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Chapter 1 
 

 

1. THINK In this problem we’re given the radius of Earth, and asked to compute its 

circumference, surface area and volume. 

 

EXPRESS Assuming Earth to be a sphere of radius 

 

  6 3 36.37 10 m 10 km m 6.37 10 km,ER      

 

the corresponding circumference, surface area and volume are: 

 2 34
2 , 4 ,

3
E E EC R A R V R


    . 

The geometric formulas are given in Appendix E.  

 

ANALYZE (a) Using the formulas given above, we find the circumference to be  

 
3 42 2 (6.37 10 km) 4.00 10  km.EC R       

 

(b) Similarly, the surface area of Earth is 

 

 
2

2 3 8 24 4 6.37 10 km 5.10 10 kmEA R      , 

(c) and its volume is  

 
3

3 3 12 34 4
6.37 10 km 1.08 10 km .

3 3
EV R

 
      

 

LEARN From the formulas given, we see that EC R , 2

EA R , and 3

EV R . The ratios 

of volume to surface area, and surface area to circumference are / / 3EV A R  and  

/ 2 EA C R .  

 

2. The conversion factors are: 1 gry 1/10 line , 1 line 1/12 inch and 1 point = 1/72 

inch. The factors imply that 

  

1 gry = (1/10)(1/12)(72 points) = 0.60 point. 

 

Thus, 1 gry
2
 = (0.60 point)

2
 = 0.36 point

2
, which means that 2 20.50 gry = 0.18 point .  

 

3. The metric prefixes (micro, pico, nano, …) are given for ready reference on the inside 

front cover of the textbook (see also Table 1–2). 
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(a) Since 1 km = 1  10
3
 m and 1 m = 1  10

6
 m, 

 

  3 3 6 91km 10 m 10 m 10 m m 10 m.     

 

The given measurement is 1.0 km (two significant figures), which implies our result 

should be written as 1.0  10
9
 m. 

 

(b) We calculate the number of microns in 1 centimeter. Since 1 cm = 10
2

 m, 

 

  2 2 6 41cm = 10 m = 10 m 10 m m 10 m.     

 

We conclude that the fraction of one centimeter equal to 1.0 m is 1.0  10
4

. 

 

(c) Since 1 yd = (3 ft)(0.3048 m/ft) = 0.9144 m, 

 

  6 51.0yd = 0.91m 10 m m 9.1 10 m.    

 

4. (a) Using the conversion factors 1 inch = 2.54 cm exactly and 6 picas = 1 inch,  we 

obtain 

 
1 inch 6 picas

0.80 cm = 0.80 cm 1.9 picas.
2.54 cm 1 inch

  
  

  
 

(b) With 12 points = 1 pica, we have 

 

 
1 inch 6 picas 12 points

0.80 cm = 0.80 cm 23 points.
2.54 cm 1 inch 1 pica

   
   

   
 

 

5. THINK This problem deals with conversion of furlongs to rods and chains, all of 

which are units for distance.  

 

EXPRESS Given that 1 furlong  201.168 m, 1rod 5.0292 m  and 1chain 20.117 m , 

the relevant conversion factors are  

1 rod
1.0 furlong 201.168 m (201.168 m) 40 rods,

5.0292 m
    

and 

1 chain
1.0 furlong 201.168 m (201.168 m) 10 chains

20.117 m
   . 

Note the cancellation of m (meters), the unwanted unit. 

 

ANALYZE Using the above conversion factors, we find 

 

(a) the distance d in rods to be  
40 rods

4.0 furlongs 4.0 furlongs 160 rods,
1 furlong

d     
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(b) and in chains to be  
10 chains

4.0 furlongs 4.0 furlongs 40 chains.
1 furlong

d     

 

LEARN Since 4 furlongs is about 800 m, this distance is approximately equal to 160 

rods (1 rod  5 m ) and 40 chains (1 chain  20 m ). So our results make sense. 

 

6. We make use of Table 1-6. 

 

(a) We look at the first (“cahiz”) column: 1 fanega is equivalent to what amount of cahiz? 

We note from the already completed part of the table that 1 cahiz equals a dozen fanega.  

Thus, 1 fanega = 
1

12
  cahiz, or 8.33  10

2 
cahiz.  Similarly, “1 cahiz = 48 cuartilla” (in the 

already completed part) implies that 1 cuartilla = 
1

48
 cahiz, or 2.08  10

2
 cahiz.  

Continuing in this way, the remaining entries in the first column are 6.94  10
3 

and 
33.47 10 .  

 

(b) In the second (“fanega”) column, we find 0.250, 8.33  10
2

, and 4.17  10
2

 for the 

last three entries.  

 

(c) In the third (“cuartilla”) column, we obtain 0.333 and 0.167 for the last two entries.  

 

(d) Finally, in the fourth (“almude”) column, we get  
1

2
  = 0.500 for the last entry. 

 

(e) Since the conversion table indicates that 1 almude is equivalent to 2 medios, our 

amount of 7.00 almudes must be equal to 14.0 medios. 

 

(f) Using the value (1 almude = 6.94  10
3 

cahiz) found in part (a), we conclude that 

7.00 almudes is equivalent to 4.86  10
2

 cahiz. 

 

(g) Since each decimeter is 0.1 meter, then 55.501 cubic decimeters is equal to 0.055501 

m
3
 or 55501 cm

3
.  Thus, 7.00 almudes = 

7.00

12
  fanega = 

7.00

12
 (55501 cm

3
) = 3.24  10

4
 cm

3
. 

 

7. We use the conversion factors found in Appendix D. 

 

 2 31 acre ft = (43,560 ft ) ft = 43,560 ft   

 

Since 2 in. = (1/6) ft, the volume of water that fell during the storm is 

 

 2 2 2 7 3(26 km )(1/6 ft) (26 km )(3281ft/km) (1/6 ft )  4.66 10  ft .V      

 

Thus, 

V 


 
  

4 66 10

4 3560 10
11 10

7

4

3.

.
.

ft

ft acre ft
acre ft.

3

3
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8. From Fig. 1-4, we see that 212 S is equivalent to 258 W and 212 – 32  = 180 S is 

equivalent to 216 – 60 = 156 Z. The information allows us to convert S to W or Z. 

 

(a) In units of W, we have 

 
258 W

50.0 S 50.0 S 60.8 W
212 S

 
  

 
 

 

(b) In units of Z, we have 

 
156 Z

50.0 S 50.0 S 43.3 Z
180 S

 
  

 
 

 

9. The volume of ice is given by the product of the semicircular surface area and the 

thickness. The area of the semicircle is A = r
2
/2, where r is the radius. Therefore, the 

volume is 

2

2
V r z


  

 

where z is the ice thickness. Since there are 10
3
 m in 1 km and 10

2
 cm in 1 m, we have 

 

 
3 2

510 m 10 cm
2000km 2000 10 cm.

1km 1m
r

   
     

   
 

 

In these units, the thickness becomes 

 
2

210 cm
3000m 3000m 3000 10 cm

1m
z

 
    

 
 

 

which yields    
2

5 2 22 32000 10 cm 3000 10 cm 1.9 10 cm .
2

V


      

 

10. Since a change of longitude equal to 360corresponds to a 24 hour change, then one 

expects to change longitude by360 / 24 15    before resetting one's watch by 1.0 h. 

 

11. (a) Presuming that a French decimal day is equivalent to a regular day, then the ratio 

of weeks is simply 10/7 or (to 3 significant figures) 1.43. 

 

(b) In a regular day, there are 86400 seconds, but in the French system described in the 

problem, there would be 10
5
 seconds.  The ratio is therefore 0.864. 

 

12. A day is equivalent to 86400 seconds and a meter is equivalent to a million 

micrometers, so 
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37 10

14 86400
31

6.
. .

m m m

day s day
m s

b gc h
b gb g


  

 

13. The time on any of these clocks is a straight-line function of that on another, with 

slopes   1 and  y-intercepts   0. From the data in the figure we deduce 

 

2 594 33 662
, .

7 7 40 5
C B B At t t t     

 

These are used in obtaining the following results. 

 

(a) We find 

 
33

495 s
40

B B A At t t t      

when t'A  tA = 600 s. 

 

(b) We obtain       t t t tC C B B

2

7

2

7
495 141b g b g s.  

 

(c) Clock B reads tB = (33/40)(400) (662/5)  198 s when clock A reads tA = 400 s. 

 

(d) From tC = 15 = (2/7)tB + (594/7), we get tB  245 s. 

 

14. The metric prefixes (micro (), pico, nano, …) are given for ready reference on the 

inside front cover of the textbook (also Table 1–2). 

 

(a)  6 100 y 365 day 24 h 60 min
1 century 10 century 52.6 min.

1 century 1 y 1 day 1 h
         

        
       

 

 

(b) The percent difference is therefore 

 

52.6 min 50 min
4.9%.

52.6 min


  

 

15. A week is 7 days, each of which has 24 hours, and an hour is equivalent to 3600 

seconds.   Thus, two weeks (a fortnight) is 1209600 s.  By definition of the micro prefix, 

this is roughly 1.21  10
12

 s. 

 

16. We denote the pulsar rotation rate f (for frequency). 

 

3

1 rotation

1.55780644887275 10 s
f





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(a) Multiplying f by the time-interval t = 7.00 days (which is equivalent to 604800 s, if 

we ignore significant figure considerations for a moment), we obtain the number of 

rotations: 

 3

1 rotation
604800 s 388238218.4

1.55780644887275 10 s
N



 
  

 
 

 

which should now be rounded to 3.88  10
8
 rotations since the time-interval was 

specified in the problem to three significant figures. 

 

(b) We note that the problem specifies the exact number of pulsar revolutions (one 

million). In this case, our unknown is t, and an equation similar to the one we set up in 

part (a) takes the form N = ft, or 

 

6

3

1 rotation
1 10

1.55780644887275 10 s
t



 
   

 
 

 

which yields the result t = 1557.80644887275 s (though students who do this calculation 

on their calculator might not obtain those last several digits). 

 

(c) Careful reading of the problem shows that the time-uncertainty per revolution is 
173 10 s  . We therefore expect that as a result of one million revolutions, the 

uncertainty should be 17 6 11 ( 3 10 )(1 10 )= 3 10 s      . 

 

17. THINK In this problem we are asked to rank 5 clocks, based on their performance as 

timekeepers.   

 

EXPRESS We first note that none of the clocks advance by exactly 24 h in a 24-h period 

but this is not the most important criterion for judging their quality for measuring time 

intervals. What is important here is that the clock advance by the same (or nearly the 

same) amount in each 24-h period. The clock reading can then easily be adjusted to give 

the correct interval.  

 

ANALYZE The chart below gives the corrections (in seconds) that must be applied to 

the reading on each clock for each 24-h period. The entries were determined by 

subtracting the clock reading at the end of the interval from the clock reading at the 

beginning. 

 

Clocks C and D are both good timekeepers in the sense that each is consistent in its daily 

drift (relative to WWF time); thus, C and D are easily made “perfect” with simple and 

predictable corrections. The correction for clock C is less than the correction for clock D, 

so we judge clock C to be the best and clock D to be the next best. The correction that 

must be applied to clock A is in the range from 15 s to 17s. For clock B it is the range 

from 5 s to +10 s, for clock E it is in the range from 70 s to 2 s. After C and D, A has 
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the smallest range of correction, B has the next smallest range, and E has the greatest 

range. From best to worst, the ranking of the clocks is C, D, A, B, E. 

 

CLOCK Sun. Mon. Tues. Wed. Thurs. Fri. 

-Mon. -Tues. -Wed. -Thurs. -Fri. -Sat. 

A 16 16 15 17 15 15 

B 3 +5 10 +5 +6 7 

C 58 58 58 58 58 58 

D +67 +67 +67 +67 +67 +67 

E +70 +55 +2 +20 +10 +10 

 

LEARN Of the five clocks, the readings in clocks A, B and E jump around from one 24-

h period to another, making it difficult to correct them.  

 

18. The last day of the 20 centuries is longer than the first day by  

 

   20 century 0.001 s century 0.02 s.  

 

The average day during the 20 centuries is (0 + 0.02)/2 = 0.01 s longer than the first day. 

Since the increase occurs uniformly, the cumulative effect T is  

 

   

 

average increase in length of a day number of days

0.01 s 365.25 day
2000 y

day y

7305 s

T 

   
    
   



 

 

or roughly two hours. 

 

 

19. When the Sun first disappears while lying 

down, your line of sight to the top of the Sun 

is tangent to the Earth’s surface at point A 

shown in the figure. As you stand, elevating 

your eyes by a height h, the line of sight to the 

Sun is tangent to the Earth’s surface at point 

B. 

  
 

Let d be the distance from point B to your eyes. From the Pythagorean theorem, we have 

 

 2 2 2 2 2( ) 2d r r h r rh h       
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or 2 22 ,d rh h  where r is the radius of the Earth. Since r h , the second term can be 

dropped, leading to 2 2d rh . Now the angle between the two radii to the two tangent 

points A and B is , which is also the angle through which the Sun moves about Earth 

during the time interval t = 11.1 s.  The value of  can be obtained by using 

 

 
360 24 h

t



. 

This yields 

 
(360 )(11.1 s)

0.04625 .
(24 h)(60 min/h)(60 s/min)




    

 

Using tand r  , we have 2 2 2tan 2d r rh  , or 

 

 
2

2

tan

h
r


  

 

Using the above value for  and h = 1.7 m, we have 65.2 10  m.r    

 

20. (a) We find the volume in cubic centimeters 

 

 
3

3
5 3231 in 2.54 cm

193 gal = 193 gal 7.31 10 cm
1gal 1in

   
    

  
 

 

and subtract this from 1  10
6
 cm

3
 to obtain 2.69  10

5
 cm

3
. The conversion gal  in

3
 is 

given in Appendix D (immediately below the table of Volume conversions). 

 

(b) The volume found in part (a) is converted (by dividing by (100 cm/m)
3
) to 0.731 m

3
, 

which corresponds to a mass of 

 

1000 kg m  0.731 m =  731 kg3 2c h c h  

 

using the density given in the problem statement. At a rate of 0.0018 kg/min, this can be 

filled in 

5731kg
4.06 10 min = 0.77 y

0.0018 kg min
   

 

after dividing by the number of minutes in a year (365 days)(24 h/day) (60 min/h). 

 

21. If ME is the mass of Earth, m is the average mass of an atom in Earth, and N is the 

number of atoms, then ME = Nm or N = ME/m. We convert mass m to kilograms using 

Appendix D (1 u = 1.661  10
27

 kg). Thus, 
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N
M

m

E 



 



598 10

40 1661 10
9 0 10

24

27

49.

.
. .

kg

u kg ub g c h  

 

22. The density of gold is 

3

3

19.32 g
19.32 g/cm .

1 cm

m

V
     

 

(a) We take the volume of the leaf to be its area A multiplied by its thickness z. With 

density  = 19.32 g/cm
3
 and mass m = 27.63 g, the volume of the leaf is found to be  

 

V
m

 


1430. .cm3  

We convert the volume to SI units: 

 
3

3 6 31 m
1.430 cm 1.430 10 m .

100 cm
V  
   

 
 

 

Since V = Az with z = 1  10
-6

 m (metric prefixes can be found in Table 1–2), we obtain  

 

A 









1430 10

1 10
1430

6

6

.
. .

m

m
m

3
2  

 

(b) The volume of a cylinder of length   is V A   where the cross-section area is that of 

a circle: A = r
2
. Therefore, with r = 2.500  10

6
 m and V = 1.430  10

6
 m

3
, we obtain 

 

4

2
7.284 10 m 72.84 km.

V

r
     

 

23. THINK This problem consists of two parts: in the first part, we are asked to find the 

mass of water, given its volume and density; the second part deals with the mass flow 

rate of water, which is expressed as kg/s in SI units.  

 

EXPRESS From the definition of density: /m V  , we see that mass can be calculated 

as m V , the product of the volume of water and its density. With 1 g = 1  10
3

 kg 

and 1 cm
3
 = (1  10

2
m)

3
 = 1  10

6
m

3
, the density of water in SI units (kg/m

3
) is 

 
3 3

3 3 3

3 6 3

1 g 10 kg cm
1 g/cm 1 10 kg m .

cm g 10 m






    
       

     
 

 

To obtain the flow rate, we simply divide the total mass of the water by the time taken to 

drain it. 

 

ANALYZE (a) Using m V , the mass of a cubic meter of water is 
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3 3 3(1 10 kg/m )(1m ) 1000 kg.m V     

 

(b) The total mass of water in the container is 

 
3 3 3 6(1 10 kg m )(5700 m ) 5.70 10 kgM V     , 

 

and the time elapsed is t = (10 h)(3600 s/h) = 3.6  10
4 

s. Thus, the mass flow rate R is 

 
6

4

5.70 10 kg
158 kg s.

3.6 10 s

M
R

t


  


 

 

LEARN In terms of volume, the drain rate can be expressed as 

 
3

3

4

5700 m
0.158 m /s 42 gal/s.

3.6 10 s

V
R

t
    


 

 

The greater the flow rate, the less time required to drain a given amount of water. 

 

24. The metric prefixes (micro (), pico, nano, …) are given for ready reference on the 

inside front cover of the textbook (see also Table 1–2). The surface area A of each grain 

of sand of radius r = 50 m = 50  10
6

 m is given by A = 4(50  10
6

)
2
 = 3.14  10

8
 

m
2
 (Appendix E contains a variety of geometry formulas). We introduce the notion of 

density, /m V  , so that the mass can be found from m = V, where  = 2600 kg/m
3
. 

Thus, using V = 4r
3
/3, the mass of each grain is  

 

 
3

63
9

3

4 50 10 m4 kg
2600 1.36 10 kg.

3 m 3

r
m V


 




   

       
  

 

 

We observe that (because a cube has six equal faces) the indicated surface area is 6 m
2
. 

The number of spheres (the grains of sand) N that have a total surface area of 6 m
2
 is 

given by  
2

8

8 2

6 m
1.91 10 .

3.14 10 m
N


  


 

 

Therefore, the total mass M is    8 91.91 10 1.36 10 kg 0.260 kg.M Nm       

 

25. The volume of the section is (2500 m)(800 m)(2.0 m) = 4.0  10
6
 m

3
. Letting “d” 

stand for the thickness of the mud after it has (uniformly) distributed in the valley, then 

its volume there would be (400 m)(400 m)d.  Requiring these two volumes to be equal, 

we can solve for d.  Thus, d = 25 m.  The volume of a small part of the mud over a patch 

of area of 4.0 m
2
 is (4.0)d = 100 m

3
.  Since each cubic meter corresponds to a mass of 
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1900 kg (stated in the problem), then the mass of that small part of the mud is 
51.9 10  kg . 

 

26. (a) The volume of the cloud is (3000 m)(1000 m)
2
 = 9.4  10

9
 m

3
.  Since each cubic 

meter of the cloud contains from 50  10
6
 to 500  10

6
 water drops, then we conclude 

that the entire cloud contains from 4.7  10
18

 to 4.7  10
19 

drops.  Since the volume of 

each drop is 
4

3
 (10  10

6 
m)

3
 = 4.2  10

15
 m

3
, then the total volume of water in a cloud 

is from 32 10  to 42 10  m
3
. 

 

(b) Using the fact that 3 3 3 31 L 1 10 cm 1 10 m    , the amount of water estimated in 

part (a) would fill from 62 10  to 72 10 bottles. 

 

(c) At 1000 kg for every cubic meter, the mass of water is from 62 10  to 72 10 kg.   

The coincidence in numbers between the results of parts (b) and (c) of this problem is due 

to the fact that each liter has a mass of one kilogram when water is at its normal density 

(under standard conditions). 

 

27. We introduce the notion of density, /m V  , and convert to SI units: 1000 g = 1 kg, 

and 100 cm = 1 m. 

 

(a) The density  of a sample of iron is 

  

 
3

3 31 kg 100 cm
7.87 g cm 7870 kg/m .

1000 g 1 m


   
    

   
 

 

If we ignore the empty spaces between the close-packed spheres, then the density of an 

individual iron atom will be the same as the density of any iron sample. That is, if M is 

the mass and V is the volume of an atom, then  

 
26

29 3

3 3

9.27 10 kg
1.18 10 m .

7.87 10 kg m

M
V




   


 

 

(b) We set V = 4R
3
/3, where R is the radius of an atom (Appendix E contains several 

geometry formulas). Solving for R, we find  

 

 
1 3

29 31 3

10
3 1.18 10 m3

1.41 10 m.
4 4

V
R




  
           

 

 

The center-to-center distance between atoms is twice the radius, or 2.82  10
10

 m. 
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28. If we estimate the “typical” large domestic cat mass as 10 kg, and the “typical” atom 

(in the cat) as 10 u  2  10
26

 kg, then there are roughly (10 kg)/( 2  10
26

 kg)  5  

10
26

 atoms.  This is close to being a factor of a thousand greater than Avogadro’s number.  

Thus this is roughly a kilomole of atoms. 

 

29. The mass in kilograms is 

 

28 9
100 16 10 10 0 3779

.
.

piculs
gin

1picul

tahil

1gin

chee

1tahil

hoon

1 chee

g

1hoon
b g FHG

I
KJ
F
HG

I
KJ
F
HG

I
KJ
F
HG

I
KJ
F
HG

I
KJ  

 

which yields 1.747  10
6
 g or roughly 1.75 10

3
 kg. 

 

30. To solve the problem, we note that the first derivative of the function with respect to 

time gives the rate. Setting the rate to zero gives the time at which an extreme value of 

the variable mass occurs; here that extreme value is a maximum. 

 

(a) Differentiating 0.8( ) 5.00 3.00 20.00m t t t   with respect to t gives 

 

0.24.00 3.00.
dm

t
dt

   

 

The water mass is the greatest when / 0,dm dt   or at 1/0.2(4.00 /3.00) 4.21s.t    

 

(b) At 4.21s,t   the water mass is  

 
0.8( 4.21s) 5.00(4.21) 3.00(4.21) 20.00 23.2 g.m t       

 

(c) The rate of mass change at 2.00 st   is 

 

0.2

2.00 s

2

g 1 kg 60 s
4.00(2.00) 3.00 g/s 0.48 g/s 0.48

s 1000 g 1 min

2.89 10 kg/min.

t

dm

dt







       

 

 

 

(d) Similarly, the rate of mass change at 5.00 st   is 

 

0.2

2.00 s

3

g 1 kg 60 s
4.00(5.00) 3.00 g/s 0.101g/s 0.101

s 1000 g 1 min

6.05 10 kg/min.

t

dm

dt







         

  

 

 

31. The mass density of the candy is  
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 4 3 4 3

3

0.0200 g
4.00 10 g/mm 4.00 10 kg/cm .

50.0 mm

m

V
         

 

If we neglect the volume of the empty spaces between the candies, then the total mass of 

the candies in the container when filled to height h is ,M Ah  where 
2(14.0 cm)(17.0 cm) 238 cmA   is the base area of the container that remains 

unchanged. Thus, the rate of mass change is given by 

 

4 3 2( )
(4.00 10 kg/cm )(238 cm )(0.250 cm/s)

0.0238 kg/s 1.43 kg/min.

dM d Ah dh
A

dt dt dt


    

 

 

 

32. The total volume V of the real house is that of a triangular prism (of height h = 3.0 m 

and base area A = 20  12 = 240 m
2
) in addition to a rectangular box (height h´ = 6.0 m 

and same base). Therefore, 

31
1800 m .

2 2

h
V hA h A h A

 
      

 
 

 

(a) Each dimension is reduced by a factor of 1/12, and we find 

 

Vdoll

3 3m m
F
HG
I
KJ 1800

1

12
10

3

c h . .  

 

(b) In this case, each dimension (relative to the real house) is reduced by a factor of 1/144. 

Therefore, 

Vminiature

3m 6.0 10 m
F
HG
I
KJ   1800

1

144

3

4 3c h .  

 

33. THINK In this problem we are asked to differentiate between three types of tons: 

displacement ton, freight ton and register ton, all of which are units of volume.   

 

EXPRESS The three different tons are defined in terms of barrel bulk, with 
31 barrel bulk 0.1415 m 4.0155 U.S. bushels  (using 31 m 28.378 U.S. bushels ).  

Thus, in terms of U.S. bushels, we have 

 

4.0155 U.S. bushels
1 displacement ton (7 barrels bulk) 28.108 U.S. bushels

1 barrel bulk

 
   

 
 

4.0155 U.S. bushels
1 freight ton (8 barrels bulk) 32.124 U.S. bushels

1 barrel bulk

4.0155 U.S. bushels
1 register ton (20 barrels bulk) 80.31 U.S. bushels

1 barrel bulk

 
   

 

 
   

 
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ANALYZE (a) The difference between 73 “freight” tons and 73 “displacement” tons is 

 

73(freight tons displacement tons) 73(32.124 U.S. bushels 28.108 U.S. bushels)

293.168 U.S. bushels 293 U.S. bushels

V    

 

 

(b) Similarly, the difference between 73 “register” tons and 73 “displacement” tons is 

 

3

73(register tons displacement tons) 73(80.31 U.S. bushels 28.108 U.S. bushels)

3810.746 U.S. bushels 3.81 10  U.S. bushels

V    

  

 

LEARN With 1 register ton 1 freight ton 1displacement ton,   we expect the difference 

found in (b) to be greater than that in (a). This is indeed the case. 

 

34. The customer expects a volume V1 = 20  7056 in
3
 and receives V2 = 20  5826 in.

3
, 

the difference being 3

1 2 24600 in.V V V    , or 

 

 
3

3

3

2.54cm 1L
24600 in. 403L

1 inch 1000 cm
V

   
     

  
 

 

where Appendix D has been used. 

 

35. The first two conversions are easy enough that a formal conversion is not especially 

called for, but in the interest of practice makes perfect we go ahead and proceed formally: 

 

(a)  
2 peck

11 tuffets = 11 tuffets 22 pecks
1 tuffet

 
 

 
. 

 

(b)  
0.50 Imperial bushel

11 tuffets = 11 tuffets 5.5 Imperial bushels
1 tuffet

 
 

 
. 

 

(c)  
36.3687 L

11 tuffets = 5.5 Imperial bushel 200 L
1 Imperial bushel

 
 

 
. 

 

36. Table 7 can be completed as follows: 

 

(a) It should be clear that the first column (under “wey”) is the reciprocal of the first 

row – so that  
9

10
  = 0.900, 

3

40
  = 7.50  10

2
, and so forth.  Thus, 1 pottle = 1.56  10

3
 wey 

and 1 gill = 8.32  10
6

 wey are the last two entries in the first column.  

 

(b) In the second column (under “chaldron”), clearly we have 1 chaldron = 1 chaldron 

(that is, the entries along the “diagonal” in the table must be 1’s).  To find out how many 
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chaldron are equal to one bag, we note that 1 wey = 10/9 chaldron = 40/3 bag so that  
1

12
  

chaldron = 1 bag.  Thus, the next entry in that second column is 
1

12
  = 8.33  10

2
.  

Similarly, 1 pottle = 1.74  10
3

 chaldron and 1 gill = 9.24  10
6

 chaldron.
  

 

(c) In the third column (under “bag”), we have 1 chaldron = 12.0 bag, 1 bag = 1 bag, 1 

pottle = 2.08  10
2

 bag, and 1 gill = 1.11  10
4

 bag.  

 

(d) In the fourth column (under “pottle”), we find 1 chaldron = 576 pottle, 1 bag = 48 

pottle, 1 pottle = 1 pottle, and 1 gill = 5.32  10
3 

pottle.   

 

(e) In the last column (under “gill”), we obtain 1 chaldron = 1.08  10
5
 gill, 1 bag = 9.02 

 10
3
 gill, 1 pottle = 188 gill, and, of course, 1 gill = 1 gill. 

 

(f) Using the information from part (c), 1.5 chaldron = (1.5)(12.0) = 18.0 bag.  And since 

each bag is 0.1091 m
3
 we conclude 1.5 chaldron = (18.0)(0.1091) = 1.96 m

3
. 

 

37. The volume of one unit is 1 cm
3
 = 1  10

6 
m

3
, so the volume of a mole of them is 

6.02  10
23

 cm
3 

= 6.02  10
17 

m
3
.  The cube root of this number gives the edge length: 

5 38.4 10  m .  This is equivalent to roughly 8  10
2
 km. 

 

38. (a) Using the fact that the area A of a rectangle is (width) length), we find 

 

    

 
  

total

2

2

3.00acre 25.0perch 4.00perch

40 perch 4 perch
3.00 acre 100perch

1acre

580 perch .

A  

 
  

 



 

 

We multiply this by the perch
2
  rood conversion factor (1 rood/40 perch

2
) to obtain the 

answer: Atotal = 14.5 roods. 

 

(b) We convert our intermediate result in part (a): 

 

 
2

2 5 2

total

16.5ft
580 perch 1.58 10 ft .

1perch
A

 
   

 
 

 

Now, we use the feet  meters conversion given in Appendix D to obtain 

 
2

5 2 4 2

total

1m
1.58 10 ft 1.47 10 m .

3.281ft
A

 
    

 
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39. THINK This problem compares the U.K. gallon with U.S. gallon, two non-SI units 

for volume. The interpretation of the type of gallons, whether U.K. or U.S., affects the 

amount of gasoline one calculates for traveling a given distance.   

 

EXPRESS If the fuel consumption rate is R  (in miles/gallon), then the amount of 

gasoline (in gallons) needed for a trip of distance d (in miles) would be 

   

 
(miles)

(gallon)
(miles/gallon)

d
V

R
  

 

Since the car was manufactured in U.K., the fuel consumption rate is calibrated based on 

U.K. gallon, and the correct interpretation should be “40 miles per U.K. gallon.” In U.K., 

one would think of gallon as U.K. gallon; however, in the U.S., the word “gallon” would 

naturally be interpreted as U.S. gallon.  Note also that since 1 U.K. gallon 4.5460900 L  

and  1 U.S. gallon 3.7854118 L , the relationship between the two is 

 

1 U.S. gallon
1 U.K. gallon (4.5460900 L) 1.20095 U.S. gallons

3.7854118 L

 
  

 
 

 

ANALYZE (a) The amount of gasoline actually required is 

  

750 miles
18.75 U.K. gallons 18.8 U.K. gallons

40 miles/U.K. gallon
V      

 

This means that the driver mistakenly believes that the car should need 18.8 U.S. gallons. 

 

(b) Using the conversion factor found above, this is equivalent to  

 

 
1.20095 U.S. gallons

18.75 U.K. gallons 22.5 U.S. gallons
1 U.K. gallon

V
 

    
 

 

 

LEARN One U.K. gallon is greater than one U.S gallon by roughly a factor of 1.2 in 

volume. Therefore, 40 mi/U.K. gallon is less fuel-efficient than 40 mi/U.S. gallon.  

 

40. Equation 1-9 gives (to very high precision!) the conversion from atomic mass units to 

kilograms.  Since this problem deals with the ratio of total mass (1.0 kg) divided by the 

mass of one atom (1.0 u, but converted to kilograms), then the computation reduces to 

simply taking the reciprocal of the number given in Eq. 1-9 and rounding off 

appropriately.   Thus, the answer is 6.0  10
26

. 

 

41. THINK This problem involves converting cord, a non-SI unit for volume, to SI unit.   

 

EXPRESS Using the (exact) conversion 1 in. = 2.54 cm = 0.0254 m for length, we have 
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0.0254 m

1 ft 12 in (12 in.) 0.3048 m
1in

 
    

 
. 

Thus, 3 3 31 ft (0.3048 m) 0.0283 m   for volume (these results also can be found in 

Appendix D).  

 

ANALYZE The volume of a cord of wood is 3(8 ft) (4 ft) (4 ft) 128 ftV     . Using 

the conversion factor found above, we obtain 
3

3 3 3

3

0.0283 m
1cord 128 ft (128 ft ) 3.625 m

1 ft
V

 
     

 
 

which implies that 3 1
1 m cord 0.276 cord 0.3 cord

3.625

 
   
 

. 

 

LEARN The unwanted units ft
3
 all cancel out, as they should. In conversions, units obey 

the same algebraic rules as variables and numbers. 

 

42. (a) In atomic mass units, the mass of one molecule is (16 + 1 + 1)u = 18 u. Using Eq. 

1-9, we find 

 
27

261.6605402 10 kg
18u = 18u 3.0 10 kg.

1u


 

  
 

 

 

(b) We divide the total mass by the mass of each molecule and obtain the (approximate) 

number of water molecules: 
21

46

26

1.4 10
5 10 .

3.0 10
N




  


 

 

43. A million milligrams comprise a kilogram, so 2.3 kg/week is 2.3  10
6
 mg/week.  

Figuring 7 days a week, 24 hours per day, 3600 second per hour, we find 604800 seconds 

are equivalent to one week.  Thus, (2.3  10
6
 mg/week)/(604800 s/week) = 3.8 mg/s. 

 

44. The volume of the water that fell is  

       

   

2

2 2

6 2

6 3

1000 m 0.0254 m
26 km 2.0 in. 26 km 2.0 in.

1 km 1 in.

26 10 m 0.0508 m

1.3 10 m .

V
   

     
   

 

 

 

 

We write the mass-per-unit-volume (density) of the water as: 3 31 10 kg m .
m

V
    

The mass of the water that fell is therefore given by m = V: 

 

   3 3 6 3 91 10 kg m 1.3 10 m 1.3 10 kg.m       
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45. The number of seconds in a year is 3.156  10
7
. This is listed in Appendix D and 

results from the product 

 

(365.25 day/y) (24 h/day) (60 min/h) (60 s/min). 

 

(a) The number of shakes in a second is 10
8
; therefore, there are indeed more shakes per 

second than there are seconds per year. 

 

(b) Denoting the age of the universe as 1 u-day (or 86400 u-sec), then the time during 

which humans have existed is given by 

 

10

10
10

6

10

4  u - day,  

 

which may also be expressed as  10
86400

1
8 64 F

HG
I
KJ u - day

u - sec

u -day
u - sec.c h .  

 

46. The volume removed in one year is V =  (75 10  m ) (26 m) 2  10  m4 2 7 3   , 

which we convert to cubic kilometers: V  
F
HG

I
KJ 2 10

1
0 0207

3

m
km

1000 m
km3 3c h . .  

 

47. THINK This problem involves expressing the speed of light in astronomical units per 

minute.   

 

EXPRESS We first convert meters to astronomical units (AU), and seconds to minutes, 

using  
81000 m 1 km, 1 AU 1.50 10 km, 60 s 1 min. 

 

ANALYZE Using the conversion factors above, the speed of light can be rewritten as   

 

 
8

8

8

3.0 10 m 1 km AU 60 s
3.0 10 m/s 0.12 AU min.

s 1000 m 1.50 10 km min
c

       
          

      
 

 

LEARN When expressed the speed of light c in AU/min, we readily see that it takes 

about 8.3 (= 1/0.12) minutes for sunlight to reach the Earth (i.e., to travel a distance of 1 

AU).  

 

48. Since one atomic mass unit is 241u 1.66 10 g  (see Appendix D), the mass of one 

mole of atoms is about 24 23(1.66 10 g)(6.02 10 ) 1g.m      On the other hand, the mass 

of one mole of atoms in the common Eastern mole is  
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75 g

10 g
7.5

m    

 

Therefore, in atomic mass units, the average mass of one atom in the common Eastern 

mole is  

23

23

10 g
1.66 10 g 10 u.

6.02 10A

m

N


   


 

 

49. (a) Squaring the relation 1 ken = 1.97 m, and setting up the ratio, we obtain 

 

1

1

197

1
3 88

2ken

m

m

m

2

2

2

2
 

.
. . 

(b) Similarly, we find 

1

1

197

1
7 65

3

3ken

m

m

m

3 3

3
 

.
. .  

 

(c) The volume of a cylinder is the circular area of its base multiplied by its height. Thus, 

 

   
22 33.00 5.50 156 ken .r h    

 

(d) If we multiply this by the result of part (b), we determine the volume in cubic meters: 

(155.5)(7.65) = 1.19  10
3
 m

3
. 

 

50. According to Appendix D, a nautical mile is 1.852 km, so 24.5 nautical miles would 

be 45.374 km.  Also, according to Appendix D, a mile is 1.609 km, so 24.5 miles is 

39.4205 km. The difference is 5.95 km. 

 

51. (a) For the minimum (43 cm) case, 9 cubits converts as follows: 

 

 
0.43m

9cubits 9cubits 3.9m.
1cubit

 
  

 
 

And for the maximum (53 cm) case we have  
0.53m

9cubits 9cubits 4.8m.
1cubit

 
  

 
 

 

(b) Similarly, with 0.43 m  430 mm and 0.53 m  530 mm, we find 3.9  10
3
 mm and 

4.8  10
3
 mm, respectively. 

 

(c) We can convert length and diameter first and then compute the volume, or first 

compute the volume and then convert. We proceed using the latter approach (where d is 

diameter and   is length). 
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 
3

2 3 3 3

cylinder, min

0.43m
28 cubit 28 cubit 2.2 m .

4 1 cubit
V d

  
    

 
 

 

Similarly, with 0.43 m replaced by 0.53 m, we obtain Vcylinder, max = 4.2 m
3
. 

 

52. Abbreviating wapentake as “wp” and assuming a hide to be 110 acres, we set up the 

ratio 25 wp/11 barn along with appropriate conversion factors: 

 

       
   

2

28 2

36

100 hide 110 acre 4047 m
1 wp 1acre1 hide

1 10 m

1 barn

25 wp
1 10 .

11 barn


   

 

53. THINK The objective of this problem is to convert the Earth-Sun distance (1 AU) to 

parsecs and light-years.  

 

EXPRESS To relate parsec (pc) to AU, we note that when  is measured in radians, it is 

equal to the arc length s divided by the radius R. For a very large radius circle and small 

value of , the arc may be approximated as the straight line-segment of length 1 AU. 

Thus,  

  61 arcmin 1 2 radian
1 arcsec 1 arcsec 4.85 10  rad

60 arcsec 60 arcmin 360
     
      

   
. 

Therefore, one parsec is 

 5

6

1 AU
1 pc 2.06 10 AU

4.85 10

s

 
   


. 

 

Next, we relate AU to light-year (ly). Since a year is about 3.16  10
7
 s,  

  

   7 121ly 186,000mi s 3.16 10 s 5.9 10 mi    . 

 

ANALYZE (a) Since 51 pc 2.06 10 AU  , inverting the relation gives 

  6

5

1 pc
1 AU 1 AU 4.9 10 pc.

2.06 10 AU

 
   

 
 

 

(b) Given that 61AU 92.9 10  mi  and 121 ly 5.9 10 mi  , the two expressions 

together lead to  

6 6 5

12

1ly
1AU 92.9 10  mi (92.9 10  mi) 1.57 10 ly

5.9 10 mi

 
      

 
. 
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LEARN Our results can be further combined to give 1pc 3.2 ly. From the above 

expression, we readily see that it takes 51.57 10 y , or about 8.3 min, for Sunlight to 

travel a distance of 1 AU to reach the Earth.   

 

54. (a) Using Appendix D, we have 1 ft = 0.3048 m, 1 gal = 231 in.
3
, and 1 in.

3
 = 1.639  

10
2

 L. From the latter two items, we find that 1 gal = 3.79 L. Thus, the quantity 460 

ft
2
/gal becomes 

2
2

2 2460 ft 1 m 1gal
460 ft /gal 11.3 m L.

gal 3.28 ft 3.79 L

    
     

    
 

 

(b) Also, since 1 m
3
 is equivalent to 1000 L, our result from part (a) becomes 

 
2

2 4 1

3

11.3 m 1000L
11.3 m /L 1.13 10 m .

L 1 m

  
    

  
 

 

(c) The inverse of the original quantity is (460 ft
2
/gal)

1
 = 2.17  10

3
 gal/ft

2
. 

 

(d) The answer in (c) represents the volume of the paint (in gallons) needed to cover a 

square foot of area. From this, we could also figure the paint thickness [it turns out to be 

about a tenth of a millimeter, as one sees by taking the reciprocal of the answer in part 

(b)]. 

 

55. (a) The receptacle is a volume of (40 cm)(40 cm)(30 cm) = 48000 cm
3
 = 48 L = 

(48)(16)/11.356 = 67.63 standard bottles, which is a little more than 3 nebuchadnezzars 

(the largest bottle indicated).  The remainder, 7.63 standard bottles, is just a little less 

than 1 methuselah. Thus, the answer to part (a) is 3 nebuchadnezzars and 1 methuselah. 

 

(b) Since 1 methuselah.= 8 standard bottles, then the extra amount is 8  7.63 = 0.37 

standard bottle. 

 

(c) Using the conversion factor 16 standard bottles = 11.356 L, we have 

 

11.356 L
0.37 standard bottle  (0.37 standard bottle) 0.26 L.

16 standard bottles

 
  

 
 

 

56. The mass of the pig is 3.108 slugs, or (3.108)(14.59) = 45.346 kg.  Referring now to 

the corn, a U.S. bushel is 35.238 liters.  Thus, a value of 1 for the corn-hog ratio would 

be equivalent to 35.238/45.346 = 0.7766 in the indicated metric units.  Therefore, a value 

of 5.7 for the ratio corresponds to 5.7(0.777)  4.4 in the indicated metric units. 

 

57. Two jalapeño peppers have spiciness = 8000 SHU, and this amount multiplied by 400 

(the number of people) is 3.2 10
6
 SHU, which is roughly ten times the SHU value for a 
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single habanero pepper.   More precisely, 10.7 habanero peppers will provide that total 

required SHU value. 

 

58. In the simplest approach, we set up a ratio for the total increase in horizontal depth x 

(where x = 0.05 m is the increase in horizontal depth per step) 

 

 steps

4.57
0.05 m 1.2 m.

0.19
x N x

 
    

 
 

 

However, we can approach this more carefully by noting that if there are N = 4.57/.19  

24 rises then under normal circumstances we would expect N  1 = 23 runs (horizontal 

pieces) in that staircase. This would yield (23)(0.05 m) = 1.15 m, which - to two 

significant figures - agrees with our first result. 

 

59. The volume of the filled container is 24000 cm
3
 = 24 liters, which (using the 

conversion given in the problem) is equivalent to 50.7 pints (U.S).  The expected number 

is therefore in the range from 1317 to 1927 Atlantic oysters. Instead, the number received 

is in the range from 406 to 609 Pacific oysters.  This represents a shortage in the range of 

roughly 700 to 1500 oysters (the answer to the problem).  Note that the minimum value 

in our answer corresponds to the minimum Atlantic minus the maximum Pacific, and the 

maximum value corresponds to the maximum Atlantic minus the minimum Pacific. 

 

60. (a) We reduce the stock amount to British teaspoons: 

 
1

6 2 2 24

breakfastcup = 2 8 2 2 = 64 teaspoons

1 teacup = 8 2 2 = 32 teaspoons

6 tablespoons = teaspoons

1 dessertspoon = 2 teaspoons

  

 

  
 

 

which totals to 122 British teaspoons, or 122 U.S. teaspoons since liquid measure is being 

used. Now with one U.S cup equal to 48 teaspoons, upon dividing 122/48  2.54, we find 

this amount corresponds to 2.5 U.S. cups plus a remainder of precisely 2 teaspoons. In 

other words,  

 

122 U.S. teaspoons = 2.5 U.S. cups + 2 U.S. teaspoons.  

 

(b) For the nettle tops, one-half quart is still one-half quart.  

 

(c) For the rice, one British tablespoon is 4 British teaspoons which (since dry-goods 

measure is being used) corresponds to 2 U.S. teaspoons.  

 

(d) A British saltspoon is 1
2

 British teaspoon which corresponds (since dry-goods 

measure is again being used) to 1 U.S. teaspoon.  
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Chapter 2 
 

 

1. The speed (assumed constant) is v = (90 km/h)(1000 m/km)  (3600 s/h) = 25 m/s. 

Thus, in 0.50 s, the car travels a distance d = vt = (25 m/s)(0.50 s)  13 m.  

 

2. (a) Using the fact that time = distance/velocity while the velocity is constant, we 

find 

avg 73.2 m 73.2 m
3.05 m1.22 m/s

73.2 m 73.2 m
1.74 m/s.v


 


 

 

(b) Using the fact that distance = vt while the velocity v is constant, we find 

 

vavg

 m / s)(60 s)  m / s)(60 s)

 s
 m / s.




( . ( .
.

122 305

120
214  

 

(c) The graphs are shown below (with meters and seconds understood). The first 

consists of two (solid) line segments, the first having a slope of 1.22 and the second 

having a slope of 3.05. The slope of the dashed line represents the average velocity (in 

both graphs). The second graph also consists of two (solid) line segments, having the 

same slopes as before — the main difference (compared to the first graph) being that 

the stage involving higher-speed motion lasts much longer. 

 

 
 

3. THINK This one-dimensional kinematics problem consists of two parts, and we 

are asked to solve for the average velocity and average speed of the car.   

 

EXPRESS Since the trip consists of two parts, let the displacements during first and 

second parts of the motion be x1 and x2, and the corresponding time intervals be t1 

and t2, respectively. Now, because the problem is one-dimensional and both 

displacements are in the same direction, the total displacement is simply x = x1 + 

x2, and the total time for the trip is t = t1 + t2. Using the definition of average 

velocity given in Eq. 2-2, we have  

1 2
avg

1 2

.
x xx

v
t t t

 
 
  
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To find the average speed, we note that during a time t if the velocity remains a 

positive constant, then the speed is equal to the magnitude of velocity, and the 

distance is equal to the magnitude of displacement, with | | .d x v t     

 

ANALYZE 

(a) During the first part of the motion, the displacement is x1 = 40 km and the time 

taken is 

t1

40
133 

(
.

 km)

(30 km / h)
 h.  

Similarly, during the second part of the trip the displacement is x2 = 40 km and the 

time interval is 

t2

40
0 67 

(
.

 km)

(60 km / h)
 h.  

 

The total displacement is x = x1 + x2 = 40 km + 40 km = 80 km, and the total time 

elapsed is t = t1 + t2 = 2.00 h. Consequently, the average velocity is 

 

avg

(80 km)
40 km/h.

(2.0 h)

x
v

t


  


 

 

(b) In this case, the average speed is the same as the magnitude of the average 

velocity: avg 40 km/h.s   

 

(c) The graph of the entire trip, shown below, consists of two contiguous line 

segments, the first having a slope of 30 km/h and connecting the origin to (t1, x1) = 

(1.33 h, 40 km)  and the second having a slope of 60 km/h and connecting (t1, x1) 

to (t, x) = (2.00 h, 80 km).  

 

 
 

From the graphical point of view, the slope of the dashed line drawn from the origin 

to (t, x) represents the average velocity.  

 

LEARN The average velocity is a vector quantity that depends only on the net 

displacement (also a vector) between the starting and ending points. 

 

4. Average speed, as opposed to average velocity, relates to the total distance, as 

opposed to the net displacement. The distance D up the hill is, of course, the same as 

the distance down the hill, and since the speed is constant (during each stage of the 



 

 

25 

 

motion) we have speed = D/t. Thus, the average speed is 

 

D D

t t

D

D

v

D

v

up down

up down

up down








2
 

 

which, after canceling D and plugging in vup = 40 km/h and vdown = 60 km/h, yields 48 

km/h for the average speed. 

 

5. THINK In this one-dimensional kinematics problem, we’re given the position 

function x(t), and asked to calculate the position and velocity of the object at a later 

time.  

 

EXPRESS The position function is given as x(t) = (3 m/s)t – (4 m/s
2
)t

2
 + (1 m/s

3
)t

3
. 

The position of the object at some instant t0 is simply given by x(t0). For the time 

interval 1 2t t t  , the displacement is 2 1( ) ( )x x t x t   . Similarly, using Eq. 2-2, 

the average velocity for this time interval is 

 2 1
avg

2 1

( ) ( )
.

x t x tx
v

t t t


 
 

 

 

ANALYZE (a) Plugging in t = 1 s into x(t) yields  

 

x(1 s) = (3 m/s)(1 s) – (4 m/s
2
)(1 s)

2
 + (1 m/s

3
)(1 s)

3
 = 0. 

 

(b) With t = 2 s we get x(2 s) = (3 m/s)(2 s) – (4 m/s
2
) (2 s)

2 
+ (1 m/s

3
)(2 s)

3 
= –2 m.  

 

(c) With t = 3 s we have x (3 s) = (3 m/s)(3 s) – (4 m/s
2
) (3 s)

2 
+ (1 m/s

3
)(3 s)

3 
= 0 m. 

 

(d) Similarly, plugging in t = 4 s gives  

 

x(4 s) = (3 m/s)(4 s) – (4 m/s
2
)(4 s)

2 
+ (1 m/s

3
) (4 s)

3
 = 12 m. 

 

(e) The position at t = 0 is x = 0. Thus, the displacement between t = 0 and t = 4 s is 

(4 s) (0) 12 m 0 12 m.x x x       

 

(f) The position at t = 2 s is subtracted from the position at t = 4 s to give the 

displacement: (4 s) (2 s) 12 m ( 2 m) 14 mx x x       . Thus, the average velocity 

is 

avg

14 m
7 m/s.

2 s

x
v

t


  


 

 

(g) The position of the object for the interval 0  t  4 is plotted below. The straight 

line drawn from the point at (t, x) = (2 s, –2 m) to (4 s, 12 m) would represent the 

average velocity, answer for part (f). 
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LEARN Our graphical representation illustrates once again that the average velocity 

for a time interval depends only on the net displacement between the starting and 

ending points. 

 

6. Huber’s speed is  

v0 = (200 m)/(6.509 s) =30.72 m/s = 110.6 km/h, 

 

where we have used the conversion factor 1 m/s = 3.6 km/h. Since Whittingham beat 

Huber by 19.0 km/h, his speed is v1 = (110.6 km/h + 19.0 km/h) = 129.6 km/h, or 36 

m/s (1 km/h = 0.2778 m/s). Thus, using Eq. 2-2, the time through a distance of 200 m 

for Whittingham is 

1

200 m
5.554 s.

36 m/s

x
t

v


     

 

7. Recognizing that the gap between the trains is closing at a constant rate of 60 km/h, 

the total time that elapses before they crash is t = (60 km)/(60 km/h) = 1.0 h. During 

this time, the bird travels a distance of x = vt = (60 km/h)(1.0 h) = 60 km. 

 

8. The amount of time it takes for each person to move a distance L with speed sv  is 

/ st L v  . With each additional person, the depth increases by one body depth d  

 

(a) The rate of increase of the layer of people is  

 

 
(0.25 m)(3.50 m/s)

0.50 m/s
/ 1.75 m

s

s

dvd d
R

t L v L
    


 

(b) The amount of time required to reach a depth of 5.0 mD  is 

 
5.0 m

10 s
0.50 m/s

D
t

R
    

 

9. Converting to seconds, the running times are t1 = 147.95 s and t2 = 148.15 s, 

respectively. If the runners were equally fast, then 

 

1 2
avg avg1 2

1 2

     .
L L

s s
t t

    

From this we obtain 
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2
2 1 1 1 1

1

148.15
1 1  0.00135 1.4 m

147.95

t
L L L L L

t

   
         

  
 

 

where we set L1  1000 m in the last step. Thus, if L1 and L2 are no different than 

about 1.4 m, then runner 1 is indeed faster than runner 2. However, if L1 is shorter 

than L2 by more than 1.4 m, then runner 2 would actually be faster. 

 

10. Let 
wv be the speed of the wind and 

cv  be the speed of the car. 

 

(a) Suppose during time interval 
1t , the car moves in the same direction as the wind. 

Then the effective speed of the car is given by
,1eff c wv v v  , and the distance traveled 

is ,1 1 1( )eff c wd v t v v t   . On the other hand, for the return trip during time interval t2, 

the car moves in the opposite direction of the wind and the effective speed would be 

,2eff c wv v v  . The distance traveled is ,2 2 2( )eff c wd v t v v t   . The two expressions 

can be rewritten as 

1 2

andc w c w

d d
v v v v

t t
     

Adding the two equations and dividing by two, we obtain 
1 2

1

2
c

d d
v

t t

 
  

 
. Thus, 

method 1 gives the car’s speed
cv a in windless situation. 

 

(b) If method 2 is used, the result would be 

  
2

2 2

1 2 1 2

2 2
1

( ) / 2

c w w
c c

c c

c w c w

v v vd d d
v v

d dt t t t v v

v v v v

  
        

      
 

. 

The fractional difference is  

2

2 4(0.0240) 5.76 10c c w

c c

v v v

v v

 
    
 

. 

11. The values used in the problem statement make it easy to see that the first part of 

the trip (at 100 km/h) takes 1 hour, and the second part (at 40 km/h) also takes 1 hour.  

Expressed in decimal form, the time left is 1.25 hour, and the distance that remains is 

160 km. Thus, a speed v = (160 km)/(1.25 h) = 128 km/h is needed. 

 

12. (a) Let the fast and the slow cars be separated by a distance d at t = 0. If during the 

time interval / (12.0 m) /(5.0 m/s) 2.40 sst L v   in which the slow car has moved 

a distance of 12.0 mL  , the fast car moves a distance of vt d L   to join the line 

of slow cars, then the shock wave would remain stationary. The condition implies a 

separation of 

 (25 m/s)(2.4 s) 12.0 m 48.0 m.d vt L      

 

(b) Let the initial separation at 0t   be 96.0 m.d   At a later time t, the slow and 
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the fast cars have traveled 
sx v t  and the fast car joins the line by moving a distance 

d x . From 

 ,
s

x d x
t

v v


   

we get   

5.00 m/s
(96.0 m) 24.0 m,

25.0 m/s 5.00 m/s

s

s

v
x d

v v
  

 
 

 

which in turn gives (24.0 m) /(5.00 m/s) 4.80 s.t    Since the rear of the slow-car 

pack has moved a distance of 24.0 m 12.0 m 12.0 mx x L      downstream, the 

speed of the rear of the slow-car pack, or equivalently, the speed of the shock wave, is 

 

 
shock

12.0 m
2.50 m/s.

4.80 s

x
v

t


    

(c) Since x L , the direction of the shock wave is downstream. 

 

13. (a) Denoting the travel time and distance from San Antonio to Houston as T and D, 

respectively, the average speed is 

 

avg1

(55 km/h)( /2) (90 km/h)( / 2)
72.5 km/h

D T T
s

T T


    

 

which should be rounded to 73 km/h. 

 

(b) Using the fact that time = distance/speed while the speed is constant, we find 

 

avg2 / 2 / 2
55 km/h 90 km/h

68.3 km/h
D D

D D
s

T
  


 

 

which should be rounded to 68 km/h. 

 

(c) The total distance traveled (2D) must not be confused with the net displacement 

(zero). We obtain for the two-way trip 

avg

72.5 km/h 68.3 km/h

2
70 km/h.

D D

D
s  


 

 

(d) Since the net displacement vanishes, the average velocity for the trip in its entirety 

is zero. 

 

(e) In asking for a sketch, the problem is allowing the student to arbitrarily set the 

distance D (the intent is not to make the student go to an atlas to look it up); the 

student can just as easily arbitrarily set T instead of D, as will be clear in the following 

discussion. We briefly describe the graph (with kilometers-per-hour understood for 

the slopes): two contiguous line segments, the first having a slope of 55 and 

connecting the origin to (t1, x1) = (T/2, 55T/2) and the second having a slope of 90 and 

connecting (t1, x1) to (T, D) where D = (55 + 90)T/2. The average velocity, from the 
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graphical point of view, is the slope of a line drawn from the origin to (T, D). The 

graph (not drawn to scale) is depicted below: 

 

 
 

14. Using the general property d
dx

bx b bxexp( ) exp( ) , we write 

 

v
dx

dt

d t

dt
e t

de

dt

t
t

 
F
HG
I
KJ   

F
HG
I
KJ


( )

( )
19

19 .  

 

If a concern develops about the appearance of an argument of the exponential (–t) 

apparently having units, then an explicit factor of 1/T where T = 1 second can be 

inserted and carried through the computation (which does not change our answer). 

The result of this differentiation is 

v t e t  16 1( )  

 

with t and v in SI units (s and m/s, respectively). We see that this function is zero 

when t = 1 s.  Now that we know when it stops, we find out where it stops by 

plugging our result t = 1 into the given function x = 16te
–t

 with x in meters. Therefore, 

we find x = 5.9 m. 

 

15. We use Eq. 2-4 to solve the problem. 

 

(a) The velocity of the particle is 

 

v
dx

dt

d

dt
t t t        ( ) .4 12 3 12 62  

 

Thus, at t = 1 s, the velocity is v = (–12 + (6)(1)) = –6 m/s. 

 

(b) Since v  0, it is moving in the –x direction at t = 1 s. 

 

(c) At t = 1 s, the speed is |v| = 6 m/s. 

 

(d) For 0  t  2 s, |v| decreases until it vanishes. For 2  t  3 s, |v| increases from 

zero to the value it had in part (c). Then, |v| is larger than that value for t  3 s. 

 

(e) Yes, since v smoothly changes from negative values (consider the t = 1 result) to 

positive (note that as t  + , we have v  + ). One can check that v = 0 when 

2 s.t   
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(f) No. In fact, from v = –12 + 6t, we know that v  0 for t  2 s. 

 

16. We use the functional notation x(t), v(t), and a(t) in this solution, where the latter 

two quantities are obtained by differentiation: 

 

v t
dx t

dt
t a t

dv t

dt
b g b g b g b g     12 12and  

 

with SI units understood. 

 

(a) From v(t) = 0 we find it is (momentarily) at rest at t = 0. 

 

(b) We obtain x(0) = 4.0 m. 

 

(c) and (d) Requiring x(t) = 0 in the expression x(t) = 4.0 – 6.0t
2
 leads to t = 0.82 s 

for the times when the particle can be found passing through the origin. 

 

(e) We show both the asked-for graph (on the left) as well as the “shifted” graph that 

is relevant to part (f). In both cases, the time axis is given by –3  t  3 (SI units 

understood). 

 
 

(f) We arrived at the graph on the right (shown above) by adding 20t to the x(t) 

expression. 

 

(g) Examining where the slopes of the graphs become zero, it is clear that the shift 

causes the v = 0 point to correspond to a larger value of x (the top of the second curve 

shown in part (e) is higher than that of the first). 

 

17. We use Eq. 2-2 for average velocity and Eq. 2-4 for instantaneous velocity, and 

work with distances in centimeters and times in seconds. 

 

(a) We plug into the given equation for x for t = 2.00 s and t = 3.00 s and obtain x2 = 

21.75 cm and x3 = 50.25 cm, respectively. The average velocity during the time 

interval 2.00  t  3.00 s is 

v
x

t
avg 

 cm  cm

 s  s
 









50 25 2175

300 2 00

. .

. .
 

which yields vavg = 28.5 cm/s. 

 

(b) The instantaneous velocity is v tdx
dt

  4 5 2. , which, at time t = 2.00 s, yields v = 

(4.5)(2.00)
2
 = 18.0 cm/s. 
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(c) At t = 3.00 s, the instantaneous velocity is v = (4.5)(3.00)
2
 = 40.5 cm/s. 

 

(d) At t = 2.50 s, the instantaneous velocity is v = (4.5)(2.50)
2
 = 28.1 cm/s. 

 

(e) Let tm stand for the moment when the particle is midway between x2 and x3 (that is, 

when the particle is at xm = (x2 + x3)/2 = 36 cm). Therefore, 

 

x t tm m m   9 75 15 25963. . .       

 

in seconds. Thus, the instantaneous speed at this time is v = 4.5(2.596)
2
 = 30.3 cm/s. 

 

(f) The answer to part (a) is given by the slope of the straight line between t = 2 and t 

= 3 in this x-vs-t plot. The answers to parts (b), (c), (d), and (e) correspond to the 

slopes of tangent lines (not shown but easily imagined) to the curve at the appropriate 

points. 

 
 

18. (a) Taking derivatives of x(t) = 12t
2
 – 2t

3
 we obtain the velocity and the 

acceleration functions: 

v(t) = 24t – 6t
2
   and   a(t) = 24 – 12t 

 

with length in meters and time in seconds. Plugging in the value t = 3 yields 

(3) 54 mx  . 

 

(b) Similarly, plugging in the value t = 3 yields v(3) = 18 m/s. 

 

(c) For t = 3, a(3) = –12 m/s
2
.   

  

(d) At the maximum x, we must have v = 0; eliminating the t = 0 root, the velocity 

equation reveals t = 24/6 = 4 s for the time of maximum x.  Plugging t = 4 into the 

equation for x leads to x = 64 m for the largest x value reached by the particle. 

 

(e) From (d), we see that the x reaches its maximum at t = 4.0 s.   

 

(f) A maximum v requires a = 0, which occurs when t = 24/12 = 2.0 s. This, inserted 

into the velocity equation, gives vmax = 24 m/s. 

 

(g) From (f), we see that the maximum of v occurs at t = 24/12 = 2.0 s. 

 

(h) In part (e), the particle was (momentarily) motionless at t = 4 s. The acceleration at 

that time is readily found to be 24 – 12(4) = –24 m/s
2
. 
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(i) The average velocity is defined by Eq. 2-2, so we see that the values of x at t = 0 

and t = 3 s are needed; these are, respectively, x = 0 and x = 54 m (found in part (a)).  

Thus, 

vavg = 
54 0

3 0




 = 18 m/s. 

 

19. THINK In this one-dimensional kinematics problem, we’re given the speed of a 

particle at two instants and asked to calculate its average acceleration.  

 

EXPRESS We represent the initial direction of motion as the +x direction. The 

average acceleration over a time interval 
1 2t t t  is given by Eq. 2-7:   

 

2 1
avg

2 1

( ) ( )
.

v t v tv
a

t t t


 
 

 

 

ANALYZE Let v1 = +18 m/s at 1 0t  and v2 = –30 m/s at t2 = 2.4 s. Using Eq. 2-7 

we find 

22 1
avg

2 1

( ) ( ) ( 30 m/s) ( 1m/s)
20 m/s

2.4 s 0

v t v t
a

t t

   
   

 
. 

 

LEARN The average acceleration has magnitude 20 m/s
2
 and is in the opposite 

direction to the particle’s initial velocity. This makes sense because the velocity of the 

particle is decreasing over the time interval. With 1 0t  , the velocity of the particle 

as a function of time can be written as  

 
2

0 (18 m/s) (20 m/s )v v at t    . 

 

20. We use the functional notation x(t), v(t) and a(t) and find the latter two quantities 

by differentiating: 

v t
dx t

t
t a t

dv t

dt
tb g b g b g b g      15 20 302 and  

 

with SI units understood. These expressions are used in the parts that follow. 

 

(a) From 0 15 202  t , we see that the only positive value of t for which the 

particle is (momentarily) stopped is t  20 15 12/ . s . 

 

(b) From 0 = – 30t, we find a(0) = 0 (that is, it vanishes at t = 0). 

 

(c) It is clear that a(t) = – 30t is negative for t > 0.  

 

(d) The acceleration a(t) = – 30t is positive for t < 0. 

 

(e) The graphs are shown below. SI units are understood. 
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21. We use Eq. 2-2 (average velocity) and Eq. 2-7 (average acceleration). Regarding 

our coordinate choices, the initial position of the man is taken as the origin and his 

direction of motion during 5 min  t  10 min is taken to be the positive x direction. 

We also use the fact that  x v t '  when the velocity is constant during a time 

interval t ' . 

 

(a) The entire interval considered is t = 8 – 2 = 6 min, which is equivalent to 360 s, 

whereas the sub-interval in which he is moving is only 8 5 3min 180 s.t'      

His position at t = 2 min is x = 0 and his position at t = 8 min is x v t    

(2.2)(180) 396 m . Therefore, 

vavg

 m

 s
 m / s




396 0

360
110. .  

 

(b) The man is at rest at t = 2 min and has velocity v = +2.2 m/s at t = 8 min. Thus, 

keeping the answer to 3 significant figures, 

 

aavg

2 m / s

 s
 m / s




2 2 0

360
0 00611

.
. .  

 

(c) Now, the entire interval considered is t = 9 – 3 = 6 min (360 s again), whereas the 

sub-interval in which he is moving is 9 5 4min 240 st     ). His position at 

3 mint  is x = 0 and his position at t = 9 min is (2.2)(240) 528 mx v t    . 

Therefore, 

vavg

 m

 s
m / s.




528 0

360
147.  

 

(d) The man is at rest at t = 3 min and has velocity v = +2.2 m/s at t = 9 min. 

Consequently, aavg = 2.2/360 = 0.00611 m/s
2
 just as in part (b). 

 

(e) The horizontal line near the bottom of this 

x-vs-t graph represents the man standing at x = 0 

for 0  t < 300 s and the linearly rising line for 

300  t  600 s represents his constant-velocity 

motion. The lines represent the answers to part (a) 

and (c) in the sense that their slopes yield those 

results. 

 

The graph of v-vs-t is not shown here, but would 

consist of two horizontal “steps” (one at v = 0 for 

0  t < 300 s and the next at v = 2.2 m/s for 300  
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t  600 s). The indications of the average accelerations found in parts (b) and (d) 

would be dotted lines connecting the “steps” at the appropriate t values (the slopes of 

the dotted lines representing the values of aavg). 

 

22. In this solution, we make use of the notation x(t) for the value of x at a particular t. 

The notations v(t) and a(t) have similar meanings. 

 

(a) Since the unit of ct
2
 is that of length, the unit of c must be that of length/time

2
, or 

m/s
2
 in the SI system.  

 

(b) Since bt
3
 has a unit of length, b must have a unit of length/time

3
, or m/s

3
. 

 

(c) When the particle reaches its maximum (or its minimum) coordinate its velocity is 

zero. Since the velocity is given by v = dx/dt = 2ct – 3bt
2
, v = 0 occurs for t = 0 and 

for 

t
c

b
  

2

3

2 30

3 2 0
10

( . )

( . )
.

 m / s

 m / s
 s .

2

3
 

 

For t = 0, x = x0 = 0 and for t = 1.0 s, x = 1.0 m > x0. Since we seek the maximum, we 

reject the first root (t = 0) and accept the second (t = 1s). 

 

(d) In the first 4 s the particle moves from the origin to x = 1.0 m, turns around, and 

goes back to 

x( ( . )( . ( . )( .4 30 4 0 2 0 4 0 802 s)  m / s  s)  m / s  s)  m .2 3 3     

 

The total path length it travels is 1.0 m + 1.0 m + 80 m = 82 m. 

 

(e) Its displacement is x = x2 – x1, where x1 = 0 and x2 = –80 m. Thus, 80 mx  . 

 

The velocity is given by v = 2ct – 3bt
2
 = (6.0 m/s

2
)t – (6.0 m/s

3
)t

2
.  

 

(f) Plugging in t = 1 s, we obtain  

 
2 3 2(1 s) (6.0 m/s )(1.0 s) (6.0 m/s )(1.0 s) 0.v     

 

(g) Similarly, 2 3 2(2 s) (6.0 m/s )(2.0 s) (6.0 m/s )(2.0 s) 12m/s .v      

 

(h) 2 3 2(3 s) (6.0 m/s )(3.0 s) (6.0 m/s )(3.0 s) 36 m/s .v      

 

(i) 2 3 2(4 s) (6.0 m/s )(4.0 s) (6.0 m/s )(4.0 s) 72 m/s  .v      

 

The acceleration is given by a = dv/dt = 2c – 6b = 6.0 m/s
2
 – (12.0 m/s

3
)t. 

 

(j) Plugging in t = 1 s, we obtain 2 3 2(1 s) 6.0 m/s (12.0 m/s )(1.0 s) 6.0 m/s .a      

 

(k) 2 3 2(2 s) 6.0 m/s (12.0 m/s )(2.0 s) 18 m/s .a      
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(l) 2 3 2(3 s) 6.0 m/s (12.0 m/s )(3.0 s) 30 m/s .a      

 

(m) 2 3 2(4 s) 6.0 m/s (12.0 m/s )(4.0 s) 42 m/s .a      

 

23. THINK The electron undergoes a constant acceleration. Given the final speed of 

the electron and the distance it has traveled, we can calculate its acceleration.   

 

EXPRESS Since the problem involves constant acceleration, the motion of the 

electron can be readily analyzed using the equations given in Table 2-1: 

 

0

2

0 0

2 2

0 0

(2 11)

1
(2 15)

2

2 ( ) (2 16)

v v at

x x v t at

v v a x x

  

   

   

 

 

The acceleration can be found by solving Eq. 2-16. 

 

ANALYZE With 5

0 1.50 10 m/sv   , 65.70 10 m/sv   , x0 = 0 and x = 0.010 m, we 

find the average acceleration to be 

 

 
2 2 6 2 5 2

15 20 (5.7 10 m/s) (1.5 10 m/s)
1.62 10  m/s .

2 2(0.010 m)

v v
a

x

   
     

 

LEARN It is always a good idea to apply other equations in Table 2-1 not used for 

solving the problem as a consistency check. For example, since we now know the 

value of the acceleration, using Eq. 2-11, the time it takes for the electron to reach its 

final speed would be  
6 5

90

15 2

5.70 10  m/s 1.5 10  m/s
3.426 10  s

1.62 10  m/s

v v
t

a

   
   


 

 

Substituting the value of t into Eq. 2-15, the distance the electron travels is  

 

2 5 9 15 2 9 2

0 0

1 1
0 (1.5 10 m/s)(3.426 10 s) (1.62 10 m/s )(3.426 10 s)

2 2

0.01 m

x x v t at           


 

This is what was given in the problem statement. So we know the problem has been 

solved correctly. 

 

24. In this problem we are given the initial and final speeds, and the displacement, and 

are asked to find the acceleration. We use the constant-acceleration equation given in 

Eq. 2-16, v
2
 = v

2
0 + 2a(x – x0). 

 

(a) Given that 0 0v  , 1.6 m/s,v   and 5.0 m,x    the acceleration of the spores 

during the launch is  
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2 2 2
5 2 40

6

(1.6 m/s)
2.56 10  m/s 2.6 10

2 2(5.0 10  m)

v v
a g

x 


     


 

 

(b) During the speed-reduction stage, the acceleration is  

 
2 2 2

3 2 20

3

0 (1.6 m/s)
1.28 10  m/s 1.3 10

2 2(1.0 10  m)

v v
a g

x 

 
       


 

 

The negative sign means that the spores are decelerating. 

 

25. We separate the motion into two parts, and take the direction of motion to be 

positive. In part 1, the vehicle accelerates from rest to its highest speed; we are given 

v0 = 0; v = 20 m/s and a = 2.0 m/s
2
. In part 2, the vehicle decelerates from its highest 

speed to a halt; we are given v0 = 20 m/s; v = 0 and a = –1.0 m/s
2
 (negative because 

the acceleration vector points opposite to the direction of motion). 

 

(a) From Table 2-1, we find t1 (the duration of part 1) from v = v0 + at. In this way, 

120 0 2.0t  yields t1 = 10 s. We obtain the duration t2 of part 2 from the same      

equation. Thus, 0 = 20 + (–1.0)t2 leads to t2 = 20 s, and the total is t = t1 + t2 = 30 s. 

 

(b) For part 1, taking x0 = 0, we use the equation v
2
 = v

2
0 + 2a(x – x0) from Table 2-1 

and find 

 
2 2 2 2

0

2

(20 m/s) (0)
100 m

2 2(2.0 m/s )

v v
x

a

 
   . 

 

This position is then the initial position for part 2, so that when the same equation is     

used in part 2 we obtain 
2 2 2 2

0

2

(0) (20 m/s)
100 m

2 2( 1.0 m/s )

v v
x

a

 
  


. 

 

Thus, the final position is x = 300 m. That this is also the total distance traveled 

should be evident (the vehicle did not "backtrack" or reverse its direction of motion). 

 

26. The constant-acceleration condition permits the use of Table 2-1. 

 

(a) Setting v = 0 and x0 = 0 in 2 2

0 02 ( )v v a x x   , we find 

 
2 6 2

0

14

1 1 (5.00 10 )
0.100 m .

2 2 1.25 10

v
x

a


    

 
 

 

Since the muon is slowing, the initial velocity and the acceleration must have opposite 

signs. 

 

(b) Below are the time plots of the position x and velocity v of the muon from the 

moment it enters the field to the time it stops. The computation in part (a) made no 

reference to t, so that other equations from Table 2-1 (such as v v at 0 and  
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x v t at 0
1
2

2) are used in making these plots. 

 

 
 

27. We use v = v0 + at, with t = 0 as the instant when the velocity equals +9.6 m/s. 

 

(a) Since we wish to calculate the velocity for a time before t = 0, we set t = –2.5 s. 

Thus, Eq. 2-11 gives 

v    ( . . ( . .9 6 32 2 5 16 m/ s)  m/ s   s)  m/ s.2c h  

 

(b) Now, t = +2.5 s and we find v   ( . . ( .9 6 32 2 5 18 m/ s)  m/ s   s)  m/ s.2c h  

 

28. We take +x in the direction of motion, so v0 = +24.6 m/s and a = – 4.92 m/s
2
. We 

also take x0 = 0. 

 

(a) The time to come to a halt is found using Eq. 2-11: 

 

0 2

24.6 m/s
0 5.00 s

4.92 m/s
.v at t


      

 

(b) Although several of the equations in Table 2-1 will yield the result, we choose Eq. 

2-16 (since it does not depend on our answer to part (a)). 

 

 

2
2

0 2

(24.6 m/s)
0 2 61.5 m

2 4.92 m/s
.v ax x


       

 

(c) Using these results, we plot 21
0 2

v t at  (the x graph, shown next, on the left) and 

v0 + at (the v graph, on the right) over 0  t  5 s, with SI units understood. 
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29. We assume the periods of acceleration (duration t1) and deceleration (duration t2) 

are periods of constant a so that Table 2-1 can be used. Taking the direction of motion 

to be +x then a1 = +1.22 m/s
2
 and a2 = –1.22 m/s

2
. We use SI units so the velocity at t 

= t1 is v = 305/60 = 5.08 m/s. 

 

(a) We denote x as the distance moved during t1, and use Eq. 2-16: 

 
2

2 2

0 1 2

(5.08 m/s)
2     

2(1.22 m/s )
v v a x x      10.59 m 10.6 m.   

(b) Using Eq. 2-11, we have 

0
1 2

1

5.08 m/s
4.17 s.

1.22 m/s

v v
t

a


    

 

The deceleration time t2 turns out to be the same so that t1 + t2 = 8.33 s. The distances 

traveled during t1 and t2 are the same so that they total to 2(10.59 m) = 21.18 m. This 

implies that for a distance of 190 m – 21.18 m = 168.82 m, the elevator is traveling at 

constant velocity. This time of constant velocity motion is 

 

t3

16882

508
3321 

.

.
.

 m

 m / s
 s.  

 

Therefore, the total time is 8.33 s + 33.21 s  41.5 s. 

 

30. We choose the positive direction to be that of the initial velocity of the car 

(implying that a < 0 since it is slowing down). We assume the acceleration is constant 

and use Table 2-1. 

 

(a) Substituting v0 = 137 km/h = 38.1 m/s, v = 90 km/h = 25 m/s, and a = –5.2 m/s
2
 

into v = v0 + at, we obtain 

 

t 





25 38

52
2 5

2

m / s m / s

m / s
s

.
. .  

 

(b) We take the car to be at x = 0 when the brakes 

are applied (at time t = 0). Thus, the coordinate of 

the car as a function of time is given by 

 

   2 21
38 m/s 5.2 m/s

2
x t t    

 

in SI units. This function is plotted from t = 0 to t 

= 2.5 s on the graph to the right. We have not 

shown the v-vs-t graph here; it is a descending 

straight line from v0 to v. 

 

31. THINK The rocket ship undergoes a constant acceleration from rest, and we want 

to know the time elapsed and the distance traveled when the rocket reaches a certain 

speed.  
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EXPRESS Since the problem involves constant acceleration, the motion of the rocket 

can be readily analyzed using the equations in Table 2-1: 

0

2

0 0

2 2

0 0

(2 11)

1
(2 15)

2

2 ( ) (2 16)

v v at

x x v t at

v v a x x

  

   

   

 

 

ANALYZE (a) Given that 29.8 m/sa  , 
0 0v   and 70.1 3.0 10 m/sv c   , we can 

solve 0v v at   for the time: 

7
60

2

3.0 10  m/s 0
3.1 10  s

9.8 m/s

v v
t

a

  
     

 

which is about 1.2 months. So it takes 1.2 months for the rocket to reach a speed of 

0.1c starting from rest with a constant acceleration of 9.8 m/s
2
. 

 

(b) To calculate the distance traveled during this time interval, we evaluate 

x x v t at  0 0
1
2

2 , with x0 = 0 and 0 0v . The result is 

 2 6 2 131
9.8 m/s (3.1 10 s) 4.6 10  m.

2
x      

 

LEARN In solving parts (a) and (b), we did not use Eq. (2-16): 2 2

0 02 ( )v v a x x   . 

This equation can be used to check our answers. The final velocity based on this 

equation is 

  
2 2 13 7

0 02 ( ) 0 2(9.8 m/s )(4.6 10  m 0) 3.0 10 m/sv v a x x         , 

 

which is what was given in the problem statement. So we know the problems have 

been solved correctly. 

 

32. The acceleration is found from Eq. 2-11 (or, suitably interpreted, Eq. 2-7). 

 

a
v

t
 

F
HG

I
KJ






1020
1000

3600

14
202 4 2

km / h
m / km

s / h

s
m / s

b g
.

. . 

 

In terms of the gravitational acceleration g, this is expressed as a multiple of 9.8 m/s
2
 

as follows: 
2

2

202.4 m/s
21 .

9.8 m/s
a g g

 
  
 

 

 

33. THINK The car undergoes a constant negative acceleration to avoid impacting a 

barrier. Given its initial speed, we want to know the distance it has traveled and the 

time elapsed prior to the impact.   
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EXPRESS Since the problem involves constant acceleration, the motion of the car 

can be readily analyzed using the equations in Table 2-1: 

 

0

2

0 0

2 2

0 0

(2 11)

1
(2 15)

2

2 ( ) (2 16)

v v at

x x v t at

v v a x x

  

   

   

 

 

We take x0 = 0 and v0 = 56.0 km/h = 15.55 m/s to be the initial position and speed of 

the car. Solving Eq. 2-15 with t = 2.00 s gives the acceleration a. Once a is known, the 

speed of the car upon impact can be found by using Eq. 2-11. 

 

ANALYZE (a) Using Eq. 2-15, we find the acceleration to be 

  

  20

2 2

2 (24.0 m) (15.55 m/s)(2.00 s)2( )
3.56m/s ,

(2.00 s)

x v t
a

t


     

 

or 2| | 3.56 m/sa  . The negative sign indicates that the acceleration is opposite to the 

direction of motion of the car; the car is slowing down. 

 

(b) The speed of the car at the instant of impact is 

 
2

0 15.55 m/s ( 3.56 m/s )(2.00 s) 8.43 m/sv v at       

 

which can also be converted to30.3 km/h. 

 

LEARN In solving parts (a) and (b), we did not use Eq. 1-16. This equation can be 

used as a consistency check. The final velocity based on this equation is 

  

2 2 2

0 02 ( ) (15.55 m/s) 2( 3.56 m/s )(24 m 0) 8.43 m/sv v a x x        , 

 

which is what was calculated in (b). This indicates that the problems have been solved 

correctly. 

 

34. Let d be the 220 m distance between the cars at t = 0, and v1 be the 20 km/h = 50/9 

m/s speed (corresponding to a passing point of x1 = 44.5 m) and v2 be the 40 km/h 

=100/9 m/s speed (corresponding to a passing point of x2 = 76.6 m) of the red car.  

We have two equations (based on Eq. 2-17): 

 

d – x1 = vo t1  + 
1

2
 a t1

2
    where t1 = x1  v1 

 

d – x2 = vo t2  + 
1

2
 a t2

2
    where t2 = x2   v2 

 

We simultaneously solve these equations and obtain the following results: 
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(a) The initial velocity of the green car is vo =  13.9 m/s. or roughly  50 km/h (the 

negative sign means that it’s along the –x direction). 

 

(b) The corresponding acceleration of the car is a =  2.0 m/s
2
 (the negative sign 

means that it’s along the –x direction). 

 

35. The positions of the cars as a function of time are given by 

 

 

2 2

0

0

1 1
( ) ( 35.0 m)

2 2

( ) (270 m) (20 m/s)

r r r r

g g g

x t x a t a t

x t x v t t

    

   

 

 

where we have substituted the velocity and not the speed for the green car. The two 

cars pass each other at 12.0 st   when the graphed lines cross. This implies that  

 

21
(270 m) (20 m/s)(12.0 s) 30 m ( 35.0 m) (12.0 s)

2
ra      

 

which can be solved to give 20.90 m/s .ra   

 

36. (a) Equation 2-15 is used for part 1 of the trip and Eq. 2-18 is used for part 2:  

 

  x1 = vo1 t1 + 
1

2
 a1 t1

2
     where a1 = 2.25 m/s

2
 and x1 = 

900

4
 m 

 

      x2 = v2 t2  
1

2
 a2 t2

2
      where a2 = 0.75 m/s

2
 and x2 = 

3(900)

4
 m 

 

In addition, vo1 = v2 = 0. Solving these equations for the times and adding the results 

gives t = t1 + t2 = 56.6 s. 

  

(b) Equation 2-16 is used for part 1 of the trip: 

 

v
2
 = (vo1)

2
 + 2a1x1 = 0 + 2(2.25)

900

4

 
 
 

= 1013 m
2
/s

2
 

 

which leads to v = 31.8 m/s for the maximum speed. 

 

37. (a) From the figure, we see that x0 = –2.0 m. From Table 2-1, we can apply  

 

x – x0 = v0t + 1
2

at
2
 

 

with t = 1.0 s, and then again with t = 2.0 s. This yields two equations for the two 

unknowns, v0 and a: 
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     

     

2

0

2

0

1
0.0 2.0 m 1.0 s 1.0 s

2

1
6.0 m 2.0 m 2.0 s 2.0 s .

2

v a

v a

   

   

 

 

Solving these simultaneous equations yields the results v0 = 0 and a = 4.0 m/s
2
.  

 

(b) The fact that the answer is positive tells us that the acceleration vector points in 

the +x direction. 

 

38. We assume the train accelerates from rest ( v0 0  and x0 0 ) at 

a1

2134  . m / s  until the midway point and then decelerates at a2

2134  . m/ s  

until it comes to a stop v2 0b g  at the next station. The velocity at the midpoint is v1, 

which occurs at x1 = 806/2 = 403m. 

 

(a) Equation 2-16 leads to 

 

  2 2 2

1 0 1 1 12 2 1.34 m/s 403 mv v a x v    32.9 m/s.  

 

(b) The time t1 for the accelerating stage is (using Eq. 2-15) 

 

 2

1 0 1 1 1 1 2

2 403 m1
24.53 s

2 1.34 m/s
x v t a t t     . 

 

Since the time interval for the decelerating stage turns out to be the same, we double 

this result and obtain t = 49.1 s for the travel time between stations. 

 

(c) With a “dead time” of 20 s, we have T = t + 20 = 69.1 s for the total time between 

start-ups. Thus, Eq. 2-2 gives 

vavg

m

s
m / s . 

806

691
117

.
.  

 

(d) The graphs for x, v and a as a function of t are shown below. The third graph, a(t), 

consists of three horizontal “steps” — one at 1.34 m/s
2
  during 0 < t < 24.53 s, and 

the next at –1.34 m/s
2
 during 24.53 s < t < 49.1 s and the last at zero during the “dead 

time” 49.1 s < t < 69.1 s).  
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39. (a) We note that vA = 12/6 = 2 m/s (with two significant figures understood).  

Therefore, with an initial x value of 20 m, car A will be at x = 28 m when t = 4 s.  

This must be the value of x for car B at that time; we use Eq. 2-15: 

 

28 m = (12 m/s)t + 
1

2
 aB t

2
    where t = 4.0 s . 

