference mark.
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74 CHAPTER 2 Axially Loaded Members

Example 2-2

The device shown in Fig. 2-8a consists of a horizontal beam ABC supported by
two vertical bars BD and CE. Bar CE is pinned at both ends but bar BD is fixed
to the foundation at its lower end. The distance from A to B is 450 mm and from
B to C is 225 mm. Bars BD and CE have lengths of 480 mm and 600 mm,
respectively, and their cross-sectional areas are 1020 mm? and 520 mm?,
respectively. The bars are made of steel having a modulus of elasticity E = 205
GPa.

Assuming that beam ABC is rigid, find the maximum allowable load P,y
if the displacement of point A is limited to 1.0 mm.

A B B
— JL Il a0+
P
450 mm 1| 225 mm |
! I ! 600 mm
L D
120 mmI
o\ E
. =
(@)
A B C
-l =31
A
P Fep YFce
| 450 mm 225 mm
(b)
S — = A——
I }B a& 8CE
A 5 /,‘ C
BD g
Sa
A
450 mm 225 mm
FIG. 2-8 Example 2-2. Horizontal beam
ABC supported by two vertical bars (c)
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Solution

To find the displacement of point A, we need to know the displacements of
points B and C. Therefore, we must find the changes in lengths of bars BD and
CE, using the general equation 6 = PL/EA (Eq. 2-3).

We begin by finding the forces in the bars from a free-body diagram of
the beam (Fig. 2-8b). Because bar CE is pinned at both ends, it is a “two-force”
member and transmits only a vertical force Fcg to the beam. However, bar
BD can transmit both a vertical force Fgp and a horizontal force H. From equi-
librium of beam ABC in the horizontal direction, we see that the horizontal force
vanishes.

Two additional equations of equilibrium enable us to express the forces
Fgp and Fcg in terms of the load P. Thus, by taking moments about point B and
then summing forces in the vertical direction, we find

FCE =2P FBD =3P (e)

Note that the force Fcg acts downward on bar ABC and the force Fgp acts
upward. Therefore, member CE is in tension and member BD is in compression.
The shortening of member BD is

Feolsep
EAsp

_ (3P)(480 mm)
(205 GPa)(1020 mm?)

Osp =

= 6.887P X 10" ®mm (P = newtons) )

Note that the shortening 8gp is expressed in millimeters provided the load P is
expressed in newtons.

Similarly, the lengthening of member CE is
_ Feelce

5 = —==
CE EAce

B (2P)(600 mm)
(205 GPa)(520 mm?)

Again, the displacement is expressed in millimeters provided the load P is
expressed in newtons. Knowing the changes in lengths of the two bars, we can
now find the displacement of point A.

Displacement diagram. A displacement diagram showing the relative posi-
tions of points A, B, and C is sketched in Fig. 2-8c. Line ABC represents the
original alignment of the three points. After the load P is applied, member BD
shortens by the amount 8zp and point B moves to B’. Also, member CE elon-
gates by the amount Scg and point C moves to C’. Because the beam ABC is
assumed to be rigid, points A", B’, and C’ lie on a straight line.

For clarity, the displacements are highly exaggerated in the diagram. In
reality, line ABC rotates through a very small angle to its new position A'B'C’
(see Note 2 at the end of this example).

=11.26P X 10"*mm (P = newtons) (9)

continued
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N 8" ¢
1 I @ CE
A 'B C
5BD/YB.
oA
A
450 mm | 225 mm
(c)

FIG. 2-8¢ (Repeated)

Using similar triangles, we can now find the relationships between the
displacements at points A, B, and C. From triangles A’A"C’ and B'B"C’ we get

A’A" . B'B” 5A + SCE . SBD + SCE

ac ec ¥ a0t 225

(h)

in which all terms are expressed in millimeters.
Substituting for 8gp and 8¢ from Eqgs. (f) and (g) gives

Sn + 11.26P X 107° _ 6.887P X 10 ° + 11.26P x 10°°
450 + 225 B 225

Finally, we substitute for 8, its limiting value of 1.0 mm and solve the equation
for the load P. The result is

P = Pmax = 23,200 N (or 23.2 kN) <=

When the load reaches this value, the downward displacement at point A is
1.0 mm.

Note 1: Since the structure behaves in a linearly elastic manner, the
displacements are proportional to the magnitude of the load. For instance, if the
load is one-half of Py, that is, if P = 11.6 kN, the downward displacement of
point A is 0.5 mm.

Note 2: To verify our premise that line ABC rotates through a very small
angle, we can calculate the angle of rotation « from the displacement diagram
(Fig. 2-8c), as follows:

) _AAT at Ok .
ana= A'C’  675mm U

The displacement 8, of point A is 1.0 mm, and the elongation &g of bar CE is
found from Eq. (g) by substituting P = 23,200 N; the result is cg = 0.261 mm.
Therefore, from Eq. (i) we get

1.0 mm + 0.261 mm 1.261 mm
675 mm © 675mm

tan a = = 0.001868

from which a« = 0.11°. This angle is so small that if we tried to draw the
displacement diagram to scale, we would not be able to distinguish between the
original line ABC and the rotated line A'B'C’.

Thus, when working with displacement diagrams, we usually can consider
the displacements to be very small quantities, thereby simplifying the geometry.
In this example we were able to assume that points A, B, and C moved only
vertically, whereas if the displacements were large, we would have to consider
that they moved along curved paths.
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2.3 CHANGES IN LENGTHS UNDER NONUNIFORM CONDITIONS

FIG.2-9 (a) Bar with external loads
acting at intermediate points; (b), (c),
and (d) free-body diagrams showing the
internal axial forces N1, N5, and N3

When a prismatic bar of linearly elastic material is loaded only at the
ends, we can obtain its change in length from the equation 6 = PL/EA,
as described in the preceding section. In this section we will see how
this same equation can be used in more general situations.

Bars with Intermediate Axial Loads

Suppose, for instance, that a prismatic bar is loaded by one or more axial
loads acting at intermediate points along the axis (Fig. 2-9a). We can
determine the change in length of this bar by adding algebraically the
elongations and shortenings of the individual segments. The procedure
is as follows.

1.

2.

Identify the segments of the bar (segments AB, BC, and CD) as
segments 1, 2, and 3, respectively.

Determine the internal axial forces Ny, N, and N3 in segments 1, 2,
and 3, respectively, from the free-body diagrams of Figs. 2-9b, c,
and d. Note that the internal axial forces are denoted by the letter N
to distinguish them from the external loads P. By summing forces in
the vertical direction, we obtain the following expressions for the
axial forces:

Nl:_PB+PC+PD N2:P0+PD NgZPD

In writing these equations we used the sign convention given in the
preceding section (internal axial forces are positive when in tension
and negative when in compression).

L
I PB | I PB
B —F B

D T D T D T D
Pp Pp Pb Pb

(a) (b) (©) (d)
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Bl L
B y
E> L,

FIG. 2-10 Bar consisting of prismatic
segments having different axial forces,
different dimensions, and different
materials

3. Determine the changes in the lengths of the segments from Eq. (2-3):
N;L; N,L» NsL3
— 82 = 63 =
EA EA EA
in which L, L,, and L5 are the lengths of the segments and EA is the

axial rigidity of the bar.
4. Add 6, 65, and 85 to obtain 6, the change in length of the entire bar:

81:

3
=> §=6+6+ 63
i=1

As already explained, the changes in lengths must be added algebra-
ically, with elongations being positive and shortenings negative.

Bars Consisting of Prismatic Segments

This same general approach can be used when the bar consists of several
prismatic segments, each having different axial forces, different dimen-
sions, and different materials (Fig. 2-10). The change in length may be
obtained from the equation

SONL
AN 2.
-3, e

in which the subscript i is a numbering index for the various segments of
the bar and n is the total number of segments. Note especially that N; is
not an external load but is the internal axial force in segment i.

Bars with Continuously Varying Loads or Dimensions

Sometimes the axial force N and the cross-sectional area A vary contin-
uously along the axis of a bar, as illustrated by the tapered bar of Fig.
2-11a. This bar not only has a continuously varying cross-sectional area
but also a continuously varying axial force. In this illustration, the load
consists of two parts, a single force Py acting at end B of the bar and
distributed forces p(x) acting along the axis. (A distributed force has units
of force per unit distance, such as pounds per inch or newtons per meter.)
A distributed axial load may be produced by such factors as centrifugal
forces, friction forces, or the weight of a bar hanging in a vertical position.

Under these conditions we can no longer use Eq. (2-5) to obtain the
change in length. Instead, we must determine the change in length of a
differential element of the bar and then integrate over the length of the bar.

We select a differential element at distance x from the left-hand end
of the bar (Fig. 2-11a). The internal axial force N(x) acting at this cross
section (Fig. 2-11b) may be determined from equilibrium using either
segment AC or segment CB as a free body. In general, this force is a
function of x. Also, knowing the dimensions of the bar, we can express
the cross-sectional area A(x) as a function of x.
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cross-sectional area and
varying axial force
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A C C
. ”‘ NG N(X)@ > NGY)
> L. L
L
@ ®) ©

The elongation dé of the differential element (Fig. 2-11c) may be
obtained from the equation 6 = PL/EA by substituting N(x) for P, dx for
L, and A(x) for A, as follows:

~ N(x) dx
6= EAR) ® (2-6)
The elongation of the entire bar is obtained by integrating over the length:
L L d
5:J' dézjm (2-7)
0 o EAQ

If the expressions for N(x) and A(x) are not too complicated, the integral
can be evaluated analytically and a formula for & can be obtained, as
illustrated later in Example 2-4. However, if formal integration is either
difficult or impossible, a numerical method for evaluating the integral
should be used.

Limitations

Equations (2-5) and (2-7) apply only to bars made of linearly elastic
materials, as shown by the presence of the modulus of elasticity E in the
formulas. Also, the formula 6 = PL/EA was derived using the assumption
that the stress distribution is uniform over every cross section (because it is
based on the formula o = P/A). This assumption is valid for prismatic bars
but not for tapered bars, and therefore Eq. (2-7) gives satisfactory results
for a tapered bar only if the angle between the sides of the bar is small.

As an illustration, if the angle between the sides of a bar is 20°, the
stress calculated from the expression o = P/A (at an arbitrarily selected
cross section) is 3% less than the exact stress for that same cross section
(calculated by more advanced methods). For smaller angles, the error is
even less. Consequently, we can say that Eq. (2-7) is satisfactory if the
angle of taper is small. If the taper is large, more accurate methods of
analysis are needed (Ref. 2-1).

The following examples illustrate the determination of changes in
lengths of nonuniform bars.
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Example 2-3

A vertical steel bar ABC is pin-supported at its upper end and loaded by a force
P, at its lower end (Fig. 2-12a). A horizontal beam BDE is pinned to the vertical
bar at joint B and supported at point D. The beam carries a load P, at end E.

The upper part of the vertical bar (segment AB) has length L, = 20.0 in.
and cross-sectional area A; = 0.25 in.%; the lower part (segment BC) has length
L, = 34.8 in. and area A, = 0.15 in.? The modulus of elasticity E of the steel is
29.0 X 10° psi. The left- and right-hand parts of beam BDE have lengths a =
28 in.and b = 25 in., respectively.

Calculate the vertical displacement ¢ at point C if the load P, = 2100 Ib
and the load P, = 5600 Ib. (Disregard the weights of the bar and the beam.)

>0

(M
)
vs]
(0]
@)
I Y
N e
we—>» U

FIG.2-12 Example 2-3. Change in length P1
of a nonuniform bar (bar ABC) (c)
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Solution

Axial forces in bar ABC. From Fig. 2-12a, we see that the vertical displace-
ment of point C is equal to the change in length of bar ABC. Therefore, we must
find the axial forces in both segments of this bar.

The axial force N, in the lower segment is equal to the load P;. The axial
force Ny in the upper segment can be found if we know either the vertical reaction
at A or the force applied to the bar by the beam. The latter force can be obtained
from a free-body diagram of the beam (Fig. 2-12b), in which the force acting on
the beam (from the vertical bar) is denoted P5 and the vertical reaction at support
D is denoted Rp. No horizontal force acts between the bar and the beam, as can be
seen from a free-body diagram of the vertical bar itself (Fig. 2-12c). Therefore,
there is no horizontal reaction at support D of the beam.

Taking moments about point D for the free-body diagram of the beam
(Fig. 2-12b) gives

Pa2b _ (5600 Ib)(25.0in.)

Py= .
87 a 28.0in.

= 5000 Ib

This force acts downward on the beam (Fig. 2-12b) and upward on the vertical
bar (Fig. 2-12c¢).
Now we can determine the downward reaction at support A (Fig. 2-12c):

Ra = P5 — P, = 5000 Ib — 2100 Ib = 2900 Ib

The upper part of the vertical bar (segment AB) is subjected to an axial
compressive force N; equal to Ra, or 2900 Ib. The lower part (segment BC)
carries an axial tensile force N, equal to Py, or 2100 Ib.

Note: As an alternative to the preceding calculations, we can obtain the
reaction R, from a free-body diagram of the entire structure (instead of from the
free-body diagram of beam BDE).

Changes in length. With tension considered positive, Eq. (2-5) yields

_Nib Nl

o= ik
iA; EA; EA,

n

NiL;
E

i=1

_ __(=29001b)(200in) _ . (21001b)(34.81in.)
(29.0 X 10° psi)(0.25in.%) ~ (29.0 x 10° psi)(0.15 in.%)

= —0.0080 in. + 0.0168 in. = 0.0088 in.

in which & is the change in length of bar ABC. Since & is positive, the bar
elongates. The displacement of point C is equal to the change in length of the
bar:

e = 0.0088 in. <=

This displacement is downward.
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Example 2-4

A tapered bar AB of solid circular cross section and length L (Fig. 2-13a) is
supported at end B and subjected to a tensile load P at the free end A. The diam-
eters of the bar at ends A and B are d, and dg, respectively.

Determine the elongation of the bar due to the load P, assuming that the
angle of taper is small.

c X o

A Ny A
. A —
da J L 1 ]
L | Lg

(a) (b)

FIG.2-13 Example 2-4. Change in length
of a tapered bar of solid circular cross
section

Solution

The bar being analyzed in this example has a constant axial force (equal to
the load P) throughout its length. However, the cross-sectional area varies
continuously from one end to the other. Therefore, we must use integration (see
Eq. 2-7) to determine the change in length.

Cross-sectional area. The first step in the solution is to obtain an expres-
sion for the cross-sectional area A(x) at any cross section of the bar. For this
purpose, we must establish an origin for the coordinate x. One possibility is to
place the origin of coordinates at the free end A of the bar. However, the inte-
grations to be performed will be slightly simplified if we locate the origin of
coordinates by extending the sides of the tapered bar until they meet at point O,
as shown in Fig. 2-13b.

The distances L, and Lg from the origin O to ends A and B, respectively,
are in the ratio

bt @

LB dB
as obtained from similar triangles in Fig. 2-13b. From similar triangles we also
get the ratio of the diameter d(x) at distance x from the origin to the diameter da
at the small end of the bar:

) _ x _ O
4 L. or d(x) = L (b)

Therefore, the cross-sectional area at distance x from the origin is

md()]® _ mdax®

A =", a2

(©)
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Change in length. We now substitute the expression for A(x) into Eq. (2-7)
and obtain the elongation &:

L L
B jN(x)dx _j ® pdx(4L2) _ 4PL% J ® dx

EA(X) E(wd3x?) wEd} 2 (d)

LA LA

By performing the integration (see Appendix C for integration formulas) and
substituting the limits, we get

4PLA[ 1] 4PLA (1 1
6 = 2| 7| T 2 \7 T 7 (e)
wEd A X L, 7Ed A LA LB
This expression for & can be simplified by noting that
11 _ ﬁ — L 0]
LA LB LALB LALB
Thus, the equation for 6 becomes
4PL (La
6 = AN
Finally, we substitute La/Lg=dA/dg (see Eg. a) and obtain
4PL
=— 2-8) <=m
7TEdAdB ( )

This formula gives the elongation of a tapered bar of solid circular cross section.
By substituting numerical values, we can determine the change in length for any
particular bar.

Note 1: A common mistake is to assume that the elongation of a tapered
bar can be determined by calculating the elongation of a prismatic bar that has
the same cross-sectional area as the midsection of the tapered bar. Examination
of Eq. (2-8) shows that this idea is not valid.

Note 2: The preceding formula for a tapered bar (Eq. 2-8) can be reduced
to the special case of a prismatic bar by substituting dp = dg = d. The result is

_4PL _ PL
#Ed®> EA

which we know to be correct.

A general formula such as Eq. (2-8) should be checked whenever possible
by verifying that it reduces to known results for special cases. If the reduction
does not produce a correct result, the original formula is in error. If a correct
result is obtained, the original formula may still be incorrect but our confidence
in it increases. In other words, this type of check is a necessary but not suffi-
cient condition for the correctness of the original formula.
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2.4 STATICALLY INDETERMINATE STRUCTURES

}e

FIG. 2-14 Statically determinate bar

h

bre

FIG. 2-15 Statically indeterminate bar

The springs, bars, and cables that we discussed in the preceding sections
have one important feature in common—their reactions and internal
forces can be determined solely from free-body diagrams and equations
of equilibrium. Structures of this type are classified as statically
determinate. We should note especially that the forces in a statically
determinate structure can be found without knowing the properties of
the materials. Consider, for instance, the bar AB shown in Fig. 2-14. The
calculations for the internal axial forces in both parts of the bar, as well
as for the reaction R at the base, are independent of the material of
which the bar is made.

Most structures are more complex than the bar of Fig. 2-14, and
their reactions and internal forces cannot be found by statics alone. This
situation is illustrated in Fig. 2-15, which shows a bar AB fixed at both
ends. There are now two vertical reactions (R, and Rg) but only one
useful equation of equilibrium—the equation for summing forces in the
vertical direction. Since this equation contains two unknowns, it is not
sufficient for finding the reactions. Structures of this kind are classified
as statically indeterminate. To analyze such structures we must supple-
ment the equilibrium equations with additional equations pertaining to
the displacements of the structure.

To see how a statically indeterminate structure is analyzed, consider
the example of Fig. 2-16a. The prismatic bar AB is attached to rigid supports
at both ends and is axially loaded by a force P at an intermediate point C.
As already discussed, the reactions R, and Rg cannot be found by statics
alone, because only one equation of equilibrium is available:

> Fuert=0 Ra—P+Rg=0 (a)

An additional equation is needed in order to solve for the two unknown
reactions.

The additional equation is based upon the observation that a bar
with both ends fixed does not change in length. If we separate the bar
from its supports (Fig. 2-16b), we obtain a bar that is free at both ends
and loaded by the three forces, Ra, Rg, and P. These forces cause the bar
to change in length by an amount 5z, Which must be equal to zero:

5AB =0 (b)

This equation, called an equation of compatibility, expresses the fact
that the change in length of the bar must be compatible with the condi-
tions at the supports.

In order to solve Egs. (a) and (b), we must now express the compati-
bility equation in terms of the unknown forces Ry and Rg. The
relationships between the forces acting on a bar and its changes in
length are known as force-displacement relations. These relations have
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FIG.2-16 Analysis of a statically
indeterminate bar
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various forms depending upon the properties of the material. If the
material is linearly elastic, the equation 6 = PL/EA can be used to
obtain the force-displacement relations.

Let us assume that the bar of Fig. 2-16 has cross-sectional area A
and is made of a material with modulus E. Then the changes in lengths
of the upper and lower segments of the bar are, respectively,

_ RAa _ RBb
Oac = _EA Ocs _EA (c,d)

where the minus sign indicates a shortening of the bar. Equations (c) and
(d) are the force-displacement relations.

We are now ready to solve simultaneously the three sets of equations
(the equation of equilibrium, the equation of compatibility, and the force-
displacement relations). In this illustration, we begin by combining the
force-displacement relations with the equation of compatibility:

Ra@ Rgb
8AB:5AC+6CB:ﬁ_ﬁ:O ()

Note that this equation contains the two reactions as unknowns.
The next step is to solve simultaneously the equation of equilibrium
(Eg. a) and the preceding equation (Eg. €). The results are

_ P o _Pa

R
AT L L

(2-9a,b)

With the reactions known, all other force and displacement quanti-
ties can be determined. Suppose, for instance, that we wish to find the
downward displacement 8¢ of point C. This displacement is equal to the
elongation of segment AC:

Rna _ Pab

EA LEA (2-10)

Oc = 8ac =
Also, we can find the stresses in the two segments of the bar directly
from the internal axial forces (e.9., oac=Ra/A=Pb/AL).

General Comments

From the preceding discussion we see that the analysis of a statically
indeterminate structure involves setting up and solving equations of
equilibrium, equations of compatibility, and force-displacement relations.
The equilibrium equations relate the loads acting on the structure to the
unknown forces (which may be reactions or internal forces), and the
compatibility equations express conditions on the displacements of
the structure. The force-displacement relations are expressions that use
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the dimensions and properties of the structural members to relate the
forces and displacements of those members. In the case of axially
loaded bars that behave in a linearly elastic manner, the relations are
based upon the equation 6 = PL/EA. Finally, all three sets of equations
may be solved simultaneously for the unknown forces and displace-
ments.

In the engineering literature, various terms are used for the
conditions expressed by the equilibrium, compatibility, and force-
displacement equations. The equilibrium equations are also known as
static or kinetic equations; the compatibility equations are sometimes
called geometric equations, kinematic equations, or equations of
consistent deformations; and the force-displacement relations are often
referred to as constitutive relations (because they deal with the
constitution, or physical properties, of the materials).

For the relatively simple structures discussed in this chapter, the
preceding method of analysis is adequate. However, more formalized
approaches are needed for complicated structures. Two commonly
used methods, the flexibility method (also called the force method) and
the stiffness method (also called the displacement method), are
described in detail in textbooks on structural analysis. Even though
these methods are normally used for large and complex structures
requiring the solution of hundreds and sometimes thousands of simul-
taneous equations, they still are based upon the concepts described
previously, that is, equilibrium equations, compatibility equations, and
force-displacement relations.*

The following two examples illustrate the methodology for
analyzing statically indeterminate structures consisting of axially
loaded members.

*From a historical viewpoint, it appears that Euler in 1774 was the first to analyze a
statically indeterminate system; he considered the problem of a rigid table with four legs
supported on an elastic foundation (Refs. 2-2 and 2-3). The next work was done by the
French mathematician and engineer L. M. H. Navier, who in 1825 pointed out that
statically indeterminate reactions could be found only by taking into account the elasticity
of the structure (Ref. 2-4). Navier solved statically indeterminate trusses and beams.

Copyright 2004 Thomson Learning, Inc. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



SECTION 2.4 Statically Indeterminate Structures 87

Example 2-5

@)

FIG. 2-17 Example 2-5. Analysis of a
statically indeterminate structure

A solid circular steel cylinder S is encased in a hollow circular copper tube C
(Figs. 2-17a and b). The cylinder and tube are compressed between the rigid
plates of a testing machine by compressive forces P. The steel cylinder has
cross-sectional area As and modulus of elasticity Eg, the copper tube has area A,
and modulus E., and both parts have length L.

Determine the following quantities: (a) the compressive forces P in the
steel cylinder and P. in the copper tube; (b) the corresponding compressive
stresses a5 and og; and (c) the shortening 6 of the assembly.

R
—
R
—_— P
P —
Ac
A L 1
L
[ =1
%(—/
_ R
©)
“ n — (d)
(c)

Solution

(a) Compressive forces in the steel cylinder and copper tube. We begin by
removing the upper plate of the assembly in order to expose the compressive
forces P and P, acting on the steel cylinder and copper tube, respectively (Fig.
2-17c). The force Py is the resultant of the uniformly distributed stresses acting
over the cross section of the steel cylinder, and the force P, is the resultant of
the stresses acting over the cross section of the copper tube.

Equation of equilibrium. A free-body diagram of the upper plate is shown
in Fig. 2-17d. This plate is subjected to the force P and to the unknown
compressive forces P and P, ; thus, the equation of equilibrium is

ZFvertzo Ps+P.—P=0 (f)

This equation, which is the only nontrivial equilibrium equation available,
contains two unknowns. Therefore, we conclude that the structure is statically
indeterminate.

continued

Copyright 2004 Thomson Learning, Inc. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



88 CHAPTER 2 Axially Loaded Members

@)

FIG. 2-17 (Repeated)

(b)

©

Equation of compatibility. Because the end plates are rigid, the steel
cylinder and copper tube must shorten by the same amount. Denoting the short-
enings of the steel and copper parts by & and &, respectively, we obtain the
following equation of compatibility:

5 =6, (9)

Force-displacement relations. The changes in lengths of the cylinder and
tube can be obtained from the general equation § = PL/EA. Therefore, in this
example the force-displacement relations are

PsL P.L
== 6. =

EsAs EcA
Solution of equations. We now solve simultaneously the three sets of equa-

tions. First, we substitute the force-displacement relations in the equation of
compatibility, which gives

&

(h.i)

PiL _ Pl
EsAs  Ec

This equation expresses the compatibility condition in terms of the unknown
forces.

Next, we solve simultaneously the equation of equilibrium (Eq. f) and the
preceding equation of compatibility (Eq. j) and obtain the axial forces in the
steel cylinder and copper tube:

EsA E.A
Po=Pl————— Pe=Pl—————| (2-1lab) <=
EoAs + EcA, EoAs + EcA,

0)
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These equations show that the compressive forces in the steel and copper parts
are directly proportional to their respective axial rigidities and inversely propor-
tional to the sum of their rigidities.

(b) Compressive stresses in the steel cylinder and copper tube. Knowing the
axial forces, we can now obtain the compressive stresses in the two materials:

P PE P PE
gg=—2=—"— o.=—%=—"S5— (2-12ah) <=m

A EATEA Ao EA T EA
Note that the ratio o3/o; of the stresses is equal to the ratio E¢/E. of the moduli
of elasticity, showing that in general the “stiffer” material always has the larger
stress.

(c) Shortening of the assembly. The shortening & of the entire assembly can
be obtained from either Eq. (h) or Eq. (i). Thus, upon substituting the forces
(from Egs. 2-11a and b), we get

_PsL _ P.L PL

5= = =
Es A E: A EsAs + Ec Ac

(2-13) <=

This result shows that the shortening of the assembly is equal to the total load
divided by the sum of the stiffnesses of the two parts (recall from Eq. 2-4a that
the stiffness of an axially loaded bar is k = EA/L).

Alternative solution of the equations. Instead of substituting the force-
displacement relations (Egs. h and i) into the equation of compatibility, we
could rewrite those relations in the form

E; A E.A
= SLSSS P.= chac k1)

Ps
and substitute them into the equation of equilibrium (Eq. f):

EJA
L

E A

Ss + 6.=P (m)

This equation expresses the equilibrium condition in terms of the unknown
displacements. Then we solve simultaneously the equation of compatibility
(Eq. g) and the preceding equation, thus obtaining the displacements:

PL
o= 8, =— b
ST % T E A+ EA ()

which agrees with Eq. (2-13). Finally, we substitute expression (n) into Egs. (k)
and (1) and obtain the compressive forces P and P, (see Egs. 2-11a and b).

Note: The alternative method of solving the equations is a simplified
version of the stiffness (or displacement) method of analysis, and the first
method of solving the equations is a simplified version of the flexibility (or
force) method. The names of these two methods arise from the fact that Eq. (m)
has displacements as unknowns and stiffnesses as coefficients (see Eq. 2-4a),
whereas Eq. (j) has forces as unknowns and flexibilities as coefficients (see
Eq. 2-4b).
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Example 2-6

A horizontal rigid bar AB is pinned at end A and supported by two wires (CD and
EF) at points D and F (Fig. 2-18a). A vertical load P acts at end B of the bar. The
bar has length 3b and wires CD and EF have lengths L, and L, respectively.
Also, wire CD has diameter d; and modulus of elasticity E;; wire EF has
diameter d, and modulus E..

(a) Obtain formulas for the allowable load P if the allowable stresses in
wires CD and EF, respectively, are o and o». (Disregard the weight of the bar
itself.)

(b) Calculate the allowable load P for the following conditions: Wire CD is
made of aluminum with modulus E, = 72 GPa, diameter d, = 4.0 mm, and
length L, = 0.40 m. Wire EF is made of magnesium with modulus E, = 45
GPa, diameter d, = 3.0 mm, and length L, = 0.30 m. The allowable stresses in
the aluminum and magnesium wires are o = 200 MPa and o, = 175 MPa,
respectively.

B
L
A D F 5 B
(0] (J— —L Q@ RV P
‘ (b)
| b b b
VP A D F B
@) 8
2
FIG. 2-18 Example 2-6. Analysis of a B’
statically indeterminate structure (c)
Solution

Equation of equilibrium. We begin the analysis by drawing a free-body
diagram of bar AB (Fig. 2-18b). In this diagram T, and T, are the unknown
tensile forces in the wires and Ry and Ry are the horizontal and vertical
components of the reaction at the support. We see immediately that the structure
is statically indeterminate because there are four unknown forces (T,, T,, Ry,
and Ry) but only three independent equations of equilibrium.

Taking moments about point A (with counterclockwise moments being
positive) yields

The other two equations, obtained by summing forces in the horizontal direction
and summing forces in the vertical direction, are of no benefit in finding T,
and T,.

Equation of compatibility. To obtain an equation pertaining to the
displacements, we observe that the load P causes bar AB to rotate about the pin
support at A, thereby stretching the wires. The resulting displacements are
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SECTION 2.4 Statically Indeterminate Structures 91

shown in the displacement diagram of Fig. 2-18c, where line AB represents the
original position of the rigid bar and line AB’ represents the rotated position.
The displacements 8, and &, are the elongations of the wires. Because these
displacements are very small, the bar rotates through a very small angle (shown
highly exaggerated in the figure) and we can make calculations on the assumption
that points D, F, and B move vertically downward (instead of moving along the
arcs of circles).

Because the horizontal distances AD and DF are equal, we obtain the
following geometric relationship between the elongations:

02 =28, (p)

Equation (p) is the equation of compatibility.
Force-displacement relations. Since the wires behave in a linearly elastic
manner, their elongations can be expressed in terms of the unknown forces T,

and T, by means of the following expressions:

Tl ToL,

0= —— 2= ¢ A
EiA E2A;

in which A, and A, are the cross-sectional areas of wires CD and EF, respec-
tively; that is,

wd3 wd3
Aj=-"—1 A =""2
Ty S

For convenience in writing equations, let us introduce the following
notation for the flexibilities of the wires (see Eq. 2-4b):

Ly f L,

f. = = ‘
1 E A 2 E,A, (a.n)
Then the force-displacement relations become
6, ="MT, 0, =T, (s.H)

Solution of equations. We now solve simultaneously the three sets of
equations (equilibrium, compatibility, and force-displacement equations).
Substituting the expressions from Egs. (s) and (t) into the equation of compatibility
(Eq. p) gives

f2T2 = ZflTl (u)
The equation of equilibrium (Eg. o) and the preceding equation (Eq. u) each

contain the forces T, and T, as unknown quantities. Solving those two equations
simultaneously yields
3f,P 6f,P

T, = T, =
YT A+, 2 af+ (vw)

Knowing the forces T, and T,, we can easily find the elongations of the wires
from the force-displacement relations.

continued
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(a) Allowable load P. Now that the statically indeterminate analysis is
completed and the forces in the wires are known, we can determine the permis-
sible value of the load P. The stress o in wire CD and the stress o» in wire EF
are readily obtained from the forces (Egs. v and w):

T1 3P f, T, 6P f;
o =-Lr=""(_2 o, = 2= (_1
PUAL A 4+ 2TA A \4f + 1,
From the first of these equations we solve for the permissible force P, based
upon the allowable stress gj in wire CD:
a1 A (4h + 1)
3f,

Similarly, from the second equation we get the permissible force P, based
upon the allowable stress o in wire EF:

P, = (2-14a) <=

gy A (41 + 1)

P, =
2 6f,

(2-14b) ==

The smaller of these two loads is the maximum allowable load P o
(b) Numerical calculations for the allowable load. Using the given data
and the preceding equations, we obtain the following numerical values:

7d? (4.0 mm)?

A== 7 = 12.57 mm?
2 2
A, = 77:'2 - 77(3.04mm) = 7.069 mm?
L, 0.40 m -6
£ _ = 0.4420 X 10~® m/N
Y7 EiA; (72 GPa)(12.57 mm?)
fote _ 0.30m = 0.9431 X10™° m/N

"~ E,A; (45 GPa)(7.069 mm?)
Also, the allowable stresses are
oy, = 200 MPa o, =175 MPa
Therefore, substituting into Egs. (2-14a and b) gives
P, =241kN P, =1.26kN

The first result is based upon the allowable stress o in the aluminum wire and
the second is based upon the allowable stress o in the magnesium wire. The
allowable load is the smaller of the two values:

Pa||ow = 1.26 kN -

At this load the stress in the magnesium is 175 MPa (the allowable stress) and
the stress in the aluminum is (1.26/2.41)(200 MPa) = 105 MPa. As expected,
this stress is less than the allowable stress of 200 MPa.
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2.5 THERMAL EFFECTS, MISFITS, AND PRESTRAINS

A

FIG. 2-19 Block of material subjected to
an increase in temperature

External loads are not the only sources of stresses and strains in a structure.
Other sources include thermal effects arising from temperature changes,
misfits resulting from imperfections in construction, and prestrains that
are produced by initial deformations. Still other causes are settlements
(or movements) of supports, inertial loads resulting from accelerating
motion, and natural phenomenon such as earthquakes.

Thermal effects, misfits, and prestrains are commonly found in both
mechanical and structural systems and are described in this section. As a
general rule, they are much more important in the design of statically
indeterminate structures that in statically determinate ones.

Thermal Effects

Changes in temperature produce expansion or contraction of structural
materials, resulting in thermal strains and thermal stresses. A simple
illustration of thermal expansion is shown in Fig. 2-19, where the block
of material is unrestrained and therefore free to expand. When the block
is heated, every element of the material undergoes thermal strains in all
directions, and consequently the dimensions of the block increase. If we
take corner A as a fixed reference point and let side AB maintain its original
alignment, the block will have the shape shown by the dashed lines.

For most structural materials, thermal strain er is proportional to the
temperature change AT; that is,

€r = a(AT) (2-15)

in which « is a property of the material called the coefficient of thermal
expansion. Since strain is a dimensionless quantity, the coefficient of
thermal expansion has units equal to the reciprocal of temperature
change. In SI units the dimensions of « can be expressed as either 1/K
(the reciprocal of kelvins) or 1/°C (the reciprocal of degrees Celsius).
The value of « is the same in both cases because a change in temperature
is numerically the same in both kelvins and degrees Celsius. In USCS
units, the dimensions of « are 1/°F (the reciprocal of degrees Fahrenheit).*
Typical values of « are listed in Table H-4 of Appendix H.

When a sign convention is needed for thermal strains, we usually
assume that expansion is positive and contraction is negative.

To demonstrate the relative importance of thermal strains, we will
compare thermal strains with load-induced strains in the following
manner. Suppose we have an axially loaded bar with longitudinal strains

*For a discussion of temperature units and scales, see Section A.4 of Appendix A.
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}\L
\

AT

o

FIG. 2-20 Increase in length of a
prismatic bar due to a uniform increase
in temperature (Eq. 2-16)

given by the equation € = o/E, where o is the stress and E is the
modulus of elasticity. Then suppose we have an identical bar subjected
to a temperature change AT, which means that the bar has thermal
strains given by Eq. (2-15). Equating the two strains gives the equation

o = Ea(AT)

From this equation we can calculate the axial stress ¢ that produces the
same strain as does the temperature change AT. For instance, consider a
stainless steel bar with E = 30 X 10° psi and @ = 9.6 X 10 °°F. A
quick calculation from the preceding equation for o- shows that a change
in temperature of 100°F produces the same strain as a stress of 29,000
psi. This stress is in the range of typical allowable stresses for stainless
steel. Thus, a relatively modest change in temperature produces strains
of the same magnitude as the strains caused by ordinary loads, which
shows that temperature effects can be important in engineering design.

Ordinary structural materials expand when heated and contract
when cooled, and therefore an increase in temperature produces a positive
thermal strain. Thermal strains usually are reversible, in the sense that
the member returns to its original shape when its temperature returns to
the original value. However, a few special metallic alloys have recently
been developed that do not behave in the customary manner. Instead,
over certain temperature ranges their dimensions decrease when heated
and increase when cooled.

Water is also an unusual material from a thermal standpoint—it
expands when heated at temperatures above 4°C and also expands when
cooled below 4°C. Thus, water has its maximum density at 4° C.

Now let us return to the block of material shown in Fig. 2-19. We
assume that the material is homogeneous and isotropic and that the
temperature increase AT is uniform throughout the block. We can calculate
the increase in any dimension of the block by multiplying the original
dimension by the thermal strain. For instance, if one of the dimensions
is L, then that dimension will increase by the amount

5t = erL = a(AT)L (2-16)

Equation (2-16) is a temperature-displacement relation, analogous to
the force-displacement relations described in the preceding section. It
can be used to calculate changes in lengths of structural members
subjected to uniform temperature changes, such as the elongation &; of
the prismatic bar shown in Fig. 2-20. (The transverse dimensions of the
bar also change, but these changes are not shown in the figure since they
usually have no effect on the axial forces being transmitted by the bar.)
In the preceding discussions of thermal strains, we assumed that the
structure had no restraints and was able to expand or contract freely.
These conditions exist when an object rests on a frictionless surface or
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FIG. 2-21 Statically determinate truss
with a uniform temperature change in
each member

FIG. 2-22 Statically indeterminate truss
subjected to temperature changes

SECTION 2.5 Thermal Effects, Misfits, and Prestrains 95

hangs in open space. In such cases no stresses are produced by a
uniform temperature change throughout the object, although nonuniform
temperature changes may produce internal stresses. However, many
structures have supports that prevent free expansion and contraction, in
which case thermal stresses will develop even when the temperature
change is uniform throughout the structure.

To illustrate some of these ideas about thermal effects, consider the
two-bar truss ABC of Fig. 2-21 and assume that the temperature of bar
AB is changed by AT, and the temperature of bar BC is changed by AT,.
Because the truss is statically determinate, both bars are free to lengthen
or shorten, resulting in a displacement of joint B. However, there are no
stresses in either bar and no reactions at the supports. This conclusion
applies generally to statically determinate structures; that is, uniform
temperature changes in the members produce thermal strains (and the
corresponding changes in lengths) without producing any corresponding
stresses.

B 9 C
Ale o/D
QOO

A statically indeterminate structure may or may not develop
temperature stresses, depending upon the character of the structure and
the nature of the temperature changes. To illustrate some of the possibilities,
consider the statically indeterminate truss shown in Fig. 2-22. Because
the supports of this structure permit joint D to move horizontally, no
stresses are developed when the entire truss is heated uniformly. All
members increase in length in proportion to their original lengths, and
the truss becomes slightly larger in size.

However, if some bars are heated and others are not, thermal
stresses will develop because the statically indeterminate arrangement
of the bars prevents free expansion. To visualize this condition, imagine
that just one bar is heated. As this bar becomes longer, it meets
resistance from the other bars, and therefore stresses develop in all
members.

The analysis of a statically indeterminate structure with temperature
changes is based upon the concepts discussed in the preceding section,
namely equilibrium equations, compatibility equations, and displacement
relations. The principal difference is that we now use temperature-
displacement relations (Eq. 2-16) in addition to force-displacement
relations (such as 6 = PL/EA) when performing the analysis. The
following two examples illustrate the procedures in detail.
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Example 2-7

FIG.2-23 Example 2-7. Statically
indeterminate bar with uniform
temperature increase AT

A prismatic bar AB of length L is held between immovable supports (Fig. 2-23a).
If the temperature of the bar is raised uniformly by an amount AT, what thermal
stress o is developed in the bar? (Assume that the bar is made of linearly

elastic material.)
iRA l
-

AT L AT

f

@) (b) (©

Solution

Because the temperature increases, the bar tends to elongate but is restrained
by the rigid supports at A and B. Therefore, reactions R, and Rg are developed at
the supports, and the bar is subjected to uniform compressive stresses.

Equation of equilibrium. The only forces acting on the bar are the reactions
shown in Fig. 2-23a. Therefore, equilibrium of forces in the vertical direction
gives

> Fyerr =0 Re —Ra=0 @

Since this is the only nontrivial equation of equilibrium, and since it contains
two unknowns, we see that the structure is statically indeterminate and an addi-
tional equation is needed.

Equation of compatibility. The equation of compatibility expresses the fact
that the change in length of the bar is zero (because the supports do not move):

Sag =0 (b)

To determine this change in length, we remove the upper support of the bar and
obtain a bar that is fixed at the base and free to displace at the upper end (Figs.
2-23b and c¢). When only the temperature change is acting (Fig. 2-23b), the bar
elongates by an amount &1, and when only the reaction R, is acting, the bar
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shortens by an amount &g (Fig. 2-23c). Thus, the net change in length is Spg =
&1 — &g, and the equation of compatibility becomes

o =01 —0r=0 (©

Displacement relations. The increase in length of the bar due to the
temperature change is given by the temperature-displacement relation (Eq.
2-16):

81 = a(AT)L (d)

in which « is the coefficient of thermal expansion. The decrease in length due to
the force R, is given by the force-displacement relation:

RaL
Sg = A= e
R™EA (©)

in which E is the modulus of elasticity and A is the cross-sectional area.
Solution of equations. Substituting the displacement relations (d) and (e)
into the equation of compatibility (Eq. ) gives the following equation:

RaL
81— 8r = o(AT)L — —2= = f
T 8= alATIL ~ 25 =0 0)

We now solve simultaneously the preceding equation and the equation of equi-
librium (Eq. a) for the reactions R, and Rg:

Ra = Rg = EAa(AT) (2-17)
From these results we obtain the thermal stress o+ in the bar:

Ra_Re

=2 =Ea(AT) (2-18) <=

T —

This stress is compressive when the temperature of the bar increases.