 

This yields aB = – 2.5 m/s
2
. 

 

(b) The question is: using the value obtained for aB in part (a), are there other values 

of t (besides t = 4 s) such that xA = xB ? The requirement is 

 

20 + 2t = 12t + 
1

2
 aB t

2
 

 

where B 5/ 2.a   There are two distinct roots unless the discriminant 

10
2
  2(20)(aB)  is zero. In our case, it is zero – which means there is only one root.  

The cars are side by side only once at t = 4 s.  

  

(c) A sketch is shown below. It consists of a straight line (xA) tangent to a parabola (xB) 

at t = 4. 

 
 

(d) We only care about real roots, which means 10
2
  2(20)(aB)  0.  If  |aB| > 5/2 

then there are no (real) solutions to the equation; the cars are never side by side. 

 

(e) Here we have 10
2
  2(20)(aB) > 0    two real roots.  The cars are side by side 

at two different times. 

 

40. We take the direction of motion as +x, so a = –5.18 m/s
2
, and we use SI units, so 

v0 = 55(1000/3600) = 15.28 m/s. 
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(a) The velocity is constant during the reaction time T, so the distance traveled during 

it is  

dr = v0T – (15.28 m/s) (0.75 s) = 11.46 m. 

 

We use Eq. 2-16 (with v = 0) to find the distance db traveled during braking: 

 

 

2
2 2

0 2

(15.28 m/s)
2

2 5.18 m/s
b bv v ad d    


 

 

which yields db = 22.53 m. Thus, the total distance is dr + db = 34.0 m, which means 

that the driver is able to stop in time. And if the driver were to continue at v0, the car 

would enter the intersection in t = (40 m)/(15.28 m/s) = 2.6 s, which is (barely) 

enough time to enter the intersection before the light turns, which many people would 

consider an acceptable situation. 

 

(b) In this case, the total distance to stop (found in part (a) to be 34 m) is greater than 

the distance to the intersection, so the driver cannot stop without the front end of the 

car being a couple of meters into the intersection. And the time to reach it at constant 

speed is 32/15.28 = 2.1 s, which is too long (the light turns in 1.8 s). The driver is 

caught between a rock and a hard place. 

 

41. The displacement (x) for each train is the “area” in the graph (since the 

displacement is the integral of the velocity).  Each area is triangular, and the area of 

a triangle is 1/2(base) × (height). Thus, the (absolute value of the) displacement for 

one train (1/2)(40 m/s)(5 s) = 100 m, and that of the other train is (1/2)(30 m/s)(4 s) = 

60 m. The initial “gap” between the trains was 200 m, and according to our 

displacement computations, the gap has narrowed by 160 m. Thus, the answer is 

200 – 160 = 40 m. 

 

42. (a) Note that 110 km/h is equivalent to 30.56 m/s. During a two-second interval, 

you travel 61.11 m. The decelerating police car travels (using Eq. 2-15) 51.11 m. In 

light of the fact that the initial “gap” between cars was 25 m, this means the gap has 

narrowed by 10.0 m – that is, to a distance of 15.0 m between cars. 

 

(b) First, we add 0.4 s to the considerations of part (a). During a 2.4 s interval, you 

travel 73.33 m. The decelerating police car travels (using Eq. 2-15) 58.93 m during 

that time. The initial distance between cars of 25 m has therefore narrowed by 14.4 m.  

Thus, at the start of your braking (call it t0) the gap between the cars is 10.6 m. The 

speed of the police car at t0 is 30.56 – 5(2.4) = 18.56 m/s. Collision occurs at time t 

when xyou = xpolice (we choose coordinates such that your position is x = 0 and the 

police car’s position is x = 10.6 m at t0). Eq. 2-15 becomes, for each car: 

 

        xpolice – 10.6 = 18.56(t  t0) – 
1

2
 (5)(t  t0)

2 

               xyou = 30.56(t  t0) – 
1

2
 (5)(t  t0)

2
  . 

Subtracting equations, we find  

 

10.6 = (30.56 – 18.56)(t  t0)    0.883 s = t  t0. 
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At that time your speed is 30.56 + a(t  t0) = 30.56 – 5(0.883)  26 m/s (or 94 km/h).   

 

43. In this solution we elect to wait until the last step to convert to SI units. Constant 

acceleration is indicated, so use of Table 2-1 is permitted. We start with Eq. 2-17 and 

denote the train’s initial velocity as vt and the locomotive’s velocity as v  (which is 

also the final velocity of the train, if the rear-end collision is barely avoided). We note 

that the distance x consists of the original gap between them, D, as well as the 

forward distance traveled during this time by the locomotive v t . Therefore, 

 

v v x

t

D v t

t

D

t
vt   


  


2


.  

 

We now use Eq. 2-11 to eliminate time from the equation. Thus, 

 

v v D

v v a
vt

t










2 b g /  

which leads to 

a
v v

v
v v

D D
v vt t

t



F
HG

I
KJ

F
HG
I
KJ   





2

1

2

2
 b g .  

Hence, 

a   
F
HG

I
KJ  

1

2 0 676
29 161 12888

2

2

( .  km)

km

h

km

h
 km / h  

 

which we convert as follows: 

a  
F
HG

I
KJ
F
HG
I
KJ  12888

1000

1

1

3600
0 9942

2

2 km / h
 m

 km

 h

 s
 m / sc h .  

 

so that its magnitude is |a| = 0.994 m/s
2
. A graph is 

shown here for the case where a collision is just 

avoided (x along the vertical axis is in meters and t 

along the horizontal axis is in seconds). The top 

(straight) line shows the motion of the locomotive 

and the bottom curve shows the motion of the 

passenger train. 

 

The other case (where the collision is not quite 

avoided) would be similar except that the slope of 

the bottom curve would be greater than that of the 

top line at the point where they meet. 

 

44. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down 

as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 

(with y replacing x) because this is constant acceleration motion. The ground level 

is taken to correspond to the origin of the y axis. 

 

(a) Using y v t gt 0
1
2

2 , with y = 0.544 m and t = 0.200 s, we find 
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2 2 2

0

/ 2 0.544 m (9.8 m/s ) (0.200 s) / 2
3.70 m/s .

0.200 s

y gt
v

t

 
    

 

(b) The velocity at y = 0.544 m is 

 
2

0 3.70 m/s (9.8 m/s )(0.200 s) 1.74 m/s .v v gt      

 

(c) Using 2 2

0 2v v gy   (with different values for y and v than before), we solve for 

the value of y corresponding to maximum height (where v = 0). 

 
2 2

0

2

(3.7 m/s)
0.698 m.

2 2(9.8 m/s )

v
y

g
    

 

Thus, the armadillo goes 0.698 – 0.544 = 0.154 m higher. 

 

45. THINK As the ball travels vertically upward, its motion is under the influence of 

gravitational acceleration. The kinematics is one-dimensional. 

 

EXPRESS We neglect air resistance for the duration of the motion (between 

“launching” and “landing”), so a = –g = –9.8 m/s
2
 (we take downward to be the –y 

direction). We use the equations in Table 2-1 (with y replacing x) because this is a 

= constant motion: 

0

2

0 0

2 2

0 0

(2 11)

1
(2 15)

2

2 ( ) (2 16)

v v gt

y y v t gt

v v g y y

  

   

   

 

 

We set y0 = 0. Upon reaching the maximum height y, the speed of the ball is 

momentarily zero (v = 0). Therefore, we can relate its initial speed v0 to y via the 

equation 2 2

00  2 .v v gy    The time it takes for the ball to reach maximum height is 

given by 0 0v v gt   , or 0 /t v g . Therefore, for the entire trip (from the time it 

leaves the ground until the time it returns to the ground), the total flight time is 

02 2 / .T t v g   

 

ANALYZE (a) At the highest point v = 0 and v gy0 2 .  With y = 50 m, we find 

the initial speed of the ball to be 

 2

0 2 2(9.8 m/s )(50 m) 31.3 m/s.v gy    

 

(b) Using the result from (a) for v0, the total flight time of the ball is 

 

0

2

2 2(31.3 m/s)
6.39 s

9.8 m/s

v
T

g
    
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(c) The plots of y, v and a as a function of time are shown below. The acceleration 

graph is a horizontal line at –9.8 m/s
2
. At t = 3.19 s, y = 50 m. 

 

 

    

LEARN In calculating the total flight time of the ball, we could have used Eq. 2-15. 

At 0t T  , the ball returns to its original position ( 0y  ). Therefore, 

  

2 0
0

21
0   

2

v
y v T gT T

g
      

 

46. Neglect of air resistance justifies setting a = –g = –9.8 m/s
2
 (where down is our –y 

direction) for the duration of the fall. This is constant acceleration motion, and we 

may use Table 2-1 (with y replacing x). 

 

(a) Using Eq. 2-16 and taking the negative root (since the final velocity is downward), 

we have 

2 2

0 2 0 2(9.8 m/s )( 1700 m) 183 m/sv v g y          . 

 

Its magnitude is therefore 183 m/s. 

 

(b) No, but it is hard to make a convincing case without more analysis. We estimate 

the mass of a raindrop to be about a gram or less, so that its mass and speed (from part 

(a)) would be less than that of a typical bullet, which is good news. But the fact that 

one is dealing with many raindrops leads us to suspect that this scenario poses an 

unhealthy situation. If we factor in air resistance, the final speed is smaller, of course, 

and we return to the relatively healthy situation with which we are familiar. 

 

47. THINK The wrench is in free fall with an acceleration a = –g = –9.8 m/s
2
. 

 

EXPRESS We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 

(taking down as the –y direction) for the duration of the fall. This is constant 

acceleration motion, which justifies the use of Table 2-1 (with y replacing x): 

  

0

2

0 0

2 2

0 0

(2 11)

1
(2 15)

2

2 ( ) (2 16)

v v gt

y y v t gt

v v g y y

  

   

   

 

 

Since the wrench had an initial speed v0 = 0, knowing its speed of impact allows us to 

apply Eq. 2-16 to calculate the height from which it was dropped.  
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ANALYZE (a) Using 2 2

0 2v v a y   , we find the initial height to be  

2 2 2

0

2

0 ( 24 m/s)
29.4 m.

2 2( 9.8 m/s )

v v
y

a

  
   


 

 

So that it fell through a height of 29.4 m. 

 

(b) Solving v = v0 – gt for time, we obtain a flight time of 

 

0

2

0 ( 24 m/s)
2.45 s.

9.8 m/s

v v
t

g

  
    

 

(c) SI units are used in the graphs, and the initial position is taken as the coordinate 

origin. The acceleration graph is a horizontal line at –9.8 m/s
2
. 

 

 

 

       

LEARN As the wrench falls, with 0a g   , its speed increases but its velocity 

becomes more negative, as indicated by the second graph above. 

 

48. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down 

as the –y direction) for the duration of the fall. This is constant acceleration motion, 

which justifies the use of Table 2-1 (with y replacing x). 

 

(a) Noting that y = y – y0 = –30 m, we apply Eq. 2-15 and the quadratic formula 

(Appendix E) to compute t: 




y v t gt t
v v g y

g
   

 
0

2 0 0

2
1

2

2
     

 

which (with v0 = –12 m/s since it is downward) leads, upon choosing the positive root 

(so that t > 0), to the result: 

 
2 2

2

12 m/s ( 12 m/s) 2(9.8 m/s )( 30 m)
1.54 s.

9.8 m/s
t

    
   

 

(b) Enough information is now known that any of the equations in Table 2-1 can be 

used to obtain v; however, the one equation that does not use our result from part (a) 

is Eq. 2-16: 

v v g y  0

2 2 271 .  m / s  
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where the positive root has been chosen in order to give speed (which is the 

magnitude of the velocity vector). 

 

49. THINK In this problem a package is dropped from a hot-air balloon which is 

ascending vertically upward. We analyze the motion of the package under the 

influence of gravity.  

 

EXPRESS We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 

(taking down as the –y direction) for the duration of the motion. This allows us to use 

Table 2-1 (with y replacing x):  

0

2

0 0

2 2

0 0

(2 11)

1
(2 15)

2

2 ( ) (2 16)

v v gt

y y v t gt

v v g y y

  

   

   

 

 

We place the coordinate origin on the ground and note that the initial velocity of the 

package is the same as the velocity of the balloon, v0 = +12 m/s and that its initial 

coordinate is y0 = +80 m. The time it takes for the package to hit the ground can be 

found by solving Eq. 2-15 with y = 0. 

 

ANALYZE (a) We solve 21
0 0 2

0 y y v t gt     for time using the quadratic 

formula (choosing the positive root to yield a positive value for t): 

 

  2 22

0 0 0

2

12 m/s (12 m/s) 2 9.8 m/s 80 m2
5.45 s

9.8 m/s

v v gy
t

g

  
   . 

 

(b) The speed of the package when it hits the ground can be calculated using Eq. 2-11. 

The result is  

 2

0 12 m/s (9.8 m/s )(5.447 s) 41.38 m/sv v gt      . 

 

Its final speed is 41.38 m/s. 

 

LEARN Our answers can be readily verified by using Eq. 2-16 which was not used in 

either (a) or (b). The equation leads to 

 

2 2 2

0 02 ( ) (12 m/s) 2(9.8 m/s )(0 80 m) 41.38 m/sv v g y y           

 

which agrees with that calculated in (b).  

 

50. The y coordinate of Apple 1 obeys y – yo1 = – 
1

2
 g t

2
 where y = 0 when t = 2.0 s.  

This allows us to solve for yo1, and we find yo1 = 19.6 m.   

 

The graph for the coordinate of Apple 2 (which is thrown apparently at t = 1.0 s with 
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velocity v2) is 

y – yo2 = v2(t – 1.0) – 
1

2
 g (t – 1.0)

2
 

 

where yo2 = yo1 = 19.6 m and where y = 0 when t = 2.25 s. Thus, we obtain |v2| = 9.6 

m/s, approximately. 

 

51. (a) With upward chosen as the +y direction, we use Eq. 2-11 to find the initial 

velocity of the package:  

                

v = vo + at    0 = vo – (9.8 m/s
2
)(2.0 s) 

  

which leads to vo = 19.6 m/s. Now we use Eq. 2-15: 

 

y = (19.6 m/s)(2.0 s) + 
1

2
 (–9.8 m/s

2
)(2.0 s)

2
  20 m . 

 

We note that the “2.0 s” in this second computation refers to the time interval 2 < t < 4 

in the graph (whereas the “2.0 s” in the first computation referred to the 0 < t < 2 time 

interval shown in the graph). 

  

(b) In our computation for part (b), the time interval (“6.0 s”) refers to the 2 < t < 8 

portion of the graph: 

 

y = (19.6 m/s)(6.0 s) + 
1

2
 (–9.8 m/s

2
)(6.0 s)

2
  –59 m , 

or | | 59 my  . 

 

52. The full extent of the bolt’s fall is given by  

 

y – y0 = –
1

2
 g t

2
 

 

where y – y0 = –90 m (if upward is chosen as the positive y direction). Thus the time 

for the full fall is found to be t = 4.29 s. The first 80% of its free-fall distance is given 

by –72 = –g 
2
/2, which requires time  = 3.83 s. 

 

(a) Thus, the final 20% of its fall takes t –  = 0.45 s. 

 

(b) We can find that speed using v = g.  Therefore, |v| = 38 m/s, approximately. 

 

(c) Similarly, vfinal = g t    |vfinal| = 42 m/s. 

 

53. THINK This problem involves two objects: a key dropped from a bridge, and a 

boat moving at a constant speed. We look for conditions such that the key will fall 

into the boat.  

 

EXPRESS The speed of the boat is constant, given by vb = d/t, where d is the distance 

of the boat from the bridge when the key is dropped (12 m) and t is the time the key 

takes in falling.  
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To calculate t, we take the time to be zero at the instant the key is dropped, we 

compute the time t when y = 0 using y y v t gt  0 0
1
2

2 , with 0 45 m.y   Once t is 

known, the speed of the boat can be readily calculated.  

 

ANALYZE Since the initial velocity of the key is zero, the coordinate of the key is 

given by 21
0 2

.y gt  Thus, the time it takes for the key to drop into the boat is 

0

2

2 2(45 m)
3.03 s .

9.8 m/s

y
t

g
    

Therefore, the speed of the boat is 
12 m

4.0 m/s.
3.03 s

bv    

LEARN From the general expression 
00

22 /
b

d d g
v d

t yy g
   , we see that 

01/bv y . This agrees with our intuition that the lower the height from which the 

key is dropped, the greater the speed of the boat in order to catch it.  

 

54. (a) We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking 

down as the –y direction) for the duration of the motion. We are allowed to use Eq. 

2-15 (with y replacing x) because this is constant acceleration motion. We use 

primed variables (except t) with the first stone, which has zero initial velocity, and 

unprimed variables with the second stone (with initial downward velocity –v0, so that 

v0 is being used for the initial speed). SI units are used throughout. 

 

 

    

2

2

0

1
0

2

1
1 1

2

y t gt

y v t g t

  

     

 

 

Since the problem indicates y’ = y = –43.9 m, we solve the first equation for t 

(finding t = 2.99 s) and use this result to solve the second equation for the initial speed 

of the second stone: 

 

      
22

0

1
43.9 m 1.99 s 9.8 m/s 1.99 s

2
v     

which leads to v0 = 12.3 m/s. 

 

(b) The velocity of the stones are given by  
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0

( ) ( )
,         ( 1)y y

d y d y
v gt v v g t

dt dt

 
          

The plot is shown below: 

 
 

55. THINK The free-falling moist-clay ball strikes the ground with a non-zero speed, 

and it undergoes deceleration before coming to rest. 

 

EXPRESS During contact with the ground its average acceleration is given by 

a
v

t
avg 




, where v is the change in its velocity during contact with the ground and 

320.0 10  st    is the duration of contact. Thus, we must first find the velocity of the 

ball just before it hits the ground (y = 0).  

 

ANALYZE (a) Now, to find the velocity just before contact, we take t = 0 to be when 

it is dropped. Using Eq. 2-16 with 
0 15.0 my  , we obtain 

 

2 2

0 02 ( ) 0 2(9.8 m/s )(0 15 m) 17.15 m/sv v g y y           

 

where the negative sign is chosen since the ball is traveling downward at the moment 

of contact. Consequently, the average acceleration during contact with the ground is 

 

2

avg 3

0 ( 17.1m/s)
857 m/s .

20.0 10 s

v
a

t 

  
  
 

 

 

(b) The fact that the result is positive indicates that this acceleration vector points 

upward.  

 

LEARN Since t  is very small, it is not surprising to have a very large acceleration 

to stop the motion of the ball. In later chapters, we shall see that the acceleration is 

directly related to the magnitude and direction of the force exerted by the ground on 

the ball during the course of collision. 

 

56. We use Eq. 2-16,  

vB
2
 = vA

2
 + 2a(yB – yA), 

 

with a = –9.8 m/s
2
, yB – yA = 0.40 m, and vB = 

1

3
 vA. It is then straightforward to solve: 

vA = 3.0 m/s, approximately. 

 

57. The average acceleration during contact with the floor is aavg = (v2 – v1) / t, 
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where v1 is its velocity just before striking the floor, v2 is its velocity just as it leaves 

the floor, and t is the duration of contact with the floor (12  10
–3

 s).  

 

(a) Taking the y axis to be positively upward and placing the origin at the point where 

the ball is dropped, we first find the velocity just before striking the floor, using 
2 2

1 0 2v v gy  . With v0 = 0 and y = – 4.00 m, the result is 

 

2

1 2 2(9.8 m/s )( 4.00 m) 8.85 m/sv gy          

 

where the negative root is chosen because the ball is traveling downward. To find the 

velocity just after hitting the floor (as it ascends without air friction to a height of 2.00 

m), we use 2 2

2 02 ( )v v g y y    with v = 0, y = –2.00 m (it ends up two meters 

below its initial drop height), and y0 = – 4.00 m. Therefore, 

 

2

2 02 ( ) 2(9.8 m/s )( 2.00 m 4.00 m) 6.26 m/s .v g y y       

 

Consequently, the average acceleration is 

 

3 22 1
avg 3

6.26 m/s ( 8.85 m/s)
1.26 10 m/s .

12.0 10 s

v v
a

t 

  
   

 
 

 

(b) The positive nature of the result indicates that the acceleration vector points 

upward. In a later chapter, this will be directly related to the magnitude and direction 

of the force exerted by the ground on the ball during the collision. 

 

58. We choose down as the +y direction and set the coordinate origin at the point 

where it was dropped (which is when we start the clock). We denote the 1.00 s 

duration mentioned in the problem as t – t' where t is the value of time when it lands 

and t' is one second prior to that. The corresponding distance is y – y' = 0.50h, where y 

denotes the location of the ground. In these terms, y is the same as h, so we have h –y' 

= 0.50h or 0.50h = y' . 

 

(a) We find t' and t from Eq. 2-15 (with v0 = 0): 

 

2

2

1 2

2

1 2
.

2

y
y gt t

g

y
y gt t

g


   

  

 

 

Plugging in y = h and y' = 0.50h, and dividing these two equations, we obtain 

 

t

t

h g

h g


 

2 050

2
050

. /

/
. .

b g
 

 

Letting t' = t – 1.00 (SI units understood) and cross-multiplying, we find 
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t t t   


100 050
100

1 050
. .

.

.
 

which yields t = 3.41 s. 

 

(b) Plugging this result into y gt 1
2

2  we find h = 57 m. 

 

(c) In our approach, we did not use the quadratic formula, but we did “choose a root” 

when we assumed (in the last calculation in part (a)) that 050.  = +0.707 instead 

of –0.707. If we had instead let 050.  = –0.707 then our answer for t would have 

been roughly 0.6 s, which would imply that t' = t – 1 would equal a negative number 

(indicating a time before it was dropped), which certainly does not fit with the 

physical situation described in the problem. 

 

59. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down 

as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 

(with y replacing x) because this is constant acceleration motion. The ground level 

is taken to correspond to the origin of the y-axis.  

 

(a) The time drop 1 leaves the nozzle is taken as t = 0 and its time of landing on the 

floor t1 can be computed from Eq. 2-15, with v0 = 0 and y1 = –2.00 m. 

 

2

1 1 1 2

1 2 2( 2.00 m)
    0.639 s .

2 9.8 m/s

y
y gt t

g

  
       

 

At that moment, the fourth drop begins to fall, and from the regularity of the dripping 

we conclude that drop 2 leaves the nozzle at t = 0.639/3 = 0.213 s and drop 3 leaves 

the nozzle at t = 2(0.213 s) = 0.426 s.  Therefore, the time in free fall (up to the 

moment drop 1 lands) for drop 2 is t2 = t1 – 0.213 s = 0.426 s. Its position at the 

moment drop 1 strikes the floor is 

 

 2 2 2

2 2

1 1
(9.8 m/s )(0.426 s) 0.889 m,

2 2
y gt       

 

or about 89 cm below the nozzle. 

 

(b) The time in free fall (up to the moment drop 1 lands) for drop 3 is t3 = t1 –0.426 s 

= 0.213 s. Its position at the moment drop 1 strikes the floor is 

 

2 2 2

3 3

1 1
(9.8 m/s )(0.213 s) 0.222 m,

2 2
y gt       

 

or about 22 cm below the nozzle.  

 

60. To find the “launch” velocity of the rock, we apply Eq. 2-11 to the maximum 

height (where the speed is momentarily zero) 
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  2

0 00 9.8 m/s 2.5 sv v gt v      

 

so that v0 = 24.5 m/s (with +y up). Now we use Eq. 2-15 to find the height of the 

tower (taking y0 = 0 at the ground level) 

 

     
22 2

0 0

1 1
0 24.5 m/s 1.5 s 9.8 m/s 1.5 s .

2 2
y y v t at y        

 

Thus, we obtain y = 26 m. 

 

61. We choose down as the +y direction and place the coordinate origin at the top of 

the building (which has height H). During its fall, the ball passes (with velocity v1) the 

top of the window (which is at y1) at time t1, and passes the bottom (which is at y2) at 

time t2. We are told y2 – y1 = 1.20 m and t2 – t1 = 0.125 s. Using Eq. 2-15 we have 

 

y y v t t g t t2 1 1 2 1 2 1

21

2
    b g b g  

which immediately yields 

 

  
221

2

1

1.20 m 9.8 m/s 0.125 s
8.99 m/s.

0.125 s
v


   

 

From this, Eq. 2-16 (with v0 = 0) reveals the value of y1: 

 
2

2

1 1 1 2

(8.99 m/s)
2 4.12 m.

2(9.8 m/s )
v gy y     

 

It reaches the ground (y3 = H) at t3. Because of the symmetry expressed in the 

problem (“upward flight is a reverse of the fall’’) we know that t3 – t2 = 2.00/2 = 1.00 

s. And this means t3 – t1 = 1.00 s + 0.125 s = 1.125 s. Now Eq. 2-15 produces 

 

2

3 1 1 3 1 3 1

2 2

3

1
( ) ( )

2

1
4.12 m (8.99 m/s) (1.125 s) (9.8 m/s ) (1.125 s)

2

y y v t t g t t

y

    

  

 

 

which yields y3 = H = 20.4 m. 

 

62. The height reached by the player is y = 0.76 m (where we have taken the origin of 

the y axis at the floor and +y to be upward). 

 

(a) The initial velocity v0 of the player is 

 
2

0 2 2(9.8 m/s )(0.76 m) 3.86 m/s .v gy    

 

This is a consequence of Eq. 2-16 where velocity v vanishes. As the player reaches y1 
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= 0.76 m – 0.15 m = 0.61 m, his speed v1 satisfies v v gy0

2

1

2

12  , which yields 

 

2 2 2

1 0 12 (3.86 m/s) 2(9.80 m/s )(0.61 m) 1.71 m/s .v v gy      

 

The time t1 that the player spends ascending in the top y1 = 0.15 m of the jump can 

now be found from Eq. 2-17: 

 

 
 

1 1 1 1

2 0.15 m1
0.175 s

2 1.71m/s 0
y v v t t     


 

 

which means that the total time spent in that top 15 cm (both ascending and 

descending) is 2(0.175 s) = 0.35 s = 350 ms. 

 

(b) The time t2 when the player reaches a height of 0.15 m is found from Eq. 2-15: 

 

2 2 2

0 2 2 2 2

1 1
0.15 m (3.86 m/s) (9.8 m/s )  ,

2 2
v t gt t t     

 

which yields (using the quadratic formula, taking the smaller of the two positive roots) 

t2 = 0.041 s = 41 ms, which implies that the total time spent in that bottom 15 cm 

(both ascending and descending) is 2(41 ms) = 82 ms. 

 

63. The time t the pot spends passing in front of the window of length L = 2.0 m is 

0.25 s each way. We use v for its velocity as it passes the top of the window (going 

up). Then, with a = –g = –9.8 m/s
2
 (taking down to be the –y direction), Eq. 2-18 

yields 

L vt gt v
L

t
gt    

1

2

1

2

2 .  

 

The distance H the pot goes above the top of the window is therefore (using Eq. 2-16 

with the final velocity being zero to indicate the highest point) 

 

   
22 22

2

2.00 m / 0.25 s (9.80 m/s )(0.25 s) / 2/ / 2
2.34 m.

2 2 2(9.80 m/s )

L t gtv
H

g g


     

 

64. The graph shows y = 25 m to be the highest point (where the speed momentarily 

vanishes). The neglect of “air friction” (or whatever passes for that on the distant 

planet) is certainly reasonable due to the symmetry of the graph. 

 

(a) To find the acceleration due to gravity gp on that planet, we use Eq. 2-15 (with +y 

up) 

    
22

0

1 1
25 m 0 0 2.5 s 2.5 s

2 2
p py y vt g t g        

 

so that gp = 8.0 m/s
2
. 

 

(b) That same (max) point on the graph can be used to find the initial velocity. 
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     0 0 0

1 1
25 m 0 0 2.5 s

2 2
y y v v t v        

 

Therefore, v0 = 20 m/s. 

 

65. The key idea here is that the speed of the head (and the torso as well) at any given 

time can be calculated by finding the area on the graph of the head’s acceleration 

versus time, as shown in Eq. 2-26: 

 

1 0

0 1

area between the acceleration curve
  

 and the time axis, from  o 
v v

t t t

 
   

 
 

 

(a) From Fig. 2.15a, we see that the head begins to accelerate from rest (v0 = 0) at t0 = 

110 ms and reaches a maximum value of 90 m/s
2
 at t1 = 160 ms. The area of this 

region is 

  3 21
area (160 110) 10 s 90 m/s 2.25 m/s

2

      

 

which is equal to v1, the speed at t1.  

 

(b) To compute the speed of the torso at t1=160 ms, we divide the area into 4 regions: 

From 0 to 40 ms, region A has zero area. From 40 ms to 100 ms, region B has the 

shape of a triangle with area  

 2

B

1
area (0.0600 s)(50.0 m/s ) 1.50 m/s

2
  . 

From 100 to 120 ms, region C has the shape of a rectangle with area  

2

Carea   (0.0200 s) (50.0 m/s ) = 1.00 m/s.  

From 110 to 160 ms, region D has the shape of a trapezoid with area 

2

D

1
area   (0.0400 s) (50.0  20.0) m/s  1.40 m/s.

2
    

Substituting these values into Eq. 2-26, with v0 = 0 then gives 

 

 1 0 0 1 50 m/s + 1.00 m/s + 1.40 m/s = 3.90 m/s,v .    

or 1 3 90 m/s.v .  

 

66. The key idea here is that the position of an object at any given time can be 

calculated by finding the area on the graph of the object’s velocity versus time, as 

shown in Eq. 2-30: 

1 0

0 1

area between the velocity curve
   

 and the time axis, from  o 
x x .

t t t

 
   

 
 

 

(a) To compute the position of the fist at t = 50 ms, we divide the area in Fig. 2-37 

into two regions. From 0 to 10 ms, region A has the shape of a triangle with area  
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A

1
area  = (0.010 s) (2 m/s) = 0.01 m.

2
 

      

From 10 to 50 ms, region B has the shape of a trapezoid with area  

B

1
area  = (0.040 s) (2 + 4) m/s = 0.12 m.

2
 

 

Substituting these values into Eq. 2-30 with x0 = 0 then gives 

 

 1 0 0 0 01 m + 0.12 m = 0.13 m,x .    

or 
1 0 13 m.x .  

 

(b) The speed of the fist reaches a maximum at t1 = 120 ms. From 50 to 90 ms, region 

C has the shape of a trapezoid with area  

 

C

1
area  = (0.040 s) (4 + 5) m/s = 0.18 m.

2
 

      

From 90 to 120 ms, region D has the shape of a trapezoid with area  

 

D

1
area  = (0.030 s) (5 + 7.5) m/s = 0.19 m.

2
 

 

Substituting these values into Eq. 2-30, with x0 = 0 then gives 

 

 1 0 0 0 01 m + 0.12 m + 0.18 m + 0.19 m = 0.50 m,x .    

or 1 0 50 m.x .  

 

67. The problem is solved using Eq. 2-31:  

 

1 0

0 1

area between the acceleration curve
    

 and the time axis, from  o 
v v

t t t

 
   

 
 

 

To compute the speed of the unhelmeted, bare head at t1 = 7.0 ms, we divide the area 

under the a vs. t graph into 4 regions: From 0 to 2 ms, region A has the shape of a 

triangle with area 

 2

A

1
area  = (0.0020 s) (120 m/s ) = 0.12 m/s.

2
 

From 2 ms to 4 ms, region B has the shape of a trapezoid with area  

 

2

B

1
area  = (0.0020 s) (120 + 140) m/s  = 0.26 m/s.

2
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From 4 to 6 ms, region C has the shape of a trapezoid with area  

2

C

1
area  = (0.0020 s) (140 + 200) m/s  = 0.34 m/s.

2
 

 

From 6 to 7 ms, region D has the shape of a triangle with area 

  

2

D

1
area (0.0010 s) (200 m/s ) 0.10 m/s.

2
   

 

Substituting these values into Eq. 2-31, with v0=0 then gives 

 

 unhelmeted 0 12 m/s 0.26 m/s 0.34 m/s 0.10 m/s 0.82 m/s.v .      

 

Carrying out similar calculations for the helmeted head, we have the following 

results: From 0 to 3 ms, region A has the shape of a triangle with area 

 2

A

1
area  = (0.0030 s) (40 m/s ) = 0.060 m/s.

2
 

From 3 ms to 4 ms, region B has the shape of a rectangle with area  

 
2

Barea (0.0010 s) (40 m/s ) 0.040 m/s.   

      

From 4 to 6 ms, region C has the shape of a trapezoid with area  

2

C

1
area  = (0.0020 s) (40 + 80) m/s  = 0.12 m/s.

2
 

From 6 to 7 ms, region D has the shape of a triangle with area 

2

D

1
area (0.0010 s) (80 m/s ) 0.040 m/s.

2
   

 

Substituting these values into Eq. 2-31, with v0 = 0 then gives 

 

helmeted 0 060 m/s 0.040 m/s 0.12 m/s 0.040 m/s 0.26 m/s.v .      

 

Thus, the difference in the speed is 

 

 unhelmeted helmeted 0 82 m/s 0.26 m/s 0.56 m/s.v v v .       

 

68. This problem can be solved by noting that velocity can be determined by the 

graphical integration of acceleration versus time. The speed of the tongue of the 

salamander is simply equal to the area under the acceleration curve: 

 

 

2 2 2 2 2 2 21 1 1
area (10 s)(100 m/s ) (10 s)(100 m/s 400 m/s ) (10 s)(400 m/s )

2 2 2

5.0 m/s.

v       


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69. Since /v dx dt  (Eq. 2-4), then x v dt z  , which corresponds to the area 

under the v vs t graph. Dividing the total area A into rectangular (baseheight) and 

triangular 1
2

base heightb g  areas, we have 

 

 

   

A A A A A
t t t t

   

   
F
HG

I
KJ 

       0 2 2 10 10 12 12 16

1

2
2 8 8 8 2 4

1

2
2 4 4 4( )( ) ( )( ) ( )( ) ( )( ) ( )( )

 

 

with SI units understood. In this way, we obtain x = 100 m. 

 

70. To solve this problem, we note that velocity is equal to the time derivative of a 

position function, as well as the time integral of an acceleration function, with the 

integration constant being the initial velocity. Thus, the velocity of particle 1 can be 

written as  

  21
1 6.00 3.00 2.00 12.0 3.00

dx d
v t t t

dt dt
      . 

 

Similarly, the velocity of particle 2 is  

 2

2 20 2 20.0 ( 8.00 ) 20.0 4.00 .v v a dt t dt t         

The condition that 1 2v v  implies 

 
2 212.0 3.00 20.0 4.00 4.00 12.0 17.0 0t t t t        

which can be solved to give (taking positive root) ( 3 26) / 2 1.05 s.t      Thus, 

the velocity at this time is 1 2 12.0(1.05) 3.00 15.6 m/s.v v     

 

71. (a) The derivative (with respect to time) of the given expression for x yields the 

“velocity” of the spot: 

v(t) = 9 – 
9

4
 t

2
 

 

with 3 significant figures understood. It is easy to see that v = 0 when t = 2.00 s. 

 

(b) At t = 2 s, x = 9(2) – ¾(2)
3
 = 12. Thus, the location of the spot when v = 0 is 12.0 

cm from left edge of screen. 

 

(c) The derivative of the velocity is a = – 
9

2
 t, which gives an acceleration of 

29.00 cm/m  (negative sign indicating leftward) when the spot is 12 cm from the 

left edge of screen. 

 

(d) Since v > 0 for times less than t = 2 s, then the spot had been moving rightward. 
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(e) As implied by our answer to part (c), it moves leftward for times immediately after 

t = 2 s.  In fact, the expression found in part (a) guarantees that for all t > 2, v < 0 

(that is, until the clock is “reset” by reaching an edge). 

 

(f) As the discussion in part (e) shows, the edge that it reaches at some t > 2 s cannot 

be the right edge; it is the left edge (x = 0). Solving the expression given in the 

problem statement (with x = 0) for positive t yields the answer: the spot reaches the 

left edge at t = 12 s  3.46 s. 

 

72. We adopt the convention frequently used in the text: that "up" is the positive y 

direction. 

 

(a) At the highest point in the trajectory v = 0. Thus, with t = 1.60 s, the equation 

v = v0 – gt yields v0 = 15.7 m/s. 

 

(b) One equation that is not dependent on our result from part (a) is y – y0 = vt + 
1

2
gt

2
; 

this readily gives ymax – y0 = 12.5 m for the highest ("max") point measured relative to 

where it started (the top of the building). 

 

(c) Now we use our result from part (a) and plug into y y0 = v0t + 
1

2
gt

2
 with t = 6.00 

s and y = 0 (the ground level). Thus, we have 

 

0 – y0 = (15.68 m/s)(6.00 s) – 
1

2
 (9.8 m/s

2
)(6.00 s)

2
. 

 

Therefore, y0 (the height of the building) is equal to 82.3 m. 

 

73. We denote the required time as t, assuming the light turns green when the clock 

reads zero. By this time, the distances traveled by the two vehicles must be the same. 

 

(a) Denoting the acceleration of the automobile as a and the (constant) speed of the 

truck as v then 

x at vt
F
HG
I
KJ 

1

2

2

car
truck
b g  

which leads to 

 

 
2

2 9.5 m/s2
8.6 s .

2.2 m/s

v
t

a
    

Therefore, 

  9.5 m/s 8.6 s 82 m .x vt     

 

(b) The speed of the car at that moment is 

 

  2

car 2.2 m/s 8.6 s 19 m/s .v at    

 

74. If the plane (with velocity v) maintains its present course, and if the terrain 

continues its upward slope of 4.3°, then the plane will strike the ground after traveling 
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x
h

 

 

tan
.



35
4655

 m

tan 4.3
 m 0.465  km. 

 

This corresponds to a time of flight found from Eq. 2-2 (with v = vavg since it is 

constant) 

t
x

v
   
 0 465

0 000358
.

.
 km

1300 km / h
 h 1.3 s.  

 

This, then, estimates the time available to the pilot to make his correction. 

 

75. We denote tr as the reaction time and tb as the braking time. The motion during tr 

is of the constant-velocity (call it v0) type. Then the position of the car is given by 

 

x v t v t atr b b  0 0

21

2
 

 

where v0 is the initial velocity and a is the acceleration (which we expect to be 

negative-valued since we are taking the velocity in the positive direction and we know 

the car is decelerating). After the brakes are applied the velocity of the car is given by 

v = v0 + atb. Using this equation, with v = 0, we eliminate tb from the first equation 

and obtain 

x v t
v

a

v

a
v t

v

a
r r    


0

0

2

0

2

0
0

21

2 2
. 

 

We write this equation for each of the initial velocities: 

 
2 2

01 02
1 01 2 02

1 1
, .

2 2
r r

v v
x v t x v t

a a
     

 

Solving these equations simultaneously for tr and a we get 

 

t
v x v x

v v v v
r 





02

2

1 01

2

2

01 02 02 01b g  
and 

a
v v v v

v x v x
 





1

2

02 01

2

01 02

2

02 1 01 2

.  

 

(a) Substituting x1 = 56.7 m, v01 = 80.5 km/h = 22.4 m/s, x2 = 24.4 m and v02 = 48.3 

km/h = 13.4 m/s, we find 

 
2 2 2 2

02 1 01 2

01 02 02 01

(13.4 m/s) (56.7 m) (22.4 m/s) (24.4 m)

( ) (22.4 m/s)(13.4 m/s)(13.4 m/s 22.4 m/s)

0.74 s.

r

v x v x
t

v v v v

 
 

 



 

 

(b) Similarly, substituting x1 = 56.7 m, v01 = 80.5 km/h = 22.4 m/s, x2 = 24.4 m, and 
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v02 = 48.3 km/h = 13.4 m/s gives 

 
2 2 2 2

02 01 01 02

02 1 01 2

2

1 1 (13.4 m/s)(22.4 m/s) (22.4 m/s)(13.4 m/s)

2 2 (13.4 m/s)(56.7 m) (22.4 m/s)(24.4 m)

6.2 m/s .

v v v v
a

v x v x

 
   

 

 

 

 

The magnitude of the deceleration is therefore 6.2 m/s
2
. Although rounded-off values 

are displayed in the above substitutions, what we have input into our calculators are 

the “exact” values (such as v02
161
12

  m/s). 

 

76. (a) A constant velocity is equal to the ratio of displacement to elapsed time. Thus, 

for the vehicle to be traveling at a constant speed pv  over a distance 23D , the time 

delay should be 
23 / .pt D v   

 

(b) The time required for the car to accelerate from rest to a cruising speed pv  is 

0 /pt v a . During this time interval, the distance traveled is 2 2

0 0 / 2 / 2 .px at v a    

The car then moves at a constant speed pv  over a distance 12 0D x d   to reach 

intersection 2, and the time elapsed is 1 12 0( ) / pt D x d v   . Thus, the time delay at 

intersection 2 should be set to 

 

 

2

1212 0
total 0 1

12

( / 2 )

1

2

p p p

r r r

p p

p

r

p

v v D v a dD x d
t t t t t t

a v a v

v D d
t

a v

  
        


  

 

 

77. THINK The speed of the rod changes due to a nonzero acceleration. 

 

EXPRESS Since the problem involves constant acceleration, the motion of the rod 

can be readily analyzed using the equations given in Table 2-1. We take +x to be in the 

direction of motion, so 

v 
F
HG

I
KJ  60

1000

3600
16 7km / h

m / km

s / h
m / sb g .  

 

and a > 0. The location where the rod starts from rest (v0 = 0) is taken to be x0 = 0. 

 

ANALYZE (a) Using Eq. 2-7, we find the average acceleration to be 

 

 20
avg

0

16.7 m/s 0
3.09 m/s

5.4 s 0

v vv
a

t t t

 
   
  

. 

 

(b) Assuming constant acceleration 
2

avg 3.09 m/sa a  , the total distance traveled 

during the 5.4-s time interval is  
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2 2 2

0 0

1 1
0 0 (3.09 m/s )(5.4 s) 45 m

2 2
x x v t at        

 

(c) Using Eq. 2-15, the time required to travel a distance of x = 250 m is: 

 

 2

2

2 250 m1 2
12.73 s

2 3.1 m/s

x
x at t

a
      

 

LEARN The displacement of the rod as a function of time can be written as 

2 21
( ) (3.09 m/s )

2
x t t . Note that we could have chosen Eq. 2-17 to solve for (b): 

    0

1 1
16.7 m/s 5.4 s 45 m.

2 2
x v v t     

 

78. We take the moment of applying brakes to be t = 0. The deceleration is constant so 

that Table 2-1 can be used. Our primed variables (such as 0 72 km/h = 20 m/sv  ) refer 

to one train (moving in the +x direction and located at the origin when t = 0) and 

unprimed variables refer to the other (moving in the –x direction and located at x0 = 

+950 m when t = 0). We note that the acceleration vector of the unprimed train points 

in the positive direction, even though the train is slowing down; its initial velocity is 

v0 = –144 km/h = –40 m/s. Since the primed train has the lower initial speed, it should 

stop sooner than the other train would (were it not for the collision). Using Eq 2-16, it 

should stop (meaning 0v  ) at 

 

   
2 2

2
0

2

0 (20 m/s)
200 m .

2 2 m/s

v v
x

a

  
   

 
 

 

The speed of the other train, when it reaches that location, is 

 

    
22 2

0 2 40 m/s 2 1.0 m/s 200 m 950 m

10 m/s

v v a x      



 

 

using Eq 2-16 again. Specifically, its velocity at that moment would be –10 m/s since 

it is still traveling in the –x direction when it crashes. If the computation of v had 

failed (meaning that a negative number would have been inside the square root) then 

we would have looked at the possibility that there was no collision and examined how 

far apart they finally were. A concern that can be brought up is whether the primed 

train collides before it comes to rest; this can be studied by computing the time it 

stops (Eq. 2-11 yields t = 20 s) and seeing where the unprimed train is at that moment 

(Eq. 2-18 yields x = 350 m, still a good distance away from contact). 

 

79. The y coordinate of Piton 1 obeys y – y01 = – 
1

2
 g t

2
 where y = 0 when t = 3.0 s. 

This allows us to solve for yo1, and we find y01 = 44.1 m. The graph for the coordinate 

of Piton 2 (which is thrown apparently at t = 1.0 s with velocity v1) is  
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y – y02 = v1(t–1.0) – 
1

2
 g (t – 1.0)

2
 

 

where y02 = y01 + 10 = 54.1 m and where (again) y = 0 when t = 3.0 s.  Thus we 

obtain |v1| = 17 m/s, approximately. 

 

80. We take +x in the direction of motion. We use subscripts 1 and 2 for the data. Thus, 

v1 = +30 m/s, v2 = +50 m/s, and x2 – x1 = +160 m. 

 

(a) Using these subscripts, Eq. 2-16 leads to 

 

   

2 2 2 2
22 1

2 1

(50 m/s) (30 m/s)
5.0 m/s .

2 2 160 m

v v
a

x x

 
  


 

 

(b) We find the time interval corresponding to the displacement x2 – x1 using Eq. 2-17: 

 

   2 1

2 1

1 2

2 2 160 m
4.0 s .

30 m/s 50 m/s

x x
t t

v v


   

 
 

 

(c) Since the train is at rest (v0 = 0) when the clock starts, we find the value of t1 from 

Eq. 2-11: 

1 0 1 1 2

30 m/s
6.0 s .

5.0 m/s
v v at t      

 

(d) The coordinate origin is taken to be the location at which the train was initially at 

rest (so x0 = 0).  Thus, we are asked to find the value of x1. Although any of several 

equations could be used, we choose Eq. 2-17: 

 

    1 0 1 1

1 1
30 m/s 6.0 s 90 m .

2 2
x v v t     

 

(e) The graphs are shown below, with SI units understood. 

 

 
 

81. THINK The particle undergoes a non-constant acceleration along the +x-axis. An 

integration is required to calculate velocity.   

 

EXPRESS With a non-constant acceleration ( ) /a t dv dt , the velocity of the 
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particle at time 
1t  is given by Eq. 2-27:

1

0
1 0 ( )

t

t
v v a t dt   , where v0 is the velocity at 

time t0. In our situation, we have 5.0 .a t  In addition, we also know that 

0 17 m/sv   at 
0 2.0 s.t   

 

ANALYZE Integrating (from t = 2 s to variable t = 4 s) the acceleration to get the 

velocity and using the values given in the problem, leads to  

 

 
0 0

2 2

0 0 0 0

1
(5.0 ) (5.0)( )

2

t t

t t
v v adt v t dt v t t        = 17 + 

1

2
 (5.0)(4

2
 – 2

2
) = 47 m/s. 

 

LEARN The velocity of the particle as a function of t is 

 

2 2 2 2

0 0

1 1
( ) (5.0)( ) 17 (5.0)( 4) 7 2.5

2 2
v t v t t t t         

in SI units (m/s). Since the acceleration is linear in t, we expect the velocity to be 

quadratic in t, and the displacement to be cubic in t.    

 

82. The velocity v at t = 6 (SI units and two significant figures understood) is 
6

given
2

v adt


  .  A quick way to implement this is to recall the area of a triangle (
1

2
  

base × height). The result is v = 7 m/s + 32 m/s = 39 m/s. 

 

83. The object, once it is dropped (v0 = 0) is in free fall (a = –g = –9.8 m/s
2
 if we take 

down as the –y direction), and we use Eq. 2-15 repeatedly. 

 

(a) The (positive) distance D from the lower dot to the mark corresponding to a 

certain reaction time t is given by y D gt    1
2

2 , or D = gt
2
/2. Thus, 

for 1 50.0 mst  ,  

D1

3
2

9 8 50 0 10

2
0 0123




. .
.

m / s s
m = 1.23 cm.

2c h c h
 

 

(b) For t2 = 100 ms, 
   

2
2 3

2 1

9.8m/s 100 10 s
0.049m = 4 .

2
D D


   

 

(c) For t3 = 150 ms, 
   

2
2 3

3 1

9.8m/s 150 10 s
0.11m =9 .

2
D D


   

 

(d) For t4 = 200 ms, 
   

2
2 3

4 1

9.8m/s 200 10 s
0.196m =16 .

2
D D


   

 

(e) For t4 = 250 ms, D D5

3
2

9 8 250 10

2
0 306 25




.
.

m / s s
m = .

2

1

c h c h
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84. We take the direction of motion as +x, take x0 = 0 and use SI units, so v = 

1600(1000/3600) = 444 m/s. 

 

(a) Equation 2-11 gives 444 = a(1.8) or a = 247 m/s
2
. We express this as a multiple of 

g by setting up a ratio: 
2

2

247 m/s
25 .

9.8 m/s
a g g

 
  
 

 

(b) Equation 2-17 readily yields 

 

    0

1 1
444 m/s 1.8 s 400 m.

2 2
x v v t     

 

85. Let D be the distance up the hill. Then 

 

   average speed = 
total distance traveled

total time of travel
  = 

2D

D

20 km/h
 + 

D

35 km/h

   25 km/h . 

 

86. We obtain the velocity by integration of the acceleration: 

 

0
0
(6.1 1.2 )

t

v v t dt    . 

Lengths are in meters and times are in seconds. The student is encouraged to look at 

the discussion in Section 2-7 to better understand the manipulations here. 

 

(a) The result of the above calculation is 2

0 6.1 0.6 ,v v t t   where the problem 

states that v0 = 2.7 m/s. The maximum of this function is found by knowing when its 

derivative (the acceleration) is zero (a = 0 when t = 6.1/1.2 = 5.1 s) and plugging that 

value of t into the velocity equation above. Thus, we find 18 m/sv  . 

 

(b) We integrate again to find x as a function of t: 

 2 2 3

0 0 0
0 0

( 6.1 0.6 ) 3.05 0.2
t t

x x v dt v t t dt v t t t            . 

 

With x0 = 7.3 m, we obtain x = 83 m for t = 6. This is the correct answer, but one has 

the right to worry that it might not be; after all, the problem asks for the total distance 

traveled (and x  x0 is just the displacement). If the cyclist backtracked, then his total 

distance would be greater than his displacement. Thus, we might ask, "did he 

backtrack?" To do so would require that his velocity be (momentarily) zero at some 

point (as he reversed his direction of motion). We could solve the above quadratic 

equation for velocity, for a positive value of t where v = 0; if we did, we would find 

that at t = 10.6 s, a reversal does indeed happen. However, in the time interval we are 

concerned with in our problem (0 ≤ t ≤ 6 s), there is no reversal and the displacement 

is the same as the total distance traveled. 

 

87. THINK In this problem we’re given two different speeds, and asked to find the 

difference in their travel times.   

 



CHAPTER 2 

 

68 

 

EXPRESS The time is takes to travel a distance d with a speed v1 is 
1 1/t d v . 

Similarly, with a speed v2 the time would be 2 2/t d v . The two speeds in this 

problem are 

1

2

1609 m/mi
55 mi/h (55 mi/h) 24.58 m/s

3600 s/h

1609 m/mi
65 mi/h (65 mi/h) 29.05 m/s

3600 s/h

v

v

  

  

 

 ANALYZE With 5700 km 7.0 10  md    , the time difference between the two is 

 

5

1 2

1 2

1 1 1 1
(7.0 10  m) 4383 s

24.58 m/s 29.05 m/s

73 min

t t t d
v v

   
           

  



 

 

or about 1.2 h. 

 

LEARN The travel time was reduced from 7.9 h to 6.9 h. Driving at higher speed 

(within the legal limit) reduces travel time.  

 

88. The acceleration is constant and we may use the equations in Table 2-1. 

 

(a) Taking the first point as coordinate origin and time to be zero when the car is there, 

we apply Eq. 2-17: 

     0 0

1 1
15.0 m/s 6.00 s .

2 2
x v v t v     

 

With x = 60.0 m (which takes the direction of motion as the +x direction) we solve for 

the initial velocity: v0 = 5.00 m/s. 

 

(b) Substituting v = 15.0 m/s, v0 = 5.00 m/s, and t = 6.00 s into a = (v – v0)/t (Eq. 2-11), 

we find a = 1.67 m/s
2
. 

 

(c) Substituting v = 0 in 2 2

0 2v v ax   and solving for x, we obtain 

 

 

2 2

0

2

(5.00 m/s)
7.50m

2 2 1.67 m/s

v
x

a
      , 

or | | 7.50 mx  . 

 

(d) The graphs require computing the time when v = 0, in which case, we use v = v0 + 

at' = 0. Thus, 

0

2

5.00 m/s
3.0s

1.67 m/s

v
t

a

 
     

 

indicates the moment the car was at rest. SI units are understood. 
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89. THINK In this problem we explore the connection between the maximum height 

an object reaches under the influence of gravity and the total amount of time it stays 

in air.  

 

EXPRESS Neglecting air resistance and setting a = –g = –9.8 m/s
2
 (taking down as 

the –y direction) for the duration of the motion, we analyze the motion of the ball 

using Table 2-1 (with y replacing x). We set y0 = 0. Upon reaching the maximum 

height H, the speed of the ball is momentarily zero (v = 0). Therefore, we can relate its 

initial speed v0 to H via the equation 
2 2

0 00  2 2v v gH v gH     . 

 

The time it takes for the ball to reach maximum height is given by 0 0v v gt   , or 

0 / 2 /t v g H g  .  

 

ANALYZE If we want the ball to spend twice as much time in air as before, i.e., 

2t t  , then the new maximum height H   it must reach is such that 2 /t H g  . 

Solving for H   we obtain 

 2 2 21 1 1
(2 ) 4 4

2 2 2
H gt g t gt H

 
     

 
. 

 

LEARN Since 2H t , doubling t means that H must increase fourfold. Note also 

that for 2t t  , the initial speed must be twice the original speed: 0 02v v  .   

 

90. (a) Using the fact that the area of a triangle is 1
2

(base) (height) (and the fact that 

the integral corresponds to the area under the curve) we find, from t = 0 through t = 5 

s, the integral of v with respect to t is 15 m. Since we are told that x0 = 0 then we 

conclude that x = 15 m when t = 5.0 s. 

 

(b) We see directly from the graph that v = 2.0 m/s when t = 5.0 s. 

 

(c) Since a = dv/dt = slope of the graph, we find that the acceleration during the 

interval 4 < t < 6 is uniformly equal to –2.0 m/s
2
. 

 

(d) Thinking of x(t) in terms of accumulated area (on the graph), we note that x(1) = 1 

m; using this and the value found in part (a), Eq. 2-2 produces 
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avg

(5) (1) 15 m 1 m
3.5 m/s.

5 1 4 s

x x
v

 
  


 

 

(e) From Eq. 2-7 and the values v(t) we read directly from the graph, we find 

 

avg

(5) (1) 2 m/s 2 m/s
0.

5 1 4 s

v v
a

 
  


 

 

91. Taking the +y direction downward and y0 = 0, we have y v t gt 0
1
2

2 , which 

(with v0 = 0) yields t y g 2 / . 

 

(a) For this part of the motion, y1 = 50 m so that 1 2

2(50 m)
3.2 s .

9.8 m/s
t    

 

(b) For this next part of the motion, we note that the total displacement is y2 = 100 m. 

Therefore, the total time is 

2 2

2(100 m)
4.5 s .

9.8 m/s
t    

 

The difference between this and the answer to part (a) is the time required to fall 

through that second 50 m distance: 2 1t t t    4.5 s – 3.2 s = 1.3 s. 

 

92. Direction of +x is implicit in the problem statement. The initial position (when the 

clock starts) is x0 = 0 (where v0 = 0), the end of the speeding-up motion occurs at x1 = 

1100/2 = 550 m, and the subway train comes to a halt (v2 = 0) at x2 = 1100 m. 

 

(a) Using Eq. 2-15, the subway train reaches x1 at 

 

 
1

1 2

1

2 550 m2
30.3 s .

1.2 m/s

x
t

a
    

 

The time interval t2 – t1 turns out to be the same value (most easily seen using Eq. 

2-18 so the total time is t2 = 2(30.3) = 60.6 s. 

 

(b) Its maximum speed occurs at t1 and equals v v a t1 0 1 1 363   . .m/ s  

 

(c) The graphs are shown below: 
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93. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down 

as the –y direction) for the duration of the stone’s motion. We are allowed to use Table 

2-1 (with x replaced by y) because the ball has constant acceleration motion (and we 

choose y0 = 0). 

 

(a) We apply Eq. 2-16 to both measurements, with SI units understood. 

 

 
2

2 2 2

0 0

2 2 2 2

0 0

1
2 2 3

2

2 2

B B A

A A A

v v gy v g y v

v v gy v gy v

 
      

 

    

 

 

We equate the two expressions that each equal v0

2  and obtain 

 

1

4
2 2 3 2 2 3

3

4

2 2 2v gy g v gy g vA A     b g b g  

 

which yields v g 2 4 885b g . m / s.  

 

(b) An object moving upward at A with speed v = 8.85 m/s will reach a maximum 

height y – yA = v
2
/2g = 4.00 m above point A (this is again a consequence of Eq. 2-16, 

now with the “final” velocity set to zero to indicate the highest point). Thus, the top of 

its motion is 1.00 m above point B. 

 

94. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down 

as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 

(with y replacing x) because this is constant acceleration motion. The ground level 

is taken to correspond to the origin of the y-axis. The total time of fall can be 

computed from Eq. 2-15 (using the quadratic formula). 

 




y v t gt t
v v g y

g
   

 
0

2 0 0

2
1

2

2
     

 

with the positive root chosen. With y = 0, v0 = 0, and y0 = h = 60 m, we obtain 

 

t
gh

g

h

g
  

2 2
35.  s . 

 

Thus, “1.2 s earlier” means we are examining where the rock is at t = 2.3 s: 

 

2

0

1
(2.3 s) (2.3 s)     34 m

2
y h v g y      

 

where we again use the fact that h = 60 m and v0 = 0. 

 

95. THINK This problem involves analyzing a plot describing the position of an 

iceboat as function of time. The boat has a nonzero acceleration due to the wind. 
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EXPRESS Since we are told that the acceleration of the boat is constant, the 

equations of Table 2-1 can be applied. However, the challenge here is that v0, v, and a 

are not explicitly given. Our strategy to deduce these values is to apply the kinematic 

equation 21
0 0 2

x x v t at    to a variety of points on the graph and solve for the 

unknowns from the simultaneous equations.   

 

ANALYZE (a) From the graph, we pick two points on the curve: 

( , ) (2.0 s,16 m)t x   and (3.0 s,27 m) . The corresponding simultaneous equations 

are 

16 m – 0 = v0(2.0 s) + 
1

2
 a(2.0 s)

2
 

27 m – 0 = v0(3.0 s) + 
1

2
 a(3.0 s)

2
 

 

Solving the equations lead to the values v0 = 6.0 m/s and a = 2.0 m/s
2
. 

 

(b) From Table 2-1,  

x – x0 = vt – 
1

2
at

2
    27 m – 0 = v(3.0 s) – 

1

2
 (2.0 m/s

2
)(3.0 s)

2
 

 

which leads to v = 12 m/s. 

 

(c) Assuming the wind continues during 3.0 ≤ t ≤ 6.0, we apply x – x0 = v0t + 
1

2
at

2
 to 

this interval (where v0 = 12.0 m/s from part (b)) to obtain 

 

x = (12.0 m/s)(3.0 s) + 
1

2
 (2.0 m/s

2
)(3.0 s)

2
 = 45 m. 

 

LEARN By using the results obtained in (a), the position and velocity of the iceboat 

as a function of time can be written as 

 

2 21
( ) (6.0 m/s) (2.0 m/s )

2
x t t t   and 2( ) (6.0 m/s) (2.0 m/s ) .v t t   

One can readily verify that the same answers are obtained for (b) and (c) using the 

above expressions for ( )x t  and ( )v t .  

 

96. (a) Let the height of the diving board be h. We choose down as the +y direction 

and set the coordinate origin at the point where it was dropped (which is when we 

start the clock). Thus, y = h designates the location where the ball strikes the water. 

Let the depth of the lake be D, and the total time for the ball to descend be T. The 

speed of the ball as it reaches the surface of the lake is then v = 2gh  (from Eq. 

2-16), and the time for the ball to fall from the board to the lake surface is t1 = 

2h g/  (from Eq. 2-15). Now, the time it spends descending in the lake (at constant 

velocity v) is 

t
D

v

D

gh
2

2
  . 
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Thus, T = t1 + t2 = 
2h

g
 + 

D

gh2
, which gives 

 

       22 2 4.80 s 2 9.80 m/s 5.20 m 2 5.20 m 38.1 m .D T gh h      

 

(b) Using Eq. 2-2, the magnitude of the average velocity is 

 

avg

38.1 m 5.20 m
9.02 m/s

4.80 s

D h
v

T

 
    

 

(c) In our coordinate choices, a positive sign for vavg means that the ball is going 

downward. If, however, upward had been chosen as the positive direction, then this 

answer in (b) would turn out negative-valued. 

 

(d) We find v0 from 21
0 2

y v t gt    with t = T and y = h + D. Thus, 

 

  2

0

9.8 m/s 4.80 s5.20 m 38.1 m
14.5 m/s

2 4.80 s 2

h D gT
v

T

 
      

 

(e) Here in our coordinate choices the negative sign means that the ball is being 

thrown upward. 

 

97. We choose down as the +y direction and use the equations of Table 2-1 (replacing 

x with y) with a = +g, v0 = 0, and y0 = 0. We use subscript 2 for the elevator reaching 

the ground and 1 for the halfway point. 

 

(a) Equation 2-16, v v a y y2

2

0

2

2 02  b g , leads to 

 

  2

2 22 2 9.8 m/s 120 m 48.5 m/s .v gy    

 

(b) The time at which it strikes the ground is (using Eq. 2-15) 

 

 
2

2 2

2 120 m2
4.95 s .

9.8 m/s

y
t

g
    

 

(c) Now Eq. 2-16, in the form v v a y y1

2

0

2

1 02  b g , leads to 

 
2

1 12 2(9.8 m/s )(60 m) 34.3m/s.v gy    

 

(d) The time at which it reaches the halfway point is (using Eq. 2-15) 
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1
1 2

2 2(60 m)
3.50 s .

9.8 m/s

y
t

g
    

 

98. Taking +y to be upward and placing the origin at the point from which the objects 

are dropped, then the location of diamond 1 is given by y gt1
1
2

2   and the location 

of diamond 2 is given by y g t2
1
2

2
1  b g . We are starting the clock when the first 

object is dropped. We want the time for which y2 – y1 = 10 m. Therefore, 

 

       
1

2
1

1

2
10 10 05 15

2 2g t gt t gb g b g/ . . s.  

 

99. With +y upward, we have y0 = 36.6 m and y = 12.2 m. Therefore, using Eq. 2-18 

(the last equation in Table 2-1), we find 

 
21

0 2
    22.0 m/s y y vt gt v       

 

at t = 2.00 s. The term speed refers to the magnitude of the velocity vector, so the 

answer is |v| = 22.0 m/s. 

 

100. During free fall, we ignore the air resistance and set a = –g = –9.8 m/s
2
 where we 

are choosing down to be the –y direction. The initial velocity is zero so that Eq. 2-15 

becomes y gt  1
2

2  where y represents the negative of the distance d she has 

fallen. Thus, we can write the equation as d gt 1
2

2  for simplicity. 

 

(a) The time t1 during which the parachutist is in free fall is (using Eq. 2-15) given by 

 

d gt t1 1

2

1

250
1

2
9 80 m =

1

2
m / s2.c h  

 

which yields t1 = 3.2 s. The speed of the parachutist just before he opens the parachute 

is given by the positive root 2

1 12v gd , or 

 

v gh1 12 2 9 80 50 31  b gc hb g. m / s m m / s.2  

 

If the final speed is v2, then the time interval t2 between the opening of the parachute 

and the arrival of the parachutist at the ground level is 

 

t
v v

a
2

1 2 31 30
14







m / s m / s

2 m / s
s.

2

.
 

 

This is a result of Eq. 2-11 where speeds are used instead of the (negative-valued) 

velocities (so that final-velocity minus initial-velocity turns out to equal initial-speed 

minus final-speed); we also note that the acceleration vector for this part of the motion 

is positive since it points upward (opposite to the direction of motion — which makes 

it a deceleration). The total time of flight is therefore t1 + t2 = 17 s. 
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(b) The distance through which the parachutist falls after the parachute is opened is 

given by 

d
v v

a






1

2

2

2 2 2

2

31 30

2 2 0
240

m / s m / s

m / s
m.

2

b g b g
b gc h

.

.
 

 

In the computation, we have used Eq. 2-16 with both sides multiplied by –1 (which 

changes the negative-valued y into the positive d on the left-hand side, and switches 

the order of v1 and v2 on the right-hand side). Thus the fall begins at a height of h = 50 

+ d  290 m. 

 

101. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down 

as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 

(with y replacing x) because this is constant acceleration motion. The ground level 

is taken to correspond to y = 0. 

 

(a) With y0 = h and v0 replaced with –v0, Eq. 2-16 leads to 

 

2 2

0 0 0( ) 2 ( ) 2  .v v g y y v gh       

 

The positive root is taken because the problem asks for the speed (the magnitude of 

the velocity). 

 

(b) We use the quadratic formula to solve Eq. 2-15 for t, with v0 replaced with –v0, 

 




y v t gt t
v v g y

g
          

   
0

2 0 0

2
1

2

2( )
 

 

where the positive root is chosen to yield t > 0. With y = 0 and y0 = h, this becomes 

 

t
v gh v

g


 0

2

02
.  

 

(c) If it were thrown upward with that speed from height h then (in the absence of air 

friction) it would return to height h with that same downward speed and would 

therefore yield the same final speed (before hitting the ground) as in part (a). An 

important perspective related to this is treated later in the book (in the context of 

energy conservation). 

 

(d) Having to travel up before it starts its descent certainly requires more time than in 

part (b). The calculation is quite similar, however, except for now having +v0 in the 

equation where we had put in –v0 in part (b). The details follow: 

 




y v t gt t
v v g y

g
   

 
0

2 0 0

2
1

2

2
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with the positive root again chosen to yield t > 0. With y = 0 and y0 = h, we obtain 

 

t
v gh v

g


 0

2

02
.  

102. We assume constant velocity motion and use Eq. 2-2 (with vavg = v > 0). 

Therefore, 

 x v t 
F
HG

I
KJ

F
HG

I
KJ  303

1000
100 10 8 43km

h

m / km

3600 s / h
s m.c h .  

 

103. Assuming the horizontal velocity of the ball is constant, the horizontal 

displacement is x v t , where x is the horizontal distance traveled, t is the time, 

and v is the (horizontal) velocity. Converting v to meters per second, we have 160 

km/h = 44.4 m/s. Thus 




t
x

v
  

18 4

44 4
0 414

.

.
.

 m

 m / s
 s.  

 

The velocity-unit conversion implemented above can be figured “from basics” (1000 

m = 1 km, 3600 s = 1 h) or found in Appendix D. 

 

104. In this solution, we make use of the notation x(t) for the value of x at a particular 

t. Thus, x(t) = 50t + 10t
2
 with SI units (meters and seconds) understood. 

 

(a) The average velocity during the first 3 s is given by 

 

v
x x

t
avg  m / s.




 


( ) ( ) ( )( ) ( )( )3 0 50 3 10 3 0

3
80

2


 

 

(b) The instantaneous velocity at time t is given by v = dx/dt = 50 + 20t, in SI units. At 

t = 3.0 s, v = 50 + (20)(3.0) = 110 m/s. 

 

(c) The instantaneous acceleration at time t is given by a = dv/dt = 20 m/s
2
. It is 

constant, so the acceleration at any time is 20 m/s
2
. 

 

(d) and (e) The graphs that follow show the coordinate x and velocity v as functions of 

time, with SI units understood. The dashed line marked (a) in the first graph runs from 

t = 0, x = 0 to t = 3.0s, x = 240 m. Its slope is the average velocity during the first 3s 

of motion. The dashed line marked (b) is tangent to the x curve at t = 3.0 s. Its slope is 

the instantaneous velocity at t = 3.0 s. 
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105. We take +x in the direction of motion, so v0 = +30 m/s, v1 = +15 m/s and a < 0. 

The acceleration is found from Eq. 2-11: a = (v1 – v0)/t1 where t1 = 3.0 s. This gives a 

= –5.0 m/s
2
. The displacement (which in this situation is the same as the distance 

traveled) to the point it stops (v2 = 0) is, using Eq. 2-16, 

 
2

2 2

2 0 2

(30 m/s)
2 90 m.

2( 5 m/s )
v v a x x      


 

 

106. The problem consists of two constant-acceleration parts: part 1 with v0 = 0, v = 

6.0 m/s, x = 1.8 m, and x0 = 0 (if we take its original position to be the coordinate 

origin); and, part 2 with v0 = 6.0 m/s, v = 0, and a2 = –2.5 m/s
2
 (negative because we 

are taking the positive direction to be the direction of motion). 

 

(a) We can use Eq. 2-17 to find the time for the first part 

 

x – x0 = 
1

2
(v0 + v) t1    1.8 m – 0 = 

1

2
(0 + 6.0 m/s) t1 

 

so that t1 = 0.6 s. And Eq. 2-11 is used to obtain the time for the second part 

 

0 2 2v v a t      0 = 6.0 m/s + (–2.5 m/s
2
)t2 

 

from which t2 = 2.4 s is computed. Thus, the total time is t1 + t2 = 3.0 s. 

 

(b) We already know the distance for part 1. We could find the distance for part 2 

from several of the equations, but the one that makes no use of our part (a) results is 

Eq. 2-16 
2 2

0 2 22v v a x        0 = (6.0 m/s)
2
 + 2(–2.5 m/s

2
)x2 

 

which leads to x2 = 7.2 m. Therefore, the total distance traveled by the shuffleboard 

disk is (1.8 + 7.2) m = 9.0 m. 

 

107. The time required is found from Eq. 2-11 (or, suitably interpreted, Eq. 2-7). First, 

we convert the velocity change to SI units: 

 

v 
F
HG

I
KJ ( .100

3600
27 8 km / h) 

1000 m / km

 s / h
 m / s .  

Thus, t = v/a = 27.8/50 = 0.556 s. 

 

108. From Table 2-1, v v a x2

0

2 2    is used to solve for a. Its minimum value is 

 

a
v v

x
min

max

(

( .



 2 0

2

2

360

2 180
36000



 km / h)

 km)
 km / h

2
2  

 

which converts to 2.78 m/s
2
. 
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109. (a) For the automobile v = 55 – 25 = 30 km/h, which we convert to SI units: 

 

a
v

t
  




(

( . min)(
. .

30

0 50 60
0 28

1000
3600 km / h)

s / min)
 m / s

  m/km
  s/h 2b g

 

 

(b) The change of velocity for the bicycle, for the same time, is identical to that of the 

car, so its acceleration is also 0.28 m/s
2
. 

 

110. Converting to SI units, we have v = 3400(1000/3600) = 944 m/s (presumed 

constant) and t = 0.10 s. Thus, x = vt = 94 m. 

 

111. This problem consists of two parts: part 1 with constant acceleration (so that the 

equations in Table 2-1 apply), v0 = 0, v = 11.0 m/s, x = 12.0 m, and x0 = 0 (adopting 

the starting line as the coordinate origin); and, part 2 with constant velocity (so that 

x – x0 = vt applies) with v = 11.0 m/s, x0 = 12.0, and x = 100.0 m. 

 

(a) We obtain the time for part 1 from Eq. 2-17 

 

x x v v t t      0 0 1 1

1

2
12 0 0

1

2
0 110b g b g. .  

 

so that t1 = 2.2 s, and we find the time for part 2 simply from 88.0 = (11.0)t2  t2 = 

8.0 s. Therefore, the total time is t1 + t2 = 10.2 s. 

 

(b) Here, the total time is required to be 10.0 s, and we are to locate the point xp where 

the runner switches from accelerating to proceeding at constant speed. The equations 

for parts 1 and 2, used above, therefore become 

 

 

  

1
12

1

0 0 11.0 m/s

100.0 m 11.0 m/s 10.0 s

p

p

x t

x t

  

  
 

 

where in the latter equation, we use the fact that t2 = 10.0 – t1. Solving the equations 

for the two unknowns, we find that t1 = 1.8 s and xp = 10.0 m. 

 

112. The bullet starts at rest (v0 = 0) and after traveling the length of the barrel 

( 1.2 mx  ) emerges with the given velocity (v = 640 m/s), where the direction of 

motion is the positive direction. Turning to the constant acceleration equations in 

Table 2-1, we use 1
02

( ) .x v v t   Thus, we find t = 0.00375 s (or 3.75 ms). 

 

113. There is no air resistance, which makes it quite accurate to set a = –g = –9.8 m/s
2
 

(where downward is the –y direction) for the duration of the fall. We are allowed to 

use Table 2-1 (with y replacing x) because this is constant acceleration motion; in 

fact, when the acceleration changes (during the process of catching the ball) we will 

again assume constant acceleration conditions; in this case, we have a2 = +25g = 245 

m/s
2
. 

 

(a) The time of fall is given by Eq. 2-15 with v0 = 0 and y = 0. Thus, 
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0

2

2 2(145 m)
5.44 s.

9.8 m/s

y
t

g
    

 

(b) The final velocity for its free-fall (which becomes the initial velocity during the 

catching process) is found from Eq. 2-16 (other equations can be used but they would 

use the result from part (a)) 

 

v v g y y gy       0

2

0 02 2 533( ) .  m / s  

 

where the negative root is chosen since this is a downward velocity. Thus, the speed is 

| | 53.3 m/s.v   

 

(c) For the catching process, the answer to part (b) plays the role of an initial velocity 

(v0 = –53.3 m/s) and the final velocity must become zero. Using Eq. 2-16, we find 

 
2 2 2

0
2 2

2

( 53.3 m/s)
5.80 m

2 2(245 m/s )

v v
y

a

  
     , 

 

or 2| | 5.80 m.y   The negative value of y2 signifies that the distance traveled 

while arresting its motion is downward. 

 

114. During Tr the velocity v0 is constant (in the direction we choose as +x) and obeys 

v0 = Dr/Tr where we note that in SI units the velocity is v0 = 200(1000/3600) = 55.6 

m/s. During Tb the acceleration is opposite to the direction of v0 (hence, for us, a < 0) 

until the car is stopped (v = 0). 

 

(a) Using Eq. 2-16 (with xb = 170 m) we find 

v v a x a
v

x
b

b

2

0

2 0

2

2
2

    


 

which yields |a| = 9.08 m/s
2
. 

 

(b) We express this as a multiple of g by setting up a ratio: 

 
2

2

9.08 m/s
0.926 .

9.8 m/s
a g g

 
  
 

 

 

(c) We use Eq. 2-17 to obtain the braking time: 

 
 

0

2 170 m1
6.12 s .

2 55.6 m/s
b b bx v v T T       

 

(d) We express our result for Tb as a multiple of the reaction time Tr by setting up a 

ratio: 

3

6.12 s
15.3 .

400 10 s
b r rT T T



 
  

 
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(e) Since Tb > Tr, most of the full time required to stop is spent in braking. 

 

(f) We are only asked what the increase in distance D is, due to Tr = 0.100 s, so we 

simply have 

  0 55.6 m/s 0.100 s 5.56 m .rD v T      

 

115. The total time elapsed is 2 h 41 min 161 mint   and the center point is 

displaced by 3.70 m 370 cm.x    Thus, the average velocity of the center point is 

 

avg

370 cm
2.30 cm/min.

161 min

x
v

t


  


 

 

116. Using Eq. 2-11, 0 ,v v at  we find the initial speed to be 

 2 3

0 0 ( 3400)(9.8 m/s )(6.5 10 s) 216.6 m/sv v at         

117. The total number of days walked is (including the first and the last day, and leap 

year) 

340 365 365 366 365 365 261 2427N          

 

Thus, the average speed of the walk is 
7

avg

3.06 10  m
0.146 m/s.

(2427 days)(86400 s/day)

d
s

t


  


 

 

118. (a) Let d be the distance traveled. The average speed with and without wings set 

as sails are /s sv d t  and /ns nsv d t , respectively. Thus, the ratio of the two speeds 

is 

/ 25.0 s
3.52

/ 7.1s

s s ns

ns ns s

v d t t

v d t t
     

 

(b) The difference in time expressed in terms of sv is 

 

(2.0 m) 5.04 m
2.52 2.52

( / 3.52)
ns s

ns s s s s s s

d d d d d
t t t

v v v v v v v
           

 

119. (a) Differentiating ( ) (2.0 cm)sin( / 4)y t t  with respect to t, we obtain 

 

( )  cm/s cos( / 4)
2

y

dy
v t t

dt




 
   

 
 

 

The average velocity between t = 0 and t = 2.0 s is 
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 

2 2

avg
0 0

/ 2

0

1 1
 cm/s cos

(2.0 s) (2.0 s) 2 4

1
2 cm cos 1.0 cm/s

(2.0 s)

y

t
v v dt dt

x dx


    
     

   

 

 


 

 

(b) The instantaneous velocities of the particle at t = 0, 1.0 s, and 2.0 s are, 

respectively, 

(0)  cm/s cos(0)  cm/s
2 2

2
(1.0 s)  cm/s cos( / 4)  cm/s

2 4

(2.0 s)  cm/s cos( / 2) 0
2

y

y

y

v

v

v

 

 





 
  
 

 
  
 

 
  
 

 

 

(c) Differentiating ( )yv t  with respect to t, we obtain the following expression for 

acceleration: 
2

2( )  cm/s sin( / 4)
8

y

y

dv
a t t

dt




 
   

 
 

 

The average acceleration between t = 0 and t = 2.0 s is 

 
2

2 2
2

avg
0 0

/ 2
2

0

1 1
 cm/s sin

(2.0 s) (2.0 s) 8 4

1 1
 cm/s sin  cm/s cm/s

(2.0 s) 2 (2.0 s) 2 4

y

t
a a dt dt

x dx


 

  

   
     

  

   
        

   

 



 

 

(d) The instantaneous accelerations of the particle at t = 0, 1.0 s, and 2.0 s are, 

respectively, 
2

2

2 2
2 2

2 2
2 2

(0)  cm/s sin(0) 0
8

2
(1.0 s)  cm/s sin( / 4)  cm/s

8 16

(2.0 s)  cm/s sin( / 2)  cm/s
8 8

y

y

y

a

a

a



 


 


 
   
 

 
    
 

 
    
 
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Chapter 3 
 

 

1. THINK In this problem we’re given the magnitude and direction of a vector in two 

dimensions, and asked to calculate its x- and y-components.  

 

EXPRESS The x- and the y- components of a vector 

a  lying in the xy plane are given by 

 

cos , sinx ya a a a    

where 2 2| | x ya a a a    is the magnitude and 1tan ( / )y xa a   is the angle between 

a  

and the positive x axis. Given that 250   , we see that the vector is in the third 

quadrant, and we expect both the x- and the y-components of 

a  to be negative. 

 

ANALYZE (a) The x component of 

a  is  

 

cos (7.3 m)cos250 2.50 mxa a      , 

  

(b) and the y component is sin (7.3 m)sin 250 6.86 m 6.9 m.ya a         The 

results are depicted in the figure below: 

 
 

LEARN In considering the variety of ways to compute these, we note that the vector is 

70° below the – x axis, so the components could also have been found from  

 

(7.3 m)cos70 2.50 m, (7.3 m)sin70 6.86 m.x ya a           

 

Similarly, we note that the vector is 20° to the left from the – y axis, so one could also 

achieve the same results by using 

 

(7.3 m)sin 20 2.50 m, (7.3 m)cos20 6.86 m.x ya a           
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 As a consistency check, we note that 2 2 2 2( 2.50 m) ( 6.86 m) 7.3 mx ya a       

and  1 1tan / tan [( 6.86 m) /( 2.50 m)] 250y xa a      , which are indeed the values 

given in the problem statement. 

 

2. (a) With r = 15 m and  = 30°, the x component of 

r  is given by  

 

rx = rcos  = (15 m) cos 30° = 13 m. 

 

(b) Similarly, the y component is given by ry = r sin  = (15 m) sin 30° = 7.5 m. 

 

3. THINK In this problem we’re given the x- and y-components a vector A  in two 

dimensions, and asked to calculate its magnitude and direction. 

 

EXPRESS A vector A  can be represented in the magnitude-angle notation (A, ), where  

 

 2 2

x yA A A   

is the magnitude and  

 1tan
y

x

A

A
   
  

 
 

 

is the angle A  makes with the positive x axis. Given that Ax = 25.0 m and Ay = 40.0 m, 

the above formulas can be readily used to calculate A and .  

 

ANALYZE (a) The magnitude of the vector A  is  

 
2 2 2 2( 25.0 m) (40.0 m) 47.2 mx yA A A       

 

(b) Recalling that tan = tan ( + 180°), 

 

tan
–1

 [(40.0 m)/ (– 25.0 m)] = – 58° or 122°. 

 

Noting that the vector is in the second quadrant 

(by the signs of its x and y components) we see 

that 122° is the correct answer. The results are 

depicted in the figure to the right. 

 
 

 

LEARN We can check our answers by noting that the x- and the y- components of A  can 

be written as 

cos , sinx yA A A A   . 
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Substituting the results calculated above, we obtain 

 

(47.2 m)cos122 25.0 m, (47.2 m)sin122 40.0 mx yA A         

 

which indeed are the values given in the problem statement.   

 

4. The angle described by a full circle is 360° = 2 rad, which is the basis of our 

conversion factor.  

 

(a)  
2 rad

20.0 20.0 0.349 rad
360


   


. 

(b)  
2  rad

50.0 50.0 0.873 rad
360


   


. 

(c)  
2  rad

100 100 1.75 rad
360


   


. 

(d)  
360

0.330 rad = 0.330 rad 18.9
2  rad


  . 

(e)  
360

2.10 rad = 2.10 rad 120
2  rad


  . 

(f)  
360

7.70 rad = 7.70 rad 441
2  rad


  . 

 

5. The vector sum of the displacements 

dstorm  and 


dnew  must give the same result as its 

originally intended displacement o
ˆ(120 km)jd   where east is i , north is j . Thus, we 

write 

storm new
ˆ ˆ ˆ(100 km) i , i j.d d A B    

 

(a) The equation storm new od d d   readily yields A = –100 km and B = 120 km. The 

magnitude of 

dnew  is therefore equal to 2 2

new| | 156 kmd A B   . 

 

(b) The direction is  

tan
–1

 (B/A) = –50.2° or 180° + ( –50.2°) = 129.8°. 

 

We choose the latter value since it indicates a vector pointing in the second quadrant, 

which is what we expect here. The answer can be phrased several equivalent ways: 129.8° 

counterclockwise from east, or 39.8° west from north, or 50.2° north from west. 

 

6. (a) The height is h = d sin, where d = 12.5 m and  = 20.0°. Therefore, h = 4.28 m. 

 

(b) The horizontal distance is d cos = 11.7 m. 
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7. (a) The vectors should be parallel to achieve a resultant 7 m long (the unprimed case 

shown below),  

 

(b) anti-parallel (in opposite directions) to achieve a resultant 1 m long (primed case 

shown),  

(c) and perpendicular to achieve a resultant 3 4 52 2  m long (the double-primed case 

shown).  

 

In each sketch, the vectors are shown in a “head-to-tail” sketch but the resultant is not 

shown. The resultant would be a straight line drawn from beginning to end; the beginning 

is indicated by A (with or without primes, as the case may be) and the end is indicated by 

B. 

 
 

8. We label the displacement vectors 

A , 


B , and 


C  (and denote the result of their vector 

sum as 

r ). We choose east as the î  direction (+x direction) and north as the ĵ  direction 

(+y direction). All distances are understood to be in kilometers.  

 

(a) The vector diagram representing the motion is shown next: 

 

ˆ(3.1 km) j

ˆ( 2.4 km) i

ˆ( 5.2 km) j

A

B

C



 

 

 

 (b) The final point is represented by 

 
ˆ ˆ( 2.4 km)i ( 2.1 km)jr A B C        

whose magnitude is 

   
2 2

2.4 km 2.1 km 3.2 kmr      . 

 

(c) There are two possibilities for the angle: 
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 1 2.1 km
tan 41 ,or 221

2.4 km
   
    

 
. 

 

We choose the latter possibility since 

r  is in the third quadrant. It should be noted that 

many graphical calculators have polar  rectangular “shortcuts” that automatically 

produce the correct answer for angle (measured counterclockwise from the +x axis). We 

may phrase the angle, then, as 221° counterclockwise from East (a phrasing that sounds 

peculiar, at best) or as 41° south from west or 49° west from south.  The resultant 

r  is 

not shown in our sketch; it would be an arrow directed from the “tail” of 

A  to the “head” 

of 

C . 

 

9. All distances in this solution are understood to be in meters. 

 

(a) ˆ ˆ ˆ ˆ ˆ ˆ[4.0 ( 1.0)] i [( 3.0) 1.0] j (1.0 4.0)k (3.0i 2.0j 5.0 k) m.a b             

 

(b) ˆ ˆ ˆ ˆ ˆ ˆ[4.0 ( 1.0)]i [( 3.0) 1.0]j (1.0 4.0)k (5.0 i 4.0 j 3.0 k) m.a b             

 

(c) The requirement 
  
a b c   0  leads to 

  
c b a  ,  which we note is the opposite of 

what we found in part (b). Thus, ˆ ˆ ˆ( 5.0i  4.0 j  3.0k) m.c      

 

10. The x, y, and z components of r c d   are, respectively, 

 

(a) 7.4  m 4.4  m 12 mx x xr c d     , 

 

(b) 3.8 m 2.0 m 5.8 my y yr c d       , and 

 

(c) 6.1 m 3.3 m 2.8 m.z z zr c d        

 

11. THINK This problem involves the addition of two vectors a  and .b  We want to find 

the magnitude and direction of the resulting vector. 

 

EXPRESS In two dimensions, a vector a  can be written as, in unit vector notation, 

 
ˆ ˆi jx ya a a  . 

Similarly, a second vector b  can be expressed as ˆ ˆi jx yb b b  . Adding the two vectors 

gives 
ˆ ˆ ˆ ˆ( )i ( ) j i jx x y y x yr a b a b a b r r         

 

ANALYZE (a) Given that ˆ ˆ(4.0 m)i (3.0 m)ja    and ˆ ˆ( 13.0 m)i (7.0 m)jb    , we 

find the x and the y components of 

r  to be   
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rx = ax + bx = (4.0 m) + (–13 m) = –9.0 m 

ry = ay + by = (3.0 m) +  (7.0 m)  = 10.0 m. 

 

Thus ˆ ˆ( 9.0m) i (10m) jr    .  

 

(b) The magnitude of 

r is 2 2 2 2| | ( 9.0 m) (10 m) 13 m.x yr r r r        

 

(c) The angle between the resultant and the +x axis is given by  

 

1 1 10.0 m
tan tan 48  or 132

9.0 m

y

x

r

r
     
        

  
. 

 

Since the x component of the resultant is negative and the y component is positive, 

characteristic of the second quadrant, we find the angle is 132° (measured 

counterclockwise from +x axis). 

 

LEARN The addition of the two vectors is depicted in the figure below (not to scale). 

Indeed, since 0xr   and 0yr  , we expect 

r  to be in the second quadrant. 

 
 

12. We label the displacement vectors 

A , 


B , and 


C  (and denote the result of their vector 

sum as 

r ). We choose east as the î  direction (+x direction) and north as the ĵ  direction 

(+y direction). We note that the angle between 

C  and the x axis is 60°. Thus, 

 

 

   

ˆ(50 km) i

ˆ(30 km) j

ˆ ˆ(25 km) cos 60 i + (25 km)sin 60 j

A

B

C





  
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(a) The total displacement of the car from its initial position is represented by 

 
ˆ ˆ(62.5 km) i (51.7 km) jr A B C      

 

which means that its magnitude is 

 
2 2(62.5km) (51.7km) 81 km.r     

 

(b) The angle (counterclockwise from +x axis) is tan
–1

 (51.7 km/62.5 km)  40°, which is 

to say that it points 40° north of east. Although the resultant 

r  is shown in our sketch, it 

would be a direct line from the “tail” of 

A  to the “head” of 


C . 

 

13. We find the components and then add them (as scalars, not vectors). With d = 3.40 

km and  = 35.0° we find d cos  + d sin  = 4.74 km. 

 

14. (a) Summing the x components, we have  

 

20 m + bx – 20 m – 60 m = 140 m, 

which gives 80 m.xb    

 

(b) Summing the y components, we have  

 

60 m – 70 m + cy – 70 m = 30 m, 

which implies cy =110 m.  

 

(c) Using the Pythagorean theorem, the magnitude of the overall displacement is given by 
2 2 ( 140 m) (30 m)  143 m.    

 

(d) The angle is given by 1tan (30/( 140)) 12     , (which would be 12 measured 

clockwise from the –x axis, or 168 measured counterclockwise from the +x axis). 

 

15. THINK This problem involves the addition of two 

vectors a  and b  in two dimensions. We’re asked to find 

the components, magnitude and direction of the resulting 

vector. 

 

EXPRESS In two dimensions, a vector a  can be written 

as, in unit vector notation, 

 
ˆ ˆ ˆ ˆi j ( cos )i ( sin ) jx ya a a a a     . 
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Similarly, a second vector b  can be expressed as ˆ ˆ ˆ ˆi j ( cos )i ( sin ) jx yb b b b b     . 

From the figure, we have, 
1   and 

1 2     (since the angles are measured from the 

+x-axis) and the resulting vector is 

  

1 1 2 1 1 2
ˆ ˆ ˆ ˆ[ cos cos( )]i [ sin sin( )]j i jx yr a b a b a b r r                

 

ANALYZE (a) Given that 10 m,a b  1 30    and
2 105 ,    the x component of 


r  is 

 

1 1 2cos cos( ) (10 m)cos30 (10 m)cos(30 105 ) 1.59 mxr a b           

 

(b) Similarly, the y component of 

r  is   

 

1 1 2sin sin( ) (10 m)sin30 (10 m)sin(30 105 ) 12.1 m.yr a b           

 

(c) The magnitude of 

r   is 2 2| | (1.59 m) (12.1 m) 12.2 m.r r     

 

(d) The angle between 

r  and the +x-axis is  

 

1 1 12.1 m
tan tan 82.5

1.59 m

y

x

r

r
     
      

  
. 

 

LEARN As depicted in the figure, the resultant r  lies in the first quadrant. This is what 

we expect. Note that the magnitude of r  can also be calculated by using law of cosine 

( ,a b and 

r  form an isosceles triangle): 

 

 
2 2 2 2

22 cos(180 ) (10 m) (10 m) 2(10 m)(10 m)cos75

12.2 m.

r a b ab        



 

 

16. (a) ˆ ˆ ˆ ˆ ˆ ˆ(3.0i 4.0 j) m (5.0i 2.0 j) m (8.0 m) i (2.0 m) j.a b        

 

(b) The magnitude of  
 
a b  is 

2 2| | (8.0 m) (2.0 m) 8.2 m.a b     

 

(c) The angle between this vector and the +x axis is  

 

tan
–1

[(2.0 m)/(8.0 m)] = 14°. 

 

(d) ˆ ˆ ˆ ˆ ˆ ˆ(5.0i 2.0 j) m (3.0i 4.0 j) m (2.0 m) i (6.0 m)j .b a        
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(e) The magnitude of the difference vector b a  is 

2 2| | (2.0 m) ( 6.0 m) 6.3 m.b a      

 

(f) The angle between this vector and the +x axis is tan
-1

[( –6.0 m)/(2.0 m)] = –72°. The 

vector is 72° clockwise from the axis defined by î . 

 

17. Many of the operations are done efficiently on most modern graphical calculators 

using their built-in vector manipulation and rectangular  polar “shortcuts.” In this 

solution, we employ the “traditional” methods (such as Eq. 3-6). Where the length unit is 

not displayed, the unit meter should be understood. 

 

(a) Using unit-vector notation, 

 

ˆ ˆ(50 m)cos(30 )i (50 m) sin(30 ) j

ˆ ˆ(50 m)cos (195 ) i (50 m)sin (195 ) j

ˆ ˆ(50 m)cos (315 ) i (50 m)sin (315 ) j

ˆ ˆ(30.4 m) i (23.3 m) j.

a

b

c

a b c

   

   

   

   

 

 

The magnitude of this result is 2 2(30.4 m) ( 23.3 m) 38 m   . 

 

(b) The two possibilities presented by a simple calculation for the angle between the 

vector described in part (a) and the +x direction are tan
–1

[(–23.2 m)/(30.4 m)] = –37.5°, 

and 180° + ( –37.5°) = 142.5°.  The former possibility is the correct answer since the 

vector is in the fourth quadrant (indicated by the signs of its components). Thus, the angle 

is –37.5°, which is to say that it is 37.5° clockwise from the +x axis. This is equivalent to 

322.5° counterclockwise from +x. 

 

(c) We find  

 
ˆ ˆ ˆ ˆ[43.3 ( 48.3) 35.4] i [25 ( 12.9) ( 35.4)] j (127 i 2.60 j) ma b c              

 

in unit-vector notation. The magnitude of this result is 

 
2 2 2| | (127 m) (2.6 m) 1.30 10  m.a b c       

 

(d) The angle between the vector described in part (c) and the +x axis is 
1tan (2.6 m/127 m) 1.2   . 

 



 

 

91 

(e) Using unit-vector notation, 

d  is given by ˆ ˆ( 40.4 i 47.4 j) md a b c      , 

which has a magnitude of 2 2( 40.4 m) (47.4 m) 62 m.    

 

(f) The two possibilities presented by a simple calculation for the angle between the 

vector described in part (e) and the +x axis are 1tan (47.4 /( 40.4)) 50.0     , and 

180 ( 50.0 ) 130     . We choose the latter possibility as the correct one since it 

indicates that 

d  is in the second quadrant (indicated by the signs of its components). 

 

18. If we wish to use Eq. 3-5 in an unmodified fashion, we should note that the angle 

between 

C  and the +x axis is 180° + 20.0° = 200°. 

 

(a) The x and y components of 

B  are given by  

 

    Bx = Cx – Ax = (15.0 m) cos 200° – (12.0 m) cos 40° = –23.3 m, 

                By =Cy – Ay = (15.0 m) sin 200° – (12.0 m) sin 40° = –12.8 m.  

 

Consequently, its magnitude is | |B  2 2( 23.3 m) ( 12.8 m) 26.6 m    . 

 

(b) The two possibilities presented by a simple calculation for the angle between 

B  and 

the +x axis are tan
–1

[( –12.8 m)/( –23.3 m)] = 28.9°, and 180° + 28.9° = 209°. We choose 

the latter possibility as the correct one since it indicates that 

B  is in the third quadrant 

(indicated by the signs of its components). We note, too, that the answer can be 

equivalently stated as 151 .   

 

19. (a) With i
^
 directed forward and j

^
 directed leftward, the resultant is (5.00 i

^
 + 2.00 j

^
) m . 

The magnitude is given by the Pythagorean theorem: 2 2(5.00 m) (2.00 m)  = 5.385 m 

 5.39 m. 

 

(b) The angle is tan
1

(2.00/5.00)  21.8º (left of forward).  

 

20. The desired result is the displacement vector, in units of km, A  


  = (5.6 km), 90º 

(measured counterclockwise from the +x axis), or ˆ(5.6 km)jA  , where ĵ  is the unit 

vector along the positive y axis (north).  This consists of the sum of two displacements: 

during the whiteout, (7.8 km), 50B   , or 

 
ˆ ˆ ˆ ˆ(7.8 km)(cos50 i sin50  j) (5.01 km)i (5.98 km)jB        

 

and the unknown C .  Thus, A B C  .  
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(a) The desired displacement is given by ˆ ˆ( 5.01 km) i (0.38 km) jC A B     . The 

magnitude is 2 2( 5.01 km) ( 0.38 km) 5.0 km.     

 

(b) The angle is 1tan [( 0.38 km) /( 5.01 km)] 4.3 ,      south of due west. 

 

21. Reading carefully, we see that the (x, y) specifications for each “dart” are to be 

interpreted as ( , ) x y  descriptions of the corresponding displacement vectors. We 

combine the different parts of this problem into a single exposition.  

 

(a) Along the x axis, we have (with the centimeter unit understood) 

 

30.0 20.0 80.0 140,xb      

which gives bx = –70.0 cm. 

 

(b)  Along  the y axis we have 

 

40.0 70.0 70.0 20.0yc      

which yields cy = 80.0 cm.  

 

(c) The magnitude of the final location (–140 , –20.0) is 2 2( 140) ( 20.0) 141 cm.     

 

(d) Since the displacement is in the third quadrant, the angle of the overall displacement 

is given by  + 1tan [( 20.0) /( 140)]   or 188° counterclockwise from the +x axis (or 

172 counterclockwise from the +x axis).  

 

22. Angles are given in ‘standard’ fashion, so Eq. 3-5 applies directly. We use this to 

write the vectors in unit-vector notation before adding them. However, a very different-

looking approach using the special capabilities of most graphical calculators can be 

imagined. Wherever the length unit is not displayed in the solution below, the unit meter 

should be understood. 

 

(a) Allowing for the different angle units used in the problem statement, we arrive at 

 







   

E

F

G

H

E F G H

 

 

 

  

    

3 73 4 70

1 29 4 83

1 3 73

5 20 3 00

1 28 6 60

.  . 

.  . 

.45  . 

.  . 

.  . 

 i  j

 i  j

 i  j

 i  j

 i  j.

 

 

(b) The magnitude of the vector sum found in part (a) is 2 2(1.28 m) (6.60 m) 6.72 m  .  
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(c) Its angle measured counterclockwise from the +x axis is tan
–1

(6.60/1.28) = 79.0°. 

 

(d) Using the conversion factor  rad = 180  , 79.0° = 1.38 rad. 

 

23. The resultant (along the y axis, with the same magnitude as C  


 ) forms (along with 

C  


 ) a side of an isosceles triangle (with B  


 forming the base).  If the angle between C  


 

and the y axis is 1tan (3/ 4) 36.87    , then it should be clear that (referring to the 

magnitudes of the vectors) 2 sin( / 2)B C  . Thus (since C = 5.0) we find B = 3.2. 

 

24. As a vector addition problem, we express the situation (described in the problem 

statement) as  A  


  +  B  


 =  (3A) j
^
 , where A  



  = A i
^
  and B = 7.0 m.  Since i

^
   j

^
  we may 

use the Pythagorean theorem to express B in terms of the magnitudes of the other two 

vectors: 

       B = (3A)
2
 + A

2 
                    A = 

1

10
 B  =  2.2 m .  

25. The strategy is to find where the camel is ( C  


) by adding the two consecutive 

displacements described in the problem, and then finding the difference between that 

location and the oasis ( B  


).  Using the magnitude-angle notation 

 

  = (24  15 ) + (8.0  90 ) = (23.25  4.41 )C         

so 

   (25  0 ) (23.25  4.41 ) (2.5 45 )B C           

 

which is efficiently implemented using a vector-capable calculator in polar mode.  The 

distance is therefore 2.6 km. 

 

26. The vector equation is 
    
R A B C D    . Expressing 


B  and 


D  in unit-vector 

notation, we have ˆ ˆ(1.69i 3.63j) m  and ˆ ˆ( 2.87i 4.10j) m  , respectively. Where the 

length unit is not displayed in the solution below, the unit meter should be understood. 

 

(a) Adding corresponding components, we obtain ˆ ˆ( 3.18 m)i (4.72 m) jR    . 

 

(b) Using Eq. 3-6, the magnitude is  

 

 2 2| | ( 3.18 m) (4.72 m) 5.69 m.R      

(c) The angle is  

 1 4.72 m
tan 56.0   (with  axis).

3.18 m
x   

     
 
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If measured counterclockwise from +x-axis, the angle is then 180 56.0 124    . Thus, 

converting the result to polar coordinates, we obtain 

 

   318 4 72 569 124. , . .b g b g  
 

27. Solving the simultaneous equations yields the answers: 

 

(a) d1  
  

 =  4 d3  
  

 = 8 i
^
 + 16 j

^
 , and 

 

(b) d2  
  

 = d3  
  

 = 2 i
^
 + 4 j

^
. 

 

28. Let A  


  represent the first part of Beetle 1’s trip (0.50 m east or ˆ0.5 i ) and C  


 

represent the first part of Beetle 2’s trip intended voyage (1.6 m at 50º north of east).  For 

their respective second parts: B  


 is 0.80 m at 30º north of east and D  


 is the unknown. 

The final position of Beetle 1 is 

 
ˆ ˆ ˆ ˆ ˆ(0.5 m)i (0.8 m)(cos30  i sin30  j) (1.19 m) i (0.40 m) j.A B         

 

The equation relating these is A B C D   , where 

 
ˆ ˆ ˆ ˆ(1.60 m)(cos50.0 i sin50.0 j) (1.03 m)i (1.23 m)jC        

 

(a) We find ˆ ˆ(0.16 m)i ( 0.83 m)jD A B C      , and the magnitude is D = 0.84 m. 

 

(b) The angle is 1tan ( 0.83/ 0.16) 79     , which is interpreted to mean 79º south of 

east (or 11º east of south). 

 

29. Let 0 2.0 cml   be the length of each segment. The nest is located at the endpoint of 

segment w. 

 

(a) Using unit-vector notation, the displacement vector for point A is 

 

   0 0 0 0

0

ˆ ˆ ˆ ˆ ˆ ˆ(cos60 i sin60  j)  j (cos120 i sin120  j)  j

ˆ(2 3)  j.

Ad w v i h l l l l

l

             

 

 

 

Therefore, the magnitude of Ad  is | | (2 3)(2.0 cm) 7.5 cmAd    . 

 

(b) The angle of Ad  is 
1 1

, ,tan ( / ) tan ( ) 90A y A xd d       .  

 

(c) Similarly, the displacement for point B is  



 

 

95 

 

   0 0 0 0 0

0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(cos60 i sin 60  j)  j (cos60 i sin60  j) (cos30 i sin30  j)  i

ˆ ˆ(2 3 / 2) i (3/ 2 3)  j.

Bd w v j p o

l l l l l

l l

    

             

   

 

 

Therefore, the magnitude of 
Bd  is 

 

 2 2

0| | (2 3 / 2) (3/ 2 3) (2.0 cm)(4.3) 8.6 cmBd l      . 

 

(d) The direction of 
Bd  is  

,1 1 1

,

3/ 2 3
tan tan tan (1.13) 48

2 3 / 2

B y

B

B x

d

d
   

   
            

. 

 

30. Many of the operations are done efficiently on most modern graphical calculators 

using their built-in vector manipulation and rectangular  polar “shortcuts.” In this 

solution, we employ the “traditional” methods (such as Eq. 3-6). 

 

(a) The magnitude of 

a  is 2 2(4.0 m) ( 3.0 m) 5.0 m.a      

 

(b) The angle between 

a  and the +x axis is tan

–1 
[(–3.0 m)/(4.0 m)] = –37°. The vector is 

37° clockwise from the axis defined by i . 

 

(c) The magnitude of 

b  is 2 2(6.0 m) (8.0 m) 10 m.b     

 

(d) The angle between 

b  and the +x axis is tan

–1
[(8.0 m)/(6.0 m)] = 53°. 

 

(e) ˆ ˆ ˆ ˆ(4.0 m 6.0 m) i [( 3.0 m) 8.0 m]j (10 m)i (5.0 m)j.a b         The magnitude 

of this vector is 2 2| | (10 m) (5.0 m) 11 m;a b     we round to two significant 

figures in our results. 

 

(f) The angle between the vector described in part (e) and the +x axis is tan
–1

[(5.0 m)/(10 

m)] = 27°. 

 

(g) ˆ ˆ ˆ ˆ(6.0 m 4.0 m) i [8.0 m ( 3.0 m)] j (2.0 m) i (11 m) j.b a         The magnitude 

of this vector is 2 2| | (2.0 m) (11 m) 11 m,b a     which is, interestingly, the same 

result as in part (e) (exactly, not just to 2 significant figures) (this curious coincidence is 

made possible by the fact that 
 
a b   ). 
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(h) The angle between the vector described in part (g) and the +x axis is tan
–1

[(11 m)/(2.0 

m)] = 80°. 

 

(i) ˆ ˆ ˆ ˆ(4.0 m 6.0 m) i [( 3.0 m) 8.0 m] j ( 2.0 m) i ( 11 m) j.a b          The magnitude 

of this vector is  
2 2| | ( 2.0 m) ( 11 m) 11 ma b      . 

 

(j) The two possibilities presented by a simple calculation for the angle between the 

vector described in part (i) and the +x direction are tan
–1 

[(–11 m)/(–2.0 m)] = 80°, and 

180° + 80° = 260°. The latter possibility is the correct answer (see part (k) for a further 

observation related to this result). 

 

(k) Since 
   
a b b a   ( )( )1 , they point in opposite (anti-parallel) directions; the angle 

between them is 180°. 

 

31. (a) With a = 17.0 m and  = 56.0° we find ax = a cos  = 9.51 m. 

 

(b) Similarly, ay = a sin  = 14.1 m. 

 

(c) The angle relative to the new coordinate system is ´ = (56.0° – 18.0°) = 38.0°. Thus, 

cos 13.4 m.xa a     

 

(d) Similarly, ya  = a sin ´ = 10.5 m. 

 

32. (a) As can be seen from Figure 3-30, the point diametrically opposite the origin (0,0,0) 

has position vector a a a  i j k   and this is the vector along the “body diagonal.” 

 

(b) From the point (a, 0, 0), which corresponds to the position vector a î, the diametrically 

opposite point is (0, a, a) with the position vector a a j k . Thus, the vector along the 

line is the difference ˆ ˆ ˆi j ka a a   . 

 

(c) If the starting point is (0, a, 0) with the corresponding position vector  ̂ ja , the 

diametrically opposite point is (a, 0, a) with the position vector ˆ ˆi ka a . Thus, the 

vector along the line is the difference ˆ ˆ ˆi j ka a a  . 
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(d) If the starting point is (a, a, 0) with the corresponding position vector ˆ ˆ i   ja a , the 

diametrically opposite point is (0, 0, a) with the position vector k̂a . Thus, the vector 

along the line is the difference ˆ ˆ ˆi j ka a a   . 

 

(e) Consider the vector from the back lower left corner to the front upper right corner. It is 
ˆ ˆ ˆ i  j  k.a a a   We may think of it as the sum of the vector a i  parallel to the x axis and 

the vector a a j   k   perpendicular to the x axis. The tangent of the angle between the 

vector and the x axis is the perpendicular component divided by the parallel component. 

Since the magnitude of the perpendicular component is 2 2 2a a a   and the 

magnitude of the parallel component is a,  tan 2 / 2a a   . Thus    54 7. .  The 

angle between the vector and each of the other two adjacent sides (the y and z axes) is the 

same as is the angle between any of the other diagonal vectors and any of the cube sides 

adjacent to them. 

 

(f) The length of any of the diagonals is given by 2 2 2 3.a a a a    

 

33. Examining the figure, we see that  a  


 +  b  


 +  c  


 =  0,  where  a  


   b  


 . 



(a)   a  


   b  


 =  (3.0)(4.0)  = 12 since the angle between them is 90º. 

 

(b) Using the Right-Hand Rule, the vector a b points in the ˆ ˆ ˆi j k  , or the +z direction.  

 

(c) |  a  


   c  


 | = |  a  


  (  a  


    b  


 )| = |   a  


   b  


 )| =   

 

(d) The vector a b  points in the ˆ ˆ ˆi j k    , or the z direction. 

 

(e) |  b  


   c  


 | = |  b  


  (  a  


    b  


 )| =  |   b  


   a  


 ) | = |   a  


   b  


 ) | = 12.  

 

(f) The vector points in the +z direction, as in part (a).  

 

34. We apply Eq. 3-23 and Eq. 3-27. 

 

(a) ˆ = ( ) kx y y xa b a b a b   since all other terms vanish, due to the fact that neither 

a  nor 


b  have any z components. Consequently, we obtain ˆ ˆ[(3.0)(4.0) (5.0)(2.0)]k 2.0k  . 

 

(b)  x x y ya b a b a b    yields (3.0)(2.0) + (5.0)(4.0) = 26. 

 

(c) ˆ ˆ (3.0  2.0) i  (5.0  4.0) j  a b       (  + )  = (5.0) (2.0) + (9.0) (4.0) = 46a b b . 
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(d) Several approaches are available. In this solution, we will construct a b  unit-vector 

and “dot” it (take the scalar product of it) with 

a . In this case, we make the desired unit-

vector by 

2 2

ˆ ˆ2.0 i 4.0 jˆ .
| | (2.0) (4.0)

b
b

b


 


 

We therefore obtain 

2 2

(3.0)(2.0) (5.0)(4.0)ˆ 5.8.
(2.0) (4.0)

ba a b


   


 

 

35. (a) The scalar or dot product is (4.50)(7.30)cos(320º – 85.0º) = – 18.8 . 

 

(b) The vector or cross product is in the k
^
  direction (by the right-hand rule) with 

magnitude |(4.50)(7.30) sin(320º – 85.0º)| = 26.9 .   

 

36. First, we rewrite the given expression as 4( dplane  
      

 · dcross  
      

 )   where dplane  
      

 =  d1  
  

 + 

d2  
  

  and in the plane of 1d  and 2 ,d  and cross 1 2.d d d   Noting that dcross  
      

 is perpendicular 

to the plane of d1  
  

 and 2 ,d  we see that the answer must be 0 (the scalar or dot product of 

perpendicular vectors is zero). 

 

37. We apply Eq. 3-23 and Eq.3-27. If a vector-capable calculator is used, this makes a 

good exercise for getting familiar with those features. Here we briefly sketch the method. 

 

(a) We note that ˆ ˆ ˆ8.0i 5.0 j 6.0kb c     . Thus, 

 

(   ) = (3.0) ( 8.0)  (3.0)(5.0) ( 2.0) (6.0) = 21.a b c        

 

(b) We note that ˆ ˆ ˆ +  = 1.0i  2.0 j + 3.0k.b c   Thus,  

 

( ) (3.0) (1.0) (3.0) ( 2.0) ( 2.0) (3.0) 9.0.a b c          

(c) Finally,  
ˆ ˆ(  + ) [(3.0)(3.0) ( 2.0)( 2.0)] i [( 2.0)(1.0) (3.0)(3.0)] j

ˆ[(3.0)( 2.0) (3.0)(1.0)] k 

ˆ ˆ ˆ 5i  11j  9k

a b c       

  

  

. 

 

38. Using the fact that 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi j k,  j k i,  k i j       

we obtain 
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   ˆ ˆ ˆ ˆ ˆ ˆ2   2 2.00i 3.00j 4.00k 3.00i 4.00j 2.00k

ˆ ˆ ˆ44.0i 16.0j 34.0k.

A B       

  

 

Next, making use of  
ˆ ˆ ˆ ˆ ˆ ˆi i = j j = k k = 1

ˆ ˆ ˆ ˆ ˆ ˆi j = j k = k i = 0

  

  
 

we have  

     ˆ ˆ ˆ ˆ ˆ3 2 3 7.00 i 8.00 j 44.0 i 16.0 j 34.0k

3[(7.00) (44.0)+( 8.00) (16.0) (0) (34.0)] 540.

C A B      

   
 

 

39. From the definition of the dot product between A  and B , cosA B AB   , we have  

 

 cos
A B

AB



  

 

With 6.00A , 7.00B  and 14.0A B  , cos 0.333  , or 70.5 .    

 

40. The displacement vectors can be written as (in meters) 

 

 
1

2

ˆ ˆ ˆ ˆ(4.50 m)(cos63 j sin 63 k) (2.04 m) j (4.01 m)k

ˆ ˆ ˆ ˆ(1.40 m)(cos30 i sin30 k) (1.21 m) i (0.70 m)k .

d

d

     

     
 

 

(a) The dot product of 
1d and 

2d is 

 

 2

1 2
ˆ ˆ ˆ ˆ ˆ ˆ(2.04 j 4.01k) (1.21i 0.70k) = (4.01k) (0.70k) = 2.81 m .d d       

 

(b) The cross product of 1d and 2d is 

 

1 2

2

ˆ ˆ ˆ ˆ(2.04 j 4.01k) (1.21i 0.70k)

ˆ ˆ ˆ(2.04)(1.21)( k) + (2.04)(0.70)i (4.01)(1.21) j

ˆ ˆ ˆ(1.43 i 4.86 j 2.48k) m .

d d    

  

  

 

 

(c) The magnitudes of 1d and 2d are 

 

 

2 2

1

2 2

2

(2.04 m) (4.01 m) 4.50 m

(1.21 m) (0.70 m) 1.40 m.

d

d

  

  
 

 

Thus, the angle between the two vectors is 
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2

1 11 2

1 2

2.81 m
cos cos 63.5 .

(4.50 m)(1.40 m)

d d

d d
  

   
      

  
 

 

41. THINK The angle between two vectors can be calculated using the definition of 

scalar product. 

 

EXPRESS Since the scalar product of two vectors a  and b  is 

  

cos x x y y z za b ab a b a b a b     , 

the angle between them is given by  

 

1
        

cos cos .
x x y y z z x x y y z za b a b a b a b a b a b

ab ab
  

    
    

 
 

 

Once the magnitudes and components of the vectors are known, the angle  can be readily 

calculated.  

 

ANALYZE Given that ˆ ˆ ˆ(3.0)i (3.0) j (3.0)ka     and ˆ ˆ ˆ(2.0)i (1.0) j (3.0)kb    , the 

magnitudes of the vectors are 

 
2 2 2 2 2 2

2 2 2 2 2 2

 | | (3.0) (3.0) (3.0) 5.20

 | | (2.0) (1.0) (3.0) 3.74.

x y z

x y z

a a a a a

b b b b b

       

       

 

 

The angle between them is found to be  

 

(3.0) (2.0) (3.0) (1.0) (3.0) (3.0)
cos 0.926,

(5.20)(3.74)


 
   

or = 22°.  

 

 

LEARN As the name implies, the scalar product (or 

dot product) between two vectors is a scalar quantity. 

It can be regarded as the product between the 

magnitude of one of the vectors and the scalar 

component of the second vector along the direction 

of the first one, as illustrated below (see also in Fig. 

3-18 of the text):  

cos ( )( cos )a b ab a b     
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42. The two vectors are written as, in unit of meters, 

 

 1 1 1 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4.0i+5.0 j i j,    3.0i+4.0 j i jx y x yd d d d d d        

 

(a) The vector (cross) product gives  

 

 1 2 1 2 1 2
ˆ ˆ ˆ( )k [(4.0)(4.0) (5.0)( 3.0)]k=31 kx y y xd d d d d d       

 

(b) The scalar (dot) product gives  

 

 1 2 1 2 1 2 (4.0)( 3.0) (5.0)(4.0) 8.0.x x y yd d d d d d        

 

(c)  

 2 2 2

1 2 2 1 2 2( ) 8.0 ( 3.0) (4.0) 33.d d d d d d           

 

(d) Note that the magnitude of the d1 vector is 16+25  = 6.4.  Now, the dot product is 

(6.4)(5.0)cos = 8.  Dividing both sides by 32 and taking the inverse cosine yields  = 

75.5.  Therefore the component of the d1 vector along the direction of the d2 vector is 

6.4cos 1.6. 

 

43. THINK In this problem we are given three vectors a , b  and c on the xy-plane, and 

asked to calculate their components.  

 

EXPRESS From the figure, we note that 
 
c b   , which implies that the angle between 


c  

and the +x axis is  + 90°. In unit-vector notation, the three vectors can be written as 

î

ˆ ˆ ˆ ˆi j ( cos )i ( sin ) j

ˆ ˆ ˆ ˆi j [ cos( 90 )]i [ sin( 90 )]j.

x

x y

x y

a a

b b b b b

c c c c c

 

 



   

       

 

 

The above expressions allow us to evaluate the components of the vectors. 

 

ANALYZE  (a) The x-component of a  is ax = a cos 0° = a = 3.00 m. 

 

(b) Similarly, the y-componnet of  a  is ay = a sin 0° = 0. 

 

(c) The x-component of  b  is bx = b cos 30° = (4.00 m) cos 30° = 3.46 m,  

 

(d) and the y-component is by = b sin 30° = (4.00 m) sin 30° = 2.00 m. 

 

(e) The x-component of  c  is cx = c cos 120° = (10.0 m) cos 120° = –5.00 m,  
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(f) and the y-component is cy = c sin 30° = (10.0 m) sin 120° = 8.66 m. 

 

(g) The fact that c pa qb  implies 

 
ˆ ˆ ˆ ˆ ˆ ˆ ˆi j ( i) ( i j) ( )i jx y x x y x x yc c c p a q b b pa qb qb         

or  

,x x x y yc pa qb c qb   . 

Substituting the values found above, we have 

 

5.00 m (3.00 m) (3.46 m)

  8.66 m (2.00 m).

p q

q

  


 

 

Solving these equations, we find p = –6.67. 

 

(h) Similarly, q = 4.33 (note that it’s easiest to solve for q first). The numbers p and q 

have no units. 

 

LEARN This exercise shows that given two (non-parallel) vectors in two dimensions, the 

third vector can always be written as a linear combination of the first two.  

 

44. Applying Eq. 3-23, 
  
F qv B       (where q is a scalar) becomes 

 

     ˆ ˆ ˆ ˆ ˆ ˆi j k i j kx y z y z z y z x x z x y y xF F F q v B v B q v B v B q v B v B         

 

which — plugging in values — leads to three equalities: 

 

4.0 2 (4.0   6.0 )

20 2 (6.0   2.0 )

12 2 (2.0   4.0 )

z y

x z

y x

B B

B B

B B

 

  

 

 

 

Since we are told that Bx = By, the third equation leads to By = –3.0. Inserting this value 

into the first equation, we find Bz = –4.0. Thus, our answer is 

 
ˆ ˆ ˆ3.0 i 3.0 j 4.0 k.B      

 

45. The two vectors are given by 

 

 
ˆ ˆ ˆ ˆ8.00(cos130 i sin130 j) 5.14 i 6.13 j

ˆ ˆ ˆ ˆi j 7.72 i 9.20 j.x y

A

B B B

      

    
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(a) The dot product of 5A B is 

 

 
ˆ ˆ ˆ ˆ5 5( 5.14i 6.13 j) ( 7.72i 9.20 j) 5[( 5.14)( 7.72) (6.13)( 9.20)]

83.4.

A B           

 
 

 

(b) In unit vector notation 

 

 3ˆ ˆ ˆ ˆ ˆ ˆ4 3 12 12( 5.14i 6.13 j) ( 7.72i 9.20 j) 12(94.6k) 1.14 10 kA B A B             

 

(c) We note that the azimuthal angle is undefined for a vector along the z axis.  Thus, our 

result is “1.1410
3
,  not defined, and  = 0.” 

 

(d) Since A  


 is in the xy plane, and A B is perpendicular to that plane, then the answer is 

90. 

 

(e) Clearly, A  


 + 3.00 k
^
  = –5.14 i

^
 + 6.13 j

^
 + 3.00 k

^
. 

 

(f) The Pythagorean theorem yields magnitude  2 2 2(5.14) (6.13) (3.00) 8.54A    . 

The azimuthal angle is   = 130, just as it was in the problem statement ( A  


 is the 

projection onto the xy plane of the new vector created in part (e)).  The angle measured 

from the +z axis is  

 = cos
1

(3.00/8.54) = 69.4. 

 

46. The vectors are shown on the diagram. The x axis runs from west to east and the y 

axis runs from south to north. Then ax = 5.0 m, ay = 0,  

 

bx = –(4.0 m) sin 35° = –2.29 m,  by = (4.0 m) cos 35° = 3.28 m. 

 

 
 

(a) Let 
  
c a b  . Then = 5.00 m 2.29 m = 2.71 mx x xc a b    and 

 = 0 + 3.28 m = 3.28 my y yc a b  .  The magnitude of c is 

 

   
2 22 2 2.71m 3.28m 4.2 m.x yc c c      
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(b) The angle  that 
  
c a b   makes with the +x axis is 

 

1 1 3.28
tan tan 50.5 50 .

2.71

y

x

c

c
     
        

  
 

 

The second possibility ( = 50.4° + 180° = 230.4°) is rejected because it would point in a 

direction opposite to 

c . 

 

(c) The vector b a  is found by adding 
 
a b to . The result is shown on the diagram to 

the right. Let .c b a   The components are  

 

2.29 m 5.00 m 7.29 mx x xc b a        

                                     3.28 m.y y yc b a    

 

The magnitude of c  is 2 2 8.0mx yc c c   . 

 
 

(d) The tangent of the angle  that c  makes with the +x axis (east) is 

 

3.28 m
tan 4.50.

7.29 m

y

x

c

c
    


 

 

There are two solutions: –24.2° and 155.8°. As the diagram shows, the second solution is 

correct.  The vector  
  
c a b     is 24° north of west. 

 

47. Noting that the given 130 is measured counterclockwise from the +x axis, the two 

vectors can be written as  

 

 
ˆ ˆ ˆ ˆ8.00(cos130 i sin130 j) 5.14 i 6.13 j

ˆ ˆ ˆ ˆi j 7.72 i 9.20 j.x y

A

B B B

      

    
 

 

(a) The angle between the negative direction of the y axis ( ĵ ) and the direction of A  is 
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 1 1 1

2 2

ˆ( j) 6.13 6.13
cos cos cos 140 .

8.00( 5.14) (6.13)

A

A
   

      
                 

 

 

Alternatively, one may say that the y direction corresponds to an angle of 270, and the 

answer is simply given by 270130 = 140. 

 

(b) Since the y axis is in the xy plane, and A B  is perpendicular to that plane, then the 

answer is 90.0. 

 

(c) The vector can be simplified as 

 

 
ˆ ˆ ˆ ˆ ˆ ˆ( 3.00k) ( 5.14 i 6.13 j) ( 7.72 i 9.20 j 3.00k)

ˆ ˆ ˆ18.39i 15.42 j 94.61k

A B        

  
 

 

Its magnitude is ˆ| ( 3.00k) | 97.6.A B   The angle between the negative direction of the 

y axis ( ĵ ) and the direction of the above vector is 

 

1 15.42
cos 99.1 .

97.6
   
   

 
 

 

48. Where the length unit is not displayed, the unit meter is understood. 

 

(a) We first note that the magnitudes of the vectors are 2 2| | (3.2) (1.6) 3.58a a     

and 2 2| | (0.50) (4.5) 4.53b b    . Now, 

 

cos

(3.2) (0.50) (1.6) (4.5) (3.58)(4.53) cos

x x y ya b a b a b ab 



   

 
 

 

which leads to  = 57° (the inverse cosine is double-valued as is the inverse tangent, but 

we know this is the right solution since both vectors are in the same quadrant). 

 

(b) Since the angle (measured from +x) for 

a  is tan

–1
(1.6/3.2) = 26.6°, we know the angle 

for 

c  is 26.6° –90° = –63.4° (the other possibility, 26.6° + 90° would lead to a cx < 0). 

Therefore,  

cx = c cos (–63.4° )= (5.0)(0.45) = 2.2 m. 

 

(c) Also, cy = c sin (–63.4°) = (5.0)( –0.89) = – 4.5 m. 

 

(d) And we know the angle for 

d  to be 26.6° + 90° = 116.6°, which leads to  
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dx =  d cos(116.6°) = (5.0)( –0.45) = –2.2 m. 

 

(e) Finally, dy = d sin 116.6° = (5.0)(0.89) = 4.5 m. 

 

49. THINK This problem deals with the displacement of a sailboat. We want to find the 

displacement vector between two locations. 

 

EXPRESS The situation is depicted in the figure below. Let a  represent the first part of 

his actual voyage (50.0 km east) and c  represent the intended voyage (90.0 km north).  

We look for a vector b such that c a b  . 

 
 

ANALYZE (a) Using the Pythagorean theorem, the distance traveled by the sailboat is 

  
2 2(50.0 km) (90.0 km) 103 km.b     

 

(b) The direction is  

1 50.0 km
tan 29.1

90.0 km
   
   

 
 

 

west of north (which is equivalent to 60.9 north of due west).  

 

LEARN This problem could also be solved by first expressing the vectors in unit-vector 

notation: ˆ ˆ(50.0 km)i, (90.0 km)ja c  . This gives  

 

ˆ ˆ(50.0 km)i (90.0 km)jb c a     . 

The angle between b  and the +x-axis is  

 

1 90.0 km
tan 119.1

50.0 km
   
   

 
. 

 

The angle  is related to   by 90   . 
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50. The two vectors 
1d  and 

2d are given by 
1 1 2 2

ˆ ˆj and i.d d d d    

 

(a) The vector
2 2

ˆ/ 4 ( / 4) id d  points in the +x direction. The ¼ factor does not affect the 

result. 

 

(b) The vector
1 1

ˆ/( 4) ( / 4) jd d   points in the +y direction. The minus sign (with the “4”) 

does affect the direction: (–y) = + y. 

 

(c) 
1 2 0d d  since ˆ ˆi j = 0.  The two vectors are perpendicular to each other. 

 

(d) 
1 2 1 2( / 4) ( ) / 4 0d d d d    , as in part (c). 

 

(e) 1 2 1 2 1 2
ˆ ˆ ˆ( j i) = kd d d d d d    , in the +z-direction. 

 

(f) 2 1 2 1 1 2
ˆ ˆ ˆ(i j) = kd d d d d d     , in the z-direction. 

 

(g) The magnitude of the vector in (e) is 1 2d d . 

 

(h) The magnitude of the vector in (f) is 1 2d d . 

 

(i) Since 1 2 1 2
ˆ( / 4) ( / 4)kd d d d  , the magnitude is 1 2 / 4.d d  

 

(j) The direction of 1 2 1 2
ˆ( / 4) ( / 4)kd d d d  is in the +z-direction. 

 

51. Although we think of this as a three-dimensional movement, it is rendered effectively 

two-dimensional by referring measurements to its well-defined plane of the fault. 

 

(a) The magnitude of the net displacement is 

 

2 2 2 2| | | | | | (17.0 m) (22.0 m) 27.8m.AB AD AC


      

 

(b) The magnitude of the vertical component of AB


 is |AD| sin 52.0° = 13.4 m. 

 

52. The three vectors are 

 

1

2

3

ˆ ˆ ˆ4.0 i 5.0j 6.0k

ˆ ˆ ˆ1.0 i 2.0j+3.0k

ˆ ˆ ˆ4.0 i 3.0j+2.0k

d

d

d

  

  

 
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(a) 
1 2 3

ˆ ˆ ˆ(9.0 m)i (6.0 m)j ( 7.0 m)kr d d d       . 

 

(b) The magnitude of  r  


 is 2 2 2| | (9.0 m) (6.0 m) ( 7.0 m) 12.9 m.r       The angle 

between r  and the z-axis is given by 

 

 
k̂ 7.0 m

cos 0.543
| | 12.9 m

r

r


 
     

which implies 123 .    

 

(c) The component of 
1d along the direction of 

2d is given by 1 1û= cosd d d    where 

 is the angle between 
1d and 

2d , and û is the unit vector in the direction of 
2d . Using 

the properties of the scalar (dot) product, we have 

 

 1 2 1 2
1

2 2 2
1 2 2

(4.0)( 1.0) (5.0)(2.0) ( 6.0)(3.0) 12
=   3.2 m.

14( 1.0) (2.0) (3.0)

d d d d
d d

d d d

       
     

   
 

 

(d) Now we are looking for d such that 2 2 2 2 2 2

1 (4.0) (5.0) ( 6.0) 77d d d       . 

From (c), we have 

 

 2 277 m ( 3.2 m) 8.2 m.d      

  

This gives the magnitude of the perpendicular component (and is consistent with what 

one would get using Eq. 3-24), but if more information (such as the direction, or a full 

specification in terms of unit vectors) is sought then more computation is needed. 

 

53. THINK This problem involves finding scalar and vector products between two 

vectors a  and b .  

 

EXPRESS We apply Eqs. 3-20 and 3-24 to calculate the scalar and vector products 

between two vectors: 

cos

| | sin .

a b ab

a b ab





 

 
 

 

ANALYZE (a) Given that | | 10a a  , | | 6.0b b   and 60   , the scalar (dot) 

product of a  and b  is  

cos (10) (6.0) cos 60 30.a b ab       

 

(b) Similarly, the magnitude of the vector (cross) product of the two vectors is  
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 | | sin (10) (6.0) sin 60 52.a b ab       

 

LEARN When two vectors a and b are parallel ( 0  ), their scalar and vector products 

are cosa b ab ab    and | | sin 0a b ab    , respectively. However, when they are 

perpendicular ( 90   ), we have cos 0a b ab     and | | sina b ab ab   . 

 

54. From the figure, it is clear that  a  


 +  b  


 +  c  


 =  0,  where  a  


   b  


 .   

 

(a)  a  


 ·  b  


 =  0 since the angle between them is 90º. 

 

(b)  a  


 ·  c  


 =  a  


 · (  a  


    b  


 )  =    a  


 
2
  =    

 

(c) Similarly,  b  


 ·  c  


 =  9.0 . 

 

55. We choose +x east and +y north and measure all angles in the “standard” way 

(positive ones are counterclockwise from +x). Thus, vector 

d1  has magnitude d1 = 4.00 m 

(with the unit meter) and direction 1 = 225°. Also, 

d2  has magnitude d2 = 5.00 m and 

direction 2 = 0°, and vector 

d3  has magnitude d3 = 6.00 m and direction 3 = 60°. 

 

(a) The x-component of 

d1  is d1x = d1 cos 1 = –2.83 m. 

 

(b) The y-component of 

d1  is d1y = d1 sin 1 = –2.83 m. 

 

(c) The x-component of 

d2  is d2x = d2 cos 2 = 5.00 m. 

 

(d) The y-component of 

d2  is d2y = d2 sin 2 = 0. 

 

(e) The x-component of 

d3  is d3x = d3 cos 3 = 3.00 m. 

 

(f) The y-component of 

d3  is d3y = d3 sin 3 = 5.20 m. 

 

(g) The sum of x-components is  

 

dx = d1x + d2x + d3x  = –2.83 m + 5.00 m + 3.00 m = 5.17 m. 

 

(h) The sum of y-components is  

 

dy = d1y + d2y + d3y  = –2.83 m + 0 + 5.20 m = 2.37 m. 

 

(i) The magnitude of the resultant displacement is 
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2 2 2 2(5.17 m) (2.37 m) 5.69 m.x yd d d      

 

(j) And its angle is  

 = tan
–1

 (2.37/5.17) = 24.6°, 

 

which (recalling our coordinate choices) means it points at about 25° north of east. 

 

(k) and (l) This new displacement (the direct line home) when vectorially added to the 

previous (net) displacement must give zero. Thus, the new displacement is the negative, 

or opposite, of the previous (net) displacement. That is, it has the same magnitude (5.69 

m) but points in the opposite direction (25° south of west). 

 

56. If we wish to use Eq. 3-5 directly, we should note that the angles for , , andQ R S  are 

100°, 250°, and 310°, respectively, if they are measured counterclockwise from the +x 

axis. 

 

(a) Using unit-vector notation, with the unit meter understood, we have 

 

   

   

   

   

ˆ ˆ10.0 cos 25.0 i 10.0sin 25.0 j

ˆ ˆ12.0cos 100 i 12.0sin 100 j

ˆ ˆ8.00cos 250 i 8.00sin 250 j

ˆ ˆ9.00cos 310 i 9.00sin 310 j

ˆ ˆ(10.0 m)i (1.63 m) j

P

Q

R

S

P Q R S

   

   

   

   

    

 

 

(b) The magnitude of the vector sum is 2 2(10.0 m) (1.63 m) 10.2 m .    

 

(c) The angle is tan
–1

 (1.63 m/10.0 m)  9.24° measured counterclockwise from the +x 

axis.  

 

57. THINK This problem deals with addition and subtraction of two vectors. 

 

EXPRESS From the problem statement, we have 

 

ˆ ˆ ˆ ˆ(6.0)i (1.0) j, (4.0)i (7.0) jA B A B        

 

Solving the simultaneous equations gives A  and B . 
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ANALYZE Adding the above equations and dividing by 2 leads to ˆ ˆ(1.0)i (4.0) jA   . 

The magnitude of A  is  
2 2 2 2| | (1.0) (4.0) 4.1x yA A A A       

 

 

LEARN The vector B  is ˆ ˆ(5.0)i ( 3.0) jB    , 

and its magnitude is  

 
2 2 2 2| | (5.0) ( 3.0) 5.8x yB B B B       . 

 

The results are summarized in the figure to the 

right. 

 

 
 

58. The vector can be written as ˆ(2.5 m)jd  , where we have taken ĵ to be the unit 

vector pointing north. 

 

(a) The magnitude of the vector 4.0a d  is (4.0)(2.5 m) = 10 m. 

 

(b) The direction of the vector 
 
a d =  4.0  is the same as the direction of 


d  (north). 

 

(c) The magnitude of the vector  = 3.0c d  is (3.0)(2.5 m) = 7.5 m. 

 

(d) The direction of the vector  = 3.0c d  is the opposite of the direction of 

d . Thus, the 

direction of 

c  is south. 

 

59. Reference to Figure 3-18 (and the accompanying material in that section) is helpful. If 

we convert 

B  to the magnitude-angle notation (as 


A  already is) we have 

B      14 4 337. .b g  (appropriate notation especially if we are using a vector capable 

calculator in polar mode). Where the length unit is not displayed in the solution, the unit 

meter should be understood. In the magnitude-angle notation, rotating the axis by +20° 

amounts to subtracting that angle from the angles previously specified. Thus, 

A       12 0 40 0. .b g  and 


B       ( . . )14 4 137 , where the ‘prime’ notation indicates that 

the description is in terms of the new coordinates. Converting these results to (x, y) 

representations, we obtain 

 

(a) ˆ ˆ(9.19 m) i (7.71 m) j .A     
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(b) Similarly, ˆ ˆ(14.0 m) i (3.41 m) jB    . 

 

60. The two vectors can be found be solving the simultaneous equations. 

 

(a) If we add the equations, we obtain 2 6
 
a c , which leads to ˆ ˆ3 9 i 12 ja c   . 

 

(b) Plugging this result back in, we find 
 
b c  3 4 i j . 

 

61. The three vectors given are 

 

ˆ ˆ ˆ  5.0 i 4.0 j 6.0 k
ˆ ˆ ˆ2.0 i 2.0 j 3.0 k

ˆ ˆ ˆ  4.0 i 3.0 j 2.0 k

a

b

c

  

   

  

 

(a) The vector equation r a b c    is  

 

 
ˆ ˆ ˆ[5.0 ( 2.0) 4.0]i (4.0 2.0 3.0) j ( 6.0 3.0 2.0)k

ˆ ˆ ˆ=11i+5.0j 7.0k.

r           


 

 

(b) We find the angle from +z by “dotting” (taking the scalar product) 

r  with k.  Noting 

that  
2 2 2 = | |  = (11.0)  + (5.0)  + ( 7.0)  = 14,r r   

 

Eq. 3-20 with Eq. 3-23 leads to 

 

  k 7.0 14 1 cos     120 .r          

 

(c) To find the component of a vector in a certain direction, it is efficient to “dot” it (take 

the scalar product of it) with a unit-vector in that direction. In this case, we make the 

desired unit-vector by 

 
2 2 2

ˆ ˆ ˆ2.0i+2.0j+3.0kˆ .
| | 2.0 (2.0) (3.0)

b
b

b


 

  

 

We therefore obtain 

 

        

 
2 2 2

5.0 2.0 4.0 2.0 6.0 3.0ˆ 4.9 .

2.0 (2.0) (3.0)
ba a b

   
    

  

 

 

(d) One approach (if all we require is the magnitude) is to use the vector cross product, as 

the problem suggests; another (which supplies more information) is to subtract the result 

in part (c) (multiplied by b ) from 

a . We briefly illustrate both methods. We note that if 
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a cos  (where  is the angle between 

a  and 


b ) gives ab (the component along b ) then 

we expect a sin  to yield the orthogonal component: 

 

a
a b

b
sin . 




 

7 3  

 

(alternatively, one might compute  form part (c) and proceed more directly). The second 

method proceeds as follows: 

 

a a bb        

 

 . .  . .  . . 

 .  . 

50 2 35 4 0 2 35 6 0 353

6 35 2 47

b g b gc h b g b gc hi j + k

= 2.65i j k
 

 

This describes the perpendicular part of 

a  completely. To find the magnitude of this part, 

we compute 
2 2 2(2.65) (6.35) ( 2.47) 7.3     

 

which agrees with the first method. 

 

62. We choose +x east and +y north and measure all angles in the “standard” way 

(positive ones counterclockwise from +x, negative ones clockwise). Thus, vector 

d1  has 

magnitude d1 = 3.66 (with the unit meter and three significant figures assumed) and 

direction 1 = 90°. Also, 

d2  has magnitude d2 = 1.83 and direction 2 = –45°, and vector 


d3  has magnitude d3 = 0.91 and direction 3 = –135°. We add the x and y components, 

respectively: 

1 1 2 2 3 3

1 1 2 2 3 3

:  cos cos cos 0.65  m

:  sin sin sin 1.7 m.

x d d d

y d d d

  

  

  

  
 

 

(a) The magnitude of the direct displacement (the vector sum 
  
d d d1 2 3 +   +  ) is 

2 2(0.65 m) (1.7 m) 1.8 m.   

 

(b) The angle (understood in the sense described above) is tan
–1

 (1.7/0.65) = 69°. That is, 

the first putt must aim in the direction 69° north of east. 

 

63. The three vectors are 

 

1

2

3

ˆ ˆ ˆ3.0 i 3.0 j 2.0k

ˆ ˆ ˆ2.0 i 4.0 j 2.0k

ˆ ˆ ˆ2.0 i 3.0 j 1.0k.

d

d

d

   

   

  
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(a) Since 
2 3

ˆ ˆ ˆ0i 1.0 j 3.0kd d    , we have 

 

 1 2 3

2

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( 3.0 i 3.0 j 2.0k) (0 i 1.0 j 3.0k)

0 3.0 + 6.0 3.0 m .

d d d        

  
 

 

(b) Using Eq. 3-27, we obtain 
2 3

ˆ ˆ ˆ10i 6.0 j 2.0k.d d      Thus, 

 

1 2 3

3

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( 3.0 i 3.0 j 2.0k) ( 10i 6.0 j 2.0k)

30 18 4.0 52 m .

d d d         

   
 

 

(c) We found d2  
  

 + d3  
  

  in part (a). Use of Eq. 3-27 then leads to 

 

1 2 3

2

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( 3.0 i 3.0 j 2.0k) (0 i 1.0 j 3.0k)

ˆ ˆ ˆ= (11i +9.0 j+3.0k ) m

d d d        
 

 

64. THINK This problem deals with the displacement and distance traveled by a fly from 

one corner of a room to the diagonally opposite corner. The displacement vector is three-

dimensional.  

 

EXPRESS The displacement of the fly is illustrated in the figure below: 

 

  

A coordinate system such as the one shown (above right) allows us to express the 

displacement as a three-dimensional vector.  

 

ANALYZE (a) The magnitude of the displacement from one corner to the diagonally 

opposite corner is  
2 2 2| |d d w l h     

 

Substituting the values given, we obtain 

  
2 2 2 2 2 2| | (3.70 m) (4.30 m) (3.00 m) 6.42 m.d d w l h         
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(b) The displacement vector is along the straight line from the beginning to the end point 

of the trip.  Since a straight line is the shortest distance between two points, the length of 

the path cannot be less than d, the magnitude of the displacement. 

 

(c) The length of the path of the fly can be greater than d, however. The fly might, for 

example, crawl along the edges of the room. Its displacement would be the same but the 

path length would be 11.0 m.w h    

 

(d) The path length is the same as the magnitude of the displacement if the fly flies along 

the displacement vector. 

 

(e) We take the x axis to be out of the page, the y axis to be to the right, and the z axis to 

be upward (as shown in the figure above).  Then the x component of the displacement is 

w = 3.70 m, the y component of the displacement is 4.30 m, and the z component is 

3.00 m . Thus, the displacement vector can be written as 

 
ˆ ˆ ˆ(3.70 m) i (4.30 m) j (3.00 m)k.d     

 

(f) Suppose the path of the fly is as shown by the dotted lines on the diagram (below left). 

Pretend there is a hinge where the front wall of the room joins the floor and lay the wall 

down as shown (above right). 

 
 

The shortest walking distance between the lower left back of the room and the upper right 

front corner is the dotted straight line shown on the diagram. Its length is 

 

   
2 22 2

min 3.70 m 3.00 m (4.30 m) 7.96 m.s w h l        

 

LEARN To show that the shortest path is indeed given by mins , we write the length of the 

path as  

 2 2 2 2( )s y w l y h     . 

  

The condition for minimum is given by  
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2 2 2 2
0

( )

ds y l y

dy y w l y h


  

  
. 

 

A little algebra shows that the condition is satisfied when /( )y lw w h  , which gives 

 

2 2
2 2 2 2

min 2 2
1 1 ( )

( ) ( )

l l
s w h w h l

w h w h

   
         

    
. 

 

Any other path would be longer than 7.96 m. 

 

65. (a) This is one example of an answer: (40 i
^
 – 20 j

^
 + 25 k

^
) m, with i

^
 directed anti-

parallel to the first path, j
^
 directed anti-parallel to the second path, and k

^
 directed upward 

(in order to have a right-handed coordinate system).  Other examples include (40 i
^
 + 20 j

^
 

+ 25 k
^
 ) m and (40i

^
 – 20 j

^
 – 25 k

^
 ) m (with slightly different interpretations for the unit 

vectors).  Note that the product of the components is positive in each example. 

 

(b) Using the Pythagorean theorem, we have 2 2(40 m) (20 m)  = 44.7 m  45 m.  

 

66. The vectors can be written as ˆ ˆi and  ja a b b   where ,  0.a b   

 

(a) We are asked to consider 

b

d

b

d

F
HG
I
KJ j  

 

in the case d > 0. Since the coefficient of j  is positive, then the vector points in the +y 

direction. 

 

(b) If, however, d < 0, then the coefficient is negative and the vector points in the –y 

direction. 

 

(c) Since cos 90° = 0, then   0a b  , using Eq. 3-20. 

 

(d) Since 

b d/  is along the y axis, then (by the same reasoning as in the previous part) 

( / ) 0a b d  . 

 

(e) By the right-hand rule, 
 
a b    points in the +z-direction. 

 

(f) By the same rule, 
 
b a    points in the –z-direction. We note that b a a b     is true 

in this case and quite generally. 
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(g) Since sin 90° = 1, Eq. 3-24 gives | |a b ab   where a is the magnitude of 

a .  

 

(h) Also, |   | |   |a b b a ab    . 

 

(i) With d > 0, we find that ( / )a b d  has magnitude ab/d. 

 

(j) The vector ( / )a b d  points in the +z direction. 

 

67. We note that the set of choices for unit vector directions has correct orientation (for a 

right-handed coordinate system).  Students sometimes confuse “north” with “up”, so it 

might be necessary to emphasize that these are being treated as the mutually 

perpendicular directions of our real world, not just some “on the paper” or “on the 

blackboard” representation of it.  Once the terminology is clear, these questions are basic 

to the definitions of the scalar (dot) and vector (cross) products. 

  

(a) ˆ ˆi k=0  since ˆ ˆi k  

 

(b) ˆ ˆ( k) ( j)=0    since ˆ ˆk j . 

 

(c) ˆ ˆj ( j)= 1.    
       

(d) ˆ ˆ ˆk j= i (west).   

 

(e) ˆ ˆ ˆ( i) ( j)= k (upward).     

 

(f) ˆ ˆ ˆ( k) ( j)= i (west).     

 

68. A sketch of the displacements is shown. The resultant (not shown) would be a straight 

line from start (Bank) to finish (Walpole). With a careful drawing, one should find that 

the resultant vector has length 29.5 km at 35° west of south. 

 

 
 

69. The point P is displaced vertically by 2R, where R is the radius of the wheel. It is 

displaced horizontally by half the circumference of the wheel, or R. Since R = 0.450 m, 
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the horizontal component of the displacement is 1.414 m and the vertical component of 

the displacement is 0.900 m. If the x axis is horizontal and the y axis is vertical, the vector 

displacement (in meters) is  ˆ ˆ1.414 i + 0.900 j .r   The displacement has a magnitude of 

 

   
2 2 22 4 1.68mr R R R        

and an angle of 

1 12 2
tan tan 32.5

R

R 

    
     

   
 

 

above the floor. In physics there are no “exact” measurements, yet that angle computation 

seemed to yield something exact. However, there has to be some uncertainty in the 

observation that the wheel rolled half of a revolution, which introduces some 

indefiniteness in our result. 

 

70. The diagram shows the displacement vectors for the two segments of her walk, 

labeled 

A  and 


B , and the total (“final”) displacement vector, labeled 


r . We take east to 

be the +x direction and north to be the +y direction. We observe that the angle between 

A  

and the x axis is 60°. Where the units are not explicitly shown, the distances are 

understood to be in meters. Thus, the components of 

A  are Ax = 250 cos60° = 125 and Ay 

= 250 sin60° = 216.5. The components of 

B  are Bx = 175 and By = 0. The components of 

the total displacement are  

 

          rx = Ax + Bx = 125 + 175 = 300  

ry = Ay + By = 216.5 + 0 = 216.5. 

 

 
(a) The magnitude of the resultant displacement is 

 
2 2 2 2| | (300 m) (216.5 m) 370m.x yr r r      

 

(b) The angle the resultant displacement makes with the +x axis is 

 

1 1 216.5 m
tan tan 36 .

300 m

y

x

r

r

    
     

  
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The direction is 36north of due east. 

 

(c) The total distance walked is d = 250 m + 175 m = 425 m. 

 

(d) The total distance walked is greater than the magnitude of the resultant displacement. 

The diagram shows why: 

A  and 


B  are not collinear. 

 

71. The vector d (measured in meters) can be represented as ˆ(3.0 m)( j)d   , where ĵ  

is the unit vector pointing south. Therefore, ˆ ˆ5.0 5.0( 3.0 m j) ( 15 m) j.d      

 

(a) The positive scalar factor (5.0) affects the magnitude but not the direction. The 

magnitude of 5.0d is 15 m. 

 

(b) The new direction of 5d is the same as the old: south. 

 

The vector 2.0d can be written as ˆ2.0 (6.0 m) j.d   

 

(c) The absolute value of the scalar factor (|2.0| = 2.0) affects the magnitude.  The new 

magnitude is 6.0 m. 

 

(d) The minus sign carried by this scalar factor reverses the direction, so the new direction 

is ĵ , or north. 

 

72. The ant’s trip consists of three displacements: 

 

 

1

2

3

ˆ ˆ ˆ ˆ(0.40 m)(cos 225 i sin 225 j) ( 0.28 m) i ( 0.28 m) j

ˆ(0.50 m) i

ˆ ˆ ˆ ˆ(0.60 m)(cos60 i sin 60 j) (0.30 m) i (0.52 m) j,

d

d

d

       



     

 

 

where the angle is measured with respect to the positive x axis. We have taken the 

positive x and y directions to correspond to east and north, respectively. 

 

(a) The x component of 1d  is 1 (0.40 m)cos225 0.28 mxd     . 

 

(b) The y component of 1d  is 
1 (0.40 m)sin 225 0.28 myd     . 

 

(c) The x component of 2d  is 2 0.50 mxd  . 

 

(d) The y component of 2d  is 
2 0 myd  . 
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(e) The x component of 
3d  is 

3 (0.60 m)cos60 0.30  mxd    . 

 

(f) The y component of 
3d  is 

3 (0.60 m)sin60 0.52  myd    . 

 

(g) The x component of the net displacement netd  is 

 

net, 1 2 3 ( 0.28 m) (0.50 m) (0.30 m) 0.52 m.x x x xd d d d         

 

(h) The y component of the net displacement netd  is 

 

net, 1 2 3 ( 0.28 m) (0 m) (0.52 m) 0.24 m.y y y yd d d d         

 

(i) The magnitude of the net displacement is 

 
2 2 2 2

net net, net, (0.52 m) (0.24 m) 0.57 m.x yd d d      

 

(j) The direction of the net displacement is 

 

 
net,1 1

net,

0.24 m
tan tan 25   (north of east)

0.52 m

y

x

d

d
  

   
          

 

 

If the ant has to return directly to the starting point, the displacement would be netd . 

(k) The distance the ant has to travel is net| | 0.57 m.d   

 

(l) The direction the ant has to travel is 25  (south of west) . 

 

73. We apply Eq. 3-23 and Eq. 3-27. 

 

(a) ˆ( ) kx y y xa b a b a b    since all other terms vanish, due to the fact that neither 

a  nor 


b  have any z components. Consequently, we obtain ˆ ˆ((3.0)(4.0) (5.0)(2.0))k 2.0k  . 

 

(b)  + x x y ya b a b a b   yields (3.0)(2.0) + (5.0)(4.0) = 26. 

 

(c) ˆ ˆ   = (3.0  2.0) i  (5.0  4.0) j  a b      (  + )  = (5.0) (2.0) + (9.0) (4.0) = 46a b b . 

 

(d) Several approaches are available. In this solution, we will construct a b  unit-vector 

and “dot” it (take the scalar product of it) with 

a . In this case, we make the desired unit-

vector by 
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2 2

ˆ ˆ2.0 i 4.0 jˆ .
| | (2.0) (4.0)

b
b

b


 


 

We therefore obtain 

2 2

(3.0)(2.0) (5.0)(4.0)ˆ 5.81.
(2.0) (4.0)

ba a b


   


 

 

74. The two vectors a and b are given by 

 

 

ˆ ˆ ˆ ˆ3.20(cos63  j sin 63  k) 1.45 j 2.85 k

ˆ ˆ ˆ ˆ1.40(cos 48  i sin 48  k) 0.937i 1.04 k

a

b

     

     

 

 

The components of 

a  are ax = 0, ay = 3.20 cos 63° = 1.45, and az = 3.20 sin 63° = 2.85. 

The components of 

b  are bx = 1.40 cos 48° = 0.937, by = 0, and bz = 1.40 sin 48° = 1.04. 

 

(a) The scalar (dot) product is therefore 

 
 
a b a b a b a bx x y y z z       0 0 937 145 0 2 85 104 2 97b gb g b gb g b gb g. . . . . .  

 

(b) The vector (cross) product is 

 

     

            

ˆ ˆ ˆi + a j + k

ˆ ˆ ˆ1.45 1.04 0 i + 2.85 0.937 0 j 0 1.45 0.937 k

ˆ ˆ ˆ1.51i + 2.67 j 1.36k.

y z z y z x x z x y y xa b a b a b b a b a b a b    

    

 

 

 

(c) The angle  between 

a  and 


b  is given by 

 

  
1 1 2.97

cos cos 48.5 .
3.20 1.40

a b

ab
  

  
       

   

 

 

75. We orient i eastward, j  northward, and k  upward, and use the following fundamental 

products: 

ˆ ˆ ˆ ˆ ˆi  j   j i     k
ˆ ˆ ˆ ˆ ˆj  k  k j    i

ˆ ˆ ˆ ˆ ˆk  i  i k    j

    

    

    

 

 

 (a) “north cross west” = ˆ ˆ ˆj ( i) k    = “up.” 
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(b) “down dot south” = ˆ ˆ( k) ( j) 0    . 

 

(c) “east cross up” = ˆ ˆ ˆi (k) j    = “south.” 

 

(d) “west dot west” = ˆ ˆ( i) ( i ) 1    . 

 

(e) “south cross south” = ˆ ˆ( j) ( j) 0    . 

 

76. Let A denote the magnitude of 

A ; similarly for the other vectors. The vector equation 

is 
  
A B C   =    where B = 8.0 m and C = 2A. We are also told that the angle (measured 

in the ‘standard’ sense) for 

A  is 0° and the angle for 


C  is 90°, which makes this a right 

triangle (when drawn in a “head-to-tail” fashion) where B is the size of the hypotenuse. 

Using the Pythagorean theorem, 

B A C A A    2 2 2 28 0 4.  

which leads to A =  8 / 5 =  3.6 m.  

 

77. We orient i eastward, j  northward, and k  upward.  

 

(a) The displacement is ˆ ˆ ˆ(1300 m)i (2200 m)j ( 410 m)kd     . 

 

(b) The displacement for the return portion is ˆ ˆ(1300 m)i (2200 m)jd    and the 

magnitude is 2 2 3( 1300 m) ( 2200 m) 2.56 10 md       . 

 

The net displacement is zero since his final position matches his initial position. 

 

78. Let 
  
c b a      . Then the magnitude of 


c  is c = ab sin . Since 


c  is perpendicular 

to 

a  the magnitude of 

 
a c    is ac. The magnitude of ( )a b a   is consequently  

 
2| ( ) | sina b a ac a b     . 

Substituting the values given, we obtain 

 
2 2| (  ) | sin (3.90) (2.70)sin63.0 36.6a b a a b       . 

 

79. The area of a triangle is half the product of its base and altitude. The base is the side 

formed by vector 

a.  Then the altitude is b sin  and the area is 1 1

2 2
sin | | .A ab a b    

Substituting the values given, we have 

 

1 1
sin (4.3)(5.4)sin 46 8.4

2 2
A ab     . 
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Chapter 4 
 

 

1. (a) The magnitude of 

r  is 

 
2 2 2| | (5.0 m) ( 3.0 m) (2.0 m) 6.2 m.r       

 

(b) A sketch is shown. The coordinate values are in 

meters. 

 

2. (a) The position vector, according to Eq. 4-1, is ˆ ˆ= ( 5.0 m) i + (8.0 m)jr  . 

 

(b) The magnitude is 2 2 2 2 2 2| |  +  +  ( 5.0 m) (8.0 m) (0 m)  9.4 m.r x y z       

 

(c) Many calculators have polar   rectangular conversion capabilities that make this 

computation more efficient than what is shown below. Noting that the vector lies in the 

xy plane and using Eq. 3-6, we obtain: 

 

1 8.0 m
tan 58   or  122

5.0 m
   
     

 
 

 

where the latter possibility (122° measured counterclockwise from the +x 

direction) is chosen since the signs of the components imply the vector is 

in the second quadrant. 

 

(d) The sketch is shown to the right. The vector is 122° counterclockwise 

from the +x direction.  

 

(e) The displacement is r r r   where 

r  is given in part (a) and 

ˆ (3.0 m)i.r  Therefore, ˆ ˆ(8.0 m)i (8.0 m)jr   . 

 

(f) The magnitude of the displacement is 

 
2 2| | (8.0 m) ( 8.0 m) 11 m.r      

 

(g) The angle for the displacement, using Eq. 3-6, is  

 

1 8.0 m
tan  = 45   or  135

8.0 m

  
   

 
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where we choose the former possibility (45°, or 45° measured clockwise from +x) since 

the signs of the components imply the vector is in the fourth quadrant. A sketch of r  is 

shown on the right. 

 

3. The initial position vector  

ro  satisfies 

  
r r r o  , which results in 

 

o
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(3.0j 4.0k)m (2.0i 3.0j 6.0k)m ( 2.0 m) i (6.0 m) j ( 10 m)kr r r            . 

 

4. We choose a coordinate system with origin at the clock center and +x rightward 

(toward the “3:00” position) and +y upward (toward “12:00”). 

 

(a) In unit-vector notation, we have 
1 2

ˆ ˆ(10 cm)i  and  ( 10 cm)j.r r   Thus, Eq. 4-2 gives 

 

2 1
ˆ ˆ( 10 cm)i ( 10 cm)j.r r r        

 

The magnitude is given by 2 2| | ( 10 cm) ( 10 cm) 14 cm.r       

 

(b) Using Eq. 3-6, the angle is  

 

 1 10 cm
tan 45  or 135 .

10 cm
   
     

 
 

 

We choose 135  since the desired angle is in the third quadrant. In terms of the 

magnitude-angle notation, one may write 

 

2 1
ˆ ˆ( 10 cm)i ( 10 cm)j (14cm 135 ).r r r            

 

(c) In this case, we have
1 2

ˆ ˆ ˆ( 10 cm)j and (10 cm)j, and  (20 cm)j.r r r      Thus, 

| | 20 cm.r   

 

(d) Using Eq. 3-6, the angle is given by 

 

1 20 cm
tan 90 .

0 cm
   
   

 
 

 

(e) In a full-hour sweep, the hand returns to its starting position, and the displacement is 

zero. 

 

(f) The corresponding angle for a full-hour sweep is also zero.  
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5. THINK This problem deals with the motion of a train in two dimensions. The entire 

trip consists of three parts, and we’re interested in the overall average velocity. 

 

EXPRESS The average velocity of the entire trip is given by Eq. 4-8, avg / ,v r t   

where the total displacement 
1 2 3r r r r      is the sum of three displacements (each 

result of a constant velocity during a given time), and 1 2 3t t t t      is the total 

amount of time for the trip. We use a coordinate system with +x for East and +y for North.  

 

ANALYZE (a) In unit-vector notation, the first displacement is given by 

 

1

km 40.0 min ˆ ˆ = 60.0 i = (40.0 km)i.
h 60 min/h

r
   

    
   

 

 

The second displacement has a magnitude of 20.0 minkm
h 60 min/h

(60.0 ) 20.0 km,) (   and its 

direction is 40° north of east. Therefore, 

 

2
ˆ ˆ ˆ ˆ(20.0 km) cos(40.0 ) i (20.0 km) sin(40.0 ) j (15.3 km) i (12.9 km) j.r        

 

Similarly, the third displacement is 

 

3

km 50.0 min ˆ ˆ60.0  i = ( 50.0 km) i.
h 60 min/h

r
   

      
   

 

Thus, the total displacement is 

 

1 2 3
ˆ ˆ ˆ ˆ(40.0 km)i (15.3 km) i (12.9 km) j (50.0 km) i

ˆ ˆ(5.30 km) i (12.9 km) j.

r r r r        

 
 

 

The time for the trip is t  (40.0 + 20.0 + 50.0) min = 110 min, which is equivalent to 

1.83 h. Eq. 4-8 then yields 

 

avg

ˆ ˆ(5.30 km) i (12.9 km) j ˆ ˆ (2.90 km/h) i (7.01 km/h) j.
1.83 h

v


    

 

The magnitude of avgv  is 2 2

avg| | (2.90 km/h) (7.01 km/h) 7.59 km/h.v     

 

(b) The angle is given by  

 

 
avg,1 1

avg,

7.01 km/h
tan tan 67.5   (north of east),

2.90 km/h

y

x

v

v
  

   
          

 

 

or 22.5  east of due north. 
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LEARN The displacement of the train is depicted in the figure below: 

 

 
 

Note that the net displacement r  is found by adding 1r , 2r  and 3r  vectorially.  

 

6. To emphasize the fact that the velocity is a function of time, we adopt the notation v(t) 

for / .dx dt  

 

(a) Equation 4-10 leads to 

 

2 2ˆ ˆ ˆ ˆ ˆ( )  (3.00 i 4.00 j + 2.00k) (3.00 m/s)i (8.00 m/s )  j
d

v t t t t
dt

     

 

(b) Evaluating this result at t = 2.00 s produces ˆ ˆ = (3.00i  16.0j) m/s.v   

 

(c) The speed at t = 2.00 s is 2 2 | | (3.00 m/s) ( 16.0 m/s) 16.3 m/s.v v      

 

(d) The angle of 

v  at that moment is 

 

1 16.0 m/s
tan 79.4  or 101

3.00 m/s

  
    

 
 

 

where we choose the first possibility (79.4° measured clockwise from the +x direction, or 

281° counterclockwise from +x) since the signs of the components imply the vector is in 

the fourth quadrant. 

 

7. Using Eq. 4-3 and Eq. 4-8, we have 

 

avg

ˆ ˆ ˆ ˆ ˆ ˆ( 2.0i + 8.0j 2.0k) m (5.0i 6.0j + 2.0k) m ˆ ˆ ˆ( 0.70i +1.40j 0.40k) m/s.
10 s

v
   

     

 

8. Our coordinate system has i  pointed east and j  pointed north. The first displacement 

is ˆ(483 km)iABr   and the second is ˆ( 966 km)j.BCr    
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(a) The net displacement is 

 
ˆ ˆ(483 km)i (966 km)jAC AB BCr r r     

 

which yields 2 2 3|  | (483 km) ( 966 km) 1.08 10  km.ACr       

 

(b) The angle is given by 

1 966 km
tan 63.4 .

483 km
   
    

 
 

 

We observe that the angle can be alternatively expressed as 63.4° south of east, or 26.6° 

east of south. 

 

(c) Dividing the magnitude of 

rAC  by the total time (2.25 h) gives  

 

 avg

ˆ ˆ(483 km)i (966 km)j ˆ ˆ(215 km/h)i (429 km/h) j
2.25 h

v


    

 

with a magnitude 2 2

avg| | (215 km/h) ( 429 km/h) 480 km/h.v      

 

(d) The direction of avgv is 26.6° east of south, same as in part (b). In magnitude-angle 

notation, we would have avg (480 km/h  63.4 ).v       

 

(e) Assuming the AB trip was a straight one, and similarly for the BC trip, then | |

rAB  is the 

distance traveled during the AB trip, and | |

rBC  is the distance traveled during the BC trip. 

Since the average speed is the total distance divided by the total time, it equals 

 

483 km  966 km
644 km/h.

2.25 h


  

 

9. The (x,y) coordinates (in meters) of the points are A = (15, 15), B = (30, 45), C = (20, 

15), and D = (45, 45). The respective times are tA  = 0, tB  = 300 s, tC  = 600 s, and tD  = 

900 s.  Average velocity is defined by Eq. 4-8.  Each displacement r   


 is understood to 

originate at point A. 

 

(a) The average velocity having the least magnitude (5.0 m/600 s) is for the displacement 

ending at point C: avg| | 0.0083 m/s.v   

 

(b) The direction of avgv  is 0 (measured counterclockwise from the +x axis). 
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(c) The average velocity having the greatest magnitude ( 2 2(15 m) (30 m) / 300 s ) is 

for the displacement ending at point B: | | 0.11 m/s.avgv    

 

(d) The direction of 
avgv  is 297 (counterclockwise from +x) or 63  (which is 

equivalent to measuring 63 clockwise from the +x axis). 

 

10. We differentiate 2ˆ ˆ5.00 i ( ) jr t et ft   . 

 

(a) The particle’s motion is indicated by the derivative of r : v  = 5.00 i
^
  +  (e + 2ft) j

^
 .  

The angle of its direction of motion is consequently  

 

 = tan
1

(vy /vx ) = tan
1

[(e + 2ft)/5.00]. 

 

The graph indicates o = 35.0, which determines the parameter e:   

 

e = (5.00 m/s) tan(35.0) = 3.50 m/s. 

 

(b) We note (from the graph) that  = 0 when t = 14.0 s.  Thus, e + 2ft = 0 at that time.  

This determines the parameter f :   

 

 23.5 m/s
0.125 m/s

2 2(14.0 s)

e
f

t

 
    . 

 

11. In parts (b) and (c), we use Eq. 4-10 and Eq. 4-16. For part (d), we find the direction 

of the velocity computed in part (b), since that represents the asked-for tangent line. 

 

(a) Plugging into the given expression, we obtain 

 

2.00
ˆ ˆ ˆ ˆ [2.00(8) 5.00(2)]i + [6.00 7.00(16)] j  (6.00i  106 j) mtr        

 

(b) Taking the derivative of the given expression produces 

 

 2 3ˆ ˆ( ) = (6.00   5.00) i  28.0  jv t t t   

 

where we have written v(t) to emphasize its dependence on time. This becomes, at  

t = 2.00 s, ˆ ˆ = (19.0i  224 j) m/s.v   

 

(c) Differentiating the 

v t( )  found above, with respect to t produces 2ˆ ˆ12.0 i 84.0 j,t t  

which yields 2ˆ ˆ =(24.0i 336 j) m/sa   at t = 2.00 s. 

 

(d) The angle of 

v , measured from +x, is either 

 



 

  

129 

1 224 m/s
tan 85.2 or 94.8

19.0 m/s

  
    

 
 

 

where we settle on the first choice (–85.2°, which is equivalent to 275° measured 

counterclockwise from the +x axis) since the signs of its components imply that it is in 

the fourth quadrant. 

 

12. We adopt a coordinate system with i  pointed east and j  pointed north; the 

coordinate origin is the flagpole. We “translate” the given information into unit-vector 

notation as follows: 

o o
ˆ ˆ(40.0 m)i     and     = ( 10.0 m/s)j

ˆ ˆ(40.0 m) j     and     (10.0 m/s)i.

r v

r v

 

 
 

 

(a) Using Eq. 4-2, the displacement 

r  is 

 

 o
ˆ ˆ( 40.0 m)i (40.0 m)jr r r       

 

with a magnitude 2 2| | ( 40.0 m) (40.0 m) 56.6 m.r      

 

(b) The direction of 

r  is  

 

 1 1 40.0 m
tan tan 45.0  or 135 .

40.0 m

y

x
     
        

    
 

 

Since the desired angle is in the second quadrant, we pick 135 ( 45  north of due west). 

Note that the displacement can be written as  o 56.6 135r r r      in terms of the 

magnitude-angle notation. 

 

(c) The magnitude of 

vavg  is simply the magnitude of the displacement divided by the 

time (t = 30.0 s). Thus, the average velocity has magnitude (56.6 m)/(30.0 s) = 1.89 m/s. 

 

(d) Equation 4-8 shows that 

vavg  points in the same direction as 


r , that is, 135 ( 45  

north of due west). 

 

(e) Using Eq. 4-15, we have 

 

2 2o
avg

ˆ ˆ(0.333 m/s )i (0.333 m/s )j.
v v

a
t


  


 

 

The magnitude of the average acceleration vector is therefore equal to 
2 2 2 2 2

avg| | (0.333 m/s ) (0.333 m/s ) 0.471m/sa    . 
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(f) The direction of 
avga  is 

2
1

2

0.333 m/s
tan 45  or 135 .

0.333 m/s
   
     

 
 

  

Since the desired angle is now in the first quadrant, we choose 45 , and 
avga  points 

north of due east. 

 

13. THINK Knowing the position of a particle as function of time allows us to calculate 

its corresponding velocity and acceleration by taking time derivatives.   

 

EXPRESS From the position vector ( )r t , the velocity and acceleration of the particle 

can be found by differentiating ( )r t  with respect to time: 

 
2

2
, .

dr dv d r
v a

dt dt dt
    

 

ANALYZE (a) Taking the derivative of the position vector 2ˆ ˆ ˆ( ) i (4 )j kr t t t    with 

respect to time, we have, in SI units (m/s), 

 

2ˆ ˆ ˆ ˆ ˆ(i 4 j k) 8 j  k.
d

v t t t
dt

      

(b) Taking another derivative with respect to time leads to, in SI units (m/s
2
), 

 

ˆ ˆ ˆ(8 j  k) 8 j.
d

a t
dt

    

 

LEARN The particle undergoes constant acceleration in the +y-direction. This can be 

seen by noting that the y component of ( )r t  is 4t
2
, which is quadratic in t. 

 

14. We use Eq. 4-15 with 

v1  designating the initial velocity and 


v2  designating the later 

one. 

 

(a) The average acceleration during the t =  4 s  interval is 

 

2 2

avg

ˆ ˆ ˆ ˆ ˆ ˆ( 2.0 i 2.0 j+5.0k) m/s (4.0 i 22 j+3.0k) m/s ˆ ˆ( 1.5 m/s ) i (0.5m/s )k.
4 s

a
   

     

 

(b) The magnitude of 

aavg  is 2 2 2 2 2( 1.5 m/s ) (0.5 m/s ) 1.6m/s .     