Note 1: In this example the reactions are independent of the length of the
bar and the stress is independent of both the length and the cross-sectional area
(see Egs. 2-17 and 2-18). Thus, once again we see the usefulness of a symbolic
solution, because these important features of the bar’s behavior might not be
noticed in a purely numerical solution.

Note 2: When determining the thermal elongation of the bar (Eq. d), we
assumed that the material was homogeneous and that the increase in tempera-
ture was uniform throughout the volume of the bar. Also, when determining the
decrease in length due to the reactive force (Eqg. e), we assumed linearly elastic
behavior of the material. These limitations should always be kept in mind when
writing equations such as Egs. (d) and (e).

Note 3: The bar in this example has zero longitudinal displacements, not
only at the fixed ends but also at every cross section. Thus, there are no axial
strains in this bar, and we have the special situation of longitudinal stresses
without longitudinal strains. Of course, there are transverse strains in the bar,
from both the temperature change and the axial compression.
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Example 2-8

FIG. 2-24 Example 2-8. Sleeve and bolt
assembly with uniform temperature
increase AT

A sleeve in the form of a circular tube of length L is placed around a bolt and
fitted between washers at each end (Fig. 2-24a). The nut is then turned until it is
just snug. The sleeve and bolt are made of different materials and have different
cross-sectional areas. (Assume that the coefficient of thermal expansion as of
the sleeve is greater than the coefficient ag of the bolt.)

(a) If the temperature of the entire assembly is raised by an amount AT,
what stresses o and op are developed in the sleeve and bolt, respectively?

(b) What is the increase & in the length L of the sleeve and bolt?

Nut Washer Sleeve Bolt head

[
MMM Bolt
[

(@ 1 L
? |
1 :
i 5,
|
| %2, |
|
: AT

WMMR@WM

[
i ; |
! |

® oo |
| | !
| SEERY
|
|
|
|
|
|
[
[

‘_
WMM@ —> Pg (R
‘_
(c)
Solution

Because the sleeve and bolt are of different materials, they will elongate by
different amounts when heated and allowed to expand freely. However, when
they are held together by the assembly, free expansion cannot occur and thermal
stresses are developed in both materials. To find these stresses, we use the same
concepts as in any statically indeterminate analysis—equilibrium equations,
compatibility equations, and displacement relations. However, we cannot
formulate these equations until we disassemble the structure.

A simple way to cut the structure is to remove the head of the bolt, thereby
allowing the sleeve and bolt to expand freely under the temperature change AT
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(Fig. 2-24b). The resulting elongations of the sleeve and bolt are denoted &, and
8-, respectively, and the corresponding temperature-displacement relations are

8 = as(AT)L &2 = ag(AT)L (9.h)

Since as is greater than ag, the elongation &, is greater than &, as shown in
Fig. 2-24b.

The axial forces in the sleeve and bolt must be such that they shorten the
sleeve and stretch the bolt until the final lengths of the sleeve and bolt are the
same. These forces are shown in Fig. 2-24c, where Pg denotes the compressive
force in the sleeve and Py denotes the tensile force in the bolt. The correspon-
ding shortening &5 of the sleeve and elongation &, of the bolt are

- IS 5= o (i
SEAN] B AB
in which EsAs and Eg Ag are the respective axial rigidities. Equations (i) and (j)
are the load-displacement relations.

Now we can write an equation of compatibility expressing the fact that the
final elongation & is the same for both the sleeve and bolt. The elongation of the
sleeve is §; — &5 and of the bolt is 8, + &,; therefore,

83

5:81753:52“”64 (k)

Substituting the temperature-displacement and load-displacement relations
(Egs. g to j) into this equation gives

PsL PsL
6= as(AT)L — = ag(AT)L + |
as(ATIL — 2 = as(AT)L + 20 0
from which we get
PsL PgL
+ = ag(AT)L — ap(AT)L m
Ea T Eoa - @sATIL — as(AT) (m)

which is a modified form of the compatibility equation. Note that it contains the
forces Pg and Pg as unknowns.

An equation of equilibrium is obtained from Fig. 2-24c, which is a free-
body diagram of the part of the assembly remaining after the head of the bolt is
removed. Summing forces in the horizontal direction gives

Ps = Pg (n)

which expresses the obvious fact that the compressive force in the sleeve is
equal to the tensile force in the bolt.

We now solve simultaneously Egs. (m) and (n) and obtain the axial forces
in the sleeve and bolt:

(as — ag)(AT)EsAsEgAg
EsAs + EgAg

PS = PB = (2_19)

continued
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When deriving this equation, we assumed that the temperature increased and
that the coefficient ag was greater than the coefficient ag. Under these conditions,
Ps is the compressive force in the sleeve and Py is the tensile force in the bolt.

The results will be quite different if the temperature increases but the
coefficient as is less than the coefficient ag. Under these conditions, a gap will
open between the bolt head and the sleeve and there will be no stresses in either
part of the assembly.

(a) Stresses in the sleeve and bolt. Expressions for the stresses o5 and o in
the sleeve and bolt, respectively, are obtained by dividing the corresponding
forces by the appropriate areas:

Ps  (as — ag)(AT)EsEg Ag

== = - <=
77 A EAs + EgAg (2-202)

_ Pg _ (as — ag)(AT)EsAsEg
78 A EsAs + EsAs (2-20p) =

Under the assumed conditions, the stress os in the sleeve is compressive and the
stress og in the bolt is tensile. It is interesting to note that these stresses are
independent of the length of the assembly and their magnitudes are inversely
proportional to their respective areas (that is, os/og = Ag/Ag).

(b) Increase in length of the sleeve and bolt. The elongation & of the
assembly can be found by substituting either Ps or Pg from Eg. (2-19) into Eq.

(1), yielding

_ (a’sEsAS + apg EBAB)(AT)L

s
EsAs + EgAg

(2-21) <=

With the preceding formulas available, we can readily calculate the forces,
stresses, and displacements of the assembly for any given set of numerical data.
Note: As a partial check on the results, we can see if Egs. (2-19), (2-20),
and (2-21) reduce to known values in simplified cases. For instance, suppose
that the bolt is rigid and therefore unaffected by temperature changes. We can
represent this situation by setting ag = 0 and letting Eg become infinitely large,
thereby creating an assembly in which the sleeve is held between rigid supports.
Substituting these values into Egs. (2-19), (2-20), and (2-21), we find

PS = EsASas(AT) Og — Esas(AT) 6= O

These results agree with those of Example 2-7 for a bar held between rigid
supports (compare with Egs. 2-17 and 2-18, and with Eq. b).

As a second special case, suppose that the sleeve and bolt are made of the
same material. Then both parts will expand freely and will lengthen the same
amount when the temperature changes. No forces or stresses will be developed.
To see if the derived equations predict this behavior, we substitute as = ag = «
into Egs. (2-19), (2-20), and (2-21) and obtain

PSZPB:O O'S:(TB:O 5=a(AT)L

which are the expected results.
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FIG. 2-25 Statically determinate structure
with a small misfit
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FIG.2-26 Statically indeterminate
structure with a small misfit
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Misfits and Prestrains

Suppose that a member of a structure is manufactured with its length
slightly different from its prescribed length. Then the member will not
fit into the structure in its intended manner, and the geometry of the
structure will be different from what was planned. We refer to situations
of this kind as misfits. Sometimes misfits are intentionally created in
order to introduce strains into the structure at the time it is built.
Because these strains exist before any loads are applied to the structure,
they are called prestrains. Accompanying the prestrains are prestresses,
and the structure is said to be prestressed. Common examples of
prestressing are spokes in bicycle wheels (which would collapse if not
prestressed), the pretensioned faces of tennis racquets, shrink-fitted
machine parts, and prestressed concrete beams.

If a structure is statically determinate, small misfits in one or more
members will not produce strains or stresses, although there will be
departures from the theoretical configuration of the structure. To illustrate
this statement, consider a simple structure consisting of a horizontal
beam AB supported by a vertical bar CD (Fig. 2-25a). If bar CD has
exactly the correct length L, the beam will be horizontal at the time the
structure is built. However, if the bar is slightly longer than intended, the
beam will make a small angle with the horizontal. Nevertheless, there
will be no strains or stresses in either the bar or the beam attributable to
the incorrect length of the bar. Furthermore, if a load P acts at the end of
the beam (Fig. 2-25b), the stresses in the structure due to that load will
be unaffected by the incorrect length of bar CD.

In general, if a structure is statically determinate, the presence of
small misfits will produce small changes in geometry but no strains or
stresses. Thus, the effects of a misfit are similar to those of a temperature
change.

The situation is quite different if the structure is statically indeter-
minate, because then the structure is not free to adjust to misfits (just as
it is not free to adjust to certain kinds of temperature changes). To show
this, consider a beam supported by two vertical bars (Fig. 2-26a). If both
bars have exactly the correct length L, the structure can be assembled
with no strains or stresses and the beam will be horizontal.

Suppose, however, that bar CD is slightly longer than the prescribed
length. Then, in order to assemble the structure, bar CD must be
compressed by external forces (or bar EF stretched by external forces),
the bars must be fitted into place, and then the external forces must be
released. As a result, the beam will deform and rotate, bar CD will be in
compression, and bar EF will be in tension. In other words, prestrains
will exist in all members and the structure will be prestressed, even
though no external loads are acting. If a load P is now added (Fig. 2-26b),
additional strains and stresses will be produced.

The analysis of a statically indeterminate structure with misfits and
prestrains proceeds in the same general manner as described previously
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FIG. 2-27 The pitch of the threads is the
distance from one thread to the next

FIG. 2-28 Double-acting turnbuckle.
(Each full turn of the turnbuckle

for loads and temperature changes. The basic ingredients of the analysis
are equations of equilibrium, equations of compatibility, force-displacement
relations, and (if appropriate) temperature-displacement relations. The
methodology is illustrated in Example 2-9.

Bolts and Turnbuckles

Prestressing a structure requires that one or more parts of the structure
be stretched or compressed from their theoretical lengths. A simple way
to produce a change in length is to tighten a bolt or a turnbuckle. In the
case of a bolt (Fig. 2-27) each turn of the nut will cause the nut to travel
along the bolt a distance equal to the spacing p of the threads (called the
pitch of the threads). Thus, the distance & traveled by the nut is

éo=np (2-22)

in which n is the number of revolutions of the nut (not necessarily an
integer). Depending upon how the structure is arranged, turning the nut
can stretch or compress a member.

—{fp

In the case of a double-acting turnbuckle (Fig. 2-28), there are two
end screws. Because a right-hand thread is used at one end and a left-
hand thread at the other, the device either lengthens or shortens when
the buckle is rotated. Each full turn of the buckle causes it to travel a
distance p along each screw, where again p is the pitch of the threads.
Therefore, if the turnbuckle is tightened by one turn, the screws are
drawn closer together by a distance 2p and the effect is to shorten the
device by 2p. For n turns, we have

é=2np (2-23)
Turnbuckles are often inserted in cables and then tightened, thus

creating initial tension in the cables, as illustrated in the following
example.

shortens or lengthens the cable by 2p, = p
where p is the pitch of the screw - @mmmwwm. (ommm -&\\\\\\\\\\\\\\\\\\\\\\\\\\Y@ —_—
threads.)
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Example 2-9

FIG. 2-29 Example 2-9. Statically
indeterminate assembly with a copper
tube in compression and two steel cables
in tension

@)

The mechanical assembly shown in Fig. 2-29a consists of a copper tube, a rigid
end plate, and two steel cables with turnbuckles. The slack is removed from the
cables by rotating the turnbuckles until the assembly is snug but with no initial
stresses. (Further tightening of the turnbuckles will produce a prestressed
condition in which the cables are in tension and the tube is in compression.)

(a) Determine the forces in the tube and cables (Fig. 2-29a) when the turn-
buckles are tightened by n turns.

(b) Determine the shortening of the tube.

Rigid
Copper tube Steel cable /Turnbuckle /pllagt:e
o | & 9
| L |
A —f 5
(G-
(b) ‘
) >
2
— 6
N S F P,
© [p—
— &2 > P
Solution

We begin the analysis by removing the plate at the right-hand end of the
assembly so that the tube and cables are free to change in length (Fig. 2-29b).
Rotating the turnbuckles through n turns will shorten the cables by a distance

5. =2np (0)

as shown in Fig. 2-29b.

The tensile forces in the cables and the compressive force in the tube must
be such that they elongate the cables and shorten the tube until their final
lengths are the same. These forces are shown in Fig. 2-29c, where P4 denotes
the tensile force in one of the steel cables and P. denotes the compressive force
in the copper tube. The elongation of a cable due to the force Ps is

5, = PoL

“ e ®)

continued
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in which EsAs is the axial rigidity and L is the length of a cable. Also, the
compressive force P, in the copper tube causes it to shorten by

P.L
8y = —°—
T EA

in which E.A. is the axial rigidity of the tube. Equations (p) and (q) are the
load-displacement relations.

The final shortening of one of the cables is equal to the shortening &;
caused by rotating the turnbuckle minus the elongation &, caused by the force
Ps. This final shortening of the cable must equal the shortening &5 of the tube:

(@

0, — 02 = 03 0]

which is the equation of compatibility.
Substituting the turnbuckle relation (Eg. o) and the load-displacement
relations (Egs. p and ) into the preceding equation yields

PsL  PcL
PTEA T EA ©
or
PsL P.L
—+ =
en T EA P ®

which is a modified form of the compatibility equation. Note that it contains P
and P, as unknowns.

From Fig. 2-29c, which is a free-body diagram of the assembly with the
end plate removed, we obtain the following equation of equilibrium:

2Ps = P, (u)

(a) Forces in the cables and tube. Now we solve simultaneously Egs. (t)
and (u) and obtain the axial forces in the steel cables and copper tube,
respectively:

2npE. A Ec A AnpE A Es A
Ps = P, = 2-24a,bh) <=m
® L(E.Ac + 2EAy) © L(EcAc + 2EA,) ( )

Recall that the forces P are tensile forces and the force P, is compressive. If
desired, the stresses o5 and o in the steel and copper can now be obtained by
dividing the forces P and P. by the cross-sectional areas A and A, respectively.

(b) Shortening of the tube. The decrease in length of the tube is the quan-
tity 85 (see Fig. 2-29 and Eq. q):

5. — Pl 4npEAs
*TUEA EA+2EA

(2-25) <=

With the preceding formulas available, we can readily calculate the forces,
stresses, and displacements of the assembly for any given set of numerical data.
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2.6 STRESSES ON INCLINED SECTIONS

FIG. 2-30 Prismatic bar in tension
showing the stresses acting on cross
section mn: (a) bar with axial forces P,
(b) three-dimensional view of the cut
bar showing the normal stresses, and
(c) two-dimensional view

In our previous discussions of tension and compression in axially loaded
members, the only stresses we considered were the normal stresses
acting on cross sections. These stresses are pictured in Fig. 2-30, where
we consider a bar AB subjected to axial loads P.

When the bar is cut at an intermediate cross section by a plane mn
(perpendicular to the x axis), we obtain the free-body diagram shown in
Fig. 2-30b. The normal stresses acting over the cut section may be
calculated from the formula o, = P/A provided that the stress distribu-
tion is uniform over the entire cross-sectional area A. As explained in
Chapter 1, this condition exists if the bar is prismatic, the material is
homogeneous, the axial force P acts at the centroid of the cross-
sectional area, and the cross section is away from any localized stress
concentrations. Of course, there are no shear stresses acting on the cut
section, because it is perpendicular to the longitudinal axis of the bar.

For convenience, we usually show the stresses in a two-dimensional
view of the bar (Fig. 2-30c) rather than the more complex three-
dimensional view (Fig. 2-30b). However, when working with

|
2 X | —_
A = B
(a)
y
/{ e
P L =P
4—/“1 ************ x — XTA
I
(b)
y
m
P
e B of
A n
(©)
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FIG. 2-31 Stress element at point C of the
axially loaded bar shown in Fig. 2-30c:
(a) three-dimensional view of the
element, and (b) two-dimensional view
of the element

two-dimensional figures we must not forget that the bar has a thickness
perpendicular to the plane of the figure. This third dimension must be
considered when making derivations and calculations.

Stress Elements

The most useful way of representing the stresses in the bar of Fig. 2-30
is to isolate a small element of material, such as the element labeled C in
Fig. 2-30c, and then show the stresses acting on all faces of this element.
An element of this kind is called a stress element. The stress element at
point C is a small rectangular block (it doesn’t matter whether it is a
cube or a rectangular parallelepiped) with its right-hand face lying in
Cross section mn.

The dimensions of a stress element are assumed to be infinitesi-
mally small, but for clarity we draw the element to a large scale, as in
Fig. 2-31a. In this case, the edges of the element are parallel to the x, vy,
and z axes, and the only stresses are the normal stresses o acting on the
x faces (recall that the x faces have their normals parallel to the x axis).
Because it is more convenient, we usually draw a two-dimensional view
of the element (Fig. 2-31b) instead of a three-dimensional view.

Stresses on Inclined Sections

The stress element of Fig. 2-31 provides only a limited view of the
stresses in an axially loaded bar. To obtain a more complete picture, we
need to investigate the stresses acting on inclined sections, such as the
section cut by the inclined plane pq in Fig. 2-32a. Because the stresses
are the same throughout the entire bar, the stresses acting over the
inclined section must be uniformly distributed, as pictured in the free-
body diagrams of Fig. 2-32b (three-dimensional view) and Fig. 2-32¢
(two-dimensional view). From the equilibrium of the free body we know
that the resultant of the stresses must be a horizontal force P. (The resul-
tant is drawn with a dashed line in Figs. 2-32b and 2-32c.)

gy =

|
l

>|T
2
1]

>|T

/

z

@) (b)
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FIG. 2-32 Prismatic bar in tension
showing the stresses acting on an
inclined section pqg: (a) bar with axial
forces P, (b) three-dimensional view of
the cut bar showing the stresses, and
(c) two-dimensional view
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As a preliminary matter, we need a scheme for specifying the orien-
tation of the inclined section pg. A standard method is to specify the
angle @ between the x axis and the normal n to the section (see Fig.
2-33a on the next page). Thus, the angle @ for the inclined section shown
in the figure is approximately 30°. By contrast, cross section mn (Fig.
2-30a) has an angle 6 equal to zero (because the normal to the section is
the x axis). For additional examples, consider the stress element of Fig.
2-31. The angle @ for the right-hand face is 0, for the top face is 90°
(a longitudinal section of the bar), for the left-hand face is 180°, and for
the bottom face is 270° (or —90°).

Let us now return to the task of finding the stresses acting on
section pq (Fig. 2-33b). As already mentioned, the resultant of these
stresses is a force P acting in the x direction. This resultant may be
resolved into two components, a normal force N that is perpendicular to
the inclined plane pg and a shear force V that is tangential to it. These
force components are

N = P cos 6 V=Psin 6 (2-26a,b)

Associated with the forces N and V are normal and shear stresses that are
uniformly distributed over the inclined section (Figs. 2-33c and d). The
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FIG. 2-33 Prismatic bar in tension
showing the stresses acting on an
inclined section pg

@)

A
| /
A= B \q
(c)
p
- \ —
| A M
A= B \q
(d)

normal stress is equal to the normal force N divided by the area of the
section, and the shear stress is equal to the shear force V divided by the
area of the section. Thus, the stresses are

N \Y
= — =R 2-27a,b
o A T AL ( )
in which A, is the area of the inclined section, as follows:
A
A= 2-28
Y cos 6 (2-28)
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FIG. 2-34 Sign convention for stresses
acting on an inclined section. (Normal
stresses are positive when in tension and
shear stresses are positive when they
tend to produce counterclockwise
rotation.)

SECTION 2.6 Stresses on Inclined Sections 109

As usual, A represents the cross-sectional area of the bar. The stresses o
and 7 act in the directions shown in Figs. 2-33c and d, that is, in the
same directions as the normal force N and shear force V, respectively.

At this point we need to establish a standardized notation and sign
convention for stresses acting on inclined sections. We will use a
subscript @ to indicate that the stresses act on a section inclined at an
angle 6 (Fig. 2-34), just as we use a subscript x to indicate that the
stresses act on a section perpendicular to the x axis (see Fig. 2-30).
Normal stresses o, are positive in tension and shear stresses 7, are
positive when they tend to produce counterclockwise rotation of the
material, as shown in Fig. 2-34.

Ty

T / /]
P e) \

For a bar in tension, the normal force N produces positive normal
stresses oy (see Fig. 2-33c) and the shear force V produces negative
shear stresses 7, (see Fig. 2-33d). These stresses are given by the
following equations (see Egs. 2-26, 2-27, and 2-28):

N _ P Vv P .
= — = — cos?f = —— = ——sinécos #
77N T A AT A

Introducing the notation oy = P/A, in which o is the normal stress on a
cross section, and also using the trigonometric relations

cos?0 = %(1+ cos 26) sinfcos O = %(sin 26)

we get the following expressions for the normal and shear stresses:

09 = 0 C0S°H = % (1 + cos 26) (2-29a)
Ty = — 0y SiNH COSH = —%(sin 20) (2-29b)

These equations give the stresses acting on an inclined section oriented
at an angle @ to the x axis (Fig. 2-34).

It is important to recognize that Egs. (2-29a) and (2-29b) were
derived only from statics, and therefore they are independent of the
material. Thus, these equations are valid for any material, whether it
behaves linearly or nonlinearly, elastically or inelastically.
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FIG. 2-35 Graph of normal stress oy and
shear stress 7, versus angle 6 of the
inclined section (see Fig. 2-34 and

Egs. 2-29a and b)

ggOr 7y

Maximum Normal and Shear Stresses

The manner in which the stresses vary as the inclined section is cut at
various angles is shown in Fig. 2-35. The horizontal axis gives the angle
f as it varies from —90° to +90°, and the vertical axis gives the stresses
oy and 7, Note that a positive angle @ is measured counterclockwise
from the x axis (Fig. 2-34) and a negative angle is measured clockwise.

As shown on the graph, the normal stress o, equals o, when 6 = 0.
Then, as @ increases or decreases, the normal stress diminishes until at
6 = *£90° it becomes zero, because there are no normal stresses on
sections cut parallel to the longitudinal axis. The maximum normal
stress occurs at # = 0 and is

Omax = Ox (2-30)

Also, we note that when @ = *=45°, the normal stress is one-half the
maximum value.

The shear stress 7, is zero on cross sections of the bar (¢ = 0) as
well as on longitudinal sections (6 = *=90°). Between these extremes,
the stress varies as shown on the graph, reaching the largest positive
value when 6 = —45° and the largest negative value when § = +45°,
These maximum shear stresses have the same magnitude:

v = (2-31)
but they tend to rotate the element in opposite directions.

The maximum stresses in a bar in tension are shown in Fig. 2-36.
Two stress elements are selected—element A is oriented at 6 = 0° and
element B is oriented at # = 45°. Element A has the maximum normal
stresses (Eq. 2-30) and element B has the maximum shear stresses (Eqg.
2-31). In the case of element A (Fig. 2-36b), the only stresses are the
maximum normal stresses (no shear stresses exist on any of the faces).
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FIG.2-36 Normal and shear stresses
acting on stress elements oriented at
0 = 0° and 6 = 45° for a bar in tension
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In the case of element B (Fig. 2-36¢), both normal and shear stresses
act on all faces (except, of course, the front and rear faces of the
element). Consider, for instance, the face at 45° (the upper right-hand
face). On this face the normal and shear stresses (from Egs. 2-29a and b)
are oy/2 and —oy /2, respectively. Hence, the normal stress is tension
(positive) and the shear stress acts clockwise (negative) against the
element. The stresses on the remaining faces are obtained in a similar
manner by substituting # = 135°, —45°, and —135° into Egs. (2-29a
and b).

Thus, in this special case of an element oriented at & = 45°, the
normal stresses on all four faces are the same (equal to o,/2) and all four
shear stresses have the maximum magnitude (equal to o,/2). Also, note
that the shear stresses acting on perpendicular planes are equal in magni-
tude and have directions either toward, or away from, the line of
intersection of the planes, as discussed in detail in Section 1.6.

If a bar is loaded in compression instead of tension, the stress oy
will be compression and will have a negative value. Consequently, all
stresses acting on stress elements will have directions opposite to those
for a bar in tension. Of course, Egs. (2-29a and b) can still be used for
the calculations simply by substituting o, as a negative quantity.
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FIG. 2-37 Shear failure along a 45° plane
of a wood block loaded in compression

Load

FIG. 2-38 Slip bands (or Liders’ bands) in a
polished steel specimen loaded in tension

Load

Even though the maximum shear stress in an axially loaded bar is only
one-half the maximum normal stress, the shear stress may cause failure if
the material is much weaker in shear than in tension. An example of a
shear failure is pictured in Fig. 2-37, which shows a block of wood that
was loaded in compression and failed by shearing along a 45° plane.

A similar type of behavior occurs in mild steel loaded in tension.
During a tensile test of a flat bar of low-carbon steel with polished
surfaces, visible slip bands appear on the sides of the bar at approxi-
mately 45° to the axis (Fig. 2-38). These bands indicate that the material
is failing in shear along the planes on which the shear stress is
maximum. Such bands were first observed by G. Piobert in 1842 and W.
Llders in 1860 (see Refs. 2-5 and 2-6), and today they are called either
Liders’ bands or Piobert’s bands. They begin to appear when the yield
stress is reached in the bar (point B in Fig. 1-10 of Section 1.3).

Uniaxial Stress

The state of stress described throughout this section is called uniaxial
stress, for the obvious reason that the bar is subjected to simple tension
or compression in just one direction. The most important orientations of
stress elements for uniaxial stress are # = 0 and 6 = 45° (Fig. 2-36b and
c); the former has the maximum normal stress and the latter has the
maximum shear stress. If sections are cut through the bar at other
angles, the stresses acting on the faces of the corresponding stress
elements can be determined from Egs. (2-29a and b), as illustrated in
Examples 2-10 and 2-11 that follow.

Uniaxial stress is a special case of a more general stress state known
as plane stress, which is described in detail in Chapter 7.
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Example 2-10
A prismatic bar having cross-sectional area A = 1200 mm? is compressed by an
axial load P = 90 kN (Fig. 2-39a).
(a) Determine the stresses acting on an inclined section pq cut through the
bar at an angle 8 = 25°.
(b) Determine the complete state of stress for § = 25° and show the
stresses on a properly oriented stress element.
y
p
_h=25°
PO , L |.__P=s0kn 13.4 MPa
\ 28.7 MPa

q

28.7 MPa

25°
\ 61.6 MPa

/ 28.7 MPa

P
28.7 MPa

A\

61.6 MPa

(b)

FIG. 2-39 Example 2-10. Stresses on an
inclined section

(@)
28.7 MPa 250
b A.ﬁ
—

13.4 MPa

\

(©

Solution
(a) Stresses on the inclined section. To find the stresses acting on a section
at 6 = 25°, we first calculate the normal stress o, acting on a cross section:

P 90kN

T TA T 1200mm?

= —75 MPa
A

where the minus sign indicates that the stress is compressive. Next, we calculate
the normal and shear stresses from Eqs. (2-29a and b) with 8 = 25°, as follows:

0= 0y 0% § = (—75 MPa)(cos 25°)> = —61.6 MPa <=

Tg —

— oy sin #cos 6 = (75 MPa)(sin 25°)(cos 25°) = 28.7 MPa <=

These stresses are shown acting on the inclined section in Fig. 2-39b. Note that
the normal stress o, is negative (compressive) and the shear stress 7, is positive
(counterclockwise).

(b) Complete state of stress. To determine the complete state of stress, we
need to find the stresses acting on all faces of a stress element oriented at 25°
(Fig. 2-39c). Face ab, for which 6 = 25°, has the same orientation as the
inclined plane shown in Fig. 2-39b. Therefore, the stresses are the same as those
given previously.

The stresses on the opposite face cd are the same as those on face ab, which
can be verified by substituting # = 25° 4+ 180° = 205° into Egs. (2-29a and b).

continued
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For face ad we substitute § = 25° — 90° =—65° into Egs. (2-29a and b)
and obtain

oy= —134MPa  1,= —28.7 MPa

These same stresses apply to the opposite face bc, as can be verified by substi-
tuting # = 25° + 90° = 115° into Egs. (2-29a and b). Note that the normal
stress is compressive and the shear stress acts clockwise.

The complete state of stress is shown by the stress element of Fig. 2-39c. A
sketch of this kind is an excellent way to show the directions of the stresses and
the orientations of the planes on which they act.

Example 2-11

A compression bar having a square cross section of width b must support a load
P = 8000 Ib (Fig. 2-40a). The bar is constructed from two pieces of material
that are connected by a glued joint (known as a scarf joint) along plane pq,
which is at an angle « = 40° to the vertical. The material is a structural plastic
for which the allowable stresses in compression and shear are 1100 psi and 600
psi, respectively. Also, the allowable stresses in the glued joint are 750 psi in
compression and 500 psi in shear.
Determine the minimum width b of the bar.

Solution
For convenience, let us rotate a segment of the bar to a horizontal position
(Fig. 2-40b) that matches the figures used in deriving the equations for the
stresses on an inclined section (see Figs. 2-33 and 2-34). With the bar in this
position, we see that the normal n to the plane of the glued joint (plane pq)
makes an angle 8 = 90° — «, or 50°, with the axis of the bar. Since the angle
is defined as positive when counterclockwise (Fig. 2-34), we conclude that 6 =
—50° for the glued joint.
The cross-sectional area of the bar is related to the load P and the stress o
acting on the cross sections by the equation
A= @
Ox
Therefore, to find the required area, we must determine the value of oy cor-
responding to each of the four allowable stress. Then the smallest value of oy
will determine the required area. The values of oy are obtained by rearranging
Egs. (2-29a and b) as follows:
() To

= = - 2-32a,b
T~ o0 I sin #cos ( )

We will now apply these equations to the glued joint and to the plastic.
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a=40°
8 =50°
0 =-B=-50°

(b)

FIG.2-40 Example 2-11. Stresses on an
inclined section
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(a) Values of oy based upon the allowable stresses in the glued joint. For
compression in the glued joint we have o, = —750 psi and § = —50°. Substi-
tuting into Eq. (2-32a), we get

=750 psi
(cos —50°)?
For shear in the glued joint we have an allowable stress of 500 psi.
However, it is not immediately evident whether 7, is +500 psi or —500 psi.
One approach is to substitute both +500 psi and —500 psi into Eq. (2-32b) and
then select the value of oy that is negative. The other value of o will be positive
(tension) and does not apply to this bar. Another approach is to inspect the bar
itself (Fig. 2-40b) and observe from the directions of the loads that the shear
stress will act clockwise against plane pg, which means that the shear stress is
negative. Therefore, we substitute 7, = —500 psi and § = —50° into Eq.
(2-32b) and obtain

= —1815 psi (b)

Ox

_ —500 psi
¥~ 7 (sin —50°)(cos —50°)

= —1015 psi (c)

(b) Values of oy based upon the allowable stresses in the plastic. The
maximum compressive stress in the plastic occurs on a cross section. Therefore,
since the allowable stress in compression is 1100 psi, we know immediately that

oy = —1100 psi (d)

The maximum shear stress occurs on a plane at 45° and is numerically equal to
oy /2 (see Eqg. 2-31). Since the allowable stress in shear is 600 psi, we obtain

oy = —1200 psi (e)

This same result can be obtained from Eq. (2-32b) by substituting 7, = 600 psi
and 6 = 45°.

(c) Minimum width of the bar. Comparing the four values of oy (Egs. b, c,
d, and e), we see that the smallest is o, = —1015 psi. Therefore, this value
governs the design. Substituting into Eq. (a), and using only numerical values,
we obtain the required area:

_8000lb .,
A= Tomps ~ 881N

Since the bar has a square cross section (A = b?), the minimum width is
bmin= VA =V7.88in.2 =281Iin. <=

Any width larger than b, will ensure that the allowable stresses are not
exceeded.
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2.7 STRAIN ENERGY

=

FIG. 2-41 Prismatic bar subjected to a
statically applied load

(0] )
Hfslﬂ‘ ﬁél
)

FIG. 2-42 Load-displacement diagram

Strain energy is a fundamental concept in applied mechanics, and strain-
energy principles are widely used for determining the response of
machines and structures to both static and dynamic loads. In this section
we introduce the subject of strain energy in its simplest form by considering
only axially loaded members subjected to static loads. More complicated
structural elements are discussed in later chapters—bars in torsion in
Section 3.9 and beams in bending in Section 9.8. In addition, the use
of strain energy in connection with dynamic loads is described in
Sections 2.8 and 9.10.

To illustrate the basic ideas, let us again consider a prismatic bar of
length L subjected to a tensile force P (Fig. 2-41). We assume that the
load is applied slowly, so that it gradually increases from zero to its
maximum value P. Such a load is called a static load because there are
no dynamic or inertial effects due to motion. The bar gradually elon-
gates as the load is applied, eventually reaching its maximum elongation
o at the same time that the load reaches its full value P. Thereafter, the
load and elongation remain unchanged.

During the loading process, the load P moves slowly through the
distance & and does a certain amount of work. To evaluate this work, we
recall from elementary mechanics that a constant force does work equal
to the product of the force and the distance through which it moves.
However, in our case the force varies in magnitude from zero to its
maximum value P. To find the work done by the load under these
conditions, we need to know the manner in which the force varies. This
information is supplied by a load-displacement diagram, such as the
one plotted in Fig. 2-42. On this diagram the vertical axis represents
the axial load and the horizontal axis represents the corresponding
elongation of the bar. The shape of the curve depends upon the properties
of the material.

Let us denote by P; any value of the load between zero and the
maximum value P, and let us denote the corresponding elongation of the
bar by 6;. Then an increment dP, in the load will produce an increment
dé; in the elongation. The work done by the load during this incremental
elongation is the product of the load and the distance through which it
moves, that is, the work equals P,dé&,. This work is represented in the
figure by the area of the shaded strip below the load-displacement curve.
The total work done by the load as it increases from zero to the
maximum value P is the summation of all such elemental strips:

8
w ZJ P1d61 (2'33)
0

In geometric terms, the work done by the load is equal to the area below
the load-displacement curve.

When the load stretches the bar, strains are produced. The presence
of these strains increases the energy level of the bar itself. Therefore, a
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new quantity, called strain energy, is defined as the energy absorbed by
the bar during the loading process. From the principle of conservation of
energy, we know that this strain energy is equal to the work done by the
load provided no energy is added or subtracted in the form of heat.
Therefore,

S
U=W= J P,d&; (2-34)

0

in which U is the symbol for strain energy. Sometimes strain energy is
referred to as internal work to distinguish it from the external work
done by the load.

Work and energy are expressed in the same units. In S, the unit of
work and energy is the joule (J), which is equal to one newton meter
(1 J = 1 N-m). In USCS units, work and energy are expressed in foot-
pounds (ft-Ib), foot-kips (ft-k), inch-pounds (in.-Ib), and inch-kips
(in.-k).*

Elastic and Inelastic Strain Energy

If the force P (Fig. 2-41) is slowly removed from the bar, the bar will
shorten. If the elastic limit of the material is not exceeded, the bar
will return to its original length. If the limit is exceeded, a permanent set
will remain (see Section 1.4). Thus, either all or part of the strain energy
will be recovered in the form of work. This behavior is shown on the
load-displacement diagram of Fig. 2-43. During loading, the work done
by the load is equal to the area below the curve (area OABCDO). When
the load is removed, the load-displacement diagram follows line BD if
point B is beyond the elastic limit, and a permanent elongation OD
remains. Thus, the strain energy recovered during unloading, called the
elastic strain energy, is represented by the shaded triangle BCD. Area
OABDO represents energy that is lost in the process of permanently
deforming the bar. This energy is known as the inelastic strain energy.

Most structures are designed with the expectation that the material
will remain within the elastic range under ordinary conditions of service.
Let us assume that the load at which the stress in the material reaches
the elastic limit is represented by point A on the load-displacement curve
(Fig. 2-43). As long as the load is below this value, all of the strain
energy is recovered during unloading and no permanent elongation
remains. Thus, the bar acts as an elastic spring, storing and releasing
energy as the load is applied and removed.

*Conversion factors for work and energy are given in Appendix A, Table A-5.
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FIG. 2-44 Load-displacement diagram for
a bar of linearly elastic material

Linearly Elastic Behavior

Let us now assume that the material of the bar follows Hooke’s law, so
that the load-displacement curve is a straight line (Fig. 2-44). Then
the strain energy U stored in the bar (equal to the work W done by the
load) is

U=w=-—" (2-35)

which is the area of the shaded triangle OAB in the figure.*
The relationship between the load P and the elongation & for a bar
of linearly elastic material is given by the equation

_PL

8=
EA

(2-36)

Combining this equation with Eq. (2-35) enables us to express the strain
energy of a linearly elastic bar in either of the following forms:

P2L EAS®
U= o

U=2EA 2L

(2-37a,b)

The first equation expresses the strain energy as a function of the load
and the second expresses it as a function of the elongation.

From the first equation we see that increasing the length of a bar
increases the amount of strain energy even though the load is unchanged
(because more material is being strained by the load). On the other hand,
increasing either the modulus of elasticity or the cross-sectional area
decreases the strain energy because the strains in the bar are reduced.
These ideas are illustrated in Examples 2-12 and 2-15.

Strain-energy equations analogous to Egs. (2-37a) and (2-37b) can
be written for a linearly elastic spring by replacing the stiffness EA/L
of the prismatic bar by the stiffness k of the spring. Thus,

2 2
_P U=k (2-38a,b)

U= 2

Other forms of these equations can be obtained by replacing k by 1/f,
where f is the flexibility.

*The principle that the work of the external loads is equal to the strain energy (for the
case of linearly elastic behavior) was first stated by the French engineer B. P. E.
Clapeyron (1799-1864) and is known as Clapeyron’s theorem (Ref. 2-7).
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Nonuniform Bars

The total strain energy U of a bar consisting of several segments is equal
to the sum of the strain energies of the individual segments. For
instance, the strain energy of the bar pictured in Fig. 2-45 equals the
strain energy of segment AB plus the strain energy of segment BC. This
concept is expressed in general terms by the following equation:

U= Z U, (2-39)

in which U; is the strain energy of segment i of the bar and n is the
number of segments. (This relation holds whether the material behaves
in a linear or nonlinear manner.)

Now assume that the material of the bar is linearly elastic and that
the internal axial force is constant within each segment. We can then use
Eq. (2-37a) to obtain the strain energies of the segments, and Eq. (2-39)
becomes

NZL,
Z _ET (2-40)

in which N; is the axial force acting in segment i and L;, E;, and A; are
properties of segment i. (The use of this equation is illustrated in Examples
2-12 and 2-15 at the end of the section.)

We can obtain the strain energy of a nonprismatic bar with
continuously varying axial force (Fig. 2-46) by applying Eq. (2-37a) to a
differential element (shown shaded in the figure) and then integrating
along the length of the bar:

_ [ INePPdx
U= L 2EAG) (2-41)

In this equation, N(x) and A(x) are the axial force and cross-sectional
area at distance x from the end of the bar. (Example 2-13 illustrates the
use of this equation.)

Comments

The preceding expressions for strain energy (Egs. 2-37 through 2-41)
show that strain energy is not a linear function of the loads, not even
when the material is linearly elastic. Thus, it is important to realize that
we cannot obtain the strain energy of a structure supporting more than
one load by combining the strain energies obtained from the individual
loads acting separately.

In the case of the nonprismatic bar shown in Fig. 2-45, the total
strain energy is not the sum of the strain energy due to load P, acting
alone and the strain energy due to load P, acting alone. Instead, we must
evaluate the strain energy with all of the loads acting simultaneously, as
demonstrated later in Example 2-13.
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FIG. 2-47 Structure supporting a single
load P

Although we considered only tension members in the preceding
discussions of strain energy, all of the concepts and equations apply
equally well to members in compression. Since the work done by an
axial load is positive regardless of whether the load causes tension or
compression, it follows that strain energy is always a positive quantity.
This fact is also evident in the expressions for strain energy of linearly
elastic bars (such as Egs. 2-37a and 2-37b). These expressions are
always positive because the load and elongation terms are squared.

Strain energy is a form of potential energy (or “energy of position”)
because it depends upon the relative locations of the particles or elements
that make up the member. When a bar or a spring is compressed, its particles
are crowded more closely together; when it is stretched, the distances
between particles increase. In both cases the strain energy of the member
increases as compared to its strain energy in the unloaded position.