 

(c) Its angle in the xz plane (measured from the +x axis) is one of these possibilities: 
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2

1

2

0.5 m/s
tan 18 or 162

1.5 m/s

  
    

 
 

 

where we settle on the second choice since the signs of its components imply that it is in 

the second quadrant. 

 

15. THINK Given the initial velocity and acceleration of a particle, we’re interested in 

finding its velocity and position at a later time.   

 

EXPRESS Since the acceleration, 2 2ˆ ˆ ˆ ˆi j ( 1.0 m/s )i ( 0.50 m/s ) jx ya a a      , is 

constant in both x and y directions, we may use Table 2-1 for the motion along each 

direction. This can be handled individually (for x and y) or together with the unit-vector 

notation (for r ).  

 

Since the particle started at the origin, the coordinates of the particle at any time t are 

given by 
  
r v t at 0

1
2

2 . The velocity of the particle at any time t is given by 
  
v v at 0 , 

where 

v0

 is the initial velocity and 

a  is the (constant) acceleration. Along the x-direction, 

we have 

 2

0 0

1
( ) , ( )

2
x x x x xx t v t a t v t v a t     

Similarly, along the y-direction, we get 

  

2

0 0

1
( ) , ( )

2
y y y y yy t v t a t v t v a t    . 

 

Known: 2 2

0 03.0 m/s, 0, 1.0 m/s , 0.5 m/sx y x yv v a a      . 

 

ANALYZE (a) Substituting the values given, the components of the velocity are 

 
2

0
2

0

( ) (3.0 m/s) (1.0 m/s )

( ) (0.50 m/s )
x x x

y y y

v t v a t t

v t v a t t

   

   
 

 

When the particle reaches its maximum x coordinate at t = tm, we must have vx = 0. 

Therefore, 3.0 – 1.0tm = 0 or tm = 3.0 s. The y component of the velocity at this time is 

  
2( 3.0 s) (0.50 m/s )(3.0) 1.5 m/syv t       

Thus, ˆ( 1.5 m/s)jmv   . 

 

(b) At t = 3.0 s , the components of the position are  
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2 2 2

0

2 2 2

0

1 1
( 3.0 s) (3.0 m/s)(3.0 s) ( 1.0 m/s )(3.0 s) 4.5 m

2 2
1 1

( 3.0 s) 0 ( 0.5 m/s )(3.0 s) 2.25 m
2 2

x x

y y

x t v t a t

y t v t a t

      

       

 

 

Using unit-vector notation, the results can be written as ˆ ˆ(4.50 m) i (2.25 m) j.mr    

 

LEARN The motion of the particle in this problem is two-dimensional, and the 

kinematics in the x- and y-directions can be analyzed separately.   

 

16. We make use of Eq. 4-16. 

 

(a) The acceleration as a function of time is 

 

    2 ˆ ˆ ˆ6.0 4.0 i + 8.0 j 6.0 8.0 i
dv d

a t t t
dt dt

      

 

in SI units. Specifically, we find the acceleration vector at 3.0 st   to be 

  2ˆ ˆ6.0 8.0(3.0) i ( 18 m/s )i.    

 

(b) The equation is 

a t 6 0 8 0. . b gi = 0 ; we find t = 0.75 s. 

 

(c) Since the y component of the velocity, vy = 8.0 m/s, is never zero, the velocity cannot 

vanish. 

 

(d) Since speed is the magnitude of the velocity, we have  

 

| |v v    
2 226.0 4.0 8.0 10t t     

 

in SI units (m/s). To solve for t, we first square both sides of the above equation, followed 

by some rearrangement: 

 

    
2 2

2 26.0 4.0 64   100 6.0 4.0 36t t t t       

 

Taking the square root of the new expression and making further simplification lead to  

 

 2 26.0 4.0 6.0 4.0 6.0 6.0 0t t t t       

 

Finally, using the quadratic formula, we obtain 
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  

 

6.0 36 4 4.0 6.0
 

2 8.0
t

  
  

 

where the requirement of a real positive result leads to the unique answer: t = 2.2 s. 

 

17. We find t by applying Eq. 2-11 to motion along the y axis (with vy = 0 characterizing 

y = ymax ):   

0 = (12 m/s) + (2.0 m/s
2
)t      t = 6.0 s. 

 

Then, Eq. 2-11 applies to motion along the x axis to determine the answer:   

 

vx = (8.0 m/s) + (4.0 m/s
2
)(6.0 s) = 32 m/s. 

 

Therefore, the velocity of the cart, when it reaches y = ymax , is (32 m/s)i
^
. 

 

18. We find t by solving 2

0 0

1

2
x xx x v t a t    : 

 2 21
12.0 m 0 (4.00 m/s) (5.00 m/s )

2
t t    

 

where we have used x = 12.0 m, vx = 4.00 m/s, and ax = 5.00 m/s
2 

. We use the quadratic 

formula and find t = 1.53 s. Then, Eq. 2-11 (actually, its analog in two dimensions) 

applies with this value of t.  Therefore, its velocity (when x = 12.00 m) is  

 

 
2 2

0
ˆ ˆ ˆ(4.00 m/s)i (5.00 m/s )(1.53 s)i  (7.00 m/s )(1.53 s)j

ˆ ˆ(11.7 m/s) i (10.7 m/s) j.

v v at    

 
 

 

Thus, the magnitude of v is 2 2| | (11.7 m/s) (10.7 m/s) 15.8 m/s.v     

 

(b) The angle of 

v , measured from +x, is  

 

1 10.7 m/s
tan 42.6 .

11.7 m/s

  
  

 
 

 

19. We make use of Eq. 4-16 and Eq. 4-10.  

 

Using ˆ ˆ3 i 4 ja t t  , we have (in m/s) 

 

    2 2

0
0 0

ˆ ˆ ˆ ˆ ˆ ˆ( )  (5.00i 2.00j) (3 i 4 j) 5.00 3 / 2 i 2.00 2 j
t t

v t v a dt t t dt t t            

 

Integrating using Eq. 4-10 then yields (in meters) 
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2 2

0
0 0

3 3

3 3

ˆ ˆ ˆ ˆ( ) (20.0i 40.0j) [(5.00 3 / 2)i (2.00 2 )j]

ˆ ˆ ˆ ˆ                    (20.0i 40.0j) (5.00 / 2)i (2.00 2 /3)j

ˆ ˆ                    (20.0 5.00 / 2)i (40.0 2.00 2 /3)j

t t

r t r vdt t t dt

t t t t

t t t t

       

     

     

 
 

 

(a) At 4.00 st  , we have ˆ ˆ( 4.00 s) (72.0 m)i (90.7 m)j.r t     

 

(b) ˆ ˆ( 4.00 s) (29.0 m/s)i (34.0 m/s)jv t    . Thus, the angle between the direction of 

travel and +x, measured counterclockwise, is 1tan [(34.0 m/s) /(29.0 m/s)] 49.5 .      

 

20. The acceleration is constant so that use of Table 2-1 (for both the x and y motions) is 

permitted. Where units are not shown, SI units are to be understood. Collision between 

particles A and B requires two things. First, the y motion of B must satisfy (using Eq. 2-15 

and noting that  is measured from the y axis) 

 

2 2 21 1
  30 m (0.40 m/s ) cos .

2 2
yy a t t       

 

Second, the x motions of A and B must coincide: 

 

2 2 21 1
(3.0 m/s) (0.40 m/s ) sin .

2 2
xvt a t t t       

 

We eliminate a factor of t in the last relationship and formally solve for time: 

 

2

2 2(3.0 m/s)
.

(0.40 m/s ) sinx

v
t

a 
   

 

This is then plugged into the previous equation to produce 

 
2

2

2

1 2(3.0 m/s)
30 m (0.40 m/s ) cos

2 (0.40 m/s ) sin




 
    

 
 

 

which, with the use of sin
2
  = 1 – cos

2
 , simplifies to 

 

  
2

2

9.0 cos 9.0
30 1 cos cos .

0.20 1 cos 0.20 30


 


   


 

 

We use the quadratic formula (choosing the positive root) to solve for cos : 
 

  21.5 1.5 4 1.0 1.0 1
cos

2 2


   
   
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which yields 
F
HG
I
KJ  cos .1 1

2
60  

 

21. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. The initial velocity is horizontal so that v
y0 0  and 

v v
x0 0 10  m s. 

 

(a) With the origin at the initial point (where the dart leaves the thrower’s hand), the y 

coordinate of the dart is given by y gt  1
2

2 , so that with y = –PQ we have 

  
221

2
9.8 m/s 0.19 s 0.18 m.PQ    

 

(b) From x = v0t we obtain x = (10 m/s)(0.19 s) = 1.9 m. 

 

22. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. 

 

(a) With the origin at the initial point (edge of table), the y coordinate of the ball is given 

by y gt  1
2

2 .  If t is the time of flight and y = –1.20 m indicates the level at which the 

ball hits the floor, then 

 
2

2 1.20 m
0.495s.

9.80 m/s
t


 


 

 

(b) The initial (horizontal) velocity of the ball is 

v v 0

i . Since x = 1.52 m is the 

horizontal position of its impact point with the floor, we have x = v0t. Thus, 

 

0

1.52 m
3.07 m/s.

0.495 s

x
v

t
    

 

23. (a) From Eq. 4-22 (with 0 = 0), the time of flight is 

 

2

2 2(45.0 m)
3.03 s.

9.80 m/s

h
t

g
    

 

(b) The horizontal distance traveled is given by Eq. 4-21: 

 

0 (250 m/s)(3.03s) 758 m.x v t     

 

(c) And from Eq. 4-23, we find 

 
2(9.80 m/s )(3.03 s) 29.7 m/s.yv gt    
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24. We use Eq. 4-26 

 

 
22 2

0 0
max 0 2

max

9.50m/s
sin 2 9.209 m 9.21m

9.80m/s

v v
R

g g


 
     
 

 

 

to compare with Powell’s long jump; the difference from Rmax is only R =(9.21m – 

8.95m) = 0.259 m. 

 

25. Using Eq. (4-26), the take-off speed of the jumper is  

 

 
2

0

0

(9.80 m/s )(77.0 m)
43.1 m/s

sin 2 sin 2(12.0 )

gR
v


  


 

 

26. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. The coordinate origin is the throwing point (the stone’s 

initial position). The x component of its initial velocity is given by v v
x0 0 0 cos  and the 

y component is given by v v
y0 0 0 sin , where v0 = 20 m/s is the initial speed and 0 = 

40.0° is the launch angle. 

 

(a) At t = 1.10 s, its x coordinate is 

 

x v t   0 0 200 110 400 169cos . . cos . . m/ s s mb gb g  

 

(b) Its y coordinate at that instant is 

 

     
22 2

0 0

1 1
sin 20.0m/s 1.10s sin 40.0 9.80m/s 1.10s 8.21 m.

2 2
y v t gt       

 

(c) At t' = 1.80 s, its x coordinate is x   20 0 180 40 0 27 6. . cos . .m / s s m.b gb g  

 

(d) Its y coordinate at t' is 

 

      2 21
20.0m/s 1.80s sin 40.0 9.80m/s 1.80s 7.26m.

2
y      

 

(e) The stone hits the ground earlier than t = 5.0 s. To find the time when it hits the 

ground solve y v t gt  0 0
1
2

2 0sin  for t. We find 

 

t
v

g
   

2 2 20 0

9 8
40 2 620

0sin
.

.
sin .

m / s

m / s
s.

2

b g
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Its x coordinate on landing is 

 

  0 0cos 20.0 m/s 2.62 s cos 40 40.2 m.x v t      

 

(f) Assuming it stays where it lands, its vertical component at t = 5.00 s is y = 0. 

 

27. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below 

the release point. We write 0 = –30.0° since the angle shown in the figure is measured 

clockwise from horizontal. We note that the initial speed of the decoy is the plane’s speed 

at the moment of release: v0 = 290 km/h, which we convert to SI units: (290)(1000/3600) 

= 80.6 m/s. 

 

(a) We use Eq. 4-12 to solve for the time: 

 

0 0

700 m
( cos ) 10.0 s.

(80.6 m/s)cos( 30.0 )
x v t t    

 
 

 

(b) And we use Eq. 4-22 to solve for the initial height y0: 

 

2 2 2

0 0 0 0

1 1
( sin ) 0 ( 40.3 m/s)(10.0 s) (9.80 m/s )(10.0 s)

2 2
y y v t gt y         

 

which yields y0 = 897 m. 

 

28. (a) Using the same coordinate system assumed in Eq. 4-22, we solve for y = h: 

 

2

0 0 0

1
sin

2
h y v t gt    

 

which yields h = 51.8 m for y0 = 0, v0 = 42.0 m/s, 0 = 60.0°, and t = 5.50 s. 

 

(b) The horizontal motion is steady, so vx = v0x = v0 cos 0, but the vertical component of 

velocity varies according to Eq. 4-23. Thus, the speed at impact is 

 

   
2 2

0 0 0 0cos sin 27.4 m/s.v v v gt      

 

(c) We use Eq. 4-24 with vy = 0 and y = H: 

 

H
v

g
 

0 0

2

2
67 5

sin
.

b g
 m.  

 



 CHAPTER 4 138 

29. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. The coordinate origin is at its initial position (where it is 

launched). At maximum height, we observe vy = 0 and denote vx = v (which is also equal 

to v0x). In this notation, we have v v0 5 .  Next, we observe v0 cos 0 = v0x = v, so that we 

arrive at an equation (where v  0  cancels) which can be solved for 0: 

 

1

0 0

1
(5 )cos cos 78.5 .

5
v v    

     
 

 

 

30. Although we could use Eq. 4-26 to find where it lands, we choose instead to work 

with Eq. 4-21 and Eq. 4-22 (for the soccer ball) since these will give information about 

where and when and these are also considered more fundamental than Eq. 4-26. With y 

= 0, we have 

2

0 0 2

1 (19.5 m/s)sin 45.0
( sin )    2.81 s.

2 (9.80 m/s ) / 2
y v t gt t


       

 

Then Eq. 4-21 yields x = (v0 cos 0)t = 38.7 m. Thus, using Eq. 4-8, the player must 

have an average velocity of 

 

avg 

ˆ ˆ(38.7 m) i (55 m)i ˆ( 5.8 m/s) i
2.81s

r
v

t

 
   


 

 

which means his average speed (assuming he ran in only one direction) is 5.8 m/s.  

  

31. We first find the time it takes for the volleyball to hit the ground. Using Eq. 4-22, we 

have 

 2 2 2

0 0 0

1 1
  ( sin ) 0 2.30 m ( 20.0 m/s)sin(18.0 ) (9.80 m/s )

2 2
y y v t gt t t          

 

which gives 0.30 st  . Thus, the range of the volleyball is  

 

  0 0cos (20.0 m/s)cos18.0 (0.30 s) 5.71 mR v t     

 

On the other hand, when the angle is changed to 0 8.00   , using the same procedure as 

shown above, we find   

 

2 2 2

0 0 0

1 1
  ( sin ) 0 2.30 m ( 20.0 m/s)sin(8.00 ) (9.80 m/s )

2 2
y y v t gt t t               

 

which yields 0.46 st  , and the range is 

 

 0 0cos (20.0 m/s)cos18.0 (0.46 s) 9.06 mR v t      
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Thus, the ball travels an extra distance of 

 

 9.06 m 5.71 m 3.35 mR R R       

 

32. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. The coordinate origin is at the release point (the initial 

position for the ball as it begins projectile motion in the sense of §4-5), and we let 0 be 

the angle of throw (shown in the figure).  Since the horizontal component of the velocity 

of the ball is vx = v0 cos 40.0°, the time it takes for the ball to hit the wall is 

 

22.0 m
1.15 s.

(25.0 m/s)cos 40.0x

x
t

v


  


 

 

(a) The vertical distance is 

 

2 2 2

0 0

1 1
( sin ) (25.0 m/s)sin 40.0 (1.15 s) (9.80 m/s )(1.15 s) 12.0 m.

2 2
y v t gt        

 

(b) The horizontal component of the velocity when it strikes the wall does not change 

from its initial value: vx = v0 cos 40.0° = 19.2 m/s. 

 

(c) The vertical component becomes (using Eq. 4-23) 

 
2

0 0sin (25.0 m/s) sin 40.0 (9.80 m/s )(1.15 s) 4.80 m/s.yv v gt       

 

(d) Since vy > 0 when the ball hits the wall, it has not reached the highest point yet. 

 

33. THINK This problem deals with projectile motion. We’re interested in the horizontal 

displacement and velocity of the projectile before it strikes the ground. 

 

EXPRESS We adopt the positive direction 

choices used in the textbook so that equations such 

as Eq. 4-22 are directly applicable. The coordinate 

origin is at ground level directly below the release 

point. We write 0 = –37.0° for the angle measured 

from +x, since the angle 0 53.0   given in the 

problem is measured from the –y direction. The 

initial setup of the problem is shown in the figure 

to the right (not to scale). 

 
ANALYZE (a) The initial speed of the projectile is the plane’s speed at the moment of 

release.  Given that 0 730 my   and 0y   at 5.00 st  , we use Eq. 4-22 to find v0: 

 



 CHAPTER 4 140 

2 2 2

0 0 0 0

1 1
  ( sin ) 0 730 m sin( 37.0 )(5.00 s) (9.80 m/s )(5.00 s)

2 2
y y v t gt v        

 

which yields v0 = 202 m/s. 

 

(b) The horizontal distance traveled is  

 

 
0 0( cos ) [(202 m/s)cos( 37.0 )](5.00 s) 806 mxR v t v t      . 

 

(c) The x component of the velocity (just before impact) is  

 

0 0cos (202 m/s)cos( 37.0 ) 161m/sxv v      . 

 

(d) The y component of the velocity (just before impact) is  

 
2

0 0sin (202 m/s)sin( 37.0 ) (9.80 m/s )(5.00 s) 171m/syv v gt        . 

 

LEARN In this projectile problem we analyzed the kinematics in the vertical and 

horizontal directions separately since they do not affect each other. The x-component of 

the velocity, 0 0cosxv v  , remains unchanged throughout since there’s no horizontal 

acceleration.     

 

34. (a) Since the y-component of the velocity of the stone at the top of its path is zero, its 

speed is 

 2 2

0 0cos (28.0 m/s)cos40.0 21.4 m/sx y xv v v v v        . 

 

(b) Using the fact that 0yv   at the maximum height maxy , the amount of time it takes for 

the stone to reach maxy  is given by Eq. 4-23:  

 

 0 0
0 0

sin
0 siny

v
v v gt t

g


     . 

 

Substituting the above expression into Eq. 4-22, we find the maximum height to be   

 
2 2 2

2 0 0 0 0 0 0
max 0 0 0 0

sin sin sin1 1
  ( sin ) sin .

2 2 2

v v v
y v t gt v g

g g g

  
 

   
       

   
 

 

To find the time the stone descends to max / 2y y , we solve the quadratic equation given 

in Eq. 4-22: 
2 2

20 0 0 0
max 0 0

sin (2 2) sin1 1
( sin ) .

2 4 2 2

v v
y y v t gt t

g g

 
 


       
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Choosing t t  (for descending), we have  

 

0 0

0 0
0 0 0 0

cos (28.0 m/s)cos 40.0 21.4 m/s

(2 2) sin 2 2
sin sin (28.0 m/s)sin 40.0 12.7 m/s

2 2 2

x

y

v v

v
v v g v

g




 

   


        

 

 

Thus, the speed of the stone when max / 2y y  is  

 

2 2 2 2(21.4 m/s) ( 12.7 m/s) 24.9 m/sx yv v v      . 

 

(c) The percentage difference is  

 

 
24.9 m/s 21.4 m/s

0.163 16.3%
21.4 m/s


  . 

 

35. THINK This problem deals with projectile motion of a bullet. We’re interested in the 

firing angle that allows the bullet to strike a target at some distance away. 

 

EXPRESS We adopt the positive direction choices used in the textbook so that equations 

such as Eq. 4-22 are directly applicable. The coordinate origin is at the end of the rifle 

(the initial point for the bullet as it begins projectile motion in the sense of § 4-5), and we 

let 0 be the firing angle. If the target is a distance d away, then its coordinates are x = d, 

y = 0. 

 
The projectile motion equations lead to  

2

0 0 0 0

1
( cos ) , 0 sin

2
d v t v t gt     

 

where 0  is the firing angle. The setup of the problem is shown in the figure above (scale 

exaggerated). 

 

ANALYZE The time at which the bullet strikes the target is given by 0 0/( cos )t d v  . 

Eliminating t leads to 2 00

2

0 0v gdsin cos    . Using sin cos sin  0 0
1
2 02 b g , we 

obtain 
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2
2

0 0 0 2 2

0

(9.80 m/s )(45.7 m)
sin  (2 ) sin(2 )

(460 m/s)

gd
v gd

v
      

 

which yields 3

0sin(2 ) 2.11 10   , or  0 = 0.0606°. If the gun is aimed at a point a 

distance   above the target, then tan  0   d  so that   

 

0tan (45.7 m) tan(0.0606 ) 0.0484 m 4.84 cm.d       

 

LEARN Due to the downward gravitational acceleration, in order for the bullet to strike 

the target, the gun must be aimed at a point slightly above the target. 

 

36. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below 

the point where the ball was hit by the racquet. 

 

(a) We want to know how high the ball is above the court when it is at x = 12.0 m. First, 

Eq. 4-21 tells us the time it is over the fence: 

 

 0 0

12.0 m
0.508 s.

cos 23.6 m/s cos 0

x
t

v 
  


 

 

At this moment, the ball is at a height (above the court) of 

 

  2

0 0 0

1
sin 1.10m

2
y y v t gt     

 

which implies it does indeed clear the 0.90-m-high fence. 

 

(b) At t = 0.508 s, the center of the ball is (1.10 m – 0.90 m) = 0.20 m above the net. 

 

(c) Repeating the computation in part (a) with 0 = –5.0° results in t = 0.510 s and 

0.040 my  , which clearly indicates that it cannot clear the net. 

 

(d) In the situation discussed in part (c), the distance between the top of the net and the 

center of the ball at t = 0.510 s is 0.90 m – 0.040 m = 0.86 m. 

 

37. THINK The trajectory of the diver is a projectile motion. We are interested in the 

displacement of the diver at a later time.    

 

EXPRESS The initial velocity has no vertical component ( 0 0  ), but only an x 

component. Eqs. 4-21 and 4-22 can be simplified to  
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0 0

2 2

0 0

1 1
.

2 2

x

y

x x v t

y y v t gt gt

 

    
 

 

where 
0 0x  , 

0 0 2.0 m/sxv v    and y0 = +10.0 m (taking the water surface to be at 

0y  ). The setup of the problem is shown in the figure below. 

 
ANALYZE (a) At 0.80 st  , the horizontal distance of the diver from the edge is 

 

0 0 0 (2.0 m/s)(0.80 s) 1.60 m.xx x v t      

 

(b) Similarly, using the second equation for the vertical motion, we obtain  

 

2 2 2

0

1 1
10.0 m (9.80 m/s )(0.80 s) 6.86 m.

2 2
y y gt      

 

(c) At the instant the diver strikes the water surface, y = 0. Solving for t using the 

equation 21
0 2

0y y gt    leads to 

0

2

2 2(10.0 m)
1.43 s.

9.80 m/s

y
t

g
    

 

During this time, the x-displacement of the diver is R = x = (2.00 m/s)(1.43 s) = 2.86 m. 

 

LEARN Using Eq. 4-25 with 0 0  , the trajectory of the diver can also be written as  

 
2

0 2

02

gx
y y

v
   . 

Part (c) can also be solved by using this equation:  

 
22 2

0 0
0 2 2

0

2 2(2.0 m/s) (10.0 m)
0 2.86 m

2 9.8 m/s

v ygx
y y x R

v g
        . 
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38. In this projectile motion problem, we have v0 = vx = constant, and what is plotted is 

2 2.x yv v v   We infer from the plot that at t = 2.5 s, the ball reaches its maximum height, 

where vy = 0. Therefore, we infer from the graph that vx = 19 m/s. 

 

(a) During t = 5 s, the horizontal motion is x – x0 = vxt = 95 m. 

 

(b) Since 2 2

0(19 m/s) 31 m/syv   (the first point on the graph), we find 0 24.5 m/s.yv   

Thus, with t = 2.5 s, we can use 21
max 0 0 2yy y v t gt   or v v g y yy y

2

0

2

00 2   max ,b g  or 

 1
max 0 02 yyy y v v t    to solve. Here we will use the latter: 

 

max 0 0 max

1 1
( ) (0 24.5m/s)(2.5 s) 31 m

2 2
y yy y v v t y        

 

where we have taken y0 = 0 as the ground level. 

 

39. Following the hint, we have the time-reversed problem with the ball thrown from the 

ground, toward the right, at 60° measured counterclockwise from a rightward axis. We 

see in this time-reversed situation that it is convenient to use the familiar coordinate 

system with +x as rightward and with positive angles measured counterclockwise.  

 

(a) The x-equation (with x0 = 0 and x = 25.0 m) leads to  

 

25.0 m = (v0 cos 60.0°)(1.50 s), 

 

so that v0 = 33.3 m/s.  And with y0 = 0, and y = h > 0 at t = 1.50 s, we have 

y y v t gty  0 0
1
2

2
 where v0y = v0 sin 60.0°.  This leads to h = 32.3 m. 

 

(b) We have  

                           vx = v0x = (33.3 m/s)cos 60.0° = 16.7 m/s 

                 vy = v0y – gt = (33.3 m/s)sin 60.0° – (9.80 m/s
2
)(1.50 s) = 14.2 m/s. 

 

The magnitude of v is given by 

 

 2 2 2 2| | (16.7 m/s) (14.2 m/s) 21.9 m/s.x yv v v      

 

(c) The angle is  

 1 1 14.2 m/s
tan tan 40.4 .

16.7 m/s

y

x

v

v
     
      

  
 

  
(d) We interpret this result (“undoing” the time reversal) as an initial velocity (from the 

edge of the building) of magnitude 21.9 m/s with angle (down from leftward) of 40.4°. 
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40. (a) Solving the quadratic equation Eq. 4-22:  

 

2 2 2

0 0 0

1 1
  ( sin ) 0 2.160 m (15.00 m/s)sin(45.00 ) (9.800 m/s )

2 2
y y v t gt t t       

 

the total travel time of the shot in the air is found to be 2.352 st  . Therefore, the 

horizontal distance traveled is  

 

 0 0cos (15.00 m/s)cos45.00 (2.352 s) 24.95 mR v t    . 

 

(b) Using the procedure outlined in (a) but for 
0 42.00   , we have 

 

2 2 2

0 0 0

1 1
  ( sin ) 0 2.160 m (15.00 m/s)sin(42.00 ) (9.800 m/s )

2 2
y y v t gt t t       

 

and the total travel time is  2.245 st  . This gives 

 

 0 0cos (15.00 m/s)cos42.00 (2.245 s) 25.02 mR v t    . 

 

41. With the Archer fish set to be at the origin, the position of the insect is given by (x, y) 

where 2

0 0/ 2 sin 2 / 2x R v g  , and y corresponds to the maximum height of the 

parabolic trajectory: 2 2

max 0 0sin / 2y y v g  . From the figure, we have 

 
2 2

0 0
02

0 0

sin / 2 1
tan tan

sin 2 / 2 2

v gy

x v g


 


    

  

Given that 36.0   , we find the launch angle to be  

 

     1 1 1

0 tan 2tan tan 2tan36.0 tan 1.453 55.46 55.5           . 

 

Note that 0  depends only on   and is independent of d.  

 

42. (a) Using the fact that the person (as the projectile) reaches the maximum height over 

the middle wheel located at 23 m (23/ 2) m 34.5 mx    , we can deduce the initial 

launch speed from Eq. 4-26: 

 

 
2 2

0 0
0

0

sin 2 2 2(9.8 m/s )(34.5 m)
26.5 m/s

2 2 sin 2 sin(2 53 )

vR gx
x v

g




     

 
. 

 

Upon substituting the value to Eq. 4-25, we obtain 
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2 2 2

0 0 2 2 2 2

0 0

(9.8 m/s )(23 m)
tan 3.0 m (23 m) tan53 23.3 m.

2 cos 2(26.5 m/s) (cos53 )

gx
y y x

v



      



 

Since the height of the wheel is 18 m,wh  the clearance over the first wheel is 

23.3 m 18 m 5.3 mwy y h      . 

 

(b) The height of the person when he is directly above the second wheel can be found by 

solving Eq. 4-24. With the second wheel located at 23 m (23/ 2) m 34.5 m,x     we 

have  
2 2 2

0 0 2 2 2 2

0 0

(9.8 m/s )(34.5 m)
tan 3.0 m (34.5 m) tan 53

2 cos 2(26.52 m/s) (cos53 )

25.9 m.

gx
y y x

v



     





 

 

Therefore, the clearance over the second wheel is 25.9 m 18 m 7.9 mwy y h      . 

 

(c) The location of the center of the net is given by 

 
22 2

0 0
0 0 2 2 2

0 0

sin 2 (26.52 m/s) sin(2 53 )
0 tan 69 m.

2 cos 9.8 m/s

vgx
y y x x

v g






 
         

 

43. We designate the given velocity ˆ ˆ(7.6 m/s)i (6.1 m/s) jv    as 
1v , as opposed to the 

velocity when it reaches the max height 

v2  or the velocity when it returns to the ground 

3 ,v  and take 

v0  as the launch velocity, as usual. The origin is at its launch point on the 

ground. 

 

(a) Different approaches are available, but since it will be useful (for the rest of the 

problem) to first find the initial y velocity, that is how we will proceed. Using Eq. 2-16, 

we have 
2 2 2 2 2

1 0 02 (6.1 m/s) 2(9.8 m/s )(9.1 m)y y yv v g y v       

 

which yields v0 y = 14.7 m/s. Knowing that v2 y must equal 0, we use Eq. 2-16 again but 

now with y = h for the maximum height: 

 
2 2 2 2

2 0 2 0 (14.7 m/s) 2(9.8 m/s )y yv v gh h      

 

which yields h = 11 m. 

 

(b) Recalling the derivation of Eq. 4-26, but using v0 y for v0 sin 0 and v0x for v0 cos 0, 

we have 

2

0 0

1
0 ,

2
y xv t gt R v t    
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which leads to
0 02 / .x yR v v g  Noting that v0x = v1x = 7.6 m/s, we plug in values and 

obtain  

R = 2(7.6 m/s)(14.7 m/s)/(9.8 m/s
2
) = 23 m. 

 

(c) Since v3x = v1x = 7.6 m/s and v3y = – v0 y = –14.7 m/s, we have 

 
2 2 2 2

3 3 3 (7.6 m/s) ( 14.7 m/s) 17 m/s.x yv v v       

 

(d) The angle (measured from horizontal) for  

v3

 is one of these possibilities: 

 

1 14.7 m
tan 63   or   117

7.6 m

  
    

 
 

 

where we settle on the first choice (–63°, which is equivalent to 297°) since the signs of 

its components imply that it is in the fourth quadrant. 

 

44. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. The initial velocity is horizontal so that 
0   0yv   and 

0 0 161 km h
x

v v  .  Converting to SI units, this is v0 = 44.7 m/s. 

 

(a) With the origin at the initial point (where the ball leaves the pitcher’s hand), the y 

coordinate of the ball is given by y gt  1
2

2 , and the x coordinate is given by x = v0t. 

From the latter equation, we have a simple proportionality between horizontal distance 

and time, which means the time to travel half the total distance is half the total time. 

Specifically, if x = 18.3/2 m, then t = (18.3/2 m)/(44.7 m/s) = 0.205 s. 

 

(b) And the time to travel the next 18.3/2 m must also be 0.205 s. It can be useful to write 

the horizontal equation as x = v0t in order that this result can be seen more clearly. 

 

(c) Using the equation 21
2

,y gt   we see that the ball has reached the height of 

  
221

2
| 9.80 m/s 0.205 s | 0.205 m  at the moment the ball is halfway to the batter. 

 

(d) The ball’s height when it reaches the batter is   
221

2
9.80 m/s 0.409 s 0.820m  , 

which, when subtracted from the previous result, implies it has fallen another 0.615 m. 

Since the value of y is not simply proportional to t, we do not expect equal time-intervals 

to correspond to equal height-changes; in a physical sense, this is due to the fact that the 

initial y-velocity for the first half of the motion is not the same as the “initial” y-velocity 

for the second half of the motion. 
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45. (a)  Let m = 
d2

 d1

 = 0.600 be the slope of the ramp, so y = mx there.  We choose our 

coordinate origin at the point of launch and use Eq. 4-25.  Thus, 

 
2 2

2 2

(9.80 m/s )
tan(50.0 ) 0.600

2(10.0 m/s) (cos50.0 )

x
y x x   


 

 

which yields x = 4.99 m.  This is less than d1 so the ball does land on the ramp.  

 

(b) Using the value of  x found in part (a), we obtain y = mx = 2.99 m.  Thus, the 

Pythagorean theorem yields a displacement magnitude of x
2
 + y

2 
  = 5.82 m. 

 

(c) The angle is, of course, the angle of the ramp: tan
1

(m) = 31.0º.   

 

46. Using the fact that 0yv   when the player is at the maximum height maxy , the amount 

of time it takes to reach 
maxy  can be solved by using Eq. 4-23:  

 

 0 0
0 0 max

sin
0 siny

v
v v gt t

g


     . 

 

Substituting the above expression into Eq. 4-22, we find the maximum height to be   

 
2 2 2

2 0 0 0 0 0 0
max 0 0 max max 0 0

sin sin sin1 1
( sin ) sin .

2 2 2

v v v
y v t gt v g

g g g

  
 

   
       

   
 

 

To find the time when the player is at max / 2y y , we solve the quadratic equation given 

in Eq. 4-22: 
2 2

20 0 0 0
max 0 0

sin (2 2) sin1 1
( sin ) .

2 4 2 2

v v
y y v t gt t

g g

 
 


       

 

With t t  (for ascending), the amount of time the player spends at a height max / 2y y  

is  

 0 0 0 0 0 0 max
max

max

sin (2 2) sin sin 1
0.707

2 2 2 2

v v v t t
t t t

g g tg

  


 
          . 

 

Therefore, the player spends about 70.7% of the time in the upper half of the jump. Note 

that the ratio max/t t  is independent of 0v  and 0 , even though t  and maxt  depend on 

these quantities.  

 

47. THINK The baseball undergoes projectile motion after being hit by the batter. We’d 

like to know if the ball clears a high fence at some distance away.    
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EXPRESS We adopt the positive direction choices used in the textbook so that equations 

such as Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly 

below impact point between bat and ball. In the absence of a fence, with 0 45   , the 

horizontal range (same launch level) is 107 mR  . We want to know how high the ball 

is from the ground when it is at 97.5 mx  , which requires knowing the initial velocity. 

The trajectory of the baseball can be described by Eq. 4-25: 

 
2

0 0 2

0 0

(tan )
2( cos )

gx
y y x

v



   . 

 

The setup of the problem is shown in the figure below (not to scale). 

 

 
 

ANALYZE (a) We first solve for the initial speed v0. Using the range information 

( 0y y  when x R ) and 0 = 45°, Eq. 4-25 gives 

 

  2

0

0

9.8 m/s 107 m
32.4 m/s.

sin 2 sin(2 45 )

gR
v


  

 
 

 

Thus, the time at which the ball flies over the fence is: 

 

 
0 0

0 0

97.5 m
( cos ) 4.26 s.

cos 32.4 m/s cos 45

x
x v t t

v





      


 

 

At this moment, the ball is at a height (above the ground) of 

 

  2

0 0 0

2 2

1
sin

2
1

1.22 m [(32.4 m/s)sin 45 ](4.26 s) (9.8 m/s )(4.26 s)
2

9.88 m

y y v t gt    

   



 

 

which implies it does indeed clear the 7.32 m high fence. 

 

(b) At 4.26 st  , the center of the ball is 9.88 m – 7.32 m = 2.56 m above the fence. 

 



 CHAPTER 4 150 

LEARN Using the trajectory equation above, one can show that the minimum initial 

velocity required to clear the fence is given by 
2

0 0 2

0 0

(tan )
2( cos )

gx
y y x

v





    , 

or about 31.9 m/s.   

 

48. Following the hint, we have the time-reversed problem with the ball thrown from the 

roof, toward the left, at 60° measured clockwise from a leftward axis. We see in this 

time-reversed situation that it is convenient to take +x as leftward with positive angles 

measured clockwise. Lengths are in meters and time is in seconds. 

 

(a) With y0 = 20.0 m, and y = 0 at t = 4.00 s, we have y y v t gt
y

  0 0
1
2

2   where 

v v
y0 0 60 sin .  This leads to v0 = 16.9 m/s. This plugs into the x-equation 

0 0xx x v t   

(with x0 = 0 and x = d) to produce  

 

d = (16.9 m/s)cos 60°(4.00 s) = 33.7 m. 

(b) We have  

0
2

0

(16.9 m/s)cos60.0 8.43 m/s

(16.9 m/s)sin 60.0 (9.80m/s )(4.00 s) 24.6 m/s.
x x

y y

v v

v v gt

   

     
 

 

The magnitude of v is 2 2 2 2| | (8.43 m/s) ( 24.6 m/s) 26.0 m/s.x yv v v       

 

(c) The angle relative to horizontal is  

 1 1 24.6 m/s
tan tan 71.1 .

8.43 m/s

y

x

v

v
     
       

  
 

  
We may convert the result from rectangular components to magnitude-angle 

representation: 

(8.43, 24.6) (26.0 71.1 )v        

 

and we now interpret our result (“undoing” the time reversal) as an initial velocity of 

magnitude 26.0 m/s with angle (up from rightward) of 71.1°. 

 

49. THINK In this problem a football is given an initial speed and it undergoes projectile 

motion. We’d like to know the smallest and greatest angles at which a field goal can be 

scored.  

 

EXPRESS We adopt the positive direction choices used in the textbook so that equations 

such as Eq. 4-22 are directly applicable. The coordinate origin is at the point where the 

ball is kicked. We use x and y to denote the coordinates of the ball at the goalpost, and try 

to find the kicking angle(s) 0 so that y = 3.44 m when x = 50 m. Writing the kinematic 

equations for projectile motion:  
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21
0 0 0 0 2
cos , sin ,x v y v t gt     

 

we see the first equation gives t = x/v0 cos 0, and when this is substituted into the second 

the result is 

y x
gx

v
 tan

cos
.


0

2

0

2 2

02
 

 

ANALYZE One may solve the above equation by trial and error: systematically trying 

values of 0 until you find the two that satisfy the equation. A little manipulation, 

however, will give an algebraic solution: Using the trigonometric identity  

 

1 / cos
2
 0 = 1 + tan

2
 0, 

we obtain 

1

2

1

2
0

2

0

2

2

0 0

2

0

2

gx

v
x y

gx

v
tan tan      

 

which is a second-order equation for tan 0. To simplify writing the solution, we denote 

 

    
2 22 2 2

0

1 1
/ 9.80 m/s 50 m / 25 m/s 19.6 m.

2 2
c gx v    

 

Then the second-order equation becomes c tan
2
 0 – x tan 0 + y + c = 0.  Using the 

quadratic formula, we obtain its solution(s). 

 

    

 

2 2

0

4 50 m (50 m) 4 3.44 m 19.6 m 19.6 m
tan .

2 2 19.6 m

x x y c c

c


     
   

 

The two solutions are given by tan0 = 1.95 and tan0 = 0.605. The corresponding (first-

quadrant) angles are 0 = 63° and 0 = 31°. Thus, 

 

(a) The smallest elevation angle is 0 = 31°, and  

 

(b) The greatest elevation angle is 0 = 63°. 

 

LEARN If kicked at any angle between 31° and 63°, the ball will travel above the cross 

bar on the goalposts. 

 

50. We apply Eq. 4-21, Eq. 4-22, and Eq. 4-23. 

 

(a) From x v t
x

 0 , we find 0 40 m/ 2 s 20 m/s.xv    

 

(b) Fromy v t gt
y

 0
1
2

2 , we find  2 21
0 2

53 m (9.8 m/s )(2 s) / 2 36yv    m/s. 
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(c) From v v gty y
  0

 with vy = 0 as the condition for maximum height, we obtain 

2(36 m/s) /(9.8 m/s ) 3.7 s.t    During that time the x-motion is constant, so 

0 (20 m/s)(3.7 s) 74 m.x x     

 

51. (a) The skier jumps up at an angle of 
0 11.3    up from the horizontal and thus 

returns to the launch level with his velocity vector 11.3  below the horizontal. With the 

snow surface making an angle of 9.0    (downward) with the horizontal, the angle 

between the slope and the velocity vector is 
0 11.3 9.0 2.3         . 

 

(b) Suppose the skier lands at a distance d down the slope. Using Eq. 4-25 with 

cosx d   and siny d    (the edge of the track being the origin), we have 

 
2

0 2 2

0 0

( cos )
sin cos tan .

2 cos

g d
d d

v


  


    

Solving for d, we obtain 

 

   
2 2 2

0 0 0 0
0 0 02 2

2

0 0
02

2 cos 2 cos
cos tan sin cos sin cos sin

cos cos

2 cos
sin( ).

cos

v v
d

g g

v

g

 
      

 


 



   

 

 

 

Substituting the values given, we find 

 
2

2 2

2(10 m/s) cos(11.3 )
sin(11.3 9.0 ) 7.117 m.

(9.8 m/s )cos (9.0 )
d


   


 

 

which gives 

sin (7.117 m)sin(9.0 ) 1.11 m.y d         

 

Therefore, at landing the skier is approximately 1.1 m below the launch level.  

 

(c) The time it takes for the skier to land is  

 

 
0 0

cos (7.117 m)cos(9.0 )
0.72 s

cos (10 m/s)cos(11.3 )x

x d
t

v v






   


. 

 

Using Eq. 4-23, the x-and y-components of the velocity at landing are 

 

0 0
2

0 0

cos (10 m/s)cos(11.3 ) 9.81m/s

sin (10 m/s)sin(11.3 ) (9.8 m/s )(0.72 s) 5.07 m/s
x

y

v v

v v gt





   

      
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Thus, the direction of travel at landing is  

 

1 1 5.07 m/s
tan tan 27.3 .

9.81m/s

y

x

v

v
     
       

  
 

 

or 27.3  below the horizontal. The result implies that the angle between the skier’s path 

and the slope is 27.3 9.0 18.3      , or approximately 18  to two significant figures.  

 

52. From Eq. 4-21, we find 
0/ xt x v . Then Eq. 4-23 leads to 

 

 
0 0

0

.y y y

x

gx
v v gt v

v
     

 

Since the slope of the graph is 0.500, we conclude  

 

0

1

2x

g

v
    vox = 19.6 m/s. 

 

And from the “y intercept” of the graph, we find voy = 5.00 m/s. Consequently,  

 

o = tan
1

(voy   vox) = 14.3 14  . 

 

53. Let y0 = h0 = 1.00 m at x0 = 0 when the ball is hit. Let y1 = h (the height of the wall) 

and x1 describe the point where it first rises above the wall one second after being hit; 

similarly, y2 = h and x2 describe the point where it passes back down behind the wall four 

seconds later. And yf = 1.00 m at xf = R is where it is caught. Lengths are in meters and 

time is in seconds. 

 

(a) Keeping in mind that vx is constant, we have x2 – x1 = 50.0 m = v1x (4.00 s), which 

leads to v1x = 12.5 m/s. Thus, applied to the full six seconds of motion:  

 

xf – x0 = R = vx(6.00 s) = 75.0 m. 

 

(b) We apply 
21

0 0 2yy y v t gt    to the motion above the wall, 

 

   
2

2 1 1

1
0 4.00 s 4.00 s

2
yy y v g     

 

and obtain v1y = 19.6 m/s. One second earlier, using v1y = v0y – g(1.00 s), we find 

0 29.4 m/syv  . Therefore, the velocity of the ball just after being hit is 

 

 0 0
ˆ ˆ ˆ ˆi j (12.5 m/s) i  (29.4 m/s) jx yv v v     
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Its magnitude is 2 2| | (12.5 m/s) +(29.4 m/s) 31.9 m/s.v    

 

(c) The angle is  

 1 1 29.4 m/s
tan tan 67.0 .

12.5 m/s

y

x

v

v
     
      

  
 

  
We interpret this result as a velocity of magnitude 31.9 m/s, with angle (up from 

rightward) of 67.0°. 

 

(d) During the first 1.00 s of motion, y y v t gt
y

  0 0
1
2

2  yields  

 

     
221

2
1.0 m 29.4 m/s 1.00 s 9.8 m/s 1.00 s 25.5 m.h      

 

54. For y = 0, Eq. 4-22 leads to t = 2vosino/g, which immediately implies tmax = 2vo/g 

(which occurs for the “straight up” case: o = 90). Thus, 

 
1

2
 tmax = vo/g     

1

2
  = sino. 

 

Therefore, the half-maximum-time flight is at angle o = 30.0. Since the least speed 

occurs at the top of the trajectory, which is where the velocity is simply the x-component 

of the initial velocity (vocoso = vocos30 for the half-maximum-time flight), then we 

need to refer to the graph in order to find vo – in order that we may complete the solution.  

In the graph, we note that the range is 240 m when o = 45.0.  Equation 4-26 then leads 

to vo = 48.5 m/s. The answer is thus (48.5 m/s)cos30.0 = 42.0 m/s. 

 

55. THINK In this problem a ball rolls off the top of a stairway with an initial speed, and 

we’d like to know on which step it lands first.  

 

 

EXPRESS  We denote h as the height of a step and w 

as the width. To hit step n, the ball must fall a distance 

nh and travel horizontally a distance between (n – 1)w 

and nw. We take the origin of a coordinate system to 

be at the point where the ball leaves the top of the 

stairway, and we choose the y axis to be positive in the 

upward direction, as shown in the figure. 
 

The coordinates of the ball at time t are given by x = v0xt and y gt  1
2

2 (since v0y = 0).  

 

ANALYZE We equate y to  –nh and solve for the time to reach the level of step n: 
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t
nh

g


2
.  

The x coordinate then is 

 

0 2

2 2 (0.203 m)
(1.52 m/s) (0.309 m) .

9.8 m/s
x

nh n
x v n

g
    

 

The method is to try values of n until we find one for which x/w is less than n but greater 

than n – 1. For n = 1, x = 0.309 m and x/w = 1.52, which is greater than n. For n = 2, x = 

0.437 m and x/w = 2.15, which is also greater than n. For n = 3, x = 0.535 m and x/w = 

2.64. Now, this is less than n and greater than n – 1, so the ball hits the third step. 

 

LEARN To check the consistency of our calculation, we can substitute n = 3 into the 

above equations. The results are t = 0.353 s, y = 0.609 m and x = 0.535 m. This indeed 

corresponds to the third step.  

 

56. We apply Eq. 4-35 to solve for speed v and Eq. 4-34 to find acceleration a. 

 

(a) Since the radius of Earth is 6.37  10
6
 m, the radius of the satellite orbit is  

 

r = (6.37  10
6
  + 640  10

3
 ) m = 7.01  10

6
 m. 

 

Therefore, the speed of the satellite is 

 

v
r

T
 


 

2 2 7 01 10

98 0 60
7 49 10

6

3  .

. / min
.

m

min s
m / s.

c h
b gb g  

 

(b) The magnitude of the acceleration is 

 

a
v

r
 






2 3
2

6

7 49 10

7 01 10
8 00

.

.
. .

m / s

m
m / s2

c h
 

 

57. The magnitude of centripetal acceleration (a = v
2
/r) and its direction (toward the 

center of the circle) form the basis of this problem. 

 

(a) If a passenger at this location experiences 

a 183. m/ s2  east, then the center of the 

circle is east of this location. The distance is r = v
2
/a = (3.66 m/s)

2
/(1.83 m/s

2
) = 7.32 m.  

 

(b) Thus, relative to the center, the passenger at that moment is located 7.32 m toward the 

west. 
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(c) If the direction of 

a  experienced by the passenger is now south—indicating that the 

center of the merry-go-round is south of him, then relative to the center, the passenger at 

that moment is located 7.32 m toward the north. 

 

58. (a) The circumference is c = 2r = 2(0.15 m) = 0.94 m. 

 

(b) With T = (60 s)/1200 = 0.050 s, the speed is v = c/T = (0.94 m)/(0.050 s) = 19 m/s. 

This is equivalent to using Eq. 4-35. 

 

(c) The magnitude of the acceleration is a = v
2
/r = (19 m/s)

2
/(0.15 m) = 2.4  10

3
 m/s

2
. 

 

(d) The period of revolution is (1200 rev/min)
–1

 = 8.3  10
–4

 min, which becomes, in SI 

units, T = 0.050 s = 50 ms. 

 

59. (a) Since the wheel completes 5 turns each minute, its period is one-fifth of a minute, 

or 12 s. 

 

(b) The magnitude of the centripetal acceleration is given by a = v
2
/R, where R is the 

radius of the wheel, and v is the speed of the passenger. Since the passenger goes a 

distance 2R for each revolution, his speed is 

 

v  
2 15

12
7 85

 m

s
m / s

b g
.  

 

and his centripetal acceleration is a  
7 85

15
41

2
.

. .
m / s

m
m / s2b g

 

 

(c) When the passenger is at the highest point, his centripetal acceleration is downward, 

toward the center of the orbit. 

 

(d) At the lowest point, the centripetal acceleration is 24.1 m/sa  , same as part (b). 

 

(e) The direction is up, toward the center of the orbit.   

 

60. (a) During constant-speed circular motion, the velocity vector is perpendicular to the 

acceleration vector at every instant.  Thus,  v  


 ·  a  


  = 0. 

 

(b) The acceleration in this vector, at every instant, points toward the center of the circle, 

whereas the position vector points from the center of the circle to the object in motion.  

Thus, the angle between  r  


 and  a  


 is 180º  at every instant, so  r  


   a  


 = 0. 

 

61. We apply Eq. 4-35 to solve for speed v and Eq. 4-34 to find centripetal acceleration a. 

 

(a) v = 2r/T = 2(20 km)/1.0 s = 126 km/s = 1.3  10
5
 m/s. 
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(b) The magnitude of the acceleration is 

 

 a
v

r
   

2 2

5
126

20
7 9 10

km / s

km
m / s2b g

. .  

 

(c) Clearly, both v and a will increase if T is reduced. 

 

62. The magnitude of the acceleration is 

 

a
v

r
  

2 2
10

25
4 0

m / s

m
m / s2b g

. .  

 

63. We first note that a1  
   

 (the acceleration at t1 = 2.00 s) is perpendicular to a2  
   

 (the 

acceleration at t2=5.00 s), by taking their scalar (dot) product:   

 

 2 2 2 2

1 2
ˆ ˆ ˆ ˆ[(6.00 m/s )i+(4.00 m/s )j] [(4.00 m/s )i+( 6.00 m/s )j]=0.a a     

 

Since the acceleration vectors are in the (negative) radial directions, then the two 

positions (at t1 and t2) are a quarter-circle apart (or three-quarters of a circle, depending 

on whether one measures clockwise or counterclockwise).  A quick sketch leads to the 

conclusion that if the particle is moving counterclockwise (as the problem states) then it 

travels three-quarters of a circumference in moving from the position at time t1 to the 

position at time t2 .  Letting T stand for the period, then t2 –  t1  = 3.00 s = 3T/4. This gives 

T = 4.00 s.  The magnitude of the acceleration is 

 

 2 2 2 2 2 2(6.00 m/s ) (4.00 m/s) 7.21 m/s .x ya a a      

 

Using Eqs. 4-34 and 4-35, we have 2 24 /a r T , which yields 

 

 
2 2 2

2 2

(7.21 m/s )(4.00 s)
2.92 m.

4 4

aT
r

 
    

 

64. When traveling in circular motion with constant speed, the instantaneous acceleration 

vector necessarily points toward the center.  Thus, the center is “straight up” from the 

cited point.   

 

(a) Since the center is “straight up” from (4.00 m, 4.00 m), the x coordinate of the center 

is 4.00 m.  

 

(b) To find out “how far up” we need to know the radius. Using Eq. 4-34 we find 
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 
22

2

5.00 m/s
2.00 m.

12.5 m/s

v
r

a
    

 

Thus, the y coordinate of the center is 2.00 m + 4.00 m = 6.00 m.  Thus, the center may 

be written as (x, y) = (4.00 m, 6.00 m). 

 

65. Since the period of a uniform circular motion is 2 /T r v , where r is the radius and 

v is the speed, the centripetal acceleration can be written as 

 

 

22 2

2

1 2 4
.

v r r
a

r r T T

  
   

 
 

 

Based on this expression, we compare the (magnitudes) of the wallet and purse 

accelerations, and find their ratio is the ratio of r values.  Therefore, awallet = 1.50 apurse .   

Thus, the wallet acceleration vector is  

 

 2 2 2 2ˆ ˆ ˆ ˆ1.50[(2.00 m/s )i +(4.00 m/s )j]=(3.00 m/s )i +(6.00 m/s )ja  . 

 

66. The fact that the velocity is in the +y direction and the acceleration is in the +x 

direction at t1 = 4.00 s implies that the motion is clockwise. The position corresponds to 

the “9:00 position.” On the other hand, the position at t2 = 10.0 s is in the “6:00 position” 

since the velocity points in the x direction and the acceleration is in the +y direction. 

The time interval 10.0 s 4.00 s 6.00 st     is equal to 3/4 of a period: 

 

 
3

6.00 s     8.00 s.
4

T T    

Equation 4-35 then yields  

 

 
(3.00 m/s)(8.00 s)

3.82 m.
2 2

vT
r

 
    

 

(a) The x coordinate of the center of the circular path is 5.00 m 3.82 m 8.82 m.x     

 

(b) The y coordinate of the center of the circular path is 6.00 m.y   

 

In other words, the center of the circle is at (x,y) = (8.82 m, 6.00 m). 

 

67. THINK In this problem we have a stone whirled in a horizontal circle. After the 

string breaks, the stone undergoes projectile motion.  

 

EXPRESS The stone moves in a circular path (top view shown below left) initially, but 

undergoes projectile motion after the string breaks (side view shown below right). Since 
2 /a v R , to calculate the centripetal acceleration of the stone, we need to know its 
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speed during its circular motion (this is also its initial speed when it flies off). We use the 

kinematic equations of projectile motion (discussed in §4-6) to find that speed. 

(top view)  
 

(side view) 

 

Taking the +y direction to be upward and placing the origin at the point where the stone 

leaves its circular orbit, then the coordinates of the stone during its motion as a projectile 

are given by x = v0t and y gt  1
2

2 (since v0y = 0). It hits the ground at x = 10 m and 

2.0 my   .  

 

ANALYZE Formally solving the y-component equation for the time, we obtain 

t y g 2 / , which we substitute into the first equation: 

 

v x
g

y
0

2
10

9 8

2 2 0
157   


m

m / s

m
m / s.

2

b g b g
.

.
.  

 

Therefore, the magnitude of the centripetal acceleration is 

 

 
22

20
15.7 m/s

160 m/s .
1.5 m

v
a

R
    

 

LEARN The above equations can be combined to give 
2

2

gx
a

yR



. The equation implies 

that the greater the centripetal acceleration, the greater the initial speed of the projectile, 

and the greater the distance traveled by the stone. This is precisely what we expect. 

 

68. We note that after three seconds have elapsed (t2 – t1 = 3.00 s) the velocity (for this 

object in circular motion of period T ) is reversed; we infer that it takes three seconds to 

reach the opposite side of the circle.  Thus, T = 2(3.00 s) = 6.00 s.   

 

(a) Using Eq. 4-35, r = vT/2, where 2 2(3.00 m/s) (4.00 m/s) 5.00 m/sv   , we obtain 

4.77 mr  . The magnitude of the object’s centripetal acceleration is therefore a = v
2
/r = 

5.24 m/s
2
.  
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(b) The average acceleration is given by Eq. 4-15: 

 

2 22 1
avg

2 1

ˆ ˆ ˆ ˆ( 3.00i 4.00j) m/s (3.00i 4.00j) m/s ˆ ˆ( 2.00 m/s )i+( 2.67 m/s ) j
5.00 s 2.00 s

v v
a

t t

    
    

 

 

which implies 2 2 2 2 2

avg| | ( 2.00 m/s ) ( 2.67 m/s ) 3.33 m/s .a       

 

69. We use Eq. 4-15 first using velocities relative to the truck (subscript t) and then using 

velocities relative to the ground (subscript g). We work with SI units, so 

20 km/ h 5.6 m/ s , 30 km/ h 8.3 m/ s , and 45 km/ h 12.5  m/ s . We choose 

east as the  i  direction. 

 

(a) The velocity of the cheetah (subscript c) at the end of the 2.0 s interval is (from Eq.  

4-44) 

c t c g t g
ˆ ˆ ˆ(12.5 m/s) i ( 5.6 m/s) i (18.1 m/s) iv v v       

 

relative to the truck. Since the velocity of the cheetah relative to the truck at the 

beginning of the 2.0 s interval is ˆ( 8.3 m/s)i , the (average) acceleration vector relative to 

the cameraman (in the truck) is 

2

avg

ˆ ˆ(18.1m/s)i ( 8.3 m/s)i ˆ(13 m/s )i,
2.0 s

a
 

   

or 2

avg| | 13 m/s .a   

 

(b) The direction of avga is ˆ+i , or eastward. 

 

(c) The velocity of the cheetah at the start of the 2.0 s interval is (from Eq. 4-44) 

 

0 cg 0 ct 0 tg
ˆ ˆ ˆ( 8.3 m/s)i ( 5.6 m/s)i ( 13.9 m/s)iv v v         

 

relative to the ground. The (average) acceleration vector relative to the crew member (on 

the ground) is 

2 2

avg avg

ˆ ˆ(12.5 m/s)i ( 13.9 m/s)i ˆ(13 m/s )i,   | | 13 m/s
2.0 s

a a
 

    

 

identical to the result of part (a). 

 

(d) The direction of avga  is ˆ+i , or eastward. 

 

70. We use Eq. 4-44, noting that the upstream corresponds to the ˆ+i direction. 

 

(a) The subscript b is for the boat, w is for the water, and g is for the ground. 
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bg bw wg
ˆ ˆ ˆ(14 km/h) i ( 9 km/h) i (5 km/h) i.v v v       

 

Thus, the magnitude is 
bg| | 5 km/h.v   

 

(b) The direction of bgv is +x, or upstream. 

 

(c) We use the subscript c for the child, and obtain 

 
  
v v vc g c b b g  km/ h) i  km/ h) i (  km/ h) i      (  (  6 5 1 . 

 

The magnitude is cg| | 1 km/h.v   

 

(d) The direction of cgv is x, or downstream. 

 

71. While moving in the same direction as the sidewalk’s motion (covering a distance d 

relative to the ground in time t1 = 2.50 s), Eq. 4-44 leads to 

vsidewalk + vman running = 
d

 t1
  . 

 

While he runs back (taking time t2 = 10.0 s) we have 

vsidewalk  vman running = 
d

 t2
  . 

 

Dividing these equations and solving for the desired ratio, we get  
12.5

7.5
  =  

5

3
  = 1.67. 

 

72. We denote the velocity of the player with 
PFv  and 

the relative velocity between the player and the ball be 

BPv . Then the velocity 
BFv  of the ball relative to the 

field is given by 
BF PF BPv v v  . The smallest angle 

min corresponds to the case when 
BF PFv v . Hence, 

 

1 1

min

| | 4.0 m/s
180 cos  180 cos  130 .

| | 6.0 m/s

PF

BP

v

v
     

        
  

  

73. We denote the police and the motorist with subscripts p and m, respectively. The 

coordinate system is indicated in Fig. 4-46. 

 

(a) The velocity of the motorist with respect to the police car is 

 

 
ˆ ˆ ˆ ˆ( 60 km/h)j ( 80 km/h)i (80 km/h)i (60 km/h)j.m p m pv v v         
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(b) 

vm p  does happen to be along the line of sight. Referring to Fig. 4-46, we find the 

vector pointing from one car to another is ˆ ˆ(800 m)i (600 m) jr    (from M to P). Since 

the ratio of components in 

r  is the same as in 


vm p , they must point the same direction. 

 

(c) No, they remain unchanged. 

 

74. Velocities are taken to be constant; thus, the velocity of the plane relative to the 

ground is ˆ ˆ(55 km)/(1/4 hour) j= (220 km/h)jPGv  . In addition, 

 

 ˆ ˆ ˆ ˆ(42 km/h)(cos20 i sin 20 j) (39 km/h)i (14 km/h)j.AGv        

 

Using PG PA AGv v v  , we have  

 

 ˆ ˆ(39 km/h)i (234 km/h)j.PA PG AGv v v      

 

which implies | | 237 km/hPAv  , or 240 km/h (to two significant figures.) 

 

75. THINK This problem deals with relative motion in two dimensions. Raindrops 

appear to fall vertically by an observer on a moving train.  

 

 

EXPRESS Since the raindrops fall vertically 

relative to the train, the horizontal component 

of the velocity of a raindrop, vh = 30 m/s, must 

be the same as the speed of the train, i.e., 

trainhv v  (see figure).  

 
On the other hand, if vv is the vertical component of the velocity and  is the angle 

between the direction of motion and the vertical, then tan  = vh/vv.  Knowing vv and vh 

allows us to determine the speed of the raindrops. 

 

ANALYZE With 70   , we find the vertical component of the velocity to be  

 

vv = vh/tan  = (30 m/s)/tan 70° = 10.9 m/s. 

 

Therefore, the speed of a raindrop is  

 

v v vh v    2 2 30 10 9 32( ( . m / s)  m/ s)  m / s2 2 . 
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LEARN As long as the horizontal component of the velocity of the raindrops coincides 

with the speed of the train, the passenger on board will see the rain falling perfectly 

vertically.    

 

76. The destination is D  


 = 800 km j
^
  where we orient axes so that +y points north and +x 

points east.  This takes two hours, so the (constant) velocity of the plane (relative to the 

ground) is 
pgv  = (400 km/h) j

^
 .  This must be the vector sum of the plane’s velocity with 

respect to the air which has (x,y) components (500cos70º, 500sin70º), and the velocity of 

the air (wind) relative to the ground agv .  Thus, 

 

(400 km/h) j
^
  = (500 km/h) cos70º i

^
 + (500 km/h) sin70º j

^
  + 

agv  

 

which yields 

agv  =( –171 km/h)i
^
  –( 70.0 km/h)j

^
 . 

 

(a) The magnitude of agv  is 2 2

ag| | ( 171 km/h) ( 70.0 km/h) 185 km/h.v       

 

(b) The direction of agv  is 

 1 70.0 km/h
tan 22.3   (south of west).

171 km/h
   
   

 
 

 

77. THINK This problem deals with relative motion in two dimensions. Snowflakes 

falling vertically downward are seen to fall at an angle by a moving observer.  

 

EXPRESS Relative to the car the velocity of the snowflakes has a vertical component of 

8.0 m/svv   and a horizontal component of 50 km/h 13.9 m/shv   .  

 

ANALYZE The angle   from the vertical is found from 

 

13.9 m/s
tan 1.74

8.0 m/s

h

v

v

v
     

which yields  = 60°. 

 

LEARN The problem can also be solved 

by expressing the velocity relation in 

vector notation: rel car snowv v v  , as shown 

in the figure. 
 

 

78. We make use of Eq. 4-44 and Eq. 4-45. 

 

The velocity of Jeep P relative to A at the instant is  
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 ˆ ˆ ˆ ˆ(40.0 m/s)(cos60 i sin60 j) (20.0 m/s)i (34.6 m/s)j.PAv        

 

Similarly, the velocity of Jeep B relative to A at the instant is  

 
ˆ ˆ ˆ ˆ(20.0 m/s)(cos30 i sin30 j) (17.3 m/s)i (10.0 m/s)j.BAv        

 

Thus, the velocity of P relative to B is  

 
ˆ ˆ ˆ ˆ ˆ ˆ(20.0i 34.6j) m/s (17.3i 10.0j) m/s (2.68 m/s)i (24.6 m/s)j.PB PA BAv v v         

 

(a) The magnitude of 
PBv  is 2 2| | (2.68 m/s) (24.6 m/s) 24.8 m/s.PBv     

 

(b) The direction of PBv  is 1tan [(24.6 m/s) /(2.68 m/s)] 83.8     north of east (or 6.2º 

east of north). 

 

(c) The acceleration of P is 

 
2 2 2ˆ ˆ ˆ ˆ(0.400 m/s )(cos60.0 i sin60.0 j) (0.200 m/s )i (0.346 m/s )j,PAa        

 

and PA PBa a . Thus, we have 2| | 0.400 m/s .PBa   

 

(d) The direction is 60.0 north of east (or 30.0 east of north). 

 

79. THINK This problem involves analyzing the relative motion of two ships sailing in 

different directions. 

 

EXPRESS Given that 45A   , and 40B   , as 

defined in the figure, the velocity vectors (relative to 

the shore) for ships A and B are given by 

 

ˆ ˆ ( cos 45 ) i ( sin 45 ) j

ˆ ˆ ( sin 40 ) i ( cos 40 ) j,

A A A

B B B

v v v

v v v

    

    
 

 

with vA = 24 knots and vB = 28 knots. We take east as 

 i  and north as j .  

The velocity of ship A relative to ship B is simply given by  AB A Bv v v  .   

 

ANALYZE (a) The relative velocity is 
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ˆ ˆ ( sin 40 cos 45 )i ( cos 40 sin 45 ) j

ˆ ˆ(1.03 knots)i (38.4 knots) j

A B A B B A B Av v v v v v v       

 
 

 

the magnitude of which is 2 2

 | | (1.03 knots) (38.4 knots) 38.4 knots.A Bv     

 

(b) The angle 
AB which 


vA B 

 makes with north is given by 

 

,1 1

,

1.03 knots
tan tan 1.5

38.4 knots

AB x

AB

AB y

v

v
  

   
            

 

which is to say that 

vA B 

 points 1.5° east of north.  

 

(c) Since the two ships started at the same time, their relative velocity describes at what 

rate the distance between them is increasing. Because the rate is steady, we have 

 

| | 160 nautical miles
4.2 h.

| | 38.4 knots

AB

AB

r
t

v


  

 
 

(d) The velocity 

vA B 

 does not change with time in 

this problem, and 

rA B  is in the same direction as 


vA B 

 

since they started at the same time. Reversing the 

points of view, we have 
 
v vA B B A     so that 

 
r rA B B A     (i.e., they are 180° opposite to each 

other). Hence, we conclude that B stays at a bearing 

of 1.5° west of south relative to A during the journey 

(neglecting the curvature of Earth). 

 
 

LEARN The relative velocity is depicted in the figure on the right. When analyzing 

relative motion in two dimensions, a vector diagram such as the one shown can be very 

helpful. 

 

80. This is a classic problem involving two-dimensional relative motion. We align our 

coordinates so that east corresponds to +x and north corresponds to +y. We write the 

vector addition equation as 
  
v v vBG BW WG  .  We have 


vWG   ( . )2 0 0  in the magnitude-

angle notation (with the unit m/s understood), or 

vWG  2 0. i  in unit-vector notation. We 

also have 

vBW   ( . )80 120  where we have been careful to phrase the angle in the 

‘standard’ way (measured counterclockwise from the +x axis), or ˆ ˆ( 4.0i+6.9j) m/s.BWv    

 

(a) We can solve the vector addition equation for 

vBG:  
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ˆ ˆ ˆ ˆ ˆ(2.0 m/s) i ( 4.0i+6.9j) m/s ( 2.0 m/s)i (6.9 m/s) j.BG BW WGv v v         

 

Thus, we find | | .

vBG  7 2  m/s.  

 

(b) The direction of 
BGv  is 1tan [(6.9 m/s) /( 2.0 m/s)] 106     (measured 

counterclockwise from the +x axis), or 16° west of north. 

 

(c) The velocity is constant, and we apply y – y0 = vyt in a reference frame. Thus, in the 

ground reference frame, we have (200 m) (7.2 m/s)sin(106 ) 29t t     s. Note: If a 

student obtains “28 s,” then the student has probably neglected to take the y component 

properly (a common mistake). 

 

81. Here, the subscript W refers to the water. Our coordinates are chosen with +x being 

east and +y being north. In these terms, the angle specifying east would be 0° and the 

angle specifying south would be –90° or 270°. Where the length unit is not displayed, km 

is to be understood. 

 

(a) We have 
  
v v vA W A B B W     , so that  

 

vA B  = (22   – 90°) – (40   37°) = (56   – 125°) 

 

in the magnitude-angle notation (conveniently done with a vector-capable calculator in 

polar mode).  Converting to rectangular components, we obtain 

 

 
ˆ ˆ( 32km/h) i (46 km/h) j .A Bv     

 

Of course, this could have been done in unit-vector notation from the outset. 

 

(b) Since the velocity-components are constant, integrating them to obtain the position is 

straightforward ( )
  
r r v dt  z0    

 
ˆ ˆ(2.5 32 ) i (4.0 46 ) jr t t     

 

with lengths in kilometers and time in hours. 

 

(c) The magnitude of this 

r  is r t t   ( . ) ( . )2 5 32 4 0 462 2 . We minimize this by 

taking a derivative and requiring it to equal zero — which leaves us with an equation for t 

 

dr

dt

t

t t




  


1

2

6286 528

2 5 32 4 0 46
0

2 2( . ) ( . )
 

 

which yields t = 0.084 h. 
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(d) Plugging this value of t back into the expression for the distance between the ships (r), 

we obtain r = 0.2 km. Of course, the calculator offers more digits (r = 0.225…), but they 

are not significant; in fact, the uncertainties implicit in the given data, here, should make 

the ship captains worry. 

 

82. We construct a right triangle starting from the clearing on the 

south bank, drawing a line (200 m long) due north (upward in our 

sketch) across the river, and then a line due west (upstream, leftward 

in our sketch) along the north bank for a distance (82 m) (1.1 m/s)t , 

where the t-dependent contribution is the distance that the river will 

carry the boat downstream during time t. 

 

The hypotenuse of this right triangle (the arrow in our sketch) also 

depends on t and on the boat’s speed (relative to the water), and we 

set it equal to the Pythagorean “sum” of the triangle’s sides: 

 

4 0 200 82 112 2
. .b g b gt t    

 

which leads to a quadratic equation for t 

 

46724 180 4 14 8 02  . . .t t  

 

(b) We solve for t first and find a positive value: t = 62.6 s.  

 

(a) The angle between the northward (200 m) leg of the triangle and the hypotenuse 

(which is measured “west of north”) is then given by 

 

 
F

HG
I
KJ 

F
HG
I
KJ   tan

.
tan .1 182 11

200

151

200
37

t
 

 

83. We establish coordinates with i  pointing to the far side of the river (perpendicular to 

the current) and j  pointing in the direction of the current. We are told that the magnitude 

(presumed constant) of the velocity of the boat relative to the water is | |  = 6.4 km/h.bwv  

Its angle, relative to the x axis is .  With km and h as the understood units, the velocity 

of the water (relative to the ground) is ˆ(3.2 km/h)j.wgv   

 

(a) To reach a point “directly opposite” means that the velocity of her boat relative to 

ground must be ˆ = ibg bgv v  where vbg  0 is unknown. Thus, all j  components must cancel 

in the vector sum 
  
v v vbw wg bg +   =  , which means the 

bwv  sin  = (–3.2 km/h) j , so  

 

 = sin
–1

 [(–3.2 km/h)/(6.4 km/h)] = –30°. 
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(b) Using the result from part (a), we find vbg = vbw cos = 5.5 km/h. Thus, traveling a 

distance of   = 6.4 km requires a time of (6.4 km)/(5.5 km/h) = 1.15 h or 69 min. 

 

(c) If her motion is completely along the y axis (as the problem implies) then with vwg = 

3.2 km/h (the water speed) we have 

 

total  =  +  = 1.33 h
 +   bw wg bw wg

D D
t

v v v v
 

 

where D = 3.2 km. This is equivalent to 80 min. 

 

(d) Since 

 
+  bw wg bw wg bw wg bw wg

D D D D

v v v v v v v v
  

  
 

 

the answer is the same as in the previous part, that is, total  = 80 mint . 

 

(e) The shortest-time path should have 0 .    This can also be shown by noting that the 

case of general  leads to 

 
ˆ ˆcos  i  ( sin  + ) jbg bw wg bw bw wgv v v v v v      

 

where the x component of 

vbg  must equal l/t. Thus, 

 

 = 
cosbw

l
t

v 
 

 

which can be minimized using dt/d = 0.  

 

(f) The above expression leads to t = (6.4 km)/(6.4 km/h) = 1.0 h, or 60 min. 

 

84. Relative to the sled, the launch velocity is 0relv  = vox i
^
  + voy j

^
 .  Since the sled’s 

motion is in the negative direction with speed vs (note that we are treating vs as a positive 

number, so the sled’s velocity is actually –vs i
^
 ), then the launch velocity relative to the 

ground is 0v  = (vox – vs) i
^
  + voy j

^
 .  The horizontal and vertical displacement (relative to 

the ground) are therefore 

 

          xland – xlaunch = xbg = (vox – vs) tflight 

 

          yland – ylaunch =  0  = voy tflight  +  
1

2
 (g)(tflight)

2
 . 

 

Combining these equations leads to  
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xbg = 
0 0 02 2x y y

s

v v v
v

g g

 
 
 

. 

 

The first term corresponds to the “y intercept” on the graph, and the second term (in 

parentheses) corresponds to the magnitude of the “slope.” From the figure, we have 

 

 40 4 .bg sx v    

 

This implies voy = (4.0 s)(9.8 m/s
2
)/2 = 19.6 m/s, and that furnishes enough information to 

determine vox. 

 

(a) vox = 40g/2voy = (40 m)(9.8 m/s
2
)/(39.2 m/s) = 10 m/s. 

 

(b) As noted above, voy = 19.6 m/s. 

 

(c) Relative to the sled, the displacement xbs does not depend on the sled’s speed, so 

xbs = vox tflight = 40 m. 

 

(d) As in (c), relative to the sled, the displacement xbs does not depend on the sled’s 

speed, and xbs = vox tflight = 40 m. 

 

85. Using displacement = velocity × time (for each constant-velocity part of the trip), 

along with the fact that 1 hour = 60 minutes, we have the following vector addition 

exercise (using notation appropriate to many vector-capable calculators): 

 

(1667 m  0º)  + (1333 m  90º) + (333 m  180º) + (833 m  90º) + (667 m  180º) 

+ (417 m  90º) = (2668 m  76º). 

 

(a) Thus, the magnitude of the net displacement is 2.7 km. 

 

(b) Its direction is 76 clockwise (relative to the initial direction of motion). 

 

86. We use a coordinate system with +x eastward and +y upward.  

 

(a) We note that 123° is the angle between the initial position and later position vectors, 

so that the angle from +x to the later position vector is 40° + 123° = 163°. In unit-vector 

notation, the position vectors are 

 

1

2

ˆ ˆ ˆ ˆ = (360 m)cos(40 ) i + (360 m)sin(40 ) j = (276 m)i +(231 m) j

ˆ ˆ ˆ ˆ = (790 m) cos(163 ) i +(790 m) sin(163 ) j = ( 755 m)i +(231 m) j

r

r

 

  
 

 

respectively. Consequently, we plug into Eq. 4-3 
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ˆ ˆ ˆ = [( 755 m) (276 m)]i +(231 m 231 m) j (1031 m) i.r       

 

The magnitude of the displacement r  is | | 1031 m.r   

 

(b) The direction of r is î , or westward. 

 

87. THINK This problem deals with the projectile motion of a baseball. Given the 

information on the position of the ball at two instants, we are asked to analyze its 

trajectory.  

 

EXPRESS The trajectory of the baseball 

is shown in the figure on the right. 

According to the problem statement, at 

1 3.0 s,t   the ball reaches it maximum 

height max ,y  and at 2 1 2.5 s 5.5 st t   , 

it barely clears a fence at 2 97.5 mx  .  

Eq. 2-15 can be applied to the vertical (y axis) motion related to reaching the maximum 

height (when t1 = 3.0 s and vy = 0): 

ymax – y0  =  vyt – 
1

2
gt

2
  . 

 

ANALYZE (a) With ground level chosen so y0 = 0, this equation gives the result  

 

 2 2 2

max 1

1 1
(9.8 m/s )(3.0 s) 44.1 m

2 2
y gt    

 

(b) After the moment it reached maximum height, it is falling; at 2 1 2.5 s 5.5 st t   , it 

will have fallen an amount given by Eq. 2-18:  

 

2

fence max 2 1

1
0 ( )

2
y y g t t    . 

Thus, the height of the fence is 

 

2 2 2

fence max 2 1

1 1
( ) 44.1 m (9.8 m/s )(2.5 s) 13.48 m

2 2
y y g t t      . 

 

(c) Since the horizontal component of velocity in a projectile-motion problem is constant 

(neglecting air friction), we find from 97.5 m = v0x(5.5 s) that v0x = 17.7 m/s. The total 

flight time of the ball is 12 2(3.0 s) 6.0 sT t   . Thus, the range of the baseball is  

 

 0 (17.7 m/s)(6.0 s) 106.4 mxR v T    

 

which means that the ball travels an additional distance 
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2 106.4 m 97.5 m 8.86 mx R x       

 

beyond the fence before striking the ground.  

 

LEARN Part (c) can also be solved by noting that after passing the fence, the ball will 

strike the ground in 0.5 s (so that the total "fall-time" equals the "rise-time"). With v0x = 

17.7 m/s, we have x = (17.7 m/s)(0.5 s) = 8.86 m. 

 

88. When moving in the same direction as the jet stream (of speed vs), the time is 

 

 1

ja s

d
t

v v



, 

 

where d = 4000 km is the distance and vja is the speed of the jet relative to the air (1000 

km/h). When moving against the jet stream, the time is 

 

2

ja s

d
t

v v



, 

where  t2 – t1 = 
70

60
 h . Combining these equations and using the quadratic formula to solve 

gives vs = 143 km/h. 

 

89. THINK We have a particle moving in a two-dimensional plane with a constant 

acceleration. Since the x and y components of the acceleration are constants, we can use 

Table 2-1 for the motion along both axes.  

 

EXPRESS Using vector notation with 

r0 0 , the position and velocity of the particle as 

a function of time are given by 2

0

1
( )

2
r t v t at   and 0( ) ,v t v at   respectively. Where 

units are not shown, SI units are to be understood. 

 

ANALYZE (a) Given the initial velocity 0
ˆ(8.0 m/s) jv   and the acceleration 

2 2ˆ ˆ(4.0 m/s )i (2.0 m/s ) ja   , the position vector of the particle is  

 

       2 2 2 2

0

1 1ˆ ˆ ˆ ˆ ˆ8.0 j 4.0i 2.0 j 2.0 i + 8.0 +1.0 j.
2 2

r v t at t t t t t       

 

Therefore, the time that corresponds to x = 29 m can be found by solving the equation 

2.0t
2
 = 29, which leads to t = 3.8 s. The y coordinate at that time is 

  

y = (8.0 m/s)(3.8 s) + (1.0 m/s
2
)(3.8 s)

2
 = 45 m. 

 



 CHAPTER 4 172 

(b) The velocity of the particle is given by 
  
v v at 0 . Thus, at t = 3.8 s, the velocity is 

 

  2 2ˆ ˆ ˆ ˆ ˆ(8.0 m/s) j (4.0 m/s ) i (2.0 m/s ) j 3.8 s (15.2 m/s) i (15.6 m/s) jv       

 

which has a magnitude of 2 2 2 2(15.2 m/s) (15.6 m/s) 22 m/s.x yv v v      

 

LEARN Instead of using the vector notation, we can also deal with thex- and the y-

components individually. 

 

90. Using the same coordinate system assumed in Eq. 4-25, we rearrange that equation to 

solve for the initial speed: 

v
x g

x y
0

2
 =  

cos 
 

 (  tan   0 0   )
 

 

which yields v0 = 23 ft/s for g = 32 ft/s
2
, x = 13 ft, y = 3 ft and 0 = 55°. 

 

91. We make use of Eq. 4-25. 

 

(a) By rearranging Eq. 4-25, we obtain the initial speed: 

 

v
x g

x y
0

0 02


cos ( tan ) 
 

 

which yields v0 = 255.5  2.6  10
2
 m/s for x = 9400 m, y = –3300 m, and 0 = 35°. 

 

(b) From Eq. 4-21, we obtain the time of flight: 

 

0 0

9400 m
45 s.

cos (255.5 m/s)cos35

x
t

v 
  


 

 

(c) We expect the air to provide resistance but no appreciable lift to the rock, so we 

would need a greater launching speed to reach the same target. 

 

92. We apply Eq. 4-34 to solve for speed v and Eq. 4-35 to find the period T. 

 

(a) We obtain 

v ra  50 7 0 9 8 19. . .m m / s m / s.2b gb gc h  

 

(b) The time to go around once (the period) is T = 2r/v = 1.7 s. Therefore, in one minute 

(t = 60 s), the astronaut executes 
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60 s
35

1.7 s

t

T
   

 

revolutions. Thus, 35 rev/min is needed to produce a centripetal acceleration of 7g when 

the radius is 5.0 m. 

 

(c) As noted above, T = 1.7 s. 

 

93. THINK This problem deals with the two-dimensional kinematics of a desert camel 

moving from oasis A to oasis B.  

 

EXPRESS The journey of the camel is 

illustrated in the figure on the right. We use a 

‘standard’ coordinate system with +x East and 

+y North. Lengths are in kilometers and times 

are in hours. Using vector notation, we write 

the displacements for the first two segments of 

the trip as:  

1

2

ˆ ˆ(75 km)cos(37 ) i (75 km) sin(37 ) j

ˆ( 65 km) j

r

r

    

  
 

 

The net displacement is 12 1 2  .r r r     As can be seen from the figure, to reach oasis B 

requires an additional displacement 3r . 

 

ANALYZE (a) We perform the vector addition of individual displacements to find the 

net displacement of the camel: 12 1 2
ˆ ˆ(60 km) i (20 km)j.r r r       Its corresponding 

magnitude is  
2 2

12| | (60 km) ( 20 km)  63 km.r      

 

(b) The direction of 12r  is 1

12 tan [( 20 km) /(60 km)] 18      , or 18 south of east. 

 

(c) To calculate the average velocity for the first two segments of the journey (including 

rest), we use the result from part (a) in Eq. 4-8 along with the fact that  

 

12 1 2 rest 50 h 35 h 5.0 h 90 h.t t t t          

 

In unit vector notation, we have 
12,avg

ˆ ˆ(60i 20 j) km ˆ ˆ= (0.67 i 0.22 j) km/h.
90 h

v


   

This leads to 12,avg|  | 0.70 km/h.v   

 

(d) The direction of 12,avgv is 1

12 tan [( 0.22 km/h) /(0.67 km/h)] 18 ,       or 

18 south of east. 
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(e) The average speed is distinguished from the magnitude of average velocity in that it 

depends on the total distance as opposed to the net displacement. Since the camel travels 

140 km, we obtain (140 km)/(90 h) = 1.56 km/h 1.6 km/h.  

 

(f) The net displacement is required to be the 90 km East from A to B. The displacement 

from the resting place to B is denoted 
3.r  Thus, we must have 

  

1 2 3
ˆ +  +  = (90 km) ir r r    

 

which produces 
3

ˆ ˆ(30 km)i (20 km)jr    in unit-vector notation, or (36  33 )   in 

magnitude-angle notation.  Therefore, using Eq. 4-8 we obtain 

 

3,avg

36km
|  | 1.2km/h.

(120 90) h
v  


 

(g) The direction of 3,avgv is the same as 
3r  (that is, 33° north of east). 

 

LEARN With a vector-capable calculator in polar mode, we could perform the vector 

addition of the displacements as (75  37 ) (65   90 ) (63   18 )          . Note the 

distinction between average velocity and average speed. 