Displacements Caused by a Single Load

The displacement of a linearly elastic structure supporting only one load
can be determined from its strain energy. To illustrate the method,
consider a two-bar truss (Fig. 2-47) loaded by a vertical force P. Our
objective is to determine the vertical displacement 6§ at joint B where the
load is applied.

When applied slowly to the truss, the load P does work as it moves
through the vertical displacement 6. However, it does no work as it
moves laterally, that is, sideways. Therefore, since the load-displacement
diagram is linear (see Fig. 2-44 and Eq. 2-35), the strain energy U stored
in the structure, equal to the work done by the load, is

u=w=F2

from which we get

5= (2-42)

This equation shows that under certain special conditions, as outlined in
the following paragraph, the displacement of a structure can be deter-
mined directly from the strain energy.

The conditions that must be met in order to use Eq. (2-42) are as
follows: (1) the structure must behave in a linearly elastic manner, and
(2) only one load may act on the structure. Furthermore, the only
displacement that can be determined is the displacement corresponding
to the load itself (that is, the displacement must be in the direction of the
load and must be at the point where the load is applied). Therefore, this
method for finding displacements is extremely limited in its application
and is not a good indicator of the great importance of strain-energy
principles in structural mechanics. However, the method does provide
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an introduction to the use of strain energy. (The method is illustrated
later in Example 2-14.)

Strain-Energy Density

In many situations it is convenient to use a quantity called strain-
energy density, defined as the strain energy per unit volume of material.
Expressions for strain-energy density in the case of linearly elastic
materials can be obtained from the formulas for strain energy of a
prismatic bar (Egs. 2-37a and b). Since the strain energy of the bar is
distributed uniformly throughout its volume, we can determine the
strain-energy density by dividing the total strain energy U by the volume
AL of the bar. Thus, the strain-energy density, denoted by the symbol u,
can be expressed in either of these forms:

2EA2 212

u (2-43a,b)

If we replace P/A by the stress o-and &/L by the strain €, we get

(2-44a,b)

These equations give the strain-energy density in a linearly elastic
material in terms of either the normal stress o or the normal strain e.

The expressions in Egs. (2-44a and b) have a simple geometric
interpretation. They are equal to the area oe/2 of the triangle below the
stress-strain diagram for a material that follows Hooke’s law (o = Ee).
In more general situations where the material does not follow Hooke’s
law, the strain-energy density is still equal to the area below the stress-
strain curve, but the area must be evaluated for each particular material.

Strain-energy density has units of energy divided by volume. The
SI units are joules per cubic meter (J/m®) and the USCS units are
foot-pounds per cubic foot, inch-pounds per cubic inch, and other
similar units. Since all of these units reduce to units of stress (recall that
1J = 1N-m), we can also use units such as pascals (Pa) and pounds per
square inch (psi) for strain-energy density.

The strain-energy density of the material when it is stressed to the
proportional limit is called the modulus of resilience u,. It is found by
substituting the proportional limit oy, into Eq. (2-44a):

2

0'p|

U = —— 2-45
Y- (2-45)
For example, a mild steel having oy, = 36,000 psi and E = 30 X 10° psi
has a modulus of resilience u, = 21.6 psi (or 149 kPa). Note that the
modulus of resilience is equal to the area below the stress-strain curve
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up to the proportional limit. Resilience represents the ability of a material
to absorb and release energy within the elastic range.

Another quantity, called toughness, refers to the ability of a material
to absorb energy without fracturing. The corresponding modulus, called
the modulus of toughness uy, is the strain-energy density when the
material is stressed to the point of failure. It is equal to the area below
the entire stress-strain curve. The higher the modulus of toughness, the
greater the ability of the material to absorb energy without failing. A
high modulus of toughness is therefore important when the material is
subject to impact loads (see Section 2.8).

The preceding expressions for strain-energy density (Egs. 2-43 to
2-45) were derived for uniaxial stress, that is, for materials subjected
only to tension or compression. Formulas for strain-energy density in
other stress states are presented in Chapters 3 and 7.

Example 2-12

FIG. 2-48 Example 2-12. Calculation of
strain energy

Three round bars having the same length L but different shapes are shown in
Fig. 2-48. The first bar has diameter d over its entire length, the second has
diameter d over one-fifth of its length, and the third has diameter d over one-
fifteenth of its length. Elsewhere, the second and third bars have diameter 2d.
All three bars are subjected to the same axial load P.

Compare the amounts of strain energy stored in the bars, assuming linearly
elastic behavior. (Disregard the effects of stress concentrations and the weights
of the bars.)

@) (b) (©

Copyright 2004 Thomson Learning, Inc. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



SECTION 2.7  Strain Energy 123

Solution
(a) Strain energy U, of the first bar. The strain energy of the first bar is
found directly from Eq. (2-37a):

(a)

in which A = 7d%/4.

(b) Strain energy U, of the second bar. The strain energy is found by
summing the strain energies in the three segments of the bar (see Eq. 2-40).
Thus,

n 2l 2 2 2
Uy = 3 NPL _ P*LI5) | P’(AL5) _ P7L _ 2u, () <=
£ 2E/A;  2EA | 2E(4A) 5EA 5

which is only 40% of the strain energy of the first bar. Thus, increasing the
cross-sectional area over part of the length has greatly reduced the amount of
strain energy that can be stored in the bar.

(c) Strain energy Us of the third bar. Again using Eq. (2-40), we get

(c)

U — Z NPLi _ P*L/15) | P*(14L/15) _ 3P’L _ 3V,
3T 4 2EA 2EA 2E(4A) 20EA 10

The strain energy has now decreased to 30% of the strain energy of the first bar.

Note: Comparing these results, we see that the strain energy decreases as
the part of the bar with the larger area increases. If the same amount of work is
applied to all three bars, the highest stress will be in the third bar, because the
third bar has the least energy-absorbing capacity. If the region having diameter
d is made even smaller, the energy-absorbing capacity will decrease further.

We therefore conclude that it takes only a small amount of work to bring
the tensile stress to a high value in a bar with a groove, and the narrower the
groove, the more severe the condition. When the loads are dynamic and the
ability to absorb energy is important, the presence of grooves is very damaging.

In the case of static loads, the maximum stresses are more important than
the ability to absorb energy. In this example, all three bars have the same max-
imum stress P/A (provided stress concentrations are alleviated), and therefore
all three bars have the same load-carrying capacity when the load is applied
statically.
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Example 2-13
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FIG. 2-49 Example 2-13. (a) Bar hanging
under its own weight, and (b) bar
hanging under its own weight and also
supporting a load P

Determine the strain energy of a prismatic bar suspended from its upper end
(Fig. 2-49). Consider the following loads: (a) the weight of the bar itself, and (b)
the weight of the bar plus a load P at the lower end. (Assume linearly elastic
behavior.)

Solution

(a) Strain energy due to the weight of the bar itself (Fig. 2-49a). The bar is
subjected to a varying axial force, the internal force being zero at the lower end
and maximum at the upper end. To determine the axial force, we consider an
element of length dx (shown shaded in the figure) at distance x from the upper
end. The internal axial force N(x) acting on this element is equal to the weight
of the bar below the element:

N(X) = AL —X) (d)
in which vy is the weight density of the material and A is the cross-sectional area

of the bar. Substituting into Eqg. (2-41) and integrating gives the total strain
energy:

[ N dx J "DAL- 0P AL
h L 2EA(X) o 2EA = (2-46) =

(b) Strain energy due to the weight of the bar plus the load P (Fig. 2-49b).
In this case the axial force N(x) acting on the element is

N(x) = yA(L — x) + P (e)

(compare with Eq. d). From Eq. (2-41) we now obtain

L
_ 2 2 3 2 2
U:J DAL = + PPax _ YA | P2 PP

6 2EA 6E ' 2E | 2EA

Note: The first term in this expression is the same as the strain energy of a
bar hanging under its own weight (Eq. 2-46), and the last term is the same as the
strain energy of a bar subjected only to an axial force P (Eq. 2-37a). However,
the middle term contains both y and P, showing that it depends upon both the
weight of the bar and the magnitude of the applied load.

Thus, this example illustrates that the strain energy of a bar subjected to
two loads is not equal to the sum of the strain energies produced by the indi-
vidual loads acting separately.
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Example 2-14

FIG. 2-50 Example 2-14. Displacement
of a truss supporting a single load P

Determine the vertical displacement &g of joint B of the truss shown in Fig. 2-50.
Note that the only load acting on the truss is a vertical load P at joint B. Assume
that both members of the truss have the same axial rigidity EA.

Solution

Since there is only one load acting on the truss, we can find the displace-
ment corresponding to that load by equating the work of the load to the strain
energy of the members. However, to find the strain energy we must know the
forces in the members (see Eq. 2-37a).

From the equilibrium of forces acting at joint B we see that the axial force
F in either bar is

P
F=
2cos B

in which g is the angle shown in the figure.
Also, from the geometry of the truss we see that the length of each bar is

®

H
17 Cos B 9
in which H is the height of the truss.
We can now obtain the strain energy of the two bars from Eq. (2-37a):
F’L, P’H
U=(2 = h
@ 2EA  4EAcos® B Q)
Also, the work of the load P (from Eq. 2-35) is
_Ps i
w== 0)

where &g is the downward displacement of joint B. Equating U and W and
solving for &g, we obtain

PH
g =—5— 2-48) <=
®  2EAcos® B (2-48)

Note that we found this displacement using only equilibrium and strain energy—we
did not need to draw a displacement diagram at joint B.
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Example 2-15

FIG. 2-51 Example 2-15. (a) Cylinder
with piston and clamping bolts, and
(b) detail of one bolt

The cylinder for a compressed air machine is clamped by bolts that pass through
the flanges of the cylinder (Fig. 2-51a). A detail of one of the bolts is shown in
part (b) of the figure. The diameter d of the shank is 0.500 in. and the root diam-
eter d, of the threaded portion is 0.406 in. The grip g of the bolts is 1.50 in. and
the threads extend a distance t = 0.25 in. into the grip. Under the action of
repeated cycles of high and low pressure in the chamber, the bolts may eventually
break.

To reduce the likelihood of the bolts failing, the designers suggest two
possible modifications: (a) Machine down the shanks of the bolts so that the
shank diameter is the same as the thread diameter d,, as shown in Fig. 2-52a.
(b) Replace each pair of bolts by a single long bolt, as shown in Fig. 2-52b. The
long bolts are similar to the original bolts (Fig. 2-51b) except that the grip is
increased to the distance L = 13.5in.

Compare the energy-absorbing capacity of the three bolt configurations:
(1) original bolts, (2) bolts with reduced shank diameter, and (3) long bolts.
(Assume linearly elastic behavior and disregard the effects of stress
concentrations.)

Cylinder Bolt
\i Iy
X7 [
- '

\ A
\ Piston % 3

Chamber g

(@) (b)
Solution

(1) Original bolts. The original bolts can be idealized as bars consisting of
two segments (Fig. 2-51b). The left-hand segment has length g — t and diam-
eter d, and the right-hand segment has length t and diameter d,. The strain
energy of one bolt under a tensile load P can be obtained by adding the strain
energies of the two segments (Eq. 2-40):

O N PYg-t | P
Vs Zl 2E; A 2EA. | 2EA,

@

in which A is the cross-sectional area of the shank and A, is the cross-sectional
area at the root of the threads; thus,

_ 7d? _ 7d?
As - 4 Ar - 4 (k)
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FIG. 2-52 Example 2-15. Proposed
modifications to the bolts: (a) Bolts with
reduced shank diameter, and (b) bolts
with increased length
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Substituting these expressions into Eg. (j), we get the following formula for the
strain energy of one of the original bolts:

20 2
_2P°(g-1 , 2P%

U
! 7Ed? mEd?

U]

(2) Bolts with reduced shank diameter. These bolts can be idealized as pris-
matic bars having length g and diameter d, (Fig. 2-52a). Therefore, the strain
energy of one bolt (see Eq. 2-373) is

PZg 2P%g
U, = =
2T 2EA,  mEd? (m)
The ratio of the strain energies for cases (1) and (2) is
U, gd?
2 __ % n
U, (g— t)d? + td? ™
or, upon substituting numerical values,
- - 2
U, (1.50in.)(0.500 in.) _ 140 4

U, (150in. — 0.25in.)(0.406 in.)2 + (0.25 in.)(0.500 in.)?

Thus, using bolts with reduced shank diameters results in a 40% increase in the
amount of strain energy that can be absorbed by the bolts. If implemented, this
scheme should reduce the number of failures caused by the impact loads.

(3) Long bolts. The calculations for the long bolts (Fig. 2-52b) are the same
as for the original bolts except the grip g is changed to the grip L. Therefore, the
strain energy of one long bolt (compare with Eq. 1) is

_2PA(L—t)  2P*
wEd? 7Ed?

Us (0)

Since one long bolt replaces two of the original bolts, we must compare the
strain energies by taking the ratio of U; to 2U,, as follows:

Us _ (L—td?+td?

20, 2(g - )d2 + 2td? (P)
Substituting numerical values gives
U _(135in. —0.25in.)(0.406 in.)* + (0.25in.)(0.500in.)> 118
2U, 2(150in. — 0.25in.)(0.406 in.)* + 2(0.25in.)(0.500 in.)> ~ ™ pu-

Thus, using long bolts increases the energy-absorbing capacity by 318% and
achieves the greatest safety from the standpoint of strain energy.

Note: When designing bolts, designers must also consider the maximum
tensile stresses, maximum bearing stresses, stress concentrations, and many
other matters.
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*2.8 IMPACT LOADING

>

Sliding collar

of mass M [—j

FIG. 2-53 Impact load on a prismatic bar
AB due to a falling object of mass M

Loads can be classified as static or dynamic depending upon whether
they remain constant or vary with time. A static load is applied slowly,
so that it causes no vibrational or dynamic effects in the structure. The
load increases gradually from zero to its maximum value, and thereafter
it remains constant.

A dynamic load may take many forms—some loads are applied
and removed suddenly (impact loads), others persist for long periods of
time and continuously vary in intensity (fluctuating loads). Impact loads
are produced when two objects collide or when a falling object strikes a
structure. Fluctuating loads are produced by rotating machinery, traffic,
wind gusts, water waves, earthquakes, and manufacturing processes.

As an example of how structures respond to dynamic loads, we will
discuss the impact of an object falling onto the lower end of a prismatic
bar (Fig. 2-53). A collar of mass M, initially at rest, falls from a height h
onto a flange at the end of bar AB. When the collar strikes the flange, the
bar begins to elongate, creating axial stresses within the bar. In a very
short interval of time, such as a few milliseconds, the flange will move
downward and reach its position of maximum displacement. Thereafter,
the bar shortens, then lengthens, then shortens again as the bar vibrates
longitudinally and the end of the bar moves up and down. The vibrations
are analogous to those that occur when a spring is stretched and then
released, or when a person makes a bungee jump. The vibrations of the
bar soon cease because of various damping effects, and then the bar
comes to rest with the mass M supported on the flange.

The response of the bar to the falling collar is obviously very
complicated, and a complete and accurate analysis requires the use of
advanced mathematical techniques. However, we can make an approxi-
mate analysis by using the concept of strain energy (Section 2.7) and
making several simplifying assumptions.

Let us begin by considering the energy of the system just before the
collar is released (Fig. 2-53a). The potential energy of the collar with
respect to the elevation of the flange is Mgh, where g is the acceleration
of gravity.* This potential energy is converted into kinetic energy as the
collar falls. At the instant the collar strikes the flange, its potential
energy with respect to the elevation of the flange is zero and its kinetic
energy is Mv?/2, where v = V/2gh is its velocity.**

*In S units, the acceleration of gravity g = 9.81 m/s%; in USCS units, g = 32.2 ft/s%. For
more precise values of g, or for a discussion of mass and weight, see Appendix A.

**|n engineering work, velocity is usually treated as a vector quantity. However, since
kinetic energy is a scalar, we will use the word “velocity” to mean the magnitude of the
velocity, or the speed.
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During the ensuing impact, the kinetic energy of the collar is transformed
into other forms of energy. Part of the kinetic energy is transformed into
the strain energy of the stretched bar. Some of the energy is dissipated in
the production of heat and in causing localized plastic deformations of
the collar and flange. A small part remains as the Kinetic energy of the
collar, which either moves further downward (while in contact with the
flange) or else bounces upward.

To make a simplified analysis of this very complex situation, we will
idealize the behavior by making the following assumptions. (1) We
assume that the collar and flange are so constructed that the collar “sticks”
to the flange and moves downward with it (that is, the collar does not
rebound). This behavior is more likely to prevail when the mass of the
collar is large compared to the mass of the bar. (2) We disregard all
energy losses and assume that the kinetic energy of the falling mass is
transformed entirely into strain energy of the bar. This assumption
predicts larger stresses in the bar than would be predicted if we took
energy losses into account. (3) We disregard any change in the potential
energy of the bar itself (due to the vertical movement of elements of the
bar), and we ignore the existence of strain energy in the bar due to its own
weight. Both of these effects are extremely small. (4) We assume that the
stresses in the bar remain within the linearly elastic range. (5) We assume
that the stress distribution throughout the bar is the same as when the bar
is loaded statically by a force at the lower end, that is, we assume the
stresses are uniform throughout the volume of the bar. (In reality longitudinal
stress waves will travel through the bar, thereby causing variations in the
stress distribution.)

On the basis of the preceding assumptions, we can calculate the
maximum elongation and the maximum tensile stresses produced by the
impact load. (Recall that we are disregarding the weight of the bar itself
and finding the stresses due solely to the falling collar.)

Maximum Elongation of the Bar

The maximum elongation 6y« (Fig. 2-53b) can be obtained from the
principle of conservation of energy by equating the potential energy lost
by the falling mass to the maximum strain energy acquired by the bar. The
potential energy lost is W(h + &ax), Where W = Mg is the weight of the
collar and h + &nax is the distance through which it moves. The strain
energy of the bar is EA8%,.,/2L, where EA is the axial rigidity and L is the
length of the bar (see Eq. 2-37b). Thus, we obtain the following equation:

EAS%
W(h + Smay) = ————= (2-49)
2L
This equation is quadratic in 6y,.« and can be solved for the positive
root; the result is
WL WL \? WL\ [M2
Omax = —— — | + 2h{— 2-50
T EA [(EA) (EA)} (2-50)
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Note that the maximum elongation of the bar increases if either the
weight of the collar or the height of fall is increased. The elongation
diminishes if the stiffness EA/L is increased.

The preceding equation can be written in simpler form by introducing
the notation

_ WL _ MgL

EA EA
in which & is the elongation of the bar due to the weight of the collar
under static loading conditions. Equation (2-50) now becomes

Omax = Ost + (ﬁgt + 2h83t)1/2 (2'52)

2h 1/2
S = 5st[1 + (1 + 5—) } (2-53)

st
From this equation we see that the elongation of the bar under the impact
load is much larger than it would be if the same load were applied statically.
Suppose, for instance, that the height h is 40 times the static displacement
b4, the maximum elongation would then be 10 times the static elongation.
When the height h is large compared to the static elongation, we can
disregard the “ones” on the right-hand side of Eq. (2-53) and obtain

2
Omax = V2hog = MEVAL (2-54)
in which M = W/g and v = "V 2gh is the velocity of the falling mass when
it strikes the flange. This equation can also be obtained directly from
Eq. (2-49) by omitting dmax 0N the left-hand side of the equation and then
solving for 8. Because of the omitted terms, values of &, calculated
from Eq. (2-54) are always less than those obtained from Eg. (2-53).

85t (2-51)

or

Maximum Stress in the Bar

The maximum stress can be calculated easily from the maximum
elongation because we are assuming that the stress distribution is
uniform throughout the length of the bar. From the general equation
6 = PL/EA = oL/E, we know that

i = (2-55)

Substituting from Eq. (2-50), we obtain the following equation for the
maximum tensile stress:

W W)\?  2WhE |2
=—+]|[—] + 2-56
Omax A [( A) AL } ( )
Introducing the notation
W Mg Eéy
=— ==t 2-57
Ost A A L ( )
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in which oy is the stress when the load acts statically, we can write Eq.
(2-56) in the form

2hE 1/2
Omax = Ot + (Ugt + T Ust) (2'58)
or
1/2
Omax = Ust[l + <l + ir;_E> } (2-59)
st

This equation is analogous to Eq. (2-53) and again shows that an impact
load produces much larger effects than when the same load is applied
statically.

Again considering the case where the height h is large compared to
the elongation of the bar (compare with Eq. 2-54), we obtain

2hEg: MV2E
Omax = \[ [ L - | AL (2-60)

From this result we see that an increase in the kinetic energy Mv?/2 of
the falling mass will increase the stress, whereas an increase in the
volume AL of the bar will reduce the stress. This situation is quite
different from static tension of the bar, where the stress is independent
of the length L and the modulus of elasticity E.

The preceding equations for the maximum elongation and maximum
stress apply only at the instant when the flange of the bar is at its lowest
position. After the maximum elongation is reached in the bar, the bar will
vibrate axially until it comes to rest at the static elongation. From then on,
the elongation and stress have the values given by Egs. (2-51) and (2-57).

Although the preceding equations were derived for the case of a
prismatic bar, they can be used for any linearly elastic structure
subjected to a falling load, provided we know the appropriate stiffness
of the structure. In particular, the equations can be used for a spring by
substituting the stiffness k of the spring (see Section 2.2) for the stiffness
EA/L of the prismatic bar.

Impact Factor

The ratio of the dynamic response of a structure to the static response
(for the same load) is known as an impact factor. For instance, the
impact factor for the elongation of the bar of Fig. 2-53 is the ratio of the
maximum elongation to the static elongation:

Impact factor = % (2-61)

This factor represents the amount by which the static elongation is
amplified due to the dynamic effects of the impact.

Equations analogous to Eq. (2-61) can be written for other impact
factors, such as the impact factor for the stress in the bar (the ratio of
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Omax 10 o). When the collar falls through a considerable height, the
impact factor can be very large, such as 100 or more.

Suddenly Applied Load

A special case of impact occurs when a load is applied suddenly with no
initial velocity. To explain this kind of loading, consider again the prismatic
bar shown in Fig. 2-53 and assume that the sliding collar is lowered
gently until it just touches the flange. Then the collar is suddenly
released. Although in this instance no kinetic energy exists at the beginning
of extension of the bar, the behavior is quite different from that of static
loading of the bar. Under static loading conditions, the load is released
gradually and equilibrium always exists between the applied load and
the resisting force of the bar.

However, consider what happens when the collar is released
suddenly from its point of contact with the flange. Initially the elongation
of the bar and the stress in the bar are zero, but then the collar moves
downward under the action of its own weight. During this motion the
bar elongates and its resisting force gradually increases. The motion
continues until at some instant the resisting force just equals W, the
weight of the collar. At this particular instant the elongation of the bar is
Sst. However, the collar now has a certain kinetic energy, which it
acquired during the downward displacement &. Therefore, the collar
continues to move downward until its velocity is brought to zero by the
resisting force in the bar. The maximum elongation for this condition is
obtained from Eq. (2-53) by setting h equal to zero; thus,

Omax = 20st (2-62)

From this equation we see that a suddenly applied load produces an
elongation twice as large as the elongation caused by the same load
applied statically. Thus, the impact factor is 2.

After the maximum elongation 248 has been reached, the end of the
bar will move upward and begin a series of up and down vibrations,
eventually coming to rest at the static elongation produced by the weight
of the collar.*

Limitations

The preceding analyses were based upon the assumption that no energy
losses occur during impact. In reality, energy losses always occur, with
most of the lost energy being dissipated in the form of heat and localized
deformation of the materials. Because of these losses, the kinetic energy
of a system immediately after an impact is less than it was before the
impact. Consequently, less energy is converted into strain energy of the

*Equation (2-62) was first obtained by the French mathematician and scientist J. V.
Poncelet (1788-1867); see Ref. 2-8.
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bar than we previously assumed. As a result, the actual displacement of
the end of the bar of Fig. 2-53 is less than that predicted by our simpli-
fied analysis.

We also assumed that the stresses in the bar remain within the
proportional limit. If the maximum stress exceeds this limit, the analysis
becomes more complicated because the elongation of the bar is no longer
proportional to the axial force. Other factors to consider are the effects
of stress waves, damping, and imperfections at the contact surfaces.
Therefore, we must remember that all of the formulas in this section
are based upon highly idealized conditions and give only a rough
approximation of the true conditions (usually overestimating the
elongation).

Materials that exhibit considerable ductility beyond the proportional
limit generally offer much greater resistance to impact loads than do
brittle materials. Also, bars with grooves, holes, and other forms of
stress concentrations (see Sections 2.9 and 2.10) are very weak against
impact—a slight shock may produce fracture, even when the material
itself is ductile under static loading.

Example 2-16
A round, prismatic steel bar (E = 210 GPa) of length L = 2.0 m and diameter
d = 15 mm hangs vertically from a support at its upper end (Fig. 2-54). A
d=15mm I sliding collar of mass M = 20 kg drops from a height h=150 mm onto the
o flange at the lower end of the bar without rebounding.
(a) Calculate the maximum elongation of the bar due to the impact and
L=20m determine the corresponding_ impact fac_tor. _ _
M = 20 k | ' (b) Calculate the maximum tensile stress in the bar and determine the
9 K ding impact factor.
N corresponding impact facto
h =150 mm
) Solution
i A
Because the arrangement of the bar and collar in this example matches the
FIG. 2-54 Example 2-16. Impact load on arrangement shown in Fig. 2-53, we can use the equations derived previously
a vertical bar (Egs. 2-49 to 2-60).

(a) Maximum elongation. The elongation of the bar produced by the falling
collar can be determined from Eq. (2-53). The first step is to determine the static
elongation of the bar due to the weight of the collar. Since the weight of the
collar is Mg, we calculate as follows:

5. - Mol _ (200kg)(9.81 m/s?)(2.0 m)
7 EA (210 GPa)(7/4)(15 mm)?

= 0.0106 mm

continued
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From this result we see that

h 150 mm
—=——""—"—=14,150
& 0.0106 mm

The preceding numerical values may now be substituted into Eq. (2-53) to
obtain the maximum elongation:

1/2
=1+ 1+ 27

st

= (0.0106 mm)[1 + V1 + 2(14,150)]
=179 mm <=

Since the height of fall is very large compared to the static elongation, we
obtain nearly the same result by calculating the maximum elongation from Eq.
(2-54):

Smax = V2h&y = [2(150 mm)(0.0106 mm)]*? = 1.78 mm

The impact factor is equal to the ratio of the maximum elongation to the static
elongation:

5max 1.79 mm
I t factor = = =169 <=
At ator = = = 0.0106 mm

This result shows that the effects of a dynamically applied load can be very
large as compared to the effects of the same load acting statically.

(b) Maximum tensile stress. The maximum stress produced by the falling
collar is obtained from Eq. (2-55), as follows:

= 188 MPa <=

Omax

_ Ednax _ (210 GPa)(1.79 mm)
L 20m

This stress may be compared with the static stress (see Eq. 2-57), which is

(20 kg)(9.81 m/s?)
(7/4)(15 mm)?

L % =1.11 MPa

Ost = 7 =

A_

The ratio of oynax t0 0 is 188/1.11=169, which is the same impact factor as for
the elongations. This result is expected, because the stresses are directly propor-
tional to the corresponding elongations (see Egs. 2-55 and 2-57).
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Example 2-17

=

Vv ﬂ Omax
E
A

R

FIG. 2-55 Example 2-17. Impact load on
a horizontal bar

A horizontal bar AB of length L is struck at its free end by a heavy block of
mass M moving horizontally with velocity v (Fig. 2-55).

(a) Determine the maximum shortening 8yax Of the bar due to the impact
and determine the corresponding impact factor.

(b) Determine the maximum compressive stress oma, and the correspon-
ding impact factor. (Let EA represent the axial rigidity of the bar.)

Solution

The loading on the bar in this example is quite different from the loads on
the bars pictured in Figs. 2-53 and 2-54. Therefore, we must make a new
analysis based upon conservation of energy.

(a) Maximum shortening of the bar. For this analysis we adopt the same
assumptions as those described previously. Thus, we disregard all energy losses
and assume that the Kinetic energy of the moving block is transformed entirely
into strain energy of the bar.

The kinetic energy of the block at the instant of impact is Mv2/2. The strain
energy of the bar when the block comes to rest at the instant of maximum short-
ening is EA8%,./2L, as given by Eq. (2-37b). Therefore, we can write the
following equation of conservation of energy:

Mv?  EASHax

2-
2 2L (2-63)
Solving for Spmay, We get
MVZL
Smax = |——— 2-64) <=
max EA ( )

This equation is the same as Eq. (2-54), which we might have anticipated.

To find the impact factor, we need to know the static displacement of the
end of the bar. In this case the static displacement is the shortening of the bar
due to the weight of the block applied as a compressive load on the bar (see Eq.
2-51):

WL _ MgL
Ost = = = —h
EA EA
Thus, the impact factor is
Smax | EAV?

Impact factor = —= (2-65) <=

8¢  \ Mg’L
The value determined from this equation may be much larger than 1.
(b) Maximum compressive stress in the bar. The maximum stress in the bar
is found from the maximum shortening by means of Eq. (2-55):

ESmax E MVZL MVZE
= == | /== |/ 2- <=
Tmax = = LV EA \ AL (2-66)

This equation is the same as Eq. (2-60).
The static stress oy, in the bar is equal to W/A or Mg/A, which (in combina-
tion with Eq. 2-66) leads to the same impact factor as before (Eq. 2-65).
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*2.9 REPEATED LOADING AND FATIGUE
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FIG. 2-56 Types of repeated loads:

(a) load acting in one direction only,
(b) alternating or reversed load, and

(c) fluctuating load that varies about an
average value

The behavior of a structure depends not only upon the nature of the
material but also upon the character of the loads. In some situations the
loads are static—they are applied gradually, act for long periods of time,
and change slowly. Other loads are dynamic in character—examples are
impact loads acting suddenly (Section 2.8) and repeated loads recurring
for large numbers of cycles.

Some typical patterns for repeated loads are sketched in Fig. 2-56.
The first graph (a) shows a load that is applied, removed, and applied
again, always acting in the same direction. The second graph (b) shows
an alternating load that reverses direction during every cycle of loading,
and the third graph (c) illustrates a fluctuating load that varies about an
average value. Repeated loads are commonly associated with machinery,
engines, turbines, generators, shafts, propellers, airplane parts, automo-
bile parts, and the like. Some of these structures are subjected to millions
(and even billions) of loading cycles during their useful life.

A structure subjected to dynamic loads is likely to fail at a lower
stress than when the same loads are applied statically, especially when
the loads are repeated for a large number of cycles. In such cases failure
is usually caused by fatigue, or progressive fracture. A familiar
example of a fatigue failure is stressing a metal paper clip to the
breaking point by repeatedly bending it back and forth. If the clip is bent
only once, it does not break. But if the load is reversed by bending the
clip in the opposite direction, and if the entire loading cycle is repeated
several times, the clip will finally break. Fatigue may be defined as the
deterioration of a material under repeated cycles of stress and strain,
resulting in progressive cracking that eventually produces fracture.

In a typical fatigue failure, a microscopic crack forms at a point of
high stress (usually at a stress concentration, discussed in the next
section) and gradually enlarges as the loads are applied repeatedly.
When the crack becomes so large that the remaining material cannot
resist the loads, a sudden fracture of the material occurs (see Fig. 2-57
on the next page). Depending upon the nature of the material, it may
take anywhere from a few cycles of loading to hundreds of millions of
cycles to produce a fatigue failure.

The magnitude of the load causing a fatigue failure is less than the
load that can be sustained statically, as already pointed out. To deter-
mine the failure load, tests of the material must be performed. In the
case of repeated loading, the material is tested at various stress levels
and the number of cycles to failure is counted. For instance, a specimen
of material is placed in a fatigue-testing machine and loaded repeatedly
to a certain stress, say oy. The loading cycles are continued until failure
occurs, and the number n of loading cycles to failure is noted. The test is
then repeated for a different stress, say o». If o» is greater than o, the
number of cycles to failure will be smaller. If o is less than o, the
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FIG. 2-57 Fatigue failure of a bar loaded
repeatedly in tension; the crack spread
gradually over the cross section until
fracture occurred suddenly. (Courtesy of
MTS Systems Corporation)

Failure

stress
ag

Fatigue limit

Number n of cycles to failure

FIG.2-58 Endurance curve, or S-N
diagram, showing fatigue limit

FIG.2-59 Typical endurance curves for
steel and aluminum in alternating
(reversed) loading
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number will be larger. Eventually, enough data are accumulated to plot
an endurance curve, or S-N diagram, in which failure stress (S) is
plotted versus the number (N) of cycles to failure (Fig. 2-58). The
vertical axis is usually a linear scale and the horizontal axis is usually a
logarithmic scale.

The endurance curve of Fig. 2-58 shows that the smaller the stress,
the larger the number of cycles to produce failure. For some materials
the curve has a horizontal asymptote known as the fatigue limit or
endurance limit. When it exists, this limit is the stress below which a
fatigue failure will not occur regardless of how many times the load is
repeated. The precise shape of an endurance curve depends upon many
factors, including properties of the material, geometry of the test
specimen, speed of testing, pattern of loading, and surface condition of
the specimen. The results of numerous fatigue tests, made on a great
variety of materials and structural components, have been reported in
the engineering literature.

Typical S-N diagrams for steel and aluminum are shown in Fig. 2-59.
The ordinate is the failure stress, expressed as a percentage of the
ultimate stress for the material, and the abscissa is the number of cycles
at which failure occurred. Note that the number of cycles is plotted on a
logarithmic scale. The curve for steel becomes horizontal at about 10’
cycles, and the fatigue limit is about 50% of the ultimate tensile stress
for ordinary static loading. The fatigue limit for aluminum is not as

100 -

_ 80
Failure stress
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tensile stress)
40
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clearly defined as that for steel, but a typical value of the fatigue limit is
the stress at 5x 108 cycles, or about 25% of the ultimate stress.

Since fatigue failures usually begin with a microscopic crack at a point
of high localized stress (that is, at a stress concentration), the condition
of the surface of the material is extremely important. Highly polished
specimens have higher endurance limits. Rough surfaces, especially those
at stress concentrations around holes or grooves, greatly lower the
endurance limit. Corrosion, which creates tiny surface irregularities, has a
similar effect. For steel, ordinary corrosion may reduce the fatigue limit by
more than 50%.

*2.10 STRESS CONCENTRATIONS

S
I
\

o
—

FIG. 2-60 Stress distributions near the end
of a bar of rectangular cross section
(width b, thickness t) subjected to a
concentrated load P acting over a

small area

When determining the stresses in axially loaded bars, we customarily
use the basic formula o = P/A, in which P is the axial force in the bar
and A is its cross-sectional area. This formula is based upon the assump-
tion that the stress distribution is uniform throughout the cross section.
In reality, bars often have holes, grooves, notches, keyways, shoulders,
threads, or other abrupt changes in geometry that create a disruption in
the otherwise uniform stress pattern. These discontinuities in geometry
cause high stresses in very small regions of the bar, and these high
stresses are known as stress concentrations. The discontinuities them-
selves are known as stress raisers.

Stress concentrations also appear at points of loading. For instance,
a load may act over a very small area and produce high stresses in the
region around its point of application. An example is a load applied
through a pin connection, in which case the load is applied over the
bearing area of the pin.

The stresses existing at stress concentrations can be determined
either by experimental methods or by advanced methods of analysis,
including the finite-element method. The results of such research for
many cases of practical interest are readily available in the engineering
literature (for example, Ref. 2-9). Some typical stress-concentration data
are given later in this section and also in Chapters 3 and 5.

Saint-Venant’s Principle

To illustrate the nature of stress concentrations, consider the stresses in a
bar of rectangular cross section (width b, thickness t) subjected to a
concentrated load P at the end (Fig. 2-60). The peak stress directly
under the load may be several times the average stress P/bt, depending
upon the area over which the load is applied. However, the maximum
stress diminishes rapidly as we move away from the point of load
application, as shown by the stress diagrams in the figure. At a distance
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FIG. 2-61 Illustration of Saint-Venant’s
principle: (a) system of concentrated
loads acting over a small region of a bar,
and (b) statically equivalent system
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from the end of the bar equal to the width b of the bar, the stress distri-
bution is nearly uniform, and the maximum stress is only a few percent
larger than the average stress. This observation is true for most stress
concentrations, such as holes and grooves.

Thus, we can make a general statement that the equation o = P/A
gives the axial stresses on a cross section only when the cross section is
at least a distance b away from any concentrated load or discontinuity in
shape, where b is the largest lateral dimension of the bar (such as the
width or diameter).

The preceding statement about the stresses in a prismatic bar is part
of a more general observation known as Saint-Venant’s principle.
With rare exceptions, this principle applies to linearly elastic bodies of
all types. To understand Saint-Venant’s principle, imagine that we have
a body with a system of loads acting over a small part of its surface. For
instance, suppose we have a prismatic bar of width b subjected to a
system of several concentrated loads acting at the end (Fig. 2-61a). For
simplicity, assume that the loads are symmetrical and have only a
vertical resultant.

Next, consider a different but statically equivalent load system acting
over the same small region of the bar. (“Statically equivalent” means the
two load systems have the same force resultant and same moment resultant.)
For instance, the uniformly distributed load shown in Fig. 2-61b is
statically equivalent to the system of concentrated loads shown in
Fig. 2-61a. Saint-Venant’s principle states that the stresses in the body
caused by either of the two systems of loading are the same, provided we
move away from the loaded region a distance at least equal to the largest

N

b b
4\/- _—/\/-
@) (b)
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FIG. 2-62 Stress distribution in a flat bar
with a circular hole

dimension of the loaded region (distance b in our example). Thus, the
stress distributions shown in Fig. 2-60 are an illustration of Saint-Venant’s
principle. Of course, this “principle” is not a rigorous law of mechanics but
is a common-sense observation based upon theoretical and practical
experience.

Saint-Venant’s principle has great practical significance in the design
and analysis of bars, beams, shafts, and other structures encountered in
mechanics of materials. Because the effects of stress concentrations are
localized, we can use all of the standard stress formulas (such as o- = P/A)
at cross sections a sufficient distance away from the source of the
concentration. Close to the source, the stresses depend upon the details
of the loading and the shape of the member. Furthermore, formulas that
are applicable to entire members, such as formulas for elongations,
displacements, and strain energy, give satisfactory results even when
stress concentrations are present. The explanation lies in the fact that
stress concentrations are localized and have little effect on the overall
behavior of a member.*

Stress-Concentration Factors

Now let us consider some particular cases of stress concentrations
caused by discontinuities in the shape of a bar. We begin with a bar of
rectangular cross section having a circular hole and subjected to a tensile
force P (Fig. 2-62a). The bar is relatively thin, with its width b being
much larger than its thickness t. Also, the hole has diameter d.

c/2
. ORI
c/2

@)

W

(b)

Omax

=N
?

*Saint-Venant’s principle is named for Barré de Saint-Venant (1797-1886), a famous
French mathematician and elastician (Ref. 2-10). It appears that the principle applies
generally to solid bars and beams but not to all thin-walled open sections. For a discus-
sion of the limitations of Saint-Venant’s principle, see Ref. 2-11.
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FIG. 2-63 Stress-concentration factor K
for flat bars with circular holes
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The normal stress acting on the cross section through the center
of the hole has the distribution shown in Fig. 2-62b. The maximum
stress omax OCcurs at the edges of the hole and may be significantly
larger than the nominal stress o = P/ct at the same cross section. (Note
that ct is the net area at the cross section through the hole.) The intensity
of a stress concentration is usually expressed by the ratio of the
maximum stress to the nominal stress, called the stress-concentration
factor K:

K = e (2-67)

Ohom

For a bar in tension, the nominal stress is the average stress based upon
the net cross-sectional area. In other cases, a variety of stresses may be
used. Thus, whenever a stress concentration factor is used, it is important
to note carefully how the nominal stress is defined.

A graph of the stress-concentration factor K for a bar with a hole is
given in Fig. 2-63. If the hole is tiny, the factor K equals 3, which means
that the maximum stress is three times the nominal stress. As the hole
becomes larger in proportion to the width of the bar, K becomes smaller
and the effect of the concentration is not as severe.

From Saint-Venant’s principle we know that, at distances equal to
the width b of the bar away from the hole in either axial direction, the
stress distribution is practically uniform and equal to P divided by the
gross cross-sectional area (o = P/bt).
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FIG.2-64 Stress-concentration factor K
for flat bars with shoulder fillets. The
dashed line is for a full quarter-circular
fillet.

FIG. 2-65 Stress-concentration factor K
for round bars with shoulder fillets. The
dashed line is for a full quarter-circular
fillet.

Stress-concentration factors for two other cases of practical interest
are given in Figs. 2-64 and 2-65. These graphs are for flat bars and
circular bars, respectively, that are stepped down in size, forming a
shoulder. To reduce the stress-concentration effects, fillets are used to
round off the re-entrant corners.* Without the fillets, the stress-concen-
tration factors would be extremely large, as indicated at the left-hand
side of each graph where K approaches infinity as the fillet radius R
approaches zero. In both cases the maximum stress occurs in the smaller
part of the bar in the region of the fillet.**
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D

*A fillet is a curved concave surface formed where two other surfaces meet. Its purpose
is to round off what would otherwise be a sharp re-entrant corner.

**The stress-concentration factors given in the graphs are theoretical factors for bars of
linearly elastic material. The graphs are plotted from the formulas given in Ref. 2-9.
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Designing for Stress Concentrations

Because of the possibility of fatigue failures, stress concentrations are
especially important when the member is subjected to repeated loading.
As explained in the preceding section, cracks begin at the point of
highest stress and then spread gradually through the material as the load
is repeated. In practical design, the fatigue limit (Fig. 2-58) is considered
to be the ultimate stress for the material when the number of cycles is
extremely large. The allowable stress is obtained by applying a factor of
safety with respect to this ultimate stress. Then the peak stress at the
stress concentration is compared with the allowable stress.

In many situations the use of the full theoretical value of the stress-
concentration factor is too severe. Fatigue tests usually produce failure
at higher levels of the nominal stress than those obtained by dividing the
fatigue limit by K. In other words, a structural member under repeated
loading is not as sensitive to a stress concentration as the value of K
indicates, and a reduced stress-concentration factor is often used.

Other kinds of dynamic loads, such as impact loads, also require
that stress-concentration effects be taken into account. Unless better
information is available, the full stress-concentration factor should be
used. Members subjected to low temperatures also are highly susceptible
to failures at stress concentrations, and therefore special precautions
should be taken in such cases.

The significance of stress concentrations when a member is
subjected to static loading depends upon the kind of material. With
ductile materials, such as structural steel, a stress concentration can
often be ignored. The reason is that the material at the point of
maximum stress (such as around a hole) will yield and plastic flow
will occur, thus reducing the intensity of the stress concentration and
making the stress distribution more nearly uniform. On the other hand,
with brittle materials (such as glass) a stress concentration will remain
up to the point of fracture. Therefore, we can make the general
observation that with static loads and a ductile material the stress-
concentration effect is not likely to be important, but with static loads
and a brittle material the full stress-concentration factor should be
considered.

Stress concentrations can be reduced in intensity by properly
proportioning the parts. Generous fillets reduce stress concentrations at
re-entrant corners. Smooth surfaces at points of high stress, such as on
the inside of a hole, inhibit the formation of cracks. Proper reinforcing
around holes can also be beneficial. There are many other techniques for
smoothing out the stress distribution in a structural member and thereby
reducing the stress-concentration factor. These techniques, which are
usually studied in engineering design courses, are extremely important
in the design of aircraft, ships, and machines. Many unnecessary struc-
tural failures have occurred because designers failed to recognize the
effects of stress concentrations and fatigue.
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*2.11 NONLINEAR BEHAVIOR
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FIG. 2-66 Types of idealized material
behavior: (a) elastic-nonlinear
stress-strain curve, (b) general
nonlinear stress-strain curve, (c)
elastoplastic stress-strain curve,

and (d) bilinear stress-strain curve

Up to this point, our discussions have dealt primarily with members and
structures composed of materials that follow Hooke’s law. Now we will
consider the behavior of axially loaded members when the stresses exceed
the proportional limit. In such cases the stresses, strains, and displace-
ments depend upon the shape of the stress-strain curve in the region
beyond the proportional limit (see Section 1.3 for some typical stress-
strain diagrams).

Nonlinear Stress-Strain Curves

For purposes of analysis and design, we often represent the actual stress-strain
curve of a material by an idealized stress-strain curve that can be expressed
as a mathematical function. Some examples are shown in Fig. 2-66. The
first diagram (Fig. 2-66a) consists of two parts, an initial linearly elastic
region followed by a nonlinear region defined by an appropriate mathematical
expression. The behavior of aluminum alloys can sometimes be represented
quite accurately by a curve of this type, at least in the region before the strains
become excessively large (compare Fig. 2-66a with Fig. 1-13).

In the second example (Fig. 2-66b), a single mathematical expres-
sion is used for the entire stress-strain curve. The best known expression
of this kind is the Ramberg-Osgood stress-strain law, which is described
later in more detail (see Eqgs. 2-70 and 2-71).

o ag
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oyt-----
1
!
fi/LlnearIy elastic l——Linearly elastic
1
1
0 €y € (0] e
(c) (d)

The stress-strain diagram frequently used for structural steel is shown in
Fig. 2-66¢. Because steel has a linearly elastic region followed by a region
of considerable yielding (see the stress-strain diagrams of Figs. 1-10 and
1-12), its behavior can be represented by two straight lines. The material is
assumed to follow Hooke’s law up to the yield stress oy, after which it
yields under constant stress, the latter behavior being known as perfect
plasticity. The perfectly plastic region continues until the strains are 10 or
20 times larger than the yield strain. A material having a stress-strain
diagram of this kind is called an elastoplastic material (or elastic-plastic
material).
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FIG. 2-67 Change in length of a tapered
bar consisting of a material having a
nonlinear stress-strain curve
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Eventually, as the strain becomes extremely large, the stress-strain
curve for steel rises above the yield stress due to strain hardening, as
explained in Section 1.3. However, by the time strain hardening begins,
the displacements are so large that the structure will have lost its useful-
ness. Consequently, it is common practice to analyze steel structures on
the basis of the elastoplastic diagram shown in Fig. 2-66¢, with the same
diagram being used for both tension and compression. An analysis made
with these assumptions is called an elastoplastic analysis, or simply,
plastic analysis, and is described in the next section.

Figure 2-66d shows a stress-strain diagram consisting of two lines
having different slopes, called a bilinear stress-strain diagram. Note
that in both parts of the diagram the relationship between stress and
strain is linear, but only in the first part is the stress proportional to the
strain (Hooke’s law). This idealized diagram may be used to represent
materials with strain hardening or it may be used as an approximation to
diagrams of the general nonlinear shapes shown in Figs. 2-66a and b.

Changes in Lengths of Bars

The elongation or shortening of a bar can be determined if the stress-strain
curve of the material is known. To illustrate the general procedure, we
will consider the tapered bar AB shown in Fig. 2-67a. Both the cross-
sectional area and the axial force vary along the length of the bar, and the
material has a general nonlinear stress-strain curve (Fig. 2-67b). Because
the bar is statically determinate, we can determine the internal axial forces
at all cross sections from static equilibrium alone. Then we can find the
stresses by dividing the forces by the cross-sectional areas, and we can

A B
—_— — —
X 1 de
L \
(@
ag
(6] €
(b)
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find the strains from the stress-strain curve. Lastly, we can determine the
change in length from the strains, as described in the following paragraph.

The change in length of an element dx of the bar (Fig. 2-67a) is €
dx, where € is the strain at distance x from the end. By integrating this
expression from one end of the bar to the other, we obtain the change in
length of the entire bar:

L
o= L € dx (2-68)

where L is the length of the bar. If the strains are expressed analytically,
that is, by algebraic formulas, it may be possible to integrate Eq. (2-68)
by formal mathematical means and thus obtain an expression for the
change in length. If the stresses and strains are expressed numerically,
that is, by a series of numerical values, we can proceed as follows. We
can divide the bar into small segments of length Ax, determine the
average stress and strain for each segment, and then calculate the elon-
gation of the entire bar by summing the elongations for the individual
segments. This process is equivalent to evaluating the integral in Eq.
(2-68) by numerical methods instead of by formal integration.

If the strains are uniform throughout the length of the bar, as in the
case of a prismatic bar with constant axial force, the integration of
Eq. (2-68) is trivial and the change in length is

d=¢e€L (2-69)
as expected (compare with Eq. 1-2 in Section 1.2).

Ramberg-0sgood Stress-Strain Law

Stress-strain curves for several metals, including aluminum and magnesium,
can be accurately represented by the Ramberg-Osgood equation:
m

£=Z4 a<£) (2-70)

€ 09 0o
In this equation, o and e are the stress and strain, respectively, and ey,
oo, @, and m are constants of the material (obtained from tension tests).
An alternative form of the equation is

m
=24 D% <i> (2-71)
E E 0p
in which E=o0y/¢€ is the modulus of elasticity in the initial part of the
stress-strain curve.*
A graph of Eq. (2-71) is given in Fig. 2-68 for an aluminum
alloy for which the constants are as follows: E = 10 X 10° psi,

*The Ramberg-Osgood stress-strain law was presented in Ref. 2-12.
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FIG. 2-68 Stress-strain curve for an
aluminum alloy using the Ramberg-
Osgood equation (Eq. 2-72)
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oo = 38,000 psi, « = 3/7, and m = 10. The equation of this particular

stress-strain curve is
10
o 1 ( o ) (2-72)

€= 5 T
10 X 10>  614.0 \ 38,000

where o has units of pounds per square inch (psi).
A similar equation for an aluminum alloy, but in Sl units (E =
70 GPa, oy = 260 MPa, a = 3/7, and m = 10), is as follows:

LA 2-73
€7 70,000 " 628.2 \ 260 (2-13)
where ¢ has units of megapascals (MPa). The calculation of the change
in length of a bar, using Eq. (2-73) for the stress-strain relationship, is
illustrated in Example 2-18.

Statically Indeterminate Structures

If a structure is statically indeterminate and the material behaves
nonlinearly, the stresses, strains, and displacements can be found by
solving the same general equations as those described in Section 2.4 for
linearly elastic structures, namely, equations of equilibrium, equations of
compatibility, and force-displacement relations (or equivalent stress-strain
relations). The principal difference is that the force-displacement
relations are now nonlinear, which means that analytical solutions cannot
be obtained except in very simple situations. Instead, the equations must
be solved numerically, using a suitable computer program.
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Example 2-18

FIG.2-69 Example 2-18. Elongation of a
bar of nonlinear material using the
Ramberg-Osgood equation

A prismatic bar AB of length L = 2.2 m and cross-sectional area A = 480 mm?
supports two concentrated loads P, = 108 kN and P, = 27 kN, as shown in Fig.
2-69. The material of the bar is an aluminum alloy having a nonlinear stress-
strain curve described by the following Ramberg-Osgood equation (Eq. 2-73):

o 1 ( o )10
€= +—(Z
70,000 628.2 \ 260

in which o has units of MPa. (The general shape of this stress-strain curve is
shown in Fig. 2-68.)

Determine the displacement 8z of the lower end of the bar under each of
the following conditions: (a) the load P, acts alone, (b) the load P, acts alone,
and (c) the loads P, and P, act simultaneously.

Solution

(a) Displacement due to the load P, acting alone. The load P, produces a
uniform tensile stress throughout the length of the bar equal to P4/A, or 225
MPa. Substituting this value into the stress-strain relation gives e = 0.003589.
Therefore, the elongation of the bar, equal to the displacement at point B, is (see
Eqg. 2-69)

85 = €L = (0.003589)(2.2 m) = 7.90 mm <

(b) Displacement due to the load P, acting alone. The stress in the upper
half of the bar is P,/A or 56.25 MPa, and there is no stress in the lower half.
Proceeding as in part (a), we obtain the following elongation:

85 = eL/2 = (0.0008036)(1.1 m) = 0.884 mm <

(c) Displacement due to both loads acting simultaneously. The stress in
the lower half of the bar is P1/A and in the upper half is (P; + P,)/A. The corre-
sponding stresses are 225 MPa and 281.25 MPa, and the corresponding strains
are 0.003589 and 0.007510 (from the Ramberg-Osgood equation). Therefore, the
elongation of the bar is

8 = (0.003589)(1.1 m) + (0.007510)(L.1 m)
= 3.95mm + 8.26 mm = 12.2 mm <=

The three calculated values of &g illustrate an important principle pertaining to a
structure made of a material that behaves nonlinearly:

In a nonlinear structure, the displacement produced by two (or more) loads
acting simultaneously is not equal to the sum of the displacements produced by
the loads acting separately.
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*2.12 ELASTOPLASTIC ANALYSIS
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FIG. 2-70 ldealized stress-strain diagram
for an elastoplastic material, such as
structural steel
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FIG.2-71 Load-displacement diagram for
a prismatic bar of elastoplastic material
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FIG. 2-72 Statically determinate structure
consisting of axially loaded members

In the preceding section we discussed the behavior of structures when the
stresses in the material exceed the proportional limit. Now we will
consider a material of considerable importance in engineering design—
steel, the most widely used structural metal. Mild steel (or structural steel)
can be modeled as an elastoplastic material with a stress-strain diagram as
shown in Fig. 2-70. An elastoplastic material initially behaves in a linearly
elastic manner with a modulus of elasticity E. After plastic yielding
begins, the strains increase at a more-or-less constant stress, called the
yield stress ov. The strain at the onset of yielding is known as the yield
strain ey.

The load-displacement diagram for a prismatic bar of elastoplastic
material subjected to a tensile load (Fig. 2-71) has the same shape as the
stress-strain diagram. Initially, the bar elongates in a linearly elastic
manner and Hooke’s law is valid. Therefore, in this region of loading
we can find the change in length from the familiar formula 6 = PL/EA.
Once the yield stress is reached, the bar may elongate without an
increase in load, and the elongation has no specific magnitude. The load
at which yielding begins is called the yield load Py and the correspon-
ding elongation of the bar is called the yield displacement &,. Note that
for a single prismatic bar, the yield load Py equals ovA and the yield
displacement &y equals PyL/EA, or oy L/E. (Similar comments apply to
a bar in compression, provided buckling does not occur.)

If a structure consisting only of axially loaded members is statically
determinate (Fig. 2-72), its overall behavior follows the same pattern.
The structure behaves in a linearly elastic manner until one of its
members reaches the yield stress. Then that member will begin to elon-
gate (or shorten) with no further change in the axial load in that
member. Thus, the entire structure will yield, and its load-displacement
diagram has the same shape as that for a single bar (Fig. 2-71).

Statically Indeterminate Structures

The situation is more complex if an elastoplastic structure is statically
indeterminate. If one member yields, other members will continue to
resist any increase in the load. However, eventually enough members
will yield to cause the entire structure to yield.

To illustrate the behavior of a statically indeterminate structure, we
will use the simple arrangement shown in Fig. 2-73 on the next page.
This structure consists of three steel bars supporting a load P applied
through a rigid plate. The two outer bars have length L,, the inner
bar has length L,, and all three bars have the same cross-sectional
area A. The stress-strain diagram for the steel is idealized as shown in
Fig. 2-70, and the modulus of elasticity in the linearly elastic region
iS E = Oy /Ey.
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FIG. 2-73 Elastoplastic analysis of a
statically indeterminate structure

As is normally the case with a statically indeterminate structure, we
begin the analysis with the equations of equilibrium and compatibility.
From equilibrium of the rigid plate in the vertical direction we obtain

2F + F,=P @)

where F, and F, are the axial forces in the outer and inner bars, respectively.
Because the plate moves downward as a rigid body when the load is
applied, the compatibility equation is

&5 =8, (b)

where 8, and &, are the elongations of the outer and inner bars, respectively.
Because they depend only upon equilibrium and geometry, the two
preceding equations are valid at all levels of the load P; it does not
matter whether the strains fall in the linearly elastic region or in the
plastic region.

When the load P is small, the stresses in the bars are less than the
yield stress oy and the material is stressed within the linearly elastic
region. Therefore, the force-displacement relations between the bar
forces and their elongations are

Fily Falo
5 = — 8 =
1 EA 2 EA (©)
Substituting in the compatibility equation (Eg. b), we get

Fily = Fols (d)

Solving simultaneously Egs. (a) and (d), we obtain

PL, PL,

Fi=—"""2— Fo=——— 2-74a,b
LT 2L, T L+, (2-74a,)

Thus, we have now found the forces in the bars in the linearly elastic
region. The corresponding stresses are

_F_ PL, _ R PL,

- =T o75ap
A AL+2L) 2T AT AL 2L, &Teab)

These equations for the forces and stresses are valid provided the
stresses in all three bars remain below the yield stress o.

As the load P gradually increases, the stresses in the bars increase
until the yield stress is reached in either the inner bar or the outer bars.
Let us assume that the outer bars are longer than the inner bar, as
sketched in Fig. 2-73:

o1

Ly >L, (e)

Then the inner bar is more highly stressed than the outer bars (see Eqgs.
2-75a and b) and will reach the yield stress first. When that happens, the
force in the inner bar is F, = oy A. The magnitude of the load P when
the yield stress is first reached in any one of the bars is called the yield
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FIG. 2-74 Load-displacement diagram for
the statically indeterminate structure
shown in Fig. 2-73
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load Py. We can determine Py by setting F, equal to ov A in Eq. (2-74b)
and solving for the load:

Py = cryA(l ; —ZLLZ) (2-76)
1

As long as the load P is less than Py, the structure behaves in a linearly
elastic manner and the forces in the bars can be determined from Egs.
(2-74a and b).

The downward displacement of the rigid bar at the yield load, called
the yield displacement &y, is equal to the elongation of the inner bar
when its stress first reaches the yield stress ov:

Falo _ oalo _ oyl
EA E E

8y = (2-77)
The relationship between the applied load P and the downward displace-
ment & of the rigid bar is portrayed in the load-displacement diagram of
Fig. 2-74. The behavior of the structure up to the yield load Py is repre-
sented by line OA.

With a further increase in the load, the forces F; in the outer bars
increase but the force F, in the inner bar remains constant at the value
oy A because this bar is now perfectly plastic (see Fig. 2-71). When the
forces F, reach the value oy A, the outer bars also yield and therefore
the structure cannot support any additional load. Instead, all three bars
will elongate plastically under this constant load, called the plastic load
Pp. The plastic load is represented by point B on the load-displacement
diagram (Fig. 2-74), and the horizontal line BC represents the region of
continuous plastic deformation without any increase in the load.

The plastic load Py can be calculated from static equilibrium (Eg. a)
knowing that

Fi=ovA F2= ovA ()
Thus, from equilibrium we find
Pp = 30v A (2-78)

The plastic displacement &y at the instant the load just reaches the
plastic load Py is equal to the elongation of the outer bars at the instant
they reach the yield stress. Therefore,
Fily o1ly oyLy

Op = = = 2-79

" EA E E (2-79)
Comparing 8p with 8y, we see that in this example the ratio of the
plastic displacement to the yield displacement is

% _ Ly
5Y L2

(2-80)
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Also, the ratio of the plastic load to the yield load is

P 3L

=0 2-81
Py Lp+2L ( )

For example, if L, = 1.5L, the ratios are 6/6y = 1.5 and
Ps/Py = 9/7 = 1.29. In general, the ratio of the displacements is always
larger than the ratio of the corresponding loads, and the partially plastic
region AB on the load-displacement diagram (Fig. 2-74) always has a
smaller slope than does the elastic region OA. Of course, the fully
plastic region BC has the smallest slope (zero).

General Comments

To understand why the load-displacement graph is linear in the partially
plastic region (line AB in Fig. 2-74) and has a slope that is less than in
the linearly elastic region, consider the following. In the partially plastic
region of the structure, the outer bars still behave in a linearly elastic
manner. Therefore, their elongation is a linear function of the load.
Since their elongation is the same as the downward displacement of the
rigid plate, the displacement of the rigid plate must also be a linear
function of the load. Consequently, we have a straight line between
points A and B. However, the slope of the load-displacement diagram in
this region is less than in the initial linear region because the inner bar
yields plastically and only the outer bars offer increasing resistance to
the increasing load. In effect, the stiffness of the structure has diminished.

From the discussion associated with Eq. (2-78) we see that the
calculation of the plastic load Pp requires only the use of statics, because
all members have yielded and their axial forces are known. In contrast,
the calculation of the yield load Py requires a statically indeterminate
analysis, which means that equilibrium, compatibility, and force-
displacement equations must be solved.

After the plastic load Py is reached, the structure continues to deform
as shown by line BC on the load-displacement diagram (Fig. 2-74). Strain
hardening occurs eventually, and then the structure is able to support
additional loads. However, the presence of very large displacements
usually means that the structure is no longer of use, and so the plastic load
Pp is usually considered to be the failure load.

The preceding discussion has dealt with the behavior of a structure
when the load is applied for the first time. If the load is removed before
the yield load is reached, the structure will behave elastically and return
to its original unstressed condition. However, if the yield load is exceeded,
some members of the structure will retain a permanent set when the load
is removed, thus creating a prestressed condition. Consequently, the
structure will have residual stresses in it even though no external loads
are acting. If the load is applied a second time, the structure will behave
in a different manner.
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Example 2-19

FIG. 2-75 Example 2-19. Elastoplastic
analysis of a statically indeterminate

structure

The structure shown in Fig. 2-75a consists of a horizontal beam AB (assumed to
be rigid) supported by two identical bars (bars 1 and 2) made of an elastoplastic
material. The bars have length L and cross-sectional area A, and the material has
yield stress ov, yield strain ey, and modulus of elasticity E = oy/ey. The beam
has length 3b and supports a load P at end B.

(a) Determine the yield load Py and the corresponding yield displacement
dy at the end of the bar (point B).

(b) Determine the plastic load P and the corresponding plastic displace-
ment & at point B.

(c) Construct a load-displacement diagram relating the load P to the
displacement &g of point B.

LA P

T _6
T PP - _PY ____________ I
(:) L (:> 5IDY ______ = iB C
A l B i i
= i i
1 1
1 1
i i
b b b 0 : :
vP SY Sp = 25Y 6B
(a) (b)
Solution

Equation of equilibrium. Because the structure is statically indeterminate,
we begin with the equilibrium and compatibility equations. Considering the
equilibrium of beam AB, we take moments about point A and obtain

SMa=0  Fy(b) + Fo(2b) — P(30) = 0

in which F, and F, are the axial forces in bars 1 and 2, respectively. This equa-
tion simplifies to

Equation of compatibility. The compatibility equation is based upon the
geometry of the structure. Under the action of the load P the rigid beam rotates
about point A, and therefore the downward displacement at every point along
the beam is proportional to its distance from point A. Thus, the compatibility
equation is

8, =28 (h)
where 8, is the elongation of bar 2 and & is the elongation of bar 1.

continued
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(a) Yield load and yield displacement. When the load P is small and the
stresses in the material are in the linearly elastic region, the force-displacement
relations for the two bars are

_ FL _ Rl .
0= EA 0 = EA (i.J)

Combining these equations with the compatibility condition (Eq. h) gives

FL_,FL

EA EA or F2 = 2F1 (k)

Now substituting into the equilibrium equation (Eq. g), we find

_% &P

F
175 5

(I,m)
Bar 2, which has the larger force, will be the first to reach the yield stress. At
that instant the force in bar 2 will be F, = oy A. Substituting that value into Eq.
(m) gives the yield load Py, as follows:

_ SUyA

P
v 6

(2-82) <=m
The corresponding elongation of bar 2 (from Eq. j) is 6, = ovL/E, and there-
fore the yield displacement at point B is

&:&:?m'yL

> E (2-83) <=m

Both Py and &y are indicated on the load-displacement diagram (Fig. 2-75b).

(b) Plastic load and plastic displacement. When the plastic load Pp is
reached, both bars will be stretched to the yield stress and both forces F; and F,
will be equal to o A. It follows from equilibrium (Eq. g) that the plastic load is

Pp = (TyA (2'84) —
At this load, the left-hand bar (bar 1) has just reached the yield stress; therefore,

its elongation (from Eq. i) is 6; = oy L/E, and the plastic displacement of point B
is

S =38, = S‘EYL (2-85) <=
The ratio of the plastic load Py to the yield load Py is 6/5, and the ratio of the
plastic displacement & to the yield displacement &y is 2. These values are also
shown on the load-displacement diagram.
(c) Load-displacement diagram. The complete load-displacement behavior
of the structure is pictured in Fig. 2-75b. The behavior is linearly elastic in the
region from O to A, partially plastic from A to B, and fully plastic from B to C.
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PROBLEMS CHAPTER 2

Changes in Lengths of Axially Loaded Members

2.2-1 The T-shaped arm ABC shown in the figure lies in a
vertical plane and pivots about a horizontal pin at A. The
arm has constant cross-sectional area and total weight W.
A vertical spring of stiffness k supports the arm at point B.

Obtain a formula for the elongation & of the spring due
to the weight of the arm.

(\77
k
A B C
9 b
R R
)
PROB. 2.2-1

2.2-2 A steel cable with nominal diameter 25 mm (see
Table 2-1) is used in a construction yard to lift a bridge
section weighing 38 kN, as shown in the figure. The cable
has an effective modulus of elasticity E = 140 GPa.

(a) If the cable is 14 m long, how much will it stretch
when the load is picked up?

(b) If the cable is rated for a maximum load of 70 kN,
what is the factor of safety with respect to failure of the
cable?

A—A

PROB. 2.2-2

2.2-3 A steel wire and a copper wire have equal lengths
and support equal loads P (see figure). The moduli of
elasticity for the steel and copper are E; = 30,000 ksi and
E. = 18,000 ksi, respectively.

(a) If the wires have the same diameters, what is the
ratio of the elongation of the copper wire to the elongation
of the steel wire?

(b) If the wires stretch the same amount, what is the
ratio of the diameter of the copper wire to the diameter of
the steel wire?

PROB. 2.2-3

2.2-4 By what distance h does the cage shown in the
figure move downward when the weight W is placed
inside it? (See the figure on the next page.)

Consider only the effects of the stretching of the
cable, which has axial rigidity EA = 10,700 kN. The
pulley at A has diameter d, = 300 mm and the pulley at
B has diameter dg = 150 mm. Also, the distance L; =
4.6 m, the distance L, = 10.5 m, and the weight W =
22 kN. (Note: When calculating the length of the cable,
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156 CHAPTER 2 Axially Loaded Members

include the parts of the cable that go around the pulleys at
AandB.)

@

A9 Y

PROB. 2.2-4

2.2-5 A safety valve on the top of a tank containing steam
under pressure p has a discharge hole of diameter d (see
figure). The valve is designed to release the steam when the
pressure reaches the value ppax.

If the natural length of the spring is L and its stiffness
is k, what should be the dimension h of the valve? (Express
your result as a formula for h.)

8
E
ot _'_'_. _L\%%_' ._-l b .
o ,_,,”'-'J = kx\: \
.j/f “\\ 1 - 2
i ‘// \>‘ )
PROB. 2.2-5

2.2-6 The device shown in the figure consists of a pointer
ABC supported by a spring of stiffness k = 800 N/m. The
spring is positioned at distance b = 150 mm from the

pinned end A of the pointer. The device is adjusted so that
when there is no load P, the pointer reads zero on the

angular scale.
If the load P = 8 N, at what distance x should the load

be placed so that the pointer will read 3° on the scale?

A A B C
o =
%k
\
\

<

—] 0

—

PROB. 2.2-6

2.2-7 Two rigid bars, AB and CD, rest on a smooth hori-
zontal surface (see figure). Bar AB is pivoted end A and bar
CD is pivoted at end D. The bars are connected to each
other by two linearly elastic springs of stiffness k. Before
the load P is applied, the lengths of the springs are such
that the bars are parallel and the springs are without stress.
Derive a formula for the displacement 5c at point C
when the load P is acting. (Assume that the bars rotate
through very small angles under the action of the load P.)

AF“'@\'.-.:::-_i?{-\.b?/\b

'B

C

PROB. 2.2-7

2.2-8 The three-bar truss ABC shown in the figure has a
span L =3 m and is constructed of steel pipes having
cross-sectional area A = 3900 mm? and modulus of elas-
ticity E = 200 GPa. A load P act horizontally to the right at
joint C. (See the figure on the next page.)

(@) If P = 650 kN, what is the horizontal displacement
of joint B?
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(b) What is the maximum permissible load P, if the
displacement of joint B is limited to 1.5 mm?

PROB. 2.2-8

2.2-9 An aluminum wire having a diameter d =2 mm
and length L = 3.8 m is subjected to a tensile load P
(see figure). The aluminum has modulus of elasticity
E = 75 GPa.

If the maximum permissible elongation of the wire is
3.0 mm and the allowable stress in tension is 60 MPa, what
is the allowable load Pp,.x?

PROB. 2.2-9

2.2-10 A uniform bar AB of weight W = 25 N is
supported by two springs, as shown in the figure. The
spring on the left has stiffness k; = 300 N/m and natural
length L, = 250 mm. The corresponding quantities for the
spring on the right are k, = 400 N/m and L, = 200 mm.
The distance between the springs is L = 350 mm, and the
spring on the right is suspended from a support that is
distance h = 80 mm below the point of support for the
spring on the left.
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At what distance x from the left-hand spring should a
load P = 18 N be placed in order to bring the bar to a hori-
zontal position?

!
1
kg

Ly ky
L,

W
Al ° B

Ip
X—»‘
‘ L
PROB. 2.2-10

2.2-11 A hollow, circular, steel column (E = 30,000 ksi)
is subjected to a compressive load P, as shown in the
figure. The column has length L = 8.0 ft and outside diam-
eter d =7.5in. The load P = 85 k.

If the allowable compressive stress is 7000 psi and the
allowable shortening of the column is 0.02 in., what is the
minimum required wall thickness t;,?

PROB. 2.2-11

*2.2-12 The horizontal rigid beam ABCD is supported by
vertical bars BE and CF and is loaded by vertical forces
P, = 400 kN and P, = 360 kN acting at points A and D,
respectively (see figure on the next page). Bars BE and CF
are made of steel (E = 200 GPa) and have cross-sectional
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158 CHAPTER 2 Axially Loaded Members

areas Age = 11,100 mm? and Acg = 9,280 mm?2. The
distances between various points on the bars are shown in
the figure.

Determine the vertical displacements 64 and &p of
points A and D, respectively.

—15m—>—15m— 21m |
A CT B @ C D D
F —_
0.6m
Ele

PROB. 2.2-12

**2.2-13 A framework ABC consists of two rigid bars AB
and BC, each having length b (see the first part of the figure
below). The bars have pin connections at A, B, and C and
are joined by a spring of stiffness k. The spring is attached
at the midpoints of the bars. The framework has a pin
support at A and a roller support at C, and the bars are at an
angle « to the horizontal.

When a vertical load P is applied at joint B (see the
second part of the figure at the top of the next column) the
roller support C moves to the right, the spring is stretched,
and the angle of the bars decreases from « to the angle 6.

Determine the angle 6 and the increase & in the
distance between points A and C. (Use the following data;
b =8.0in, k=16 Ib/in, a = 45°,and P = 10 Ib.)

PROBS. 2.2-13 and 2.2-14

**2.2-14 Solve the preceding problem for the following
data: b = 200 mm, k = 3.2 KN/m, & = 45°, and P = 50 N.

Changes in Lengths Under Nonuniform Conditions

2.3-1 Calculate the elongation of a copper bar of solid
circular cross section with tapered ends when it is stretched
by axial loads of magnitude 3.0 k (see figure).

The length of the end segments is 20 in. and the length
of the prismatic middle segment is 50 in. Also, the diameters
at cross sections A, B, C, and D are 0.5, 1.0, 1.0, and 0.5 in.,
respectively, and the modulus of elasticity is 18,000 ksi.
(Hint: Use the result of Example 2-4.)

PROB. 2.3-1

2.3-2 A long, rectangular copper bar under a tensile load P
hangs from a pin that is supported by two steel posts (see
figure on the next page). The copper bar has a length of
2.0 m, a cross-sectional area of 4800 mm?, and a modulus
of elasticity E. = 120 GPa. Each steel post has a height of
0.5 m, a cross-sectional area of 4500 mm?, and a modulus
of elasticity E; = 200 GPa.

(@) Determine the downward displacement & of the
lower end of the copper bar due to a load P = 180 kN.

(b) What is the maximum permissible load P,y if the
displacement & is limited to 1.0 mm?

Copyright 2004 Thomson Learning, Inc. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



PROB. 2.3-2

2.3-3 A steel bar AD (see figure) has a cross-sectional
area of 0.40 in.? and is loaded by forces P; = 2700 Ib, P, =
1800 Ib, and P3; = 1300 Ib. The lengths of the segments of
the bararea = 60in.,b =24 in.,and ¢ = 36 in.

(@ Assuming that the modulus of elasticity E =
30 X 10° psi, calculate the change in length & of the bar.
Does the bar elongate or shorten?

(b) By what amount P should the load P5 be increased
so that the bar does not change in length when the three
loads are applied?

Py P,
B — Te—>p;
A B D
e b
PROB. 2.3-3

2.3-4 A rectangular bar of length L has a slot in the middle
half of its length (see figure). The bar has width b, thick-
ness t, and modulus of elasticity E. The slot has width b/4.

(a) Obtain a formula for the elongation 6 of the bar due
to the axial loads P.

(b) Calculate the elongation of the bar if the material is
high-strength steel, the axial stress in the middle region is
160 MPa, the length is 750 mm, and the modulus of elas-
ticity is 210 GPa.

CHAPTER 2 Problems 159

PROBS. 2.3-4 and 2.3-5

2.3-5 Solve the preceding problem if the axial stress in the
middle region is 24,000 psi, the length is 30 in., and the
modulus of elasticity is 30 X 10° psi.

2.3-6 A two-story building has steel columns AB in the
first floor and BC in the second floor, as shown in the
figure. The roof load P, equals 400 kN and the second-
floor load P, equals 720 kN. Each column has length L =
3.75 m. The cross-sectional areas of the first- and second-
floor columns are 11,000 mm? and 3,900 mm?
respectively.

(a) Assuming that E = 206 GPa, determine the total
shortening Sac of the two columns due to the combined
action of the loads P, and P».

(b) How much additional load P, can be placed at the
top of the column (point C) if the total shortening Sac is not
to exceed 4.0 mm?

P, = 400 kN
c
L=375m
P=720kN| ||
V] —%
L=375m
A

PROB. 2.3-6

2.3-7 A steel bar 8.0 ft long has a circular cross section of
diameter d; = 0.75 in. over one-half of its length and diam-
eter d, = 0.5 in. over the other half (see figure on the next
page). The modulus of elasticity E = 30 X 10° psi.

(@) How much will the bar elongate under a tensile
load P = 5000 Ib?
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160 CHAPTER 2 Axially Loaded Members

(b) If the same volume of material is made into a bar
of constant diameter d and length 8.0 ft, what will be the
elongation under the same load P?

ldl =0.75in. ldz =0.50in.
o —
; f
4.0 ft 4.0 ft 4"
PROB. 2.3-7

2.3-8 A bar ABC of length L consists of two parts of equal
lengths but different diameters (see figure). Segment AB
has diameter d; = 100 mm and segment BC has diameter
d, = 60 mm. Both segments have length L/2 = 0.6 m. A
longitudinal hole of diameter d is drilled through segment
AB for one-half of its length (distance L/4 = 0.3 m).
The bar is made of plastic having modulus of elasticity
E = 4.0 GPa. Compressive loads P = 110 kN act at the
ends of the bar.

If the shortening of the bar is limited to 8.0 mm, what
is the maximum allowable diameter dax Of the hole?

A B O
T i : ¢
s J—
el /S T
LL I L ‘
4 \ \ 2 \
PROB. 2.3-8

2.3-9 A wood pile, driven into the earth, supports a load P
entirely by friction along its sides (see figure). The friction
force f per unit length of pile is assumed to be uniformly
distributed over the surface of the pile. The pile has length
L, cross-sectional area A, and modulus of elasticity E.

(a) Derive a formula for the shortening & of the pile in
terms of P, L, E, and A.

(b) Draw a diagram showing how the compressive
stress o, varies throughout the length of the pile.

—
— - —— — —> O [|e——
I

PROB. 2.3-9

2.3-10 A prismatic bar AB of length L, cross-sectional
area A, modulus of elasticity E, and weight W hangs verti-
cally under its own weight (see figure).

(a) Derive a formula for the downward displacement
8¢ of point C, located at distance h from the lower end of
the bar.

(b) What is the elongation &g of the entire bar?

(c) What is the ratio B of the elongation of the upper
half of the bar to the elongation of the lower half of the
bar?

_C
]
T
B
PROB. 2.3-10

*2.3-11 A flat bar of rectangular cross section, length L,
and constant thickness t is subjected to tension by forces P
(see figure on the next page). The width of the bar varies
linearly from b, at the smaller end to b, at the larger end.
Assume that the angle of taper is small.

(a) Derive the following formula for the elongation of
the bar:

PL b,
§=—————In-2
Et(b, — by) " bs
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(b) Calculate the elongation, assuming L = 5 ft,
t=10in,P =25k, by = 40 in., b, = 6.0 in, and
E = 30 X 10° psi.

PROB. 2.3-11

*2.3-12 A post AB supporting equipment in a laboratory
is tapered uniformly throughout its height H (see figure).
The cross sections of the post are square, with dimensions
b X b at the top and 1.5b X 1.5b at the base.

Derive a formula for the shortening & of the post due
to the compressive load P acting at the top. (Assume that
the angle of taper is small and disregard the weight of the

post itself.)
/lp\

A
[A] I
o)
H
B Il.Sb
1.5b
PROB. 2.3-12
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*2.3-13 A long, slender bar in the shape of a right circular
cone with length L and base diameter d hangs vertically
under the action of its own weight (see figure). The weight
of the cone is W and the modulus of elasticity of the material
is E.

Derive a formula for the increase 6 in the length of the
bar due to its own weight. (Assume that the angle of taper
of the cone is small.)

d
/]

PROB. 2.3-13

**2.3-14 A bar ABC revolves in a horizontal plane about
a vertical axis at the midpoint C (see figure). The bar,
which has length 2L and cross-sectional area A, revolves at
constant angular speed w. Each half of the bar (AC and BC)
has weight W, and supports a weight W, at its end.

Derive the following formula for the elongation of
one-half of the bar (that is, the elongation of either AC or
BC):

L2e?
5 3gEA (W, + 3W,)

in which E is the modulus of elasticity of the material of the
bar and g is the acceleration of gravity.

wE W e w

L J L
[ [

PROB. 2.3-14

w
A C B
AR 3
| "
|
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162 CHAPTER 2 Axially Loaded Members

**2.3-15 The main cables of a suspension bridge [see
part (a) of the figure] follow a curve that is nearly parabolic
because the primary load on the cables is the weight of
the bridge deck, which is uniform in intensity along the
horizontal. Therefore, let us represent the central region
AOB of one of the main cables [see part (b) of the figure] as
a parabolic cable supported at points A and B and carrying
a uniform load of intensity g along the horizontal. The span
of the cable is L, the sag is h, the axial rigidity is EA, and
the origin of coordinates is at midspan.

(a) Derive the following formula for the elongation of
cable AOB shown in part (b) of the figure:
g3 16h?

1+ e

5_

~ 8hEA )

(b) Calculate the elongation & of the central span of
one of the main cables of the Golden Gate Bridge, for
which the dimensions and properties are L = 4200 ft, h =
470 ft, g = 12,700 Ib/ft, and E = 28,800,000 psi. The
cable consists of 27,572 parallel wires of diameter 0.196 in.

Hint: Determine the tensile force T at any point in the
cable from a free-body diagram of part of the cable; then
determine the elongation of an element of the cable of
length ds; finally, integrate along the curve of the cable to
obtain an equation for the elongation é.

(@)
!
; il
%q 0 3lx
HEENEERENE

(b)

PROB. 2.3-15

Statically Indeterminate Structures

2.4-1 The assembly shown in the figure consists of a brass
core (diameter d, = 0.25 in.) surrounded by a steel shell
(inner diameter d, = 0.28 in., outer diameter d; = 0.35 in.).
A load P compresses the core and shell, which have length
L = 4.0 in. The moduli of elasticity of the brass and steel
are E, = 15 X 10° psi and Es = 30 X 10° psi, respectively.

(@) What load P will compress the assembly by 0.003
in.?

(b) If the allowable stress in the steel is 22 ksi and the
allowable stress in the brass is 16 ksi, what is the allowable
compressive load P,on? (Suggestion: Use the equations
derived in Example 2-5.)

Steel shell
Brass core

l—dy

<—d3—>

PROB. 2.4-1

2.4-2 A cylindrical assembly consisting of a brass core
and an aluminum collar is compressed by a load P (see
figure on the next page). The length of the aluminum collar
and brass core is 350 mm, the diameter of the core is
25 mm, and the outside diameter of the collar is 40 mm.
Also, the moduli of elasticity of the aluminum and brass are
72 GPa and 100 GPa, respectively.

(a) If the length of the assembly decreases by 0.1%
when the load P is applied, what is the magnitude of the
load?

(b) What is the maximum permissible load P, if the
allowable stresses in the aluminum and brass are 80 MPa
and 120 MPa, respectively? (Suggestion: Use the equations
derived in Example 2-5.)
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PROB. 2.4-2

2.4-3 Three prismatic bars, two of material A and one of
material B, transmit a tensile load P (see figure). The two
outer bars (material A) are identical. The cross-sectional
area of the middle bar (material B) is 50% larger than
the cross-sectional area of one of the outer bars. Also, the
modulus of elasticity of material A is twice that of
material B.

(a) What fraction of the load P is transmitted by the
middle bar?

(b) What is the ratio of the stress in the middle bar to
the stress in the outer bars?

(c) What is the ratio of the strain in the middle bar to
the strain in the outer bars?

PROB. 2.4-3

2.4-4 A bar ACB having two different cross-sectional
areas A; and A, is held between rigid supports at A and B
(see figure). A load P acts at point C, which is distance b,
from end A and distance b, from end B.

(a) Obtain formulas for the reactions Ry and Rg at
supports A and B, respectively, due to the load P.

CHAPTER 2 Problems 163

(b) Obtain a formula for the displacement &¢ of point C.
(c) What is the ratio of the stress o in region AC to
the stress o in region CB?