 

94. We compute the coordinate pairs (x, y) from x = (v0 cost and 21
0 2

siny v t gt   

for t = 20 s and the speeds and angles given in the problem.  

 

(a) We obtain  

       
       

, 10.1 km, 0.556 km , 12.1 km,1.51 km

, 14.3 km, 2.68 km , 16.4 km, 3.99 km
A A B B

C C D D

x y x y

x y x y

 

 
 

 

and (xE, yE) = (18.5 km, 5.53 km) which we plot in the next part. 

 

 

(b) The vertical (y) and horizontal (x) axes are 

in kilometers. The graph does not start at the 

origin.  The curve to “fit” the data is not 

shown, but is easily imagined (forming the 

“curtain of death”). 

 

 

 
 

95. (a) With x = 8.0 m, t = t1, a = ax , and vox = 0,  Eq. 2-15 gives 
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8.0 m = 
1

2
 ax(t1)

2 
, 

 

and the corresponding expression for motion along the y axis leads to 

 

y = 12 m = 
1

2
 ay(t1)

2 
. 

 

Dividing the second expression by the first leads to / 3/ 2y xa a  = 1.5.  

 

(b) Letting t = 2t1, then Eq. 2-15 leads to x = (8.0 m)(2)
2
 = 32 m, which implies that its 

x coordinate is now (4.0 + 32) m = 36 m.  Similarly, y = (12 m)(2)
2
 = 48 m, which 

means its y coordinate has become (6.0 + 48) m = 54 m. 

 

96. We assume the ball’s initial velocity is perpendicular to the plane of the net. We 

choose coordinates so that (x0, y0) = (0, 3.0) m, and vx > 0 (note that v0y = 0). 

 

(a) To (barely) clear the net, we have 

 

 2 2 2

0 0

1 1
2.24 m 3.0 m 0 9.8 m/s

2 2
yy y v t gt t        

 

which gives t = 0.39 s for the time it is passing over the net. This is plugged into the x-

equation to yield the (minimum) initial velocity vx = (8.0 m)/(0.39 s) = 20.3 m/s. 

 

(b) We require y = 0 and find time t from the equation 21
0 0 2y

y y v t gt   . This value 

  22 3.0 m /(9.8 m/s )(t  0.78 s)  is plugged into the x-equation to yield the 

(maximum) initial velocity  

vx = (17.0 m)/(0.78 s) = 21.7 m/s. 

 

97. THINK A bullet fired horizontally from a rifle strikes the target at some distance 

below its aiming point. We’re asked to find its total flight time and speed. 

 

EXPRESS The trajectory of the 

bullet is shown in the figure on the 

right (not to scale). Note that the 

origin is chosen to be at the firing 

point. With this convention, the y 

coordinate of the bullet is given by 

y gt  1
2

2 . Knowing the coordinates 
 

(x, y) at the target allows us to calculate the total flight time and speed of the bullet. 

 

ANALYZE (a) If t is the time of flight and y = – 0.019 m indicates where the bullet hits 

the target, then 
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  2

2

2 0.019 m2
6.2 10 s.

9.8 m/s

y
t

g


 

     

 

(b) The muzzle velocity is the initial (horizontal) velocity of the bullet. Since x = 30 m is 

the horizontal position of the target, we have x = v0t. Thus, 

 

2

0 2

30 m
4.8 10 m/s.

6.3 10 s

x
v

t 
   


 

 

LEARN Alternatively, we may use Eq. 4-25 to solve for the initial velocity. With 0 0   

and 0 0y  , the equation simplifies to
2

2

02

gx
y

v
  , from which we find 

  
2 2 2

2

0

(9.8 m/s )(30 m)
4.8 10 m/s

2 2( 0.019 m)

gx
v

y
     


, 

 

in agreement with what we calculated in part (b).  

  

98. For circular motion, we must have v  with direction perpendicular to  r  


  and (since 

the speed is constant) magnitude 2 /v r T  where 2 2(2.00 m) ( 3.00 m)r     and 

7.00 sT  . The  r  


 (given in the problem statement) specifies a point in the fourth 

quadrant, and since the motion is clockwise then the velocity must have both components 

negative.  Our result, satisfying these three conditions, (using unit-vector notation which 

makes it easy to double-check that 0r v  ) for v = (–2.69 m/s)i
^
 + (–1.80 m/s)j

^
. 

 

99. Let vo = 2(0.200 m)/(0.00500 s)  251 m/s (using Eq. 4-35) be the speed it had in 

circular motion and o = (1 hr)(360º/12 hr [for full rotation]) = 30.0º.  Then Eq. 4-25 leads 

to

 2 2

2 2

(9.8 m/s )(2.50 m)
(2.50 m) tan30.0 1.44 m

2(251 m/s) (cos30.0 )
y   


 

 

which means its height above the floor is 1.44 m + 1.20 m = 2.64 m. 

 

100. Noting that 

v2 0 , then, using Eq. 4-15, the average acceleration is 

 

 
  2

avg

ˆ ˆ0 6.30i 8.42 j m/s
ˆ ˆ2.1i 2.8 j m/s

3 s

v
a

t

 
    


 

 

101. Using Eq. 2-16, we obtain 2 2

0 2v v gh  , or 2 2

0( ) / 2 .h v v g   

 



 

  

177 

(a) Since 0v  at the maximum height of an upward motion, with 
0 7.00 m/sv  , we 

have 
2 2(7.00 m/s) / 2(9.80 m/s ) 2.50 m.h    

 

(b) The relative speed is 0 7.00 m/s 3.00 m/s 4.00 m/sr cv v v      with respect to the 

floor. Using the above equation we obtain 2 2(4.00 m/s) / 2(9.80 m/s ) 0.82 m.h    

 

(c) The acceleration, or the rate of change of speed of the ball with respect to the ground 

is 9.80 m/s
2
 (downward). 

 

(d) Since the elevator cab moves at constant velocity, the rate of change of speed of the 

ball with respect to the cab floor is also 9.80 m/s
2
 (downward). 

 

102. (a) With r = 0.15 m and a = 3.0  10
14

 m/s
2
, Eq. 4-34 gives 

 

v ra  67 106.  m/ s. 

 

(b) The period is given by Eq. 4-35: 

T
r

v
   2

14 10 7
. s.  

 

103. (a) The magnitude of the displacement vector 

r  is given by 

 
2 2 2| | (21.5 km) (9.7 km) (2.88 km) 23.8 km.r      

Thus, 

avg

| | 23.8 km
| | 6.79 km/h.

3.50 h

r
v

t


  


 

 

(b) The angle  in question is given by 

 

1

2 2

2.88 km
tan 6.96 .

(21.5 km) (9.7 km)
 

 
   
  

 

 

104. The initial velocity has magnitude v0 and because it is horizontal, it is equal to vx the 

horizontal component of velocity at impact. Thus, the speed at impact is 

 

 2 2

0 03yv v v   

 

where 2yv gh  and we have used Eq. 2-16 with x replaced with h = 20 m. Squaring 

both sides of the first equality and substituting from the second, we find 
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v gh v0

2

0

2
2 3  b g  

 

which leads to 2

04gh v  and therefore to 2

0 (9.8 m/s )(20 m) / 2 7.0 m/s.v    

 

105. We choose horizontal x and vertical y axes such that both components of 

v0  are 

positive. Positive angles are counterclockwise from +x and negative angles are clockwise 

from it. In unit-vector notation, the velocity at each instant during the projectile motion is 

 

 0 0 0 0
ˆ ˆcos i sin j.v v v gt     

 

(a) With v0 = 30 m/s and 0 = 60°, we obtain ˆ ˆ(15i +6.4 j) m/sv  , for t = 2.0 s. The 

magnitude of v is 2 2| | (15 m/s) (6.4 m/s) 16 m/s.v     

 

(b) The direction of v is  
1tan [(6.4 m/s) /(15 m/s)] 23 ,     

 

measured counterclockwise from +x. 

 

(c) Since the angle is positive, it is above the horizontal. 

 

(d) With t = 5.0 s, we find ˆ ˆ(15i 23 j) m/sv   , which yields 

 
2 2| | (15 m/s) ( 23 m/s) 27 m/s.v      

 

(e) The direction of v is 1tan [( 23 m/s) /(15 m/s)] 57      , or 57 measured 

clockwise from +x. 

 

(f) Since the angle is negative, it is below the horizontal. 

 

106. We use Eq. 4-2 and Eq. 4-3. 

 

(a) With the initial position vector as 

r1  and the later vector as 


r2 ,  Eq. 4-3 yields 

 
ˆ ˆ ˆ ˆ ˆ[( 2.0 m) 5.0 m]i [(6.0m) ( 6.0 m)]j (2.0 m 2.0 m)k ( 7.0 m) i (12 m) jr           

 

for the displacement vector in unit-vector notation.  

 

(b) Since there is no z component (that is, the coefficient of k̂  is zero), the displacement 

vector is in the xy plane. 
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107. We write our magnitude-angle results in the form R b g  with SI units for the 

magnitude understood (m for distances, m/s for speeds, m/s
2
 for accelerations). All angles 

 are measured counterclockwise from +x, but we will occasionally refer to angles  , 

which are measured counterclockwise from the vertical line between the circle-center and 

the coordinate origin and the line drawn from the circle-center to the particle location (see 

r in the figure). We note that the speed of the particle is v = 2r/T where r = 3.00 m and T 

= 20.0 s; thus, v = 0.942 m/s. The particle is moving counterclockwise in Fig. 4-56. 

 

(a) At t = 5.0 s, the particle has traveled a fraction of 

 

5.00 s 1

20.0 s 4

t

T
   

 

of a full revolution around the circle (starting at the origin). Thus, relative to the circle-

center, the particle is at 

    
1

4
360 90( )       

 

measured from vertical (as explained above). Referring to Fig. 4-56, we see that this 

position (which is the “3 o’clock” position on the circle) corresponds to x = 3.0 m and y = 

3.0 m relative to the coordinate origin. In our magnitude-angle notation, this is expressed 

as    4.2 45R     . Although this position is easy to analyze without resorting to 

trigonometric relations, it is useful (for the computations below) to note that these values 

of x and y relative to coordinate origin can be gotten from the angle  from the relations  

 

sin , cosx r y r r    . 

 

Of course, R x y 2 2  and  comes from choosing the appropriate possibility from 

tan
–1

 (y/x) (or by using particular functions of vector-capable calculators). 

 

(b) At t = 7.5 s, the particle has traveled a fraction of 7.5/20 = 3/8 of a revolution around 

the circle (starting at the origin). Relative to the circle-center, the particle is therefore at  

= 3/8 (360°) = 135° measured from vertical in the manner discussed above. Referring to 

Fig. 4-56, we compute that this position corresponds to  

 

x = (3.00 m)sin 135° = 2.1 m  

y = (3.0 m) – (3.0 m)cos 135° = 5.1 m  

 

relative to the coordinate origin. In our magnitude-angle notation, this is expressed as (R 

  ) = (5.5   68°). 

 

(c) At t = 10.0 s, the particle has traveled a fraction of 10/20 = 1/2 of a revolution around 

the circle. Relative to the circle-center, the particle is at  = 180° measured from vertical 

(see explanation above). Referring to Fig. 4-56, we see that this position corresponds to x 
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= 0 and y = 6.0 m relative to the coordinate origin. In our magnitude-angle notation, this 

is expressed as    6.0 90R     . 

 

(d) We subtract the position vector in part (a) from the position vector in part (c):  

 

     6.0 90 4.2 45 4.2 135         

 

using magnitude-angle notation (convenient when using vector-capable calculators). If 

we wish instead to use unit-vector notation, we write 

 
ˆ ˆ ˆ ˆ(0 3.0 m) i (6.0 m 3.0 m) j ( 3.0 m)i (3.0 m)jR         

 

which leads to | | 4.2 mR   and  = 135°. 

 

(e) From Eq. 4-8, we have avg /v R t   . With  5.0 st  , we have 

 

avg
ˆ ˆ( 0.60 m/s) i (0.60 m/s) jv     

 

in unit-vector notation or (0.85   135°) in magnitude-angle notation. 

 

(f) The speed has already been noted (v = 0.94 m/s), but its direction is best seen by 

referring again to Fig. 4-56. The velocity vector is tangent to the circle at its “3 o’clock 

position” (see part (a)), which means 

v  is vertical. Thus, our result is  0.94 90  . 

 

(g) Again, the speed has been noted above (v = 0.94 m/s), but its direction is best seen by 

referring to Fig. 4-56. The velocity vector is tangent to the circle at its “12 o’clock 

position” (see part (c)), which means 

v  is horizontal. Thus, our result is  0.94 180  . 

 

(h) The acceleration has magnitude a = v
2
/r = 0.30 m/s

2
, and at this instant (see part (a)) it 

is horizontal (toward the center of the circle). Thus, our result is  0.30 180  . 

 

(i) Again, a = v
2
/r = 0.30 m/s

2
, but at this instant (see part (c)) it is vertical (toward the 

center of the circle). Thus, our result is  0.30 270  . 

 

108. Equation 4-34 describes an inverse proportionality between r and a, so that a large 

acceleration results from a small radius. Thus, an upper limit for a corresponds to a lower 

limit for r. 

 

(a) The minimum turning radius of the train is given by 
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r
v

a
min

max . .
.   

2 2

3
216

0 050 9 8
7 3 10

km / h

m / s
m.

2

b g
b gc h  

 

(b) The speed of the train must be reduced to no more than 

 

  2 3

max 0.050 9.8 m/s 1.00 10  m 22 m/sv a r     

 

which is roughly 80 km/h. 

 

109. (a) Using the same coordinate system assumed in Eq. 4-25, we find 

 

y x
gx

v

gx

v
    tan

cos
.


0

2

0 0

2

2

0

2
2 2

0b g     if 0  

 

Thus, with v0 = 3.0  10
6
 m/s and x = 1.0 m, we obtain y = –5.4  10

–13
 m, which is not 

practical to measure (and suggests why gravitational processes play such a small role in 

the fields of atomic and subatomic physics). 

 

(b) It is clear from the above expression that |y| decreases as v0 is increased. 

 

110. When the escalator is stalled the speed of the person is pv t , where   is the 

length of the escalator and t is the time the person takes to walk up it. This is vp = (15 

m)/(90 s) = 0.167 m/s. The escalator moves at ve = (15 m)/(60 s) = 0.250 m/s. The speed 

of the person walking up the moving escalator is  

 

v = vp + ve = 0.167 m/s + 0.250 m/s = 0.417 m/s 

 

and the time taken to move the length of the escalator is 

 

t v   / ( )15 36 m) / (0.417 m/ s  s.  

 

If the various times given are independent of the escalator length, then the answer does 

not depend on that length either. In terms of   (in meters) the speed (in meters per 

second) of the person walking on the stalled escalator is  90 , the speed of the moving 

escalator is  60 , and the speed of the person walking on the moving escalator is 

   90 60 0.0278v    . The time taken is t v    00278 36. s  and is 

independent of  . 

 

111. The radius of Earth may be found in Appendix C. 

 

(a) The speed of an object at Earth’s equator is v = 2R/T, where R is the radius of Earth 

(6.37  10
6
 m) and T is the length of a day (8.64  10

4
 s):  
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v = 2(6.37  10
6
 m)/(8.64  10

4
 s) = 463 m/s. 

 

The magnitude of the acceleration is given by 

 

a
v

R
 




2 2

6

463

6 37 10
0 034

m / s

m
m / s2b g

.
. .  

 

(b) If T is the period, then v = 2R/T is the speed and the magnitude of the acceleration is 

 

 
2 2 2

2

(2 / ) 4v R T R
a

R R T

 
   . 

Thus, 

T
R

a
 


 2 2

6 37 10

9 8
51 10

6
3 

.

.
.

m

m / s
s = 84  min.

2
 

 

112. With gB = 9.8128 m/s
2
 and gM = 9.7999 m/s

2
, we apply Eq. 4-26: 

 

R R
v

g

v

g

v

g

g

g
M B

M B B

B

M

    
F
HG

I
KJ

0

2

0 0

2

0 0

2

02 2 2
1

sin sin sin  
 

which becomes 
2

2

9.8128 m/s
1

9.7999 m/s
M B BR R R

 
   

 
 

 

and yields (upon substituting RB = 8.09 m) RM – RB = 0.01 m = 1 cm. 

 

113. From the figure, the three displacements can be written as  

 

1 1 1 1

2 2 1 2 1 2

3 3 3 2 1

ˆ ˆ ˆ ˆ ˆ ˆ(cos i sin j) (5.00 m)(cos30 i sin 30 j) (4.33 m)i (2.50 m) j

ˆ ˆ ˆ ˆ[cos(180 )i sin(180 )j] (8.00 m)(cos160 i sin160 j)

ˆ ˆ( 7.52 m)i (2.74 m) j

ˆ[cos(360 )i sin

d d

d d

d d

 

   

  

       

         

  

     3 2 1
ˆ ˆ ˆ(360 )j] (12.0 m)(cos 260 i sin 260 j)

ˆ ˆ( 2.08 m)i (11.8 m) j

        

  

 

where the angles are measured from the +x axis. The net displacement is  

 

 1 2 3
ˆ ˆ( 5.27 m)i (6.58 m)j.d d d d       

 

(a) The magnitude of the net displacement is 
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2 2| | ( 5.27 m) ( 6.58 m) 8.43 m.d       

 

(b) The direction of d is 1 1 6.58 m
tan tan 51.3  or 231 .

5.27 m

y

x

d

d
     
       

  
 

 

We choose 231 (measured counterclockwise from +x) since the desired angle is in the 

third quadrant. An equivalent answer is 129  (measured clockwise from +x).   

 

114. Taking derivatives of ˆ ˆ2 i 2sin( / 4) jr t t   (with lengths in meters, time in seconds, 

and angles in radians) provides expressions for velocity and acceleration: 

 

 
2

ˆ ˆ2i cos j
2 4

ˆsin j.
8 4

dr t
v

dt

dv t
a

dt

 

 

 
    

 

 
    

 

 

Thus, we obtain: 

 

time t (s)  0.0 1.0 2.0 3.0 4.0 

 

(a) 
r  


  

position 

x (m) 0.0 2.0 4.0 6.0 8.0 

y (m) 0.0 1.4 2.0 1.4 0.0 

 

(b) 
v  

velocity 

vx(m/s)  2.0 2.0 2.0  

vy (m/s)  1.1 0.0 1.1  

 

(c) 
a  


  

acceleration 

ax (m/s
2
)  0.0 0.0 0.0  

ay (m/s
2
)  0.87 1.2 0.87  

 

115. Since this problem involves constant downward acceleration of magnitude a, similar 

to the projectile motion situation, we use the equations of  §4-6 as long as we substitute a 

for g. We adopt the positive direction choices used in the textbook so that equations such 

as Eq. 4-22 are directly applicable. The initial velocity is horizontal so that v
y0 0  and 

 

 9

0 0 1.00 10xv v   cm/s. 

 

(a) If  is the length of a plate and t is the time an electron is between the plates, then 

  v t0 , where v0 is the initial speed. Thus 

 

9

9

0

2.00cm
2.00 10 s.

1.00 10 cm/s
t

v

   

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(b) The vertical displacement of the electron is 

 

  
2

2 17 2 91 1
1.00 10 cm/s 2.00 10 s 0.20cm 2.00 mm,

2 2
y at            

 

or | | 2.00 mm.y   

 

(c) The x component of velocity does not change:  

 

vx = v0 = 1.00  10
9
 cm/s = 1.00  10

7
 m/s. 

 

(d) The y component of the velocity is 

 

  17 2 9 8

6

1.00 10 cm/s 2.00 10 s 2.00 10 cm/s

2.00 10 m/s.

y yv a t      

 
 

 

116. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down as 

the –y direction) for the duration of the motion of the shot ball. We are allowed to use 

Table 2-1 (with y replacing x) because the ball has constant acceleration motion. We 

use primed variables (except t) with the constant-velocity elevator (so ' 10 m/sv  ), and 

unprimed variables with the ball (with initial velocity 0 20 30 m/sv v   , relative to the 

ground). SI units are used throughout. 

 

(a) Taking the time to be zero at the instant the ball is shot, we compute its maximum 

height y (relative to the ground) with 2 2

0 02 ( )v v g y y   , where the highest point is 

characterized by v = 0. Thus, 

y y
v

g
  o m0

2

2
76  

 

where o o 2 30 my y    (where o 28 my   is given in the problem) and v0 = 30 m/s 

relative to the ground as noted above. 

 

(b) There are a variety of approaches to this question. One is to continue working in the 

frame of reference adopted in part (a) (which treats the ground as motionless and “fixes” 

the coordinate origin to it); in this case, one describes the elevator motion with 

oy y v t     and the ball motion with Eq. 2-15, and solves them for the case where they 

reach the same point at the same time.  Another is to work in the frame of reference of the 

elevator (the boy in the elevator might be oblivious to the fact the elevator is moving 

since it isn’t accelerating), which is what we show here in detail: 

 




y v t gt t
v v g y

g
e

e e

e

e   
 

0

2 0 0

2
1

2

2
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where v0e = 20 m/s is the initial velocity of the ball relative to the elevator and ye =  

–2.0 m is the ball’s displacement relative to the floor of the elevator. The positive root is 

chosen to yield a positive value for t; the result is t = 4.2 s. 

 

117. We adopt the positive direction choices used in the textbook so that equations such 

as Eq. 4-22 are directly applicable. The coordinate origin is at the initial position for the 

football as it begins projectile motion in the sense of §4-5), and we let 0 be the angle of 

its initial velocity measured from the +x axis. 

 

(a) x = 46 m and y = –1.5 m are the coordinates for the landing point; it lands at time t = 

4.5 s. Since x = v0xt, 

0

46 m
10.2 m/s.

4.5 s
x

x
v

t
    

Since y v t gt
y

 0
1
2

2 , 

v

y gt

t
y0

21

2
15

1

2
9 8 4 5

4 5
217





 



( . ( . )( .

.
.

 m)  m / s  s)

 s
 m / s.

2 2

 

 

The magnitude of the initial velocity is 

 

v v v
x y0 0

2

0

2 10 2 217 24    ( . ( . m / s)  m / s)  m / s.2 2  

 

(b) The initial angle satisfies tan 0 = v0y/v0x. Thus,  

 

0 = tan
–1

 [(21.7 m/s)/(10.2 m/s) ] = 65°. 

 

118. The velocity of Larry is v1 and that of Curly is v2. Also, we denote the length of the 

corridor by L. Now, Larry’s time of passage is t1 = 150 s (which must equal L/v1), and 

Curly’s time of passage is t2 = 70 s (which must equal L/v2). The time Moe takes is 

therefore 

1 1
1 2 1 2 150 s 70 s

1 1
48s.

/ /

L
t

v v v L v L
   

  
 

 

119. The boxcar has velocity 

v vc g  i 1

  relative to the ground, and the bullet has velocity 

 

v v v

b g0 2 2 
 i  j cos  sin    

 

relative to the ground before entering the car (we are neglecting the effects of gravity on 

the bullet). While in the car, its velocity relative to the outside ground is 

 

v v vbg  08 2. cos  sin   i 0.8  j2  
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(due to the 20% reduction mentioned in the problem). The problem indicates that the 

velocity of the bullet in the car relative to the car is (with v3 unspecified) 

v vb c  j 3

 . Now, 

Eq. 4-44 provides the condition 

   

2 2 3 1

                                    

ˆ ˆ ˆ ˆ0.8 cos  i 0.8 sin j  j  i

b g b c c gv v v

v v v v 

 

  
 

 

so that equating x components allows us to find . If one wished to find v3 one could also 

equate the y components, and from this, if the car width were given, one could find the 

time spent by the bullet in the car, but this information is not asked for (which is why the 

width is irrelevant). Therefore, examining the x components in SI units leads to 

 

 1000 m/km
3600 s/h1 11

2

85 km/h
cos cos  

0.8 0.8 (650 m/s)

v

v
  

  
    

   
 

 

which yields 87° for the direction of 

vb g  (measured from i , which is the direction of 

motion of the car). The problem asks, “from what direction was it fired?” — which 

means the answer is not 87° but rather its supplement 93° (measured from the direction of 

motion). Stating this more carefully, in the coordinate system we have adopted in our 

solution, the bullet velocity vector is in the first quadrant, at 87° measured 

counterclockwise from the +x direction (the direction of train motion), which means that 

the direction from which the bullet came (where the sniper is) is in the third quadrant, at  

–93° (that is, 93° measured clockwise from +x). 

 

120. (a) Using 2 / ,a v R  the radius of the track is  

 
2 2

2

(9.20 m/s)
22.3 m

3.80 m/s

v
R

a
   . 

 

(b) Using 2 / ,T R v  the period of the circular motion is  

 

 
2 2 (22.3 m)

15.2 s
9.20 m/s

R
T

v

 
    

 

121. (a) With 7/10 3 10 m/sv c    and 220 196 m/s ,a g   Eq. 4-34 gives 

 
2 12/ 4.6 10  m.r v a    

 

(b) The period is given by Eq. 4-35: 52 / 9.6 10  s.T r v   Thus, the time to make a 

quarter-turn is T/4 = 2.4  10
5
 s or about 2.8 days. 
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122. Since 
22

0 2y y
v v g y   , and vy=0 at the target, we obtain 

 

  2

0 2 9.80 m/s 5.00 m 9.90 m/syv    

 

(a) Since v0 sin 0 = v0y, with v0 = 12.0 m/s, we find 0 = 55.6°. 

 

(b) Now, vy = v0y – gt gives t = (9.90 m/s)/(9.80 m/s
2
) = 1.01 s. Thus,  

 

x = (v0 cos 0)t = 6.85 m. 

 

(c) The velocity at the target has only the vx component, which is equal to v0x = v0 cos 0 

= 6.78 m/s. 

 

123. With v0 = 30.0 m/s and R = 20.0 m, Eq. 4-26 gives 

 

sin 2  =   =  0.218.0
gR

v0

2
 

Because sin  = sin (180° – ), there are two roots of the above equation: 

 
1

02 sin (0.218) 12.58 and  167.4 .      

 

which correspond to the two possible launch angles that will hit the target (in the absence 

of air friction and related effects). 

 

(a) The smallest angle is 0 = 6.29°. 

 

(b) The greatest angle is and 0 = 83.7°.  

 

An alternative approach to this problem in terms of Eq. 4-25 (with y = 0 and 1/cos
2
 = 1 + 

tan
2
) is possible — and leads to a quadratic equation for tan0 with the roots providing 

these two possible 0 values. 

 

124. We make use of Eq. 4-21 and Eq.4-22. 

 

(a) With vo = 16 m/s, we square Eq. 4-21 and Eq. 4-22 and add them, then (using 

Pythagoras’ theorem) take the square root to obtain r: 

 

 

2 2 2 2 2

0 0 0 0 0 0

2 2 2

0 0 0

( ) ( ) ( cos ) ( sin / 2)

                                sin / 4

r x x y y v t v t gt

t v v g t g t

 



      

  

 

 

Below we plot r as a function of time for o = 40.0º: 
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(b) For this next graph for r versus t we set o = 80.0º. 

 

 
 

(c) Differentiating r with respect to t, we obtain 

 

 
2 2 2

0 0 0

2 2 2

0 0 0

3 sin / 2 / 2

sin / 4

v v gt g tdr

dt v v g t g t





 


 
 

 

Setting / 0dr dt  , with 0 16.0 m/sv  and 0 40.0   , we have 2256 151 48 0t t   . 

The equation has no real solution. This means that the maximum is reached at the end of 

the flight, with  

 
2

0 02 sin / 2(16.0 m/s)sin(40.0 ) /(9.80 m/s ) 2.10 s.totalt v g     

 

(d) The value of r is given by  

 
2 2 2(2.10) (16.0) (16.0)(9.80)sin 40.0 (2.10) (9.80) (2.10) / 4 25.7 m.r       

 

(e) The horizontal distance is  0 0cos (16.0 m/s)cos40.0 (2.10 s) 25.7 m.xr v t     

 

(f) The vertical distance is 0yr  . 

 

(g) For the 0 = 80º launch, the condition for maximum r is 2256 232 48 0t t   , or 

1.71 st  (the other solution, t = 3.13 s, corresponds to a minimum.) 
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(h) The distance traveled is 

 

2 2 2(1.71) (16.0) (16.0)(9.80)sin80.0 (1.71) (9.80) (1.71) / 4 13.5 m.r       

 

(i) The horizontal distance is  

 

0 0cos (16.0 m/s)cos80.0 (1.71s) 4.75 m.xr v t     

 

(j) The vertical distance is 

 
2 2 2

0 0

(9.80 m/s )(1.71s)
sin (16.0 m/s)sin80 (1.71s) 12.6 m.

2 2
y

gt
r v t       

 

125. Using the same coordinate system assumed in Eq. 4-25, we find x for the elevated 

cannon from 

y x
gx

v
y   tan

cos



0

2

0 0

2
2

30b g  where  m. 

 

Using the quadratic formula (choosing the positive root), we find 

 

x v
v v gy

g


 F
H
GG

I
K
JJ0 0

0 0 0 0

2
2

cos
sin sin


 b g

 

 

which yields x = 715 m for v0 = 82 m/s and 0 = 45°. This is 29 m longer than the 

distance of 686 m. 

 

126. At maximum height, the y-component of a projectile’s velocity vanishes, so the 

given 10 m/s is the (constant) x-component of velocity. 

 

(a) Using v0y to denote the y-velocity 1.0 s before reaching the maximum height, then 

(with vy = 0) the equation vy = v0y – gt leads to v0y = 9.8 m/s. The magnitude of the 

velocity vector (or speed) at that moment is therefore 

 
2 2 2 2

0 (10 m/s) (9.8 m/s) 14 m/s.x yv v     

 

(b) It is clear from the symmetry of the problem that the speed is the same 1.0 s after 

reaching the top, as it was 1.0 s before (14 m/s again). This may be verified by using vy = 

v0y – gt again but now “starting the clock” at the highest point so that v0y = 0 (and 

1.0 st  ). This leads to vy = –9.8 m/s and  
22(10 m/s) 9.8 m/s 14 m/s   . 
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(c) The x0 value may be obtained from x = 0 = x0 + (10 m/s)(1.0s), which yields 

0 10m.x    

 

(d) With v0y = 9.8 m/s denoting the y-component of velocity one second before the top of 

the trajectory, then we have y y v t gt
y

   0 0 0
1
2

2 where t = 1.0 s. This yields 

0 4.9 m.y    

 

(e) By using x – x0 = (10 m/s)(1.0 s) where x0 = 0, we obtain x = 10 m. 

 

(f) Let t = 0 at the top with 0 0 0yy v  . From 21
0 0 2yy y v t gt   , we have, for t = 1.0 s, 

 
2 2(9.8 m/s )(1.0 s) / 2 4.9 m.y      

 

127. With no acceleration in the x direction yet a constant acceleration of 1.40 m/s
2
 in the 

y direction, the position (in meters) as a function of time (in seconds) must be 

 

21ˆ ˆ(6.00 )i + (1.40)  j
2

r t t
 

  
 

 

 

and 

v  is its derivative with respect to t. 

 

(a) At t = 3.00 s, therefore, ˆ ˆ(6.00i 4.20j)v    m/s. 

 

(b) At t = 3.00 s, the position is ˆ ˆ(18.0i 6.30j)r    m. 

 

128. We note that   
v v vPG PA AG   

 

describes a right triangle, with one leg being 

vPG  (east), another leg being 


vAG  

(magnitude = 20, direction = south), and the hypotenuse being 

vPA  (magnitude = 70). 

Lengths are in kilometers and time is in hours. Using the Pythagorean theorem, we have 

 

2 2 2 2| |  | |   70 km/h | | (20 km/h)PA PG AG PGv v v v      

 

which can be solved to give the ground speed: | |

vPG  =  67 km/ h.  

 

129. The figure offers many interesting points to analyze, and others are easily inferred 

(such as the point of maximum height). The focus here, to begin with, will be the final 

point shown (1.25 s after the ball is released) which is when the ball returns to its original 

height. In English units, g = 32 ft/s
2
. 
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(a) Using x – x0 = vxt we obtain vx = (40 ft)/(1.25 s) = 32 ft/s. And y y v t gt
y

   0 0
1
2

20  

yields   21
0 2

32 ft/s 1.25 s 20 ft/s.yv    Thus, the initial speed is 

 

2 2

0 0 | | (32 ft/s) (20 ft/s) 38 ft/s.v v     

 

(b) Since vy = 0 at the maximum height and the horizontal velocity stays constant, then 

the speed at the top is the same as vx = 32 ft/s. 

 

(c) We can infer from the figure (or compute from 00y yv v gt   ) that the time to reach 

the top is 0.625 s. With this, we can use y y v t gt
y

  0 0
1
2

2 to obtain 9.3 ft (where y0 =  

3 ft has been used). An alternative approach is to use  2 2

0 02 .y y
v v g y y    

 

130. We denote 

vPG  as the velocity of the plane relative to the 

ground, 

vAG  as the velocity of the air relative to the ground, 

and 

vPA  as the velocity of the plane relative to the air. 

 

(a) The vector diagram is shown on the right: 
  
v v vPG PA AG  . 

Since the magnitudes vPG and vPA are equal the triangle is 

isosceles, with two sides of equal length.  

 

Consider either of the right triangles formed when the bisector 

of  is drawn (the dashed line). It bisects 

vAG , so 

 

 
 

AG

PG

70.0 mi/h
sin / 2

2 2 135 mi/h

v

v
    

 

which leads to  = 30.1°.  Now 

vAG  makes the same angle with the E-W line as the 

dashed line does with the N-S line. The wind is blowing in the direction 15.0° north of 

west. Thus, it is blowing from 75.0° east of south. 

 

(b) The plane is headed along 

vPA , in the direction 30.0° east of north. There is another 

solution, with the plane headed 30.0° west of north and the wind blowing 15° north of 

east (that is, from 75° west of south). 

 

131. We make use of Eq. 4-24 and Eq. 4-25. 

 

(a) With x = 180 m, o = 30º, and vo = 43 m/s, we obtain 

 
2 2

2 2

(9.8 m/s )(180 m)
tan(30 )(180 m) 11 m

2(43 m/s) (cos30 )
y     


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or | | 11 my  . This implies the rise is roughly eleven meters above the fairway.  

 

(b) The horizontal component (in the absence of air friction) is unchanged, but the 

vertical component increases (see Eq. 4-24). The Pythagorean theorem then gives the 

magnitude of final velocity (right before striking the ground): 45 m/s. 

 

132. We let gp denote the magnitude of the gravitational acceleration on the planet. A 

number of the points on the graph (including some “inferred” points — such as the max 

height point at x = 12.5 m and t = 1.25 s) can be analyzed profitably; for future reference, 

we label (with subscripts) the first ((x0, y0) = (0, 2) at t0 = 0) and last (“final”) points ((xf, 

yf) = (25, 2) at tf = 2.5), with lengths in meters and time in seconds. 

 

(a) The x-component of the initial velocity is found from xf  –  x0 = v0x tf. Therefore, 

0 25/ 2.5 10 m/s.xv    We try to obtain the y-component from 

 
21

0 0 2
0 .f y f p fy y v t g t     

 

This gives us v0y = 1.25gp, and we see we need another equation (by analyzing another 

point, say, the next-to-last one) 21
0 0 2y py y v t g t    with y = 6 and t = 2; this produces 

our second equation v0y = 2 + gp. Simultaneous solution of these two equations produces 

results for v0y and gp (relevant to part (b)). Thus, our complete answer for the initial 

velocity is ˆ ˆ(10 m/s)i (10 m/s)j .v    

 

(b) As a by-product of the part (a) computations, we have gp = 8.0 m/s
2
. 

 

(c) Solving for tg (the time to reach the ground) in y y v t g tg y g p g   0 0 0
1
2

2   leads to a 

positive answer: tg = 2.7 s. 

 

(d) With g = 9.8 m/s
2
, the method employed in part (c) would produce the quadratic 

equation 24.9 10 2 0g gt t     and then the positive result tg = 2.2 s. 

 

133. (a) The helicopter’s speed is v' = 6.2 m/s, which implies that the speed of the 

package is v0 = 12 – v' = 5.8 m/s, relative to the ground. 

 

(b) Letting +x be in the direction of 

v0  for the package and +y be downward, we have 

(for the motion of the package) 

 

 x v t y gt 0

21

2
and          

 

where y = 9.5 m. From these, we find t = 1.39 s and x = 8.08 m for the package, while 

x' (for the helicopter, which is moving in the opposite direction) is –v' t = –8.63 m. Thus, 

the horizontal separation between them is 8.08 – (–8.63) = 16.7 m 17 m.  
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(c) The components of 

v  at the moment of impact are (vx, vy) = (5.8, 13.6) in SI units. 

The vertical component has been computed using Eq. 2-11. The angle (which is below 

horizontal) for this vector is tan
–1

(13.6/5.8) = 67°. 

 

134. The type of acceleration involved in steady-speed circular motion is the centripetal 

acceleration a = v
2
/r which is at each moment directed towards the center of the circle. 

The radius of the circle is r = (12)
2
/3 = 48 m.  

 

(a) Thus, if at the instant the car is traveling clockwise around the circle, it is 48 m west 

of the center of its circular path. 

 

(b) The same result holds here if at the instant the car is traveling counterclockwise. That 

is, it is 48 m west of the center of its circular path. 

 

135. (a) Using the same coordinate system assumed in Eq. 4-21 and Eq. 4-22 (so that 0 

= –20.0°), we use v0 = 15.0 m/s and find the horizontal displacement of the ball at t =  

2.30 s: 

x v t 0 0 32 4cos .b g  m. 

 

(b) The vertical displacement is   2

0 0

1
sin 37.7 m.

2
y v t gt      

 

136. We take the initial (x, y) specification to be (0.000, 0.762) m, and the positive x 

direction to be towards the “green monster.” The components of the initial velocity are 

( . )3353  55   (19.23,  27.47) m/ s.    

 

(a) With t = 5.00 s, we have x = x0 + vxt = 96.2 m. 

 

(b) At that time, y y v t gt
y

 =   +     =  15.59 m ,1
20 0

2  which is 4.31 m above the wall. 

 

(c) The moment in question is specified by t = 4.50 s. At that time, x   x0 = (19.23)(4.50) 

= 86.5 m. 

 

(d) The vertical displacement is 21
0 0 2

 =  +     = 25.1 m.
y

y y v t gt  

 

137. When moving in the same direction as the jet stream (of speed vs), the time is 

/( ),ja st d v v   where d = 4350 km is the distance and 966 km/hjav   is the speed of the 

jet relative to the air. When moving against the jet stream, the time is /( ),ja st d v v    

with 50 min (5/ 6)h.t t     Combining the expressions gives 

 

2 2

2 5
h

6

s

ja s ja s ja s

dvd d
t t

v v v v v v
     

  
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Upon rearranging and using the quadratic formula to solve for vs, we get vs = 88.63 km/h. 

 

138. We establish coordinates with i  pointing to the far side of the river (perpendicular 

to the current) and j  pointing in the direction of the current. We are told that the 

magnitude (presumed constant) of the velocity of the boat relative to the water is 

| |  = 6.4 km/h.bwv  Its angle, relative to the x axis is .  With km and h as the understood 

units, the velocity of the water (relative to the ground) is 

vwg  =  3.2j.  

 

(a) To reach a point “directly opposite” means that the velocity of her boat relative to 

ground must be ˆ = ibg bgv v  where v  0 is unknown. Thus, all j  components must cancel 

in the vector sum   
v v vbw wg bg +   =   

 

which means the u sin  = –3.2, so  = sin
–1

 (–3.2/6.4) = –30°. 

 

(b) Using the result from part (a), we find vbg = vbw cos = 5.5 km/h. Thus, traveling a 

distance of   = 6.4 km requires a time of 6.4/5.5 = 1.15 h or 69 min. 

 

(c) If her motion is completely along the y axis (as the problem implies) then with vwg = 

3.2 km/h (the water speed) we have 

 

total  =  +  = 1.33 h
 +   bw wg bw wg

D D
t

v v v v
 

where D = 3.2 km. This is equivalent to 80 min. 

 

(d) Since 

 +  =  + 
 +       bw wg bw wg bw wg bw wg

D D D D

v v v v v v v v  
 

 

the answer is the same as in the previous part, i.e., total  = 80 mint . 

 

(e) The shortest-time path should have  = 0. This can also be shown by noting that the 

case of general  leads to 

 
ˆ ˆ =  +  = cos  i + ( sin  + ) jbg bw wg bw bw wgv v v v v v   

 

where the x component of 

vbg  must equal l/t. Thus, 

cosbw

l
t

v 
 ,  which can be 

minimized using the condition dt/d = 0. The above expression leads to t = 6.4/6.4 = 1.0 

h, or 60 min. 
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Chapter 5 
 

 

1. We are only concerned with horizontal forces in this problem (gravity plays no direct 

role). We take East as the +x direction and North as +y. This calculation is efficiently 

implemented on a vector-capable calculator, using magnitude-angle notation (with SI 

units understood). 

 




a
F

m
 

    
  

9 0 0 8 0 118

30
2 9 53

. .

.
.

b g b g b g  
 

Therefore, the acceleration has a magnitude of 2.9 m/s
2
. 

 

2. We apply Newton’s second law (Eq. 5-1 or, equivalently, Eq. 5-2). The net force 

applied on the chopping block is 
  
F F Fnet  1 2 , where the vector addition is done using 

unit-vector notation. The acceleration of the block is given by 
  
a F F m 1 2d i / .  

 

(a) In the first case 

 

       1 2
ˆ ˆ ˆ ˆ3.0N i 4.0N j 3.0N i 4.0N j 0F F           

   
 

so 

a  0 . 

 

(b) In the second case, the acceleration  

a  equals 

 

         
21 2

ˆ ˆ ˆ ˆ3.0N i 4.0N j 3.0N i 4.0N j
ˆ(4.0m/s ) j.

2.0kg

F F

m

   
   

 

(c) In this final situation, 

a  is 

 

         
21 2

ˆ ˆ ˆ ˆ3.0N i 4.0N j 3.0N i 4.0N j
ˆ(3.0m/s )i.

2.0 kg

F F

m

   
   

 

3. We apply Newton’s second law (specifically, Eq. 5-2). 

 

(a) We find the x component of the force is 

 

   2cos 20.0 1.00kg 2.00m/s cos 20.0 1.88N.x xF ma ma     

 

(b) The y component of the force is 
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   2sin 20.0 1.0kg 2.00m/s sin 20.0 0.684N.y yF ma ma     

 

(c) In unit-vector notation, the force vector is 

 
ˆ ˆ ˆ ˆi j (1.88 N)i (0.684 N)j .x yF F F     

 

4. Since 

v  = constant, we have 


a = 0, which implies 

    
F F F manet    1 2 0 .  

 

Thus, the other force must be 

 

2 1
ˆ ˆ( 2 N) i (6 N) j .F F      

 

5. The net force applied on the chopping block is 
   
F F F Fnet   1 2 3 , where the vector 

addition is done using unit-vector notation. The acceleration of the block is given by 
   
a F F F m  1 2 3d i / . 

 

(a) The forces exerted by the three astronauts can be expressed in unit-vector notation as 

follows: 

 

 
 

    

1

2

3

ˆ ˆ ˆˆ(32 N) cos 30 i sin 30 (27.7 N) i (16 N ) jj

ˆ ˆˆ(55 N) cos 0 i sin 0 (55 N) ij

ˆ ˆ ˆˆ(41 N) cos 60 i sin 60 (20.5 N) i (35.5 N) j.j

F

F

F

     

    

       

 

 

The resultant acceleration of the asteroid of mass m = 120 kg is therefore 

 

     
2 2

ˆ ˆ ˆ ˆ ˆ27.7 i 16 j N 55i N 20.5i 35.5j N
ˆ ˆ(0.86 m/s )i (0.16 m/s )j .

120 kg
a

   
    

 

(b) The magnitude of the acceleration vector is 

 

 
2

2 2 2 2 2 2(0.86 m/s ) 0.16 m/s 0.88 m/s .x ya a a       

 

(c) The vector 

a  makes an angle  with the +x axis, where 

 
2

1 1

2

0.16 m/s
tan tan 11 .

0.86 m/s

y

x

a

a
     
       

  
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6. Since the tire remains stationary, by Newton’s second law, the net force must be zero: 

 

net 0.A B CF F F F ma      

 

From the free-body diagram shown on the right, we have  

 

 
net,

net,

0 cos cos

0 sin sin

x C A

y A C B

F F F

F F F F

 

 

  

   




 

 

To solve for 
BF , we first compute .  With 220 NAF  , 

170 NCF  , and 47 ,   we get  

 

 
cos (220 N)cos 47.0

cos 0.883 28.0
170 N

A

C

F

F


 


       

 

Substituting the value into the second force equation, we find  

 

sin sin (220 N)sin 47.0 (170 N)sin 28.0 241 N.B A CF F F       

 

7. THINK A box is under acceleration by two applied forces. We use Newton’s second 

law to solve for the unknown second force.  

 

EXPRESS We denote the two forces as 
 
F F1 2and . According to Newton’s second law, 

1 2 ,F F ma  so the second force is 2 1.F ma F   Note that since the acceleration is in 

the third quadrant, we expect 2F  to be in the third quadrant as well. 

 

ANALYZE (a) In unit vector notation 

F1 20 0 . N ib g  and 

 

       2 2 2 2ˆ ˆ ˆˆ12.0 sin 30.0 m/s i 12.0 cos 30.0 m/s 6.00 m/s i 10.4 m/s j.ja        

 

Therefore, we find the second force to be 

       

   

2 1

2 2ˆ ˆ ˆ2.00 kg 6.00 m/s i 2.00 kg 10.4 m/s j 20.0 N i

ˆ ˆ32.0 N i 20.8 N j.

F ma F 

    

  

 

 

(b) The magnitude of 

F2  is 2 2 2 2

2 2 2| | ( 32.0 N) ( 20.8 N) 38.2 N.x yF F F        

 

(c) The angle that 

F2  makes with the positive x-axis is found from  
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2

2

20.8 N
tan 0.656

32.0 N

y

x

F

F


  
   

 
. 

 

Consequently, the angle is either 33.0° or 33.0° + 180° = 213°. Since both the x and y 

components are negative, the correct result is  = 213° from the +x-axis. An alternative 

answer is 213 360 147 .      

 

LEARN The result is shown in the figure on the right. 

The calculation confirms our expectation that 

F2  lies in 

the third quadrant (same as a ). The net force is  

 

 
     

   

net 1 2
ˆ ˆ ˆ20.0 N i 32.0 N i 20.8 N j

ˆ ˆ12.0 N i 20.8 N j

F F F       
 

  
 

 

which points in the same direction as a .  

 

8. We note that m a    


  = (–16 N) i
^
  + (12 N) j

^
 .  With the other forces as specified in the 

problem, then Newton’s second law gives the third force as  

 

F3  
  

 = m a    


 – F1  
  

 – F2  
  

 = (–34 N) i
^
  (12 N) j

^
. 

 

9. To solve the problem, we note that acceleration is the second time derivative of the 

position function; it is a vector and can be determined from its components. The net force 

is related to the acceleration via Newton’s second law. Thus, differentiating 
3( ) 15.0 2.00 4.00x t t t     twice with respect to t, we get  

  
2

2

2
2.00 12.0 , 24.0

dx d x
t t

dt dt
     

 

Similarly, differentiating 2( ) 25.0 7.00 9.00y t t t    twice with respect to t yields 

 
2

2
7.00 18.0 , 18.0

dy d y
t

dt dt
     

(a) The acceleration is  

 
2 2

2 2
ˆ ˆ ˆ ˆ ˆ ˆi j i j ( 24.0 )i ( 18.0) j.x y

d x d y
a a a t

dt dt
         

 

At 0.700 st  , we have ˆ ˆ( 16.8)i ( 18.0) ja      with a magnitude of  

 
2 2 2| | ( 16.8) ( 18.0) 24.6 m/s .a a       
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Thus, the magnitude of the force is 2(0.34 kg)(24.6 m/s ) 8.37 N.F ma    

 

(b) The angle F  or /a F m  makes with x  is 

 

 
2

1 1

2

18.0 m/s
tan tan 47.0 or 133 .

16.8 m/s

y

x

a

a
     
        

  
 

 

We choose the latter ( 133  ) since F is in the third quadrant. 

 

(c) The direction of travel is the direction of a tangent to the path, which is the direction 

of the velocity vector: 

 

2ˆ ˆ ˆ ˆ ˆ ˆ( ) i j i j (2.00 12.0 )i (7.00 18.0 ) j.x y

dx dy
v t v v t t

dt dt
         

 

At 0.700 st  , we have ˆ ˆ( 0.700 s) ( 3.88 m/s)i ( 5.60 m/s)j.v t       Therefore, the angle 

v  makes with x  is 

1 1 5.60 m/s
tan tan 55.3 or 125 .

3.88 m/s

y

v

x

v

v
     

        
  

 

 

We choose the latter ( 125  ) since v is in the third quadrant. 

 

10. To solve the problem, we note that acceleration is the second time derivative of the 

position function, and the net force is related to the acceleration via Newton’s second 

law. Thus, differentiating  

 
2 3( ) 13.00 2.00 4.00 3.00x t t t t      

 

twice with respect to t, we get  
2

2

2
2.00 8.00 9.00 , 8.00 18.0

dx d x
t t t

dt dt
      

  

The net force acting on the particle at  3.40 st   is  

 

  
2

2
ˆ ˆ ˆi (0.150) 8.00 18.0(3.40) i ( 7.98 N)i

d x
F m

dt
      

 

11. The velocity is the derivative (with respect to time) of given function x, and the 

acceleration is the derivative of the velocity.  Thus, a = 2c – 3(2.0)(2.0)t, which we use in 

Newton’s second law:  F = (2.0 kg)a = 4.0c – 24t (with SI units understood).  At t = 3.0 s, 

we are told that F =  –36 N.  Thus, –36 = 4.0c – 24(3.0) can be used to solve for c.  The 

result is c = +9.0 m/s
2
. 
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12. From the slope of the graph we find ax = 3.0 m/s
2
.  Applying Newton’s second law to 

the x axis (and taking  to be the angle between F1 and F2), we have 

 

F1 + F2 cos  =  m ax           = 56. 

 

13. (a) From the fact that T3 = 9.8 N, we conclude the mass of disk D is 1.0 kg.  Both this 

and that of disk C cause the tension T2 = 49 N, which allows us to conclude that disk C 

has a mass of 4.0 kg.  The weights of these two disks plus that of disk B determine the 

tension T1 = 58.8 N, which leads to the conclusion that mB = 1.0 kg.  The weights of all 

the disks must add to the 98 N force described in the problem; therefore, disk A has mass 

4.0 kg. 

 

(b) mB = 1.0 kg, as found in part (a). 

 

(c) mC = 4.0 kg, as found in part (a). 

 

(d) mD = 1.0 kg, as found in part (a). 

 

14. Three vertical forces are acting on the block: the earth pulls down on the block with 

gravitational force 3.0 N; a spring pulls up on the block with elastic force 1.0 N; and, the 

surface pushes up on the block with normal force FN. There is no acceleration, so 

 

   0 1.0 N 3.0 Ny NF F      

yields FN = 2.0 N.  

 

(a) By Newton’s third law, the force exerted by the block on the surface has that same 

magnitude but opposite direction: 2.0 N. 

 

(b) The direction is down. 

 

15. THINK We have a piece of salami hung to a spring scale in various ways. The 

problem is to explore the concept of weight. 

 

EXPRESS We first note that the reading on the spring scale is proportional to the weight 

of the salami. In all three cases (a) – (c) depicted in Fig. 5-34, the scale is not 

accelerating, which means that the two cords exert forces of equal magnitude on it. The 

scale reads the magnitude of either of these forces. In each case the tension force of the 

cord attached to the salami must be the same in magnitude as the weight of the salami 

because the salami is not accelerating. Thus the scale reading is mg, where m is the mass 

of the salami.  

 

ANALYZE In all three cases (a) – (c), the reading on the scale is   

 

w = mg =  (11.0 kg) (9.8 m/s
2
) = 108 N. 

 



 

  

201 

LEARN The weight of an object is measured when the object is not accelerating 

vertically relative to the ground. If it is, then the weight measured is called the apparent 

weight.  

 

16. (a) There are six legs, and the vertical component of the tension force in each leg is 

sinT   where 40   . For vertical equilibrium (zero acceleration in the y direction) then 

Newton’s second law leads to 

6
6

T mg T
mg

sin
sin




    

 

which (expressed as a multiple of the bug’s weight mg) gives roughly / 0.26T mg  0. 

 

(b) The angle  is measured from horizontal, so as the insect “straightens out the legs”   

will increase (getting closer to 90 ), which causes sin to increase (getting closer to 1) 

and consequently (since sin is in the denominator) causes T to decrease. 

 

17. THINK A block attached to a cord is resting on an incline plane. We apply Newton’s 

second law to solve for the tension in the cord and the normal force on the block. 

 

EXPRESS The free-body diagram of the problem 

is shown to the right. Since the acceleration of the 

block is zero, the components of Newton’s second 

law equation yield 

 

T – mg sin   = 0 

FN – mg cos   = 0, 

 

where T is the tension in the cord, and FN is the 

normal force on the block.  

 
 

  

ANALYZE (a) Solving the first equation for the tension in the string, we find 

 

T mg   sin . . sin 85 9 8 30 422kg m / s N .b gc h  

 

(b) We solve the second equation above for the normal force FN: 

 

  2cos 8.5 kg 9.8 m/s cos 30 72 N.NF mg      

 

(c) When the cord is cut, it no longer exerts a force on the block and the block 

accelerates. The x component of the second law becomes –mg sin = ma, so the 

acceleration becomes 

 
2 2sin (9.8 m/s )sin30 4.9 m/s .a g       
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The negative sign indicates the acceleration is down the plane. The magnitude of the 

acceleration is 4.9 m/s
2
. 

 

LEARN The normal force 
NF  on the block must be equal to cosmg   so that the block 

is in contact with the surface of the incline at all time.  When the cord is cut, the block 

has an acceleration sina g   , which in the limit 90    becomes g , as in the case 

of a free fall.  

 

18. The free-body diagram of the cars is shown on the right. The force exerted by John 

Massis is  

 
22.5 2.5(80 kg)(9.8 m/s ) 1960 NF mg   . 

 

Since the motion is along the horizontal x-axis, using Newton’s 

second law, we have cos ,xFx F Ma   where M  is the total 

mass of the railroad cars. Thus, the acceleration of the cars is 

 

 2

5 2

cos (1960 N)cos30
0.024 m/s .

(7.0 10 N / 9.8 m/s )
x

F
a

M

 
  


 

 

Using Eq. 2-16, the speed of the car at the end of the pull is  

 

 22 2(0.024 m/s )(1.0 m) 0.22 m/s.x xv a x     

 

19. THINK In this problem we’re interested in the force applied to a rocket sled to 

accelerate it from rest to a given speed in a given time interval.   

 

EXPRESS In terms of magnitudes, Newton’s second law is F = ma, where F = 

Fnet , 

| |a a , and m is the (always positive) mass. The magnitude of the acceleration can be 

found using constant acceleration kinematics (Table 2-1). Solving v = v0 + at for the case 

where it starts from rest, we have a = v/t (which we interpret in terms of magnitudes, 

making specification of coordinate directions unnecessary). Thus, the required force is  

/F ma mv t  . 

 

ANALYZE Expressing the velocity in SI units as  

 

v = (1600 km/h) (1000 m/km)/(3600 s/h) = 444 m/s, 

 

we find the force to be  

  5444m s
500kg 1.2 10 N.

1.8s

v
F m

t
     
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LEARN From the expression / ,F mv t  we see that the shorter the time to attain a given 

speed, the greater the force required.  

 

20. The stopping force 

F  and the path of the passenger are horizontal. Our +x axis is in 

the direction of the passenger’s motion, so that the passenger’s acceleration 

(‘‘deceleration” ) is negative-valued and the stopping force is in the –x direction: 

îF F  . Using Eq. 2-16 with  

 

v0 = (53 km/h)(1000 m/km)/(3600 s/h) = 14.7 m/s 

 

and v = 0, the acceleration is found to be  

 

 

2 2
2 2 20

0

(14.7 m/s)
2 167 m/s

2 2 0.65 m

v
v v a x a

x
         


. 

 

Assuming there are no significant horizontal forces other than the stopping force, Eq. 5-1 

leads to 
 
F ma F    41 167kg m s2b g c h  

 

which results in F = 6.8  10
3
 N. 

 

21. (a) The slope of each graph gives the corresponding component of acceleration.  

Thus, we find ax = 3.00 m/s
2
 and ay = –5.00 m/s

2
.  The magnitude of the acceleration 

vector is therefore  
2 2 2 2 2(3.00 m/s ) ( 5.00 m/s ) 5.83 m/sa     , 

 

and the force is obtained from this by multiplying with the mass (m = 2.00 kg). The result 

is F = ma =11.7 N. 

 

(b) The direction of the force is the same as that of the acceleration:  

 

 = tan
–1

 [(–5.00 m/s
2
)/(3.00 m/s

2
)] = –59.0. 

 

22. (a) The coin undergoes free fall. Therefore, with respect to ground, its acceleration is  

 

 2

coin
ˆ( 9.8 m/s ) j.a g    

 

(b) Since the customer is being pulled down with an acceleration of 
2

customer
ˆ1.24 ( 12.15 m/s )j,a g     the acceleration of the coin with respect to the 

customer is  
2 2 2

rel coin customer
ˆ ˆ ˆ( 9.8 m/s ) j ( 12.15 m/s )j ( 2.35 m/s )j.a a a         
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(c) The time it takes for the coin to reach the ceiling is  

 

 
2

rel

2 2(2.20 m)
1.37 s.

2.35 m/s

h
t

a
    

 

(d) Since gravity is the only force acting on the coin, the actual force on the coin is  

 
3 2 3

coin coin
ˆ ˆ(0.567 10 kg)( 9.8 m/s ) j ( 5.56 10 N)j.F ma mg           

 

(e) In the customer’s frame, the coin travels upward at a constant acceleration. Therefore, 

the apparent force on the coin is  

 
3 2 3

app rel
ˆ ˆ(0.567 10 kg)( 2.35 m/s ) j ( 1.33 10 N)j.F ma          

 

23. We note that the rope is 22.0° from vertical, and therefore 68.0° from horizontal. 

 

(a) With T = 760 N, then its components are 

 
ˆ ˆ ˆ ˆcos 68.0 i+ sin 68.0 j=(285N) i+(705N) jT T T   . 

 

(b) No longer in contact with the cliff, the only other force on Tarzan is due to earth’s 

gravity (his weight). Thus, 

 

net
ˆ ˆ ˆ ˆ ˆ(285 N) i+(705 N) j (820 N) j (285N) i (115 N) j.F T W       

 

 (c) In a manner that is efficiently implemented on a vector-capable calculator, we 

convert from rectangular (x, y) components to magnitude-angle notation: 

 

   net 285, 115 307 22.0F       

 

so that the net force has a magnitude of 307 N. 

 

(d) The angle (see part (c)) has been found to be 22.0°, or 22.0° below horizontal (away 

from the cliff). 

 

(e) Since 
 
a F m net  where m = W/g = 83.7 kg, we obtain 


a  367. m s2 . 

 

(f) Eq. 5-1 requires that neta F  so that the angle is also 22.0°, or 22.0° below horizontal 

(away from the cliff). 

 

24. We take rightward as the +x direction. Thus, 1
ˆ(20 N)iF  . In each case, we use 

Newton’s second law 
  
F F ma1 2   where m = 2.0 kg. 
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(a) If  2 ˆ( 10 m/s ) ia   , then the equation above gives 

F2 0 .  

 

(b) If , 2 ˆ( 20m/s ) i,a     then that equation gives  
2

ˆ(20N)i.F   

 

(c) If  

a  0,   then the equation gives 

2
ˆ( 20N) i.F    

 

(d) If 2 ˆ( 10 m/s ) i,a    the equation gives 
2

ˆ( 40N) i.F    

 

(e) If  2 ˆ( 20 m/s ) i,a     the equation gives  
2

ˆ( 60N) i.F    

 

25. (a) The acceleration is 

a
F

m
  

20
0 022

 N

900kg
m s2. . 

 

(b) The distance traveled in 1 day (= 86400 s) is 

 

s at   
1

2

1

2
0 0222 86400 8 3 102 2 7. .m s s m .2c h b g  

 

(c) The speed it will be traveling is given by 

 

  2 30.0222 m s 86400 s 1.9 10 m s .v at     

 

26. Some assumptions (not so much for realism but rather in the interest of using the 

given information efficiently) are needed in this calculation: we assume the fishing line 

and the path of the salmon are horizontal. Thus, the weight of the fish contributes only 

(via Eq. 5-12) to information about its mass (m = W/g = 8.7 kg). Our +x axis is in the 

direction of the salmon’s velocity (away from the fisherman), so that its acceleration 

(‘‘deceleration”) is negative-valued and the force of tension is in the –x direction: 
T T  . We use Eq. 2-16 and SI units (noting that v = 0). 

 

 

2 2
2 2 20

0

(2.8 m/s)
2 36 m/s

2 2 0.11 m

v
v v a x a

x
         


. 

 

Assuming there are no significant horizontal forces other than the tension, Eq. 5-1 leads 

to 
 
T ma T    8 7 36. kg m s2b gc h  

 

which results in T = 3.1  10
2
 N. 
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27. THINK An electron moving horizontally is under the influence of a vertical force. Its 

path will be deflected toward the direction of the applied force.  

 

EXPRESS The setup is shown in the figure below. The acceleration of the electron is 

vertical and for all practical purposes the only force acting on it is the electric force. The 

force of gravity is negligible. We take the +x axis to be in the direction of the initial 

velocity v0 and the +y axis to be in the direction of the electrical force, and place the 

origin at the initial position of the electron. 

 

 
Since the force and acceleration are constant, we use the equations from Table 2-1: 

0x v t  and 

2 21 1
.

2 2

F
y at t

m

 
   

 
 

 

ANALYZE The time taken by the electron to travel a distance x (= 30 mm) horizontally 

is t = x/v0 and its deflection in the direction of the force is 

 
2 2

16 3
3

31 7

0

1 1 4.5 10 N 30 10  m
1.5 10 m.

2 2 9.11 10 kg 1.2 10 m/s

F x
y

m v

 




     
       

    
 

 

LEARN Since the applied force is constant, the acceleration in the y-direction is also 

constant and the path is parabolic with 2.y x  

 

28. The stopping force 

F  and the path of the car are horizontal. Thus, the weight of the 

car contributes only (via Eq. 5-12) to information about its mass (m = W/g = 1327 kg). 

Our +x axis is in the direction of the car’s velocity, so that its acceleration 

(‘‘deceleration”) is negative-valued and the stopping force is in the –x direction: 

îF F  . 

 

(a) We use Eq. 2-16 and SI units (noting that v = 0 and v0 = 40(1000/3600) = 11.1 m/s). 

 

 

2 2
2 2 0

0

(11.1m/s)
2

2 2 15 m

v
v v a x a

x
      


 

 

which yields a = – 4.12 m/s
2
. Assuming there are no significant horizontal forces other 

than the stopping force, Eq. 5-1 leads to 
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 
F ma F    1327 412kg m s2b g c h.  

 

which results in F = 5.5  10
3
 N. 

 

(b) Equation 2-11 readily yields t = –v0/a = 2.7 s. 

 

(c) Keeping F the same means keeping a the same, in which case (since v = 0) Eq. 2-16 

expresses a direct proportionality between x  and v0

2 . Therefore, doubling v0 means 

quadrupling x . That is, the new over the old stopping distances is a factor of 4.0. 

 

(d) Equation 2-11 illustrates a direct proportionality between t and v0 so that doubling one 

means doubling the other. That is, the new time of stopping is a factor of 2.0 greater than 

the one found in part (b). 

 

29. We choose up as the +y direction, so 2 ˆ( 3.00 m/s ) ja    (which, without the unit-

vector, we denote as a since this is a 1-dimensional problem in which Table 2-1 applies). 

From Eq. 5-12, we obtain the firefighter’s mass: m = W/g = 72.7 kg. 

 

(a) We denote the force exerted by the pole on the firefighter f p fp  ̂jF F  and apply Eq.  

5-1. Since netF ma , we have 

 

 2

fp fp 712 N (72.7 kg)( 3.00 m/s )gF F ma F       

 

which yields Ffp = 494 N.  

 

(b) The fact that the result is positive means fpF  points up. 

 

(c) Newton’s third law indicates f p pfF F  , which leads to the conclusion that 

pf| | 494 NF  . 

 

(d) The direction of pfF is down. 

 

30. The stopping force 

F  and the path of the toothpick are horizontal. Our +x axis is in 

the direction of the toothpick’s motion, so that the toothpick’s acceleration 

(‘‘deceleration”) is negative-valued and the stopping force is in the –x direction: 

îF F  . Using Eq. 2-16 with v0 = 220 m/s and v = 0, the acceleration is found to be  

 

 

2 2
2 2 6 20

0

(220 m/s)
2 1.61 10  m/s .

2 2 0.015 m

v
v v a x a

x
          


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Thus, the magnitude of the force exerted by the branch on the toothpick is 

 

 4 6 2 2| | (1.3 10 kg)(1.61 10  m/s ) 2.1 10 N.F m a        

 

31. THINK In this problem we analyze the motion of a block sliding up an inclined 

plane and back down.  

 

EXPRESS The free-body diagram is shown below. 
NF  is the normal force of the plane 

on the block and mg


 is the force of gravity on the block. We take the +x direction to be 

up the incline, and the +y direction to be in the direction of the normal force exerted by 

the incline on the block. 

 
 

The x component of Newton’s second law is then mg sin  = ma; thus, the acceleration 

is a =  g sin . Placing the origin at the bottom of the plane, the kinematic equations 

(Table 2-1) for motion along the x axis which we will use are v v ax2

0

2 2   and 

v v at 0 . The block momentarily stops at its highest point, where v = 0; according to 

the second equation, this occurs at time 0 .t v a    

 

ANALYZE (a) The position where the block stops is 

 

 

2 2 2
2 0 0 0

0 0 2

1 1 1 1 (3.50 m/s)
1.18 m

2 2 2 2 9.8 m/s sin 32.0

v v v
x v t at v a

a a a

     
                  

. 

 

(b) The time it takes for the block to get there is 

 

0 0

2

3.50m/s
0.674 s.

sin (9.8m/s )sin 32.0

v v
t

a g 
   

  
 

 

(c) That the return speed is identical to the initial speed is to be expected since there are 

no dissipative forces in this problem. In order to prove this, one approach is to set x = 0 

and solve x v t at 0
1
2

2  for the total time (up and back down) t. The result is 
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 0 0

2

2 3.50 m/s2 2
1.35 s.

sin (9.8 m/s )sin 32.0

v v
t

a g 
      

  
 

 

The velocity when it returns is therefore 

 

 2

0 0 sin 3.50 m/s (9.8 m/s ) 1.35 s sin32 3.50 m/s.v v at v gt         

 

The negative sign indicates the direction is down the plane. 

 

LEARN As expected, the speed of the block when it gets back to the bottom of the 

incline is the same as its initial speed. As we shall see in Chapter 8, this is a consequence 

of energy conservation. If friction is present, then the return speed will be smaller than 

the initial speed.  

 

32. (a) Using notation suitable to a vector-capable calculator, the Fnet  
   

 = 0 condition 

becomes  

F1  
  

 + F2  
  

 + F3  
  

  =   (6.00  150º)  +  (7.00  60.0º)  +  F3  
  

  = 0 . 

 

Thus, F3  
  

  =  (1.70 N) i
^
 + (3.06 N)j

^
. 

 

(b) A constant velocity condition requires zero acceleration, so the answer is the same. 

 

(c) Now, the acceleration is  
2 2ˆ ˆ(13.0 m/s ) i (14.0 m/s ) ja   . 

 

Using Fnet  
   

 = m a  


  (with m = 0.025 kg) we now obtain 

 

F3  
  

  = (2.02 N) i
^
 + (2.71 N) j

^
. 

 

33. The free-body diagram is shown below. Let

T  be the tension of the cable and mg


 be 

the force of gravity. If the upward direction is positive, then Newton’s second law is T – 

mg = ma, where a is the acceleration. 

 

Thus, the tension is T = m(g + a). We use constant acceleration kinematics (Table 2-1) to 

find the acceleration (where v = 0 is the final velocity, v0 = – 12 m/s is the initial velocity, 

and 42 my   is the coordinate at the stopping point). Consequently, 

v v ay2

0

2 2  leads to 

 

 

22
20

12 m/s
1.71 m/s

2 2 42 m

v
a

y


    


. 

 

We now return to calculate the tension: 
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T m g a 

 

 

b g
b g c h1600 9 8 171

18 10

2 2

4

kg m / s m / s

N

. .

. .

 

 
 

34. We resolve this horizontal force into appropriate components. 

 

(a) Newton’s second law applied to the x-axis 

produces 

 

F mg macos sin .    

 

For a = 0, this yields F = 566 N. 

 

(b) Applying Newton’s second law to the y axis (where there is no acceleration), we have 

 

sin cos 0NF F mg     

 

which yields the normal force FN = 1.13  10
3
 N. 

 

35. The acceleration vector as a function of time is  

 

  2 2ˆ ˆ ˆ ˆ8.00 i 3.00 j m/s (8.00 i 6.00 j) m/s .
dv d

a t t t
dt dt

      

 

(a) The magnitude of the force acting on the particle is  

 
2 2 2| | (3.00) (8.00) (6.00 ) (3.00) 64.0 36.0 N.F ma m a t t       

 

Thus, 35.0 NF   corresponds to 1.415 s,t   and the acceleration vector at this instant is 

  
2 2 2ˆ ˆ ˆ ˆ[8.00 i 6.00(1.415) j] m/s (8.00 m/s ) i (8.49 m/s )j.a      

 

The angle a  makes with +x is  

 
2

1 1

2

8.49 m/s
tan tan 46.7 .

8.00 m/s

y

a

x

a

a
     

      
  

 

 

(b) The velocity vector at 1.415 st   is 
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2ˆ ˆ ˆ ˆ8.00(1.415) i 3.00(1.415) j m/s (11.3 m/s) i (6.01m/s) j.v     
 

 

 

Therefore, the angle v  makes with +x is  

 

1 1 6.01 m/s
tan tan 28.0 .

11.3 m/s

y

v

x

v

v
     

      
  

 

 

36. (a) Constant velocity implies zero acceleration, so the “uphill” force must equal (in 

magnitude) the “downhill”  force: T = mg sin . Thus, with m = 50 kg and 8.0   ,the 

tension in the rope equals 68 N. 

 

(b) With an uphill acceleration of 0.10 m/s
2
, Newton’s second law (applied to the x axis) 

yields 

 

     2 2sin 50 kg 9.8 m/s sin8.0 50 kg 0.10 m/sT mg ma T       

 

which leads to T = 73 N. 

 

37. (a) Since friction is negligible the force of the girl is the only horizontal force on the 

sled. The vertical forces (the force of gravity and the normal force of the ice) sum to zero. 

The acceleration of the sled is 

a
F

m
s

s

  
52

0 62
.

. .
N

8.4 kg
m s2  

 

(b) According to Newton’s third law, the force of the sled on the girl is also 5.2 N. Her 

acceleration is 

a
F

m
g

g

  
52

013
.

. .
N

40kg
m s2  

 

(c) The accelerations of the sled and girl are in opposite directions. Assuming the girl 

starts at the origin and moves in the +x direction, her coordinate is given by 21
2g gx a t . 

The sled starts at x0 = 15 m and moves in the –x direction. Its coordinate is given by 
21

0 2s sx x a t  . They meet when g sx x , or  

 

2 2

0

1 1
.

2 2
g sa t x a t   

This occurs at time 

t
x

a ag s




2 0 .  

By then, the girl has gone the distance 
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  2

02

2 2

15 m 0.13 m/s1
2.6 m.

2 0.13 m/s 0.62 m/s

g

g g

g s

x a
x a t

a a
   

 
 

 

38. We label the 40 kg skier “m,” which is represented as a block in the figure shown. 

The force of the wind is denoted 

Fw  and might be either “uphill” or “downhill”  (it is 

shown uphill in our sketch). The incline angle  is 10°. The x direction is downhill. 

 

 
 

(a) Constant velocity implies zero acceleration; thus, application of Newton’s second law 

along the x axis leads to mg Fwsin .   0 This yields Fw = 68 N (uphill). 

 

(b) Given our coordinate choice, we have a =| a |= 1.0 m/s
2
. Newton’s second law 

 

mg F mawsin     

 

now leads to Fw = 28 N (uphill). 

  

(c) Continuing with the forces as shown in our figure, the equation 

 

mg F mawsin     

 

will lead to Fw = – 12 N when | a | = 2.0 m/s
2
. This simply tells 

us that the wind is opposite to the direction shown in our sketch; 

in other words, 12 NwF   downhill. 

 

39. The solutions to parts (a) and (b) have been combined here. 

The free-body diagram is shown to the right, with the tension of 

the string 

T , the force of gravity mg


, and the force of the air 


F . Our coordinate system is shown. Since the sphere is 

motionless the net force on it is zero, and the x and the y 

components of the equations are: 

 

  T sin  – F = 0 

T cos  – mg = 0, 

 

where  = 37°. We answer the questions in the reverse order. Solving T cos  – mg = 0 

for the tension, we obtain  
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T = mg/ cos  = (3.0  10
–4

 kg) (9.8 m/s
2
) / cos 37° = 3.7  10

–3
 N. 

 

Solving T sin  – F = 0 for the force of the air:  

 

F = T sin  = (3.7  10
–3

 N) sin 37° = 2.2  10
–3

 N. 

 

40. The acceleration of an object (neither pushed nor pulled by any force other than 

gravity) on a smooth inclined plane of angle  is a = –g sin.  The slope of the graph 

shown with the problem statement indicates a = –2.50 m/s
2
.  Therefore, we find 

14.8   . Examining the forces perpendicular to the incline (which must sum to zero 

since there is no component of acceleration in this direction) we find FN = mgcos, where 

m = 5.00 kg.   Thus, the normal (perpendicular) force exerted at the box/ramp interface is 

47.4 N. 

 

41. The mass of the bundle is m = (449 N)/(9.80 m/s
2
) = 45.8 kg and we choose +y 

upward. 

 

(a) Newton’s second law, applied to the bundle, leads to 

 

387 N 449 N

45.8 kg
T mg ma a


     

 

which yields a = –1.4 m/s
2
 (or |a| = 1.4 m/s

2
) for the acceleration. The minus sign in the 

result indicates the acceleration vector points down. Any downward acceleration of 

magnitude greater than this is also acceptable (since that would lead to even smaller 

values of tension). 

 

(b) We use Eq. 2-16 (with x replaced by y = –6.1 m). We assume 0 = 0. 

 

  22 2 1.35 m/s 6.1 m 4.1 m/s.v a y       

 

For downward accelerations greater than 1.4 m/s
2
, the speeds at impact will be larger than 

4.1 m/s. 

 

42. The direction of motion (the direction of the barge’s acceleration) is î , and j  is 

chosen so that the pull hF  from the horse is in the first quadrant. The components of the 

unknown force of the water are denoted simply Fx and Fy. 

 

(a) Newton’s second law applied to the barge, in the x and y directions, leads to 

 

 

 

7900N cos 18

7900N sin 18 0

x

y

F ma

F

  

  
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respectively. Plugging in a = 0.12 m/s
2
 and m = 9500 kg, we obtain Fx =   6.4  10

3
 N 

and Fy =  2.4  10
3
 N. The magnitude of the force of the water is therefore 

 

F F Fx ywater N.   2 2 368 10.  

 

(b) Its angle measured from î  is either 

 

1tan 21 or201 .
y

x

F

F

  
    

 
 

 

The signs of the components indicate the latter is correct, so 

Fwater  is at 201  measured 

counterclockwise from the line of motion (+x axis). 

 

43. THINK A chain of five links is accelerated vertically upward by an external force. 

We are interested in the forces exerted by one link on its adjacent one.   

 

EXPRESS The links are numbered from bottom to top. The forces on the first link are 

the force of gravity mg


, downward, and the force 

F2 1on  of link 2, upward, as shown in 

the free-body diagram below (not drawn to scale). Take the positive direction to be 

upward. Then Newton’s second law for the first link is 2on1 1 1 .F m g m a   The equations 

for the other links can be written in a similar manner (see below). 

 

 

ANALYZE (a) Given that 22.50 m/sa  , from 2on1 1 1F m g m a  , the force exerted by 

link 2 on link 1 is 

 
2 2

2on1 1( ) (0.100 kg)(2.5 m/s 9.80 m/s ) 1.23 N.F m a g      

 

(b) From the free-body diagram above, we see that the forces on the second link are the 

force of gravity 2m g , downward, the force 

F1 2on  of link 1, downward, and the force 


F3 2on  
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of link 3, upward. According to Newton’s third law 1on2F  has the same magnitude as 

2on1.F  Newton’s second law for the second link is  

 

3on2 1on2 2 2F F m g m a    

so 

F3on2 = m2(a + g) + F1on2 = (0.100 kg) (2.50 m/s
2
 + 9.80 m/s

2
) + 1.23 N = 2.46 N. 

 

(c) Newton’s second law equation for link 3 is F4on3 – F2on3 – m3g = m3a, so  

 

F4on3 = m3(a + g) + F2on3 = (0.100 N) (2.50 m/s
2
 + 9.80 m/s

2
) + 2.46 N = 3.69 N, 

 

where Newton’s third law implies F2on3 = F3on2 (since these are magnitudes of the force 

vectors). 

 

(d) Newton’s second law for link 4 is  

 

F5on4 – F3on4 – m4g = m4a, 

so  

F5on4 = m4(a + g) + F3on4 = (0.100 kg) (2.50 m/s
2
 + 9.80 m/s

2
) + 3.69 N = 4.92 N, 

 

where Newton’s third law implies F3on4 = F4on3. 

 

(e) Newton’s second law for the top link is F – F4on5 – m5g = m5a, so  

 

F = m5(a + g) + F4on5 = (0.100 kg) (2.50 m/s
2
 + 9.80 m/s

2
) + 4.92 N = 6.15 N, 

 

where F4on5 = F5on4 by Newton’s third law. 

 

(f) Each link has the same mass ( 1 2 3 4 5m m m m m m     ) and the same acceleration, 

so the same net force acts on each of them:  

 

Fnet = ma = (0.100 kg) (2.50 m/s
2
) = 0.250 N. 

 

LEARN In solving this problem we have used both Newton’s second and third laws. 

Each pair of links constitutes a third-law force pair, with i on j j on iF F  .  

 

44. (a) The term “deceleration”  means the acceleration vector is in the direction opposite 

to the velocity vector (which the problem tells us is downward). Thus (with +y upward) 

the acceleration is a = +2.4 m/s
2
. Newton’s second law leads to 

 

T mg ma m
T

g a
   


 

which yields m = 7.3 kg for the mass. 
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(b) Repeating the above computation (now to solve for the tension) with a = +2.4 m/s
2
 

will, of course, lead us right back to T = 89 N. Since the direction of the velocity did not 

enter our computation, this is to be expected. 

 

45. (a) The mass of the elevator is m = (27800/9.80) = 2837 kg and (with +y upward) the 

acceleration is a = +1.22 m/s
2
. Newton’s second law leads to 

 

T mg ma T m g a    b g  
 

which yields T = 3.13  10
4
 N for the tension. 

 

(b) The term “deceleration” means the acceleration vector is in the direction opposite to 

the velocity vector (which the problem tells us is upward). Thus (with +y upward) the 

acceleration is now a = –1.22 m/s
2
, so that the tension  is 

 

T = m (g + a) = 2.43  10
4
 N . 

 

46. With ace meaning “the acceleration of the coin relative to the elevator” and aeg 

meaning “the acceleration of the elevator relative to the ground,” we have 

 

ace + aeg = acg        –8.00 m/s
2
 + aeg = –9.80 m/s

2
 

 

which leads to aeg = –1.80 m/s
2
.  We have chosen upward as the positive y direction.  

Then Newton’s second law (in the “ground” reference frame) yields T – m g = m aeg, or 

 

T  = m g + m aeg = m(g  + aeg) = (2000 kg)(8.00 m/s
2
) = 16.0 kN. 

 

47. Using Eq. 4-26, the launch speed of the projectile is  

 

 
2

0

(9.8 m/s )(69 m)
26.52 m/s

sin 2 sin 2(53 )

gR
v


  


. 

 

The horizontal and vertical components of the speed are  

 

 
0

0

cos (26.52 m/s)cos53 15.96 m/s

sin (26.52 m/s)sin53 21.18 m/s.

x

y

v v

v v





   

   
 

 

Since the acceleration is constant, we can use Eq. 2-16 to analyze the motion. The 

component of the acceleration in the horizontal direction is 

 

 
2 2

2(15.96 m/s)
40.7 m/s ,

2 2(5.2 m)cos53

x
x

v
a

x
  


 

 

and the force component is 
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2(85 kg)(40.7 m/s ) 3460 N.x xF ma    

 

Similarly, in the vertical direction, we have 
2 2

2(21.18 m/s)
54.0 m/s .

2 2(5.2 m)sin53

y

y

v
a

y
  


 

and the force component is  

 
2 2(85 kg)(54.0 m/s 9.80 m/s ) 5424 N.y yF ma mg      

 

Thus, the magnitude of the force is 

 

 2 2 2 2 3(3460 N) (5424 N) 6434 N 6.4 10 N,x yF F F        

 

to two significant figures.  

 

48. Applying Newton’s second law to cab B (of mass m) we have  

 

a = 
T

m
   g = 4.89 m/s

2
. 

 

Next, we apply it to the box (of mass mb) to find the normal force: 

 

FN = mb(g + a) = 176 N. 

 

 

49. The free-body diagram (not to scale) for the block is shown to 

the right. NF  is the normal force exerted by the floor and mg


 is 

the force of gravity. 

 

(a) The x component of Newton’s second law is F cos = ma, 

where m is the mass of  the block and a is the x component of its 

acceleration. We obtain 

 

a
F

m
 




cos . cos .

.
. .

 12 0 250

500
218

N

kg
m / s2b g

 

 

This is its acceleration provided it remains in contact with the floor. Assuming it does, we 

find the value of FN (and if FN is positive, then the assumption is true but if FN is negative 

then the block leaves the floor). The y component of Newton’s second law becomes  

 

FN + F sin – mg = 0, 

so  

FN = mg – F sin = (5.00 kg)(9.80 m/s
2
) – (12.0 N)sin 25.0= 43.9 N. 
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Hence the block remains on the floor and its acceleration is a = 2.18 m/s
2
. 

 

(b) If F is the minimum force for which the block leaves the floor, then FN = 0 and the y 

component of the acceleration vanishes. The y component of the second law becomes   

 

F sin – mg = 0       
  25.00 kg 9.80 m/s

116 N.
sin sin 25.0

mg
F


  


 

 

(c) The acceleration is still in the x direction and is still given by the equation developed 

in part (a): 

2cos (116 N) cos 25.0
21.0m/s .

5.00 kg

F
a

m

 
    

 

50. (a) The net force on the system (of total mass M = 80.0 kg) is the force of gravity 

acting on the total overhanging mass (mBC = 50.0 kg).  The magnitude of the acceleration 

is therefore a = (mBC g)/M = 6.125 m/s
2
.  Next we apply Newton’s second law to block C 

itself (choosing down as the +y direction) and obtain   

 

mC g – TBC   = mC a. 

This leads to TBC  = 36.8 N. 

 

(b) We use Eq. 2-15 (choosing rightward as the +x direction): x = 0 + 
1

2
 at

2
 = 0.191 m. 