A A;
AvpC N B
=l
e

PROB. 2.4-4

2.4-5 Three steel cables jointly support a load of 12 k (see
figure). The diameter of the middle cable is 3/4 in. and the
diameter of each outer cable is 1/2 in. The tensions in the
cables are adjusted so that each cable carries one-third of
the load (i.e., 4 k). Later, the load is increased by 9 k to a
total load of 21 k.

(a) What percent of the total load is now carried by the
middle cable?

(b) What are the stresses oy and oo in the middle and
outer cables, respectively? (Note: See Table 2-1 in Section
2.2 for properties of cables.)

PROB. 2.4-5

2.4-6 A plastic rod AB of length L = 0.5 m has a diameter
d; = 30 mm (see figure on the next page). A plastic sleeve
CD of length ¢ = 0.3 m and outer diameter d, = 45 mm is
securely bonded to the rod so that no slippage can occur
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between the rod and the sleeve. The rod is made of an
acrylic with modulus of elasticity E; = 3.1 GPa and the
sleeve is made of a polyamide with E, = 2.5 GPa.

(a) Calculate the elongation & of the rod when it is
pulled by axial forces P = 12 kN.

(b) If the sleeve is extended for the full length of the
rod, what is the elongation?

(c) If the sleeve is removed, what is the elongation?

PROB. 2.4-6

2.4-7 The axially loaded bar ABCD shown in the figure is
held between rigid supports. The bar has cross-sectional
area A; from A to C and 2A; from C to D.

(a) Derive formulas for the reactions R, and Rp at the
ends of the bar.

(b) Determine the displacements 8z and &¢ at points B
and C, respectively.

(c) Draw a diagram in which the abscissa is the
distance from the left-hand support to any point in the bar
and the ordinate is the horizontal displacement & at that
point.

; Ay }.SAl
——

A B o D
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PROB. 2.4-7

2.4-8 The fixed-end bar ABCD consists of three prismatic
segments, as shown in the figure. The end segments have
cross-sectional area A; = 840 mm? and length L, = 200 mm.
The middle segment has cross-sectional area A, = 1260 mm?
and length L, = 250 mm. Loads Pg and P¢ are equal to
25.5 kN and 17.0 kN, respectively.

(a) Determine the reactions R, and Rp at the fixed
supports.

(b) Determine the compressive axial force Fgc in the
middle segment of the bar.

Ay / Ay Ay
/ Ps Pc l

A D

Ly Lo Ly

PROB. 2.4-8

2.4-9 The aluminum and steel pipes shown in the figure
are fastened to rigid supports at ends A and B and to a rigid
plate C at their junction. The aluminum pipe is twice as
long as the steel pipe. Two equal and symmetrically placed
loads P act on the plate at C.

(a) Obtain formulas for the axial stresses o, and o5 in
the aluminum and steel pipes, respectively.

(b) Calculate the stresses for the following data: P = 12 k,
cross-sectional area of aluminum pipe A, = 8.92 in., cross-
sectional area of steel pipe A; = 1.03 in2, modulus of
elasticity of aluminum E, = 10 X 10° psi, and modulus of
elasticity of steel E; = 29 X 10° psi.

Al .
i E/Steel pipe
L it
Pl ! lP
—
Cli :
oL i i Aluminum
i i Pipe
B ! !

PROB. 2.4-9

2.4-10 A rigid bar of weight W = 800 N hangs from three
equally spaced vertical wires, two of steel and one of
aluminum (see figure on the next page). The wires also support
a load P acting at the midpoint of the bar. The diameter of the
steel wires is 2 mm, and the diameter of the aluminum wire is
4 mm.
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What load Pow Can be supported if the allowable
stress in the steel wires is 220 MPa and in the aluminum
wire is 80 MPa? (Assume Es = 210 GPa and E, = 70 GPa.)

Rigid bar
/of weight W

PROB. 2.4-10

2.4-11 A bimetallic bar (or composite bar) of square cross
section with dimensions 2b X 2b is constructed of two
different metals having moduli of elasticity E; and E, (see
figure). The two parts of the bar have the same cross-
sectional dimensions. The bar is compressed by forces P
acting through rigid end plates. The line of action of the
loads has an eccentricity e of such magnitude that each part
of the bar is stressed uniformly in compression.

(a) Determine the axial forces P, and P, in the two
parts of the bar.

(b) Determine the eccentricity e of the loads.

(c) Determine the ratio o4/o» of the stresses in the two
parts of the bar.

=
P_L K b | P
eT 2 b Te
=

b
Ib

<20

PROB. 2.4-11

2.4-12 A circular steel bar ABC (E = 200 GPa) has cross-
sectional area A; from A to B and cross-sectional area A,
from B to C (see figure). The bar is supported rigidly at end
A and is subjected to a load P equal to 40 kN at end C. A
circular steel collar BD having cross-sectional area As
supports the bar at B. The collar fits snugly at B and D
when there is no load.
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Determine the elongation Sac of the bar due to the
load P. (Assume L; = 2L = 250 mm, L, = 225 mm, A, =
2A; = 960 mm?, and A, = 300 mm2.)

A
Ly
B
: !
A3 3
D l L,
\r

e
P
PROB. 2.4-12

*2.4-13 A horizontal rigid bar of weight W = 7200 Ib is
supported by three slender circular rods that are equally
spaced (see figure). The two outer rods are made of
aluminum (E; = 10 X 10° psi) with diameter d; = 0.4 in.
and length Ly = 40 in. The inner rod is magnesium
(E, = 6.5 X 10° psi) with diameter d, and length L,. The
allowable stresses in the aluminum and magnesium are
24,000 psi and 13,000 psi, respectively.

If it is desired to have all three rods loaded to their
maximum allowable values, what should be the diameter d,
and length L, of the middle rod?

o
= o= 5
dy
L,
di, o N Jl Ly
11 11 11

W = weight of rigid bar

PROB. 2.4-13
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*2.4-14 A rigid bar ABCD is pinned at point B and
supported by springs at A and D (see figure). The springs
at A and D have stiffnesses k; = 10 kKN/m and k, =
25 kN/m, respectively, and the dimensions a, b, and c are
250 mm, 500 mm, and 200 mm, respectively. A load P
acts at point C.

If the angle of rotation of the bar due to the action of
the load P is limited to 3°, what is the maximum permis-
sible load Pyax?

| a=250 mm b =500 mm \
Al B C I3
8\
_&_
¢ =200 mm‘
ko =25 kN/m
k; = 10 KN/m
PROB. 2.4-14

**2.4-15 A rigid bar AB of length L = 66 in. is hinged to a
support at A and supported by two vertical wires attached at
points C and D (see figure). Both wires have the same cross-
sectional area (A = 0.0272 in.?) and are made of the same
material (modulus E = 30 X 10° psi). The wire at C
has length h = 18 in. and the wire at D has length twice
that amount. The horizontal distances are ¢ = 20 in. and
d=50in.

(a) Determine the tensile stresses oc and op in the
wires due to the load P = 170 Ib acting at end B of the bar.

(b) Find the downward displacement &g at end B of the
bar.

—x 2h
i
h
2 A C ! D B
[
4;044
d vP
L

PROB. 2.4-15

**2.4-16 A trimetallic bar is uniformly compressed by an
axial force P = 40 kN applied through a rigid end plate
(see figure). The bar consists of a circular steel core
surrounded by brass and copper tubes. The steel core has
diameter 30 mm, the brass tube has outer diameter 45 mm,
and the copper tube has outer diameter 60 mm. The
corresponding moduli of elasticity are E; = 210 GPa,
Ep = 100 GPa, and E. = 120 GPa.

Calculate the compressive stresses os, oy, and o, in the
steel, brass, and copper, respectively, due to the force P.

/l:: 40 kN Copper tube ,Brass tube

N Steel core

30
mm

45
mm

\AﬁF\ 60

mm

PROB. 2.4-16

Thermal Effects

2.5-1 The rails of a railroad track are welded together at
their ends (to form continuous rails and thus eliminate the
clacking sound of the wheels) when the temperature is
60°F.

What compressive stress o is produced in the rails
when they are heated by the sun to 120°F if the coefficient
of thermal expansion & = 6.5 X 10%°F and the modulus
of elasticity E = 30 X 10° psi?

2.5-2 An aluminum pipe has a length of 60 m at a
temperature of 10°C. An adjacent steel pipe at the same
temperature is 5 mm longer than the aluminum pipe.

At what temperature (degrees Celsius) will the
aluminum pipe be 15 mm longer than the steel pipe?
(Assume that the coefficients of thermal expansion of
aluminum and steel are a, = 23 X 10°%°C and
as = 12 X 107%/°C, respectively.)
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2.5-3 A rigid bar of weight W = 750 Ib hangs from three
equally spaced wires, two of steel and one of aluminum
(see figure). The diameter of the wires is 1/8 in. Before
they were loaded, all three wires had the same length.

What temperature increase AT in all three wires will
result in the entire load being carried by the steel wires?
(Assume Eq = 30 X 10° psi, as = 6.5 X 10 %°F, and a, =
12 X 107°%°F.)

L ]

W=750Ib

Y

PROB. 2.5-3

2.5-4 A steel rod of diameter 15 mm is held snugly (but
without any initial stresses) between rigid walls by the
arrangement shown in the figure.

Calculate the temperature drop AT (degrees Celsius) at
which the average shear stress in the 12-mm diameter bolt
becomes 45 MPa. (For the steel rod, use a = 12 X 107%/°C
and E = 200 GPa.)

12 mm diameter bolt

15 mm

PROB. 2.5-4

2.5-5 A bar AB of length L is held between rigid supports
and heated nonuniformly in such a manner that the temper-
ature increase AT at distance x from end A is given by the
expression AT = ATgx®/L3, where ATg is the increase in
temperature at end B of the bar (see figure).

Derive a formula for the compressive stress oy in the
bar. (Assume that the material has modulus of elasticity E
and coefficient of thermal expansion «.)
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AT
AT B

PROB. 2.5-5

2.5-6 A plastic bar ACB having two different solid circular
cross sections is held between rigid supports as shown in
the figure. The diameters in the left- and right-hand parts
are 50 mm and 75 mm, respectively. The corresponding
lengths are 225 mm and 300 mm. Also, the modulus of
elasticity E is 6.0 GPa, and the coefficient of thermal
expansion « is 100 X 107 %°C. The bar is subjected to a
uniform temperature increase of 30°C.

Calculate the following quantities: (a) the compressive
force P in the bar; (b) the maximum compressive stress o;
and (c) the displacement ¢ of point C.

A LSOmm C i75mm B

|
f f

‘9225 mm—«——-300 mm——>|

PROB. 2.5-6

2.5-7 A circular steel rod AB (diameter d; = 1.0 in., length
L, = 3.0 ft) has a bronze sleeve (outer diameter d, =
1.25 in., length L, = 1.0 ft) shrunk onto it so that the two
parts are securely bonded (see figure).

Calculate the total elongation 6 of the steel bar due to a
temperature rise AT = 500°F. (Material properties are as
follows: for steel, E; = 30 X 10° psi and as = 6.5 X 10~ °/°F;
for bronze, E, = 15 X 10° psi and a, = 11 X 107 5/°F.)

d; dp
—
I |

Ly

PROB. 2.5-7
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2.5-8 A brass sleeve S is fitted over a steel bolt B (see
figure), and the nut is tightened until it is just snug. The bolt
has a diameter dg = 25 mm, and the sleeve has inside and
outside diameters d; =26 mm and d, = 36 mm, respec-
tively.

Calculate the temperature rise AT that is required to
produce a compressive stress of 25 MPa in the sleeve.
(Use material properties as follows: for the sleeve, as =
21 X 107%°C and E5 = 100 GPa; for the bolt, ag = 10 X
107%°C and Eg = 200 GPa.) (Suggestion: Use the results
of Example 2-8.)

df dy Sleeve (S)
ds
i |
o I
{ |
I Bolt (B)

PROB. 2.5-8

2.5-9 Rectangular bars of copper and aluminum are held
by pins at their ends, as shown in the figure. Thin spacers
provide a separation between the bars. The copper bars
have cross-sectional dimensions 0.5 in. X 2.0 in., and the
aluminum bar has dimensions 1.0 in. X 2.0 in.

Determine the shear stress in the 7/16 in. diameter
pins if the temperature is raised by 100°F. (For copper,
E. = 18,000 ksi and o, = 9.5 X 10~ 8/°F; for aluminum,
E. = 10,000 ksi and a;, = 13 X 10~®°F.) Suggestion: Use
the results of Example 2-8.

Lk Copper bar\ Lk

2 Aluminum bar 2

in Copper bar" th
PROB. 2.5-9

*2.5-10 A rigid bar ABCD is pinned at end A and
supported by two cables at points B and C (see figure). The
cable at B has nominal diameter dg = 12 mm and the cable
at C has nominal diameter dc = 20 mm. A load P acts at
end D of the bar.

What is the allowable load P if the temperature rises
by 60°C and each cable is required to have a factor of
safety of at least 5 against its ultimate load?

(Note: The cables have effective modulus of elasticity
E = 140 GPa and coefficient of thermal expansion @ =
12 X 10~ C. Other properties of the cables can be found
in Table 2-1, Section 2.2.)

A B C D
o) 0
ey bﬂl

PROB. 2.5-10

*2.5-11 A rigid triangular frame is pivoted at C and held
by two identical horizontal wires at points A and B (see
figure). Each wire has axial rigidity EA = 120 k and coeffi-
cient of thermal expansion a = 12.5 X 10 5/°F.

(a) If a vertical load P = 500 Ib acts at point D, what
are the tensile forces T, and Tg in the wires at A and B,
respectively?

(b) If, while the load P is acting, both wires have their
temperatures raised by 180°F, what are the forces T, and Tg?

(c) What further increase in temperature will cause the
wire at B to become slack?

PROB. 2.5-11

Misfits and Prestrains

2.5-12 A steel wire AB is stretched between rigid supports
(see figure). The initial prestress in the wire is 42 MPa
when the temperature is 20° C.

(a) What is the stress o in the wire when the tempera-
ture drops to 0°C?
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(b) At what temperature T will the stress in the wire
become zero? (Assume @ = 14 X 107°%°C and E = 200

GPa.)
':; : I ‘
Steel wire j

PROB. 2.5-12

2.5-13 A copper bar AB of length 25 in. is placed in
position at room temperature with a gap of 0.008 in.
between end A and a rigid restraint (see figure).

Calculate the axial compressive stress o in the bar if
the temperature rises 50°F. (For copper, use @ = 9.6 X
10"%°Fand E = 16 X 10° psi.)

0.008 ii

A

25in.

PROB. 2.5-13

2.5-14 A bar AB having length L and axial rigidity EA is
fixed at end A (see figure). At the other end a small gap of
dimension s exists between the end of the bar and a rigid
surface. A load P acts on the bar at point C, which is two-
thirds of the length from the fixed end.

If the support reactions produced by the load P are to
be equal in magnitude, what should be the size s of the

gap?
2L . L S
3 3° [
A C B
— \
P
PROB. 2.5-14

2.5-15 Wires B and C are attached to a support at the left-
hand end and to a pin-supported rigid bar at the right-hand
end (see figure). Each wire has cross-sectional area A =
0.03 in.2 and modulus of elasticity E = 30 X 10° psi. When
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the bar is in a vertical position, the length of each wire is
L = 80 in. However, before being attached to the bar, the
length of wire B was 79.98 in. and of wire C was 79.95 in.

Find the tensile forces Tg and T¢ in the wires under the
action of a force P = 700 Ib acting at the upper end of the
bar.

700 Ib

B b
G
C b
le:
b
| 80 in. }

PROB. 2.5-15

2.5-16 A rigid steel plate is supported by three posts of high-
strength concrete each having an effective cross-sectional
area A = 40,000 mm? and length L = 2 m (see figure).
Before the load P is applied, the middle post is shorter than
the others by an amount s = 1.0 mm.

Determine the maximum allowable load P, 0. if the
allowable compressive stress in the concrete is gujjow =
20 MPa. (Use E = 30 GPa for concrete.)

‘ w (€& ]

1

PROB. 2.5-16

2.5-17 A copper tube is fitted around a steel bolt and the
nut is turned until it is just snug (see figure on the next
page). What stresses o and o, will be produced in the steel
and copper, respectively, if the bolt is now tightened by a
quarter turn of the nut?
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The copper tube has length L =16 in. and cross-
sectional area A.=0.6 in2 and the steel bolt has
cross-sectional area A; = 0.2 in.2 The pitch of the threads
of the bolt is p = 52 mils (a mil is one-thousandth of an
inch). Also, the moduli of elasticity of the steel and copper
are Eg = 30 X 10° psi and E, = 16 X 10° psi, respectively.

Note: The pitch of the threads is the distance advanced
by the nut in one complete turn (see Eq. 2-22).

Copper tube

| =,

Steel bolt

PROB. 2.5-17

2.5-18 A plastic cylinder is held snugly between a rigid
plate and a foundation by two steel bolts (see figure).

Determine the compressive stress oy in the plastic
when the nuts on the steel bolts are tightened by one
complete turn.

Data for the assembly are as follows: length L =
200 mm, pitch of the bolt threads p = 1.0 mm, modulus of
elasticity for steel E; = 200 GPa, modulus of elasticity for
the plastic E, = 7.5 GPa, cross-sectional area of one bolt
As = 36.0 mm? and cross-sectional area of the plastic
cylinder A, = 960 mm?.

Hh =

PROBS. 2.5-18 and 2.5-19

2.5-19 Solve the preceding problem if the data for the
assembly are as follows: length L = 10 in., pitch of the
bolt threads p = 0.058 in., modulus of elasticity for
steel E5 = 30 X 108 psi, modulus of elasticity for the plastic
Ep = 500 ksi, cross-sectional area of one bolt A=
0.06 in.2, and cross-sectional area of the plastic cylinder
A, =15in?

2.5-20 Prestressed concrete beams are sometimes manu-
factured in the following manner. High-strength steel wires
are stretched by a jacking mechanism that applies a force
Q, as represented schematically in part (a) of the figure.
Concrete is then poured around the wires to form a beam,
as shown in part (b).

After the concrete sets properly, the jacks are released
and the force Q is removed [see part (c) of the figure].
Thus, the beam is left in a prestressed condition, with the
wires in tension and the concrete in compression.

Let us assume that the prestressing force Q produces in
the steel wires an initial stress oy = 620 MPa. If the moduli
of elasticity of the steel and concrete are in the ratio 12:1
and the cross-sectional areas are in the ratio 1:50, what are
the final stresses o and o in the two materials?

Steel wires
Q 4—‘: / :’—» Q
(@
Concrete
,,,,,,,,,,,,,,, ]
Qervqy | ] —> Q
(b)
(c)
PROB. 2.5-20

Stresses on Inclined Sections

2.6-1 A steel bar of rectangular cross section (1.5 in. X
2.0 in.) carries a tensile load P (see figure). The allowable
stresses in tension and shear are 15,000 psi and 7,000 psi,
respectively.

Determine the maximum permissible load Pyax.

/ 2.0in.

AT

\ 7

1.5in.
PROB. 2.6-1
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2.6-2 A circular steel rod of diameter d is subjected to a
tensile force P = 3.0 kKN (see figure). The allowable
stresses in tension and shear are 120 MPa and 50 MPa,
respectively.

What is the minimum permissible diameter d,,;, of the

rod?
ld
P P =3.0kN
«— T —
PROB. 2.6-2

2.6-3 A standard brick (dimensions 8 in. X 4 in. X 2.51n.)
is compressed lengthwise by a force P, as shown in the
figure. If the ultimate shear stress for brick is 1200 psi and
the ultimate compressive stress is 3600 psi, what force Pp,ax
is required to break the brick?

PROB. 2.6-3

2.6-4 A brass wire of diameter d = 2.42 mm is stretched
tightly between rigid supports so that the tensile force is
T = 92 N (see figure).

What is the maximum permissible temperature drop
AT if the allowable shear stress in the wire is 60 MPa? (The
coefficient of thermal expansion for the wire is 20 X
10~ C and the modulus of elasticity is 100 GPa.)

T d

(ojvJ»

PROBS. 2.6-4 and 2.6-5

2.6-5 A brass wire of diameter d = 1/16 in. is stretched
between rigid supports with an initial tension T of 32 Ib
(see figure).
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(a) If the temperature is lowered by 50°F, what is the
maximum shear Stress 7.y in the wire?

(b) If the allowable shear stress is 10,000 psi, what is
the maximum permissible temperature drop? (Assume that
the coefficient of thermal expansion is 10.6 X 10~ ®°F and
the modulus of elasticity is 15 X 10° psi.)

2.6-6 A steel bar with diameter d = 12 mm is subjected to
atensile load P = 9.5 kN (see figure).

(a) What is the maximum normal stress omax in the
bar?

(b) What is the maximum shear stress 7ax?

(c) Draw a stress element oriented at 45° to the axis of
the bar and show all stresses acting on the faces of this
element.

P |d=12mm P=9.5kN
T .
PROB. 2.6-6

2.6-7 During a tension test of a mild-steel specimen (see
figure), the extensometer shows an elongation of 0.00120
in. with a gage length of 2 in. Assume that the steel is
stressed below the proportional limit and that the modulus
of elasticity E = 30 X 10° psi.

(a) What is the maximum normal stress omax in the
specimen?

(b) What is the maximum shear stress 7ax?

(c) Draw a stress element oriented at an angle of 45° to
the axis of the bar and show all stresses acting on the faces
of this element.

2 in.——
T T

PROB. 2.6-7

2.6-8 A copper bar with a rectangular cross section is held
without stress between rigid supports (see figure on the
next page). Subsequently, the temperature of the bar is
raised 50° C.

Determine the stresses on all faces of the elements A
and B, and show these stresses on sketches of the elements.
(Assume a = 17.5 X 107%°C and E = 120 GPa.)
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K450
.

PROB. 2.6-8

2.6-9 A compression member in a bridge truss is fabricated
from a wide-flange steel section (see figure). The cross-
sectional area A = 7.5 in.? and the axial load P = 90 k.

Determine the normal and shear stresses acting on all
faces of stress elements located in the web of the beam and
oriented at (a) an angle 6 = 0°, (b) an angle 6 = 30°, and
(c) an angle # = 45°. In each case, show the stresses on a
sketch of a properly oriented element.

P/ P

o

2.6-10 A plastic bar of diameter d = 30 mm is compressed
in a testing device by a force P = 170 N applied as shown in
the figure.

Determine the normal and shear stresses acting on all
faces of stress elements oriented at (a) an angle 8 = 0°,
(b) an angle ¢ = 22.5°, and (c) an angle # = 45°. In each
case, show the stresses on a sketch of a properly oriented
element.

PROB. 2.6-9

P=170N
\FlOO mm } 300mm-—
Y
© © Kvivvie,
C_J
OK | Plastic bar

o —L

. d=30mm

[ 1

PROB. 2.6-10

2.6-11 A plastic bar fits snugly between rigid supports at
room temperature (68°F) but with no initial stress (see
figure). When the temperature of the bar is raised to 160°F,
the compressive stress on an inclined plane pg becomes
1700 psi.

(a) What is the shear stress on plane pg? (Assume « =
60 X 10%°F and E = 450 X 10° psi.)

(b) Draw a stress element oriented to plane pgq and
show the stresses acting on all faces of this element.

\Ia

P

PROBS. 2.6-11 and 2.6-12

2.6-12 A copper bar is held snugly (but without any initial
stress) between rigid supports (see figure). The allowable
stresses on the inclined plane pg, for which 6 = 55°, are
specified as 60 MPa in compression and 30 MPa in shear.
(a) What is the maximum permissible temperature rise
AT if the allowable stresses on plane pq are not to be
exceeded? (Assume « = 17 X 10~%°C and E = 120 GPa.)
(b) If the temperature increases by the maximum
permissible amount, what are the stresses on plane pg?

2.6-13 A circular brass bar of diameter d is composed of
two segments brazed together on a plane pg making an
angle « = 36° with the axis of the bar (see figure). The
allowable stresses in the brass are 13,500 psi in tension and
6500 psi in shear. On the brazed joint, the allowable
stresses are 6000 psi in tension and 3000 psi in shear.

If the bar must resist a tensile force P = 6000 Ib, what
is the minimum required diameter d,;, of the bar?

P a?\P dl P
| —

S S ; —

PROB. 2.6-13

2.6-14 Two boards are joined by gluing along a scarf
joint, as shown in the figure. For purposes of cutting and
gluing, the angle « between the plane of the joint and the
faces of the boards must be between 10° and 40°. Under a
tensile load P, the normal stress in the boards is 4.9 MPa.

(a) What are the normal and shear stresses acting on
the glued joint if @ = 20°?

(b) If the allowable shear stress on the joint is
2.25 MPa, what is the largest permissible value of the angle «?

(c) For what angle a will the shear stress on the glued
joint be numerically equal to twice the normal stress on the
joint?

Copyright 2004 Thomson Learning, Inc. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



PROB. 2.6-14

2.6-15 Acting on the sides of a stress element cut from a
bar in uniaxial stress are tensile stresses of 10,000 psi and
5,000 psi, as shown in the figure.

(a) Determine the angle 6 and the shear stress 7, and
show all stresses on a sketch of the element.

(b) Determine the maximum normal stress . and
the maximum shear stress 7m,ax in the material.

Y
NUA,

5,000 psi

oy = 10,000 psi

N

70,70

10,000 psi
PROB. 2.6-15

2.6-16 A prismatic bar is subjected to an axial force that
produces a tensile stress o, = 63 MPa and a shear stress 7,
= —21 MPa on a certain inclined plane (see figure).

Determine the stresses acting on all faces of a stress
element oriented at & = 30° and show the stresses on a
sketch of the element.

\

A

/\ /\' 1 MPa

PROB. 2.6-16

*2.6-17 The normal stress on plane pq of a prismatic bar
in tension (see figure) is found to be 7500 psi. On plane rs,
which makes an angle 8 = 30° with plane pq, the stress is
found to be 2500 psi.
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Determine the maximum normal stress oy and
maximum shear stress mnay in the bar.

PROB. 2.6-17

*2.6-18 A tension member is to be constructed of two
pieces of plastic glued along plane pg (see figure). For
purposes of cutting and gluing, the angle 6 must be
between 25° and 45°. The allowable stresses on the glued
joint in tension and shear are 5.0 MPa and 3.0 MPa, respec-
tively.

(a) Determine the angle 6 so that the bar will carry the
largest load P. (Assume that the strength of the glued joint
controls the design.)

(b) Determine the maximum allowable load P,y if the
cross-sectional area of the bar is 225 mm?.

P p/<0

D

A\ A

PROB. 2.6-18

Strain Energy

When solving the problems for Section 2.7, assume that the
material behaves linearly elastically.

2.7-1 A prismatic bar AD of length L, cross-sectional area
A, and modulus of elasticity E is subjected to loads 5P, 3P,
and P acting at points B, C, and D, respectively (see
figure). Segments AB, BC, and CD have lengths L/6, L/2,
and L/3, respectively.

(a) Obtain a formula for the strain energy U of the bar.

(b) Calculate the strain energy if P = 6 k, L = 52 in.,
A = 2.76 in?, and the material is aluminum with E =
10.4 X 10° psi.

5P 3P p
> < —
A B C D
L L Lt
6 | 2 I
PROB. 2.7-1
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2.7-2 A bar of circular cross section having two different
diameters d and 2d is shown in the figure. The length of
each segment of the bar is L/2 and the modulus of elasticity
of the material is E.

(a) Obtain a formula for the strain energy U of the bar
due to the load P.

(b) Calculate the strain energy if the load P = 27 kN,
the length L = 600 mm, the diameter d = 40 mm, and the
material is brass with E = 105 GPa.

lZd

<
N

N

PROB. 2.7-2

2.7-3 A three-story steel column in a building supports
roof and floor loads as shown in the figure. The story
height H is 10.5 ft, the cross-sectional area A of the
column is 15.5 in.?, and the modulus of elasticity E of the
steel is 30 X 10° psi.

Calculate the strain energy U of the column assuming
Pl:40kandP2: P3: 60k

Py
H

P,
L v
. H

3
i 1
H

PROB. 2.7-3

2.7-4 The bar ABC shown in the figure is loaded by a
force P acting at end C and by a force Q acting at the
midpoint B. The bar has constant axial rigidity EA.

(a) Determine the strain energy U, of the bar when the
force P acts alone (Q = 0).

(b) Determine the strain energy U, when the force Q
acts alone (P = 0).

(c) Determine the strain energy Uz when the forces P
and Q act simultaneously upon the bar.

A B c
| Li2 | Li2 )

PROB. 2.7-4

2.7-5 Determine the strain energy per unit volume (units
of psi) and the strain energy per unit weight (units of in.)
that can be stored in each of the materials listed in the
accompanying table, assuming that the material is stressed
to the proportional limit.

DATA FOR PROBLEM 2.7-5

Weight Modulus of  Proportional
Material den'sity elasticity limit
(Ib/in.”) (ksi) (psi)
Mild steel 0.284 30,000 36,000
Tool steel 0.284 30,000 75,000
Aluminum 0.0984 10,500 60,000
Rubber (soft) 0.0405 0.300 300

2.7-6 The truss ABC shown in the figure is subjected to a
horizontal load P at joint B. The two bars are identical with
cross-sectional area A and modulus of elasticity E.

(a) Determine the strain energy U of the truss if the
angle B = 60°.

(b) Determine the horizontal displacement &g of joint
B by equating the strain energy of the truss to the work
done by the load.

PROB. 2.7-6
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2.7-7 The truss ABC shown in the figure supports a hori-
zontal load P, = 300 Ib and a vertical load P, = 900 Ib.
Both bars have cross-sectional area A = 2.4 in.? and are
made of steel with E = 30 X 10° psi.

(a) Determine the strain energy U, of the truss when
the load P, acts alone (P, =0).

(b) Determine the strain energy U, when the load P,
acts alone (P;=0).

(c) Determine the strain energy Us when both loads act
simultaneously.

¥ P,=900 Ib
| 60 in. |

PROB. 2.7-7

2.7-8 The statically indeterminate structure shown in the
figure consists of a horizontal rigid bar AB supported by
five equally spaced springs. Springs 1, 2, and 3 have stiff-
nesses 3k, 1.5k, and k, respectively. When unstressed, the
lower ends of all five springs lie along a horizontal line.
Bar AB, which has weight W, causes the springs to elongate
by an amount 6.

(a) Obtain a formula for the total strain energy U of the
springs in terms of the downward displacement & of the
bar.

(b) Obtain a formula for the displacement & by
equating the strain energy of the springs to the work done
by the weight W.

(c) Determine the forces F4, F,, and F5 in the springs.

(d) Evaluate the strain energy U, the displacement
6, and the forces in the springs if W = 600 N and k =
7.5 N/mm.

k
1.5k 1.5k
1 K E 3 g ¥ EX
A B

W

PROB. 2.7-8
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2.7-9 A slightly tapered bar AB of rectangular cross
section and length L is acted upon by a force P (see figure).
The width of the bar varies uniformly from b, at end A to
b, at end B. The thickness t is constant.

(a) Determine the strain energy U of the bar.

(b) Determine the elongation & of the bar by equating
the strain energy to the work done by the force P.

PROB. 2.7-9

*2.7-10 A compressive load P is transmitted through a
rigid plate to three magnesium-alloy bars that are identical
except that initially the middle bar is slightly shorter than
the other bars (see figure). The dimensions and properties of
the assembly are as follows: length L = 1.0 m, cross-sectional
area of each bar A = 3000 mm?, modulus of elasticity
E = 45 GPa, and the gap s = 1.0 mm.

(a) Calculate the load P, required to close the gap.

(b) Calculate the downward displacement & of the rigid
plate when P = 400 kN.

(c) Calculate the total strain energy U of the three bars
when P = 400 kN.

(d) Explain why the strain energy U is not equal to
P&/2. (Hint: Draw a load-displacement diagram.)

PROB. 2.7-10

**2,7-11 A block B is pushed against three springs by a
force P (see figure on the next page). The middle spring has
stiffness k; and the outer springs each have stiffhess k.
Initially, the springs are unstressed and the middle spring is
longer than the outer springs (the difference in length is
denoted s).
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176 CHAPTER 2 Axially Loaded Members

(a) Draw a force-displacement diagram with the force
P as ordinate and the displacement x of the block as
abscissa.

(b) From the diagram, determine the strain energy U,
of the springs when x = 2s.

(c) Explain why the strain energy U, is not equal to
P&/2, where 6 = 2s.

ko
P
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ks

PROB. 2.7-11

***2.7-12 A bungee cord that behaves linearly elastically
has an unstressed length L, = 760 mm and a stiffness
k = 140 N/m. The cord is attached to two pegs, distance b =
380 mm apart, and pulled at its midpoint by a force P = 80 N
(see figure).

(a) How much strain energy U is stored in the cord?

(b) What is the displacement 8¢ of the point where the
load is applied?

(c) Compare the strain energy U with the quantity
Pé&c/2.

(Note: The elongation of the cord is not small
compared to its original length.)

PROB. 2.7-12

Impact Loading

The problems for Section 2.8 are to be solved on the basis
of the assumptions and idealizations described in the text.
In particular, assume that the material behaves linearly
elastically and no energy is lost during the impact.

2.8-1 A sliding collar of weight W = 150 Ib falls from a
height h = 2.0 in. onto a flange at the bottom of a slender
vertical rod (see figure). The rod has length L = 4.0 ft,
cross-sectional area A = 0.75 in.?, and modulus of elas-
ticity E = 30 X 10° psi.

Calculate the following quantities: (a) the maximum
downward displacement of the flange, (b) the maximum
tensile stress in the rod, and (c) the impact factor.
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PROBS. 2.8-1, 2.8-2, and 2.8-3

2.8-2 Solve the preceding problem if the collar has mass
M = 80 kg, the height h = 0.5 m, the length L = 3.0 m, the
cross-sectional area A = 350 mm?, and the modulus of elas-
ticity E = 170 GPa.

2.8-3 Solve Problem 2.8-1 if the collar has weight W =
50 Ib, the height h = 2.0 in., the length L = 3.0 ft, the cross-
sectional area A = 0.25 in.?, and the modulus of elasticity
E = 30,000 ksi.

2.8-4 A block weighing W = 5.0 N drops inside a cylinder
from a height h = 200 mm onto a spring having stiffness
k = 90 N/m (see figure).

(a) Determine the maximum shortening of the spring
due to the impact, and (b) determine the impact factor.
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PROBS. 2.8-4 and 2.8-5

2.8-5 Solve the preceding problem if the block weighs
W =1.01Ib,h =12in, and k = 0.5 Ib/in.

2.8-6 A small rubber ball (weight W = 450 mN) is
attached by a rubber cord to a wood paddle (see figure).
The natural length of the cord is Ly = 200 mm, its cross-
sectional area is A = 1.6 mm?, and its modulus of elasticity
is E = 2.0 MPa. After being struck by the paddle, the ball
stretches the cord to a total length L; = 900 mm.

What was the velocity v of the ball when it left the
paddle? (Assume linearly elastic behavior of the rubber
cord, and disregard the potential energy due to any change
in elevation of the ball.)

PROB. 2.8-6

2.8-7 A weight W = 4500 Ib falls from a height h onto a
vertical wood pole having length L = 15 ft, diameter d =
12 in., and modulus of elasticity E = 1.6 X 10° psi (see
figure).

CHAPTER 2 Problems 177

If the allowable stress in the wood under an impact load
is 2500 psi, what is the maximum permissible height h?

Bw = 4,500 |

h

d=12in.

| L=151t

PROB. 2.8-7

2.8-8 A cable with a restrainer at the bottom hangs vertically
from its upper end (see figure). The cable has an effective
cross-sectional area A = 40 mm? and an effective modulus
of elasticity E = 130 GPa. A slider of mass M = 35 kg
drops from a height h = 1.0 m onto the restrainer.

If the allowable stress in the cable under an impact
load is 500 MPa, what is the minimum permissible length L
of the cable?

Restrainer

PROBS. 2.8-8 and 2.8-9
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2.8-9 Solve the preceding problem if the slider has weight
W =1001Ib, h = 45in., A = 0.080 in.%, E = 21 X 10° psi,
and the allowable stress is 70 ksi.

2.8-10 A bumping post at the end of a track in a railway
yard has a spring constant k = 8.0 MN/m (see figure). The
maximum possible displacement d of the end of the striking
plate is 450 mm.

What is the maximum velocity v that a railway car
of weight W = 545 kN can have without damaging the
bumping post when it strikes it?

PROB. 2.8-10

2.8-11 A bumper for a mine car is constructed with a spring
of stiffness k = 1120 Ib/in. (see figure). If a car weighing
3450 Ib is traveling at velocity v = 7 mph when it strikes the
spring, what is the maximum shortening of the spring?

——\/

©)
—y

PROB. 2.8-11

*2.8-12 A bungee jumper having a mass of 55 kg leaps
from a bridge, braking her fall with a long elastic shock
cord having axial rigidity EA = 2.3 kN (see figure).

If the jumpoff point is 60 m above the water, and if it
is desired to maintain a clearance of 10 m between the
jumper and the water, what length L of cord should be
used?

PROB. 2.8-12

*2.8-13 A weight W rests on top of a wall and is attached
to one end of a very flexible cord having cross-sectional
area A and modulus of elasticity E (see figure). The other
end of the cord is attached securely to the wall. The weight
is then pushed off the wall and falls freely the full length of
the cord.

(a) Derive a formula for the impact factor.

(b) Evaluate the impact factor if the weight, when
hanging statically, elongates the band by 2.5% of its orig-
inal length.

PROB. 2.8-13

**2.8-14 A rigid bar AB having mass M = 1.0 kg and
length L = 0.5 m is hinged at end A and supported at end B
by a nylon cord BC (see figure on the next page). The cord
has cross-sectional area A = 30 mm?, length b = 0.25 m,
and modulus of elasticity E = 2.1 GPa.

If the bar is raised to its maximum height and then
released, what is the maximum stress in the cord?

Copyright 2004 Thomson Learning, Inc. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



/&
s \\\
s <
/
v N
/ / ~
K S
/ S
/
S C
;o
s
s/
s
s
s
s b
s/
s
s
A// /
/ B
o W o
| L \

PROB. 2.8-14

Stress Concentrations

The problems for Section 2.10 are to be solved by considering
the stress-concentration factors and assuming linearly
elastic behavior.

2.10-1 The flat bars shown in parts (a) and (b) of the
figure are subjected to tensile forces P = 3.0 k. Each bar
has thickness t = 0.25 in.

(@) For the bar with a circular hole, determine the
maximum stresses for hole diameters d = 1 in. and
d = 2in. ifthe widthb = 6.0 in.

(b) For the stepped bar with shoulder fillets, determine
the maximum stresses for fillet radii R = 0.25 in. and R =
0.5 in. if the bar widthsare b = 4.0 in.and c = 2.5 in.

Q.

@

(b)

PROBS. 2.10-1 and 2.10-2

CHAPTER 2 Problems 179

2.10-2 The flat bars shown in parts (a) and (b) of the
figure are subjected to tensile forces P = 2.5 kN. Each bar
has thickness t = 5.0 mm.

(a) For the bar with a circular hole, determine the
maximum stresses for hole diameters d = 12 mm and d =
20 mm if the width b = 60 mm.

(b) For the stepped bar with shoulder fillets, determine
the maximum stresses for fillet radii R = 6 mm and R = 10 mm
if the bar widths are b = 60 mm and ¢ = 40 mm.

2.10-3 A flat bar of width b and thickness t has a hole of
diameter d drilled through it (see figure). The hole may
have any diameter that will fit within the bar.

What is the maximum permissible tensile load P,y if
the allowable tensile stress in the material is oy?

o

PROB. 2.10-3

2.10-4 A round brass bar of diameter d; = 20 mm has
upset ends of diameter d, = 26 mm (see figure). The
lengths of the segments of the barare L; = 0.3 mand L, =
0.1 m. Quarter-circular fillets are used at the shoulders of
the bar, and the modulus of elasticity of the brass is E =
100 GPa.

If the bar lengthens by 0.12 mm under a tensile load P,
what is the maximum stress omax in the bar?

P 1% 0 1% p
( 1
L |
L Ly —L—

PROBS. 2.10-4 and 2.10-5

2.10-5 Solve the preceding problem for a bar of monel
metal having the following properties: d; = 1.0 in., d, =
1.4in., Ly =20.0in., L, = 5.0in., and E = 25 X 10° psi.
Also, the bar lengthens by 0.0040 in. when the tensile load
is applied.

2.10-6 A prismatic bar of diameter dy = 20 mm is being
compared with a stepped bar of the same diameter (d, =
20 mm) that is enlarged in the middle region to a diameter
d, = 25 mm (see figure on the next page). The radius of the
fillets in the stepped bar is 2.0 mm.
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180 CHAPTER 2 Axially Loaded Members

(a) Does enlarging the bar in the middle region make it
stronger than the prismatic bar? Demonstrate your answer
by determining the maximum permissible load P, for the
prismatic bar and the maximum permissible load P, for
the enlarged bar, assuming that the allowable stress for the
material is 80 MPa.

(b) What should be the diameter d, of the prismatic bar
if it is to have the same maximum permissible load as does
the stepped bar?

Py

PROB. 2.10-6

2.10-7 A stepped bar with a hole (see figure) has widths
b =24 in.and c = 1.6 in. The fillets have radii equal to
0.2in.

What is the diameter dy,x Of the largest hole that can
be drilled through the bar without reducing the load-
carrying capacity?

— Of

PROB. 2.10-7

|
|

|

Nonlinear Behavior (Changes in Lengths of Bars)

2.11-1 A bar AB of length L and weight density y hangs
vertically under its own weight (see figure). The stress-
strain relation for the material is given by the
Ramberg-Osgood equation (Eq. 2-71):

o an<a'>m
e=— 4+ 222
E E 0o

Derive the following formula

5 N2 L _oval <£)m

0o

2 (m+1)E

for the elongation of the bar.

A

PROB. 2.11-1

2.11-2 A prismatic bar of length L = 1.8 m and cross-
sectional area A = 480 mm? is loaded by forces P; = 30
kN and P, = 60 kN (see figure). The bar is constructed of
magnesium alloy having a stress-strain curve described by
the following Ramberg-Osgood equation:

T 1 T

€~ 25000 618 (170) (o= MPa)
in which o has units of megapascals.

(a) Calculate the displacement ¢ of the end of the bar
when the load P, acts alone.

(b) Calculate the displacement when the load P, acts
alone.

(c) Calculate the displacement when both loads act
simultaneously.

A B P C p
> | >
]
! 3 ! 3
PROB. 2.11-2

2.11-3 A circular bar of length L = 32 in. and diameter
d = 0.75 in. is subjected to tension by forces P (see figure
on the next page). The wire is made of a copper alloy
having the following hyperbolic stress-strain relationship:

_ 18,000¢

= << <<
T=7 1300 0=€=003

(o = ksi)
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(a) Draw a stress-strain diagram for the material.

(b) If the elongation of the wire is limited to 0.25 in.
and the maximum stress is limited to 40 ksi, what is the
allowable load P?

p | p
-«

1 L \

PROB.2.11-3

2.11-4 A prismatic bar in tension has length L = 2.0 m and
cross-sectional area A = 249 mm?. The material of the bar
has the stress-strain curve shown in the figure.

Determine the elongation & of the bar for each of the
following axial loads: P = 10 kN, 20 kN, 30 kN, 40 kN,
and 45 kN. From these results, plot a diagram of load P
versus elongation & (load-displacement diagram).

200
I~
]
o (MPa)
/]

100
0

0 0.005 0.010

PROB. 2.11-4

2.11-5 An aluminum bar subjected to tensile forces P has
length L = 150 in. and cross-sectional area A = 2.0 in.?
The stress-strain behavior of the aluminum may be repre-
sented approximately by the bilinear stress-strain diagram
shown in the figure.

Calculate the elongation & of the bar for each of the
following axial loads: P = 8 k, 16 k, 24 k, 32 k, and 40 k.
From these results, plot a diagram of load P versus elonga-
tion & (load-displacement diagram).

CHAPTER 2 Problems 181

ag
_ 6 e
12,000 [ ----- E, = 2.4 x 10° psi
psi
E; = 10 x 10° psi
0 €

PROB.2.11-5

*2.11-6 A rigid bar AB, pinned at end A, is supported by a
wire CD and loaded by a force P at end B (see figure). The
wire is made of high-strength steel having modulus of
elasticity E = 210 GPa and yield stress oy = 820 MPa. The
length of the wire is L = 1.0 m and its diameter is d =
3 mm. The stress-strain diagram for the steel is defined by
the modified power law, as follows:

o=Ee 0=o0=o0y

Ee\"
U:Uy<7 o = 0Oy

Oy

(a) Assuming n = 0.2, calculate the displacement &g at
the end of the bar due to the load P. Take values of P from
2.4 kN to 5.6 kN in increments of 0.8 kN.

(b) Plot a load-displacement diagram showing P
Versus dg.
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PROB. 2.11-6
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Elastoplastic Analysis

The problems for Section 2.12 are to be solved assuming
that the material is elastoplastic with yield stress oy, yield
strain ey, and modulus of elasticity E in the linearly elastic
region (see Fig. 2-70).

2.12-1 Two identical bars AB and BC support a vertical
load P (see figure). The bars are made of steel having a
stress-strain curve that may be idealized as elastoplastic
with yield stress oy. Each bar has cross-sectional area A.
Determine the yield load Py and the plastic load Pp.

PROB. 2.12-1

2.12-2 A stepped bar ACB with circular cross sections is
held between rigid supports and loaded by an axial force P
at midlength (see figure). The diameters for the two parts of
the bar are d; = 20 mm and d, = 25 mm, and the material
is elastoplastic with yield stress oy = 250 MPa.

Determine the plastic load Pp.

PROB. 2.12-2

2.12-3 A horizontal rigid bar AB supporting a load P is
hung from five symmetrically placed wires, each of cross-
sectional area A (see figure). The wires are fastened to a
curved surface of radius R.

(a) Determine the plastic load Pp if the material of the
wires is elastoplastic with yield stress oy.

(b) How is Pp changed if bar AB is flexible instead of
rigid?

(c) How is Pp changed if the radius R is increased?

PROB. 2.12-3

2.12-4 A load P acts on a horizontal beam that is supported
by four rods arranged in the symmetrical pattern shown in
the figure. Each rod has cross-sectional area A and the
material is elastoplastic with yield stress oy. Determine
the plastic load Pp.

PROB. 2.12-4

2.12-5 The symmetric truss ABCDE shown in the figure is

constructed of four bars and supports a load P at joint E. Each

of the two outer bars has a cross-sectional area of 0.307 in.?,

and each of the two inner bars has an area of 0.601 in.? The

material is elastoplastic with yield stress oy = 36 ksi.
Determine the plastic load Pp.
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PROB. 2.12-5

2.12-6 Five bars, each having a diameter of 10 mm,
support a load P as shown in the figure. Determine the
plastic load Py if the material is elastoplastic with yield
stress o = 250 MPa.

bl bbb

PROB. 2.12-6

2.12-7 A circular steel rod AB of diameter d = 0.60 in. is
stretched tightly between two supports so that initially the
tensile stress in the rod is 10 ksi (see figure). An axial force
P is then applied to the rod at an intermediate location C.

(a) Determine the plastic load Py if the material is
elastoplastic with yield stress oy = 36 ksi.

(b) How is Pp changed if the initial tensile stress is
doubled to 20 ksi?

<~ [}A{\. i ofoI
o
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PROB. 2.12-7

CHAPTER 2 Problems 183

*2.12-8 A rigid bar ACB is supported on a fulcrum at C
and loaded by a force P at end B (see figure). Three iden-
tical wires made of an elastoplastic material (yield stress oy
and modulus of elasticity E) resist the load P. Each wire
has cross-sectional area A and length L.

(a) Determine the yield load Py and the corresponding
yield displacement &y at point B.

(b) Determine the plastic load Pp and the correspon-
ding displacement &y at point B when the load just reaches
the value Pp.

(c) Draw a load-displacement diagram with the load P
as ordinate and the displacement &g of point B as abscissa.

!
L
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PROB. 2.12-8

*2.12-9 The structure shown in the figure consists of a
horizontal rigid bar ABCD supported by two steel wires,
one of length L and the other of length 3L/4. Both wires
have cross-sectional area A and are made of elastoplastic
material with yield stress oy and modulus of elasticity E. A
vertical load P acts at end D of the bar.

(a) Determine the yield load Py and the corresponding
yield displacement &y at point D.

(b) Determine the plastic load Pp and the correspon-
ding displacement &y at point D when the load just reaches
the value Pp.

(c) Draw a load-displacement diagram with the load P
as ordinate and the displacement &y of point D as abscissa.
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PROB. 2.12-9
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**2.12-10 Two cables, each having a length L of approxi-
mately 40 m, support a loaded container of weight W (see
figure). The cables, which have effective cross-sectional
area A = 48.0 mm? and effective modulus of elasticity E =
160 GPa, are identical except that one cable is longer than
the other when they are hanging separately and unloaded.
The difference in lengths is d = 100 mm. The cables are
made of steel having an elastoplastic stress-strain diagram
with oy = 500 MPa. Assume that the weight W is initially
zero and is slowly increased by the addition of material to
the container.

(@) Determine the weight Wy that first produces
yielding of the shorter cable. Also, determine the corre-
sponding elongation &y of the shorter cable.

(b) Determine the weight Wp that produces yielding of
both cables. Also, determine the elongation & of the
shorter cable when the weight W just reaches the value Wp.

(c) Construct a load-displacement diagram showing
the weight W as ordinate and the elongation & of the shorter
cable as abscissa. (Hint: The load displacement diagram is
not a single straight line in the region 0 =W = W,.)

PROB. 2.12-10

**2.12-11 A hollow circular tube T of length L = 15 in. is
uniformly compressed by a force P acting through a rigid
plate (see figure). The outside and inside diameters of the
tube are 3.0 and 2.75 in., repectively. A concentric solid cir-
cular bar B of 1.5 in. diameter is mounted inside the tube.
When no load is present, there is a clearance ¢ = 0.010 in.
between the bar B and the rigid plate. Both bar and tube are
made of steel having an elastoplastic stress-strain diagram
with E = 29 x 10° ksi and o = 36 ksi.

(a) Determine the yield load Py and the corresponding
shortening &y of the tube.

(b) Determine the plastic load Pp and the corresponding
shortening &y of the tube.

(c) Construct a load-displacement diagram showing the
load P as ordinate and the shortening 6 of the tube as
abscissa. (Hint: The load-displacement diagram is not a single
straight line in the region 0 = P = Py.)

L$

PROB. 2.12-11
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Torsion

3.1 INTRODUCTION

FIG.3-1 Torsion of a screwdriver due to a
torque T applied to the handle

In Chapters 1 and 2 we discussed the behavior of the simplest type of
structural member—namely, a straight bar subjected to axial loads. Now
we consider a slightly more complex type of behavior known as torsion.
Torsion refers to the twisting of a straight bar when it is loaded by
moments (or torques) that tend to produce rotation about the longitudinal
axis of the bar. For instance, when you turn a screwdriver (Fig. 3-1a),
your hand applies a torque T to the handle (Fig. 3-1b) and twists the
shank of the screwdriver. Other examples of bars in torsion are drive
shafts in automobiles, axles, propeller shafts, steering rods, and drill bits.

An idealized case of torsional loading is pictured in Fig. 3-2a, on the
next page, which shows a straight bar supported at one end and loaded by
two pairs of equal and opposite forces. The first pair consists of the
forces P, acting near the midpoint of the bar and the second pair consists
of the forces P, acting at the end. Each pair of forces forms a couple that
tends to twist the bar about its longitudinal axis. As we know from stat-
ics, the moment of a couple is equal to the product of one of the forces
and the perpendicular distance between the lines of action of the forces;
thus, the first couple has a moment T, = P,d; and the second has a
moment T, = P,d..

Typical USCS units for moment are the pound-foot (Ib-ft) and the
pound-inch (lb-in.). The SI unit for moment is the newton meter (N-m).

The moment of a couple may be represented by a vector in the form
of a double-headed arrow (Fig. 3-2b). The arrow is perpendicular to the
plane containing the couple, and therefore in this case both arrows are
parallel to the axis of the bar. The direction (or sense) of the moment is
indicated by the right-hand rule for moment vectors—namely, using
your right hand, let your fingers curl in the direction of the moment, and
then your thumb will point in the direction of the vector.

185
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FIG. 3-2 Circular bar subjected to torsion
by torques T, and T,

An alternative representation of a moment is a curved arrow acting
in the direction of rotation (Fig. 3-2c¢). Both the curved arrow and vector
representations are in common use, and both are used in this book. The
choice depends upon convenience and personal preference.

Moments that produce twisting of a bar, such as the moments T, and
T, in Fig. 3-2, are called torques or twisting moments. Cylindrical
members that are subjected to torques and transmit power through rota-
tion are called shafts; for instance, the drive shaft of an automobile or
the propeller shaft of a ship. Most shafts have circular cross sections,
either solid or tubular.

In this chapter we begin by developing formulas for the deforma-
tions and stresses in circular bars subjected to torsion. We then analyze
the state of stress known as pure shear and obtain the relationship
between the moduli of elasticity E and G in tension and shear, respec-
tively. Next, we analyze rotating shafts and determine the power they
transmit. Finally, we cover several additional topics related to torsion,
namely, statically indeterminate members, strain energy, thin-walled
tubes of noncircular cross section, and stress concentrations.

3.2 TORSIONAL DEFORMATIONS OF A CIRCULAR BAR

<«

FIG. 3-3 Deformations of a circular bar in
pure torsion

We begin our discussion of torsion by considering a prismatic bar of
circular cross section twisted by torques T acting at the ends (Fig. 3-3a).
Since every cross section of the bar is identical, and since every cross
section is subjected to the same internal torque T, we say that the bar is
in pure torsion. From considerations of symmetry, it can be proved that
cross sections of the bar do not change in shape as they rotate about the
longitudinal axis. In other words, all cross sections remain plane and
circular and all radii remain straight. Furthermore, if the angle of
rotation between one end of the bar and the other is small, neither the
length of the bar nor its radius will change.
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FIG. 3-4 Deformation of an element of
length dx cut from a bar in torsion

SECTION 3.2 Torsional Deformations of a Circular Bar 187

To aid in visualizing the deformation of the bar, imagine that the
left-hand end of the bar (Fig. 3-3a) is fixed in position. Then, under the
action of the torque T, the right-hand end will rotate (with respect to the
left-hand end) through a small angle ¢, known as the angle of twist (or
angle of rotation). Because of this rotation, a straight longitudinal line pq
on the surface of the bar will become a helical curve pq’, where q’ is the
position of point g after the end cross section has rotated through the angle
¢ (Fig. 3-3b).

The angle of twist changes along the axis of the bar, and at intermediate
cross sections it will have a value ¢(x) that is between zero at the
left-hand end and ¢ at the right-hand end. If every cross section of the
bar has the same radius and is subjected to the same torque (pure
torsion), the angle ¢(x) will vary linearly between the ends.

Shear Strains at the Outer Surface

Now consider an element of the bar between two cross sections distance
dx apart (Fig. 3-4a). This element is shown enlarged in Fig. 3-4b. On its
outer surface we identify a small element abcd, with sides ab and cd that
initially are parallel to the longitudinal axis. During twisting of the bar,
the right-hand cross section rotates with respect to the left-hand cross
section through a small angle of twist d¢, so that points b and ¢ move to
b’ and c¢’, respectively. The lengths of the sides of the element, which is
now element ab’c’d, do not change during this small rotation.

However, the angles at the corners of the element (Fig. 3-4b) are no
longer equal to 90°. The element is therefore in a state of pure shear,
which means that the element is subjected to shear strains but no normal
strains (see Fig. 1-28 of Section 1.6). The magnitude of the shear strain
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at the outer surface of the bar, denoted ymay IS equal to the decrease in
the angle at point a, that is, the decrease in angle bad. From Fig. 3-4b
we see that the decrease in this angle is

bb’
Ymax = E @)

where ymax 1S measured in radians, bb’ is the distance through which
point b moves, and ab is the length of the element (equal to dx). With r
denoting the radius of the bar, we can express the distance bb’ as rd¢,
where d¢ also is measured in radians. Thus, the preceding equation
becomes

_rd¢
Ymax = dx (b)

This equation relates the shear strain at the outer surface of the bar to the
angle of twist.

The quantity d¢/dx is the rate of change of the angle of twist ¢ with
respect to the distance x measured along the axis of the bar. We will
denote d¢/dx by the symbol 6 and refer to it as the rate of twist, or the
angle of twist per unit length:

g= 390 (3-1)

With this notation, we can now write the equation for the shear strain at
the outer surface (Eq. b) as follows:

Ymax = rd—d) =ro (3-2)

For convenience, we discussed a bar in pure torsion when deriving
Egs. (3-1) and (3-2). However, both equations are valid in more general
cases of torsion, such as when the rate of twist € is not constant but
varies with the distance x along the axis of the bar.

In the special case of pure torsion, the rate of twist is equal to the
total angle of twist ¢ divided by the length L, that is, & = /L. There-
fore, for pure torsion only, we obtain

r
Ymax = 10 = T¢ (3-3)

This equation can be obtained directly from the geometry of Fig. 3-3a
by noting that y,ay is the angle between lines pg and pq’, that is, ymax IS
the angle qpq’. Therefore, ymaxL is equal to the distance qq’ at the end
of the bar. But since the distance qq’ also equals r¢ (Fig. 3-3b), we
obtain r¢p = ymaxL, which agrees with Eq. (3-3).
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Shear Strains Within the Bar

The shear strains within the interior of the bar can be found by the same
method used to find the shear strain ymax at the surface. Because radii in
the cross sections of a bar remain straight and undistorted during
twisting, we see that the preceding discussion for an element abcd at the
outer surface (Fig. 3-4b) will also hold for a similar element situated on
the surface of an interior cylinder of radius p (Fig. 3-4c). Thus, interior
elements are also in pure shear with the corresponding shear strains
given by the equation (compare with Eq. 3-2):

¥ = p0 =L e (3-4)

This equation shows that the shear strains in a circular bar vary linearly
with the radial distance p from the center, with the strain being zero at
the center and reaching a maximum value ymax at the outer surface.

Circular Tubes

A review of the preceding discussions will show that the equations for
the shear strains (Egs. 3-2 to 3-4) apply to circular tubes (Fig. 3-5) as
well as to solid circular bars. Figure 3-5 shows the linear variation in
shear strain between the maximum strain at the outer surface and the
minimum strain at the interior surface. The equations for these strains are
as follows:

Ymax = rZ_LQ” Ymin = ::_; Ymax = rl—L(b (3-5a,b)
in which ry and r, are the inner and outer radii, respectively, of the tube.
All of the preceding equations for the strains in a circular bar are
based upon geometric concepts and do not involve the material
properties. Therefore, the equations are valid for any material, whether it
behaves elastically or inelastically, linearly or nonlinearly. However, the
equations are limited to bars having small angles of twist and small
strains.

3.3 CIRCULAR BARS OF LINEARLY ELASTIC MATERIALS

Now that we have investigated the shear strains in a circular bar in
torsion (see Figs. 3-3 to 3-5), we are ready to determine the directions
and magnitudes of the corresponding shear stresses. The directions of
the stresses can be determined by inspection, as illustrated in Fig. 3-6a
on the next page. We observe that the torque T tends to rotate the right-
hand end of the bar counterclockwise when viewed from the right.
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FIG. 3-6 Shear stresses in a circular bar in
torsion
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Therefore the shear stresses 7 acting on a stress element located on the
surface of the bar will have the directions shown in the figure.

For clarity, the stress element shown in Fig. 3-6a is enlarged in
Fig. 3-6b, where both the shear strain and the shear stresses are shown.
As explained previously in Section 2.6, we customarily draw stress
elements in two dimensions, as in Fig. 3-6b, but we must always
remember that stress elements are actually three-dimensional objects
with a thickness perpendicular to the plane of the figure.

The magnitudes of the shear stresses can be determined from the
strains by using the stress-strain relation for the material of the bar. If the
material is linearly elastic, we can use Hooke’s law in shear (Eq. 1-14):

7=Gvy (3-6)

in which G is the shear modulus of elasticity and vy is the shear strain in
radians. Combining this equation with the equations for the shear strains
(Egs. 3-2 and 3-4), we get

Twax = Gr@ 7= Gph= $ Timax (3-7a,b)

in which 7,5 is the shear stress at the outer surface of the bar (radius r),
7 is the shear stress at an interior point (radius p), and 6 is the rate of
twist. (In these equations, 6 has units of radians per unit of length.)

Equations (3-7a) and (3-7b) show that the shear stresses vary
linearly with the distance from the center of the bar, as illustrated by the
triangular stress diagram in Fig. 3-6¢. This linear variation of stress is a
consequence of Hooke’s law. If the stress-strain relation is nonlinear, the
stresses will vary nonlinearly and other methods of analysis will be
needed.

The shear stresses acting on a cross-sectional plane are accompa-
nied by shear stresses of the same magnitude acting on longitudinal
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FIG. 3-7 Longitudinal and transverse
shear stresses in a circular bar subjected
to torsion

FIG. 3-8 Tensile and compressive stresses
acting on a stress element oriented at
45° to the longitudinal axis

FIG. 3-9 Determination of the resultant
of the shear stresses acting on a cross
section
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planes (Fig. 3-7). This conclusion follows from the fact that equal shear
stresses always exist on mutually perpendicular planes, as explained in
Section 1.6. If the material of the bar is weaker in shear on longitudinal
planes than on cross-sectional planes, as is typical of wood when the
grain runs parallel to the axis of the bar, the first cracks due to torsion
will appear on the surface in the longitudinal direction.

The state of pure shear at the surface of a bar (Fig. 3-6b) is equivalent
to equal tensile and compressive stresses acting on an element oriented at
an angle of 45°, as explained later in Section 3.5. Therefore, a rectangular
element with sides at 45° to the axis of the shaft will be subjected to tensile
and compressive stresses, as shown in Fig. 3-8. If a torsion bar is made of a
material that is weaker in tension than in shear, failure will occur in tension
along a helix inclined at 45° to the axis, as you can demonstrate by twisting
a piece of classroom chalk.

The Torsion Formula

The next step in our analysis is to determine the relationship between the
shear stresses and the torque T. Once this is accomplished, we will be
able to calculate the stresses and strains in a bar due to any set of applied
torques.

The distribution of the shear stresses acting on a cross section is pic-
tured in Figs. 3-6¢ and 3-7. Because these stresses act continuously
around the cross section, they have a resultant in the form of a moment—
a moment equal to the torque T acting on the bar. To determine this
resultant, we consider an element of area dA located at radial distance p
from the axis of the bar (Fig. 3-9). The shear force acting on this element
is equal to 7 dA, where 7 is the shear stress at radius p. The moment of
this force about the axis of the bar is equal to the force times its distance
from the center, or 7pdA. Substituting for the shear stress = from Eq.
(3-7b), we can express this elemental moment as

dMm = TpdA=TLIf‘Xp2dA

The resultant moment (equal to the torque T) is the summation over the
entire cross-sectional area of all such elemental moments:

T =J dM = T’“Taj p2dA = T“;ax I (3-8)
A A

in which
lp = J p* dA (3-9)
A

is the polar moment of inertia of the circular cross section.
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For a circle of radius r and diameter d, the polar moment of inertia is

ar? ad*
> 2 (3-10)

Ip

as given in Appendix D, Case 9. Note that moments of inertia have units
of length to the fourth power.*

An expression for the maximum shear stress can be obtained by
rearranging Eq. (3-8), as follows:

Tr
Tmax — 7 (3-11)

lp

This equation, known as the torsion formula, shows that the maximum
shear stress is proportional to the applied torque T and inversely propor-
tional to the polar moment of inertia Ip.

Typical units used with the torsion formula are as follows. In Sl, the
torque T is usually expressed in newton meters (N-m), the radius r in
meters (m), the polar moment of inertia I, in meters to the fourth power
(m*), and the shear stress 7 in pascals (Pa). If USCS units are used, T is
often expressed in pound-feet (Ib-ft) or pound-inches (Ib-in.), r in inches
(in.), 1 in inches to the fourth power (in.%), and 7 in pounds per square
inch (psi).

Substituting r = d/2 and I, = 7rd#/32 into the torsion formula, we
get the following equation for the maximum stress:

16T

T e (3-12)
This equation applies only to bars of solid circular cross section,
whereas the torsion formula itself (Eq. 3-11) applies to both solid bars
and circular tubes, as explained later. Equation (3-12) shows that the
shear stress is inversely proportional to the cube of the diameter. Thus, if
the diameter is doubled, the stress is reduced by a factor of eight.

The shear stress at distance p from the center of the bar is

T= P e = i (3-13)
r Ip

which is obtained by combining Eq. (3-7b) with the torsion formula
(Eqg. 3-11). Equation (3-13) is a generalized torsion formula, and we see
once again that the shear stresses vary linearly with the radial distance
from the center of the bar.

*Polar moments of inertia are discussed in Section 12.6 of Chapter 12.
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Angle of Twist

The angle of twist of a bar of linearly elastic material can now be related
to the applied torque T. Combining Eq. (3-7a) with the torsion formula,
we get

T

0=——
Glp

(3-14)
in which @ has units of radians per unit of length. This equation shows
that the rate of twist 6 is directly proportional to the torque T and
inversely proportional to the product Glp, known as the torsional
rigidity of the bar.

For a bar in pure torsion, the total angle of twist ¢, equal to the rate
of twist times the length of the bar (that is, ¢ = 6L), is

_ T

¢= Glp

(3-15)

in which ¢ is measured in radians. The use of the preceding equations in
both analysis and design is illustrated later in Examples 3-1 and 3-2.

The quantity Glp/L, called the torsional stiffness of the bar, is the
torque required to produce a unit angle of rotation. The torsional
flexibility is the reciprocal of the stiffness, or L/Glp, and is defined as
the angle of rotation produced by a unit torque. Thus, we have the
following expressions:

_ Glp f_ L

L T Gl
These quantities are analogous to the axial stiffness k = EA/L and axial
flexibility f = L/EA of a bar in tension or compression (compare with
Egs. 2-4a and 2-4b). Stiffnesses and flexibilities have important roles in
structural analysis.

The equation for the angle of twist (Eq. 3-15) provides a convenient
way to determine the shear modulus of elasticity G for a material. By
conducting a torsion test on a circular bar, we can measure the angle of
twist ¢ produced by a known torque T. Then the value of G can be
calculated from Eq. (3-15).

kr (a,b)

Circular Tubes

Circular tubes are more efficient than solid bars in resisting torsional
loads. As we know, the shear stresses in a solid circular bar are
maximum at the outer boundary of the cross section and zero at the
center. Therefore, most of the material in a solid shaft is stressed signifi-
cantly below the maximum shear stress. Furthermore, the stresses near
the center of the cross section have a smaller moment arm p for use in
determining the torque (see Fig. 3-9 and Eqg. 3-8).
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T

=

-+

FIG.3-10 Circular tube in torsion

By contrast, in a typical hollow tube most of the material is near the
outer boundary of the cross section where both the shear stresses and the
moment arms are highest (Fig. 3-10). Thus, if weight reduction and
savings of material are important, it is advisable to use a circular tube.
For instance, large drive shafts, propeller shafts, and generator shafts
usually have hollow circular cross sections.

The analysis of the torsion of a circular tube is almost identical to
that for a solid bar. The same basic expressions for the shear stresses
may be used (for instance, Egs. 3-7a and 3-7b). Of course, the radial
distance p is limited to the range r to r,, where ry is the inner radius and
r, is the outer radius of the bar (Fig. 3-10).

The relationship between the torque T and the maximum stress is
given by Eqg. (3-8), but the limits on the integral for the polar moment of
inertia (Eq. 3-9) are p = ry and p = r,. Therefore, the polar moment of
inertia of the cross-sectional area of a tube is

lp == (8 = rd) = 2 (d% - d) (3-16)
The preceding expressions can also be written in the following forms:
lo =2 (r? + ) = %(d2 +17) (3-17)

in which r is the average radius of the tube, equal to (r; + ry)/2; d is
the average diameter, equal to (d; + d,)/2; and t is the wall thickness
(Fig. 3-10), equal to r, — ry. Of course, Egs. (3-16) and (3-17) give the
same results, but sometimes the latter is more convenient.

If the tube is relatively thin so that the wall thickness t is small
compared to the average radius r, we may disregard the terms t° in Eq.
(3-17). With this simplification, we obtain the following approximate
formulas for the polar moment of inertia:

d3t

Ip = 27Tr3t =

(3-18)

These expressions are given in Case 22 of Appendix D.

Reminders: In Egs. 3-17 and 3-18, the quantities r and d are the
average radius and diameter, not the maximums. Also, Egs. 3-16 and
3-17 are exact; Eq. 3-18 is approximate.

The torsion formula (Eg. 3-11) may be used for a circular tube of
linearly elastic material provided Ip is evaluated according to Eq. (3-16),
Eq. (3-17), or, if appropriate, Eq. (3-18). The same comment applies to
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the general equation for shear stress (Eq. 3-13), the equations for rate of
twist and angle of twist (Egs. 3-14 and 3-15), and the equations for
stiffness and flexibility (Egs. a and b).

The shear stress distribution in a tube is pictured in Fig. 3-10. From
the figure, we see that the average stress in a thin tube is nearly as great
as the maximum stress. This means that a hollow bar is more efficient in
the use of material than is a solid bar, as explained previously and as
demonstrated later in Examples 3-2 and 3-3.

When designing a circular tube to transmit a torque, we must be
sure that the thickness t is large enough to prevent wrinkling or buckling
of the wall of the tube. For instance, a maximum value of the radius to
thickness ratio, such as (r./t)max = 12, may be specified. Other design
considerations include environmental and durability factors, which also
may impose requirements for minimum wall thickness. These topics are
discussed in courses and textbooks on mechanical design.

Limitations

The equations derived in this section are limited to bars of circular cross
section (either solid or hollow) that behave in a linearly elastic manner.
In other words, the loads must be such that the stresses do not exceed
the proportional limit of the material. Furthermore, the equations for
stresses are valid only in parts of the bars away from stress concentra-
tions (such as holes and other abrupt changes in shape) and away from
cross sections where loads are applied. (Stress concentrations in torsion
are discussed later in Section 3.11.)

Finally, it is important to emphasize that the equations for the
torsion of circular bars and tubes cannot be used for bars of other
shapes. Noncircular bars, such as rectangular bars and bars having
I-shaped cross sections, behave quite differently than do circular bars.
For instance, their cross sections do not remain plane and their
maximum stresses are not located at the farthest distances from the
midpoints of the cross sections. Thus, these bars require more advanced
methods of analysis, such as those presented in books on theory of elas-
ticity and advanced mechanics of materials.*

*The torsion theory for circular bars originated with the work of the famous French
scientist C. A. de Coulomb (1736-1806); further developments were due to Thomas
Young and A. Duleau (Ref. 3-1). The general theory of torsion (for bars of any shape) is
due to the most famous elastician of all time, Barré de Saint-Venant (1797-1886); see
Ref. 2-10.
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Example 3-1

A solid steel bar of circular cross section (Fig. 3-11) has diameter d = 1.5 in,,
length L = 54 in., and shear modulus of elasticity G = 11.5 X 10° psi. The bar
is subjected to torques T acting at the ends.

(a) If the torques have magnitude T = 250 Ib-ft, what is the maximum
shear stress in the bar? What is the angle of twist between the ends?

(b) If the allowable shear stress is 6000 psi and the allowable angle of twist
is 2.5°, what is the maximum permissible torque?

d=15in.

A
3

A

t

FIG. 3-11 Example 3-1. Bar in pure )
torsion ! L=54in. \

Solution

(a) Maximum shear stress and angle of twist. Because the bar has a solid
circular cross section, we can find the maximum shear stress from Eq. (3-12), as
follows:

16T 16(250 Ib-ft)(12 in./ft)
Tmax — 77'd3 =

= 4530 psi <=

In a similar manner, the angle of twist is obtained from Eq. (3-15) with the polar
moment of inertia given by Eq. (3-10):
_md*  #(15in)*

— _ — in 4
Ip 2 2 0.4970 in.

TL (250 Ib-ft)(12 in./ft)(54 in.)
Glp (115 X 10° psi)(0.4970 in.*)

¢= =0.02834rad = 1.62°  <4mm
Thus, the analysis of the bar under the action of the given torque is completed.

(b) Maximum permissible torque. The maximum permissible torque is
determined either by the allowable shear stress or by the allowable angle of
twist. Beginning with the shear stress, we rearrange Eq. (3-12) and calculate as
follows:

3
7d Taow

="1

= 1—: (1.5in.)3(6000 psi) = 3980 lb-in. = 331 lb-ft

Any torque larger than this value will result in a shear stress that exceeds the
allowable stress of 6000 psi.
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Using a rearranged Eq. (3-15), we now calculate the torque based upon the
angle of twist:

Glpduiow _ (115 X 10° psi)(0.4970 in.*)(2.5°)( r rad/180°)
== = 54.in.

= 4618 Ib-in. = 385 Ib-ft

Any torque larger than T, will result in the allowable angle of twist being
exceeded.
The maximum permissible torque is the smaller of T, and T»:

Tonax = 331 Ib-ft <=

In this example, the allowable shear stress provides the limiting condition.

Example 3-2

FIG.3-12 Example 3-2. Torsion of a steel
shaft

A steel shaft is to be manufactured either as a solid circular bar or as a circular
tube (Fig. 3-12). The shaft is required to transmit a torque of 1200 N-m without
exceeding an allowable shear stress of 40 MPa nor an allowable rate of twist of
0.75°/m. (The shear modulus of elasticity of the steel is 78 GPa.)

(a) Determine the required diameter dg of the solid shaft.

(b) Determine the required outer diameter d, of the hollow shaft if the
thickness t of the shaft is specified as one-tenth of the outer diameter.

(c) Determine the ratio of diameters (that is, the ratio d,/dg) and the ratio of
weights of the hollow and solid shafts.

-~ d0*> le—— dl
dy
(@) (b)

continued
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_ Oy
)
<7d04> d14>
dy
(@ (b)

FIG. 3-12 (Repeated)

Solution

(a) Solid shaft. The required diameter dqy is determined either from the
allowable shear stress or from the allowable rate of twist. In the case of the
allowable shear stress we rearrange Eq. (3-12) and obtain

16T _ 16(1200 N-m)

=1528%x107°m®
T Tallow (40 MPa)

a3 =

from which we get
do = 0.0535 m = 53.5 mm

In the case of the allowable rate of twist, we start by finding the required polar
moment of inertia (see Eq. 3-14):

T 1200 N-m

S _ 9 4
e = 6o, (78 GPa)(0.75m)( mradiig0y) _ i7° X 107Tm

Since the polar moment of inertia is equal to 77d /32, the required diameter is

32(1175 X 10 °m*
do= 32, _ 3 - )_ 11.97 x 10 ®m*
7T

or
do = 0.0588 m = 58.8 mm

Comparing the two values of do, we see that the rate of twist governs the design
and the required diameter of the solid shaft is

dg = 58.8 mm <=

In a practical design, we would select a diameter slightly larger than the calculated
value of dy; for instance, 60 mm.

(b) Hollow shaft. Again, the required diameter is based upon either the
allowable shear stress or the allowable rate of twist. We begin by noting that the
outer diameter of the bar is d, and the inner diameter is

d1 = d2 —2t= d2 - 2(01d2) = 08d2

Thus, the polar moment of inertia (Eq. 3-16) is
w m w
Ip = 2 (d3—-dH = 2 [d‘z‘ - (0.8d2)4] =32 (0.5904d %) = 0.05796d%

In the case of the allowable shear stress, we use the torsion formula
(Eq. 3-11) as follows:

T T(d/2) T

Tallow = 5 T 0.057%d 4 0.1159d3

Rearranging, we get

T 1200 N-m

= =258.8 X 10 & m?®
0.1159 7010w 0.1159(40 MPa) 58.8>10 " m

d3 =
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Solving for d, gives
d, = 0.0637 m = 63.7 mm

which is the required outer diameter based upon the shear stress.
In the case of the allowable rate of twist, we use Eq. (3-14) with 6 replaced
by 610w and Ip replaced by the previously obtained expression; thus,

P B
allow ™ 5(0.05796d 2)

from which

T

0.05796G Bayion

B 1200 N-m

~ 0.05796(78 GPa)(0.75°/m)(  rad/180°)

ds =

=20.28 X 10" °*m*

Solving for d, gives
d> = 0.0671 m = 67.1 mm

which is the required diameter based upon the rate of twist.
Comparing the two values of d,, we see that the rate of twist governs the
design and the required outer diameter of the hollow shaft is

d, = 67.1mm <=

The inner diameter d; is equal to 0.8d,, or 53.7 mm. (As practical values, we
might select d, = 70 mm and d; = 0.8d, = 56 mm.)

(c) Ratios of diameters and weights. The ratio of the outer diameter of the
hollow shaft to the diameter of the solid shaft (using the calculated values) is

d, _ 67.1mm

= =114 <=
do 58.8mm

Since the weights of the shafts are proportional to their cross-sectional
areas, we can express the ratio of the weight of the hollow shaft to the weight of

the solid shaft as follows: ; .
Whotiow — Anoliow _ 7T(d% — d%)/4 _ d% - d% =
Wisolid Asolid md§/4 d
_ (67.1mm)* — (53.7 mm)* _

(58.8 mm)? 047 '

These results show that the hollow shaft uses only 47% as much material as
does the solid shaft, while its outer diameter is only 14% larger.

Note: This example illustrates how to determine the required sizes of both
solid bars and circular tubes when allowable stresses and allowable rates of <
twist are known. It also illustrates the fact that circular tubes are more efficient
in the use of materials than are solid circular bars.
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Example 3-3

FIG. 3-13 Example 3-3. Comparison of
hollow and solid shafts

A hollow shaft and a solid shaft constructed of the same material have the same
length and the same outer radius R (Fig. 3-13). The inner radius of the hollow
shaft is 0.6R.

(a) Assuming that both shafts are subjected to the same torque, compare
their shear stresses, angles of twist, and weights.

(b) Determine the strength-to-weight ratios for both shafts.

0.6R

@) (b)

Solution

(a) Comparison of shear stresses. The maximum shear stresses, given by
the torsion formula (Eq. 3-11), are proportional to 1/l inasmuch as the torques
and radii are the same. For the hollow shaft, we get

4 4
lp = TR mOBRY. _ 4350 me
2 2
and for the solid shaft,
4
lp = 772R = 0.57R*

Therefore, the ratio 3, of the maximum shear stress in the hollow shaft to that in
the solid shaft is

_ T _ 057R* _ <=
Ar s 043527R* 115

where the subscripts H and S refer to the hollow shaft and the solid shaft,
respectively.

Comparison of angles of twist. The angles of twist (Eq. 3-15) are also
proportional to 1/Ip, because the torques T, lengths L, and moduli of elasticity G
are the same for both shafts. Therefore, their ratio is the same as for the shear
stresses:

oy . 5RO
=0T =11 <=
P2 &s 00 a352R" °
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Comparison of weights. The weights of the shafts are proportional to their
cross-sectional areas; consequently, the weight of the solid shaft is proportional
to 7R? and the weight of the hollow shaft is proportional to

7R? — 7(0.6R)? = 0.647R?

Therefore, the ratio of the weight of the hollow shaft to the weight of the solid
shaft is

2
M:MZO'(M <=

Ps = R

From the preceding ratios we again see the inherent advantage of hollow
shafts. In this example, the hollow shaft has 15% greater stress and 15% greater
angle of rotation than the solid shaft but 36% less weight.

(b) Strength-to-weight ratios. The relative efficiency of a structure is some-
times measured by its strength-to-weight ratio, which is defined for a bar in
torsion as the allowable torque divided by the weight. The allowable torque for
the hollow shaft of Fig. 3-13a (from the torsion formula) is

4
T, = —Tm;X"’ = —Tmax(o'4;’52’TR ) 0.43527R%7

and for the solid shaft is

4
Ts = 7'mEle _ TmaX(OlquR ) _ 0.57TR37'maX

The weights of the shafts are equal to the cross-sectional areas times the length
L times the weight density y of the material:

Wy = 0.647R’Ly  Ws = #R’Ly

Thus, the strength-to-weight ratios Sy and Ss for the hollow and solid bars, : |
respectively, are

Su=t—oeg R g _Ts _gg Tl <=

Wy n Ws 7"

In this example, the strength-to-weight ratio of the hollow shaft is 36% greater
than the strength-to-weight ratio for the solid shaft, demonstrating once again
the relative efficiency of hollow shafts. For a thinner shaft, the percentage will
increase; for a thicker shaft, it will decrease. (”
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3.4 NONUNIFORM TORSION
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FIG. 3-14 Bar in nonuniform torsion
(Case 1)

C D
< Lac JP Leo J
(a)
T Ty T3
A B c

As explained in Section 3.2, pure torsion refers to torsion of a prismatic
bar subjected to torques acting only at the ends. Nonuniform torsion
differs from pure torsion in that the bar need not be prismatic and the
applied torques may act anywhere along the axis of the bar. Bars in
nonuniform torsion can be analyzed by applying the formulas of pure
torsion to finite segments of the bar and then adding the results, or
by applying the formulas to differential elements of the bar and then
integrating.

To illustrate these procedures, we will consider three cases of
nonuniform torsion. Other cases can be handled by techniques similar to
those described here.

Case 1. Bar consisting of prismatic segments with constant torque
throughout each segment (Fig. 3-14). The bar shown in part (a) of the
figure has two different diameters and is loaded by torques acting at
points A, B, C, and D. Consequently, we divide the bar into segments in
such a way that each segment is prismatic and subjected to a constant
torque. In this example, there are three such segments, AB, BC, and CD.
Each segment is in pure torsion, and therefore all of the formulas
derived in the preceding section may be applied to each part separately.