 

51. The free-body diagrams for 1m and 2m are shown in the figures below. The only 

forces on the blocks are the upward tension T and the downward gravitational forces 

1 1F m g and 2 2F m g . Applying Newton’s second law, we obtain: 

 

 
1 1

2 2

T m g m a

m g T m a

 

 

 

 

which can be solved to yield 

 

 2 1

2 1

m m
a g

m m

 
  

 
 

 
Substituting the result back, we have 

 1 2

1 2

2m m
T g

m m

 
  

 
 

 

(a) With 1 1.3 kgm  and 2 2.8 kgm  , the acceleration becomes  
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 2 2 22.80 kg 1.30 kg
(9.80 m/s ) 3.59 m/s 3.6 m/s .

2.80 kg 1.30 kg
a

 
   

 
 

 

(b) Similarly, the tension in the cord is  

 

22(1.30 kg)(2.80 kg)
(9.80 m/s ) 17.4 N 17 N.

1.30 kg 2.80 kg
T   


 

 

52. Viewing the man-rope-sandbag as a system means that we should be careful to 

choose a consistent positive direction of motion (though there are other ways to proceed, 

say, starting with individual application of Newton’s law to each mass). We take down as 

positive for the man’s motion and up as positive for the sandbag’s motion and, without 

ambiguity, denote their acceleration as a. The net force on the system is the different 

between the weight of the man and that of the sandbag. The system mass is msys = 85 kg 

+ 65 kg = 150 kg. Thus, Eq. 5-1 leads to 

 
2 2

sys(85 kg)(9.8 m/s ) (65 kg)(9.8 m/s ) m a   

 

which yields a = 1.3 m/s
2
. Since the system starts from rest, Eq. 2-16 determines the 

speed (after traveling  y = 10 m) as follows: 

 
22 2(1.3 m/s )(10 m) 5.1 m/s.v a y     

 

53. We apply Newton’s second law first to the three blocks as a single system and then to 

the individual blocks. The +x direction is to the right in Fig. 5-48. 

 

(a) With msys = m1 + m2 + m3 = 67.0 kg, we apply Eq. 5-2 to the x motion of the system, 

in which case, there is only one force
 
T T3 3  i . Therefore,  

 

 3 sys 65.0N (67.0kg)T m a a    

 

which yields a = 0.970 m/s
2
 for the system (and for each of the blocks individually). 

 

(b) Applying Eq. 5-2 to block 1, we find 

 

  2

1 1 12.0kg 0.970m/s 11.6N.T m a    

 

(c) In order to find T2, we can either analyze the forces on block 3 or we can treat blocks 

1 and 2 as a system and examine its forces. We choose the latter. 

 

    2

2 1 2 12.0 kg 24.0 kg 0.970 m/s 34.9 N .T m m a      
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54. First, we consider all the penguins (1 through 4, counting left to right) as one system, 

to which we apply Newton’s second law: 

 

   4 1 2 3 4 2222N 12kg 15kg 20kg .T m m m m a m a          

 

Second, we consider penguins 3 and 4 as one system, for which we have 

 

 
 

4 2 3 4

2111N 15 kg 20kg    3.2 m/s .

T T m m a

a a

  

   
 

 

Substituting the value, we obtain m2 = 23 kg.  

 

55. THINK In this problem a horizontal force is applied to block 1 which then pushes 

against block 2. Both blocks move together as a rigid connected system.  

 

EXPRESS The free-body diagrams for the two blocks in (a) are shown below. 

F  is the 

applied force and 
1on2F  is the force exerted by block 1 on block 2. We note that 


F  is 

applied directly to block 1 and that block 2 exerts a force 
2on1 1on2F F   on block 1 

(taking Newton’s third law into account). 

 

 
 

Newton’s second law for block 1 is 2on1 1 ,F F m a   where a is the acceleration. The 

second law for block 2 is 1on2 2 .F m a  Since the blocks move together they have the same 

acceleration and the same symbol is used in both equations.  

 

ANALYZE (a) From the second equation we obtain the expression 1on2 2/a F m , which 

we substitute into the first equation to get 2on1 1 1on2 2/ .F F m F m   Since 2on1 1on2F F  

(same magnitude for third-law force pair), we obtain 

 

 2
2on1 1on2

1 2

1.2 kg
3.2 N 1.1 N.

2.3 kg 1.2 kg

m
F F F

m m
   

 
 

 

(b) If 

F  is applied to block 2 instead of block 1 (and in the opposite direction), the free-

body diagrams would look like the following: 
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The corresponding force of contact between the blocks would be  

 

 1
2on1 1on2

1 2

2.3 kg
3.2 N 2.1 N.

2.3 kg 1.2 kg

m
F F F

m m
    

 
 

 

(c) We note that the acceleration of the blocks is the same in the two cases. In part (a), the 

force 1on2F  is the only horizontal force on the block of mass m2 and in part (b) 2on1F    is 

the only horizontal force on the block with m1 > m2. Since 1on2 2F m a  in part (a) and 

2on1 1F m a   in part (b), then for the accelerations to be the same, 2on1 1on2F F  , i.e., force 

between blocks must be larger in part (b). 

 

LEARN This problem demonstrates that when two blocks are being accelerated together 

under an external force, the contact force between the two blocks is greater if the smaller 

mass is pushing against the bigger one, as in part (b). In the special case where the two 

masses are equal,  1 2m m m  , 2on1 2on1 / 2.F F F     

 

56. Both situations involve the same applied force and the same total mass, so the 

accelerations must be the same in both figures.   

 

(a) The (direct) force causing B to have this acceleration in the first figure is twice as big 

as the (direct) force causing A to have that acceleration.  Therefore, B has the twice the 

mass of A.  Since their total is given as 12.0 kg then B has a mass of mB = 8.00 kg and A 

has mass mA = 4.00 kg.  Considering the first figure, (20.0 N)/(8.00 kg) = 2.50 m/s
2
.  Of 

course, the same result comes from considering the second figure ((10.0 N)/(4.00 kg) = 

2.50 m/s
2
). 

 

(b) Fa = (12.0 kg)(2.50 m/s
2
) = 30.0 N 

 

57. The free-body diagram for each block is shown below. T is the tension in the cord and 

 = 30° is the angle of the incline. For block 1, we take the +x direction to be up the 

incline and the +y direction to be in the direction of the normal force NF  that the plane 

exerts on the block. For block 2, we take the +y direction to be down. In this way, the 

accelerations of the two blocks can be represented by the same symbol a, without 
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ambiguity. Applying Newton’s second law to the x and y axes for block 1 and to the y 

axis of block 2, we obtain 

 
1 1

1

2 2

sin

cos 0N

T m g m a

F m g

m g T m a





 

 

 

 

 

respectively. The first and third of these equations provide a simultaneous set for 

obtaining values of a and T. The second equation is not needed in this problem, since the 

normal force is neither asked for nor is it needed as part of some further computation 

(such as can occur in formulas for friction). 

 

 
 

(a) We add the first and third equations above:  

 

m2g – m1g sin  = m1a + m2a. 

 

Consequently, we find 

 

   2

2 1 2

1 2

[2.30 kg (3.70 kg)sin 30.0 ] 9.80 m/ssin
0.735m/s .

3.70 kg 2.30 kg

m m g
a

m m

  
  

 
 

 

(b) The result for a is positive, indicating that the acceleration of block 1 is indeed up the 

incline and that the acceleration of block 2 is vertically down. 

 

(c) The tension in the cord is 

 

     2 2

1 1 sin 3.70 kg 0.735 m/s 3.70 kg 9.80 m/s sin30.0 20.8N.T m a m g        

 

58. The motion of the man-and-chair is positive if upward. 

 

(a) When the man is grasping the rope, pulling with a force equal to the tension T in the 

rope, the total upward force on the man-and-chair due its two contact points with the rope 

is 2T. Thus, Newton’s second law leads to 

 
2T mg ma   
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so that when a = 0, the tension is T = 466 N. 

 

(b) When a = +1.30 m/s
2
 the equation in part (a) predicts that the tension will be 

527 NT  . 

 

(c) When the man is not holding the rope (instead, the co-worker attached to the ground 

is pulling on the rope with a force equal to the tension T in it), there is only one contact 

point between the rope and the man-and-chair, and Newton’s second law now leads to 

 
T mg ma   

 

so that when a = 0, the tension is T = 931 N. 

 

(d) When a = +1.30 m/s
2
, the equation in (c) yields T = 1.05  10

3
 N. 

 

(e) The rope comes into contact (pulling down in each case) at the left edge and the right 

edge of the pulley, producing a total downward force of magnitude 2T on the ceiling. 

Thus, in part (a) this gives 2T = 931 N. 

 

(f) In part (b) the downward force on the ceiling has magnitude 2T = 1.05  10
3
 N. 

 

(g) In part (c) the downward force on the ceiling has magnitude 2T = 1.86  10
3
 N. 

 

(h) In part (d) the downward force on the ceiling has magnitude 2T = 2.11  10
3
 N. 

 

59. THINK This problem involves the application of Newton’s third law. As the monkey 

climbs up a tree, it pulls downward on the rope, but the rope pulls upward on the monkey.  

 

EXPRESS We take +y to be up for both the monkey and the package. The force the 

monkey pulls downward on the rope has magnitude F.  

 

The free-body diagrams for the monkey and the 

package are shown to the right (not to scale). 

According to Newton’s third law, the rope pulls 

upward on the monkey with a force of the same 

magnitude, so Newton’s second law for forces 

acting on the monkey leads to  

 

F – mmg = mmam, 

 

where mm is the mass of the monkey and am is its 

acceleration.  

 

 

 

Since the rope is massless, F = T is the tension in the rope. The rope pulls upward on the 

package with a force of magnitude F, so Newton’s second law for the package is  

 



  CHAPTER 5 224 

F + FN – mpg = mpap, 

 

where mp is the mass of the package, ap is its acceleration, and FN is the normal force 

exerted by the ground on it. Now, if F is the minimum force required to lift the package, 

then FN = 0 and ap = 0. According to the second law equation for the package, this means 

F = mpg.  

 

ANALYZE (a) Substituting mpg for F in the equation for the monkey, we solve for am: 

 

    2

2
15 kg 10 kg 9.8 m/s

4.9 m/s .
10 kg

p mm
m

m m

m m gF m g
a

m m


     

 

(b) As discussed, Newton’s second law leads to p p pF m g m a   for the package and 

m m mF m g m a   for the monkey. If the acceleration of the package is downward, then 

the acceleration of the monkey is upward, so .m pa a    Solving the first equation for F 

 

   p p p mF m g a m g a      

and substituting this result into the second equation: 

 

( )p m m m mm g a m g m a    , 

we solve for ma : 

    2

2
15 kg 10 kg 9.8 m/s

2.0 m/s .
15 kg 10 kg

p m

m

p m

m m g
a

m m


   

 
 

 

(c) The result is positive, indicating that the acceleration of the monkey is upward. 

 

(d) Solving the second law equation for the package, the tension in the rope is 

 

    2 215 kg 9.8 m/s 2.0 m/s 120N.p mF m g a      

 

LEARN The situations described in (b)-(d) are similar to that of an Atwood machine. 

With p mm m , the package accelerates downward while the monkey accelerates upward.  

 

 

60. The horizontal component of the acceleration is determined by the net horizontal 

force.  

 

(a) If the rate of change of the angle is  

 

 2 2 4 rad
(2.00 10 ) / s (2.00 10 ) / s 3.49 10 rad/s

180

d

dt

    
         

 
, 
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then, using cosxF F  , we find the rate of change of acceleration to be  

 

 
 4

4 3

cos sin (20.0 N)sin 25.0
3.49 10 rad/s

5.00 kg

5.90 10 m/s .

xda d F F d

dt dt m m dt

   



 
      

 

  

 

 

(b) If the rate of change of the angle is  

 

 2 2 4 rad
(2.00 10 ) / s (2.00 10 ) / s 3.49 10 rad/s

180

d

dt

    
            

 
, 

 

then the rate of change of acceleration would be  

 

 
 4

4 3

cos sin (20.0 N)sin 25.0
3.49 10 rad/s

5.00 kg

5.90 10 m/s .

xda d F F d

dt dt m m dt

   



 
       

 

  

 

 

61. THINK As more mass is thrown out of the hot-air balloon, its upward acceleration 

increases.     

 

EXPRESS The forces on the balloon are the force of gravity mg


 (down) and the force of 

the air 

Fa  (up). We take the +y to be up, and use a to mean the magnitude of the 

acceleration. When the mass is M (before the ballast is thrown out) the acceleration is 

downward and Newton’s second law is  

 

 aMg F Ma   

 

After the ballast is thrown out, the mass is M – m (where m is the mass of the ballast) and 

the acceleration is now upward. Newton’s second law leads to  

 

Fa – (M – m)g = (M – m)a. 

 

Combing the two equations allows us to solve for m. 

 

ANALYZE The first equation gives Fa = M(g – a), and this plugs into the new equation 

to give 

M g a M m g M m a m
Ma

g a
      


b g b g b g 2

.  

 

LEARN More generally, if a ballast mass m  is tossed, the resulting acceleration is 

awhich is related to m  via: 
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a a

m M
g a

 
 


, 

  

showing that the more mass thrown out, the greater is the upward acceleration. For 

a a  , we get 2 /( )m Ma g a   , which agrees with what was found above.    

 

62. To solve the problem, we note that the acceleration along the slanted path depends on 

only the force components along the path, not the components perpendicular to the path.  

 
(a) From the free-body diagram shown, we see that the net force on the putting shot along 

the +x-axis is  

 

 2

net, sin 380.0 N (7.260 kg)(9.80 m/s )sin30 344.4 N,xF F mg        

 

which in turn gives  
2

net, / (344.4 N) /(7.260 kg) 47.44 m/s .x xa F m    

 

Using Eq. 2-16 for constant-acceleration motion, the speed of the shot at the end of the 

acceleration phase is  

 

 2 2 2

0 2 (2.500 m/s) 2(47.44 m/s )(1.650 m) 12.76 m/s.xv v a x       

 

(b) If 42 ,    then  

 
2

net, 2sin 380.0 N (7.260 kg)(9.80 m/s )sin 42.00
45.78 m/s ,

7.260 kg

x

x

F F mg
a

m m

  
     

 

and the final (launch) speed is  

 
2 2 2

0 2 (2.500 m/s) 2(45.78 m/s )(1.650 m) 12.54 m/s.xv v a x       

 

(c) The decrease in launch speed when changing the angle from 30.00  to 42.00  is  
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12.76 m/s 12.54 m/s

0.0169 1.69%.
12.76 m/s


   

 

63. (a) The acceleration (which equals F/m in this problem) is the derivative of the 

velocity.  Thus, the velocity is the integral of F/m, so we find the “area” in the graph (15 

units) and divide by the mass (3) to obtain v – vo = 15/3 = 5.  Since vo = 3.0 m/s, then 

8.0m/s.v   

 

(b) Our positive answer in part (a) implies v  points in the +x direction. 

 

64. The +x direction for m2 = 1.0 kg is “downhill” and the +x direction for m1 = 3.0 kg is 

rightward; thus, they accelerate with the same sign. 

 
 

(a) We apply Newton’s second law to the x axis of each box: 

 

2 2

1

sinm g T m a

F T m a

  

 
 

 

Adding the two equations allows us to solve for the acceleration: 

 

 2

1 2

sinm g F
a

m m

 



 

 

With F = 2.3 N and 30   , we have a = 1.8 m/s
2
. We plug back in and find T = 3.1 N. 

 

(b) We consider the “critical” case where the F has reached the max value, causing the 

tension to vanish. The first of the equations in part (a) shows that sin30a g   in this 

case; thus, a = 4.9 m/s
2
. This implies (along with T = 0 in the second equation in part (a)) 

that  

F = (3.0 kg)(4.9 m/s
2
) = 14.7 N 15 N  

in the critical case. 

 

65. The free-body diagrams for 1m and 2m are shown in the figures below. The only 

forces on the blocks are the upward tension T and the downward gravitational forces 

1 1F m g and 2 2F m g . Applying Newton’s second law, we obtain: 
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1 1

2 2

T m g m a

m g T m a

 

 
 

 

which can be solved to give 

 

2 1

2 1

m m
a g

m m

 
  

 
 

 
 

(a) At 0t  , 
10 1.30 kgm  . With 

1 / 0.200 kg/sdm dt   , we find the rate of change of 

acceleration to be 

 

 
2

31 2 1

2 2

1 2 10

2 2(2.80 kg)(9.80 m/s )
0.200 kg/s 0.653 m/s .

( ) (2.80 kg 1.30 kg)

dm m g dmda da

dt dm dt m m dt
      

 
 

 

(b) At 3.00 s,t  1 10 1( / ) 1.30 kg ( 0.200 kg/s)(3.00 s) 0.700 kg,m m dm dt t      and 

the rate of change of acceleration is 

 

 
2

31 2 1

2 2

1 2 1

2 2(2.80 kg)(9.80 m/s )
0.200 kg/s 0.896 m/s .

( ) (2.80 kg 0.700 kg)

dm m g dmda da

dt dm dt m m dt
      

 
 

 

(c) The acceleration reaches its maximum value when  

 

1 10 10 ( / ) 1.30 kg ( 0.200 kg/s) ,m m dm dt t t       

or 6.50 s.t   

 

66. The free-body diagram is shown to the right. Newton’s 

second law for the mass m for the x direction leads to  

 

T T mg ma1 2  sin , 

 

which gives the difference in the tension in the pull cable: 

 

    2 2 4

1 2 sin 2800 kg (9.8 m/s )sin35 0.81m/s 1.8 10 N.T T m g a            

 

67. First we analyze the entire system with “clockwise” motion considered positive (that 

is, downward is positive for block C, rightward is positive for block B, and upward is 

positive for block A):  mC g – mA g = Ma  (where M = mass of the system = 24.0 kg).  This 

yields an acceleration of    
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a = g(mC  mA)/M = 1.63 m/s
2
. 

 

Next we analyze the forces just on block C: mC g  –  T  = mC a.  Thus the tension is   

 

T = mC g(2mA + mB)/M = 81.7 N. 

 

68. We first use Eq. 4-26 to solve for the launch speed of the shot: 

 

 
2

0 2
(tan ) .

2( cos )

gx
y y x

v



  


 

 

With 34.10 ,    0 2.11 m,y   and ( , ) (15.90 m,0)x y  , we find the launch speed to be 

11.85 m/s.v   During this phase, the acceleration is  

 

 
2 2 2 2

20 (11.85 m/s) (2.50 m/s)
40.63 m/s .

2 2(1.65 m)

v v
a

L

  
    

 

Since the acceleration along the slanted path depends on only the force components along 

the path, not the components perpendicular to the path, the average force on the shot 

during the acceleration phase is  

 

 2 2( sin ) (7.260 kg) 40.63 m/s (9.80 m/s )sin34.10 334.8 N.F m a g           

 

69. We begin by examining a slightly different problem: similar to this figure but without 

the string.  The motivation is that if (without the string) block A is found to accelerate 

faster (or exactly as fast) as block B then (returning to the original problem) the tension in 

the string is trivially zero.  In the absence of the string,  

 

aA = FA /mA = 3.0 m/s
2
 

 

aB = FB /mB = 4.0 m/s
2
 

 

so the trivial case does not occur.  We now (with the string) consider the net force on the 

system: Ma = FA + FB = 36 N.  Since M = 10 kg (the total mass of the system) we obtain a 

= 3.6 m/s
2
.  The two forces on block A are FA and T (in the same direction), so we have 

 

mA a = FA + T         T = 2.4 N. 

 

70. (a) For the 0.50 meter drop in “free fall,” Eq. 2-16 yields a speed of 3.13 m/s.  Using 

this as the “initial speed” for the final motion (over 0.02 meter) during which his motion 

slows at rate “a,” we find the magnitude of his average acceleration from when his feet 

first touch the patio until the moment his body stops moving is a = 245 m/s
2
. 

 

(b) We apply Newton’s second law:  Fstop –  mg = ma     Fstop = 20.4 kN. 
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71. THINK We have two boxes connected together by a cord and placed on a wedge. 

The system accelerates together and we’d like to know the tension in the cord.  

 

EXPRESS The +x axis is “uphill” for m1 = 3.0 kg and “downhill” for m2 = 2.0 kg (so 

they both accelerate with the same sign). The x components of the two masses along the x 

axis are given by 
1 1sinm g  and 2 2sinm g  , respectively. The free-body diagram is shown 

below. Applying Newton’s second law, we obtain 

 

1 1 1

2 2 2

sin

sin

T m g m a

m g T m a





 

 
 

 

 
 

Adding the two equations allows us to solve for the acceleration: 

 

 2 2 1 1

2 1

sin sinm m
a g

m m

  
  

 
 

 ANALYZE With 1 30   and 2 60   , we have a = 0.45 m/s
2
. This value is plugged 

back into either of the two equations to yield the tension  

 

1 2
2 1

2 1

(sin sin ) 16.1 N
m m g

T
m m

   


 

 

LEARN In this problem we find 2 2 1 1sin sinm m  , so that 0a  , indicating that 2m  

slides down and 1m  slides up. The situation would reverse if 2 2 1 1sin sinm m  . When 

2 2 1 1sin sinm m  , the acceleration is a = 0 and the two masses hang in balance. Notice 

also the symmetry between the two masses in the expression for T.   

 

72. Since the velocity of the particle does not change, it undergoes no acceleration and 

must therefore be subject to zero net force. Therefore, 

    
F F F Fnet    1 2 3 0 .  

Thus, the third force 

F3  is given by 

 

     3 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2i 3j 2k N 5i 8j 2k N 3i 11j 4k N.F F F               
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The specific value of the velocity is not used in the computation. 

 

73. THINK We have two masses connected together by a cord. A force is applied to the 

second mass and the system accelerates together. We apply Newton’s second law to solve 

the problem.  

 

EXPRESS The free-body diagrams for the two masses are shown below (not to scale). 

We first analyze the forces on m1=1.0 kg. The +x direction is “downhill”  (parallel to 

T ). 

With an acceleration a = 5.5 m/s
2
 in the positive x direction for m1, Newton’s second law 

applied to the x-axis gives 

1 1sinT m g m a  . 

 

On the other hand, for the second mass m2=2.0 kg, we have 2 2m g F T m a   , where 

the tension comes in as an upward force (the cord can pull, not push). The two equations 

can be combined to solve for T and . 

 

 
  

ANALYZE We solve (b) first. By combining the two equations above, we obtain 

 

 

2 2

1 2 2

2

1

( ) (1.0 kg 2.0 kg)(5.5 m/s ) 6.0 N (2.0 kg)(9.8 m/s )
sin

(1.0 kg)(9.8 m/s )

0.296

m m a F m g

m g


     
 



 

 

which gives .   

 

(a) Substituting the value for  found in (a) into the first equation, we have  

 
2 2

1( sin ) (1.0 kg) 5.5 m/s (9.8 m/s )sin17.2 2.60 N.T m a g           

 

LEARN For 0  , the problem becomes the same as that discussed in Sample Problem 

“Block on table, block hanging.” In this case, our results reduce to the familiar 

expressions:  2 1 2/( )a m g m m  , and 1 2 1 2/( ).T m m g m m   
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74. We are only concerned with horizontal forces in this problem (gravity plays no direct 

role).  Without loss of generality, we take one of the forces along the +x direction and the 

other at 80 (measured counterclockwise from the x axis).  This calculation is efficiently 

implemented on a vector-capable calculator in polar mode, as follows (using magnitude-

angle notation, with angles understood to be in degrees): 

 

Fnet



  =  (20  0) + (35  80) = (43  53)    | Fnet



 |  =  43 N  .   

 

Therefore, the mass is m = (43 N)/(20 m/s
2
) = 2.2 kg. 

 

75. The goal is to arrive at the least magnitude of 

Fnet ,  and as long as the magnitudes of  


F2  and 


F3  are (in total) less than or equal to 


F1  then we should orient them opposite to 

the direction of 

F1  (which is the +x direction). 

 

(a) We orient both 
 
F F2 3and  in the –x direction. Then, the magnitude of the net force is 

50 – 30 – 20 = 0, resulting in zero acceleration for the tire. 

 

(b) We again orient 
 
F F2 3and  in the negative x direction. We obtain an acceleration 

along the +x axis with magnitude 

 

a
F F F

m


 


 
1 2 3 250

083
N 30N 10N

12 kg
m / s. .  

 

(c) The least value is a = 0. In this case, the forces 
 
F F2 3and  are collectively strong 

enough to have y components (one positive and one negative) that cancel each other and 

still have enough x contributions (in the –x direction) to cancel 

F1 . Since 

 
F F2 3 , we 

see that the angle above the –x axis to one of them should equal the angle below the –x 

axis to the other one (we denote this angle ). We require 

 

   2 350 N 30N cos 30N cosx xF F         

which leads to 

 
F
HG
I
KJ  cos .1 50

34
N

60N
 

 

76. (a) A small segment of the rope has mass and is pulled down by the gravitational 

force of the Earth. Equilibrium is reached because neighboring portions of the rope pull 

up sufficiently on it. Since tension is a force along the rope, at least one of the 

neighboring portions must slope up away from the segment we are considering. Then, the 

tension has an upward component, which means the rope sags. 
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(b) The only force acting with a horizontal component is the applied force 

F.  Treating 

the block and rope as a single object, we write Newton’s second law for it: F = (M + m)a, 

where a is the acceleration and the positive direction is taken to be to the right. The 

acceleration is given by a = F/(M + m). 

 

(c) The force of the rope Fr is the only force with a horizontal component acting on the 

block. Then Newton’s second law for the block gives 

 

F Ma
MF

M m
r  


 

 

where the expression found above for a has been used. 

 

(d) Treating the block and half the rope as a single object, with mass 1
2

M m , where the 

horizontal force on it is the tension Tm at the midpoint of the rope, we use Newton’s 

second law: 

 

 

 

 

/ 2 21
.

2 2
m

M m F M m F
T M m a

M m M m

  
    

  
 

 

77. THINK We have a crate that is being pulled at an angle. We apply Newton’s second 

law to analyze the motion.  

 

EXPRESS Although the full specification of 
 
F manet   

in this situation involves both x and y axes, only the x-

application is needed to find what this particular 

problem asks for. We note that ay = 0 so that there is no 

ambiguity denoting ax simply as a. We choose +x to the 

right and +y up. The free-body diagram (not to scale) is 

shown to the right. The x component of the rope’s 

tension (acting on the crate) is  

 

Fx = F cos= (450 N) cos 38° = 355 N, 

 

and the resistive force (pointing in the –x direction) has 

magnitude f = 125 N. 

 

ANALYZE (a) Newton’s second law leads to 

 

2cos 355 N 125 N
0.74m/s .

310 kg
x

F f
F f ma a

m

  
       

 

(b) In this case, we use Eq. 5-12 to find the mass: / 31.6 kgm W g   . Newton’s second 

law then leads to 
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2355 N 125 N
7.3 m/s .

31.6 kg

x
x

F f
F f m a a

m

 
       


 

 

LEARN The resistive force opposing the motion is due to the friction between the crate 

and the floor. This topic is discussed in greater detail in Chapter 6.  

 

78. We take +x uphill for the m2 = 1.0 kg box and +x rightward for the m1 = 3.0 kg box 

(so the accelerations of the two boxes have the same magnitude and the same sign). The 

uphill force on m2 is F and the downhill forces on it are T and m2g sin , where  = 37°. 

The only horizontal force on m1 is the rightward-pointed tension. Applying Newton’s 

second law to each box, we find 

 

2 2

1

 sin  

                            

F T m g m a

T m a

  


 

which can be added to obtain  

 

F – m2g sin  = (m1 + m2)a. 

This yields the acceleration 

 
2

212 N (1.0 kg)(9.8 m/s )sin 37
1.53 m/s .

1.0 kg 3.0 kg
a

 
 


 

 

Thus, the tension is T = m1a = (3.0 kg)(1.53 m/s
2
) = 4.6 N. 

 

79. We apply Eq. 5-12. 

 

(a) The mass is  

m = W/g = (22 N)/(9.8 m/s
2
) = 2.2 kg. 

 

At a place where g = 4.9 m/s
2
, the mass is still 2.2 kg but the gravitational force is  

 

Fg = mg = (2.2 kg) (4.0 m/s
2
) = 11 N. 

 

(b) As noted, m = 2.2 kg. 

 

(c) At a place where g = 0 the gravitational force is zero. 

 

(d) The mass is still 2.2 kg. 

 

80. We take down to be the +y direction. 

 

(a) The first diagram (shown below left) is the free-body diagram for the person and 

parachute, considered as a single object with a mass of 80 kg + 5.0 kg = 85 kg.  

 



 

  

235 

 
 
Fa is the force of the air on the parachute and mg


 is the force of gravity. Application of 

Newton’s second law produces mg – Fa = ma, where a is the acceleration. Solving for Fa 

we find 

    2 285 kg 9.8 m/s 2.5 m/s 620 N.aF m g a      

 

(b) The second diagram (above right) is the free-body diagram for the parachute alone. 
Fa is the force of the air, m gp


 is the force of gravity, and 


Fp  is the force of the person. 

Now, Newton’s second law leads to  

 

mpg + Fp – Fa = mpa. 

 

Solving for Fp, we obtain 

 

    2 25.0 kg 2.5 m/s 9.8 m/s 620 N 580 N.p p aF m a g F        

 

81. The mass of the pilot is m = 735/9.8 = 75 kg. Denoting the upward force exerted by 

the spaceship (his seat, presumably) on the pilot as 

F  and choosing upward as the +y 

direction, then Newton’s second law leads to 

 

  2 2

moon 75 kg 1.6 m/s 1.0 m/s 195 N.F mg ma F       

 

82. With SI units understood, the net force on the box is 

 

   net
ˆ ˆ3.0 14 cos 30 11 i 14 sin30 5.0 17 jF          

 

which yields net
ˆ ˆ(4.1 N) i (5.0 N) jF   . 

 

(a) Newton’s second law applied to the m = 4.0 kg box leads to 

 

2 2net ˆ ˆ(1.0m/s )i (1.3m/s ) j .
F

a
m

    

 

(b) The magnitude of 

a  is  

2
2 2 2 2(1.0 m/s ) 1.3 m/s 1.6 m sa     .  
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(c) Its angle is tan
–1

 [(–1.3 m/s
2
)/(1.0 m/s

2
)] = –50° (that is, 50° measured clockwise from 

the rightward axis). 

 

83. THINK This problem deals with the relationship between the three quantities: force, 

mass and acceleration in Newton’s second law F ma .   

 

EXPRESS The “certain force,” denoted as F, is assumed to be the net force on the object 

when it gives m1 an acceleration a1 = 12 m/s
2
 and when it gives m2 an acceleration a2 = 

3.3 m/s
2
, i.e., 1 1 2 2F m a m a  . The accelerations for 

2 1m m  and 
2 1m m can be solved 

by substituting m1 = F/a1 and 2 2/ .m F a  

 

ANALYZE (a) Now we seek the acceleration a of an object of mass m2 – m1 when F is 

the net force on it. The result is  

 
2 2

21 2

2 2

2 1 2 1 1 2

(12.0 m/s )(3.30 m/s )
 4.55 m/s

( / ) ( / ) 12.0 m/s 3.30 m/s

a aF F
a

m m F a F a a a
    

   
. 

 

(b) Similarly for an object of mass m2 + m1, we have: 

 
2 2

21 2

2 2

2 1 2 1 1 2

(12.0 m/s )(3.30 m/s )
2.59 m/s

( / ) ( / ) 12.0 m/s 3.30 m/s

a aF F
a

m m F a F a a a
     

   
. 

 

LEARN With the same applied force, the greater the mass the smaller the acceleration. 

In this problem, we have 1 2a a a a   . This implies 1 2 1 2 2 1.m m m m m m      

 

84. We assume the direction of motion is +x and assume the refrigerator starts from rest 

(so that the speed being discussed is the velocity v  that results from the process). The 

only force along the x axis is the x component of the applied force 

F . 

 

(a) Since v0 = 0, the combination of Eq. 2-11 and Eq. 5-2 leads simply to 

 

F m
v

t
v

F

m
tx i

i
F
HG
I
KJ  

F
HG

I
KJ

cos
 

 

for i = 1 or 2 (where we denote 1 = 0 and 2 =  for the two cases). Hence, we see that 

the ratio v2 over v1 is equal to cos . 

 

(b) Since v0 = 0, the combination of Eq. 2-16 and Eq. 5-2 leads to 

 

F m
v

x
v

F

m
xx i

i
F
HG
I
KJ  

F
HG

I
KJ

2

2
2




cos
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for i = 1 or 2 (again, 1 = 0 and 2 =  is used for the two cases). In this scenario, we see 

that the ratio v2 over v1 is equal to cos . 

 

85. (a) Since the performer’s weight is (52 kg)(9.8 m/s
2
) = 510 N, the rope breaks. 

 

(b) Setting T = 425 N in Newton’s second law (with +y upward) leads to 

 

T mg ma a
T

m
g      

which yields |a| = 1.6 m/s
2
. 

 

86. We use Wp = mgp, where Wp is the weight of an object of mass m on the surface of a 

certain planet p, and gp is the acceleration of gravity on that planet. 

 

(a) The weight of the space ranger on Earth is  

 

We = mge = (75 kg) (9.8 m/s
2
) = 7.4  10

2
 N. 

 

(b) The weight of the space ranger on Mars is  

 

Wm = mgm = (75 kg) (3.7 m/s
2
) = 2.8  10

2
 N. 

 

(c) The weight of the space ranger in interplanetary space is zero, where the effects of 

gravity are negligible. 

 

(d) The mass of the space ranger remains the same, m = 75 kg, at all the locations. 

 

87. From the reading when the elevator was at rest, we know the mass of the object is m 

= (65 N)/(9.8 m/s
2
) = 6.6 kg. We choose +y upward and note there are two forces on the 

object: mg downward and T upward (in the cord that connects it to the balance; T is the 

reading on the scale by Newton’s third law). 

 

(a) “Upward at constant speed” means constant velocity, which means no acceleration. 

Thus, the situation is just as it was at rest: T = 65 N. 

 

(b) The term “deceleration” is used when the acceleration vector points in the direction 

opposite to the velocity vector. We’re told the velocity is upward, so the acceleration 

vector points downward (a = –2.4 m/s
2
). Newton’s second law gives 

 
2 2  (6.6 kg)(9.8 m/s 2.4 m/s ) 49 N.T mg ma T       

 

88. We use the notation g as the acceleration due to gravity near the surface of Callisto, m 

as the mass of the landing craft, a as the acceleration of the landing craft, and F as the 

rocket thrust. We take down to be the positive direction. Thus, Newton’s second law 

takes the form mg – F = ma. If the thrust is F1 (= 3260 N), then the acceleration is zero, 
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so mg – F1 = 0. If the thrust is F2 (= 2200 N), then the acceleration is a2 (= 0.39 m/s
2
), so 

mg – F2 = ma2. 

 

(a) The first equation gives the weight of the landing craft: mg = F1 = 3260 N. 

 

(b) The second equation gives the mass: 

 

m
mg F

a






 2

2

2

33260 2200

0 39
2 7 10

N N

m / s
kg

.
. .  

 

(c) The weight divided by the mass gives the acceleration due to gravity:  

 

g = (3260 N)/(2.7  10
3
 kg) = 1.2 m/s

2
. 

 

89. (a) When

F F mgnet   3 0 , we have 

 

F mg   
1

3

1

3
1400 9 8 4 6 102 3kg m / s Nb g c h. .  

 

for the force exerted by each bolt on the engine. 

 

(b) The force on each bolt now satisfies 3F – mg = ma, which yields 

 

    2 2 31 1
1400 kg 9.8 m/s 2.6 m/s 5.8 10 N.

3 3
F m g a       

 

90. We write the length unit light-month, the distance traveled by light in one month, as 

c·month in this solution. 

 

(a) The magnitude of the required acceleration is given by 

 

a
v

t
 


 





010 30 10

30 86400
12 10

8

2
. .

.
. .

b gc h
b gb g

m / s

days s / day
m / s2  

 

(b) The acceleration in terms of g is a
a

g
g g g

F
HG
I
KJ 

F
HG

I
KJ 

12 10
12

2.
.

m / s

9.8 m / s

2

2
 

(c) The force needed is 

 

  6 2 2 81.20 10 kg 1.2 10 m/s 1.4 10 N.F ma       

 

(d) The spaceship will travel a distance d = 0.1 c·month during one month. The time it 

takes for the spaceship to travel at constant speed for 5.0 light-months is 
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t
d

v c
 




50

01
50

.

.

c months
months    4.2 years. 

 

91. THINK We have a motorcycle going up a ramp at a constant acceleration. We apply 

Newton’s second law to calculate the net force on the rider and the force on the rider 

from the motorcycle.     

 

EXPRESS The free-body diagram is 

shown to the right (not to scale). Note 

that 
, ym rF and

, xm rF , respectively, denote 

the y and x components of the force ,m rF  

exerted by the motorcycle on the rider. 

The net force on the rider is  

 

 net .F ma  

  

ANALYZE (a) Since the net force equals ma, then the magnitude of the net force on the 

rider is 

netF ma  = (60.0 kg) (3.0 m/s
2
) = 1.8  10

2
 N. 

 

(b) To calculate the force by the motorcycle on the rider, we apply Newton’s second law 

to the x- and the y-axes separately. For the x-axis, we have: 

 

, sin
xm rF mg ma   

 

where m = 60.0 kg, a = 3.0 m/s
2
, and  = 10°. Thus, , 282 N.

xm rF   Applying it to the y- 

axis (where there is no acceleration), we have 

 

, cos 0
ym rF mg    

 

which gives
, 579 N

ym rF  . Using the Pythagorean theorem, we find 

 

2 2 2 2

, , , (282 N) (579 N) 644 N.
x ym r m r m rF F F      

 

Now, the magnitude of the force exerted on the rider by the motorcycle is the same 

magnitude of force exerted by the rider on the motorcycle, so the answer is 644 N. 

 

LEARN The force exerted by the motorcycle on the rider keeps the rider accelerating in 

the +x-direction, while maintaining contact with the inclines surface ( 0ya  ).  

 

92. We denote the thrust as T and choose +y upward. Newton’s second law leads to 
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5
2 2

4

2.6 10 N
  9.8 m/s 10m/s .

1.3 10 kg
T Mg Ma a


     


 

 

93. THINK In this problem we have mobiles consisting of masses connected by cords. 

We apply Newton’s second law to calculate the tensions in the cords. 

 

EXPRESS The free-body diagrams for m1 and m2 for part (a) are shown to the right.  

 

 
 

The bottom cord is only supporting m2 = 4.5 kg against gravity, so its tension is 

2 2 .T m g  On the other hand, the top cord is supporting a total mass of m1 + m2 = (3.5 kg 

+ 4.5 kg) = 8.0 kg against gravity. Applying Newton’s second law gives 

 

1 2 1 0T T m g    

so the tension is  

1 1 2 1 2( ) .T m g T m m g     

 

ANALYZE (a) From the equations above, we find the tension in the bottom cord to be   

 

T2= m2g = (4.5 kg)(9.8 m/s
2
) = 44 N. 

 

(b) Similarly, the tension in the top cord is  T1= (m1 + m2)g = (8.0 kg)(9.8 m/s
2
) = 78 N. 

 

(c) The free-body diagrams for m3, m4 and m5 for part (b) are shown below (not to scale). 

  

 
From the diagram, we see that the lowest cord supports a mass of m5 = 5.5 kg against 

gravity and consequently has a tension of  
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T5 = m5g  = (5.5 kg)(9.8 m/s
2
) = 54 N. 

 

(d) The top cord, as we are told, has a tension T3 =199 N which supports a total of (199 

N)/(9.80 m/s
2
) = 20.3 kg, 10.3 kg of which is already accounted for in the figure. Thus, 

the unknown mass in the middle must be m4 = 20.3 kg – 10.3 kg = 10.0 kg, and the 

tension in the cord above it must be enough to support  

 

m4 + m5 = (10.0 kg  + 5.50 kg) = 15.5 kg, 

 

so T4 = (15.5 kg)(9.80 m/s
2
) = 152 N.  

 

LEARN Another way to calculate T4 is to examine the forces on m3  one of the 

downward forces on it is T4. From Newton’s second law, we have 3 3 4 0T m g T   , 

which can be solved to give  

 
2

4 3 3 199 N (4.8 kg)(9.8 m/s ) 152 N.T T m g      

 

94. The coordinate choices are made in the problem statement. 

 

(a) We write the velocity of the armadillo as ˆ ˆi jx yv v v  . Since there is no net force 

exerted on it in the x direction, the x component of the velocity of the armadillo is a 

constant: vx = 5.0 m/s. In the y direction at t = 3.0 s, we have (using Eq. 2-11 with 

0 0yv  ) 

 0 0

17 N
3.0 s 4.3 m/s.

12 kg

y

y y y y

F
v v a t v t

m

   
        

  
 

Thus, ˆ ˆ(5.0m/s) i (4.3m/s) j .v    

 

(b) We write the position vector of the armadillo as 

r r rx y  i j . At t = 3.0 s we have 

rx = (5.0 m/s) (3.0 s) = 15 m and (using Eq. 2-15 with v0 y = 0) 

 

 
22 2

0

1 1 1 17 N
3.0 s 6.4 m.

2 2 2 12 kg

y

y y y

F
r v t a t t

m

   
       

  
 

 

The position vector at t = 3.0 s is therefore ˆ ˆ(15 m)i (6.4 m)j .r    

 

95. (a) Intuition readily leads to the conclusion that the heavier block should be the 

hanging one, for largest acceleration. The force that “drives” the system into motion is 

the weight of the hanging block (gravity acting on the block on the table has no effect on 

the dynamics, so long as we ignore friction). Thus, m = 4.0 kg.  

 

The acceleration of the system and the tension in the cord can be readily obtained by 

solving  
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 , .mg T ma T Ma    

 

(b) The acceleration is given by 26.5 m/s .
m

a g
m M

 
  

 
 

(c) The tension is  

13 N.
Mm

T Ma g
m M

 
   

 
 

 

96. According to Newton’s second law, the magnitude of the force is given by F = ma, 

where a is the magnitude of the acceleration of the neutron. We use kinematics (Table 2-

1) to find the acceleration that brings the neutron to rest in a distance d. Assuming the 

acceleration is constant, then v v ad2

0

2 2   produces the value of a: 

 

a
v v

d





 


  



2

0

2 7
2

14

27 2

2

14 10

2 10 10
9 8 10

c h c h
c h

.

.
. .

m / s

m
m / s  

 

The magnitude of the force is consequently 

 

   27 27 21.67 10 kg 9.8 10 m/s 16 N.F ma       

 

97. (a) With SI units understood, the net force is 

 

     net 1 2
ˆ ˆ3.0 N 2.0 N i 4.0 N 6.0 N jF F F         

 

which yields net
ˆ ˆ(1.0 N) i (2.0 N) j.F      

 

(b) The magnitude of netF is 2 2

net (1.0 N) ( 2.0 N) 2.2 N.F      

 

(c) The angle of netF  is 1 2.0 N
tan 63 .

1.0 N
   
    

 
 

(d) The magnitude of 

a  is 2

net / (2.2 N) /(1.0 kg) 2.2 m/s .a F m    

 

(e) Since 

Fnet  is equal to 


a  multiplied by mass m, which is a positive scalar that cannot 

affect the direction of the vector it multiplies,

a has the same angle as the net force, i.e, 

63 .     In magnitude-angle notation, we may write  22.2m/s 63 .a       
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Chapter 6 
 

 

1. The greatest deceleration (of magnitude a) is provided by the maximum friction force 

(Eq. 6-1, with FN = mg in this case).  Using Newton’s second law, we find  

 

a = fs,max /m = sg. 

 

Eq. 2-16 then gives the shortest distance to stop: |x| = v
2
/2a = 36 m.  In this calculation, 

it is important to first convert v to 13 m/s. 

 

2. Applying Newton’s second law to the horizontal motion, we have F  k m g = ma, 

where we have used Eq. 6-2, assuming that FN = mg (which is equivalent to assuming 

that the vertical force from the broom is negligible). Eq. 2-16 relates the distance traveled 

and the final speed to the acceleration: v
2 

= 2ax.  This gives a = 1.4 m/s
2
. Returning to 

the force equation, we find (with F = 25 N and m = 3.5 kg) that k = 0.58. 

 

3. THINK In the presence of friction between the floor and the bureau, a minimum 

horizontal force must be applied before the bureau would begin to move. 

 

EXPRESS The free-body diagram for the bureau is shown 

to the right. We denote 

F  as the horizontal force of the 

person, 
sf  is the force of static friction (in the –x direction), 

NF  is the vertical normal force exerted by the floor (in the 

+y direction), and mg


 is the force of gravity. We do not 

consider the possibility that the bureau might tip, and treat 

this as a purely horizontal motion problem (with the 

person’s push 

F  in the +x direction). Applying Newton’s 

second law to the x and y axes, we obtain 

, max

0
s

N

F f ma

F mg

 

 
 

respectively.  

 

 

The second equation yields the normal force FN = mg, whereupon the maximum static 

friction is found to be (from Eq. 6-1) ,max .s sf mg  Thus, the first equation becomes 

F mg mas   0  

 

where we have set a = 0 to be consistent with the fact that the static friction is still (just 

barely) able to prevent the bureau from moving. 

ANALYZE (a) With  s  0 45.  and m = 45 kg, the equation above leads to  

 

 2(0.45)(45 kg)(9.8 m/s ) 198 NsF mg   . 
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To bring the bureau into a state of motion, the person should push with any force greater 

than this value. Rounding to two significant figures, we can therefore say the minimum 

required push is F = 2.0  10
2
 N. 

 

(b) Replacing m = 45 kg with m = 28 kg, the reasoning above leads to roughly 
21.2 10  N.F    

 

LEARN The values found above represent the minimum force required to overcome the 

friction. Applying a force greater than s mg  results in a net force in the +x-direction, 

and hence, non-zero acceleration.  

 

4. We first analyze the forces on the pig of mass m. The incline angle is . 

 

 
 

The +x direction is “downhill.’’ Application of Newton’s second law to the x- and y-axes 

leads to 

sin

cos 0.

k

N

mg f ma

F mg





 

 
 

 

Solving these along with Eq. 6-2 (fk = kFN) produces the following result for the pig’s 

downhill acceleration: 

 sin cos .ka g      

 

To compute the time to slide from rest through a downhill distance  , we use Eq. 2-15: 

 




   v t at t
a

0

21

2

2
. 

 

We denote the frictionless (k = 0) case with a prime and set up a ratio: 

 

t

t

a

a

a

a





2

2





/

/
 

 

which leads us to conclude that if t/t' = 2 then a' = 4a. Putting in what we found out 

above about the accelerations, we have 
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 sin 4 sin cos .kg g      

 

Using  = 35°, we obtain k = 0.53. 

 

5. In addition to the forces already shown in Fig. 6-17, a free-body diagram would 

include an upward normal force 
NF  exerted by the floor on the block, a downward mg


 

representing the gravitational pull exerted by Earth, and an assumed-leftward 

f  for the 

kinetic or static friction. We choose +x rightwards and +y upwards. We apply Newton’s 

second law to these axes: 

0N

F f ma

P F mg

 

  
 

 

where F = 6.0 N and m = 2.5 kg is the mass of the block. 

 

(a) In this case, P = 8.0 N leads to  

 

FN = (2.5 kg)(9.8 m/s
2
) – 8.0 N = 16.5 N. 

 

Using Eq. 6-1, this implies ,max 6.6 Ns s Nf F  , which is larger than the 6.0 N 

rightward force – so the block (which was initially at rest) does not move. Putting a = 0 

into the first of our equations above yields a static friction force of  f = P = 6.0 N.  

 

(b) In this case, P = 10 N, the normal force is  

 

FN = (2.5 kg)(9.8 m/s
2
) – 10 N = 14.5 N. 

 

Using Eq. 6-1, this implies ,max 5.8 Ns s Nf F  , which is less than the 6.0 N rightward 

force – so the block does move. Hence, we are dealing not with static but with kinetic 

friction, which Eq. 6-2 reveals to be 3.6 Nk k Nf F  .  

 

(c) In this last case, P = 12 N leads to FN = 12.5 N and thus to ,max 5.0 Ns s Nf F  , 

which (as expected) is less than the 6.0 N rightward force – so the block moves. The 

kinetic friction force, then, is 3.1Nk k Nf F  .  

 

6. The free-body diagram for the player is shown to the right. NF  is 

the normal force of the ground on the player, mg


 is the force of 

gravity, and 

f  is the force of friction. The force of friction is 

related to the normal force by f = kFN. We use Newton’s second 

law applied to the vertical axis to find the normal force. The vertical 

component of the acceleration is zero, so we obtain FN – mg = 0; 

thus, FN = mg. Consequently, 
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   2

470 N
0.61.

79 kg 9.8 m/s
k

N

f

F
     

 

7. THINK A force is being applied to accelerate a crate in the presence of friction. We 

apply Newton’s second law to solve for the acceleration. 

 

EXPRESS The free-body diagram for the crate is shown to the right. 

We denote 

F  as the horizontal force of the person exerted on the 

crate (in the +x direction), 

f k  is the force of kinetic friction (in the –x 

direction), NF  is the vertical normal force exerted by the floor (in the 

+y direction), and mg


 is the force of gravity. The magnitude of the 

force of friction is given by Eq. 6-2: fk = kFN. Applying Newton’s 

second law to the x and y axes, we obtain 

 

0
k

N

F f ma

F mg

 

 
 

respectively.  

 

ANALYZE (a) The second equation above yields the normal force FN = mg, so that the 

friction is 

   2 20.35 55 kg (9.8 m/s ) 1.9 10 N.k k N kf F mg       

 

(b) The first equation becomes 

F mg mak   

 

which (with F = 220 N) we solve to find 

 

2 2220 N
(0.35)(9.8 m/s ) 0.56 m/s .

55 kg
k

F
a g

m
      

 

LEARN For the crate to accelerate, the condition k kF f mg   must be met. As can 

be seen from the equation above, the greater the value of ,k  the smaller the acceleration 

under the same applied force.  

 

8. To maintain the stone’s motion, a horizontal force (in the +x direction) is needed that 

cancels the retarding effect due to kinetic friction. Applying Newton’s second to the x 

and y axes, we obtain 

0
k

N

F f ma

F mg

 

 
 

 

respectively. The second equation yields the normal force FN = mg, so that (using Eq. 6-2) 

the kinetic friction becomes fk = k mg. Thus, the first equation becomes 
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F mg mak   0  

 

where we have set a = 0 to be consistent with the idea that the horizontal velocity of the 

stone should remain constant. With m = 20 kg and k = 0.80, we find F = 1.6  10
2
 N. 

 

9. We choose +x horizontally rightwards and +y upwards and observe that the 15 N force 

has components Fx = F cos  and Fy = – F sin . 

 

(a) We apply Newton’s second law to the y axis: 

 
2sin 0 (15 N) sin 40 (3.5 kg)(9.8 m/s ) 44 N.N NF F mg F        

 

With k = 0.25, Eq. 6-2 leads to fk = 11 N. 

 

(b) We apply Newton’s second law to the x axis: 

 

  2
15 N cos 40 11 N

cos 0.14 m/s
3.5 kg

kF f ma a
 

     . 

 

Since the result is positive-valued, then the block is accelerating in the +x (rightward) 

direction. 

 

10. (a) The free-body diagram for the block is shown below, with F  being the force 

applied to the block, NF  the normal force of the floor on the block, mg


 the force of 

gravity, and 

f  the force of friction.  

 

We take the +x direction to be horizontal to the right 

and the +y direction to be up. The equations for the x 

and the y components of the force according to 

Newton’s second law are: 

 

cos

sin 0
x

y N

F F f ma

F F F mg





  

   
 

 
Now f =kFN, and the second equation gives FN = mg – Fsin, which yields 

( sin )kf mg F   . This expression is substituted for f in the first equation to obtain  

 

F cos  – k (mg – F sin ) = ma, 

so the acceleration is 

 cos sink k

F
a g

m
      . 
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(a) If 0.600s   and 0.500,k   then the magnitude of f  has a maximum value of  

 

 ,max (0.600)( 0.500 sin 20 ) 0.497 .s s Nf F mg mg mg      

 

On the other hand, cos 0.500 cos20 0.470 .F mg mg     Therefore, 
,maxcos sF f   and 

the block remains stationary with 0a  . 

 

(b) If 0.400s   and 0.300,k   then the magnitude of f  has a maximum value of  

 

 ,max (0.400)( 0.500 sin 20 ) 0.332 .s s Nf F mg mg mg      

 

In this case, ,maxcos 0.500 cos20 0.470 .sF mg mg f      Therefore, the acceleration of 

the block is 

          

 

 2 2

2

cos sin

(0.500)(9.80 m/s ) cos 20 (0.300)sin 20 (0.300)(9.80 m/s )

2.17 m/s .

k k

F
a g

m
     

   



 

 

11. THINK Since the crate is being pulled by a rope at an angle with the horizontal, we 

need to analyze the force components in both the x and y-directions.   

 

EXPRESS The free-body diagram for the crate is 

shown to the right. Here

T  is the tension force of the 

rope on the crate, NF  is the normal force of the floor 

on the crate, mg


 is the force of gravity, and 

f  is the 

force of friction. We take the +x direction to be 

horizontal to the right and the +y direction to be up. 

We assume the crate is motionless. 

 
The equations for the x and the y components of the force according to Newton’s second 

law are: 

cos 0, sin 0NT f T F mg       

 

where  = 15° is the angle between the rope and the horizontal. The first equation gives 

cosf T   and the second gives FN = mg – T sin . If the crate is to remain at rest, f 

must be less than s FN, or T cos  < s (mg – T sin). When the tension force is 

sufficient to just start the crate moving, we must have T cos  = s (mg – T sin ). 

 

ANALYZE (a) We solve for the tension: 
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     2

2
0.50 68 kg 9.8 m/s

304 N 3.0 10 N.
cos sin cos 15 0.50 sin 15

s

s

mg
T



  
    

   
 

 

(b) The second law equations for the moving crate are  

 

cos , sin 0NT f ma T F mg      . 

 

Now f =kFN, and the second equation above gives sin ,NF mg T    which then yields 

( sin )kf mg T   . This expression is substituted for f in the first equation to obtain  

T cos  – k (mg – T sin ) = ma, 

so the acceleration is 

 

 

2 2

cos sin

(304 N)(cos15 0.35 sin 15 )
(0.35) (9.8 m/s ) 1.3 m/s .

68 kg

k

k

T
a g

m

  



 

  
  

 

LEARN Let’s check the limit where 0  . In this case, we recover the familiar 

expressions: sT mg  and  ( ) /ka T mg m  .  

 

12. There is no acceleration, so the (upward) static friction forces (there are four of them, 

one for each thumb and one for each set of opposing fingers) equals the magnitude of the 

(downward) pull of gravity. Using Eq. 6-1, we have 

 
24 (79 kg)(9.8 m/s )s NF mg    

 

which, with s = 0.70, yields FN = 2.8  10
2
 N. 

 

13. We denote the magnitude of 110 N force exerted by the worker on the crate as F. The 

magnitude of the static frictional force can vary between zero and ,maxs s Nf F . 

 

(a) In this case, application of Newton’s second law in the vertical direction yields 

NF mg . Thus, 

 

   2 2

, max 0.37 35kg (9.8m/s ) 1.3 10 Ns s N sf F mg       

 

which is greater than F.  

 

(b) The block, which is initially at rest, stays at rest since F < fs, max. Thus, it does not 

move. 

 

(c) By applying Newton’s second law to the horizontal direction, that the magnitude of 

the frictional force exerted on the crate is 21.1 10  Nsf   .  
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(d) Denoting the upward force exerted by the second worker as F2, then application of 

Newton’s second law in the vertical direction yields FN = mg – F2, which leads to  

 

,max 2( )s s N sf F mg F    . 

 

In order to move the crate, F must satisfy the condition F > fs,max  = s  (mg F

or 

  2

2110N 0.37 (35kg)(9.8m/s ) .F     

 

The minimum value of F2 that satisfies this inequality is a value slightly bigger than 

45.7 N , so we express our answer as F2, min = 46 N. 

 

(e) In this final case, moving the crate requires a greater horizontal push from the worker 

than static friction (as computed in part (a)) can resist. Thus, Newton’s law in the 

horizontal direction leads to 

 

2 , max 2110 N 126.9 NsF F f F      

 

which leads (after appropriate rounding) to F2, min = 17 N. 

 

14. (a) Using the result obtained in Sample Problem – “Friction, applied force at an 

angle,” the maximum angle for which static friction applies is 

 
1 1

max tan tan 0.63 32 .s       

 

This is greater than the dip angle in the problem, so the block does not slide. 

 

(b) Applying Newton’s second law, we have  

 

, maxsin 0

cos 0.
s

N

F mg f ma

F mg





   

 
 

 

Along with Eq. 6-1 (fs, max = sFN) we have enough information to solve for F. With 

24  and m = 1.8  10
7
 kg, we find 

 

  7cos sin 3.0 10 N.sF mg        

 

15. An excellent discussion and equation development related to this problem is given in 

Sample Problem – “Friction, applied force at an angle.” We merely quote (and apply) 

their main result: 
1 1tan tan 0.04 2 .s       
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16. (a) In this situation, we take 

f s  to point uphill and to be equal to its maximum value, 

in which case fs, max = 
s NF applies, where s = 0.25. Applying Newton’s second law to 

the block of mass m = W/g = 8.2 kg, in the x and y directions, produces 

 

min 1 , maxsin 0

cos 0
s

N

F mg f ma

F mg





   

 
 

which (with  = 20°) leads to 

 

 min 1 sin cos 8.6 N.sF mg       

 

(b) Now we take 

f s  to point downhill and to be equal to its maximum value, in which 

case fs, max = sFN applies, where s = 0.25. Applying Newton’s second law to the block 

of mass m = W/g = 8.2 kg, in the x and y directions, produces 

 

min 2 , maxsin 0

      cos 0
s

N

F mg f ma

F mg





   

 
 

which (with  = 20°) leads to 

 

 min 2 sin cos 46 N.sF mg       

 

A value slightly larger than the “exact” result of this calculation is required to make it 

accelerate uphill, but since we quote our results here to two significant figures, 46 N is a 

“good enough” answer. 

 

(c) Finally, we are dealing with kinetic friction (pointing downhill), so that 

 

0 sin

0 cos
k

N

F mg f ma

F mg





   

 
 

 

along with fk = kFN (where k = 0.15) brings us to 

 

F mg k  sin cos  b g 39 N . 

 

17. If the block is sliding then we compute the kinetic friction from Eq. 6-2; if it is not 

sliding, then we determine the extent of static friction from applying Newton’s law, with 

zero acceleration, to the x axis (which is parallel to the incline surface). The question of 

whether or not it is sliding is therefore crucial, and depends on the maximum static 

friction force, as calculated from Eq. 6-1. The forces are resolved in the incline plane 

coordinate system in Figure 6-5 in the textbook. The acceleration, if there is any, is along 

the x axis, and we are taking uphill as +x. The net force along the y axis, then, is certainly 

zero, which provides the following relationship: 
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0 cosy NF F W     

 

where W = mg = 45 N is the weight of the block, and  = 15° is the incline angle. Thus, 

FN = 43.5 N, which implies that the maximum static friction force should be  

 

fs,max = (0.50) (43.5 N) = 21.7 N. 

 

(a) For ˆ( 5.0 N)iP   , Newton’s second law, applied to the x axis becomes 

 

| | sin .f P mg ma    

 

Here we are assuming 

f  is pointing uphill, as shown in Figure 6-5, and if it turns out that 

it points downhill (which is a possibility), then the result for fs will be negative. If f = fs 

then a = 0, we obtain  

 

fs = | P | + mg sin = 5.0 N + (43.5 N)sin15° =17 N, 

 

or ˆ(17 N)isf  . This is clearly allowed since sf  is less than fs, max. 

 

(b) For ˆ( 8.0 N)iP   , we obtain (from the same equation) ˆ(20 N)isf  , which is still 

allowed since it is less than fs, max. 

 

(c) But for ˆ( 15 N)iP   , we obtain (from the same equation) fs = 27 N, which is not 

allowed since it is larger than fs, max. Thus, we conclude that it is the kinetic friction 

instead of the static friction that is relevant in this case. The result is  

 
ˆ ˆ ˆi (0.34)(43.5 N) i (15 N) ik k Nf F   . 

 

18. (a) We apply Newton’s second law to the “downhill” direction:   

 

mg sin – f = ma, 

 

where, using Eq. 6-11,  

f = fk =kFN =k mg cos 
 

Thus, with k = 0.600, we have  

 

a = gsin – k cos = –3.72 m/s
2
 

 

which means, since we have chosen the positive direction in the direction of motion 

(down the slope) then the acceleration vector points “uphill”; it is decelerating.  With 

0 18.0 m/sv  and x = d = 24.0 m, Eq. 2-16 leads to  
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2

0 2 12.1 m/s.v v ad    

 

(b) In this case, we find a = +1.1 m/s
2
, and the speed (when impact occurs) is 19.4 m/s. 

 

19. (a) The free-body diagram for the block is shown below. 

F is the applied force, 

NF  is 

the normal force of the wall on the block, 

f  is the force of 

friction, and mg


 is the force of gravity. To determine if the block 

falls, we find the magnitude f of the force of friction required to 

hold it without accelerating and also find the normal force of the 

wall on the block. We compare f and sFN. If f < sFN, the block 

does not slide on the wall but if f > sFN, the block does slide. The 

horizontal component of Newton’s second law is F –FN = 0, so FN 

= F = 12 N and  

 

sFN = (0.60)(12 N) = 7.2 N. 

 

The vertical component is f – mg = 0, so f = mg = 5.0 N. Since f < sFN the block does not 

slide. 

 

(b) Since the block does not move f = 5.0 N and FN = 12 N. The force of the wall on the 

block is 

   ˆ ˆ ˆ ˆi j 12N i 5.0N jw NF F f       

 

where the axes are as shown on Fig. 6-26 of the text. 

 

20. Treating the two boxes as a single system of total mass mC + mW =1.0 + 3.0 = 4.0 kg, 

subject to a total (leftward) friction of magnitude 2.0 N + 4.0 N = 6.0 N, we apply 

Newton’s second law (with +x rightward): 

 

total total  12.0 N 6.0 N (4.0 kg)F f m a a      

 

which yields the acceleration a = 1.5 m/s
2
. We have treated F as if it were known to the 

nearest tenth of a Newton so that our acceleration is “good” to two significant figures. 

Turning our attention to the larger box (the Wheaties box of mass mW = 3.0 kg) we apply 

Newton’s second law to find the contact force F' exerted by the Cheerios box on it. 

 
2

W W 4.0 N (3.0 kg)(1.5 m/s )F f m a F      . 

 

From the above equation, we find the contact force to be F' = 8.5 N. 

 

21. Fig. 6-4 in the textbook shows a similar situation (using   for the unknown angle) 

along with a free-body diagram. We use the same coordinate system as in that figure. 
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(a) Thus, Newton’s second law leads to 

 
:     cos    

: sin 0   N

x T f ma

y T F mg




 

  
 

 

Setting a = 0 and f = fs,max = sFN, we solve for the mass of the box-and-sand (as a 

function of angle): 

m
T

g s

 
F
HG

I
KJsin

cos





 

 

which we will solve with calculus techniques (to find the angle m  corresponding to the 

maximum mass that can be pulled). 

 

dm

dt

T

g
m

m

s

 
F
HG

I
KJ cos

sin





0  

 

This leads to tan  m s  which (for  s  0 35. ) yields m  19 . 

 

(b) Plugging our value for m  into the equation we found for the mass of the box-and-

sand yields m = 340 kg. This corresponds to a weight of mg = 3.3  10
3
 N. 

 

22. The free-body diagram for the sled is shown below, with F  being the force applied to 

the sled, 
NF  the normal force of the inclined plane on the sled, mg


 the force of gravity, 

and 

f  the force of friction.  

We take the +x direction to be along the 

inclined plane and the +y direction to be in its 

normal direction. The equations for the x and 

the y components of the force according to 

Newton’s second law are: 

 

sin 0

cos 0
x

y N

F F f mg ma

F F mg





    

  
 

 
Now f =FN, and the second equation gives FN = mgcos, which yields cosf mg  . 

This expression is substituted for f in the first equation to obtain  

 

(sin cos )F mg      

 

From the figure, we see that 2.0 NF   when 0  . This implies sin 2.0 N.mg    

Similarly, we also find 5.0 NF   when 0.5  :  

 

5.0 N (sin 0.50cos ) 2.0 N 0.50 cosmg mg       
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which yields cos 6.0 N.mg    Combining the two results, we get  

 

 
2 1

tan 18 .
6 3

       

 

23. Let the tensions on the strings connecting m2 and m3 be T23, and that connecting m2 

and m1 be T12, respectively. Applying Newton’s second law (and Eq. 6-2, with FN = m2g 

in this case) to the system we have 

 

 
3 23 3

23 2 12 2

12 1 1

k

m g T m a

T m g T m a

T m g m a



 

  

 

 

 

Adding up the three equations and using 1 2 3, 2m M m m M   , we obtain  

 

2Mg – 2k Mg – Mg = 5Ma . 

 

With a = 0.500 m/s
2
 this yields k = 0.372.  Thus, the coefficient of kinetic friction is 

roughly k = 0.37. 

 

24. We find the acceleration from the slope of the graph (recall Eq. 2-11): a = 4.5 m/s
2
.  

Thus, Newton’s second law leads to  

 

F – k mg = ma, 

 

where F = 40.0 N is the constant horizontal force applied. With m = 4.1 kg, we arrive at 

k =0.54. 

 

25. THINK In order that the two blocks remain in equilibrium, friction must be present 

between block B and the surface.   

 

EXPRESS The free-body diagrams for block B and for the knot just above block A are 

shown below. 

T1  is the tension force of the rope pulling on block B or pulling on the knot 

(as the case may be), 

T2  is the tension force exerted by the second rope (at angle  = 30°) 

on the knot, 

f  is the force of static friction exerted by the horizontal surface on block B, 

NF  is normal force exerted by the surface on block B, WA is the weight of block A (WA is 

the magnitude of m gA


), and WB is the weight of block B (WB = 711 N is the magnitude of 

m gB


). 



 CHAPTER 6 256 

 
 

For each object we take +x horizontally rightward and +y upward. Applying Newton’s 

second law in the x and y directions for block B and then doing the same for the knot 

results in four equations: 

1 ,max

2 1

2

0

0

cos 0

sin 0

s

N B

A

T f

F W

T T

T W





 

 

 

 

 

 

where we assume the static friction to be at its maximum value (permitting us to use Eq. 

6-1). The above equations yield 1 s NT F , N BF W and 1 2 cosT T  . 

 

ANALYZE Solving these equations with s = 0.25, we obtain 

 

2 1
2

sin tan tan tan

(0.25)(711 N) tan30 1.0 10  N
A s N s BW T T F W        

   
 

 

LEARN As expected, the maximum weight of A is proportional to the weight of B, as 

well as the coefficient of static friction. In addition, we see that AW  is proportional to 

tan  (the larger the angle, the greater the vertical component of 2T  that supports its 

weight).   

 

26. (a) Applying Newton’s second law to the system (of total mass M = 60.0 kg) and 

using Eq. 6-2 (with FN = Mg in this case) we obtain   

 

F – kMg = Ma    a= 0.473 m/s
2
. 

 

Next, we examine the forces just on m3 and find F32 = m3(a + kg) = 147 N.  If the algebra 

steps are done more systematically, one ends up with the interesting relationship: 

32 3( / )F m M F (which is independent of the friction!). 

 

(b) As remarked at the end of our solution to part (a), the result does not depend on the 

frictional parameters.  The answer here is the same as in part (a). 
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27. First, we check to see if the bodies start to move. We assume they remain at rest and 

compute the force of (static) friction which holds them there, and compare its magnitude 

with the maximum value sFN. The free-body diagrams are shown below.  

 

 
 

T is the magnitude of the tension force of the string, f is the magnitude of the force of 

friction on body A, FN is the magnitude of the normal force of the plane on body A, m gA


 

is the force of gravity on body A (with magnitude WA = 102 N), and m gB


 is the force of 

gravity on body B (with magnitude WB = 32 N).  = 40° is the angle of incline. We are 

told the direction of 

f  but we assume it is downhill. If we obtain a negative result for f, 

then we know the force is actually up the plane. 

 

(a) For A we take the +x to be uphill and +y to be in the direction of the normal force. The 

x and y components of Newton’s second law become 

 

sin 0

cos 0.
A

N A

T f W

F W





  

 
 

 

Taking the positive direction to be downward for body B, Newton’s second law leads to 

W TB   0 .  Solving these three equations leads to 

 

sin 32 N (102 N)sin 40 34 NB Af W W        

 

(indicating that the force of friction is uphill) and to 

 

cos (102 N) cos 40 78NN AF W      

 

which means that  

fs,max = sFN = (0.56) (78 N) = 44 N. 

 

Since the magnitude f of the force of friction that holds the bodies motionless is less than 

fs,max the bodies remain at rest. The acceleration is zero. 

 

(b) Since A is moving up the incline, the force of friction is downhill with 

magnitude k k Nf F . Newton’s second law, using the same coordinates as in part (a), 

leads to 
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sin

cos 0
k A A

N A

B B

T f W m a

F W

W T m a





  

 

 

 

 

for the two bodies. We solve for the acceleration: 

 

    

   2

2

32N 102N sin 40 0.25 102N cos 40sin cos

32N+102N 9.8 m s

3.9 m s .

B A k A

B A

W W W
a

m m

       
 



 

 

The acceleration is down the plane, i.e., 2 ˆ( 3.9 m/s )ia   , which is to say (since the 

initial velocity was uphill) that the objects are slowing down. We note that m = W/g has 

been used to calculate the masses in the calculation above. 

 

(c) Now body A is initially moving down the plane, so the force of friction is uphill with 

magnitude k k Nf F . The force equations become 

 

sin

cos 0
k A A

N A

B B

T f W m a

F W

W T m a





  

 

 

 

which we solve to obtain 

 

    

   2

2

32N 102N sin 40 0.25 102N cos 40sin cos

32N+102N 9.8 m s

1.0 m s .

B A k A

B A

W W W
a

m m

       
 



 

 

 

The acceleration is again downhill the plane, i.e., 2 ˆ( 1.0 m/s ) ia   . In this case, the 

objects are speeding up. 

 

28. The free-body diagrams are shown to the right, 

where T is the magnitude of the tension force of the 

string, f is the magnitude of the force of friction on block 

A, FN is the magnitude of the normal force of the plane 

on block A, m gA


 is the force of gravity on body A 

(where mA = 10 kg), and m gB


 is the force of gravity on 

block B.  = 30° is the angle of incline. For A we take 

the +x to be uphill and +y to be in the direction of the 

normal force; the positive direction is chosen downward 

for block B. 

 
Since A is moving down the incline, the force of friction is uphill with magnitude fk = 

kFN (where k = 0.20). Newton’s second law leads to 
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sin 0

cos 0

0

k A A

N A

B B

T f m g m a

F m g

m g T m a





   

 

  

 

 

for the two bodies (where a = 0 is a consequence of the velocity being constant). We 

solve these for the mass of block B. 

 

 sin cos 3.3 kg.B A km m       

 

29. (a) Free-body diagrams for the blocks A and C, considered as a single object, and for 

the block B are shown below.  

 

 
 

T is the magnitude of the tension force of the rope, FN is the magnitude of the normal 

force of the table on block A, f is the magnitude of the force of friction, WAC is the 

combined weight of blocks A and C (the magnitude of force 

Fg AC  shown in the figure), 

and WB is the weight of block B (the magnitude of force  

Fg B  shown). Assume the blocks 

are not moving. For the blocks on the table we take the x axis to be to the right and the y 

axis to be upward. From Newton’s second law, we have 

 

       x component:            T – f = 0 
 

        y component:     FN – WAC = 0. 

 

For block B take the downward direction to be positive. Then Newton’s second law for 

that block is WB – T = 0. The third equation gives T = WB and the first gives f = T = WB. 

The second equation gives FN = WAC. If sliding is not to occur, f must be less than s FN, 

or WB < s WAC. The smallest that WAC can be with the blocks still at rest is  

 

WAC = WB/s = (22 N)/(0.20) = 110 N. 

 

Since the weight of block A is 44 N, the least weight for C is (110 – 44) N = 66 N. 

 

(b) The second law equations become  

 

                     T – f  = (WA/g)a  
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 FN – WA  = 0 

              WB – T = (WB/g)a. 

 

In addition, f = kFN. The second equation gives FN = WA, so f = kWA. The third gives T 

= WB – (WB/g)a. Substituting these two expressions into the first equation, we obtain 

 

WB – (WB/g)a – kWA = (WA/g)a. 

Therefore, 

     2

2
(9.8 m/s ) 22 N 0.15 44 N

2.3 m/s .
44 N + 22 N

B k A

A B

g W W
a

W W

 
  


 

 

30. We use the familiar horizontal and vertical axes for x and y directions, with rightward 

and upward positive, respectively. The rope is assumed massless so that the force exerted 

by the child 

F  is identical to the tension uniformly through the rope. The x and y 

components of 

F  are Fcos and Fsin, respectively. The static friction force points 

leftward. 

 

(a) Newton’s Law applied to the y-axis, where there is presumed to be no acceleration, 

leads to 

sin 0NF F mg    

 

which implies that the maximum static friction is s(mg – F sin ). If fs = fs, max is 

assumed, then Newton’s second law applied to the x axis (which also has a = 0 even 

though it is “verging” on moving) yields 

 

cos        cos ( sin )  0s sF f ma F mg F          

 

which we solve, for  = 42° and s = 0.42, to obtain F = 74 N. 

 

(b) Solving the above equation algebraically for F, with W denoting the weight, we obtain 

 

(0.42)(180 N) 76 N
  .

cos sin cos (0.42) sin cos (0.42) sin

s

s

W
F



      
  

  
 

 

(c) We minimize the above expression for F by working through the condition: 

 

2

(sin cos )
0

(cos  sin )

s s

s

WdF

d

   

   


 


 

 

which leads to the result  = tan
–1

 s = 23°. 

 

(d) Plugging  = 23° into the above result for F, with s = 0.42 and W = 180 N, yields 

70 NF  .  
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31. THINK In this problem we have two blocks connected by a string sliding down an 

inclined plane; the blocks have different coefficient of kinetic friction.     

 

EXPRESS The free-body diagrams for the two blocks are shown below. T is the 

magnitude of the tension force of the string, 
NAF is the normal force on block A (the 

leading block), 
NBF  is the normal force on block B, 


f A  is kinetic friction force on block 

A, 

f B  is kinetic friction force on block B. Also, mA is the mass of block A (where mA = 

WA/g and WA = 3.6 N), and mB is the mass of block B (where mB = WB/g and WB = 7.2 N). 

The angle of the incline is  = 30°. 

 
 

For each block we take +x downhill (which is toward the lower-left in these diagrams) 

and +y in the direction of the normal force. Applying Newton’s second law to the x and y 

directions of both blocks A and B, we arrive at four equations: 

 

 sin

      cos 0

 sin

      cos 0 

A A A

NA A

B B B

NB B

W f T m a

F W

W f T m a

F W









  

 

  

 

 

 

which, when combined with Eq. 6-2 ( A kA NAf F where k A = 0.10 and B kB NBf F fB 

where k B = 0.20), fully describe the dynamics of the system so long as the blocks have 

the same acceleration and T > 0. 

 

ANALYZE (a) From these equations, we find the acceleration to be 

 

2sin cos 3.5 m/s .k A A k B B

A B

W W
a g

W W

 
 

  
       

 

 

(b) We solve the above equations for the tension and obtain 

 

   
(3.6 N)(7.2 N)

 cos 0.20 0.10 cos30 0.21 N.
3.6 N 7.2 N

A B
k B k A

A B

W W
T

W W
  

 
      

  
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LEARN The tension in the string is proportional to ,k B k A   the difference in 

coefficients of kinetic friction for the two blocks. When the coefficients are equal 

(
k B k A  )the two blocks can be viewed as moving independent of one another and the 

tension is zero. Similarly, when 
k B k A  (the leading block A has larger coefficient than 

the B), the string is slack, so the tension is also zero.  

 

32. The free-body diagram for the block is shown below, with F  being the force applied 

to the block, 
NF  the normal force of the floor on the block, mg


 the force of gravity, and 


f  the force of friction. We take the +x direction to be horizontal to the right and the +y 

direction to be up. The equations for the x and the y 

components of the force according to Newton’s second 

law are: 

cos

sin 0
x

y N

F F f ma

F F F mg





  

   
 

 

Now f =kFN, and the second equation gives FN = mg 

+ Fsin, which yields  

 

( sin )kf mg F   . 

 

This expression is substituted for f in the first equation to obtain  

 

F cos  – k (mg + F sin ) = ma, 

so the acceleration is 

 cos sink k

F
a g

m
      . 

 

From the figure, we see that 23.0 m/sa   when 0k  . This implies 

 

23.0 m/s cos .
F

m
  

We also find 0a   when 0.20k  : 

 

  2 2 2

2

0 cos (0.20) sin (0.20)(9.8 m/s ) 3.00 m/s 0.20 sin 1.96 m/s

1.04 m/s 0.20 sin

F F

m m
F

m

  



     

 

 

 

which yields 25.2 m/s sin .
F

m
  Combining the two results, we get  
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2

2

5.2 m/s
tan 1.73 60 .

3.0 m/s
 

 
     
 

 

 

33. THINK In this problem, the frictional force is not a constant, but instead proportional 

to the speed of the boat. Integration is required to solve for the speed.  

 

EXPRESS We denote the magnitude of the frictional force as ,v  where   70 N s m . 

We take the direction of the boat’s motion to be positive. Newton’s second law gives 

 

.
dv dv

v m dt
dt v m


      

Integrating the equation gives 

 
0 0

 
v t

v

dv
dt

v m


    

 

where v0 is the velocity at time zero and v is the velocity at time t. Solving the integral 

allows us to calculate the time it takes for the boat to slow down to 45 km/h, or 0 / 2v v , 

where 0 90 km/hv  . 

 

ANALYZE The integrals are evaluated with the result 

 
0

ln
v t

v m

 
  

 
 

 

With v = v0/2 and m = 1000 kg, we find the time to be  

 

0

1 1000 kg 1
ln ln ln 9.9 s.

2 70 N s/m 2

m v m
t

v 

     
           

    
 

 

LEARN The speed of the boat is given by /

0( ) t mv t v e  , showing exponential decay 

with time. The greater the value of , the more rapidly the boat slows down.  

 

34. The free-body diagrams for the slab and block are shown below.  
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
F  is the 100 N force applied to the block, 

NsF  is the normal force of the floor on the slab, 

NbF  is the magnitude of the normal force between the slab and the block, 

f  is the force 

of friction between the slab and the block, ms is the mass of the slab, and mb is the mass 

of the block. For both objects, we take the +x direction to be to the right and the +y 

direction to be up. 

 

Applying Newton’s second law for the x and y axes for (first) the slab and (second) the 

block results in four equations: 

                     

 0

              

         0

s s

Ns Ns s

b b

Nb b

f m a

F F m g

f F m a

F m g

 

  

 

 

 

 

from which we note that the maximum possible static friction magnitude would be 

 
2(0.60)(10 kg)(9.8 m/s ) 59 N .s Nb s bF m g     

 

We check to see if the block slides on the slab. Assuming it does not, then as = ab (which 

we denote simply as a) and we solve for f: 

 

f
m F

m m

s

s b








(40

40
80

 kg)(100 N)

 kg 10 kg
 N  

 

which is greater than fs,max so that we conclude the block is sliding across the slab (their 

accelerations are different). 

 

(a) Using f = k NbF the above equations yield 

 
2

2(0.40)(10 kg)(9.8 m/s ) 100 N
6.1 m/s .

10 kg

k b
b

b

m g F
a

m

  
     

 

The negative sign means that the acceleration is leftward. That is, 2 ˆ( 6.1 m/s )iba    

 

(b) We also obtain 

 
2

2(0.40)(10 kg)(9.8 m/s )
0.98 m/s .

40 kg

k b
s

s

m g
a

m


       

 

As mentioned above, this means it accelerates to the left. That is, 2 ˆ( 0.98 m/s )isa    
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35. The free-body diagrams for the two blocks, treated individually, are shown below 

(first m and then M). F' is the contact force between the two blocks, and the static friction 

force 

f s  is at its maximum value (so Eq. 6-1 leads to fs = fs,max = sF' where s = 0.38). 

 

Treating the two blocks together as a single system (sliding across a frictionless floor), 

we apply Newton’s second law (with +x rightward) to find an expression for the 

acceleration: 

F m a a
F

m M
  


total     

 

 
 

This is equivalent to having analyzed the two blocks individually and then combined 

their equations. Now, when we analyze the small block individually, we apply Newton’s 

second law to the x and y axes, substitute in the above expression for a, and use Eq. 6-1. 

 

F F ma F F m
F

m M

f mg F mgs s

    


F
HG

I
KJ

    

' '

'

     

     0 0

 

 

These expressions are combined (to eliminate F') and we arrive at 

 

F
mg

m

m M
s






F
HG

I
KJ 1

 = 24.9 10 N . 

 

36. Using Eq. 6-16, we solve for the area 
2

2

t

m g
A

C v
 which illustrates the inverse 

proportionality between the area and the speed-squared. Thus, when we set up a ratio of 

areas – of the slower case to the faster case – we obtain 

 

A

A

slow

fast

 km / h

160 km / h

F
HG

I
KJ 

310
375

2

. .  
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37. In the solution to exercise 4, we found that the force provided by the wind needed to 

equal F = 157 N (where that last figure is not “significant’’). 

 

(a) Setting F = D (for Drag force) we use Eq. 6-14 to find the wind speed v along the 

ground (which actually is relative to the moving stone, but we assume the stone is 

moving slowly enough that this does not invalidate the result): 

 

2

3 2

2 2(157 N)
90 m/s 3.2 10  km/h.

(0.80)(1.21kg/m )(0.040 m )

F
v

C A
      

 

(b) Doubling our previous result, we find the reported speed to be 6.5  10
2
 km/h. 

 

(c) The result is not reasonable for a terrestrial storm. A category 5 hurricane has speeds 

on the order of 2.6  10
2
 m/s. 

 

38. (a) From Table 6-1 and Eq. 6-16, we have 

 

v
F

C A
C A

mg

v
t

g

t

  
2

2
2

  

 

where vt = 60 m/s. We estimate the pilot’s mass at about m = 70 kg. Now, we convert v = 

1300(1000/3600)  360 m/s and plug into Eq. 6-14: 

 

D C Av
mg

v
v mg

v

vt t

 
F
HG
I
KJ 

F
HG
I
KJ

1

2

1

2
22

2

2

2

  

 

which yields D = (70 kg)(9.8 m/s
2
)(360/60)

2
  2  10

4
 N. 

 

(b) We assume the mass of the ejection seat is roughly equal to the mass of the pilot. 

Thus, Newton’s second law (in the horizontal direction) applied to this system of mass 

2m gives the magnitude of acceleration: 

 

a
D

m

g v

v
g

t

 
F
HG
I
KJ 

2 2
18

2

.  

 

39. For the passenger jet D C Avj j 1
2 1

2 , and for the prop-driven transport 21
22t tD C Av , 

where 1  and 2  represent the air density at 10 km and 5.0 km, respectively. Thus the 

ratio in question is 

  

  

232

1

22 3
2

0.38  kg/m 1000  km/h
2.3.

0.67  kg/m 500  km/h

j j

t t

D v

D v




    
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40. This problem involves Newton’s second law for motion along the slope. 

 

(a) The force along the slope is given by  

 

  2

sin sin cos (sin cos )

(85.0 kg)(9.80 m/s ) sin 40.0 (0.04000)cos 40.0

510 N.

g NF mg F mg mg mg            

  



 

 

Thus, the terminal speed of the skier is  

 

3 2

2 2(510 N)
66.0 m/s.

(0.150)(1.20 kg/m )(1.30 m )

g

t

F
v

C A
    

 

(b) Differentiating tv  with respect to C, we obtain 

 

3/ 2 3/ 2

3 2

2

21 1 2(510 N)
(0.150)

2 2 (1.20 kg/m )(1.30 m )

(2.20 10  m/s) .

g

t

F
dv C dC dC

A

dC



  

 

 

 

41. Perhaps surprisingly, the equations pertaining to this situation are exactly those in 

Sample Problem – “Car in flat circular turn,” although the logic is a little different.  In the 

Sample Problem, the car moves along a (stationary) road, whereas in this problem the cat 

is stationary relative to the merry-go-around platform.  But the static friction plays the 

same role in both cases since the bottom-most point of the car tire is instantaneously at 

rest with respect to the race track, just as static friction applies to the contact surface 

between cat and platform.  Using Eq. 6-23 with Eq. 4-35, we find  

 

s = (2R/T )
2
/gR = 42

R/gT 
2
. 

 

With T = 6.0 s and R = 5.4 m, we obtain s = 0.60. 

 

42. The magnitude of the acceleration of the car as it rounds the curve is given by v
2
/R, 

where v is the speed of the car and R is the radius of the curve. Since the road is 

horizontal, only the frictional force of the road on the tires makes this acceleration 

possible. The horizontal component of Newton’s second law is f = mv
2
/R. If FN is the 

normal force of the road on the car and m is the mass of the car, the vertical component of 

Newton’s second law leads to FN = mg. Thus, using Eq. 6-1, the maximum value of static 

friction is  

fs,max = s FN = smg. 

 

If the car does not slip, f  smg. This means 

 



 CHAPTER 6 268 

2

    .s s

v
g v Rg

R
     

 

Consequently, the maximum speed with which the car can round the curve without 

slipping is 

 
2

max (0.60)(30.5 m)(9.8 m/s ) 13 m/s 48 km/h.sv Rg     

 

43. The magnitude of the acceleration of the cyclist as it rounds the curve is given by v
2
/R, 

where v is the speed of the cyclist and R is the radius of the curve. Since the road is 

horizontal, only the frictional force of the road on the tires makes this acceleration 

possible. The horizontal component of Newton’s second law is f = mv
2
/R. If FN is the 

normal force of the road on the bicycle and m is the mass of the bicycle and rider, the 

vertical component of Newton’s second law leads to FN = mg. Thus, using Eq. 6-1, the 

maximum value of static friction is  

 

fs,max = s FN = smg. 

 

If the bicycle does not slip, f  smg. This means 

v

R
g R

v

g
s

s

2 2

  


    .  

 

Consequently, the minimum radius with which a cyclist moving at 29 km/h = 8.1 m/s can 

round the curve without slipping is 

 
2 2

min 2

(8.1 m/s)
21 m.

(0.32)(9.8 m/s )s

v
R

g
    

 

44. With v = 96.6 km/h = 26.8 m/s, Eq. 6-17 readily yields 

 
2 2

2(26.8 m/s)
94.7 m/s

7.6 m

v
a

R
    

 

which we express as a multiple of g: 

 
2

2

94.7 m/s
  9.7 .

9.80 m/s

a
a g g g

g

  
    
   

 

 

45. THINK Ferris wheel ride is a vertical circular motion. The apparent weight of the 

rider varies with his position.    

 

EXPRESS The free-body diagrams of the student at the top and bottom of the Ferris 

wheel are shown next: 
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At the top (the highest point in the circular motion) the seat pushes up on the student with 

a force of magnitude FN,top, while the Earth pulls down with a force of magnitude mg. 

Newton’s second law for the radial direction gives 

 
2

,topN

mv
mg F

R
  . 

At the bottom of the ride, ,bottomNF  is the magnitude of the upward force exerted by the 

seat. The net force toward the center of the circle is (choosing upward as the positive 

direction): 
2

,bottomN

mv
F mg

R
  . 

 

The Ferris wheel is “steadily rotating” so the value 2 /cF mv R  is the same everywhere.  

The apparent weight of the student is given by 
NF .   

 

ANALYZE (a) At the top, we are told that FN,top = 556 N and  mg = 667 N. This means 

that the seat is pushing up with a force that is smaller than the student’s weight, and we 

say the student experiences a decrease in his “apparent weight” at the highest point. Thus, 

he feels “light.” 

 

(b) From (a), we find the centripetal force to be 

 
2

,top 667 N 556 N 111 N.c N

mv
F mg F

R
       

 

Thus, the normal force at the bottom is  

 
2

,bottom 111 N 667 N 778 N.N c

mv
F mg F mg

R
        

 

(c) If the speed is doubled,  
2(2 )

4(111 N) 444 N.c

m v
F

R
     

 

Therefore, at the highest point we have  
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,top 667 N 444 N 223 N.N cF mg F       

 

(d) Similarly, the normal force at the lowest point is now found to be 

 

,bottom 444 N 667 N 1111 N.N cF F mg       

 

LEARN The apparent weight of the student is the greatest at the bottom and smallest at 

the top of the ride. The speed v gR  would result in ,top 0NF  , giving the student a 

sudden sensation of  “weightlessness” at the top of the ride.  

 

46. (a) We note that the speed 80.0 km/h in SI units is roughly 22.2 m/s.  The horizontal 

force that keeps her from sliding must equal the centripetal force (Eq. 6-18), and the 

upward force on her must equal mg. Thus,  

 

Fnet = (mg)
2
 + (mv

2
/R)

2 
  = 547 N. 

 

(b) The angle is  

tan
1
(mv

2
/R)(mg) = tan

1
v

2
/gR= 9.53º 

 

as measured from a vertical axis. 

 

47. (a) Eq. 4-35 gives T = 2R/v = 2(10 m)/(6.1 m/s) = 10 s. 

 

(b) The situation is similar to that of Sample Problem – “Vertical circular loop, Diavolo,” 

but with the normal force direction reversed.  Adapting Eq. 6-19, we find  

 

FN = m(g – v
2
/R) = 486 N  4.9  10

2
 N. 

 

(c) Now we reverse both the normal force direction and the acceleration direction (from 

what is shown in Sample Problem – “Vertical circular loop, Diavolo”) and adapt Eq. 6-19 

accordingly.  Thus we obtain  

 

FN = m(g + v
2
/R) = 1081 N  1.1 kN. 

 

48. We will start by assuming that the normal force (on the car from the rail) points up. 

Note that gravity points down, and the y axis is chosen positive upwards. Also, the 

direction to the center of the circle (the direction of centripetal acceleration) is down. 

Thus, Newton’s second law leads to 
2

.N

v
F mg m

r

 
   

 
 

 

(a) When v = 11 m/s, we obtain FN = 3.7  10
3
 N.  
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(b) 
NF  points upward. 

 

(c) When v = 14 m/s, we obtain FN = –1.3  10
3
 N, or  | FN | = 1.3  10

3
 N. 

 

(d) The fact that this answer is negative means that 
NF  points opposite to what we had 

assumed. Thus, the magnitude of 
NF  is | |NF  1.3 kN and its direction is down. 

 

49. At the top of the hill, the situation is similar to that of Sample Problem – “Vertical 

circular loop, Diavolo,” but with the normal force direction reversed.  Adapting Eq. 6-19, 

we find  

FN = m(g – v
2
/R). 

 

Since FN = 0 there (as stated in the problem) then v
2
 = gR.  Later, at the bottom of the 

valley, we reverse both the normal force direction and the acceleration direction (from 

what is shown in the Sample Problem) and adapt Eq. 6-19 accordingly.  Thus we obtain  

 

FN = m(g + v
2
/R) = 2mg = 1372 N  1.37  10

3
 N. 

 

50. The centripetal force on the passenger is 2 /F mv r . 

 

(a) The slope of the plot at 8.30 m/sv   is 

 

8.30 m/s 8.30 m/s

2 2(85.0 kg)(8.30 m/s)
403 N s/m.

3.50 mv v

dF mv

dv r 

     

 

(b) The period of the circular ride is 2 /T r v . Thus,  

 
22 2

2

2 4
,

mv m r mr
F

r r T T

  
   

 
 

 

and the variation of F with respect to T while holding r constant is 

 
2

3

8
.

mr
dF dT

T


   

The slope of the plot at 2.50 sT   is 

 
2 2

3

3 3
2.50 s 2.50 s

8 8 (85.0 kg)(3.50 m)
1.50 10 N/s.

(2.50 s)T T

dF mr

dT T

 

 

       

  

51. THINK An airplane with its wings tilted at an angle is in a circular motion. 

Centripetal force is involved in this problem. 
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EXPRESS The free-body diagram for the airplane of mass m 

is shown to the right. We note that 
lF  is the force of 

aerodynamic lift and 

a  points rightwards in the figure. We 

also note that | | /

a v R 2 . Applying Newton’s law to the axes 

of the problem (+x rightward and +y upward) we obtain 
2

sin

cos

l

l

v
F m

R
F mg









 

 

 

Eliminating mass from these equations leads to tan 
v

gR

2

. The equation allows us to 

solve for the radius R. 

 

ANALYZE With v = 480 km/h = 133 m/sand = 40°, we find  

 
2 2

3

2

(133 m/s)
2151 m 2.2 10  m

tan (9.8 m/s ) tan 40

v
R

g 
    


. 

 

LEARN Our approach to solving this problem is identical to that discussed in the Sample 

Problem – “Car in banked circular turn.” Do you see the similarities? 

 

52. The situation is somewhat similar to that shown in the “loop-the-loop” example done 

in the textbook (see Figure 6-10) except that, instead of a downward normal force, we are 

dealing with the force of the boom 

FB  on the car – which is capable of pointing any 

direction. We will assume it to be upward as we apply Newton’s second law to the car (of 

total weight 5000 N): BF W ma   where /m W g  and 2 /a v r  . Note that the 

centripetal acceleration is downward (our choice for negative direction) for a body at the 

top of its circular trajectory. 

 

(a) If r = 10 m and v = 5.0 m/s, we obtain FB = 3.7  10
3
 N = 3.7 kN.  

 

(b) The direction of 

FB is up. 

 

(c) If r = 10 m and v = 12 m/s, we obtain FB = – 2.3  10
3
 N = – 2.3 kN, or |FB | = 2.3 kN. 

 

(d) The minus sign indicates that 

FB  points downward. 

 

53. The free-body diagram (for the hand straps of mass m) is the view that a passenger 

might see if she was looking forward and the streetcar was curving towards the right (so 

a  points rightwards in the figure). We note that | | /


a v R 2  where v = 16 km/h = 4.4 m/s. 

 

Applying Newton’s law to the axes of the problem (+x is rightward and +y is upward) we 

obtain 
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2

sin

cos  .

v
T m

R
T mg









 

 

We solve these equations for the angle: 

 
F
HG
I
KJ

tan 1
2v

Rg
 

which yields  = 12°. 

  

54. The centripetal force on the passenger is 2 /F mv r . 

 

(a) The variation of F with respect to r while holding v constant is 
2

2

mv
dF dr

r
  . 

 

(b) The variation of F with respect to v while holding r constant is 
2mv

dF dv
r

 . 

 

(c) The period of the circular ride is 2 /T r v . Thus,  

 
22 2

2

2 4
,

mv m r mr
F

r r T T

  
   

 
 

 

and the variation of F with respect to T while holding r constant is 

 
32 3

2

3 2

8
8 .

2

mr v mv
dF dT mr dT dT

T r r




 

  
       

   
 

 

55. We note that the period T is eight times the time between flashes ( 
1

2000
  s), so T = 

0.0040 s. Combining Eq. 6-18 with Eq. 4-35 leads to 

 

F = 
4m2R

 T
2   = 

4(0.030 kg)2(0.035 m)

 (0.0040 s)
2   = 2.6  10

3
 N . 

 

56. We refer the reader to Sample Problem – “Car in banked circular turn,” and use the 

result Eq. 6-26: 

 
F
HG
I
KJ

tan 1
2v

gR
 

 

with v = 60(1000/3600) = 17 m/s and R = 200 m. The banking angle is therefore  = 8.1°. 

Now we consider a vehicle taking this banked curve at v' = 40(1000/3600) = 11 m/s. Its 
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(horizontal) acceleration is 2  /a v R  , which has components parallel the incline and 

perpendicular to it: 
2

| |

2

cos
cos  

sin
sin .

v
a a

R

v
a a

R








 


 

 

 

These enter Newton’s second law as follows (choosing downhill as the +x direction and 

away-from-incline as +y): 

| |sin    

   cos

s

N

mg f ma

F mg ma



 

 

 
 

and we are led to 
2

2

sin cos /
.

cos sin /

s

N

f mg mv R

F mg mv R

 

 





 

 

We cancel the mass and plug in, obtaining fs/FN = 0.078. The problem implies we should 

set fs = fs,max so that, by Eq. 6-1, we have s = 0.078. 

 

57. For the puck to remain at rest the magnitude of the tension force T of the cord must 

equal the gravitational force Mg on the cylinder. The tension force supplies the 

centripetal force that keeps the puck in its circular orbit, so T = mv
2
/r. Thus Mg = mv

2
/r. 

We solve for the speed: 

 
2(2.50 kg)(9.80 m/s )(0.200 m)

1.81 m/s.
1.50 kg

Mgr
v

m
    

 

58. (a) Using the kinematic equation given in Table 2-1, the deceleration of the car is 

 

 2 2 2

0 2 0 (35 m/s) 2 (107 m)v v ad a      

 

which gives 25.72 m/s .a    Thus, the force of friction required to stop by car is 

 

 2 3| | (1400 kg)(5.72 m/s ) 8.0 10 N.f m a     

 

(b) The maximum possible static friction is  

 
2 3

,max (0.50)(1400 kg)(9.80 m/s ) 6.9 10 N.s sf mg     

 

(c) If 0.40k  , then k kf mg and the deceleration is ka g  . Therefore, the speed 

of the car when it hits the wall is  

 



 

  

275 

 2 2 2

0 2 (35 m/s) 2(0.40)(9.8 m/s )(107 m) 20 m/s.v v ad      

 

(d) The force required to keep the motion circular is 

 

 
2 2

40 (1400 kg)(35.0 m/s)
1.6 10 N.

107 m
r

mv
F

r
     

 

(e) Since ,maxr sF f , no circular path is possible.  

 

59. THINK As illustrated in Fig. 6-45, our system consists of a ball connected by two 

strings to a rotating rod. The tensions in the strings provide the source of centripetal force.  

 

EXPRESS The free-body diagram for the ball is shown below. 

Tu  is the tension exerted 

by the upper string on the ball, 

T  is the tension in the lower string, and m is the mass of 

the ball. Note that the tension in the upper string is greater than the tension in the lower 

string. It must balance the downward pull of gravity and the force of the lower string. 

 
We take the +x direction to be leftward (toward the center of the circular orbit) and +y 

upward. Since the magnitude of the acceleration is a = v
2
/R, the x component of 

Newton’s second law is 

T T
mv

R
u cos cos ,  

2

 

 

where v is the speed of the ball and R is the radius of its orbit. The y component is 

 

T T mgu sin sin .    0  

 

The second equation gives the tension in the lower string: T T mgu   / sin .  

 

ANALYZE (a) Since the triangle is equilateral, the angle is  = 30.0°. Thus 

 

 
2(1.34 kg)(9.80 m/s )

35.0 N 8.74 N.
sin sin30.0

u

mg
T T


    


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(b) The net force in the y-direction is zero. In the x-direction, the net force has magnitude 

 

 net,str cos (35.0 N 8.74 N)cos30.0 37.9 N.uF T T        

 

(c) The radius of the path is  

 

 cos (1.70 m)cos30 1.47 m.R L      

 

Using Fnet,str = mv
2
/R, we find the speed of the ball to be 

 

net,str (1.47 m)(37.9 N)
6.45 m/s.

1.34 kg

RF
v

m
    

 

(d) The direction of net,strF is leftward (“radially inward’’). 

 

LEARN The upper string, with a tension about 4 times that in the lower string ( 4uT T ), 

will break more easily than the lower one.   

 

60. The free-body diagrams for the two boxes are shown below. T is the magnitude of the 

force in the rod (when T > 0 the rod is said to be in tension and when T < 0 the rod is 

under compression), 
2NF  is the normal force on box 2 (the uncle box), 1NF  is the the 

normal force on the aunt box (box 1), 

f1  is kinetic friction force on the aunt box, and 


f2  

is kinetic friction force on the uncle box. Also, m1 = 1.65 kg is the mass of the aunt box 

and m2 = 3.30 kg is the mass of the uncle box (which is a lot of ants!). 

 

 
 

For each block we take +x downhill (which is toward the lower-right in these diagrams) 

and +y in the direction of the normal force. Applying Newton’s second law to the x and y 

directions of first box 2 and next box 1, we arrive at four equations: 

 

 

2 2 2

2 2

1 1 1

1 1

sin

cos 0

sin

cos 0

N

N

m g f T m a

F m g

m g f T m a

F m g









  

 

  

 
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which, when combined with Eq. 6-2 (f1 = 1FN1 where 1 = 0.226 and f2 = 2FN2 where 

2 = 0.113), fully describe the dynamics of the system. 

 

(a) We solve the above equations for the tension and obtain 

 

T
m m g

m m




F
HG

I
KJ  2 1

2 1

1 2 105 (  N.  ) cos .  

 

(b) These equations lead to an acceleration equal to 

 

a g
m m

m m
 





F
HG

I
KJ

F
HG

I
KJ sin cos . .

 
2 2 1 1

2 1

362 m / s2  

 

(c) Reversing the blocks is equivalent to switching the labels. We see from our algebraic 

result in part (a) that this gives a negative value for T (equal in magnitude to the result we 

got before). Thus, the situation is as it was before except that the rod is now in a state of 

compression. 

 

61. THINK Our system consists of two blocks, one on top of the other. If we pull the 

bottom block too hard, the top block will slip on the bottom one. We’re interested in the 

maximum force that can be applied such that the two will move together. 

 

EXPRESS The free-body diagrams for the two blocks are shown below.  

 

  
We first calculate the coefficient of static friction for the surface between the two blocks. 

When the force applied is at a maximum, the frictional force between the two blocks 

must also be a maximum. Since tF 12 N of force has to be applied to the top block for 

slipping to take place, using ,max ,t s s N t s tF f F m g    , we have 

 

2

12 N
0.31

(4.0 kg)(9.8 m/s )

t
s

t

F

m g
    . 
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Using the same reasoning, for the two masses to move together, the maximum applied 

force would be 

( )s t bF m m g   

 

ANALYZE (a) Substituting the value of 
s  found above, the maximum horizontal force 

has a magnitude  
2( ) (0.31)(4.0 kg 5.0 kg)(9.8 m/s ) 27 Ns t bF m m g      

 

(b) The maximum acceleration is  

 

2 2

max (0.31)(9.8 m/s ) 3.0 m/ss

t b

F
a g

m m
   


. 

 

LEARN Slipping will occur if the applied force exceeds 27.3 N. In the absence of 

friction ( 0s  ) between the two blocks, any amount of force would cause the top block 

to slip.  

 

62. The free-body diagram for the stone is shown to the right, 

with F  being the force applied to the stone, 
NF  the downward 

normal force of the ceiling on the stone, mg


 the force of gravity, 

and 

f  the force of friction. We take the +x direction to be 

horizontal to the right and the +y direction to be up. The 

equations for the x and the y components of the force according 

to Newton’s second law are: 

 

cos

sin 0
x

y N

F F f ma

F F F mg





  

   
 

 

Now ,k Nf F  and the second equation gives sin ,NF F mg   which yields 

( sin )kf F mg   . This expression is substituted for f in the first equation to obtain  

 

F cos  – k (F sin mg ) = ma. 

For 0a  , the force is 

.
cos sin

k

k

mg
F



  





 

 

With k = 0.65, m =5.0 kg, and = 70º, we obtain F = 118 N. 

 

63. (a) The free-body diagram for the person (shown as an L-shaped block) is shown 

below. The force that she exerts on the rock slabs is not directly shown (since the 

diagram should only show forces exerted on her), but it is related by Newton’s third law) 

to the normal forces 1NF  and 2NF  exerted horizontally by the slabs onto her shoes and 
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back, respectively. We will show in part (b) that FN1 = FN2 so that we there is no 

ambiguity in saying that the magnitude of her push is FN2. The total upward force due to 

(maximum) static friction is 
  
f f f 1 2  where 1 1 1s Nf F  and 2 2 2s Nf F . The 

problem gives the values s1 = 1.2 and s2 = 0.8. 

 
 

(b) We apply Newton’s second law to the x and y axes (with +x rightward and +y upward 

and there is no acceleration in either direction). 

 

1 2

1 2

0

0

N NF F

f f mg

 

  
 

 

The first equation tells us that the normal forces are equal FN1 = FN2 = FN. Consequently, 

from Eq. 6-1, 

1 s 1

2 s 2

N

N

f F

f F








 

we conclude that 

s 1

1 2

s 2

.f f




 
   
 

 

Therefore, f1 + f2 – mg = 0 leads to 

 

s 1

2

s 2

1 f mg




 
   

 

 

 

which (with m = 49 kg) yields f2 = 192 N. From this we find 2 2/ 240 N.N sF f    This 

is equal to the magnitude of the push exerted by the rock climber. 

 

(c) From the above calculation, we find 1 s1 288 NNf F   which amounts to a fraction 

 

f

W

1 288

49 9 8
0 60 b g b g. .  

or 60% of her weight. 
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64. (a) The upward force exerted by the car on the passenger is equal to the downward 

force of gravity (W = 500 N) on the passenger. So the net force does not have a vertical 

contribution; it only has the contribution from the horizontal force (which is necessary for 

maintaining the circular motion). Thus 

F Fnet  N.  210  

 

(b) Using Eq. 6-18, we have 

 

(210 N)(470 m)
44.0 m/s.

51.0 kg

FR
v

m
    

 

65. The layer of ice has a mass of 

 

 3 5

ice 917 kg/m  (400 m 500 m 0.0040 m) 7.34 10  kg.m       

 

This added to the mass of the hundred stones (at 20 kg each) comes to m = 7.36  10
5
 kg. 

 

(a) Setting F = D (for Drag force) we use Eq. 6-14 to find the wind speed v along the 

ground (which actually is relative to the moving stone, but we assume the stone is 

moving slowly enough that this does not invalidate the result): 

 

   
   

5 2

3 2
ice ice

0.10 7.36 10 kg 9.8 m/s
19 m/s 69 km/h.

4 4 0.002 1.21 kg/m 400 500 m

kmg
v

C A






   


 

 

(b) Doubling our previous result, we find the reported speed to be 139 km/h. 

 

(c) The result is reasonable for storm winds. (A category-5 hurricane has speeds on the 

order of 2.6  10
2
 m/s.) 

 

66. Note that since no static friction coefficient is mentioned, we assume fs is not relevant 

to this computation. We apply Newton's second law to each block's x axis, which for m1 

is positive rightward and for m2 is positive downhill: 

 

 T – fk  =  m1a 

                m2g sin – T  =  m2a 

 

Adding the equations, we obtain the acceleration: 

 

2

1 2

sin km g f
a

m m

 



 

For fk = kFN = k m1g, we obtain  
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2 2

2(3.0 kg)(9.8 m/s )sin30 (0.25)(2.0 kg)(9.8 m/s )
1.96 m/s

3.0 kg 2.0 kg
a


 


. 

 

Returning this value to either of the above two equations, we find T = 8.8 N. 

 

67. Each side of the trough exerts a normal force on the crate. The first diagram shows 

the view looking in toward a cross section.  

 

 
The net force is along the dashed line. Since each of the normal forces makes an angle of 

45° with the dashed line, the magnitude of the resultant normal force is given by  

 

2 cos45 2Nr N NF F F   . 

 

The second diagram is the free-body diagram for the crate (from a “side” view, similar to 

that shown in the first picture in Fig. 6-51). The force of gravity has magnitude mg, 

where m is the mass of the crate, and the magnitude of the force of friction is denoted by f. 

We take the +x direction to be down the incline and +y to be in the direction of NrF . Then 

the x and the y components of Newton’s second law are 

 

   x:        mg sin  – f = ma 

 y:    FNr – mg cos  = 0. 

 

Since the crate is moving, each side of the trough exerts a force of kinetic friction, so the 

total frictional force has magnitude  

 

 2 2 / 2 2k N k Nr k Nrf F F F      

 

Combining this expression with FNr = mg cos  and substituting into the x component 

equation, we obtain  

mg mg masin cos  2 . 

 

Therefore a g k (sin cos )  2 . 

 

68. (a) To be on the verge of sliding out means that the force of static friction is acting 

“down the bank” (in the sense explained in the problem statement) with maximum 
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possible magnitude.  We first consider the vector sum F  


 of the (maximum) static 

friction force and the normal force.  Due to the facts that they are perpendicular and their 

magnitudes are simply proportional (Eq. 6-1), we find F  


 is at angle (measured from the 

vertical axis)  =  + s, where tans = s (compare with Eq. 6-13), and  is the bank 

angle (as stated in the problem).  Now, the vector sum of F  and the vertically downward 

pull (mg) of gravity must be equal to the (horizontal) centripetal force (mv
2
/R), which 

leads to a surprisingly simple relationship: 

tan = 
2 2/mv R v

mg Rg
   . 

 

Writing this as an expression for the maximum speed, we have  

 

1

max

(tan )
tan( tan )

1 tan

s
s

s

Rg
v Rg

 
 

 

 
  


 

 

(b) The graph is shown below (with  in radians):  

 

 
 

(c) Either estimating from the graph (s = 0.60, upper curve) or calculated it more 

carefully leads to v = 41.3 m/s = 149 km/h when  = 10º = 0.175 radian.  

 

(d) Similarly (for s = 0.050, the lower curve) we find v = 21.2 m/s = 76.2 km/h when  = 

10º = 0.175 radian. 

 

69. For simplicity, we denote the 70° angle as  and the magnitude of the push (80 N) as 

P. The vertical forces on the block are the downward normal force exerted on it by the 

ceiling, the downward pull of gravity (of magnitude mg) and the vertical component of 
P (which is upward with magnitude P sin ). Since there is no acceleration in the vertical 

direction, we must have 

sinNF P mg   

 

in which case the leftward-pointed kinetic friction has magnitude 
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f P mgk k  ( sin ).  

 

Choosing +x rightward, Newton’s second law leads to 

 

P f ma a
P u P mg

m
k

kcos
cos ( sin )

   
 

   
 

 

 

which yields a = 3.4 m/s
2
 when k = 0.40 and m = 5.0 kg. 

 

70. (a) We note that R (the horizontal distance from the bob to the axis of rotation) is the 

circumference of the circular path divided by 2; therefore, R =  0.94/2= 0.15 m.  The 

angle that the cord makes with the horizontal is now easily found:  

 

 = cos
1

(R/L) = cos
1

(0.15 m/0.90 m) = 80º. 

 

The vertical component of the force of tension in the string is Tsin and must equal the 

downward pull of gravity (mg).  Thus,  

0.40 N
sin

mg
T


  . 

 

Note that we are using T for tension (not for the period). 

 

(b) The horizontal component of that tension must supply the centripetal force (Eq. 6-18), 

so we have Tcos = mv
2
/R.  This gives speed v = 0.49 m/s. This divided into the 

circumference gives the time for one revolution: 0.94/0.49 = 1.9 s. 

 

71. (a) To be “on the verge of sliding” means the applied force is equal to the maximum 

possible force of static friction (Eq. 6-1, with FN = mg in this case):  

 

fs,max = smg = 35.3 N. 

 

(b) In this case, the applied force F  


 indirectly decreases the maximum possible value of 

friction (since its y component causes a reduction in the normal force) as well as directly 

opposing the friction force itself (because of its x component).  The normal force turns 

out to be  

FN = mg – Fsin 

 

where = 60º, so that the horizontal equation (the x application of Newton’s second law) 

becomes  

Fcos – fs,max= Fcos – s(mg – Fsin) = 0      39.7 N.F   

 

(c) Now, the applied force F  


 indirectly increases the maximum possible value of friction 

(since its y component causes a reduction in the normal force) as well as directly 

opposing the friction force itself (because of its x component).  The normal force in this 

case turns out to be  
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FN = mg + Fsin, 

 

where = 60º, so that the horizontal equation becomes  

 

Fcos – fs,max= Fcos – s(mg + Fsin) = 0     320 N.F   

 

72. With = 40º, we apply Newton’s second law to the “downhill” direction:   

 

mg sin – f  =  ma, 
 

      f = fk =k FN  =k mg cos 

 

using Eq. 6-12.  Thus,  

a = 0.75 m/s
2
 = g(sin – k cos) 

 

determines the coefficient of kinetic friction: k = 0.74. 

 

73. (a) With = 60º, we apply Newton’s second law to the “downhill” direction:   

 

 mg sin – f  =  ma 

           f = fk =k FN =k mg cos. 

 

Thus,  

a = g(sin– k cos) = 7.5 m/s
2
. 

 

(b) The direction of the acceleration a  is down the slope. 

 

(c) Now the friction force is in the “downhill” direction (which is our positive direction) 

so that we obtain  

a = g(sin + k cos ) = 9.5 m/s
2
. 

 

(d) The direction is down the slope.  

 

74. The free-body diagram for the puck is shown on the right. 

NF  is the normal force of the ice on the puck, 

f is the force of 

friction (in the –x direction), and mg


 is the force of gravity. 

 

(a) The horizontal component of Newton’s second law gives –f 

= ma, and constant acceleration kinematics (Table 2-1) can be 

used to find the acceleration. 
 

Since the final velocity is zero, v v ax2

0

2 2   leads to a v x  0

2 2/ . This is substituted 

into the Newton’s law equation to obtain 
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  

 

22

0
0.110 kg 6.0 m/s

0.13 N.
2 2 15 m

mv
f

x
    

 

(b) The vertical component of Newton’s second law gives FN – mg = 0, so FN = mg which 

implies (using Eq. 6-2) f = k mg. We solve for the coefficient: 

 

  2

0.13 N
0.12 .

0.110 kg (9.8 m/s )
k

f

mg
     

 

75. We may treat all 25 cars as a single object of mass m = 25  5.0  10
4
 kg and (when 

the speed is 30 km/h = 8.3 m/s) subject to a friction force equal to  

 

f = 25  250  8.3 = 5.2  10
4
 N. 

 

(a) Along the level track, this object experiences a “forward” force T exerted by the 

locomotive, so that Newton’s second law leads to 

 
4 6 5    5.2 10 (1.25 10 )(0.20) 3.0 10  NT f ma T         . 

 

 (b) The free-body diagram is shown next, with  as the angle of the 

incline. The +x direction (which is the only direction to which we will 

be applying Newton’s second law) is uphill (to the upper right in our 

sketch). Thus, we obtain 

 sin  = T f mg ma   

 

where we set a = 0 (implied by the problem statement) and solve for 

the angle. We obtain  = 1.2°.  

 

76. An excellent discussion and equation development related to this 

problem is given in Sample Problem – “Friction, applied force at an angle.” Using the 

result, we obtain  

 
1 1tan tan 0.50 27s       

 

which implies that the angle through which the slope should be reduced is  

 

 = 45° – 27°  20°. 

 

77. We make use of Eq. 6-16 which yields 

 

2mg

CR
2  =  

2(6)(9.8)

(1.6)(1.2)(0.03)
2  = 147 m/s. 
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78. (a) The coefficient of static friction is s = tan(slip) = 0.577 0.58 . 

 

(b) Using  

mg sin – f = ma 
 

         f = fk =k FN =k mg cos 

 

and a = 2d/t
2
 (with d = 2.5 m and t = 4.0 s), we obtain k = 0.54. 

 

79. THINK We have two blocks connected by a cord, as shown in Fig. 6-56. As block A 

slides down the frictionless inclined plane, it pulls block B, so there’s a tension in the 

cord.   

 

EXPRESS The free-body diagrams for blocks A and B are shown below: 

  
Newton’s law gives  

 sinA Am g T m a    

 

for block A (where = 30º).  For block B, we have 

 

k BT f m a   

Now the frictional force is given by ,k k N B k Bf F m g   . The equations allow us to 

solve for the tension T and the acceleration a.  

 

ANALYZE (a) Combining the above equations to solve for T, we obtain 

 

     2(4.0 kg)(2.0 kg)
sin sin30 0.50 (9.80 m/s ) 13 N.

4.0 kg 2.0 kg

A B
k

A B

m m
T g

m m
     

 
 

 

(b) Similarly, the acceleration of the two-block system is  

 

2 2sin (4.0 kg)sin30 (0.50)(2.0 kg)
(9.80 m/s ) 1.6 m/s

4.0 kg 2.0 kg

A k B

A B

m m
a g

m m

   
   

  
. 

  

LEARN In the case where 90    and 0k  , we have  
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,A B A

A B A B

m m m
T g a g

m m m m
 

 
 

 

which correspond to the Sample Problem – “Block on table, block hanging,” discussed in 

Chapter 5. 

 

80. We use Eq. 6-14, D C Av 1
2

2 , where  is the air density, A is the cross-sectional 

area of the missile, v is the speed of the missile, and C is the drag coefficient. The area is 

given by A = R
2
, where R = 0.265 m is the radius of the missile. Thus 

 

D   
1

2
0 75 12 0 265 250 6 2 10

2 2 3( . ) . . . . kg / m  m  m / s  N3c h b g b g  

 

81. THINK How can a cyclist move in a circle? It is the force of friction that provides 

the centripetal force required for the circular motion.   

 

EXPRESS The free-body diagram is shown below. The magnitude of the acceleration of 

the cyclist as it moves along the horizontal circular path is given by v
2
/R, where v is the 

speed of the cyclist and R is the radius of the curve.  

 

 
 

The horizontal component of Newton’s second law is fs = mv
2
/R, where fs is the static 

friction exerted horizontally by the ground on the tires. Similarly, if FN is the vertical 

force of the ground on the bicycle and m is the mass of the bicycle and rider, the vertical 

component of Newton’s second law leads to 833 NNF mg  . 

 

ANALYZE (a) The frictional force is 
  

22 85.0 kg 9.00 m/s
275  N.

25.0 m
s

mv
f

R
    

 

(b) Since the frictional force sf and NF , the normal force exerted by the road, are 

perpendicular to each other, the magnitude of the force exerted by the ground on the 

bicycle is  
2 2 2 2(275 N) (833 N) 877 N.s NF f F      
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LEARN The force exerted by the ground on the bicycle is at an angle 
1tan (275 N/833 N) 18.3     with respect to the vertical axis.  

 

82. At the top of the hill the vertical forces on the car are the upward normal force 

exerted by the ground and the downward pull of gravity. Designating +y downward, we 

have 
2

N

mv
mg F

R
   

 

from Newton’s second law. To find the greatest speed without leaving the hill, we set FN 

= 0 and solve for v: 

 

2(9.8 m/s )(250 m) 49.5 m/sv gR    = 49.5(3600/1000) km/h = 178 km/h. 

 

83. (a) The push (to get it moving) must be at least as big as fs,max = s FN  (Eq. 6-1, with 

FN = mg in this case), which equals (0.51)(165 N) = 84.2 N. 

 

(b) While in motion, constant velocity (zero acceleration) is maintained if the push is 

equal to the kinetic friction force fk =k FN =k mg = 52.8 N. 

 

(c) We note that the mass of the crate is 165/9.8 = 16.8 kg.  The acceleration, using the 

push from part (a), is  

a = (84.2 N – 52.8 N)/(16.8 kg)   1.87 m/s
2
. 

 

84. (a) The x component of F  


 tries to move the crate while its y component indirectly 

contributes to the inhibiting effects of friction (by increasing the normal force).  

Newton’s second law implies 

 

x direction:  Fcos – fs = 0 
 

           y direction:  FN – Fsin – mg = 0. 

 

To be “on the verge of sliding” means fs = fs,max = sFN  (Eq. 6-1).  Solving these 

equations for F (actually, for the ratio of F to mg) yields 

 

 
cos sin

s

s

F

mg



  



 . 

 

This is plotted on the right ( in degrees). 

 

(b) The denominator of our expression (for F/mg) 

vanishes when  
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1

inf

1
cos sin 0     tans

s

   


  
     

 
 

For 0.70s  , we obtain
1

inf

1
tan 55

s




  
   

 
. 

(c) Reducing the coefficient means increasing the angle by the condition in part (b). 

 

(d) For 0.60s  we have 
1

inf

1
tan 59

s




  
   

 
. 

 

85. The car is in “danger of sliding” down when  

 

 tan tan35.0 0.700.s      

 

This value represents a 3.4% decrease from the given 0.725 value. 

 

86. (a) The tension will be the greatest at the lowest point of the swing.  Note that there is 

no substantive difference between the tension T in this problem and the normal force FN 

in Sample Problem – “Vertical circular loop, Diavolo.”  Eq. 6-19 of that Sample Problem 

examines the situation at the top of the circular path (where FN is the least), and rewriting 

that for the bottom of the path leads to  

T = mg + mv
2
/r 

 

where FN is at its greatest value. 

 

(b) At the breaking point T = 33 N = m(g + v
2
/r) where m = 0.26 kg and r = 0.65 m.  

Solving for the speed, we find that the cord should break when the speed (at the lowest 

point) reaches 8.73 m/s. 

 

87. THINK A car is making a turn on an unbanked curve. Friction is what provides the 

centripetal force needed for this circular motion. 

 

EXPRESS The free-body diagram is shown to the 

right. The mass of the car is m = (10700/9.80) kg = 

1.09  10
3
 kg. We choose “inward” (horizontally 

toward the center of the circular path) as the positive 

direction. The normal force is FN = mg in this 

situation, and the required frictional force is 
2 / .sf mv R  

 

ANALYZE (a) With a speed of v = 13.4 m/s and a 

radius R = 61 m, Newton’s second law (using Eq. 6-18) leads to 
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2 3 2
3(1.09 10 kg)(13.4 m/s)

3.21 10 N .
61.0 m

s

mv
f

R


     

 

(b) The maximum possible static friction is found to be 

 

   3

,max 0.35 10700 N 3.75 10 Ns sf mg     

 

using Eq. 6-1. We see that the static friction found in part (a) is less than this, so the car 

rolls (no skidding) and successfully negotiates the curve. 

 

LEARN From the above expressions, we see that with a coefficient of friction s , the 

maximum speed of the car negotiating a curve of radius R is max sv gR . So in this 

case, the car can go up to a maximum speed of  

 
2

max (0.35)(9.8 m/s )(61 m) 14.5 m/sv    

without skidding. 

 

88. For the m2 = 1.0 kg block, application of Newton's laws result in 

 

 2

2

cos       axis

sin 0       axis  
k

N

F T f m a x

F F m g y





  

  
 

 

Since fk = k FN, these equations can be combined into an equation to solve for a: 

 

 2 2(cos sin )k kF T m g m a        

Similarly (but without the applied push) we analyze the m1= 2.0 kg block: 

1

1

      axis

 0       axis  
k

N

T f m a x

F m g y

 

  
 

Using fk = k NF  , the equations can be combined: 

 

 1 1kT m g m a   

Subtracting the two equations for a and solving for the tension, we obtain 

 

 1

1 2

(cos sin ) (2.0 kg)[cos35 (0.20)sin35 ]
(20 N) 9.4 N.

2.0 kg 1.0 kg

km
T F

m m

    
  

 
 

 

89. THINK In order to move a filing cabinet, the force applied must be able to overcome 

the frictional force. 
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EXPRESS We apply Newton’s second law (as Fpush – f = ma).  If we find the applied 

force 
pushF  to be less than ,maxsf , the maximum static frictional force, our conclusion 

would then be “no, the cabinet does not move” (which means a is actually 0 and the 

frictional force is simply f = Fpush). On the other hand, if we obtain a > 0 then the cabinet 

moves (so f = fk).  For ,maxsf  and fk  we use Eq. 6-1 and Eq. 6-2 (respectively), and in 

those formulas we set the magnitude of the normal force to the weight of the 

cabinet: 556 NNF mg  .  Thus, the maximum static frictional force is 

 

,max (0.68)(556 N) 378 Ns s N sf F mg     . 

 

and the kinetic frictional force is  

 

(0.56)(556 N) 311 Nk k N kf F mg     . 

 

ANALYZE (a) Here we find Fpush < ,maxsf  which leads to f = Fpush = 222 N. The cabinet 

does not move. 

 

(b) Again we find Fpush < ,maxsf  which leads to f = Fpush = 334 N. The cabinet does not 

move. 

 

(c) Now we have Fpush > ,maxsf  which means the cabinet moves and  f = fk = 311 N. 

 

(d) Again we have Fpush > ,maxsf  which means the cabinet moves and  f = fk = 311 N. 

 

(e) The cabinet moves in (c) and (d). 

 

LEARN In summary, in order to make the cabinet move, the minimum applied force is 

equal to the maximum static frictional force ,maxsf . 

 

90. Analysis of forces in the horizontal direction (where there can be no acceleration) 

leads to the conclusion that F = FN; the magnitude of the normal force is 60 N.  The 

maximum possible static friction force is therefore sFN = 33 N, and the kinetic friction 

force (when applicable) is kFN = 23 N. 

 

(a) In this case, P  


 = 34 N upward.  Assuming f  


 points down, then Newton's second 

law for the y leads to 

P – mg – f  =  ma . 

 

if we assume f = fs and a = 0, we obtain f = (34 – 22) N = 12 N.  This is less than fs, max, 

which shows the consistency of our assumption.  The answer is: fs 


 = 12 N down. 
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(b) In this case, P  


 = 12 N upward.  The above equation, with the same assumptions as in 

part (a), leads to f = (12 – 22) N = –10 N.  Thus, | fs | < fs, max, justifying our assumption 

that the block is stationary, but its negative value tells us that our initial assumption about 

the direction of f  


 is incorrect in this case.  Thus, the answer is: fs 


 = 10 N up. 

 

(c) In this case, P  


 = 48 N upward.  The above equation, with the same assumptions as in 

part (a), leads to f = (48 – 22) N = 26 N.  Thus, we again have fs < fs, max, and our answer 

is:  fs 


 = 26 N down. 

 

(d) In this case, P  


 = 62 N upward.  The above equation, with the same assumptions as in 

part (a), leads to f = (62 – 22) N = 40 N, which is larger than fs, max, -- invalidating our 

assumptions.  Therefore, we take f = fk and a  0 in the above equation; if we wished to 

find the value of a we would find it to be positive, as we should expect.  The answer is:  

fk 


 = 23 N down. 

 

(e) In this case, P  


 = 10 N downward.  The above equation (but with P replaced with -P) 

with the same assumptions as in part (a), leads to f = (–10 – 22) N = –32 N.  Thus, we 

have | fs | < fs, max, justifying our assumption that the block is stationary, but its negative 

value tells us that our initial assumption about the direction of f  


 is incorrect in this case.  

Thus, the answer is: fs 


 = 32 N up. 

 

(f) In this case, P  


 = 18 N downward.  The above equation (but with P replaced with –P) 

with the same assumptions as in part (a), leads to f = (–18 – 22) N = –40 N, which is 

larger (in absolute value) than fs, max, -- invalidating our assumptions.  Therefore, we take 

f = fk and a  0 in the above equation; if we wished to find the value of a we would find it 

to be negative, as we should expect.  The answer is:  fk 


 = 23 N up. 

 

(g) The block moves up the wall in case (d) where a > 0. 

 

(h) The block moves down the wall in case (f) where a < 0. 

 

(i) The frictional force fs 


 is directed down in cases (a), (c) and (d). 

 

91. THINK Whether the block is sliding down or up the incline, there is a frictional force 

in the opposite direction of the motion. 

 

EXPRESS The free-body diagram for the first part of this problem (when the block is 

sliding downhill with zero acceleration) is shown next. 
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Newton’s second law gives 

 

 
sin sin 0

cos 0
k k N x

N y

mg f mg F ma

mg F ma

  



    

  
 

 

The two equations can be combined to give 

  

 tan .k    
 

Now (for the second part of the problem, with the 

block projected uphill) the friction direction is 

reversed (see figure to the right). Newton’s second 

law for the uphill motion (and Eq. 6-12) leads to  

 

sin sin

cos 0
k k N x

N y

mg f mg F ma

mg F ma

  



   

  
 

 
 

Note that by our convention, 0xa   means that the acceleration is downhill, and 

therefore, the speed of the block will decrease as it moves up the incline. 

 

ANALYZE (a) Using tank   and cosNF mg  , we find the x-component of the 

acceleration to be   

(tan )( cos )
sin sin 2 sink N

x

F mg
a g g g

m m

  
       . 

 

The distance the block travels before coming to a stop can be found by using Eq. 2-16: 
2 2

0 2f xv v a x   , which yields 

2 2 2

0 0 0

2 2(2 sin ) 4 sinx

v v v
x

a g g 
    . 

 

(b) We usually expect s > k  (see the discussion in Section 6-1). The “angle of repose” 

(the minimum angle necessary for a stationary block to start sliding downhill) is s = 

tan(repose).  Therefore, we expect repose >    found in part (a).  Consequently, when the 

block comes to rest, the incline is not steep enough to cause it to start slipping down the 

incline again. 

 

LEARN An alternative way to see that the block will not slide down again is to note that 

the downward force of gravitation is not large enough to overcome the force of friction, 

i.e., ,maxsin k smg f f   .    
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92. Consider that the car is “on the verge of sliding out” – meaning that the force of static 

friction is acting “down the bank” (or “downhill” from the point of view of an ant on the 

banked curve) with maximum possible magnitude.  We first consider the vector sum F  


 

of the (maximum) static friction force and the normal force.  Due to the facts that they are 

perpendicular and their magnitudes are simply proportional (Eq. 6-1), we find F  


 is at 

angle (measured from the vertical axis)  =  + s  where tan s = s (compare with Eq. 6-

13), and  is the bank angle.  Now, the vector sum of F  


 and the vertically downward pull 

(mg) of gravity must be equal to the (horizontal) centripetal force (mv
2
/R), which leads to 

a surprisingly simple relationship: 

 

tan =  
mv

2
/R

mg
   =   

v
2

Rg
  . 

 

Writing this as an expression for the maximum speed, we have 

 

1

max

(tan )
tan( tan )

1 tan

s
s

s

Rg
v Rg

 
 

 

 
  


. 

 

(a) We note that the given speed is (in SI units) roughly 17 m/s.  If we do not want the 

cars to “depend” on the static friction to keep from sliding out (that is, if we want the 

component “down the back” of gravity to be sufficient), then we can set s = 0 in the 

above expression and obtain tanv Rg  .  With R = 150 m, this leads to = 11. 

 

(b) If, however, the curve is not banked (so = 0) then the above expression becomes  

 

 1tan(tan )s sv Rg Rg    

 

Solving this for the coefficient of static friction s = 0.19. 

 

93. (a) The box doesn’t move until t = 2.8 s, which is when the applied force 

F  reaches a 

magnitude of F = (1.8)(2.8) = 5.0 N, implying therefore that fs, max = 5.0 N. Analysis of 

the vertical forces on the block leads to the observation that the normal force magnitude 

equals the weight FN = mg = 15 N. Thus,  

 

s = fs, max/FN = 0.34. 

 

(b) We apply Newton’s second law to the horizontal x axis (positive in the direction of 

motion): 

F f ma t f tk k     18 15 12 2 4. . . .b gb g  
 

Thus, we find fk = 3.6 N. Therefore, k = fk / FN = 0.24. 
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94. In the figure below, m = 140/9.8 = 14.3 kg is the mass of the child. We use 

wx  and 


wy  as the components of the gravitational pull of Earth on the block; their magnitudes 

are wx = mg sin  and wy = mg cos .  

 
 

(a) With the x axis directed up along the incline (so that a = –0.86 m/s
2
), Newton’s 

second law leads to 

 

f mk   140 25 086sin ( . )  

 

which yields fk = 47 N. We also apply Newton’s second law to the y axis (perpendicular 

to the incline surface), where the acceleration-component is zero: 

 

140cos25 0     127 N.N NF F      

 

Therefore, k = fk/FN = 0.37. 

 

(b) Returning to our first equation in part (a), we see that if the downhill component of 

the weight force were insufficient to overcome static friction, the child would not slide at 

all. Therefore, we require 140 sin 25° > fs,max = s FN, which leads to tan 25° = 0.47 > s. 

The minimum value of s equals k and is more subtle; reference to §6-1 is recommended. 

If k exceeded s then when static friction were overcome (as the incline is raised) then it 

should start to move – which is impossible if fk is large enough to cause deceleration! The 

bounds on s are therefore given by 0.47 > s > . 

 

95. (a) The x component of F  


 contributes to the motion of the crate while its y 

component indirectly contributes to the inhibiting effects of friction (by increasing the 

normal force).  Along the y direction, we have FN – Fcos – mg = 0 and along the x 

direction we have  Fsin – fk = 0 (since it is not accelerating, according to the problem).  

Also, Eq. 6-2 gives fk = k FN.  Solving these equations for F yields 

 

        
sin cos

k

k

mg
F



  



 . 

 

(b) When 1

0 tan s    , F will not be able to move the mop head. 
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96. (a) The distance traveled in one revolution is 2R = 2(4.6 m) = 29 m. The (constant) 

speed is consequently v = (29 m)/(30 s) = 0.96 m/s. 

 

(b) Newton’s second law (using Eq. 6-17 for the magnitude of the acceleration) leads to 

 

f m
v

R
ms 

F
HG
I
KJ 

2

0 20( . )  

 

in SI units. Noting that FN = mg in this situation, the maximum possible static friction is 

fs,max = s mg using Eq. 6-1. Equating this with fs = m(0.20) we find the mass m cancels 

and we obtain s = 0.20/9.8 = 0.021. 

 

97. THINK In this problem a force is applied to accelerate a box. From the distance 

traveled and the speed at that instant, we can calculate the coefficient of kinetic friction 

between the box and the floor.   

 

EXPRESS The free-body diagram is shown to the right. We adopt 

the familiar axes with +x rightward and +y upward, and refer to the 

85 N horizontal push of the worker as F (and assume it to be 

rightward). Applying Newton’s second law to the x axis and y axis, 

respectively, produces 

 

, 0.k x NF f ma F mg     

 

On the other hand, using Eq. 2-16 ( 2 2

0 2 xv v a x   ), we find the acceleration to be 

 
2 2 2

20 (1.0 m/s) 0
0.357 m/s .

2 2(1.4 m)
x

v v
a

x

 
  


 

 

The above equations can be combined to give k . 

 

ANALYZE Using k k Nf F , we find the coefficient of kinetic friction between the box 

and the floor to be    
2

2

85 N (40 kg)(0.357 m/s )
0.18.

(40 kg)(9.8 m/s )

k x
k

N

f F ma

F mg


 
     

 

LEARN In general, the acceleration can be written as ( / ) .x ka F m g   We see that the 

smaller the value of k , the greater the acceleration. In the limit 0k  , we simply have 

/ .xa F m  

 

98. We resolve this horizontal force into appropriate components. 
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(a) Applying Newton’s second law to the x 

(directed uphill) and y (directed away from 

the incline surface) axes, we obtain 

 

cos sin

sin cos 0.

k

N

F f mg ma

F F mg

 

 

  

  
 

 
Using fk = k FN, these equations lead to 

 

(cos sin ) (sin cos )k k

F
a g

m
          

 

which yields a = –2.1 m/s
2
, or  |a | = 2.1 m/s

2 
, for k = 0.30, F = 50 N and m = 5.0 kg. 

 

(b) The direction of a is down the plane. 

 

(c) With v0 = +4.0 m/s and v = 0, Eq. 2-16 gives 
2

2

(4.0 m/s)
 3.9 m.

2( 2.1m/s )
x  


 

 

(d) We expect s  k; otherwise, an object started into motion would immediately start 

decelerating (before it gained any speed)! In the minimal expectation case, where s = 

0.30, the maximum possible (downhill) static friction is, using Eq. 6-1, 

 

,max ( sin cos )s s N sf F F mg       

 

which turns out to be 21 N. But in order to have no acceleration along the x axis, we must 

have 

cos sin 10 Nsf F mg     

 

(the fact that this is positive reinforces our suspicion that 

f s  points downhill). Since the fs 

needed to remain at rest is less than fs,max then it stays at that location. 

 

99. (a) We note that FN = mg in this situation, so  

 

fs,max = smg = (0.52)(11 kg)(9.8 m/s
2
) = 56 N. 

 

Consequently, the horizontal force 

F  needed to initiate motion must be (at minimum) 

slightly more than 56 N. 

 

(b) Analyzing vertical forces when 

F  is at nonzero  yields 

 

,maxsin   (  sin ).N s sF F mg f mg F        
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Now, the horizontal component of 

F  needed to initiate motion must be (at minimum) 

slightly more than this, so 

 

cos ( sin )  
cos sin 

s
s

s

mg
F mg F F


  

  
   


 

 

which yields F = 59 N when  = 60°. 

 

(c) We now set  = –60° and obtain 

 
2

3(0.52)(11kg)(9.8 m/s )
1.1 10  N.

cos( 60 ) (0.52) sin ( 60 )
F   

    
 

 

100. (a) If the skier covers a distance L during time t with zero initial speed and a 

constant acceleration a, then L = at
2
/2, which gives the acceleration a1 for the first (old) 

pair of skis: 

a
L

t
1

1

2 2

22 2 200

61
011  

m

s
m / s

b g
b g . . 

 

(b) The acceleration a2 for the second (new) pair is 

 

a
L

t
2

2

2 2

22 2 200

42
0 23  

m

s
m / s

b g
b g . .  

 

(c) The net force along the slope acting on the skier of mass m is 

 

F mg f mg mak knet     sin sin cos   b g  

 

which we solve for k1 for the first pair of skis: 

 
2

1
1 2

0.11m/s
tan tan3.0 0.041

cos (9.8 m/s )cos3.0
k

a

g
 


    


 

 

(d) For the second pair, we have  

  
2

2
2 2

0.23 m/s
tan tan3.0 0.029 .

cos (9.8 m/s )cos3.0
k

a

g
 


     


 

 

101. If we choose “downhill” positive, then Newton’s law gives 

 

m g sin – fk = m a 
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for the sliding child.  Now using Eq. 6-12 

 

fk =k FN =k m g, 

 

so we obtain a = g(sin – k cos) = – 0.5 m/s
2
 (note that the problem gives the direction 

of the acceleration vector as uphill, even though the child is sliding downhill, so it is a 

deceleration). With = 35º, we solve for the coefficient and find k = 0.76. 

 

102. (a) Our +x direction is horizontal and is chosen (as we also do with +y) so that the 

components of the 100 N force 

F  are non-negative. Thus, Fx = F cos  = 100 N, which 

the textbook denotes Fh in this problem. 

 

(b) Since there is no vertical acceleration, application of Newton’s second law in the y 

direction gives 

 

sinN y NF F mg F mg F       

 

where m = 25.0 kg. This yields FN = 245 N in this case ( = 0°). 

 

(c) Now, Fx = Fh = F cos  = 86.6 N for  = 30.0°. 

 

(d) And FN = mg – F sin  = 195 N. 

 

(e) We find Fx = Fh = F cos  = 50.0 N for  = 60.0°. 

 

(f) And FN = mg – F sin  = 158 N. 

 

(g) The condition for the chair to slide is 

 

,max
 where  0.42.

sx s N sF f F     

For  = 0°, we have 

 

,max100 N (0.42)(245 N) 103 Nx sF f     

 

so the crate remains at rest. 

 

(h) For  = 30.0°, we find ,max86.6 N (0.42)(195 N) 81.9 N,x sF f    so the crate 

slides. 

 

(i) For  = 60°, we get ,max50.0 N (0.42)(158 N) 66.4 N,x sF f     which means the 

crate must remain at rest. 

 

103. (a) The intuitive conclusion, that the tension is greatest at the bottom of the swing, is 

certainly supported by application of Newton’s second law there: 
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T mg
mv

R
T m g

v

R
    

F
HG
I
KJ

2 2

 

 

where Eq. 6-18 has been used. Increasing the speed eventually leads to the tension at the 

bottom of the circle reaching that breaking value of 40 N. 

 

(b) Solving the above equation for the speed, we find 

 

240 N
(0.91 m) 9.8 m/s

0.37 kg

T
v R g

m

  
     

   
 

which yields v = 9.5 m/s. 

 

104. (a) The component of the weight along the incline (with downhill understood as the 

positive direction) is mg sin where m = 630 kg and  = 10.2°. With f = 62.0 N, Newton’s 

second law leads to mg f masin   , which yields a = 1.64 m/s
2
. Using Eq. 2-15, we 

have 

80 0 6 20
1

2
164 2. . . .m

m

s

m

s2

F
HG

I
KJ 

F
HG
I
KJt t  

 

This is solved using the quadratic formula. The positive root is t = 6.80 s. 

 

(b) Running through the calculation of part (a) with f = 42.0 N instead of f = 62 N results 

in t = 6.76 s. 

 

105. Except for replacing fs with fk, Fig 6-5 in the textbook is appropriate. With that 

figure in mind, we choose uphill as the +x direction. Applying Newton’s second law to 

the x axis, we have 

sin  where  ,k

W
f W ma m

g
    

 

and where W = 40 N, a = +0.80 m/s
2
 and  = 25°. Thus, we find fk = 20 N. Along the y- 

axis, we have 

 0 cosNy
F F W     

so that k = fk/ FN = 0.56. 
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Chapter 7 
 

 

 

1. THINK As the proton is being accelerated, its speed increases, and so does its kinetic 

energy.  

 

EXPRESS To calculate the speed of the proton at a later time, we use the equation 

v v a x2

0

2 2    from Table 2-1. The change in kinetic energy is then equal to  

 

 2 21
( )

2
f iK m v v   . 

 

ANALYZE (a) With 3.5 cm 0.035 mx    and 15 23.6 10 m/s ,a    we find the 

proton speed to be   

 

    
2

2 7 15 2 7

0 2 2.4 10 m/s 2 3.6 10 m/s 0.035 m 2.9 10 m/s.v v a x          

 

(b) The initial kinetic energy is 

 

  
2

2 27 7 13

0

1 1
 1.67 10 kg 2.4 10 m/s 4.8 10 J,

2 2
iK mv         

 

and the final kinetic energy is 

 

   
2

2 27 7 131 1
 1.67 10 kg 2.9 10 m/s 6.9 10 J.

2 2
fK mv         

 

Thus, the change in kinetic energy is  

 

K = f iK K 6.9  10
–13

 J – 4.8  10
–13

 J = 2.1  10
–13

 J. 

 

LEARN The change in kinetic energy can be rewritten as 

 

2 21 1
( ) (2 )

2 2
f iK m v v m a x ma x F x W           

 

which, according to the work-kinetic energy theorem, is simply the work done on the 

particle. 
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2. With speed v = 11200 m/s, we find 

 

2 5 2 131 1
(2.9 10 kg) (11200 m/s) 1.8 10  J.

2 2
K mv      

 

3. (a) The change in kinetic energy for the meteorite would be 

 

  
2

2 6 3 141 1
4 10 kg 15 10 m/s 5 10 J

2 2
f i i i iK K K K m v              , 

 

or 14| | 5 10  JK   . The negative sign indicates that kinetic energy is lost. 

 

(b) The energy loss in units of megatons of TNT would be 

 

 14

15

1 megaton TNT
5 10 J    0.1megaton TNT.

4.2 10 J
K

 
    

 
 

 

(c) The number of bombs N that the meteorite impact would correspond to is found by 

noting that megaton = 1000 kilotons and setting up the ratio: 

 

0.1 1000kiloton TNT
8.

13kiloton TNT
N


   

4. (a) We set up the ratio 

50

1

1 3

 km

1 km  megaton

F
HG

I
KJ

E
/

 

 

and find E = 50
3
  1  10

5
 megatons of TNT. 

 

(b) We note that 15 kilotons is equivalent to 0.015 megatons. Dividing the result from 

part (a) by 0.013 yields about ten million (10
7
) bombs. 

 

5. We denote the mass of the father as m and his initial speed vi. The initial kinetic energy 

of the father is 

K Ki 
1

2
son  

 

and his final kinetic energy (when his speed is vf = vi + 1.0 m/s) is K Kf  son .  We use 

these relations along with Eq. 7-1 in our solution. 

 

(a) We see from the above that K Ki f 1
2

, which (with SI units understood) leads to 
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 
221 1 1

  1.0 m/s
2 2 2

i imv m v
 

  
 

. 

 

The mass cancels and we find a second-degree equation for vi : 
1

2

1

2
02v vi i   .  The 

positive root (from the quadratic formula) yields vi = 2.4 m/s. 

 

(b) From the first relation above K Ki 
1
2 sonb g , we have 

 

2 2

son

1 1 1
  ( /2) 

2 2 2
imv m v

 
  

 
 

 

and (after canceling m and one factor of 1/2) are led to v vison = 2 = 4.8 m s.  

 

6. We apply the equation 21
0 0 2

( )x t x v t at   , found in Table 2-1. Since at t = 0 s, x0 = 0, 

and 
0 12 m/sv  , the equation becomes (in unit of meters) 

 

 21
2

( ) 12x t t at  . 

 

With 10 mx  when 1.0 st  , the acceleration is found to be 24.0 m/sa   . The fact 

that 0a  implies that the bead is decelerating. Thus, the position is described by 
2( ) 12 2.0x t t t  . Differentiating x with respect to t then yields  

 

 ( ) 12 4.0
dx

v t t
dt

   . 

 

Indeed at t =3.0 s, ( 3.0) 0v t   and the bead stops momentarily. The speed at 10 st  is 

( 10) 28 m/sv t    , and the corresponding kinetic energy is  

 

2 2 21 1
(1.8 10 kg)( 28 m/s) 7.1 J.

2 2
K mv       

 

7. Since this involves constant-acceleration motion, we can apply the equations of Table 

2-1, such as x v t at 0
1
2

2  (where x0 0 ). We choose to analyze the third and fifth 

points, obtaining 

2

0

2

0

1
0.2m (1.0 s)  (1.0 s)

2

1
0.8m (2.0 s)  (2.0 s) .

2

v a

v a

 

 
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Simultaneous solution of the equations leads to 0 0v   and a  0 40. m s2 . We now have 

two ways to finish the problem. One is to compute force from F = ma and then obtain the 

work from Eq. 7-7. The other is to find K  as a way of computing W (in accordance 

with Eq. 7-10). In this latter approach, we find the velocity at 2.0 st  from 

0 (so 0.80m s)v v at v   . Thus, 

21
(3.0kg)(0.80m/s) 0.96 J.

2
W K     

 

8. Using Eq. 7-8 (and Eq. 3-23), we find the work done by the water on the ice block: 

 

3

ˆ ˆ ˆ ˆ(210 N) i (150 N) j (15 m) i (12 m) j (210 N)(15 m) ( 150 N)( 12 m)

5.0 10 J.

W F d             
   

 

 

9. By the work-kinetic energy theorem, 

 

 2 2 2 21 1 1
(2.0kg) (6.0m/s) (4.0m/s) 20 J.

2 2 2
f iW K mv mv        

 

We note that the directions of 

v f  and 


vi  play no role in the calculation. 

 

10. Equation 7-8 readily yields  

 

W =  Fx x + Fy y  =(2.0 N)cos(100º)(3.0 m) + (2.0 N)sin(100º)(4.0 m) = 6.8 J. 

 

11. Using the work-kinetic energy theorem, we have  

 

 cosK W F d Fd      . 

 

In addition, 12 NF  and 2 2 2(2.00 m) ( 4.00 m) (3.00 m) 5.39 md      . 

 

(a) If 30.0 JK   , then 

 

 1 1 30.0 J
cos cos 62.3

(12.0 N)(5.39 m)

K

Fd
     
     

   
. 

 

(b) 30.0 JK   , then 

1 1 30.0 J
cos cos 118

(12.0 N)(5.39 m)

K

Fd
      
     

   
. 

 

12. (a) From Eq. 7-6, F = W/x = 3.00 N (this is the slope of the graph). 
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(b) Equation 7-10 yields K = Ki + W = 3.00 J + 6.00 J = 9.00 J. 

 

13. We choose +x as the direction of motion (so 

a  and 


F  are negative-valued). 

 

(a) Newton’s second law readily yields 2(85kg)( 2.0m/s )F    so that  

 
2| | 1.7 10 NF F   . 

 

(b) From Eq. 2-16 (with v = 0) we have 

 

 

2

2 2

0 2

37 m/s
0 2     3.4 10 m

2 2.0m/s
v a x x        


. 

 

Alternatively, this can be worked using the work-energy theorem. 

 

(c) Since 

F  is opposite to the direction of motion (so the angle   between 


F  and 


d x   is 180°) then Eq. 7-7 gives the work done as 45.8 10 JW F x      . 

 

(d) In this case, Newton’s second law yields   285kg 4.0m/sF    so that 

2| | 3.4 10 NF F   . 

 

(e) From Eq. 2-16, we now have 

 

 

2

2

2

37m/s
1.7 10 m.

2 4.0m/s
x    


 

 

(f) The force 

F  is again opposite to the direction of motion (so the angle  is again 180°) 

so that Eq. 7-7 leads to 45.8 10 J.W F x       The fact that this agrees with the result 

of part (c) provides insight into the concept of work. 

 

14. The forces are all constant, so the total work done by them is given by W F x net , 

where Fnet is the magnitude of the net force and x  is the magnitude of the displacement. 

We add the three vectors, finding the x and y components of the net force: 

 

net 1 2 3

net 2 3

sin 50.0 cos35.0 3.00 N (4.00 N)sin 35.0 (10.0 N)cos35.0

2.13N

cos50.0 sin 35.0 (4.00 N) cos50.0 (10.0 N)sin 35.0

3.17 N.

x

y

F F F F

F F F

         



       



 

 

The magnitude of the net force is 
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2 2 2 2

net net net (2.13 N) (3.17 N) 3.82 N.x yF F F      

 

The work done by the net force is 

 

net (3.82N)(4.00m) 15.3 JW F d    

 

where we have used the fact that 
 
d F net||  (which follows from the fact that the canister 

started from rest and moved horizontally under the action of horizontal forces — the 

resultant effect of which is expressed by 

Fnet ). 

 

15. (a) The forces are constant, so the work done by any one of them is given by 

W F d 
 

, where 

d  is the displacement. Force 


F1  is in the direction of the displacement, 

so 

1 1 1cos (5.00N)(3.00m)cos0 15.0 J.W Fd      

 

Force 

F2  makes an angle of 120° with the displacement, so 

 

2 2 2cos (9.00N)(3.00m)cos120 13.5 J.W F d       

 

Force 

F3  is perpendicular to the displacement, so  

 

W3 = F3d cos 3 = 0 since cos 90° = 0. 

 

The net work done by the three forces is 

 

1 2 3 15.0 J 13.5 J 0 1.50 J.W W W W         

 

(b) If no other forces do work on the box, its kinetic energy increases by 1.50 J during the 

displacement. 

 

16. The change in kinetic energy can be written as 

 

 2 21 1
( ) (2 )

2 2
f iK m v v m a x ma x        

 

where we have used  2 2 2f iv v a x    from Table 2-1. From the figure, we see that 

(0 30) J 30 JK     when 5 mx   . The acceleration can then be obtained as 

 

 2( 30 J)
0.75 m/s .

(8.0 kg)(5.0 m)

K
a

m x

 
   


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The negative sign indicates that the mass is decelerating. From the figure, we also see 

that when 5 mx  the kinetic energy becomes zero, implying that the mass comes to rest 

momentarily. Thus, 

 
2 2 2 2 2

0 2 0 2( 0.75 m/s )(5.0 m) 7.5 m /sv v a x       , 

 

or 0 2.7 m/sv  . The speed of the object when x = 3.0 m is  

 

 2 2 2 2

0 2 7.5 m /s 2( 0.75 m/s )( 3.0 m) 12 m/s 3.5 m/sv v a x         . 

 

17. THINK The helicopter does work to lift the astronaut upward against gravity. The 

work done on the astronaut is converted to the kinetic energy of the astronaut.   

 

EXPRESS We use 

F  to denote the upward force exerted by the cable on the astronaut. 

The force of the cable is upward and the force of gravity is mg downward. Furthermore, 

the acceleration of the astronaut is a = g/10 upward. According to Newton’s second law, 

the force is given by 

11
( ) ,

10
F mg ma F m g a mg       

 

in the same direction as the displacement. On the other hand, the force of gravity has 

magnitude gF mg  and is opposite in direction to the displacement. 

 

ANALYZE (a) Since the force of the cable

F  and the displacement 


d  are in the same 

direction, the work done by 

F  is 

 
2

4 411 11 (72 kg)(9.8 m/s )(15 m)
1.164 10  J 1.2 10  J

10 10
F

mgd
W Fd       . 

 

(b) Using Eq. 7-7, the work done by gravity is 

 
2 4 4 (72 kg)(9.8 m/s )(15 m) 1.058 10  J 1.1 10  J.g gW F d mgd             

 

(c) The total work done is the sum of the two works: 

 
4 4 3 3

net 1.164 10 J 1.058 10 J 1.06 10 J 1.1 10 JF gW W W          . 

 

Since the astronaut started from rest, the work-kinetic energy theorem tells us that this is 

her final kinetic energy. 

(d) Since K mv 1
2

2 ,  her final speed is 
32 2(1.06 10 J)

5.4 m/s
72 kg

K
v

m


   . 
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LEARN For a general upward acceleration a, the net work done is  

 

net ( ) .F g gW W W Fd F d m g a d mgd mad         

 

Since 2

net / 2W K mv    by the work-kinetic energy theorem, the speed of the astronaut 

would be 2v ad , which is independent of the mass of the astronaut. In our case, 

22(9.8 m/s /10)(15 m) 5.4 m/sv   , which agrees with that calculated in (d). 

 

18. In both cases, there is no acceleration, so the lifting force is equal to the weight of the 

object. 

 

(a) Equation 7-8 leads to (360kN)(0.10m) 36 kJ.W F d     

 

(b) In this case, we find W = (4000 N)(0.050 m) 22.0 10  J  . 

 

19. Equation 7-15 applies, but the wording of the problem suggests that it is only 

necessary to examine the contribution from the rope (which would be the “Wa” term in 

Eq. 7-15):  

Wa = (50 N)(0.50 m) = 25 J 

 

(the minus sign arises from the fact that the pull from the rope is anti-parallel to the 

direction of motion of the block).  Thus, the kinetic energy would have been 25 J greater 

if the rope had not been attached (given the same displacement). 

 

20. From the figure, one may write the kinetic energy (in units of J) as a function of x as 

 

 20 40 20sK K x x    . 

 

Since xW K F x    , the component of the force along the force along +x is 

/ 20 N.xF dK dx    The normal force on the block is N yF F , which is related to the 

gravitational force by  

 2 2( )x ymg F F   . 

 

(Note that NF  points in the opposite direction of the component of the gravitational force.) 

With an initial kinetic energy 40.0 JsK   and 0 4.00 m/sv  , the mass of the block is 

 

 
2 2

0

2 2(40.0 J)
5.00 kg.

(4.00 m/s)

sK
m

v
    

Thus, the normal force is  

 

 
2 2 2 2 2 2( ) (5.0 kg) (9.8 m/s ) (20 N) 44.7 N 45 N.y xF mg F       



 

  

309 

 

21. THINK In this problem the cord is doing work on the block so that it does not 

undergo free fall.    

 

EXPRESS We use F to denote the magnitude of the force of the cord on the block. This 

force is upward, opposite to the force of gravity (which has magnitude 
gF Mg ), to 

prevent the block from undergoing free fall. The acceleration is 

a g / 4 downward. 

Taking the downward direction to be positive, then Newton’s second law yields 

 
 
F ma Mg F M

g
net       

F
HG
I
KJ4 , 

 

so F = 3Mg/4, in the opposite direction of the displacement. On the other hand, the force 

of gravity gF mg  is in the same direction to the displacement. 

 

ANALYZE (a) Since the displacement is downward, the work done by the cord’s force 

is, using Eq. 7-7,  

3
.

4
FW Fd Mgd     

 

(b) Similarly, the work done by the force of gravity is .g gW F d Mgd   

 

(c) The total work done on the block is simply the sum of the two works: 

 

net

3 1

4 4
F gW W W Mgd Mgd Mgd      . 

 

Since the block starts from rest, we use Eq. 7-15 to conclude that this M gd 4b g  is the 

block’s kinetic energy K at the moment it has descended the distance d. 

 

(d) With 21
2

,K Mv  the speed is 

v
K

M

Mgd

M

gd
  

2 2 4

2

( / )
 

 

at the moment the block has descended the distance d. 

 

LEARN For a general downward acceleration a, the force exerted by the cord is 

( )F m g a  , so that the net work done on the block is net net .W F d mad   The speed of 

the block after falling a distance d is 2 .v ad  In the special case where the block hangs 

still, 0a  , F mg  and 0v  . In our case, / 4,a g  and 2( / 4) / 2,v g d gd   

which agrees with that calculated in (d). 
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22. We use d to denote the magnitude of the spelunker’s displacement during each stage. 

The mass of the spelunker is m = 80.0 kg. The work done by the lifting force is denoted 

Wi where i = 1, 2, 3 for the three stages. We apply the work-energy theorem, Eq. 17-15. 

 

(a) For stage 1, W mgd K mv v1 1
1
2 1

2

1 500    , . where  m/ s . This gives 

 

2 2 2 3

1 1

1 1
(80.0 kg)(9.80 m/s )(10.0 m) (80.0 kg)(5.00 m/s) 8.84 10  J.

2 2
W mgd mv       

 

(b) For stage 2, W2 – mgd = K2 = 0, which leads to 

 
2 3

2 (80.0 kg)(9.80 m/s )(10.0 m) 7.84 10  J.W mgd     

 

(c) For stage 3, W mgd K mv3 3
1
2 1

2    . We obtain 

 

2 2 2 3

3 1

1 1
(80.0 kg)(9.80 m/s )(10.0 m) (80.0 kg)(5.00 m/s) 6.84 10  J.

2 2
W mgd mv       

 

23. The fact that the applied force aF causes the box to move up a frictionless ramp at a 

constant speed implies that there is no net change in the kinetic energy: 0K  . Thus, 

the work done by aF  must be equal to the negative work done by gravity: a gW W  . 

Since the box is displaced vertically upward by 0.150 mh  , we have  

 

 2(3.00 kg)(9.80 m/s )(0.150 m) 4.41 JaW mgh     

 

24. (a) Using notation common to many vector-capable calculators, we have (from Eq. 7-

8) W = dot([20.0,0] + [0, (3.00)(9.8)], [0.500  30.0º]) =  +1.31 J , where “dot” stands 

for dot product. 

 

(b) Eq. 7-10 (along with Eq. 7-1) then leads to v = 2(1.31 J)/(3.00 kg)  =  0.935 m/s. 

 

25. (a) The net upward force is given by 

 

 ( ) ( )NF F m M g m M a      

 

where m = 0.250 kg is the mass of the cheese, M = 900 kg is the mass of the elevator cab, 

F is the force from the cable, and 3.00 NNF   is the normal force on the cheese.  On the 

cheese alone, we have  

 

 
2

23.00 N (0.250 kg)(9.80 m/s )
2.20 m/s

0.250 kg
NF mg ma a


     . 
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Thus the force from the cable is 4( )( ) 1.08 10 NNF m M a g F      , and the work 

done by the cable on the cab is 

 

 4 4

1 (1.80 10 N)(2.40 m) 2.59 10  J.W Fd      

 

(b) If 92.61 kJW  and 2 10.5 md  , the magnitude of the normal force is  

 

 
4

2

2

9.261 10  J
( ) (0.250 kg 900 kg)(9.80 m/s ) 2.45 N.

10.5 m
N

W
F m M g

d


        

 

26. We make use of Eq. 7-25 and Eq. 7-28 since the block is stationary before and after 

the displacement. The work done by the applied force can be written as 

 

 2 21
( )

2
a s f iW W k x x    . 

 

The spring constant is 3(80 N) /(2.0 cm)=4.0 10 N/m.k   With 4.0 J,aW   and 

2.0 cmix   , we have 

 

 2 2

3

2 2(4.0 J)
( 0.020 m) 0.049 m 4.9 cm.

(4.0 10  N/m)

a
f i

W
x x

k
          


 

 

27. From Eq. 7-25, we see that the work done by the spring force is given by 

 

 2 21
( )

2
s i fW k x x  . 

 

The fact that 360 N of force must be applied to pull the block to x = + 4.0 cm implies that 

the spring constant is  

 3360 N
90 N/cm 9.0 10  N/m

4.0 cm
k     . 

 

(a) When the block moves from 5.0 cmix   to 3.0 cmx   , we have  

 

 3 2 21
(9.0 10  N/m)[(0.050 m) (0.030 m) ] 7.2 J.

2
sW      

 

(b) Moving from 5.0 cmix   to 3.0 cmx   , we have 

 

3 2 21
(9.0 10  N/m)[(0.050 m) ( 0.030 m) ] 7.2 J.

2
sW       
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(c) Moving from 5.0 cmix   to 5.0 cmx   , we have 

 

3 2 21
(9.0 10  N/m)[(0.050 m) ( 0.050 m) ] 0 J.

2
sW       

 

(d) Moving from 5.0 cmix   to 9.0 cmx   , we have 

 

3 2 21
(9.0 10  N/m)[(0.050 m) ( 0.090 m) ] 25 J.

2
sW        

 

28. The spring constant is k = 100 N/m and the maximum elongation is xi = 5.00 m. 

Using Eq. 7-25 with xf = 0, the work is found to be 

 

2 2 31 1
(100 N/m)(5.00 m) 1.25 10  J.

2 2
iW kx     

 

29. The work done by the spring force is given by Eq. 7-25: 2 21
( )

2
s i fW k x x  . The 

spring constant k can be deduced from the figure which shows the amount of work done 

to pull the block from 0 to x = 3.0 cm. The parabola 2 / 2aW kx contains (0,0), (2.0 cm, 

0.40 J) and (3.0 cm, 0.90 J). Thus, we may infer from the data that 32.0 10  N/mk   . 

 

(a) When the block moves from 5.0 cmix   to 4.0 cmx   , we have  

 

 3 2 21
(2.0 10  N/m)[(0.050 m) (0.040 m) ] 0.90 J.

2
sW      

 

(b) Moving from 5.0 cmix   to 2.0 cmx   , we have 

 

3 2 21
(2.0 10  N/m)[(0.050 m) ( 0.020 m) ] 2.1 J.

2
sW       

 

(c) Moving from 5.0 cmix   to 5.0 cmx   , we have 

 

3 2 21
(2.0 10  N/m)[(0.050 m) ( 0.050 m) ] 0 J.

2
sW       

 

30. Hooke’s law and the work done by a spring is discussed in the chapter. We apply the 

work-kinetic energy theorem, in the form of K W Wa s  , to the points in the figure at x 

= 1.0 m and x = 2.0 m, respectively. The “applied” work Wa is that due to the constant 

force 

P . 
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2

2

1
4 J (1.0 m) (1.0 m)

2
1

0 (2.0 m) (2.0 m) .
2

P k

P k

 

 

 

 

(a) Simultaneous solution leads to P = 8.0 N. 

 

(b) Similarly, we find k = 8.0 N/m. 

 

31. THINK The applied force varies with x, so an integration is required to calculate the 

work done on the body. 

 

EXPRESS As the body moves along the x axis from xi = 3.0 m to xf = 4.0 m the work 

done by the force is 

2 2 2 2 6  3( ) 3 (4.0 3.0 ) 21 J.
f f

i i

x x

x f i
x x

W F dx x dx x x          

 

According to the work-kinetic energy theorem, this gives the change in the kinetic energy: 

W K m v vf i  
1

2

2 2d i  
 

where vi is the initial velocity (at xi) and vf is the final velocity (at xf). Given iv , we can 

readily calculate .fv  

 

ANALYZE (a) The work-kinetic theorem yields 

 

2 22 2( 21 J)
(8.0 m/s) 6.6 m/s.

2.0 kg
f i

W
v v

m


      

 

(b) The velocity of the particle is vf = 5.0 m/s when it is at x = xf. The work-kinetic energy 

theorem is used to solve for xf. The net work done on the particle is  2 23 f iW x x   , so 

the theorem leads to 

   2 2 2 21
3  .

2
f i f iW K x x m v v        

Thus, 

   2 2 2 2 2 22.0 kg
(5.0 m/s) (8.0 m/s) (3.0 m) 4.7 m.

6 6 N/m
f f i i

m
x v v x          

 

LEARN Since f ix x , 
2 23( ) 0f iW x x    , i.e., the work done by the force is negative. 

From the work-kinetic energy theorem, this implies 0K  . Hence, the speed of the 

particle will continue to decrease as it moves in the +x-direction. 
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32. The work done by the spring force is given by Eq. 7-25: 2 21
( )

2
s i fW k x x  . Since 

xF kx  , the slope in Fig. 7-37 corresponds to the spring constant k. Its value is given 

by 380 N/cm=8.0 10  N/mk   .  

 

(a) When the block moves from 8.0 cmix   to 5.0 cmx   , we have 

 

 3 2 21
(8.0 10  N/m)[(0.080 m) (0.050 m) ] 15.6 J 16 J.

2
sW       

 

(b) Moving from 8.0 cmix   to 5.0 cmx   , we have 

 

3 2 21
(8.0 10  N/m)[(0.080 m) ( 0.050 m) ] 15.6 J 16 J.

2
sW        

 

(c) Moving from 8.0 cmix   to 8.0 cmx   , we have 

 

3 2 21
(8.0 10  N/m)[(0.080 m) ( 0.080 m) ] 0 J.

2
sW       

 

(d) Moving from 8.0 cmix   to 10.0 cmx   , we have 

 

3 2 21
(8.0 10  N/m)[(0.080 m) ( 0.10 m) ] 14.4 J 14 J.

2
sW          

 

33. (a) This is a situation where Eq. 7-28 applies, so we have  

 

              Fx =  
1

2
 kx

2
    (3.0 N) x = 

1

2
 (50 N/m)x

2 

 

which (other than the trivial root) gives x =  (3.0/25) m = 0.12 m.  

 

(b) The work done by the applied force is Wa = Fx = (3.0 N)(0.12 m)  = 0.36 J. 

 

(c) Eq. 7-28 immediately gives Ws = –Wa = –0.36 J. 

 

(d) With Kf = K considered variable and Ki = 0, Eq. 7-27 gives K = Fx –  
1

2
 kx

2
.  We take 

the derivative of K with respect to x and set the resulting expression equal to zero, in 

order to find the position xc taht corresponds to a maximum value of K:   

 

xc =  
F

k
  =  (3.0/50) m  = 0.060 m. 

 

We note that xc is also the point where the applied and spring forces “balance.” 
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(e) At xc we find K = Kmax = 0.090 J. 

 

34. According to the graph the acceleration a varies linearly with the coordinate x. We 

may write a = x, where  is the slope of the graph. Numerically, 

 

   20

8 0
2 5 2 m / s

 m
 s

2

.
. .  

 

The force on the brick is in the positive x direction and, according to Newton’s second 

law, its magnitude is given by .F ma m x   If xf is the final coordinate, the work done 

by the force is 
2

2 2 2

0 0

(10 kg)(2.5 s )
  (8.0 m) 8.0 10  J.

2 2

f fx x

f

m
W F dx m x dx x






        

 

35. THINK We have an applied force that varies with x. An integration is required to 

calculate the work done on the particle.  

 

EXPRESS Given a one-dimensional force ( )F x , the work done is simply equal to the 

area under the curve: ( ) 
f

i

x

x
W F x dx  . 

ANALYZE (a) The plot of F(x) is shown to 

the right. Here we take x0 to be positive. The 

work is negative as the object moves from 

x x x 0 0 to  and positive as it moves from 

x x x x 0 02 to .  