The first step in the analysis is to determine the magnitude and
direction of the internal torque in each segment. Usually the torques can
be determined by inspection, but if necessary they can be found by
cutting sections through the bar, drawing free-body diagrams, and
solving equations of equilibrium. This process is illustrated in parts (b),
(c), and (d) of the figure. The first cut is made anywhere in segment CD,
thereby exposing the internal torque Tcp. From the free-body diagram
(Fig. 3-14b), we see that Tcp is equal to —T; — T, + Ta. From the next
diagram we see that Tgc equals —T; — T,, and from the last we find that
Tag €quals —T;. Thus,

Teco=-—T1—T,+ T3 Tec=-—T1— T, Tag = —T1 (ab,c)

Each of these torques is constant throughout the length of its segment.
When finding the shear stresses in each segment, we need only the
magnitudes of these internal torques, since the directions of the stresses
are not of interest. However, when finding the angle of twist for the
entire bar, we need to know the direction of twist in each segment in
order to combine the angles of twist correctly. Therefore, we need to
establish a sign convention for the internal torques. A convenient rule in
many cases is the following: An internal torque is positive when its
vector points away from the cut section and negative when its vector
points toward the section. Thus, all of the internal torques shown in
Figs. 3-14b, c, and d are pictured in their positive directions. If the
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FIG. 3-15 Bar in nonuniform torsion
(Case 2)

SECTION 3.4 Nonuniform Torsion 203

calculated torque (from Eq. a, b, or ¢) turns out to have a positive sign, it
means that the torque acts in the assumed direction; if the torque has a
negative sign, it acts in the opposite direction.

The maximum shear stress in each segment of the bar is readily
obtained from the torsion formula (Eq. 3-11) using the appropriate
cross-sectional dimensions and internal torque. For instance, the
maximum stress in segment BC (Fig. 3-14) is found using the diameter
of that segment and the torque Tgc calculated from Eq. (b). The
maximum stress in the entire bar is the largest stress from among the
stresses calculated for each of the three segments.

The angle of twist for each segment is found from Eq. (3-15), again
using the appropriate dimensions and torque. The total angle of twist of
one end of the bar with respect to the other is then obtained by algebraic
summation, as follows:

dp=¢1+ P+ ...+ Py (3-19)

where ¢ is the angle of twist for segment 1, ¢, is the angle for segment
2, and so on, and n is the total number of segments. Since each angle of
twist is found from Eq. (3-15), we can write the general formula

n

¢ = S S BICE -
Zl izl Gi(lp)i (3 20)

in which the subscript i is a numbering index for the various segments.
For segment i of the bar, T; is the internal torque (found from equilibrium,
as illustrated in Fig. 3-14), L; is the length, G; is the shear modulus, and
(Ip); is the polar moment of inertia. Some of the torques (and the
corresponding angles of twist) may be positive and some may be
negative. By summing algebraically the angles of twist for all segments,
we obtain the total angle of twist ¢ between the ends of the bar. The
process is illustrated later in Example 3-4.

Case 2. Bar with continuously varying cross sections and constant
torque (Fig. 3-15). When the torque is constant, the maximum shear
stress in a solid bar always occurs at the cross section having the
smallest diameter, as shown by Eq. (3-12). Furthermore, this observation
usually holds for tubular bars. If this is the case, we only need to
investigate the smallest cross section in order to calculate the maximum
shear stress. Otherwise, it may be necessary to evaluate the stresses at
more than one location in order to obtain the maximum.

To find the angle of twist, we consider an element of length dx at
distance x from one end of the bar (Fig. 3-15). The differential angle of
rotation d¢ for this element is

deb = Tdx

 Glp(x) @
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FIG.3-16 Bar in nonuniform torsion
(Case 3)

in which 1p(x) is the polar moment of inertia of the cross section at
distance x from the end. The angle of twist for the entire bar is the
summation of the differential angles of rotation:

L L
— | dp=| Tdx_ 3-21
¢ Jo i L Glp(x) (3-21)

If the expression for the polar moment of inertia Ip(x) is not too
complex, this integral can be evaluated analytically, as in Example 3-5.
In other cases, it must be evaluated numerically.

Case 3. Bar with continuously varying cross sections and continu-
ously varying torque (Fig. 3-16). The bar shown in part (a) of the figure
is subjected to a distributed torque of intensity t per unit distance along
the axis of the bar. As a result, the internal torque T(x) varies continu-
ously along the axis (Fig. 3-16b). The internal torque can be evaluated
with the aid of a free-body diagram and an equation of equilibrium. As
in Case 2, the polar moment of inertia Ip(x) can be evaluated from the
cross-sectional dimensions of the bar.

t

Ta % EEEG T
<—
A B
%x l—dx
L
(@

t
Ta T(X)
<—

x|

(b)

Knowing both the torque and polar moment of inertia as functions
of x, we can use the torsion formula to determine how the shear stress
varies along the axis of the bar. The cross section of maximum shear
stress can then be identified, and the maximum shear stress can be
determined.

The angle of twist for the bar of Fig. 3-16a can be found in the same
manner as described for Case 2. The only difference is that the torque,
like the polar moment of inertia, also varies along the axis. Conse-
quently, the equation for the angle of twist becomes
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SECTION 3.4 Nonuniform Torsion 205

L L
_ _ | Tx)dx ]
i L o L Glp(X) (3-22)

This integral can be evaluated analytically in some cases, but usually it
must be evaluated numerically.

Limitations

The analyses described in this section are valid for bars made of linearly
elastic materials with circular cross sections (either solid or hollow).
Also, the stresses determined from the torsion formula are valid in
regions of the bar away from stress concentrations, which are high local-
ized stresses that occur wherever the diameter changes abruptly and
wherever concentrated torques are applied (see Section 3.11). However,
stress concentrations have relatively little effect on the angle of twist,
and therefore the equations for ¢ are generally valid.

Finally, we must keep in mind that the torsion formula and the
formulas for angles of twist were derived for prismatic bars. \We can
safely apply them to bars with varying cross sections only when the
changes in diameter are small and gradual. As a rule of thumb, the
formulas given here are satisfactory as long as the angle of taper (the
angle between the sides of the bar) is less than 10°.

Example 3-4

FIG.3-17 Example 3-4. Steel shaft in
torsion

A solid steel shaft ABCDE (Fig. 3-17) having diameter d = 30 mm turns freely
in bearings at points A and E. The shaft is driven by a gear at C, which applies a
torque T, = 450 N-m in the direction shown in the figure. Gears at B and D are
driven by the shaft and have resisting torques T; = 275 N-m and Tz = 175 N-m,
respectively, acting in the opposite direction to the torque T,. Segments BC and
CD have lengths Lgc = 500 mm and Lcp = 400 mm, respectively, and the
shear modulus G = 80 GPa.

Determine the maximum shear stress in each part of the shaft and the angle
of twist between gears B and D.

continued
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(b)

FIG. 3-18 Free-body diagrams for
Example 3-4

Solution

Each segment of the bar is prismatic and subjected to a constant torque
(Case 1). Therefore, the first step in the analysis is to determine the torques acting
in the segments, after which we can find the shear stresses and angles of twist.

Torques acting in the segments. The torques in the end segments (AB and
DE) are zero since we are disregarding any friction in the bearings at the
supports. Therefore, the end segments have no stresses and no angles of twist.

The torque T¢p in segment CD is found by cutting a section through the
segment and constructing a free-body diagram, as in Fig. 3-18a. The torque is
assumed to be positive, and therefore its vector points away from the cut
section. From equilibrium of the free body, we obtain

Teo =T, — Ty =450 N-m — 275 N-m = 175 N‘m

The positive sign in the result means that Tcp acts in the assumed positive
direction.

The torque in segment BC is found in a similar manner, using the free-body
diagram of Fig. 3-18b:

TBC = _Tl = _275 Nm

Note that this torque has a negative sign, which means that its direction is opposite
to the direction shown in the figure.

Shear stresses. The maximum shear stresses in segments BC and CD are
found from the modified form of the torsion formula (Eq. 3-12); thus,

_ 16Tsc _ 16(275N-m)

= =51.9 MP <=
TBC T TS (30 mm)® 51.9 MPa

_ 16Tcp _ 16(175 N-m) _ =
TcD 77d3 77_(30 mm)3 330 MPa

Since the directions of the shear stresses are not of interest in this example, only
absolute values of the torques are used in the preceding calculations.

Angles of twist. The angle of twist ¢gp between gears B and D is the alge-
braic sum of the angles of twist for the intervening segments of the bar, as given
by Eq. (3-19); thus,

P8 = PBC T Db

When calculating the individual angles of twist, we need the moment of inertia
of the cross section:
_md* (30 mm)?

== == = 4
o= 2 79,520 mm

Now we can determine the angles of twist, as follows:

o = Bckec _ (=275 N-m)(500 mm)
BT TGl (80 GPa)(79,520 mm®)

—0.0216 rad

4oy — Teokco _ (175 N'm)(400 mm)
®~ 7 Glp  (80GPa)(79,520 mm’)

= 0.0110 rad
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Note that in this example the angles of twist have opposite directions. Adding
algebraically, we obtain the total angle of twist:

bep = e + dep = —0.0216 + 0.0110 = —0.0106 rad = —0.61°  <mm

The minus sign means that gear D rotates clockwise (when viewed from the
right-hand end of the shaft) with respect to gear B. However, for most purposes
only the absolute value of the angle of twist is needed, and therefore it is
sufficient to say that the angle of twist between gears B and D is 0.61°. The
angle of twist between the two ends of a shaft is sometimes called the wind-up.

Notes: The procedures illustrated in this example can be used for shafts
having segments of different diameters or of different materials, as long as the
dimensions and properties remain constant within each segment.

Only the effects of torsion are considered in this example and in the problems
at the end of the chapter. Bending effects are considered later, beginning with
Chapter 4.

Example 3-5
T A\ 'E :
x| [—dx ‘
L |
° —
gy 5

FIG. 3-19 Example 3-5. Tapered bar in
torsion

A tapered bar AB of solid circular cross section is twisted by torques T applied
at the ends (Fig. 3-19). The diameter of the bar varies linearly from d, at the
left-hand end to dg at the right-hand end, with dg assumed to be greater than da.
(a) Determine the maximum shear stress in the bar.
(b) Derive a formula for the angle of twist of the bar.

Solution

(a) Shear stresses. Since the maximum shear stress at any cross section in
a solid bar is given by the modified torsion formula (Eq. 3-12), we know imme-
diately that the maximum shear stress occurs at the cross section having the
smallest diameter, that is, at end A (see Fig. 3-19):

16T
Tmax — 7Td?A <=

(b) Angle of twist. Because the torque is constant and the polar moment of
inertia varies continuously with the distance x from end A (Case 2), we will use
Eq. (3-21) to determine the angle of twist. We begin by setting up an expression
for the diameter d at distance x from end A:

d=d+ di[ﬂ X (3-23)

in which L is the length of the bar. We can now write an expression for the polar
moment of inertia:

d4 dg — da \*
Ip(x) = ’;—2 = 3—7; (dA + B Ca x) (3-24)

continued
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Substituting this expression into Eq. (3-21), we get a formula for the angle of

twist:
“dx 3t [* d
X X
= =— 3-25
¢ LGH:(X) wGL( dg — da )4 (3-25)
da + ———=x
L
To evaluate the integral in this equation, we note that it is of the form
J dx
(a+ bx)*
in which
a=dy b= dB—IdA ©f)

With the aid of a table of integrals (see Appendix C), we find

J dx _ 1
(a + bx)* 3b(a + bx)®

This integral is evaluated in our case by substituting for x the limits 0 and L and
substituting for a and b the expressions in Egs. (e) and (f). Thus, the integral in
Eq. (3-25) equals

L (11 @
3(de — do) \d3  d3 ’
Replacing the integral in Eq. (3-25) with this expression, we obtain
32TL 1 1
== (= - = - <=
e rmrnlvray (320

which is the desired equation for the angle of twist of the tapered bar.
A convenient form in which to write the preceding equation is

_TL (BA+B+1 i
? 7 Gl ( 3 ) 20
in which
_Gs _ mdi i
P=1. Ue)a =5 (3-28)

The quantity B is the ratio of end diameters and (Ip)a is the polar moment of
inertia at end A.

In the special case of a prismatic bar, we have 8 = 1 and Eq. (3-27) gives
¢ = TLIG(Ip)a, as expected. For values of B greater than 1, the angle of rotation
decreases because the larger diameter at end B produces an increase in the
torsional stiffness (as compared to a prismatic bar).
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3.5 STRESSES AND STRAINS IN PURE SHEAR

T A
N

(b)

FIG. 3-20 Stresses acting on a stress
element cut from a bar in torsion (pure
shear)

When a circular bar, either solid or hollow, is subjected to torsion, shear
stresses act over the cross sections and on longitudinal planes, as illus-
trated previously in Fig. 3-7. We will now examine in more detail the
stresses and strains produced during twisting of a bar.

We begin by considering a stress element abcd cut between two cross
sections of a bar in torsion (Figs. 3-20a and b). This element is in a state of
pure shear, because the only stresses acting on it are the shear stresses
on the four side faces (see the discussion of shear stresses in Section 1.6.)

The directions of these shear stresses depend upon the directions of
the applied torques T. In this discussion, we assume that the torques
rotate the right-hand end of the bar clockwise when viewed from the
right (Fig. 3-20a); hence the shear stresses acting on the element have
the directions shown in the figure. This same state of stress exists for a
similar element cut from the interior of the bar, except that the magni-
tudes of the shear stresses are smaller because the radial distance to the
element is smaller.

The directions of the torques shown in Fig. 3-20a are intentionally
chosen so that the resulting shear stresses (Fig. 3-20b) are positive
according to the sign convention for shear stresses described previously
in Section 1.6. This sign convention is repeated here:

A shear stress acting on a positive face of an element is positive if it
acts in the positive direction of one of the coordinate axes and negative
if it acts in the negative direction of an axis. Conversely, a shear stress
acting on a negative face of an element is positive if it acts in the nega-
tive direction of one of the coordinate axes and negative if it acts in the
positive direction of an axis.

Applying this sign convention to the shear stresses acting on the
stress element of Fig. 3-20b, we see that all four shear stresses are
positive. For instance, the stress on the right-hand face (which is a posi-
tive face because the x axis is directed to the right) acts in the positive
direction of the y axis; therefore, it is a positive shear stress. Also, the
stress on the left-hand face (which is a negative face) acts in the negative
direction of the y axis; therefore, it is a positive shear stress. Analogous
comments apply to the remaining stresses.

Stresses on Inclined Planes

We are now ready to determine the stresses acting on inclined planes cut
through the stress element in pure shear. We will follow the same approach
as the one we used in Section 2.6 for investigating the stresses in uniaxial
stress.

A two-dimensional view of the stress element is shown in Fig. 3-21a
on the next page. As explained previously in Section 2.6, we usually draw a
two-dimensional view for convenience, but we must always be aware that
the element has a third dimension (thickness) perpendicular to the plane of
the figure.
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FIG.3-21 Analysis of stresses on inclined
planes: (a) element in pure shear,

(b) stresses acting on a triangular stress
element, and (c) forces acting on the
triangular stress element (free-body
diagram)

—_—
a b 7, % 0 Ag sec 0
y T \ P 5 \a,, Ag secd
T o X T
d c Ao
-— — -
T T TAg tan 6
@ (b) (©

We now cut from the element a wedge-shaped (or “triangular”) stress
element having one face oriented at an angle 6 to the x axis (Fig. 3-21b).
Normal stresses o, and shear stresses 7, act on this inclined face and are
shown in their positive directions in the figure. The sign convention for
stresses o, and 7, was described previously in Section 2.6 and is
repeated here:

Normal stresses o, are positive in tension and shear stresses 7, are
positive when they tend to produce counterclockwise rotation of the
material. (Note that this sign convention for the shear stress 7, acting on
an inclined plane is different from the sign convention for ordinary shear
stresses 7 that act on the sides of rectangular elements oriented to a set
of xy axes.)

The horizontal and vertical faces of the triangular element (Fig. 3-21b)
have positive shear stresses = acting on them, and the front and rear faces
of the element are free of stress. Therefore, all stresses acting on the
element are visible in this figure.

The stresses oy and 7, may now be determined from the equilibrium
of the triangular element. The forces acting on its three side faces can be
obtained by multiplying the stresses by the areas over which they act.
For instance, the force on the left-hand face is equal to 7Aq, where Aq is
the area of the vertical face. This force acts in the negative y direction
and is shown in the free-body diagram of Fig. 3-21c. Because the
thickness of the element in the z direction is constant, we see that the
area of the bottom face is A, tan @ and the area of the inclined
face is Ag sec 6. Multiplying the stresses acting on these faces by the
corresponding areas enables us to obtain the remaining forces and
thereby complete the free-body diagram (Fig. 3-21c).

We are now ready to write two equations of equilibrium for the
triangular element, one in the direction of o, and the other in the direc-
tion of 7, When writing these equations, the forces acting on the
left-hand and bottom faces must be resolved into components in the
directions of o, and 7, Thus, the first equation, obtained by summing
forces in the direction of oy, is

oy A Sec 6 = 7Ay sin 0 + 7Ay tan 6 cos 6
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FIG. 3-22 Graph of normal stresses o
and shear stresses 7, versus angle 6 of
the inclined plane
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or
oy = 275in 6cos 6 (3-29a)

The second equation is obtained by summing forces in the direction of
Ty,

ToAqg Sec 6 = A cos § — 7Ap tan sin 0
or
7o = 7(C0S%6 — sin6) (3-29b)

These equations can be expressed in simpler forms by introducing the
following trigonometric identities (see Appendix C):

sin26 = 2sin 6cos &  cos 26 = cos® 6 — sin® @

Then the equations for oy and 7, become
oy = 7Sin 20 Ty = 7COS 20 (3-30a,b)

Equations (3-30a and b) give the normal and shear stresses acting on any
inclined plane in terms of the shear stresses = acting on the x and y
planes (Fig. 3-21a) and the angle 6 defining the orientation of the
inclined plane (Fig. 3-21b).

The manner in which the stresses o, and 7, vary with the orientation
of the inclined plane is shown by the graph in Fig. 3-22, which is a plot
of Egs. (3-30a and b). We see that for ¢ = 0, which is the right-hand face
of the stress element in Fig. 3-21a, the graph gives o, = 0 and 7, = 7. This
latter result is expected, because the shear stress 7 acts counterclockwise
against the element and therefore produces a positive shear stress 7.

For the top face of the element (6 = 90°), we obtain o, = 0 and
79 = — 7. The minus sign for 7, means that it acts clockwise against the
element, that is, to the right on face ab (Fig. 3-21a), which is consistent
with the direction of the shear stress 7. Note that the numerically largest
shear stresses occur on the planes for which # = 0 and 90°, as well as on
the opposite faces (@ = 180° and 270°).

From the graph we see that the normal stress o, reaches a maximum
value at # = 45°. At that angle, the stress is positive (tension) and equal
numerically to the shear stress 7. Similarly, o has its minimum value
(which is compressive) at & = —45°. At both of these 45° angles, the
shear stress 7, is equal to zero. These conditions are pictured in Fig. 3-23
on the next page, which shows stress elements oriented at # = 0 and
0 = 45°. The element at 45° is acted upon by equal tensile and compres-
sive stresses in perpendicular directions, with no shear stresses.

Note that the normal stresses acting on the 45° element (Fig. 3-23b)
correspond to an element subjected to shear stresses 7 acting in the
directions shown in Fig. 3-23a. If the shear stresses acting on the
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FIG. 3-23 Stress elements oriented at
0= 0and 6 = 45° for pure shear

FIG. 3-24 Torsion failure of a brittle
material by tension cracking along a
45° helical surface

Omin=—T Omax = T
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— /NN

Omax = T Omin =7

€) (b)

element of Fig. 3-23a are reversed in direction, the normal stresses
acting on the 45° planes also will change directions.

If a stress element is oriented at an angle other than 45°, both
normal and shear stresses will act on the inclined faces (see Egs. 3-30a
and b and Fig. 3-22). Stress elements subjected to these more general
conditions are discussed in detail in Chapter 7.

The equations derived in this section are valid for a stress element in
pure shear regardless of whether the element is cut from a bar in torsion
or from some other structural element. Also, since Egs. (3-30) were
derived from equilibrium only, they are valid for any material, whether
or not it behaves in a linearly elastic manner.

The existence of maximum tensile stresses on planes at 45° to the
x axis (Fig. 3-23b) explains why bars in torsion that are made of materials
that are brittle and weak in tension fail by cracking along a 45° helical
surface (Fig. 3-24). As mentioned in Section 3.3, this type of failure is
readily demonstrated by twisting a piece of classroom chalk.

Strains in Pure Shear

Let us now consider the strains that exist in an element in pure shear. For
instance, consider the element in pure shear shown in Fig. 3-23a. The cor-
responding shear strains are shown in Fig. 3-25a, where the deformations
are highly exaggerated. The shear strain vy is the change in angle between
two lines that were originally perpendicular to each other, as discussed
previously in Section 1.6. Thus, the decrease in the angle at the lower left-
hand corner of the element is the shear strain y (measured in radians).
This same change in angle occurs at the upper right-hand corner, where

T »/ 1,45° Crack a T
N
-'-
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FIG.3-25 Strains in pure shear: (a) shear
distortion of an element oriented at

0 = 0, and (b) distortion of an element
oriented at 6 = 45°
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the angle decreases, and at the other two corners, where the angles
increase. However, the lengths of the sides of the element, including the
thickness perpendicular to the plane of the paper, do not change when
these shear deformations occur. Therefore, the element changes its shape
from a rectangular parallelepiped (Fig. 3-23a) to an oblique parallelepiped
(Fig. 3-25a). This change in shape is called a shear distortion.

If the material is linearly elastic, the shear strain for the element
oriented at # = 0 (Fig. 3-25a) is related to the shear stress by Hooke’s
law in shear:

Y= (3-31)

where, as usual, the symbol G represents the shear modulus of elasticity.

Omin=—T
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Next, consider the strains that occur in an element oriented at
0 = 45° (Fig. 3-25b). The tensile stresses acting at 45° tend to elongate
the element in that direction. Because of the Poisson effect, they also
tend to shorten it in the perpendicular direction (the direction where
0 = 135° or —45°). Similarly, the compressive stresses acting at 135°
tend to shorten the element in that direction and elongate it in the 45°
direction. These dimensional changes are shown in Fig. 3-25b, where
the dashed lines show the deformed element. Since there are no shear
distortions, the element remains a rectangular parallelepiped even
though its dimensions have changed.

If the material is linearly elastic and follows Hooke’s law, we can
obtain an equation relating strain to stress for the element at 6 = 45°
(Fig. 3-25b). The tensile stress omayx acting at = 45° produces a posi-
tive normal strain in that direction equal t0 oa/E. Since omax = 7, We
can also express this strain as 7/E. The stress omax also produces a nega-
tive strain in the perpendicular direction equal to —v7/E, where v is
Poisson’s ratio. Similarly, the stress o, = — 7 (at # = 135°) produces a
negative strain equal to — 7/E in that direction and a positive strain in the
perpendicular direction (the 45° direction) equal to »7/E. Therefore, the
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normal strain in the 45° direction is

T + vT
€, = —
max E E

which is positive, representing elongation. The strain in the perpendi-
cular direction is a negative strain of the same amount. In other words,
pure shear produces elongation in the 45° direction and shortening in the
135° direction. These strains are consistent with the shape of the
deformed element of Fig. 3-25a, because the 45° diagonal has lengthened
and the 135° diagonal has shortened.

In the next section we will use the geometry of the deformed
element to relate the shear strain y (Fig. 3-25a) to the normal strain €ay
in the 45° direction (Fig. 3-25b). In so doing, we will derive the
following relationship:

= % 1+ v) (3-32)

y
> (3-33)

€max

This equation, in conjunction with Eq. (3-31), can be used to calculate
the maximum shear strains and maximum normal strains in pure torsion
when the shear stress 7is known.

Example 3-6

T=4.0KkN-m

80 —|
mm

FIG.3-26 Example 3-6. Circular tube in
torsion

>
<
& %
-

A circular tube with an outside diameter of 80 mm and an inside diameter of
60 mm is subjected to a torque T = 4.0 kN-m (Fig. 3-26). The tube is made of
aluminum alloy 7075-T6.
(a) Determine the maximum shear, tensile, and compressive stresses in the
tube and show these stresses on sketches of properly oriented stress elements.
(b) Determine the corresponding maximum strains in the tube and show
these strains on sketches of the deformed elements.

Solution

(a) Maximum stresses. The maximum values of all three stresses (shear,
tensile, and compressive) are equal numerically, although they act on different
planes. Their magnitudes are found from the torsion formula:

4000 N-m)(0.040 m
T = A = ( X ) _cgompa  eem

_I_ N T 4 4
» =z [(0.080 m)* — (0.060 m) }

The maximum shear stresses act on cross-sectional and longitudinal planes, as
shown by the stress element in Fig. 3-27a, where the x axis is parallel to the
longitudinal axis of the tube.
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The maximum tensile and compressive stresses are

o. = —58.2 MPa <=
These stresses act on planes at 45° to the axis (Fig. 3-27b).
(b) Maximum strains. The maximum shear strain in the tube is obtained

from Eq. (3-31). The shear modulus of elasticity is obtained from Table H-2,
Appendix H, as G = 27 GPa. Therefore, the maximum shear strain is

_ Tmax _ 98.2MPa
Ymax = G 2—7 GPa 0.0022 rad

<=
The deformed element is shown by the dashed lines in Fig. 3-27c.

The magnitude of the maximum normal strains (from Eq. 3-33) is
€ = 1 = 00011
2
Thus, the maximum tensile and compressive strains are
& = 0.0011

e. = —0.0011 <=
The deformed element is shown by the dashed lines in Fig. 3-27d for an element
with sides of unit length.

58.2 MPa
_
y
Tmax =
0] X || 58.2 MPa
—
(a)
v 1
\ \
\ \
\ e \‘ L,
FIG.3-27 Stress and strain elements f Vmax = \
.3- ress and strain elements for 0.0022 rad", \ >//<
the tube of Example 3-6: (a) maximum ! \
shear stresses, (b) maximum tensile and | ! € =0.0011
compressive stresses; () maximum
shear strains, and (d) maximum tensile
and compressive strains (©
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3.6 RELATIONSHIP BETWEEN MODULI OF ELASTICITY EAND G

FIG. 3-28 Geometry of deformed

element in pure shear

An important relationship between the moduli of elasticity E and G can
be obtained from the equations derived in the preceding section. For this
purpose, consider the stress element abcd shown in Fig. 3-28a. The front
face of the element is assumed to be square, with the length of each side
denoted as h. When this element is subjected to pure shear by stresses 7,
the front face distorts into a rhombus (Fig. 3-28b) with sides of length h
and with shear strain y = 7/G. Because of the distortion, diagonal bd is
lengthened and diagonal ac is shortened. The length of diagonal bd is
equal to its initial length V2 h times the factor 1 + €y, Where €may is
the normal strain in the 45° direction; thus,

Loa = \/E h(1 + €max) @

This length can be related to the shear strain y by considering the geom-
etry of the deformed element.

To obtain the required geometric relationships, consider triangle abd
(Fig. 3-28c) which represents one-half of the rhombus pictured in Fig.
3-28b. Side bd of this triangle has length Lyq (EQ. @), and the other sides
have length h. Angle adb of the triangle is equal to one-half of angle adc
of the rhombus, or 7/4 — /2. The angle abd in the triangle is the same.
Therefore, angle dab of the triangle equals #/2 + . Now using the law
of cosines (see Appendix C) for triangle abd, we get

L24 = h? + h? — 2h? cos (%T + y)
Substituting for L,y from Eq. (a) and simplifying, we get
(1 + €max)® = 1 — COs (% + y)

By expanding the term on the left-hand side, and also observing that
cos(7/2 + y) = —sin vy, we obtain

1+ 2€max + E€max =1+ siny

,
. b . > b . h b
m m_Y
T ToY 1772
D4 h h Log
/// \\\ T
d // \\ d / C d - ’)/
C U
] T 472
(a (b) (c)
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Because eyax and y are very small strains, we can disregard €2, in compar-
ison with 2., and we can replace sin y by y. The resulting expression is

€max = % (3'34)

which establishes the relationship already presented in Section 3.5 as
Eg. (3-33).

The shear strain y appearing in Eq. (3-34) is equal to 7/G by Hooke’s
law (Eq. 3-31) and the normal strain ey is equal to 7(1 + »)/E by Eq.
(3-32). Making both of these substitutions in Eq. (3-34) yields

E

C=2a+9

(3-35)

We see that E, G, and » are not independent properties of a linearly
elastic material. Instead, if any two of them are known, the third can be
calculated from Eq. (3-35).

Typical values of E, G, and v are listed in Table H-2, Appendix H.

3.7 TRANSMISSION OF POWER BY CIRCULAR SHAFTS

FIG.3-29 Shaft transmitting a constant
torque T at an angular speed w

The most important use of circular shafts is to transmit mechanical
power from one device or machine to another, as in the drive shaft of an
automobile, the propeller shaft of a ship, or the axle of a bicycle. The
power is transmitted through the rotary motion of the shaft, and the
amount of power transmitted depends upon the magnitude of the torque
and the speed of rotation. A common design problem is to determine the
required size of a shaft so that it will transmit a specified amount of
power at a specified rotational speed without exceeding the allowable
stresses for the material.

Let us suppose that a motor-driven shaft (Fig. 3-29) is rotating at an
angular speed w, measured in radians per second (rad/s). The shaft trans-
mits a torque T to a device (not shown in the figure) that is performing
useful work. The torque applied by the shaft to the external device has
the same sense as the angular speed w, that is, its vector points to the
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left. However, the torque shown in the figure is the torque exerted on the
shaft by the device, and so its vector points in the opposite direction.

In general, the work W done by a torque of constant magnitude is
equal to the product of the torque and the angle through which it rotates;
that is,

W=Ty (3-36)
where ¢ is the angle of rotation in radians.
Power is the rate at which work is done, or
dw dey
- =T-=
dt dt

in which P is the symbol for power and t represents time. The rate of
change d¢/dt of the angular displacement ¢ is the angular speed w, and
therefore the preceding equation becomes

p= (3-37)

P=Tow (w = rad/s) (3-38)

This formula, which is familiar from elementary physics, gives the
power transmitted by a rotating shaft transmitting a constant torque T.

The units to be used in Eq. (3-38) are as follows. If the torque T is
expressed in newton meters, then the power is expressed in watts (W).
One watt is equal to one newton meter per second (or one joule per
second). If T is expressed in pound-feet, then the power is expressed in
foot-pounds per second.*

Angular speed is often expressed as the frequency f of rotation,
which is the number of revolutions per unit of time. The unit of
frequency is the hertz (Hz), equal to one revolution per second (s ).
Inasmuch as one revolution equals 27 radians, we obtain

w=2af (w=radls, f=Hz=s" (3-39)
The expression for power (Eg. 3-38) then becomes
P=2#fT (f=Hz=s1 (3-40)

Another commonly used unit is the number of revolutions per minute
(rpm), denoted by the letter n. Therefore, we also have the following rela-
tionships:

n=60f (3-41)
and
_ 27nT

P
60

(n = rpm) (3-42)

*See Table A-1, Appendix A, for units of work and power.
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In Egs. (3-40) and (3-42), the quantities P and T have the same units as
in Eq. (3-38); that is, P has units of watts if T has units of newton
meters, and P has units of foot-pounds per second if T has units of
pound-feet.

In U.S. engineering practice, power is sometimes expressed in
horsepower (hp), a unit equal to 550 ft-1b/s. Therefore, the horsepower H
being transmitted by a rotating shaft is

_ 2mnT _ 2mnT
60(550) 33,000

One horsepower is approximately 746 watts.

The preceding equations relate the torque acting in a shaft to the
power transmitted by the shaft. Once the torque is known, we can deter-
mine the shear stresses, shear strains, angles of twist, and other desired
quantities by the methods described in Sections 3.2 through 3.5.

The following examples illustrate some of the procedures for
analyzing rotating shafts.

(n=rpm, T = Ib-ft, H = hp) (3-43)

Example 3-7

FIG.3-30 Example 3-7. Steel shaft in
torsion

A motor driving a solid circular steel shaft transmits 40 hp to a gear at B (Fig. 3-
30). The allowable shear stress in the steel is 6000 psi.
(a) What is the required diameter d of the shaft if it is operated at 500 rpm?
(b) What is the required diameter d if it is operated at 3000 rpm?

Motor

=

Solution

(a) Motor operating at 500 rpm. Knowing the horsepower and the speed of
rotation, we can find the torque T acting on the shaft by using Eq. (3-43).
Solving that equation for T, we get

T= 33,000H _ 33,000(40 hp)

- — 420.2 Ib-ft = 5042 Ib-in,
2mn  2m(500 rpmy 2202 [b-ft = 5042 Ib-in

This torque is transmitted by the shaft from the motor to the gear.

continued
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FIG. 3-30 (Repeated)

Torsion

The maximum shear stress in the shaft can be obtained from the modified
torsion formula (Eq. 3-12):

16T

Tmax — 3

Solving that equation for the diameter d, and also substituting 7ajow fOr Timax, We

get
3 16T 16(5042 Ib-in.) g
= = =4.2 .
O = on (6000 psi) 80in
from which
d=162in. <=

The diameter of the shaft must be at least this large if the allowable shear stress
is not to be exceeded.

(b) Motor operating at 3000 rpm. Following the same procedure as in part
(a), we obtain

T 33,000H _ 33,000(40 hp)
27m 277 (3000 rpm)

= 70.03 Ib-ft = 840.3 Ib-in.

16T _ 16(840.3 Ib-in)
T Tallow 7 (6000 psi)

dé= =0.7133in.3

d=10.89in. <=

which is less than the diameter found in part (a).
This example illustrates that the higher the speed of rotation, the smaller the
required size of the shaft (for the same power and the same allowable stress).
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Example 3-8

A solid steel shaft ABC of 50 mm diameter (Fig. 3-31a) is driven at A by a
motor that transmits 50 kW to the shaft at 10 Hz. The gears at B and C drive
machinery requiring power equal to 35 kW and 15 kW, respectively.

Compute the maximum shear stress 7.« in the shaft and the angle of twist
¢dac between the motor at A and the gear at C. (Use G = 80 GPa.)

«~—10m—| «—12m
Motor Tpo=796 N-m Tg =557 N-m Tc=239N-m

A

50 mm

@

FIG.3-31 Example 3-8. Steel shaft in
torsion

i et

(b)

Solution

Torques acting on the shaft. We begin the analysis by determining the
torques applied to the shaft by the motor and the two gears. Since the motor
supplies 50 kW at 10 Hz, it creates a torque T, at end A of the shaft (Fig. 3-31b)
that we can calculate from Eq. (3-40):

P 50 KW

Ty —— = —
AT 27t 2m(10Hz)

=796 N-m
In a similar manner, we can calculate the torques Tg and T¢ applied by the gears
to the shaft:

P 35kw
T8 = 0mf ~ 2n@oty oI NM

P 15 kW

T == ———
¢ 2af  27(10H2)

=239 N'm
These torques are shown in the free-body diagram of the shaft (Fig. 3-31b).
Note that the torques applied by the gears are opposite in direction to the torque
applied by the motor. (If we think of T, as the “load” applied to the shaft by the
motor, then the torques Tg and T are the “reactions” of the gears.)

The internal torques in the two segments of the shaft are now found (by
inspection) from the free-body diagram of Fig. 3-31b:

TAB = 796 N-m TBC = 239 N-m

Both internal torques act in the same direction, and therefore the angles of twist
in segments AB and BC are additive when finding the total angle of twist. (To be
specific, both torques are positive according to the sign convention adopted in
Section 3.4.)

continued
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Shear stresses and angles of twist. The shear stress and angle of twist in
segment AB of the shaft are found in the usual manner from Egs. (3-12) and

(3-15):
16Tap  16(796 N-m)
= = = 32.4 MP.
T4 T asomm)? a
e — TA(,;BII_AB __ (796N-m)1.0m) 0.0162 rad
P (80 Gpa)<l>(50 mm)*
32
The corresponding quantities for segment BC are
16Tgc  16(239 N-m)
= = =9.7MP
ST P T aGommye O MPa
Tecl . .
s = g = (2ONMA2M) _ _ 405 rag
P (80 GPa)(SiZ)(so mm)?*

Thus, the maximum shear stress in the shaft occurs in segment AB and is
Tmax = 32.4 MPa <=
Also, the total angle of twist between the motor at A and the gear at C is

bac = bas + dec = 0.0162 rad + 0.0058 rad = 0.0220 rad = 1.26° <=

As explained previously, both parts of the shaft twist in the same direction, and
therefore the angles of twist are added.

3.8 STATICALLY INDETERMINATE TORSIONAL MEMBERS

The bars and shafts described in the preceding sections of this chapter
are statically determinate because all internal torques and all reactions
can be obtained from free-body diagrams and equations of equilibrium.
However, if additional restraints, such as fixed supports, are added to the
bars, the equations of equilibrium will no longer be adequate for deter-
mining the torques. The bars are then classified as statically
indeterminate. Torsional members of this kind can be analyzed by
supplementing the equilibrium equations with compatibility equations
pertaining to the rotational displacements. Thus, the general method for
analyzing statically indeterminate torsional members is the same as
described in Section 2.4 for statically indeterminate bars with axial
loads.

The first step in the analysis is to write equations of equilibrium,
obtained from free-body diagrams of the given physical situation. The
unknown quantities in the equilibrium equations are torques, either
internal torques or reaction torques.
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The second step in the analysis is to formulate equations of
compatibility, based upon physical conditions pertaining to the angles
of twist. As a consequence, the compatibility equations contain angles of
twist as unknowns.

The third step is to relate the angles of twist to the torques by
torque-displacement relations, such as ¢ = TL/Glp. After introducing
these relations into the compatibility equations, they too become equations
containing torques as unknowns. Therefore, the last step is to obtain the
unknown torques by solving simultaneously the equations of equilibrium
and compatibility.

To illustrate the method of solution, we will analyze the composite
bar AB shown in Fig. 3-32a. The bar is attached to a fixed support at end
A and loaded by a torque T at end B. Furthermore, the bar consists of
two parts: a solid bar and a tube (Figs. 3-32b and c), with both the solid
bar and the tube joined to a rigid end plate at B.

For convenience, we will identify the solid bar and tube (and their
properties) by the numerals 1 and 2, respectively. For instance, the diam-
eter of the solid bar is denoted d, and the outer diameter of the tube is
denoted d,. A small gap exists between the bar and the tube, and there-
fore the inner diameter of the tube is slightly larger than the diameter d,
of the bar.

When the torque T is applied to the composite bar, the end plate
rotates through a small angle ¢ (Fig. 3-32c) and torques T, and T, are
developed in the solid bar and the tube, respectively (Figs. 3-32d and e).
From equilibrium we know that the sum of these torques equals the
applied load, and so the equation of equilibrium is

T1+T2:T (a)

Because this equation contains two unknowns (T, and T,), we recognize
that the composite bar is statically indeterminate.

To obtain a second equation, we must consider the rotational
displacements of both the solid bar and the tube. Let us denote the angle
of twist of the solid bar (Fig. 3-32d) by ¢; and the angle of twist of the
tube by ¢, (Fig. 3-32e). These angles of twist must be equal because the
bar and tube are securely joined to the end plate and rotate with it;
consequently, the equation of compatibility is

¢ = ¢ (b)

The angles ¢, and ¢, are related to the torques T, and T, by the torque-
displacement relations, which in the case of linearly elastic materials are
obtained from the equation ¢ = TL/Glp. Thus,

T,L
¢ = L

_ Tl
Giler

Gzlp2

(c,d)

in which G; and G, are the shear moduli of elasticity of the materials
and lp; and Ip, are the polar moments of inertia of the cross sections.
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When the preceding expressions for ¢, and ¢, are substituted into
Eq. (b), the equation of compatibility becomes

T.L  T,L
Gilpr  Galp

(e)

We now have two equations (Egs. a and e) with two unknowns, so we
can solve them for the torques T, and T,. The results are

_ Gylpy ) _ ( Gzlpy )
T,=T(—2te ) g o[ Calee 3-44a,b
' (GllPl + Galpy 2 Gilps + Galps ( )

With these torques known, the essential part of the statically indeterminate
analysis is completed. All other quantities, such as stresses and angles of
twist, can now be found from the torques.

The preceding discussion illustrates the general methodology for
analyzing a statically indeterminate system in torsion. In the following
example, this same approach is used to analyze a bar that is fixed against
rotation at both ends. In the example and in the problems, we assume that
the bars are made of linearly elastic materials. However, the general
methodology is also applicable to bars of nonlinear materials—the only
change is in the torque-displacement relations.

Example 3-9

The bar ACB shown in Figs. 3-33a and b is fixed at both ends and loaded by a
torque Ty at point C. Segments AC and CB of the bar have diameters d, and dg,
lengths L, and Lg, and polar moments of inertia o5 and Ipg, respectively. The
material of the bar is the same throughout both segments.

Obtain formulas for (a) the reactive torques T, and Tg at the ends, (b) the
maximum shear stresses 7ac and 7cg in each segment of the bar, and (c) the
angle of rotation ¢c at the cross section where the load Ty is applied.

Solution

Equation of equilibrium. The load T, produces reactions T, and Tg at the
fixed ends of the bar, as shown in Figs. 3-33a and b. Thus, from the equilibrium
of the bar we obtain

Ta+Te=To ®

Because there are two unknowns in this equation (and no other useful equations
of equilibrium), the bar is statically indeterminate.

Equation of compatibility. We now separate the bar from its support at end B
and obtain a bar that is fixed at end A and free at end B (Figs. 3-33c and d). When
the load T, acts alone (Fig. 3-33c), it produces an angle of twist at end B that we
denote as ¢;. Similarly, when the reactive torque Tg acts alone, it produces an
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angle ¢, (Fig. 3-33d). The angle of twist at end B in the original bar, equal to the
sum of ¢, and ¢,, is zero. Therefore, the equation of compatibility is

¢+ =0 )

Note that ¢, and ¢, are assumed to be positive in the direction shown in the
figure.

Torque-displacement equations. The angles of twist ¢, and ¢, can be
expressed in terms of the torques T, and Tg by referring to Figs. 3-33c and d
and using the equation ¢ = TL/Glp. The equations are as follows:

_ Tola _ _Tela Tele

%= Glpn Gl Gles

(h.i)
The minus signs appear in Eq. (i) because Tg produces a rotation that is opposite
in direction to the positive direction of ¢, (Fig. 3-33d).

We now substitute the angles of twist (Egs. h and i) into the compatibility
equation (Eq. g) and obtain

Tola _ Tgla _ Tele

=0
Glpa  Glpa  Glpg

or

Teba | Tele _ Tola
lpg

0)

Solution of equations. The preceding equation can be solved for the torque
Tg, Which then can be substituted into the equation of equilibrium (Eq. f) to
obtain the torque Ta. The results are

TA=T0<—LBIF’A ) TB=TO<7LAIPB ) (3-45a,) <=

Thus, the reactive torques at the ends of the bar have been found, and the statically
indeterminate part of the analysis is completed.

As a special case, note that if the bar is prismatic (Ipa = lpg = Ip) the
preceding results simplify to

_ Tole _ Tola

Ta

Te

(3-46a,b)

where L is the total length of the bar. These equations are analogous to those for
the reactions of an axially loaded bar with fixed ends (see Egs. 2-9a and 2-9b).

Maximum shear stresses. The maximum shear stresses in each part of the
bar are obtained directly from the torsion formula:

Tada :TBdB
2lpa B 2lpg

TaAC =

Substituting from Egs. (3-45a) and (3-45b) gives

Tac = LBdA Teg = LAC{B (3-47a,b) <=

continued
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\

By comparing the product Lgda with the product Ladg, we can immediately
determine which segment of the bar has the larger stress.

Angle of rotation. The angle of rotation ¢c at section C is equal to the
angle of twist of either segment of the bar, since both segments rotate through
the same angle at section C. Therefore, we obtain

_ Taba _ Tele _ Tolale (34) <mm

¢c

In the special case of a prismatic bar (Irpo = Ipg = Ip), the angle of rotation at
the section where the load is applied is

ToLal
de = _O0-AB (3-49)

This example illustrates not only the analysis of a statically indeterminate
bar but also the techniques for finding stresses and angles of rotation. In addi-
tion, note that the results obtained in this example are valid for a bar consisting
of either solid or tubular segments.

3.9 STRAIN ENERGY IN TORSION AND PURE SHEAR

FIG. 3-34 Prismatic bar in pure torsion

When a load is applied to a structure, work is performed by the load and
strain energy is developed in the structure, as described in detail in Sec-
tion 2.7 for a bar subjected to axial loads. In this section we will use the
same basic concepts to determine the strain energy of a bar in torsion.

Consider a prismatic bar AB in pure torsion under the action of a
torque T (Fig. 3-34). When the load is applied statically, the bar twists
and the free end rotates through an angle ¢. If we assume that the material
of the bar is linearly elastic and follows Hooke’s law, then the relationship
between the applied torque and the angle of twist will also be linear, as
shown by the torque-rotation diagram of Fig. 3-35 and as given by the
equation ¢ = TL/Glp.

The work W done by the torque as it rotates through the angle ¢ is
equal to the area below the torque-rotation line OA, that is, it is equal to the
area of the shaded triangle in Fig. 3-35. Furthermore, from the principle
of conservation of energy we know that the strain energy of the bar is
equal to the work done by the load, provided no energy is gained or lost
in the form of heat. Therefore, we obtain the following equation for the
strain energy U of the bar:

U=w=—-2 (3-50)

This equation is analogous to the equation U = W = P§/2 for a bar
subjected to an axial load (see Eg. 2-35).

Copyright 2004 Thomson Learning, Inc. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



Torque
A
T _______________
e T¢
U=W= 5
0 )

Angle of rotation

FIG. 3-35 Torque-rotation diagram for a
bar in pure torsion (linearly elastic
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Using the equation ¢ = TL/Glp, we can express the strain energy in
the following forms:

T2L U Glp ¢?

U=——
2GIp 2L

(3-51a,b)

The first expression is in terms of the load and the second is in terms of
the angle of twist. Again, note the analogy with the corresponding equations
for a bar with an axial load (see Egs. 2-37a and b).

The Sl unit for both work and energy is the joule (J), which is equal
to one newton meter (1 J = 1 N-m). The basic USCS unit is the foot-
pound (ft-1b), but other similar units, such as inch-pound (in.-Ib) and
inch-kip (in.-k), are commonly used.

Nonuniform Torsion

If a bar is subjected to nonuniform torsion (described in Section 3.4), we
need additional formulas for the strain energy. In those cases where the
bar consists of prismatic segments with constant torque in each segment
(see Fig. 3-14a of Section 3.4), we can determine the strain energy of
each segment and then add to obtain the total energy of the bar:

Uu=> U (3-52)
i=1
in which U; is the strain energy of segment i and n is the number of
segments. For instance, if we use Eg. (3-51a) to obtain the individual
strain energies, the preceding equation becomes

n 2
u=> Tk (3-53)
=1
in which T; is the internal torque in segment i and L;, G;, and (Ip); are the
torsional properties of the segment.

If either the cross section of the bar or the internal torque varies
along the axis, as illustrated in Figs. 3-15 and 3-16 of Section 3.4, we
can obtain the total strain energy by first determining the strain energy
of an element and then integrating along the axis. For an element of
length dx, the strain energy is (see Eq. 3-51a)

_ [T)T7dx
au = 2GIp(X)

in which T(x) is the internal torque acting on the element and I(x) is the
polar moment of inertia of the cross section at the element. Therefore,
the total strain energy of the bar is

L
_  [Te)1%dx )
U= 2600 (3-54)

Copyright 2004 Thomson Learning, Inc. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



228

CHAPTER 3 Torsion

Once again, the similarities of the expressions for strain energy in
torsion and axial load should be noted (compare Egs. 3-53 and 3-54 with
Eqgs. 2-40 and 2-41 of Section 2.7).

The use of the preceding equations for nonuniform torsion is illus-
trated in the examples that follow. In Example 3-10 the strain energy is
found for a bar in pure torsion with prismatic segments, and in Examples
3-11 and 3-12 the strain energy is found for bars with varying torques
and varying cross-sectional dimensions.

In addition, Example 3-12 shows how, under very limited conditions,
the angle of twist of a bar can be determined from its strain energy. (For
a more detailed discussion of this method, including its limitations, see
the subsection “Displacements Caused by a Single Load” in Section 2.7.)

Limitations

When evaluating strain energy we must keep in mind that the equations
derived in this section apply only to bars of linearly elastic materials with
small angles of twist. Also, we must remember the important observation
stated previously in Section 2.7, namely, the strain energy of a structure
supporting more than one load cannot be obtained by adding the strain
energies obtained for the individual loads acting separately. This
observation is demonstrated in Example 3-10.

Strain-Energy Density in Pure Shear

Because the individual elements of a bar in torsion are stressed in pure
shear, it is useful to obtain expressions for the strain energy associated with
the shear stresses. We begin the analysis by considering a small element of
material subjected to shear stresses 7 on its side faces (Fig. 3-36a). For
convenience, we will assume that the front face of the element is square,
with each side having length h. Although the figure shows only a two-
dimensional view of the element, we recognize that the element is actually
three dimensional with thickness t perpendicular to the plane of the figure.

Under the action of the shear stresses, the element is distorted so that
the front face becomes a rhombus, as shown in Fig. 3-36b. The change in
angle at each corner of the element is the shear strain +.

The shear forces V acting on the side faces of the element (Fig. 3-36c)
are found by multiplying the stresses by the areas ht over which they act:

V = 7ht @)

These forces produce work as the element deforms from its initial shape
(Fig. 3-364) to its distorted shape (Fig. 3-36b). To calculate this work we
need to determine the relative distances through which the shear forces
move. This task is made easier if the element in Fig. 3-36c¢ is rotated as a
rigid body until two of its faces are horizontal, as in Fig. 3-36d. During
the rigid-body rotation, the net work done by the forces V is zero
because the forces occur in pairs that form two equal and opposite
couples.
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As can be seen in Fig. 3-36d, the top face of the element is
displaced horizontally through a distance & (relative to the bottom face)
as the shear force is gradually increased from zero to its final value V.
The displacement 6 is equal to the product of the shear strain -y (which is
a small angle) and the vertical dimension of the element:

8= vh (b)

If we assume that the material is linearly elastic and follows Hooke’s
law, then the work done by the forces V is equal to Vé/2, which is also
the strain energy stored in the element:

U=W=— (c)

Note that the forces acting on the side faces of the element (Fig. 3-36d)
do not move along their lines of action—hence they do no work.

Substituting from Eqgs. (a) and (b) into Eqg. (c), we get the total strain
energy of the element:

U= Tyh?t

Because the volume of the element is ht, the strain-energy density u
(that is, the strain energy per unit volume) is

u="" (@
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Finally, we substitute Hooke’s law in shear (= = Gv) and obtain the
following equations for the strain-energy density in pure shear:

(3-55a,b)

These equations are similar in form to those for uniaxial stress (see
EqQs. 2-44a and b of Section 2.7).

The Sl unit for strain-energy density is joule per cubic meter (J/m?),
and the USCS unit is inch-pound per cubic inch (or other similar units).
Since these units are the same as those for stress, we may also express
strain-energy density in pascals (Pa) or pounds per square inch (psi).

In the next section (Section 3.10) we will use the equation for
strain-energy density in terms of the shear stress (Eqg. 3-55a) to deter-
mine the angle of twist of a thin-walled tube of arbitrary cross-sectional
shape.

Example 3-10
A solid circular bar AB of length L is fixed at one end and free at the other
(Fig. 3-37). Three different loading conditions are to be considered: (a) torque
T, acting at the free end; (b) torque T, acting at the midpoint of the bar; and
(c) torques T, and T, acting simultaneously.
AJ B For each case of loading, obtain a formula for the strain energy stored in
‘ Ta the bar. Then evaluate the strain energy for the following data: T, = 100 N-m,
’ 3—> T, =150 N'm, L = 1.6 m, G = 80 GPa, and I = 79.52 X 10° mm*.
! L !
Solution
(@) (a) Torque T, acting at the free end (Fig. 3-37a). In this case the strain
energy is obtained directly from Eq. (3-51a):
T2L
A cC Ty B —_ta= <=
( - = R TTN ©)
*H L 4 (b) Torque Ty, acting at the midpoint (Fig. 3-37b). When the torque acts at
2 the midpoint, we apply Eq. (3-51a) to segment AC of the bar:
®) TE(L2) _ TAL
b= M — b= ) <=
2Glp 4Glp
AJ cCT B T (c) Torques T, and Ty, acting simultaneously (Fig. 3-37c). When both loads
( a act on the bar, the torque in segment CB is T, and the torque in segment AC is
* L ‘ L T4 + Ty Thus, the strain energy (from Eq. 3-53) is
2 2 U, Z T _ TAW2) | (Tat To)(L2)
(c) ¢ £&£12G(p)i  2Glp
2 2
FIG. 3-37 Example 3-10. Strain energy _ Tab + TaTol + Tol (g) ==
produced by two loads 2Glp
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A comparison of Egs. (e), (f), and (g) shows that the strain energy produced by
the two loads acting simultaneously is not equal to the sum of the strain energies
produced by the loads acting separately. As pointed out in Section 2.7, the
reason is that strain energy is a quadratic function of the loads, not a linear
function.

(d) Numerical results. Substituting the given data into Eq. (e), we obtain

TR (100 N-m)?(1.6 m)
" 2Gl,  2(80 GPa)(79.52 X 10° mm®)

U, =1.26 <=

Recall that one joule is equal to one newton meter (1J = 1 N-m).
Proceeding in the same manner for Eqgs. (f) and (g), we find
Up =141 <=
U.=126J+1.89J+141)=4561] <=

Note that the middle term, involving the product of the two loads, contributes
significantly to the strain energy and cannot be disregarded.

Example 3-11

FIG.3-38 Example 3-11. Strain energy
produced by a distributed torque

A prismatic bar AB, fixed at one end and free at the other, is loaded by a dis-
tributed torque of constant intensity t per unit distance along the axis of the bar
(Fig. 3-38).

(a) Derive a formula for the strain energy of the bar.

(b) Evaluate the strain energy of a hollow shaft used for drilling into the
earth if the data are as follows:

t = 480 Ib-in./in., L = 12 ft, G = 11.5 X 10° psi, and I = 17.18 in.*

dx—»‘ L—x—{
L |
Solution

(a) Strain energy of the bar. The first step in the solution is to determine
the internal torque T(x) acting at distance x from the free end of the bar (Fig.
3-38). This internal torque is equal to the total torque acting on the part of the
bar between x = 0 and x = x. This latter torque is equal to the intensity t of
torque times the distance x over whhich it acts:

T(x) = tx (h)

continued
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Substituting into Eq. (3-54), we obtain

- t2L3
fo (tx)2dx = o (350) ¢

_(ITPdx 1

U -
o 2Glp  2Glp

This expression gives the total strain energy stored in the bar.
(b) Numerical results. To evaluate the strain energy of the hollow shaft, we
substitute the given data into Eq. (3-56):

_tA® (480 Ib-in/in.)*(144 in)®
T 6Gl,  6(11.5 x 10° psi)(17.18 in.%)

U =580 in.-Ib <=

This example illustrates the use of integration to evaluate the strain energy of a
bar subjected to a distributed torque.

Example 3-12

FIG.3-39 Example 3-12. Tapered bar in
torsion

A tapered bar AB of solid circular cross section is supported at the right-hand
end and loaded by a torque T at the other end (Fig. 3-39). The diameter of the
bar varies linearly from d, at the left-hand end to dg at the right-hand end.

Determine the angle of rotation ¢, at end A of the bar by equating the
strain energy to the work done by the load.

. LA N B d
- B
alo
da X dx ‘
!

L \

Solution

From the principle of conservation of energy we know that the work done
by the applied torque equals the strain energy of the bar; thus, W = U. The work
is given by the equation

_ T i
w=—2 (i)

and the strain energy U can be found from Eq. (3-54).

To use Eq. (3-54), we need expressions for the torque T(x) and the polar
moment of inertia Ip(x). The torque is constant along the axis of the bar and
equal to the load T, and the polar moment of inertia is

le() = 5[ A0 |
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in which d(x) is the diameter of the bar at distance x from end A. From the
geometry of the figure, we see that

dg — da
L

dx) = da + X @

and therefore

dg — dAX)“

- )

Ip(X) = 3—7;<dA +

Now we can substitute into Eq. (3-54), as follows:

U fL [T)Pdx _ 16T2 [ dx
0 2GIP(X) 7G 0 (dA + dB [ dAX>4

The integral in this expression can be integrated with the aid of a table of
integrals (see Appendix C). However, we already evaluated this integral in
Example 3-5 of Section 3.4 (see Eq. g of that example) and found that

L

f dx _ L (L_L)
0( dB—dAX>4 3(ds — da) \dR  d3
L

da +

Therefore, the strain energy of the tapered bar is

(3-57)

- &(A _ L)
37G(dg — da) \d3  d3
Equating the strain energy to the work of the torque (Eq. i) and solving for
da, We get

T (11 _
¢A‘3wG(dB—dA)<di d%) (3-58) <=

X N

This equation, which is the same as Eq. (3-26) in Example 3-5 of Section 3.4,
gives the angle of rotation at end A of the tapered bar.

Note especially that the method used in this example for finding the angle of
rotation is suitable only when the bar is subjected to a single load, and then only
when the desired angle corresponds to that load. Otherwise, we must find angular
displacements by the usual methods described in Sections 3.3, 3.4, and 3.8.

I A
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3.10 THIN-WALLED TUBES

FIG.3-40 Thin-walled tube of
arbitrary cross-sectional shape

.

The torsion theory described in the preceding sections is applicable to
solid or hollow bars of circular cross section. Circular shapes are the
most efficient shapes for resisting torsion and consequently are the most
commonly used. However, in lightweight structures, such as aircraft and
spacecraft, thin-walled tubular members with noncircular cross sections
are often required to resist torsion. In this section, we will analyze struc-
tural members of this kind.

To obtain formulas that are applicable to a variety of shapes, let us
consider a thin-walled tube of arbitrary cross section (Fig. 3-40a). The
tube is cylindrical in shape—that is, all cross sections are identical and
the longitudinal axis is a straight line. The thickness t of the wall is not
necessarily constant but may vary around the cross section. However,
the thickness must be small in comparison with the total width of the
tube. The tube is subjected to pure torsion by torques T acting at the
ends.

Shear Stresses and Shear Flow

The shear stresses 7 acting on a cross section of the tube are pictured in
Fig. 3-40b, which shows an element of the tube cut out between two

(b) © (d)
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cross sections that are distance dx apart. The stresses act parallel to the
boundaries of the cross section and “flow” around the cross section.
Also, the intensity of the stresses varies so slightly across the thickness
of the tube (because the tube is assumed to be thin) that we may assume
7 to be constant in that direction. However, if the thickness t is not
constant, the stresses will vary in intensity as we go around the cross
section, and the manner in which they vary must be determined from
equilibrium.

To determine the magnitude of the shear stresses, we will consider a
rectangular element abcd obtained by making two longitudinal cuts ab
and cd (Figs. 3-40a and b). This element is isolated as a free body in
Fig. 3-40c. Acting on the cross-sectional face bc are the shear stresses 7
shown in Fig. 3-40b. We assume that these stresses vary in intensity as
we move along the cross section from b to c; therefore, the shear stress
at b is denoted 7, and the stress at ¢ is denoted 7. (see Fig. 3-40c).

As we know from equilibrium, identical shear stresses act in the
opposite direction on the opposite cross-sectional face ad, and shear
stresses of the same magnitude also act on the longitudinal faces ab and
cd. Thus, the constant shear stresses acting on faces ab and cd are equal
to 7, and 7, respectively.

The stresses acting on the longitudinal faces ab and cd produce
forces F, and F¢ (Fig. 3-40d). These forces are obtained by multiplying
the stresses by the areas on which they act:

Fb = Tbtbdx FC = Tctcdx

in which t, and t; represent the thicknesses of the tube at points b and c,
respectively (Fig. 3-40d).

In addition, forces F, are produced by the stresses acting on faces
bc and ad. From the equilibrium of the element in the longitudinal direc-
tion (the x direction), we see that F, = F, or

Tl = Tcle

Because the locations of the longitudinal cuts ab and cd were selected
arbitrarily, it follows from the preceding equation that the product of the
shear stress 7and the thickness t of the tube is the same at every point in
the cross section. This product is known as the shear flow and is
denoted by the letter f:

f = 7t = constant (3-59)

This relationship shows that the largest shear stress occurs where the
thickness of the tube is smallest, and vice versa. In regions where the
thickness is constant, the shear stress is constant. Note that shear flow is
the shear force per unit distance along the cross section.
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FIG. 3-41 Cross section of thin-walled
tube

Torsion Formula for Thin-Walled Tubes

The next step in the analysis is to relate the shear flow f (and hence the
shear stress 7) to the torque T acting on the tube. For that purpose, let us
examine the cross section of the tube, as pictured in Fig. 3-41. The
median line (also called the centerline or the midline) of the wall of the
tube is shown as a dashed line in the figure. We consider an element of
area of length ds (measured along the median line) and thickness t. The
distance s defining the location of the element is measured along the
median line from some arbitrarily chosen reference point.

The total shear force acting on the element of area is fds, and the
moment of this force about any point O within the tube is

dT = rfds

in which r is the perpendicular distance from point O to the line of
action of the force fds. (Note that the line of action of the force fds is
tangent to the median line of the cross section at the element ds.) The
total torque T produced by the shear stresses is obtained by integrating
along the median line of the cross section:

Lm
Tsz rds @)
0

in which L, denotes the length of the median line.

The integral in Eq. (a) can be difficult to integrate by formal mathe-
matical means, but fortunately it can be evaluated easily by giving it a
simple geometric interpretation. The quantity rds represents twice the
area of the shaded triangle shown in Fig. 3-41. (Note that the triangle
has base length ds and height equal to r.) Therefore, the integral repre-
sents twice the area A, enclosed by the median line of the cross section:

Lm
f rds = 2A, (b)

0

It follows from Eq. (a) that T = 2fA,,, and therefore the shear flow is

T

fzﬁ

(3-60)
Now we can eliminate the shear flow f between Egs. (3-59) and (3-60)

and obtain a torsion formula for thin-walled tubes:

__T
2tAn,

T

(3-61)

Since t and A,, are properties of the cross section, the shear stresses 7
can be calculated from Eq. (3-61) for any thin-walled tube subjected to a
known torque T. (Reminder: The area A, is the area enclosed by the
median line—it is not the cross-sectional area of the tube.)
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FIG. 3-43 Thin-walled rectangular tube
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To illustrate the use of the torsion formula, consider a thin-walled
circular tube (Fig. 3-42) of thickness t and radius r to the median line.
The area enclosed by the median line is

Ay = 7r? (3-62)
and therefore the shear stress (constant around the cross section) is
T
= 3-63
7 27t ( )

This formula agrees with the stress obtained from the standard torsion
formula (Eg. 3-11) when the standard formula is applied to a circular
tube with thin walls using the approximate expression I =~ 273t for the
polar moment of inertia (Eq. 3-18).

As a second illustration, consider a thin-walled rectangular tube
(Fig. 3-43) having thickness t; on the sides and thickness t, on the top
and bottom. Also, the height and width (measured to the median line of the
cross section) are h and b, respectively. The area within the median line is

An = bh (3-64)
and thus the shear stresses in the vertical and horizontal sides, respectively,
are

Tvert = T Thoriz = T
vert 2t1bh horiz 2t2bh

If t, is larger than t, the maximum shear stress will occur in the vertical
sides of the cross section.

(3-65a,b)

Strain Energy and Torsion Constant

The strain energy of a thin-walled tube can be determined by first
finding the strain energy of an element and then integrating throughout
the volume of the bar. Consider an element of the tube having area tds
in the cross section (see the element in Fig. 3-41) and length dx (see the
element in Fig. 3-40). The volume of such an element, which is similar
in shape to the element abcd shown in Fig. 3-40a, is tds dx. Because
elements of the tube are in pure shear, the strain-energy density of the
element is 7%/2G, as given by Eq. (3-55a). The total strain energy of the
element is equal to the strain-energy density times the volume:
T2 7t? ds f2 ds

du 2thsdx T dx G 1 dx (c)
in which we have replaced 7t by the shear flow f (a constant).

The total strain energy of the tube is obtained by integrating dU
throughout the volume of the tube, that is, ds is integrated from 0 to L,
around the median line and dx is integrated along the axis of the tube
from O to L, where L is the length. Thus,

Lm L
uzfduzf—f Efolx (d)
0 t 0

2
2G
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FIG. 3-42 (Repeated)

Note that the thickness t may vary around the median line and must
remain with ds under the integral sign. Since the last integral is equal to
the length L of the tube, the equation for the strain energy becomes

f2L "m ds
V=26 ) (©)

Substituting for the shear flow from Eqg. (3-60), we obtain

U:

2 L
L f s (3-66)
o ¢t

as the equation for the strain energy of the tube in terms of the torque T.
The preceding expression for strain energy can be written in simpler

form by introducing a new property of the cross section, called the

torsion constant. For a thin-walled tube, the torsion constant (denoted

by the letter J) is defined as follows:

4A2,

- J’Lmds
t

0

(3-67)

With this notation, the equation for strain energy (Eq. 3-66) becomes

T2L

U =
2GJ

(3-68)

which has the same form as the equation for strain energy in a circular
bar (see Eq. 3-51a). The only difference is that the torsion constant J has
replaced the polar moment of inertia Ip. Note that the torsion constant
has units of length to the fourth power.

In the special case of a cross section having constant thickness t, the
expression for J (Eqg. 3-67) simplifies to

_MA%
Ly

J (3-69)

For each shape of cross section, we can evaluate J from either Eq. (3-67)
or Eq. (3-69).

As an illustration, consider again the thin-walled circular tube of
Fig. 3-42. Since the thickness is constant we use Eq. (3-69) and substi-
tute L,, = 27rr and A,, = #r?; the result is

J=2xr% (3-70)
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t which is the approximate expression for the polar moment of inertia (Eq.
3-18). Thus, in the case of a thin-walled circular tube, the polar moment
of inertia is the same as the torsion constant.

— [ [ As a second illustration, we will use the rectangular tube of Fig. 3-43.
h For this cross section we have A,, = bh. Also, the integral in Eq. (3-67) is
Lm h b
J EZZJE‘FZJE:Z(ﬂ‘FR)
o t ol o b b
t
! 2b Thus, the torsion constant (Eq. 3-67) is
FIG. 3-43 (Repeated) J— 26°h*tyt, (3-71)

Torsion constants for other thin-walled cross sections can be found in a
similar manner.

Angle of Twist

The angle of twist ¢ for a thin-walled tube of arbitrary cross-sectional
shape (Fig. 3-44) may be determined by equating the work W done by
the applied torque T to the strain energy U of the tube. Thus,

T T2
W = _—t e —_—
R TN
from which we get the equation for the angle of twist:

_TL

6= (3-72)

Again we observe that the equation has the same form as the correspon-
ding equation for a circular bar (Eq. 3-15) but with the polar moment of
inertia replaced by the torsion constant. The quantity GJ is called the
torsional rigidity of the tube.

T
FIG. 3-44 Angle of twist ¢ for a thin- ﬁ

walled tube
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Limitations

The formulas developed in this section apply to prismatic members
having closed tubular shapes with thin walls. If the cross section is thin
walled but open, as in the case of I-beams and channel sections, the
theory given here does not apply. To emphasize this point, imagine that
we take a thin-walled tube and slit it lengthwise—then the cross section
becomes an open section, the shear stresses and angles of twist increase,
the torsional resistance decreases, and the formulas given in this section
cannot be used.

Some of the formulas given in this section are restricted to linearly
elastic materials—for instance, any equation containing the shear
modulus of elasticity G is in this category. However, the equations for
shear flow and shear stress (Egs. 3-60 and 3-61) are based only upon
equilibrium and are valid regardless of the material properties. The
entire theory is approximate because it is based upon centerline dimen-
sions, and the results become less accurate as the wall thickness t
increases.™

An important consideration in the design of any thin-walled
member is the possibility that the walls will buckle. The thinner the
walls and the longer the tube, the more likely it is that buckling will
occur. In the case of noncircular tubes, stiffeners and diaphragms are
often used to maintain the shape of the tube and prevent localized buckling.
In all of our discussions and problems, we assume that buckling is
prevented.

*The torsion theory for thin-walled tubes described in this section was developed by
R. Bredt, a German engineer who presented it in 1896 (Ref. 3-2). It is often called
Bredt’s theory of torsion.
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Example 3-13

Compare the maximum shear stress in a circular tube (Fig. 3-45) as calculated
by the approximate theory for a thin-walled tube with the stress calculated by
the exact torsion theory. (Note that the tube has constant thickness t and radius r
to the median line of the cross section.)

Solution
Approximate theory. The shear stress obtained from the approximate
theory for a thin-walled tube (Eq. 3-63) is

FIG.3-45 Example 3-13. Comparison of _r 7T 3.73
approximate and exact theories of T oara (3-73)

torsion

in which the relation

B=+ (3-74)

is introduced.
Torsion formula. The maximum stress obtained from the more accurate
torsion formula (Eq. 3-11) is

_T(r+t2) (ﬂ

w5l -] 0

After expansion, this expression simplifies to

T2

where

Ip = ”T” (@r? + t?) (3-75)
and the expression for the shear stress (Eq. f) becomes
o T@r+t T2+
27 ar@ar2 1) at0RERE + 1) (3-76)
Ratio. The ratio 7/7, of the shear stresses is %
n 4ﬁ2 +1
— = 3-77) <=m
™ 2B(2B+1) ( )
which depends only on the ratio 8. [—
For values of B equal to 5, 10, and 20, we obtain from Eq. (3-77) the values K

/T = 0.92, 0.95, and 0.98, respectively. Thus, we see that the approximate

formula for the shear stresses gives results that are slightly less than those

obtained from the exact formula. The accuracy of the approximate formula
increases as the wall of the tube becomes thinner. In the limit, as the thickness <
approaches zero and B approaches infinity, the ratio r/7, becomes 1.
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Example 3-14

FIG.3-46 Example 3-14. Comparison of
circular and square tubes

A circular tube and a square tube (Fig. 3-46) are constructed of the same mate-
rial and subjected to the same torque. Both tubes have the same length, same
wall thickness, and same cross-sectional area.

What are the ratios of their shear stresses and angles of twist? (Disregard
the effects of stress concentrations at the corners of the square tube.)

Solution
Circular tube. For the circular tube, the area An,,; enclosed by the median
line of the cross section is

Am = mr? (h)

where r is the radius to the median line. Also, the torsion constant (Eq. 3-70)
and cross-sectional area are

‘]1 = 27Tr3t Al = 27rt (l,J)
Square tube. For the square tube, the cross-sectional area is
A, = 4bt (K)

where b is the length of one side, measured along the median line. Inasmuch as
the areas of the tubes are the same, we obtain b = 7r/2. Also, the torsion
constant (Eq. 3-71) and area enclosed by the median line of the cross section are
7ot 7r?
4

Ratios. The ratio 74/7, of the shear stress in the circular tube to the shear
stress in the square tube (from Eq. 3-61) is

\]2 = b3t = Am2 = b2 = (I,m)

2,2
B A TUHA_T_ g (n) <=

kp ] Am mr 4 B
The ratio of the angles of twist (from Eq. 3-72) is

s
6 3 2w 16 002 ©

These results show that the circular tube not only has a 21% lower shear
stress than does the square tube but also a greater stiffness against rotation.
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*3.11 STRESS CONCENTRATIONS IN TORSION

FIG. 3-47 Stepped shaft in torsion

In the previous sections of this chapter we discussed the stresses in tor-
sional members assuming that the stress distribution varied in a smooth
and continuous manner. This assumption is valid provided that there are
no abrupt changes in the shape of the bar (no holes, grooves, abrupt
steps, and the like) and provided that the region under consideration is
away from any points of loading. If such disruptive conditions do exist,
then high localized stresses will be created in the regions surrounding the
discontinuities. In practical engineering work these stress concentrations
are handled by means of stress-concentration factors, as explained
previously in Section 2.10.

The effects of a stress concentration are confined to a small region
around the discontinuity, in accord with Saint-Venant’s principle (see
Section 2.10). For instance, consider a stepped shaft consisting of two
segments having different diameters (Fig. 3-47). The larger segment has
diameter D, and the smaller segment has diameter D;. The junction
between the two segments forms a “step” or “shoulder” that is machined
with a fillet of radius R. Without the fillet, the theoretical stress concen-
tration factor would be infinitely large because of the abrupt 90°
reentrant corner. Of course, infinite stresses cannot occur. Instead, the
material at the reentrant corner would deform and partially relieve the
high stress concentration. However, such a situation is very dangerous
under dynamic loads, and in good design a fillet is always used. The
larger the radius of the fillet, the lower the stresses.

Fillet (R = radius)
A
[ A c
T T T
< D2 D]_
‘ I ;

B C
A
€

- 7'2

Tf Tmax ‘Ti 7-l
D, Dy D
Section A-A Section B-B Section C-C

(b) (c) (d)
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FIG. 3-48 Stress-concentration factor K
for a stepped shaft in torsion. (The
dashed line is for a full quarter-circular
fillet.)

At a distance from the shoulder approximately equal to the diameter
D, (for instance, at cross section A-A in Fig. 3-47a) the torsional shear
stresses are practically unaffected by the discontinuity. Therefore, the
maximum stress 7, at a sufficient distance to the left of the shoulder can
be found from the torsion formula using D, as the diameter (Fig. 3-47b).
The same general comments apply at section C-C, which is distance D,
(or greater) from the toe of the fillet. Because the diameter D, is less
than the diameter D,, the maximum stress 7, at section C-C (Fig. 3-47d)
is larger than the stress 7.

The stress-concentration effect is greatest at section B-B, which cuts
through the toe of the fillet. At this section the maximum stress is

B o Tr 16T
Tmax = KThom = K o K( wDi) (3-78)
In this equation, K is the stress-concentration factor and 7, (equal to
71) is the nominal shear stress, that is, the shear stress in the smaller part
of the shaft.

Values of the factor K are plotted in Fig. 3-48 as a function of the
ratio R/D,. Curves are plotted for various values of the ratio D,/D,. Note
that when the fillet radius R becomes very small and the transition from
one diameter to the other is abrupt, the value of K becomes quite large.
Conversely, when R is large, the value of K approaches 1.0 and the effect
of the stress concentration disappears. The dashed curve in Fig. 3-48 is
for the special case of a full quarter-circular fillet, which means that D,
= D; + 2R. (Note: Problems 3.11-1 through 3.11-5 provide practice in
obtaining values of K from Fig. 3-48.)

2.00
T /R T
1.2
K 11 D, Dy
- _ 16T
=K =10l
\ \1_5 Tmax Thom Thom WDf
1.50 N \\ D, _
/ S D_l =2
D,=D;+2R \
3= -
\%
1.00
0 0.10 0.20
R
Dl
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Many other cases of stress concentrations for circular shafts, such as
a shaft with a keyway and a shaft with a hole, are available in the engi-
neering literature (see, for example, Ref. 2-9).

As explained in Section 2.10, stress concentrations are important for
brittle materials under static loads and for most materials under dynamic
loads. As a case in point, fatigue failures are of major concern in the
design of rotating shafts and axles (see Section 2.9 for a brief discussion
of fatigue). The theoretical stress-concentration factors K given in this
section are based upon linearly elastic behavior of the material.
However, fatigue experiments show that these factors are conservative,
and failures in ductile materials usually occur at larger loads than those
predicted by the theoretical factors.

PROBLEMS CHAPTER 3

Torsional Deformations

3.2-1 A copper rod of length L = 18.0 in. is to be twisted
by torques T (see figure) until the angle of rotation between
the ends of the rod is 3.0°.

If the allowable shear strain in the copper is 0.0006
rad, what is the maximum permissible diameter of the rod?

«t =
| T

\ L \

PROBS. 3.2-1 and 3.2-2

3.2-2 A plastic bar of diameter d = 50 mm is to be twisted
by torques T (see figure) until the angle of rotation between
the ends of the bar is 5.0°.

If the allowable shear strain in the plastic is 0.012 rad,
what is the minimum permissible length of the bar?

3.2-3 A circular aluminum tube subjected to pure torsion
by torques T (see figure) has an outer radius r, equal to
twice the inner radius r;.

(a) If the maximum shear strain in the tube is measured
as 400 X 10 ° rad, what is the shear strain v, at the inner
surface?

(b) If the maximum allowable rate of twist is 0.15
degrees per foot and the maximum shear strain is to be kept
at 400 X 107° rad by adjusting the torque T, what is the
minimum required outer radius (r2)min?

PROBS. 3.2-3, 3.2-4, and 3.2-5

3.2-4 A circular steel tube of length L = 0.90 m is loaded
in torsion by torques T (see figure).

(@) If the inner radius of the tube is r; = 40 mm and
the measured angle of twist between the ends is 0.5°, what
is the shear strain vy, (in radians) at the inner surface?

(b) If the maximum allowable shear strain is 0.0005
rad and the angle of twist is to be kept at 0.5° by adjusting
the torque T, what is the maximum permissible outer radius

(r2)max?

3.2-5 Solve the preceding problem if the length L = 50 in.,
the inner radius r; = 1.5 in., the angle of twist is 0.6°, and
the allowable shear strain is 0.0004 rad.

Gircular Bars and Tubes

3.3-1 A prospector uses a hand-powered winch (see figure
on the next page) to raise a bucket of ore in his mine shaft.
The axle of the winch is a steel rod of diameter d = 0.625 in.
Also, the distance from the center of the axle to the center
of the lifting rope isb = 4.0 in.
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If the weight of the loaded bucket is W = 100 Ib, what
is the maximum shear stress in the axle due to torsion?

PROB. 3.3-1

3.3-2 When drilling a hole in a table leg, a furniture maker
uses a hand-operated drill (see figure) with a bit of diameter
d = 4.0 mm.

(a) If the resisting torque supplied by the table leg is
equal to 0.3 N-m, what is the maximum shear stress in the
drill bit?

(b) If the shear modulus of elasticity of the steel is
G =75 GPa, what is the rate of twist of the drill bit
(degrees per meter)?

PROB. 3.3-2

3.3-3 While removing a wheel to change a tire, a driver
applies forces P = 25 Ib at the ends of two of the arms of a
lug wrench (see figure). The wrench is made of steel with
shear modulus of elasticity G = 11.4 X 10° psi. Each arm
of the wrench is 9.0 in. long and has a solid circular cross
section of diameter d = 0.5 in.

(a) Determine the maximum shear stress in the arm
that is turning the lug nut (arm A).

(b) Determine the angle of twist (in degrees) of this
same arm.

PROB. 3.3-3

3.3-4 An aluminum bar of solid circular cross section is
twisted by torques T acting at the ends (see figure). The
dimensions and shear modulus of elasticity are as follows:
L=12m,d=30mm,and G = 28 GPa.

(a) Determine the torsional stiffness of the bar.

(b) If the angle of twist of the bar is 4°, what is the
maximum shear stress? What is the maximum shear strain
(in radians)?

| — y 1

PROB. 3.3-4

3.3-5 A high-strength steel drill rod used for boring a hole
in the earth has a diameter of 0.5 in. (see figure).The allow-
able shear stress in the steel is 40 ksi and the shear modulus
of elasticity is 11,600 ksi.

What is the minimum required length of the rod so that
one end of the rod can be twisted 30° with respect to the
other end without exceeding the allowable stress?

d=0.5in.

T | T
< C T D —
\ L \
| \

PROB. 3.3-5
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3.3-6 The steel shaft of a socket wrench has a diameter of
8.0 mm. and a length of 200 mm (see figure).

If the allowable stress in shear is 60 MPa, what is the
maximum permissible torque T,hax that may be exerted with
the wrench?

Through what angle ¢ (in degrees) will the shaft twist
under the action of the maximum torque? (Assume
G = 78 GPa and disregard any bending of the shaft.)

PROB. 3.3-6

3.3-7 A circular tube of aluminum is subjected to torsion
by torques T applied at the ends (see figure). The bar is 20
in. long, and the inside and outside diameters are 1.2 in.
and 1.6 in., respectively. It is determined by measurement
that the angle of twist is 3.63° when the torque is
5800 Ib-in.

Calculate the maximum shear stress 7. in the tube,
the shear modulus of elasticity G, and the maximum shear
strain ymax (in radians).

1 20in. 1

PROB. 3.3-7

3.3-8 A propeller shaft for a small yacht is made of a
solid steel bar 100 mm in diameter. The allowable stress in
shear is 50 MPa, and the allowable rate of twist is 2.0° in
3 meters.

Assuming that the shear modulus of elasticity is
G = 80 GPa, determine the maximum torque Tax that can
be applied to the shaft.

CHAPTER 3 Problems 247

3.3-9 Three identical circular disks A, B, and C are welded
to the ends of three identical solid circular bars (see figure).
The bars lie in a common plane and the disks lie in planes
perpendicular to the axes of the bars. The bars are welded
at their intersection D to form a rigid connection. Each
bar has diameter d; = 0.5 in. and each disk has diameter
dg =3.0in.

Forces P4, P,, and P5 act on disks A, B, and C, respec-
tively, thus subjecting the bars to torsion. If P, = 28 Ib, what
is the maximum shear stress 7may in any of the three bars?

PZ B
PROB. 3.3-9

3.3-10 The steel axle of a large winch on an ocean liner is
subjected to a torque of 1.5 kN-m (see figure). What is the
minimum required diameter d.;, if the allowable shear
stress is 50 MPa and the allowable rate of twist is 0.8°/m?
(Assume that the shear modulus of elasticity is 80 GPa.)

3.3-11 A hollow steel shaft used in a construction auger has
outer diameter d, = 6.0 in. and inner diameter d, = 4.5 in.
(see figure on the next page). The steel has shear modulus of
elasticity G = 11.0 X 10° psi.

For an applied torque of 150 k-in., determine the
following quantities:

(a) shear stress 7 at the outer surface of the shaft,

(b) shear stress 7 at the inner surface, and

(c) rate of twist 6 (degrees per unit of length).

PROB. 3.3-10
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Also, draw a diagram showing how the shear stresses
vary in magnitude along a radial line in the cross section.

PROBS. 3.3-11 and 3.3-12

3.3-12 Solve the preceding problem if the shaft has outer
diameter d, = 150 mm and inner diameter d; = 100 mm.
Also, the steel has shear mod