 

Since the area of a triangle is (base)(altitude)/2, 

the work done from x x x 0 0 to  is  

1 0 0( )( ) / 2W x F  and the work done from 

x x x x 0 02 to  is 

2 0 0 0 0 0(2 )( ) / 2 ( )( ) / 2W x x F x F    

 

 

The total work is the sum of the two:  

1 2 0 0 0 0

1 1
0

2 2
W W W F x F x      . 

(b) The integral for the work is 
0

0

2
2

2

0 0
0

0 0 0

1  0.
2

x

x x x
W F dx F x

x x

   
       

   
  

 

LEARN If the particle starts out at x = 0 with an initial speed iv , with a negative work 

1 0 0 / 2 0W F x   , its speed at 0x x  will decrease to  
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2 2 0 012
i i i

F xW
v v v v

m m
     , 

 

but return to 
iv  again at 

02x x  with a positive work 
2 0 0 / 2 0W F x  . 

 

36. From Eq. 7-32, we see that the “area” in the graph is equivalent to the work done. 

Finding that area (in terms of rectangular [length  width] and triangular 

[ 1
2

 base height] areas) we obtain 

 

0 2 2 4 4 6 6 8 (20 10 0 5) J 25 J.x x x xW W W W W                 

 

37. (a) We first multiply the vertical axis by the mass, so that it becomes a graph of the 

applied force.  Now, adding the triangular and rectangular “areas” in the graph (for 0  x 

 4) gives 42 J for the work done. 

 

(b) Counting the “areas” under the axis as negative contributions, we find (for 0  x  7) 

the work to be 30 J at x = 7.0 m. 

 

(c) And at x = 9.0 m, the work is 12 J. 

 

(d) Equation 7-10 (along with Eq. 7-1) leads to speed v = 6.5 m/s at x = 4.0 m.  Returning 

to the original graph (where a was plotted) we note that (since it started from rest) it has 

received acceleration(s) (up to this point) only in the +x direction and consequently must 

have a velocity vector pointing in the +x direction at x = 4.0 m.  

 

(e) Now, using the result of part (b) and Eq. 7-10 (along with Eq. 7-1) we find the speed 

is 5.5 m/s at x = 7.0 m.  Although it has experienced some deceleration during the 0  x  

7 interval, its velocity vector still points in the +x direction. 

 

(f) Finally, using the result of part (c) and Eq. 7-10 (along with Eq. 7-1) we find its speed 

v = 3.5 m/s at x = 9.0 m.  It certainly has experienced a significant amount of deceleration 

during the 0  x  9 interval; nonetheless, its velocity vector still points in the +x 

direction. 

 

38. (a) Using the work-kinetic energy theorem 

 
2.0

2 3

0

1
(2.5 ) 0 (2.5)(2.0) (2.0) 2.3 J.

3
f iK K x dx        

 

(b) For a variable end-point, we have Kf as a function of x, which could be differentiated 

to find the extremum value, but we recognize that this is equivalent to solving F = 0 for x: 

 
20  2.5  0F x    . 

 



 

  

317 

Thus, K is extremized at   2.5 1.6 mx    and we obtain 

 
2.5

2 3

0

1
(2.5 ) 0 (2.5)( 2.5)  ( 2.5) 2.6 J.

3
f iK K x dx        

 

Recalling our answer for part (a), it is clear that this extreme value is a maximum. 

 

39. As the body moves along the x axis from xi = 0 m to xf = 3.00 m the work done by the 

force is 
3

2 2 3 2 3

0

 ( 3.00 ) (3.00) (3.00)
2 2

4.50 27.0.

f f

i i

x x

x
x x

c c
W F dx cx x dx x x

c

 
       

 

 

   

 

However, (11.0 20.0) 9.00 JW K      from the work-kinetic energy theorem. 

Thus,  

 4.50 27.0 9.00c    

or 4.00 N/mc  . 

 

40. Using Eq. 7-32, we find 

W e dxx     0.21 J
0.25

1.25

 z 4 2

 

 

where the result has been obtained numerically. Many modern calculators have that 

capability, as well as most math software packages that a great many students have 

access to. 

 

41. We choose to work this using Eq. 7-10 (the work-kinetic energy theorem). To find the 

initial and final kinetic energies, we need the speeds, so 

 

v
dx

dt
t t   30 8 0 30 2. . .  

 

in SI units. Thus, the initial speed is vi = 3.0 m/s and the speed at t = 4 s is vf = 19 m/s. 

The change in kinetic energy for the object of mass m = 3.0 kg is therefore 

 

 2 21
 528 J

2
f iK m v v     

 

which we round off to two figures and (using the work-kinetic energy theorem) conclude 

that the work done is 25.3 10 J.W    

 

42. We solve the problem using the work-kinetic energy theorem, which states that the 

change in kinetic energy is equal to the work done by the applied force, K W  . In our 
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problem, the work done is W Fd , where F is the tension in the cord and d is the length 

of the cord pulled as the cart slides from x1 to x2. From the figure, we have 

 

 
2 2 2 2 2 2 2 2

1 2 (3.00 m) (1.20 m) (1.00 m) (1.20 m)

3.23 m 1.56 m 1.67 m

d x h x h       

  
 

 

which yields (25.0 N)(1.67 m) 41.7 J.K Fd     

 

43. THINK This problem deals with the power and work done by a constant force.  

 

EXPRESS The power done by a constant force F is given by P = Fv and the work done 

by F from time 
1t  to time 2t  is  

2 2

1 1

  
t t

t t
W P dt Fv dt    

 

Since F is the magnitude of the net force, the magnitude of the acceleration is a = F/m. 

Thus, if the initial velocity is v0 0 , then the velocity of the body as a function of time is 

given by v v at F m t  0 ( ) .  Substituting the expression for v into the equation above, 

the work done during the time interval 1 2( , )t t  becomes 

  

 
2

1

2
2 2 2

2 1( / )  .
2

t

t

F
W F m t dt t t

m
    

 

ANALYZE (a) For t1 0  and 2 1.0 s,t   
2

21 (5.0 N)
[(1.0 s) 0]  0.83 J.

2 15 kg
W

 
   

 
 

 

(b) For 1 1.0s,t   and 2 2.0 s,t   
2

2 21 (5.0 N)
[(2.0 s) (1.0 s) ] 2.5 J.

2 15 kg
W

 
   

 
 

 

(c) For 1 2.0 st   and 2 3.0 s,t   
2

2 21 (5.0 N)
[(3.0 s) (2.0 s) ] 4.2 J.

2 15 kg
W

 
   

 
 

 

(d) Substituting v = (F/m)t into P = Fv we obtain P F t m 2  for the power at any time t. 

At the end of the third second, the instantaneous power is  

 

P  
(5.0 N)  (3.0 s)

15 kg
  5.0 W.

2


F
HG

I
KJ   

 

LEARN The work done here is quadratic in t. Therefore, from the definition /P dW dt  

for the instantaneous power, we see that P increases linearly with t.   
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44. (a) Since constant speed implies K  0,  we require W Wa g  , by Eq. 7-15. Since 

Wg  is the same in both cases (same weight and same path), then 29.0 10aW    J just as it 

was in the first case. 

 

(b) Since the speed of 1.0 m/s is constant, then 8.0 meters is traveled in 8.0 seconds. 

Using Eq. 7-42, and noting that average power is the power when the work is being done 

at a steady rate, we have 

2900 J
 1.1 10  W.

8.0 s

W
P

t
   


 

 

(c) Since the speed of 2.0 m/s is constant, 8.0 meters is traveled in 4.0 seconds. Using Eq. 

7-42, with average power replaced by power, we have 

 

900 J

4.0 s

W
P

t
 


= 225 W 22.3 10  W  . 

 

45. THINK A block is pulled at a constant speed by a force directed at some angle with 

respect to the direction of motion. The quantity we’re interested in is the power, or the 

time rate at which work is done by the applied force.    

 

EXPRESS The power associated with force 

F  is given by cos ,P F v Fv     where 


v  is the velocity of the object on which the force acts, and  is the angle between 


F  and 

v .   

 

ANALYZE With 122 NF  , 5.0 m/sv   and 37.0   , we find the power to be 

 
2cos (122 N)(5.0 m/s)cos37.0 4.9 10  W. P Fv       

 

LEARN From the expression cos ,P Fv   we see that the power is at a maximum 

when 

F  and 


v  are in the same direction ( 0  ), and is zero when they are 

perpendicular of each other. In addition, we’re told that the block moves at a constant 

speed, so 0K  , and the net work done on it must also be zero by the work-kinetic 

energy theorem. Thus, the applied force here must be compensating another force (e.g., 

friction) for the net rate to be zero.       

 

46. Recognizing that the force in the cable must equal the total weight (since there is no 

acceleration), we employ Eq. 7-47: 

P Fv mg
x

t
   cos     

F
HG
I
KJ




 

 

where we have used the fact that   0  (both the force of the cable and the elevator’s 

motion are upward). Thus, 
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3 2 5210 m
(3.0 10 kg)(9.8 m/s ) 2.7 10  W.

23 s
P

 
    

 
 

 

47. (a) Equation 7-8 yields  

 

W =  Fx x + Fy y + Fz z  

    = (2.00 N)(7.5 m – 0.50 m) + (4.00 N)(12.0 m – 0.75 m) + (6.00 N)(7.2m – 0.20 m)  

    =101 J   1.0  10
2
 J. 

 

(b) Dividing this result by 12 s (see Eq. 7-42) yields P = 8.4 W. 

 

48. (a) Since the force exerted by the spring on the mass is zero when the mass passes 

through the equilibrium position of the spring, the rate at which the spring is doing work 

on the mass at this instant is also zero. 

 

(b) The rate is given by ,P F v Fv     where the minus sign corresponds to the fact 

that 

F  and 


v  are anti-parallel to each other. The magnitude of the force is given by 

 

F = kx = (500 N/m)(0.10 m) = 50 N, 

 

while v is obtained from conservation of energy for the spring-mass system: 

 

2 2 2 21 1 1 1
10 J (0.30 kg) (500 N/m)(0.10 m)

2 2 2 2
E K U mv kx v        

 

which gives v = 7.1 m/s. Thus, 

 
2(50 N)(7.1 m/s) 3.5  10  W.P Fv     

 

49. THINK We have a loaded elevator moving upward at a constant speed. The forces 

involved are: gravitational force on the elevator, gravitational force on the counterweight, 

and the force by the motor via cable.  

 

EXPRESS The total work is the sum of the work done by gravity on the elevator, the 

work done by gravity on the counterweight, and the work done by the motor on the 

system:  

 e c mW W W W   . 

 

Since the elevator moves at constant velocity, its kinetic energy does not change and 

according to the work-kinetic energy theorem the total work done is zero, i.e., 

0.W K     

 

ANALYZE The elevator moves upward through 54 m, so the work done by gravity on it 

is 
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2 5(1200 kg)(9.80 m/s )(54 m) 6.35  10  J.e eW m gd     

 

The counterweight moves downward the same distance, so the work done by gravity on it 

is 
2 5(950 kg)(9.80 m/s )(54 m) 5.03 10  J.c cW m gd     

 

Since W = 0, the work done by the motor on the system is 

 
5 5 56.35 10  J  5.03 10  J  1.32 10  J.m e cW W W         

 

This work is done in a time interval of 3.0 min 180 s,t    so the power supplied by 

the motor to lift the elevator is 
5

21.32  10  J
7.4  10  W.

180 s

mW
P

t


   


 

 

LEARN In general, the work done by the motor is ( ) .m e cW m m gd   So when the 

counterweight mass balances the total mass, c em m , no work is required by the motor.  

 

50. (a) Using Eq. 7-48 and Eq. 3-23, we obtain 

 

(4.0N)( 2.0 m/s) (9.0 N)(4.0 m/s) 28 W.P F v       

 

(b) We again use Eq. 7-48 and Eq. 3-23, but with a one-component velocity: 

v v  j.   

 

12 W ( 2.0 N) .P F v v      

which yields v = 6 m/s. 

 

51. (a) The object’s displacement is 

 
ˆ ˆ ˆ( 8.00 m) i (6.00 m)j (2.00 m)k .f id d d       

Thus, Eq. 7-8 gives 

 

(3.00 N)( 8.00 m) (7.00 N)(6.00 m) (7.00 N)(2.00 m) 32.0 J.W F d        

 

(b) The average power is given by Eq. 7-42: 

 

avg

32.0
8.00 W.

4.00

W
P

t
    

 

(c) The distance from the coordinate origin to the initial position is 
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2 2 2(3.00 m) ( 2.00 m) (5.00 m) 6.16 m,id       

 

and the magnitude of the distance from the coordinate origin to the final position is 

 

2 2 2( 5.00 m) (4.00 m) (7.00 m) 9.49 mfd      . 

 

Their scalar (dot) product is 

 
2(3.00 m)( 5.00 m) ( 2.00 m)(4.00 m) (5.00 m)(7.00 m) 12.0 m .i fd d        

 

Thus, the angle between the two vectors is 

 

1 1 12.0
cos cos 78.2 .

(6.16)(9.49)

i f

i f

d d

d d
  

   
          

 

 

52. According to the problem statement, the power of the car is 

 

 21
constant.

2

dW d dv
P mv mv

dt dt dt

 
    

 
 

 

The condition implies /dt mvdv P , which can be integrated to give 

 

 
2

0 0 2

TT v
Tmvmvdv

dt T
P P

     

 

where Tv  is the speed of the car at .t T  On the other hand, the total distance traveled 

can be written as 

 
3

2

0 0 0
.

3

T TT v v
Tmvmvdv m

L vdt v v dv
P P P

       

 

By squaring the expression for L and substituting the expression for T, we obtain 

 
2 3

3 2 3
2 8 8

3 9 2 9

T Tmv mvP PT
L

P m P m

   
     
   

 

which implies that  

3 29
constant.

8
PT mL   

Differentiating the above equation gives 3 23 0,dPT PT dT   or .
3

T
dT dP

P
   
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53. (a) Noting that the x component of the third force is F3x = (4.00 N)cos(60º), we apply 

Eq. 7-8 to the problem:  

 

W = [5.00 N – 1.00 N + (4.00 N)cos 60º](0.20 m) = 1.20 J. 

 

(b) Equation 7-10 (along with Eq. 7-1) then yields v = 2W/m  = 1.10 m/s. 

 

54. From Eq. 7-32, we see that the “area” in the graph is equivalent to the work done. We 

find the area in terms of rectangular [length  width] and triangular [ 1
2

base  height] 

areas and use the work-kinetic energy theorem appropriately. The initial point is taken to 

be x = 0, where v0 = 4.0 m/s. 

 

(a) With K mvi  1
2 0

2 16 J,  we have 

 

3 0 0 1 1 2 2 3 4.0 Jx x xK K W W W           

 

so that K3 (the kinetic energy when x = 3.0 m) is found to equal 12 J. 

 

(b) With SI units understood, we write 
3  as ( 4.0 N)( 3.0 m)

fx x x fW F x x      and apply 

the work-kinetic energy theorem: 

 

K K W

K x

x x x

x f f

f f
 

   

 3 3

12 4 30( )( . )
 

 

so that the requirement 8.0 JxfK   leads to x f  4 0.  m.  

 

(c) As long as the work is positive, the kinetic energy grows. The graph shows this 

situation to hold until x = 1.0 m. At that location, the kinetic energy is 

 

1 0 0 1 16 J 2.0 J 18 J.xK K W        

 

55. THINK A horse is doing work to pull a cart at a constant speed. We’d like to know 

the work done during a time interval and the corresponding average power.  

 

EXPRESS The horse pulls with a force 

F . As the cart moves through a displacement d , 

the work done by 

F  is cos ,W F d Fd     where  is the angle between 


F  and d .   

 

ANALYZE (a) In 10 min the cart moves a distance 

 

mi 5280 ft/mi
6.0 (10 min) 5280 ft

h 60 min/h
d v t

  
     

  
 

so that Eq. 7-7 yields 
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5cos (40 lb)(5280 ft) cos 30 1.8 10  ft lb.W Fd        

 

(b) The average power is given by Eq. 7-42. With 10 min 600 st   , we obtain 

 
5

avg

1.8 10  ft lb
305 ft lb/s,

600 s

W
P

t

 
   


 

 

which (using the conversion factor 1hp 550 ft lb/s   found on the inside back cover) 

converts to Pavg = 0.55 hp. 

 

LEARN The average power can also be calculate by using Eq. 7-48: 
avg cosP Fv  . 

Converting the speed to 
5280 ft/mi

(6.0 mi/h) 8.8 ft/s
3600 s/h

v
 

  
 

, we get  

 

avg cos (40 lb)(8.8 ft/s)cos30 305 ft lb 0.55 hpP Fv        

 

which agrees with that found in (b).  

 

56. The acceleration is constant, so we may use the equations in Table 2-1. We choose 

the direction of motion as +x and note that the displacement is the same as the distance 

traveled, in this problem. We designate the force (assumed singular) along the x direction 

acting on the m = 2.0 kg object as F. 

 

(a) With v0 = 0, Eq. 2-11 leads to a = v/t. And Eq. 2-17 gives x vt  1
2

 . Newton’s 

second law yields the force F = ma. Equation 7-8, then, gives the work: 

 

21 1

2 2

v
W F x m vt mv

t

  
     

  
 

 

as we expect from the work-kinetic energy theorem. With v = 10 m/s, this yields 
21.0 10  JW   . 

 

(b) Instantaneous power is defined in Eq. 7-48. With t = 3.0 s, we find 

 

67 W.
v

P Fv m v
t

 
   

 
 

 

(c) The velocity at 1.5st   is 5.0 m sv at   . Thus, 33 W.P Fv    
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57. (a) To hold the crate at equilibrium in the final situation, 

F  must have the same 

magnitude as the horizontal component of the rope’s tension T sin  , where   is the 

angle between the rope (in the final position) and vertical: 

 

 
F
HG
I
KJ  sin

.

.
. .1 4 00

12 0
19 5  

 

But the vertical component of the tension supports against the weight: T cos   mg . 

Thus, the tension is  

T = (230 kg)(9.80 m/s
2
)/cos 19.5° = 2391 N 

 

and  F = (2391 N) sin 19.5° = 797 N. 

 

An alternative approach based on drawing a vector triangle (of forces) in the final 

situation provides a quick solution. 

 

(b) Since there is no change in kinetic energy, the net work on it is zero. 

 

(c) The work done by gravity is W F d mghg g   
 

, where h = L(1 – cos  ) is the 

vertical component of the displacement. With L = 12.0 m, we obtain Wg = –1547 J, which 

should be rounded to three significant figures: –1.55 kJ. 

 

(d) The tension vector is everywhere perpendicular to the direction of motion, so its work 

is zero (since cos 90° = 0). 

 

(e) The implication of the previous three parts is that the work due to 

F  is –Wg (so the 

net work turns out to be zero). Thus, WF = –Wg = 1.55 kJ. 

 

(f) Since 

F does not have constant magnitude, we cannot expect Eq. 7-8 to apply. 

 

58. (a) The force of the worker on the crate is constant, so the work it does is given by 

W F d FdF   
 

cos , where 

F  is the force, 


d  is the displacement of the crate, and  is 

the angle between the force and the displacement. Here F = 210 N, d = 3.0 m, and  = 

20°. Thus,  

WF = (210 N) (3.0 m) cos 20° = 590 J. 

 

(b) The force of gravity is downward, perpendicular to the displacement of the crate. The 

angle between this force and the displacement is 90° and cos 90° = 0, so the work done 

by the force of gravity is zero. 

 

(c) The normal force of the floor on the crate is also perpendicular to the displacement, so 

the work done by this force is also zero. 

 

(d) These are the only forces acting on the crate, so the total work done on it is 590 J. 
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59. The work done by the applied force 
aF  is given by cosa aW F d F d    . From the 

figure, we see that 25 JW  when 0  and 5.0 cmd  . This yields the magnitude of 

aF : 

 225 J
5.0 10  N

0.050 m
a

W
F

d
    . 

 

(a) For 64   , we have 2cos (5.0 10 N)(0.050 m)cos64 11 J.aW F d       

 

(b) For 147   , we have 2cos (5.0 10 N)(0.050 m)cos147 21 J.aW F d        

 

60. (a) In the work-kinetic energy theorem, we include both the work due to an applied 

force Wa and work done by gravity Wg in order to find the latter quantity. 

 

     30 J (100 N)(1.8 m)cos 180a g gK W W W       

 

leading to 22.1 10  JgW   . 

  

(b) The value of Wg obtained in part (a) still applies since the weight and the path of the 

child remain the same, so 22.1 10  JgW    . 

 

61. One approach is to assume a “path” from 

ri  to 


rf  and do the line-integral accordingly. 

Another approach is to simply use Eq. 7-36, which we demonstrate: 

 
4 3

2 3
(2 ) (3) 

f f

i i

x y

x y
x y

W F dx F dy x dx dy
 

        

 

with SI units understood. Thus, we obtain W = 12 J – 18 J = – 6 J. 

 

62. (a) The compression of the spring is d = 0.12 m. The work done by the force of 

gravity (acting on the block) is, by Eq. 7-12, 

 

W mgd1 0 25 0 29  ( . . kg) 9.8 m/ s  (0.12 m)  J.2c h  

 

(b) The work done by the spring is, by Eq. 7-26, 

 

W kd2

21

2

1

2
250 18       N / m) (0.12 m)  J.2( .  

  

(c) The speed vi of the block just before it hits the spring is found from the work-kinetic 

energy theorem (Eq. 7-15): 
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K mv W Wi   0
1

2

2

1 2  

which yields 

1 2( 2)( ) ( 2)(0.29 J 1.8 J)
3.5 m/s.

0.25 kg
i

W W
v

m

   
    

 

(d) If we instead had 7m/siv  , we reverse the above steps and solve for d  . Recalling 

the theorem used in part (c), we have 

 

 2 2

1 2

1 1
0

2 2
imv W W mgd kd          

 

which (choosing the positive root) leads to 

 

 
  

d
mg m g mkv

k

i

2 2 2

 

 

which yields d´ = 0.23 m. In order to obtain this result, we have used more digits in our 

intermediate results than are shown above (so 12.048 m/s 3.471 m/siv    and iv  = 

6.942 m/s). 

 

63. THINK A crate is being pushed up a frictionless inclined plane. The forces involved 

are: gravitational force on the crate, normal force on the crate, and the force applied by 

the worker.   

 

EXPRESS The work done by a force

F  on an object as it moves through a displacement 

d is cos ,W F d Fd     where  is the angle between 

F  and d . 

 

ANALYZE (a) The applied force is parallel to the inclined plane. Thus, using Eq. 7-6, 

the work done on the crate by the worker’s applied force is   

 

 cos0 (209 N)(1.50 m) 314 J.aW Fd     

 

(b) Using Eq. 7-12, we find the work done by the gravitational force to be  

 

2

cos(90 25 ) cos115

(25.0 kg)(9.8 m/s )(1.50 m)cos115

155 J.

g gW F d mgd    

 

 

 

 

(c) The angle between the normal force and the direction of motion remains 90º at all 

times, so the work it does is zero: 

cos90 0.N NW F d    
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(d) The total work done on the crate is the sum of all three works: 

 

 314 J ( 155 J) 0 J 158 Ja g NW W W W        . 

 

LEARN By work-kinetic energy theorem, if the crate is initially at rest ( 0iK  ), then its 

kinetic energy after having moved 1.50 m up the incline would be 158 JfK W  , and 

the speed of the crate at that instant is  

 

2 / 2(158 J) / 25.0 kg 3.56 m/s.fv K m    

 

64. (a) The force 

F  of the incline is a combination of normal and friction force, which is 

serving to “cancel” the tendency of the box to fall downward (due to its 19.6 N weight). 

Thus, 

F mg    upward. In this part of the problem, the angle   between the belt and 


F  

is 80°. From Eq. 7-47, we have 

 

 cos (19.6 N)(0.50 m/s) cos 80P Fv     = 1.7 W. 

 

(b) Now the angle between the belt and 

F  is 90°, so that P = 0. 

 

(c) In this part, the angle between the belt and 

F  is 100°, so that  

 

P = (19.6 N)(0.50 m/s) cos 100° = –1.7 W. 

 

65. There is no acceleration, so the lifting force is equal to the weight of the object. We 

note that the person’s pull 

F  is equal (in magnitude) to the tension in the cord. 

 

(a) As indicated in the hint, tension contributes twice to the lifting of the canister: 2T = 

mg. Since 

F T , we find 98N.F   

 

(b) To rise 0.020 m, two segments of the cord (see Fig. 7-47) must shorten by that 

amount. Thus, the amount of string pulled down at the left end (this is the magnitude of 
d , the downward displacement of the hand) is d = 0.040 m. 

 

(c) Since (at the left end) both 

F  and 


d  are downward, then Eq. 7-7 leads to  

 

(98 N)(0.040 m) 3.9 J.W F d     

 

(d) Since the force of gravity 

Fg  (with magnitude mg) is opposite to the displacement 


dc  0 020.  m (up) of the canister, Eq. 7-7 leads to  
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 (196 N)(0.020 m) 3.9 J.g cW F d       

 

This is consistent with Eq. 7-15 since there is no change in kinetic energy. 

 

66. After converting the speed: 120 km/h 33.33 m/sv   , we find  

 

  
22 51 1

1200kg 33.33m/s 6.67 10 J.
2 2

K mv     

 

67. THINK In this problem we have packages hung from the spring. The extent of 

stretching can be determined from Hooke’s law.  

 

EXPRESS According to Hooke’s law, the spring force is given by 

 

0( )xF k x x k x      , 

 

where x  is the displacement from the equilibrium position. Thus, the first two situations 

in Fig. 7-48 can be written as  

0

0

110 N (40 mm )

240 N (60 mm )

k x

k x

   

   
 

 

The two equations allow us to solve for k, the spring constant, as well as 0x , the relaxed 

position when no mass is hung.   

 

ANALYZE (a) The two equations can be added to give 

 

240 N 110 N  (60 mm 40 mm)k    

 

which yields k = 6.5 N/mm. Substituting the result into the first equation, we find  

 

0

110 N 110 N
40 mm 40 mm 23 mm.

6.5 N/mm
x

k
      

 

(b) Using the results from part (a) to analyze that last picture, we find the weight to be   

 

o(30mm ) (6.5 N/mm)(30 mm 23 mm) 45 N.W k x      

 

LEARN An alternative method to calculate W in the third picture is to note that since the 

amount of stretching is proportional to the weight hung, we have 
W x

W x



 

. Applying 

this relation to the second and the third pictures, the weight W is 
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3
2

2

30 mm 23 mm
(240 N) 45 N

60 mm 23 mm

x
W W

x

   
     

   
, 

 

in agreement with the result shown in (b).  

 

68. Using Eq. 7-7, we have W = Fd cos   J . Then, by the work-kinetic energy 

theorem, we find the kinetic energy Kf = Ki + W = 0 + 1504 J. The answer is therefore 

1.5 kJ . 

 

69. The total weight is (100)(660 N) = 6.60  10
4
 N, and the words “raises … at constant 

speed” imply zero acceleration, so the lift-force is equal to the total weight. Thus  

 

P = Fv = (6.60  10
4
)(150 m/60.0 s) = 1.65  10

5
 W. 

 

70. With SI units understood, Eq. 7-8 leads to W = (4.0)(3.0) – c(2.0) = 12 – 2c. 

 

(a) If W = 0, then c = 6.0 N. 

 

(b) If W = 17 J, then c = –2.5 N. 

 

(c) If W =  –18 J, then c = 15 N. 

 

71. Using Eq. 7-8, we find 

 
ˆ ˆ ˆ ˆ( cos  i  sin  j) ( i j) cos sinW F d F F x y Fx Fy            

 

where x = 2.0 m, y = –4.0 m, F = 10 N, and   150 . Thus, we obtain W = –37 J. Note 

that the given mass value (2.0 kg) is not used in the computation. 

 

72. (a) Eq. 7-10 (along with Eq. 7-1 and Eq. 7-7) leads to  

 

vf = (2 
d

m
 F cos )

1/2 
= (cos )

1/2
, 

 

where we have substituted F = 2.0 N, m = 4.0 kg, and d = 1.0 m. 

 

(b) With vi = 1, those same steps lead to vf = (1 + cos )
1/2

. 

 

(c) Replacing  with 180º – , and still using vi = 1, we find  

 

vf = [1 + cos(180º –  )]
1/2

 = (1 – cos )
1/2

. 
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(d) The graphs are shown on the right.  Note 

that as  is increased in parts (a) and (b) the 

force provides less and less of a positive 

acceleration, whereas in part (c) the force 

provides less and less of a deceleration (as its  

value increases).  The highest curve (which 

slowly decreases from 1.4 to 1) is the curve for 

part (b); the other decreasing curve (starting at 

1 and ending at 0) is for part (a).  The rising 

curve is for part (c); it is equal to 1 where   = 

90º. 
 

 

73. (a) The plot of the function (with SI units understood) is shown below. 

 

 
 

Estimating the area under the curve allows for a range of answers.  Estimates from 11 J to 

14 J are typical.   

 

(b) Evaluating the work analytically (using Eq. 7-32), we have 

 

 
22

/ 2 / 2

0
0

10 20 12.6 J 13 J.x xW e dx e       

 

74. (a) Using Eq. 7-8 and SI units, we find 

 
ˆ ˆ ˆ ˆ(2i 4 j) (8i j) 16 4W F d c c         

 

which, if equal zero, implies c = 16/4 = 4 m. 

 

(b) If W > 0 then 16 > 4c, which implies c < 4 m. 

 

(c) If W < 0 then 16 < 4c, which implies c > 4 m. 

 

75. THINK Power must be supplied in order to lift the elevator with load upward at a 

constant speed.  
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EXPRESS For the elevator-load system to move upward at a constant speed (zero 

acceleration), the applied force F must exactly balance the gravitational force on the 

system, i.e., elev load( )gF F m m g   . The power required can then be calculated using 

Eq. 17-48: P Fv . 

 

ANALYZE With elev 4500 kgm  , load 1800 kgm  and 3.80 m/s,v   we find the 

power to be  

 
2

elev load( ) (4500 kg 1800 kg)(9.8 m/s )(3.80 m/s) 235 kW.P Fv m m gv       

 

LEARN The power required is proportional to the speed at which the system moves; the 

greater the speed, the greater the power that must be supplied.  

 

76. (a) The component of the force of gravity exerted on the ice block (of mass m) along 

the incline is mg sin  , where   sin1 0 91 15. .b g  gives the angle of inclination for the 

inclined plane. Since the ice block slides down with uniform velocity, the worker must 

exert a force 

F  “uphill” with a magnitude equal to mg sin . Consequently, 

 

2 20.91m
sin (45 kg)(9.8 m/s ) 2.7 10  N.

1.5m
F mg 

 
    

 
 

 

(b) Since the “downhill” displacement is opposite to 

F , the work done by the worker is 

 

W1

2 22 7 10 4 0 10     . .N  (1.5 m) J.c h  

 

(c) Since the displacement has a vertically downward component of magnitude 0.91 m (in 

the same direction as the force of gravity), we find the work done by gravity to be 

 

W2

2 245 9 8 4 0 10  ( . . kg)  m/ s  (0.91 m) J.c h  

 

(d) Since NF  is perpendicular to the direction of motion of the block, and cos90  = 0, 

work done by the normal force is W3 = 0 by Eq. 7-7. 

 

(e) The resultant force 

Fnet  is zero since there is no acceleration. Thus, its work is zero, as 

can be checked by adding the above results W W W1 2 3 0   . 

 

77. (a) To estimate the area under the curve between x = 1 m and x = 3 m (which should 

yield the value for the work done), one can try “counting squares” (or half-squares or 

thirds of squares) between the curve and the axis.  Estimates between 5 J and 8 J are 

typical for this (crude) procedure. 
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(b) Equation 7-32 gives 

 


3

 1
 
a

x
2  dx = 

a

3
  –  

a

1
 =  6 J 

 

where a = –9 N·m
2
 is given in the problem statement.  

 

78. (a) Using Eq. 7-32, the work becomes W = 
9

2
 x

2
  –  x

3
   (SI units understood).  The plot 

is shown below: 

 
 

(b) We see from the graph that its peak value occurs at x = 3.00 m.  This can be verified 

by taking the derivative of W and setting equal to zero, or simply by noting that this is 

where the force vanishes. 

 

(c) The maximum value is W = 
9

2
 (3.00)

2
 – (3.00)

3
  = 13.50 J. 

 

(d) We see from the graph (or from our analytic expression) that W = 0 at x = 4.50 m. 

 

(e) The case is at rest when 0v  . Since 2 / 2W K mv   , the condition implies 0W  .  

This happens at x = 4.50 m. 

 

79. THINK A box sliding in the +x-direction is slowed down by a steady wind in the –x-

direction. The problem involves graphical analysis. 

 

EXPRESS Fig. 7-51 represents ( ),x t  the position of the lunch box as a function of time. 

It is convenient to fit the curve to a concave-downward parabola:  

 

21 1
( ) (10 ) .

10 10
x t t t t t     

 

By taking one and two derivatives, we find the velocity and acceleration to be 

 

( ) 1
5

dx t
v t

dt
     (in m/s) ,  

2

2

1
0.2

5

d x
a

dt
      (in m/s

2
). 
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The equations imply that the initial speed of the box is (0) 1.0 m/siv v  , and the 

constant force by the wind is  

 
2(2.0 kg)( 0.2 m/s ) 0.40 N.F ma      

 

The corresponding work is given by (SI units understood) 

 

( ) ( ) 0.04 (10 ).W t F x t t t      

 

The initial kinetic energy of the lunch box is  

 

2 21 1
(2.0 kg)(1.0 m/s) 1.0 J.

2 2
i iK mv    

 

With f iK K K W    , the kinetic energy at a later time is given by (in SI units)  

 

( ) 1 0.04 (10 )iK t K W t t      

 

ANALYZE (a) When t = 1.0 s, the above expression gives  

 

(1s) 1 0.04(1)(10 1) 1 0.36 0.64 0.6 JK         

 

where the second significant figure is not to be taken too seriously. 

 

(b) At t = 5.0 s, the above method gives (5.0 s) 1 0.04(5)(10 5) 1 1 0.K        

 

(c) The work done by the force from the wind from t = 1.0 s to t = 5.0 s is 

 

(5.0) (1.0 s) 0 0.6 0.6 J.W K K       

 

LEARN The result in (c) can also be obtained by evaluating ( ) 0.04 (10 )W t t t    

directly at t = 5.0 s and t = 1.0 s, and subtracting: 

 

 (5) (1) 0.04(5)(10 5) 0.04(1)(10 1) 1 ( 0.36) 0.64 0.6 J.W W                

 

Note that at t = 5.0 s, K = 0, the box comes to a stop and then reverses its direction 

subsequently (with x decreasing).  
 

80. The problem indicates that SI units are understood, so the result (of Eq. 7-23) is in 

joules.  Done numerically, using features available on many modern calculators, the 

result is roughly 0.47 J.  For the interested student it might be worthwhile to quote the 

“exact” answer (in terms of the “error function”): 
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         
1.2

 .15
 e-2x²

 dx =  ¼ 2 [erf(6 2 /5) – erf(3 2 /20)] . 

  

81. (a) The work done by the spring force is 2 21
2

( ).s i fW k x x   By energy conservation, 

when the block is at xf = 0, the energy stored in the spring is completed converted to the 

kinetic energy of the block: 21
2

.sW K mv   Solving for v, we obtain 

 

 2 2 21 1 500 N/m
( ) 0.300 m 3.35 m/s

2 2 4.00 kg
i f i

k
k x x mv v x

m
      . 

 

(b) The work done by the spring is 

 

2 21 1
(500 N/m)(0.300 m) 22.5 J

2 2
s iW kx   . 

 

(c) The instantaneous power due to the spring can be written as 

 

  2 2( ) i

k
P Fv kx x x

m
    

 

At the release point xi, the power is zero.  

 

(d) Similarly, at x = 0, we also have P = 0. 

 

(e) The position where the power is maximum can be found by differentiating P with 

respect to x, setting dP/dx = 0:   
2 2 2

2 2

( 2 )
0

( )

i

i

k x xdP

dx k x x

m


 


 

which gives 
(0.300 m)

0.212 m
2 2

ix
x    . 

 

82. (a) Applying Newton’s second law to the x (directed uphill) and y (normal to the 

inclined plane) axes, we obtain 

sin

cos 0.N

F mg ma

F mg





 

 
 

 

The second equation allows us to solve for the angle the inclined plane makes with the 

horizontal:  

 

1 1

2

13.41 N
cos cos 70.0

(4.00 kg)(9.8 m/s )

NF

mg
     
     

   
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From the equation for the x-axis, we find the acceleration of the block to be 

 

2 250 N
sin (9.8 m/s )sin 70.0 3.29 m/s

4.00 kg

F
a g

m
       

 

Using the kinematic equation 2 2

0 2 ,v v ad   the speed of the block when d = 3.00 m is  

 

 22 2(3.29 m/s )(3.00 m) 4.44 m/sv ad    

 

83. (a) The work done by the spring force (with spring constant 18 N/cm 1800 N/mk   ) 

is  

2 2 2 3 2 21 1 1
( ) (1800 N/m)(7.60 10 m) 5.20 10 J

2 2 2
s i f fW k x x kx             

 

(b) For 2 ,f fx x   the work done by the spring force is 2 21 1
2 2

(2 ) ,s f fW kx k x      so the 

additional work done is 

 

2 2 2 21 1 3
(2 ) 3 3( 5.20 10 J) 0.156 J

2 2 2
s s f f f sW W W k x kx kx W  
               

 
 

 

84. (a) The displacement of the object is  

 

 
2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( 4.10i 3.30j 5.40 k) (2.70i 2.90j 5.50 k) ( 6.80i 6.20j 0.10 k)r r r               

 

The work done by ˆ ˆ ˆ(2.00i 9.00j 5.30 k)NF     is (in SI units) 

 
ˆ ˆ ˆ ˆ ˆ ˆ(2.00i 9.00j 5.30 k) ( 6.80i 6.20j 0.10 k) 41.7 JW F r           

 

(b) The average power due to the force during the time interval is 

 

 
41.7 J

19.8 W
2.10 s

W
P

t
  


 

 

(c) The magnitudes of the position vectors are (in SI units) 

 
2 2 2

1 1

2 2 2

2 2

| | (2.70) ( 2.90) (5.50) 6.78

| | ( 4.10) (3.30) (5.40) 7.54

r r

r r

     

     
 

 

and their dot product is  
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1 2
ˆ ˆ ˆ ˆ ˆ ˆ(2.70i 2.90j 5.50 k) ( 4.10i 3.30j 5.40 k)

(2.70)( 4.10) ( 2.90)(3.30) (5.50)(5.40) 9.06

r r       

     
 

 

Using 
1 2 1 2 cos ,r r rr   , the angle between 

1r  and 
2r  is  

 

 1 11 2

1 2

9.06
cos cos 79.8

(6.78)(7.54)

r r

r r
     
      

  
 

 

85. The work done by the force is (in SI units) 

 
ˆ ˆ ˆ ˆ ˆ ˆ( 5.00i 5.00j 4.00 k) (2.00i 2.00j 7.00 k) 28 JW F d           

 

By energy conservation, 2 21
2

( ).f iW K m v v     Thus, the final speed of the particle is  

 

2 22 2(28 J)
(4.00 m/s) 6.63 m/s

2.00 kg
f i

W
v v

m
     . 
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Chapter 8 
 

 

1. THINK A compressed spring stores potential energy. This exercise explores the 

relationship between the energy stored and the spring constant.   

 

EXPRESS The potential energy stored by the spring is given by 2 / 2,U kx  where k is 

the spring constant and x is the displacement of the end of the spring from its position 

when the spring is in equilibrium. Thus, the spring constant is 22 /k U x . 

 

ANALYZE Substituting 25 JU   and 7.5 m 0.075 cmx    into the above 

expression, we find the spring constant to be 

 

 3

2 2

2 2(25 J)
8.9 10 N/m.

(0.075 m)

U
k

x
     

 

LEARN The spring constant k has units N/m. The quantity provides a measure of 

stiffness of the spring, for a given x, the greater the value of k, the greater the potential 

energy U.   

 

2. We use Eq. 7-12 for Wg and Eq. 8-9 for U. 

 

(a) The displacement between the initial point and A is horizontal, so  = 90.0° and 

0gW  (since cos 90.0° = 0). 

 

(b) The displacement between the initial point and B has a vertical component of h/2 

downward (same direction as 

Fg ), so we obtain  

 

 2 51 1
(825 kg)(9.80 m/s )(42.0 m) 1.70 10  J

2 2
g gW F d mgh      . 

 

(c) The displacement between the initial point and C has a vertical component of h 

downward (same direction as 

Fg ), so we obtain  

 
2 5(825 kg)(9.80 m/s )(42.0 m) 3.40 10  Jg gW F d mgh      . 

 

(d) With the reference position at C, we obtain  

 

2 51 1
(825 kg)(9.80 m/s )(42.0 m) 1.70 10  J

2 2
BU mgh    . 
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(e) Similarly, we find  

 
2 5(825 kg)(9.80 m/s )(42.0 m) 3.40 10  JAU mgh    . 

 

(f) All the answers are proportional to the mass of the object. If the mass is doubled, all 

answers are doubled. 

 

3. (a) Noting that the vertical displacement is 10.0 m – 1.50 m = 8.50 m downward (same 

direction as 

Fg ), Eq. 7-12 yields  

 

 2cos (2.00 kg)(9.80 m/s )(8.50 m)cos0 167 J.gW mgd      

 

(b) One approach (which is fairly trivial) is to use Eq. 8-1, but we feel it is instructive to 

instead calculate this as U where U = mgy (with upward understood to be the +y 

direction). The result is  

 
2( ) (2.00 kg)(9.80 m/s )(1.50 m 10.0 m) 167 J.f iU mg y y        

 

(c) In part (b) we used the fact that Ui = mgyi =196 J. 

 

(d) In part (b), we also used the fact Uf = mgyf = 29 J. 

 

(e) The computation of Wg does not use the new information (that U = 100 J at the 

ground), so we again obtain Wg = 167 J. 

 

(f) As a result of Eq. 8-1, we must again find U = –Wg = –167 J. 

 

(g) With this new information (that U0 = 100 J where y = 0) we have  

 

Ui = mgyi + U0 = 296 J. 

 

(h) With this new information (that U0 = 100 J where y = 0) we have  

 

Uf = mgyf + U0 = 129 J. 

 

We can check part (f) by subtracting the new Ui from this result. 

 

4. (a) The only force that does work on the ball is the force of gravity; the force of the rod 

is perpendicular to the path of the ball and so does no work. In going from its initial 

position to the lowest point on its path, the ball moves vertically through a distance equal 

to the length L of the rod, so the work done by the force of gravity is  

 

 2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 JW mgL   . 
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(b) In going from its initial position to the highest point on its path, the ball moves 

vertically through a distance equal to L, but this time the displacement is upward, 

opposite the direction of the force of gravity. The work done by the force of gravity is  

 
2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 J.W mgL       

 

(c) The final position of the ball is at the same height as its initial position. The 

displacement is horizontal, perpendicular to the force of gravity. The force of gravity 

does no work during this displacement. 

 

(d) The force of gravity is conservative. The change in the gravitational potential energy 

of the ball-Earth system is the negative of the work done by gravity:  

 
2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 JU mgL        

 

as the ball goes to the lowest point. 

 

(e) Continuing this line of reasoning, we find  

 
2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 JU mgL      

 

as it goes to the highest point. 

 

(f) Continuing this line of reasoning, we have U = 0 as it goes to the point at the same 

height. 

 

(g) The change in the gravitational potential energy depends only on the initial and final 

positions of the ball, not on its speed anywhere. The change in the potential energy is the 

same since the initial and final positions are the same. 

 

5. THINK As the ice flake slides down the frictionless bowl, its potential energy changes 

due to the work done by the gravitational force.     

 

EXPRESS The force of gravity is constant, so the work it does is given by W F d 
 

, 

where 

F is the force and 


d  is the displacement. The force is vertically downward and 

has magnitude mg, where m is the mass of the flake, so this reduces to W = mgh, where h 

is the height from which the flake falls. The force of gravity is conservative, so the 

change in gravitational potential energy of the flake-Earth system is the negative of the 

work done: U = –W. 

 

ANALYZE (a) The ice flake falls a distance 22.0 cm 0.22 m.h r    Therefore, the 

work done by gravity is  

 

W mgr       ( . ) ( .2 00 10 22 0 103 2 kg) (9.8 m s m) 4.31 10 J.2 3  
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(b) The change in gravitational potential energy is U = –W = – 4.31  10
–3

 J. 

 

(c) The potential energy when the flake is at the top is greater than when it is at the 

bottom by |U|. If U = 0 at the bottom, then U = + 4.31  10
–3

 J at the top. 

 

(d) If U = 0 at the top, then U = – 4.31  10
–3

 J at the bottom. 

 

(e) All the answers are proportional to the mass of the flake. If the mass is doubled, all 

answers are doubled. 

 

LEARN While the potential energy depends on the reference point (location where 

0U  ), the change in potential energy, U, does not. In both (c) and (d), we find 
34.31 10  J.U      

  

6. We use Eq. 7-12 for Wg and Eq. 8-9 for U. 

 

(a) The displacement between the initial point and Q has a vertical component of h – R 

downward (same direction as 

Fg ), so (with h = 5R) we obtain  

 
2 24 4(3.20 10  kg)(9.80 m/s )(0.12 m) 0.15 Jg gW F d mgR       . 

 

(b) The displacement between the initial point and the top of the loop has a vertical 

component of h – 2R downward (same direction as 

Fg ), so (with h = 5R) we obtain  

 
2 23 3(3.20 10  kg)(9.80 m/s )(0.12 m) 0.11 Jg gW F d mgR       . 

 

(c) With y = h = 5R, at P we find  

 
2 25 5(3.20 10  kg)(9.80 m/s )(0.12 m) 0.19 JU mgR     . 

 

(d) With y = R, at Q we have 

 
2 2(3.20 10  kg)(9.80 m/s )(0.12 m) 0.038 JU mgR     . 

 

(e) With y = 2R, at the top of the loop, we find 

 
2 22 2(3.20 10  kg)(9.80 m/s )(0.12 m) 0.075 JU mgR     . 

 

(f) The new information ( )vi  0  is not involved in any of the preceding computations; 

the above results are unchanged. 

 

7. The main challenge for students in this type of problem seems to be working out the 

trigonometry in order to obtain the height of the ball (relative to the low point of the 
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swing) h = L – L cos  (for angle  measured from vertical as shown in Fig. 8-34). Once 

this relation (which we will not derive here since we have found this to be most easily 

illustrated at the blackboard) is established, then the principal results of this problem 

follow from Eq. 7-12 (for Wg ) and Eq. 8-9 (for U ). 

 

(a) The vertical component of the displacement vector is downward with magnitude h, so 

we obtain 

2

(1 cos )

(5.00 kg)(9.80 m/s )(2.00 m)(1 cos30 ) 13.1 J.

g gW F d mgh mgL     

   
 

 

(b) From Eq. 8-1, we have U = –Wg = –mgL(1 – cos ) = –13.1 J. 

 

(c) With y = h, Eq. 8-9 yields U = mgL(1 – cos ) = 13.1 J. 

 

(d) As the angle increases, we intuitively see that the height h increases (and, less 

obviously, from the mathematics, we see that cos  decreases so that 1 – cos  increases), 

so the answers to parts (a) and (c) increase, and the absolute value of the answer to part (b) 

also increases. 

 

8. (a) The force of gravity is constant, so the work it does is given by W F d 
 

, where 
F  is the force and 


d  is the displacement. The force is vertically downward and has 

magnitude mg, where m is the mass of the snowball. The expression for the work reduces 

to W = mgh, where h is the height through which the snowball drops. Thus 

 

 2(1.50 kg)(9.80 m/s )(12.5 m) 184 JW mgh   . 

 

(b) The force of gravity is conservative, so the change in the potential energy of the 

snowball-Earth system is the negative of the work it does: U = –W = –184 J. 

 

(c) The potential energy when it reaches the ground is less than the potential energy when 

it is fired by |U|, so U = –184 J when the snowball hits the ground. 

 

9. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects 

friction and other dissipative effects). 

 

(a) In Problem 9-2, we found UA = mgh (with the reference position at C). Referring 

again to Fig. 8-29, we see that this is the same as U0, which implies that KA = K0 and thus 

that  

vA = v0 = 17.0 m/s. 

 

(b) In the solution to Problem 9-2, we also found U mghB  2.  In this case, we have 
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        K U K U

mv mgh mv mg
h

B B

B

0 0

0

2 21

2

1

2 2

  

  
F
HG
I
KJ

 

which leads to  

 

 2 2 2

0 (17.0 m/s) (9.80 m/s )(42.0 m) 26.5 m/s.Bv v gh      

 

(c) Similarly, 2 2 2

0 2 (17.0 m/s) 2(9.80 m/s )(42.0 m) 33.4 m/s.Cv v gh      

 

(d) To find the “final” height, we set Kf = 0. In this case, we have 

 

         K U K U

mv mgh mgh

f f

f

0 0

0

21

2
0

  

  
 

 

which yields 
2 2

0

2

(17.0 m/s)
42.0 m 56.7 m.

2 2(9.80 m/s )
f

v
h h

g
      

 

(e) It is evident that the above results do not depend on mass. Thus, a different mass for 

the coaster must lead to the same results. 

 

10. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects 

friction and other dissipative effects). 

 

(a) In the solution to Problem 9-3 (to which this problem refers), we found Ui = mgyi = 

196 J and Uf  = mgyf  = 29.0 J (assuming the reference position is at the ground). Since 

Ki = 0 in this case, we have 

 0 196 J 29.0 JfK    

 

which gives 167 JfK   and thus leads to 
2 2(167 J)

12.9 m/s.
2.00 kg

fK
v

m
    

 

(b) If we proceed algebraically through the calculation in part (a), we find Kf = – U = 

mgh where h = yi – yf and is positive-valued. Thus, 

 

2
2

fK
v gh

m
   

 

as we might also have derived from the equations of Table 2-1 (particularly Eq. 2-16). 

The fact that the answer is independent of mass means that the answer to part (b) is 

identical to that of part (a), that is, 12.9 m/sv  . 
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(c) If Ki  0 , then we find Kf = mgh + Ki (where Ki is necessarily positive-valued). This 

represents a larger value for Kf than in the previous parts, and thus leads to a larger value 

for v. 

 

11. THINK As the ice flake slides down the frictionless bowl, its potential energy 

decreases (discussed in Problem 8-5). By conservation of mechanical energy, its kinetic 

energy must increase.  

 

EXPRESS If Ki is the kinetic energy of the flake at the edge of the bowl, Kf is its kinetic 

energy at the bottom, Ui is the gravitational potential energy of the flake-Earth system 

with the flake at the top, and Uf is the gravitational potential energy with it at the bottom, 

then  

 
f f i iK U K U   . 

 

Taking the potential energy to be zero at the bottom of the bowl, then the potential energy 

at the top is Ui = mgr where r = 0.220 m is the radius of the bowl and m is the mass of the 

flake. Ki = 0 since the flake starts from rest. Since the problem asks for the speed at the 

bottom, we write 2 / 2fK mv .  

 

ANALYZE (a) Energy conservation leads to 

 

21
0 0

2
f f i iK U K U mv mgr       . 

 

The speed is 2 2.08 m/sv gr  . 
 

 

(b) Since the expression for speed is 2v gr , which does not contain the mass of the 

flake, the speed would be the same, 2.08 m/s, regardless of the mass of the flake. 

 

(c) The final kinetic energy is given by .f i i fK K U U    If Ki is greater than before, 

then Kf will also be greater. This means the final speed of the flake is greater. 

 

LEARN The mechanical energy conservation principle can also be expressed as 

mech 0E K U     , which implies ,K U    i.e., the increase in kinetic energy 

is equal to the negative of the change in potential energy. 

 

12. We use Eq. 8-18, representing the conservation of mechanical energy. We choose the 

reference position for computing U to be at the ground below the cliff; it is also regarded 

as the “final” position in our calculations. 

 

(a) Using Eq. 8-9, the initial potential energy is given by Ui = mgh where h = 12.5 m and 

1.50 kgm  . Thus, we have 
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1

2

K U K U

mv mgh mv

i i f f

i

  

  
1

2
02 2

 

 

which leads to the speed of the snowball at the instant before striking the ground: 

 

v
m

mv mgh v ghi i 
F
HG

I
KJ  

2 1

2
22 2    

 

where vi = 14.0 m/s is the magnitude of its initial velocity (not just one component of it). 

Thus we find v = 21.0 m/s. 

 

(b) As noted above, vi is the magnitude of its initial velocity and not just one component 

of it; therefore, there is no dependence on launch angle. The answer is again 21.0 m/s. 

 

(c) It is evident that the result for v in part (a) does not depend on mass. Thus, changing 

the mass of the snowball does not change the result for v. 

 

13. THINK As the marble moves vertically upward, its gravitational potential energy 

increases. This energy comes from the release of elastic potential energy stored in the 

spring.   

 

EXPRESS We take the reference point for gravitational potential energy to be at the 

position of the marble when the spring is compressed. The gravitational potential energy 

when the marble is at the top of its motion is gU mgh . On the other had, the energy 

stored in the spring is 2 / 2sU kx . Applying mechanical energy conservation principle 

allows us to solve the problem. 

 

ANALYZE (a) The height of the highest point is h = 20 m. With initial gravitational 

potential energy set to zero, we find  

 
3 2(5.0 10 kg)(9.8 m/s )(20 m) 0.98 J.gU mgh       

 

(b) Since the kinetic energy is zero at the release point and at the highest point, then 

conservation of mechanical energy implies Ug + Us = 0, where Us is the change in 

the spring's elastic potential energy. Therefore, Us = –Ug = –0.98 J. 

 

(c) We take the spring potential energy to be zero when the spring is relaxed. Then, our 

result in the previous part implies that its initial potential energy is Us = 0.98 J. This must 

be 1
2

2kx , where k is the spring constant and x is the initial compression. Consequently, 

 

2

2 2

2 0.98 J
3.1 10 N/m 3.1 N/cm.

(0.080 m)

sU
k

x
      
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LEARN In general, the marble has both kinetic and potential energies: 

 

2 21 1

2 2
kx mv mgy   

At the maximum height 
max ,y h  0v   and 2 / 2mgh kx , or 

2

2

kx
h

mg
 .  

 

14. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects 

friction and other dissipative effects). 

 

(a) The change in potential energy is U = mgL as it goes to the highest point. Thus, we 

have 

          

top

 K U

K K mgL

 

  

0

00

 

 

which, upon requiring Ktop = 0, gives K0 = mgL and thus leads to 

 

 20
0

2
2 2(9.80 m/s )(0.452 m) 2.98 m/s

K
v gL

m
    . 

 

(b) We also found in Problem 9-4 that the potential energy change is U = –mgL in going 

from the initial point to the lowest point (the bottom). Thus, 

 
              

bottom

 K U

K K mgL

 

  

0

00

 

 

which, with K0 = mgL, leads to Kbottom = 2mgL. Therefore, 

 

 2bottom
bottom

2
4 4(9.80 m/s )(0.452 m) 4.21 m/s

K
v gL

m
    . 

 

(c) Since there is no change in height (going from initial point to the rightmost point), 

then U = 0, which implies K = 0. Consequently, the speed is the same as what it was 

initially, 

right 0 2.98 m/sv v  . 

 

(d) It is evident from the above manipulations that the results do not depend on mass. 

Thus, a different mass for the ball must lead to the same results. 

 

15. THINK The truck with failed brakes is moving up an escape ramp. In order for it to 

come to a complete stop, all of its kinetic energy must be converted into gravitational 

potential energy.  
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EXPRESS We ignore any work done by friction. In SI units, the initial speed of the truck 

just before entering the escape ramp is vi = 130(1000/3600) = 36.1 m/s. When the truck 

comes to a stop, its kinetic and potential energies are Kf = 0 and Uf = mgh. We apply 

mechanical energy conservation to solve the problem.     

 

ANALYZE (a) Energy conservation implies 
f f i iK U K U   . With Ui = 0, and 

21

2
i iK mv , we obtain 

2 2
2

2

1 (36.1m/s)
0 0 66.5 m.

2 2 2(9.8 m/s )

i
i

v
mv mgh h

g
        

 

If L is the minimum length of the ramp, then sinL h  , or L sin 15° = 66.5 m so that 

(66.5 m) / sin15 257 m.L     That is, the ramp must be about 2.610
2
 m long if 

friction is negligible. 

 

(b) The minimum length is 
2

sin 2 sin

ivh
L

g 
   which does not depend on the mass of 

the truck. Thus, the answer remains the same if the mass is reduced. 

 

(c) If the speed is decreased, then h and L both decrease (note that h is proportional to the 

square of the speed and that L is proportional to h). 

 

LEARN The greater the speed of the truck, the longer the ramp required. This length can 

be shortened considerably if the friction between the tires and the ramp surface is 

factored in.  

 

16. We place the reference position for evaluating gravitational potential energy at the 

relaxed position of the spring. We use x for the spring's compression, measured positively 

downward (so x > 0 means it is compressed). 

 

(a) With x = 0.190 m, Eq. 7-26 gives  

21
7.22 J 7.2 J

2
sW kx       

 

for the work done by the spring force. Using Newton's third law, we see that the work 

done on the spring is 7.2 J. 

 

(b) As noted above, Ws = –7.2 J. 

 

(c) Energy conservation leads to 

 

2

0

1
0

2
i i f fK U K U mgh kx mgx        
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which (with m = 0.70 kg) yields h0 = 0.86 m. 

 

(d) With a new value for the height   h h0 02 172. m , we solve for a new value of x 

using the quadratic formula (taking its positive root so that x > 0). 

 

mgh mgx kx x
mg mg mgkh

k
     

  
0

2

2

01

2

2b g
 

 

which yields x = 0.26 m. 

 

17. (a) At Q the block (which is in circular motion at that point) experiences a centripetal 

acceleration v
2
/R leftward. We find v

2
 from energy conservation: 

 

K U K U

mgh mv mgR

P P Q Q  

  0
1

2

2
 

 

Using the fact that h = 5R, we find mv
2
 = 8mgR. Thus, the horizontal component of the 

net force on the block at Q is  

 

F = mv
2
/R = 8mg=8(0.032 kg)(9.8 m/s

2
)= 2.5 N. 

 

The direction is to the left (in the same direction as 

a ). 

 

(b) The downward component of the net force on the block at Q is the downward force of 

gravity  

F = mg =(0.032 kg)(9.8 m/s
2
)= 0.31 N. 

 

(c) To barely make the top of the loop, the centripetal force there must equal the force of 

gravity: 
2

2t
t

mv
mg mv mgR

R
   . 

 

This requires a different value of h than what was used above. 

 

21
0

2

1
( ) (2 )

2

P P t t

t t

K U K U

mgh mv mgh

mgh mgR mg R

  

  

 

 

 

Consequently, h = 2.5R = (2.5)(0.12 m) = 0.30 m. 
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(d) The normal force FN, for speeds vt greater than gR  (which are the only 

possibilities for nonzero FN — see the solution in the previous part), obeys 

 

 
2

t
N

mv
F mg

R
   

 

from Newton's second law. Since 2

tv  is related to h by energy conservation 

K U K U gh v gRP P t t t      
1

2
22

 
 

then the normal force, as a function for h (so long as h  2.5R — see the solution in the 

previous part), becomes 

2
5N

mgh
F mg

R
  . 

 

Thus, the graph for h  2.5R = 0.30 m consists of a straight line of positive slope 2mg/R 

(which can be set to some convenient values for graphing purposes). Note that for h  

2.5R, the normal force is zero.  

 

 
 

18. We use Eq. 8-18, representing the conservation of mechanical energy. The reference 

position for computing U is the lowest point of the swing; it is also regarded as the 

“final” position in our calculations. 

 

(a) The potential energy is U = mgL(1 – cos ) at the position shown in Fig. 8-34 (which 

we consider to be the initial position). Thus, we have 

 

                  K U K U

mgL mv

i i f f  

   0 1
1

2
02( cos )

 

which leads to 

v
mgL

m
gL


 

2 1
2 1

( cos )
( cos ).


  
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Plugging in L = 2.00 m and  = 30.0° we find v = 2.29 m/s. 

 

(b) It is evident that the result for v does not depend on mass. Thus, a different mass for 

the ball must not change the result. 

 

19. We convert to SI units and choose upward as the +y direction. Also, the relaxed 

position of the top end of the spring is the origin, so the initial compression of the spring 

(defining an equilibrium situation between the spring force and the force of gravity) is y0 

= –0.100 m and the additional compression brings it to the position y1 = –0.400 m. 

 

(a) When the stone is in the equilibrium (a = 0) position, Newton's second law becomes 

 

                                 

                      

net

spring


F ma

F mg

k



 

   

0

0100 8 00 9 8 0( . ) ( . ) ( . )

 

 

where Hooke's law (Eq. 7-21) has been used. This leads to a spring constant equal to 

784 N/mk  .  

 

(b) With the additional compression (and release) the acceleration is no longer zero, and 

the stone will start moving upward, turning some of its elastic potential energy (stored in 

the spring) into kinetic energy. The amount of elastic potential energy at the moment of 

release is, using Eq. 8-11, 

 2 2

1

1 1
(784 N/m)( 0.400) 62.7 J

2 2
U ky    . 

 

(c) Its maximum height y2 is beyond the point that the stone separates from the spring 

(entering free-fall motion). As usual, it is characterized by having (momentarily) zero 

speed. If we choose the y1 position as the reference position in computing the 

gravitational potential energy, then 

  K U K U

ky mgh

1 1 2 2

1

20
1

2
0

  

  
 

 

where h = y2 – y1 is the height above the release point. Thus, mgh (the gravitational 

potential energy) is seen to be equal to the previous answer, 62.7 J, and we proceed with 

the solution in the next part. 

 

(d) We find 2

1 2 0.800 mh ky mg  , or 80.0 cm. 

 

20. (a) We take the reference point for gravitational energy to be at the lowest point of the 

swing. Let  be the angle measured from vertical. Then the height y of the pendulum 

“bob” (the object at the end of the pendulum, which in this problem is the stone) is given 

by L(1 – cos) = y . Hence, the gravitational potential energy is  
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mg y = mgL(1 – cos). 
 

When  = 0º (the string at its lowest point) we are told that its speed is 8.0 m/s; its kinetic 

energy there is therefore 64 J (using Eq. 7-1). At  = 60º its mechanical energy is 

 

Emech = 
1

2
 mv

2
 + mgL(1 – cos) . 

 

Energy conservation (since there is no friction) requires that this be equal to 64 J.  

Solving for the speed, we find v = 5.0 m/s. 

 

(b) We now set the above expression again equal to 64 J (with  being the unknown) but 

with zero speed (which gives the condition for the maximum point, or “turning point” 

that it reaches). This leads to max = 79. 

 

(c) As observed in our solution to part (a), the total mechanical energy is 64 J. 

 

21. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects 

friction and other dissipative effects). The reference position for computing U (and height 

h) is the lowest point of the swing; it is also regarded as the “final” position in our 

calculations. 

 

(a) Careful examination of the figure leads to the trigonometric relation h = L – L cos  

when the angle is measured from vertical as shown. Thus, the gravitational potential 

energy is U = mgL(1 – cos 0) at the position shown in Fig. 8-34 (the initial position). 

Thus, we have 

                         

 

K U K U

mv mgL mv

f f0 0

0

2

0

21

2
1

1

2
0

  

   cosb g  

which leads to 

 

2 2

0 0 0 0

2 2

2 1
(1 cos ) 2 (1 cos )

2

(8.00 m/s) 2(9.80 m/s )(1.25 m)(1 cos 40 ) 8.35 m/s.

v mv mgL v gL
m

 
 

      
 

    

 

 

(b) We look for the initial speed required to barely reach the horizontal position — 

described by vh = 0 and  = 90° (or  = –90°, if one prefers, but since cos(–) = cos , the 

sign of the angle is not a concern). 

                         

 

K U K U

mv mgL mgL

h h0 0

0

2

0

1

2
1 0

  

   cosb g  

which yields  
2

0 02 cos 2(9.80 m/s )(1.25 m)cos40 4.33 m/s.v gL      
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(c) For the cord to remain straight, then the centripetal force (at the top) must be (at least) 

equal to gravitational force: 

mv

r
mg mv mgLt

t

2
2    

 

where we recognize that r = L. We plug this into the expression for the kinetic energy (at 

the top, where  = 180°). 

                         

 
1

2

 
1

2

K U K U

mv mgL mv mg

mv mgL mgL mg L

t t

t

0 0

0

2

0

2

0

2

0

1

2
1 1 180

1

2
1 2

  

     

   

cos cos

cos ( ) ( )





b g b g

b g

 

which leads to  

 
2

0 0(3 2cos ) (9.80 m/s )(1.25 m)(3 2cos40 ) 7.45 m/s.v gL        

 

(d) The more initial potential energy there is, the less initial kinetic energy there needs to 

be, in order to reach the positions described in parts (b) and (c). Increasing 0 amounts to 

increasing U0, so we see that a greater value of 0 leads to smaller results for v0 in parts (b) 

and (c). 

 

22. From Chapter 4, we know the height h of the skier's jump can be found from 

v v ghy y

2

0

20 2    where v0 y = v0 sin 28° is the upward component of the skier's “launch 

velocity.” To find v0 we use energy conservation. 

 

(a) The skier starts at rest y = 20 m above the point of “launch” so energy conservation 

leads to 

mgy mv v gy   
1

2
m s2 2 20  

 

which becomes the initial speed v0 for the launch. Hence, the above equation relating h to 

v0 yields 

h
v

g





0

2

sin 28
4.4 m

2b g
.  

 

(b) We see that all reference to mass cancels from the above computations, so a new 

value for the mass will yield the same result as before. 

 

23. (a) As the string reaches its lowest point, its original potential energy U = mgL 

(measured relative to the lowest point) is converted into kinetic energy. Thus, 
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mgL mv v gL  
1

2
22 .  

 

With L = 1.20 m we obtain 22 2(9.80 m/s )(1.20 m) 4.85 m/sv gL   . 

 

(b) In this case, the total mechanical energy is shared between kinetic 1
2

2mvb  and 

potential mgyb. We note that yb = 2r where r = L – d = 0.450 m. Energy conservation 

leads to 

mgL mv mgyb b 
1

2

2  

 

which yields v gL g rb   2 2 2.42 m s2b g .  

 

24. We denote m as the mass of the block, h = 0.40 m as the height from which it dropped 

(measured from the relaxed position of the spring), and x as the compression of the spring 

(measured downward so that it yields a positive value). Our reference point for the 

gravitational potential energy is the initial position of the block. The block drops a total 

distance h + x, and the final gravitational potential energy is –mg(h + x). The spring 

potential energy is 1
2

2kx  in the final situation, and the kinetic energy is zero both at the 

beginning and end. Since energy is conserved 

 

K U K U

mg h x kx

i i f f  

              
1

2
0 2( )

 

which is a second degree equation in x. Using the quadratic formula, its solution is 

 

x
mg mg mghk

k


 b g2 2
.  

 

Now mg = 19.6 N, h = 0.40 m, and k 1960 N m , and we choose the positive root so 

that x > 0. 

x 
 


19.6 19.6 2 19.6 0.40 1960

0.10 m .

2 b gb gb g
1960

 

 

25. Since time does not directly enter into the energy formulations, we return to Chapter 

4 (or Table 2-1 in Chapter 2) to find the change of height during this t = 6.0 s flight. 

 

y v t gt
y

 0

21

2
 

 

This leads to y  32 m . Therefore 2318 J 3.2 10  JU mg y         . 
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26. (a) With energy in joules and length in meters, we have 

 

U U x U x dx
x

      zb g b g b g0 6 12
0

. 

 

Therefore, with U (0) = 27 J, we obtain U(x) (written simply as U) by integrating and 

rearranging: 

U x x  27 12 3 2 .  

 

(b) We can maximize the above function by working through the / 0dU dx  condition, 

or we can treat this as a force equilibrium situation — which is the approach we show. 

 

F xeq   0 6 12 0  

 

Thus, xeq = 2.0 m, and the above expression for the potential energy becomes U = 39 J. 

 

(c) Using the quadratic formula or using the polynomial solver on an appropriate 

calculator, we find the negative value of x for which U = 0 to be x = –1.6 m. 

 

(d) Similarly, we find the positive value of x for which U = 0 to be x = 5.6 m. 

 

27. (a) To find out whether or not the vine breaks, it is sufficient to examine it at the 

moment Tarzan swings through the lowest point, which is when the vine — if it didn't 

break — would have the greatest tension. Choosing upward positive, Newton's second 

law leads to 

T mg m
v

r
 

2

 

 

where r = 18.0 m and m W g  688 98 702. . kg . We find the v
2
 from energy 

conservation (where the reference position for the potential energy is at the lowest point). 

 

 2 21
2

2
mgh mv v gh    

 

where h = 3.20 m. Combining these results, we have 

 

T mg m
gh

r
mg

h

r
   

F
HG
I
KJ

2
1

2
 

 

which yields 933 N. Thus, the vine does not break.  

 

(b) Rounding to an appropriate number of significant figures, we see the maximum 

tension is roughly 9.310
2
 N. 
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28. From the slope of the graph, we find the spring constant 

 

k
F

x
  



010 10. .N cm N m  

 

(a) Equating the potential energy of the compressed spring to the kinetic energy of the 

cork at the moment of release, we have 

1

2

1

2

2 2kx mv v x
k

m
    

 

which yields v = 2.8 m/s for m = 0.0038 kg and x = 0.055 m. 

 

(b) The new scenario involves some potential energy at the moment of release. With d = 

0.015 m, energy conservation becomes 

1

2

1

2

1

2

2 2 2 2 2kx mv kd v
k

m
x d    c h  

 

which yields v = 2.7 m/s. 

 

29. THINK As the block slides down the inclined plane, it compresses the spring, then 

stops momentarily before sliding back up again.  

 

EXPRESS We refer to its starting point as A, the point where it first comes into contact 

with the spring as B, and the point where the spring is compressed by 0 0.055 mx   as 

C (see the figure below). Point C is our reference point for computing gravitational 

potential energy. Elastic potential energy (of the spring) is zero when the spring is 

relaxed. 

 
 

Information given in the second sentence allows us to compute the spring constant. From 

Hooke's law, we find 

k
F

x
   

270 N

0.02 m
1.35 10 N m4 .  
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The distance between points A and B is 
0l  and we note that the total sliding distance  

0 0l x  is related to the initial height hA of the block (measured relative to C) by 

0 0

sin Ah

l x
 


, where the incline angle  is 30°.  

 

ANALYZE (a) Mechanical energy conservation leads to 

 

2

0

1
0

2
A A C C AK U K U mgh kx       

which yields 
2 4 2

0

2

(1.35 10 N/m)(0.055 m)
0.174 m.

2 2(12 kg)(9.8 m/s )
A

kx
h

mg


    

 

Therefore, the total distance traveled by the block before coming to a stop is 

 

0 0

0.174 m
0.347 m 0.35 m.

sin30 sin30

Ah
l x    

 
 

  

(b) From this result, we find 0 0 0.347 m 0.055 m 0.292 m,l x     which means 

that the block has descended a vertical distance 

 

0| | sin (0.292 m)sin30 0.146 mA By h h l         

 

in sliding from point A to point B. Thus, using Eq. 8-18, we have 

 

 2 21 1
0 | |

2 2
A B B Bmgh mv mgh mv mg y       

 

which yields 22 | | 2(9.8 m/s )(0.146 m) 1.69 m/s 1.7 m/sBv g y     . 

 

LEARN Energy is conserved in the process. The total energy of the block at position B is  

 

2 2 21 1
(12 kg)(1.69 m/s) (12 kg)(9.8 m/s )(0.028 m) 20.4 J,

2 2
B B BE mv mgh      

 

which is equal to the elastic potential energy in the spring: 

 

2 4 2

0

1 1
(1.35 10 N/m)(0.055 m) 20.4 J

2 2
kx    . 
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30. We take the original height of the box to be the y = 0 reference level and observe that, 

in general, the height of the box (when the box has moved a distance d downhill) is 

sin 40y d   . 

 

(a) Using the conservation of energy, we have 

 

K U K U mv mgy kdi i       0 0
1

2

1

2

2 2 . 

 

Therefore, with d = 0.10 m, we obtain v = 0.81 m/s. 

 

(b) We look for a value of d   0 such that K = 0. 

 

K U K U mgy kdi i       0 0 0
1

2

2 . 

 

Thus, we obtain mgd kdsin40 1
2

2   and find d = 0.21 m. 

 

(c) The uphill force is caused by the spring (Hooke's law) and has magnitude kd = 25.2 N. 

The downhill force is the component of gravity sin 40mg = 12.6 N. Thus, the net force 

on the box is (25.2 – 12.6) N = 12.6 N uphill, with  

 

a = F/m =(12.6 N)/(2.0 kg) = 6.3 m/s
2
. 

 

(d) The acceleration is up the incline. 

 

31. The reference point for the gravitational potential energy Ug (and height h) is at the 

block when the spring is maximally compressed. When the block is moving to its highest 

point, it is first accelerated by the spring; later, it separates from the spring and finally 

reaches a point where its speed vf is (momentarily) zero. The x axis is along the incline, 

pointing uphill (so x0 for the initial compression is negative-valued); its origin is at the 

relaxed position of the spring. We use SI units, so k = 1960 N/m and x0 = –0.200 m. 

 

(a) The elastic potential energy is 1
2 0

2 39 2kx  .  J . 

 

(b) Since initially Ug = 0, the change in Ug is the same as its final value mgh where m = 

2.00 kg. That this must equal the result in part (a) is made clear in the steps shown in the 

next part. Thus, Ug = Ug = 39.2 J. 

 

(c) The principle of mechanical energy conservation leads to 

 

 K U K U

kx mgh

f f0 0

0

20
1

2
0

  

  
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which yields h = 2.00 m. The problem asks for the distance along the incline, so we have 

d = h/sin 30° = 4.00 m. 

 

32. The work required is the change in the gravitational potential energy as a result of the 

chain being pulled onto the table. Dividing the hanging chain into a large number of 

infinitesimal segments, each of length dy, we note that the mass of a segment is (m/L) dy 

and the change in potential energy of a segment when it is a distance |y| below the table 

top is  

dU = (m/L)g|y| dy = –(m/L)gy dy 

 

since y is negative-valued (we have +y upward and the origin is at the tabletop). The total 

potential energy change is 

 

U
mg

L
y dy

mg

L
L mgL

L
   

z  
1

2
4 322

4

0

( ) .
/

 

 

The work required to pull the chain onto the table is therefore  

 

W = U = mgL/32 = (0.012 kg)(9.8 m/s
2
)(0.28 m)/32 = 0.0010 J. 

 

33. All heights h are measured from the lower end of the incline (which is our reference 

position for computing gravitational potential energy mgh). Our x axis is along the incline, 

with +x being uphill (so spring compression corresponds to x > 0) and its origin being at 

the relaxed end of the spring. The height that corresponds to the canister's initial position 

(with spring compressed amount x = 0.200 m) is given by 1 ( )sinh D x   , where 

37   . 

 

(a) Energy conservation leads to 

 

 2 2

1 1 2 2 2

1 1
0 ( )sin sin

2 2
K U K U mg D x kx mv mgD           

 

which yields, using the data m = 2.00 kg and k = 170 N/m, 

 

v gx kx m2

22 2 40  sin . m s .  

 

(b) In this case, energy conservation leads to 

 

1 1 3 3

2 2

3

1 1
0 ( )sin 0

2 2

K U K U

mg D x kx mv

  

    
 

 

which yields 2

3 2 ( )sin / 4.19 m/s.v g D x kx m     
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34. Let
NF  be the normal force of the ice on him and m is his mass. The net inward force 

is mg cos  – FN and, according to Newton's second law, this must be equal to mv
2
/R, 

where v is the speed of the boy. At the point where the boy leaves the ice FN = 0, so g cos 

 = v
2
/R. We wish to find his speed. If the gravitational potential energy is taken to be 

zero when he is at the top of the ice mound, then his potential energy at the time shown is  

 

U = –mgR(1 – cos ). 
 

He starts from rest and his kinetic energy at the time shown is 1
2

2mv . Thus conservation 

of energy gives 

0 11
2

2  mv mgR( cos ) , 

 

or v
2
 = 2gR(1 – cos ). We substitute this expression into the equation developed from 

the second law to obtain g cos  = 2g(1 – cos ). This gives cos  = 2/3. The height of 

the boy above the bottom of the mound is  

 

 
2 2

cos (13.8 m) 9.20 m
3 3

h R R    . 

 

35. (a) The (final) elastic potential energy is  

 

U = 
1

2
 kx

2
 = 

1

2
 (431 N/m)(0.210 m)

2
 = 9.50 J. 

 

Ultimately this must come from the original (gravitational) energy in the system mgy 

(where we are measuring y from the lowest “elevation” reached by the block, so  

 

y = (d + x)sin(30º). 

Thus,  

   mg(d + x)sin(30º) = 9.50 J       d = 0.396 m. 

 

(b) The block is still accelerating (due to the component of gravity along the incline, 

mgsin(30º)) for a few moments after coming into contact with the spring (which exerts 

the Hooke’s law force kx), until the Hooke’s law force is strong enough to cause the 

block to begin decelerating. This point is reached when  

 

kx = mg sin30º 

 

which leads to x = 0.0364 m = 3.64 cm; this is long before the block finally stops (36.0 

cm before it stops). 

 

36. The distance the marble travels is determined by its initial speed (and the methods of 

Chapter 4), and the initial speed is determined (using energy conservation) by the original 

compression of the spring. We denote h as the height of the table, and x as the horizontal 
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distance to the point where the marble lands. Then x = v0 t and h gt 1
2

2  (since the 

vertical component of the marble's “launch velocity” is zero). From these we find 

x v h g 0 2 . We note from this that the distance to the landing point is directly 

proportional to the initial speed. We denote v01 be the initial speed of the first shot and D1 

= (2.20 – 0.27) m = 1.93 m be the horizontal distance to its landing point; similarly, v02 is 

the initial speed of the second shot and D = 2.20 m is the horizontal distance to its 

landing spot. Then 

 02
02 01

01 1 1

    
v D D

v v
v D D

    

 

When the spring is compressed an amount  , the elastic potential energy is 1
2

2k . When 

the marble leaves the spring its kinetic energy is 1
2 0

2mv . Mechanical energy is conserved: 

1
2 0

2 1
2

2mv k  , and we see that the initial speed of the marble is directly proportional to 

the original compression of the spring. If  1 is the compression for the first shot and  2 

is the compression for the second, then v v02 2 1 01  b g . Relating this to the previous 

result, we obtain 

2 1

1

2.20 m
(1.10 cm) 1.25 cm

1.93 m

D

D

 
   

 
. 

 

37. Consider a differential element of length dx at a distance x from one end (the end that 

remains stuck) of the cord. As the cord turns vertical, its change in potential energy is 

given by 

( )dU dx gx   

 

where /m h   is the mass/unit length and the negative sign indicates that the potential 

energy decreases. Integrating over the entire length, we obtain the total change in the 

potential energy: 

 2

0

1 1

2 2

h

U dU gxdx gh mgh          . 

  

With m = 15 g and h = 25 cm, we have 0.018 JU   . 

 

38. In this problem, the mechanical energy (the sum of K and U) remains constant as the 

particle moves. 

 

(a) Since mechanical energy is conserved, B B A AU K U K   , the kinetic energy of the 

particle in region A ( 3.00 m 4.00 mx  ) is  

 

12.0 J 9.00 J 4.00 J 7.00 JA B A BK U U K       . 

 

With 2 / 2,A AK mv  the speed of the particle at 3.5 mx  (within region A) is  
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2 2(7.00 J)

8.37 m/s.
0.200 kg

A
A

K
v

m
    

 

(b) At 6.5 m,x  0U   and 12.0 J 4.00 J 16.0 JB BK U K     by mechanical 

energy conservation. Therefore, the speed at this point is  

 

2 2(16.0 J)
12.6 m/s.

0.200 kg

K
v

m
    

 

(c) At the turning point, the speed of the particle is zero. Let 

the position of the right turning point be .Rx  From the figure 

shown on the right, we find 
Rx  to be 

  

16.00 J 0 24.00 J 16.00 J
7.67 m.

7.00 m 8.00 m
R

R R

x
x x

 
  

 
 

 
 

 

(d) Let the position of the left turning point be .Lx  From the 

figure shown, we find Lx  to be  

 

 
16.00 J 20.00 J 9.00 J 16.00 J

1.73 m.
1.00 m 3.00 m

L

L L

x
x x

 
  

 
 

 
 

39. From the figure, we see that at x = 4.5 m, the potential energy is U1 = 15 J. If the 

speed is v = 7.0 m/s, then the kinetic energy is  

 

K1 = mv
2
/2 = (0.90 kg)(7.0 m/s)

2
/2 = 22 J. 

 

The total energy is E1 = U 1+ K1 = (15 + 22) J = 37 J. 

 

(a) At x = 1.0 m, the potential energy is U2 = 35 J. By energy conservation, we have K2 = 

2.0 J > 0. This means that the particle can reach there with a corresponding speed  

 

 2
2

2 2(2.0 J)
2.1 m/s.

0.90 kg

K
v

m
    

 

(b) The force acting on the particle is related to the potential energy by the negative of the 

slope:  
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x

U
F

x


 


 

 

From the figure we have
35 J 15 J

10 N
2 m 4 m

xF


   


. 

 

(c) Since the magnitude 0xF  , the force points in the +x direction. 

 

(d) At x = 7.0 m, the potential energy is U3 = 45 J, which exceeds the initial total energy 

E1. Thus, the particle can never reach there. At the turning point, the kinetic energy is 

zero. Between x = 5 and 6 m, the potential energy is given by 

 

 ( ) 15 30( 5),     5 6.U x x x      

 

Thus, the turning point is found by solving 37 15 30( 5)x   , which yields x = 5.7 m.  

 

(e) At x = 5.0 m, the force acting on the particle is  

 

(45 15) J
30 N

(6 5) m
x

U
F

x

 
     

 
. 

The magnitude is | | 30 NxF  . 

 

(f) The fact that 0xF  indicated that the force points in the –x direction. 

 

40. (a) The force at the equilibrium position r = req is 

 

 
13 7

eq eq eq

12 6
0 0

dU A B
F

r rdr r r
      


 

 

which leads to the result 

r
A

B

A

B
eq  
F
HG
I
KJ 

F
HG
I
KJ

2
112

1
6

1
6

. .  

 

(b) This defines a minimum in the potential energy curve (as can be verified either by a 

graph or by taking another derivative and verifying that it is concave upward at this 

point), which means that for values of r slightly smaller than req the slope of the curve is 

negative (so the force is positive, repulsive). 

 

(c) And for values of r slightly larger than req the slope of the curve must be positive (so 

the force is negative, attractive). 

 

41. (a) The energy at x = 5.0 m is E = K + U = 2.0 J – 5.7 J = –3.7 J. 
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(b) A plot of the potential energy curve (SI units understood) and the energy E (the 

horizontal line) is shown for 0  x  10 m. 

 

 
 

(c) The problem asks for a graphical determination of the turning points, which are the 

points on the curve corresponding to the total energy computed in part (a). The result for 

the smallest turning point (determined, to be honest, by more careful means) is x = 1.3 m. 

 

(d) And the result for the largest turning point is x = 9.1 m. 

 

(e) Since K = E – U, then maximizing K involves finding the minimum of U. A graphical 

determination suggests that this occurs at x = 4.0 m, which plugs into the expression  

E – U = –3.7 – (–4xe
–x/4

) to give 2.16 J  2.2 JK   . Alternatively, one can measure 

from the graph from the minimum of the U curve up to the level representing the total 

energy E and thereby obtain an estimate of K at that point. 

 

(f) As mentioned in the previous part, the minimum of the U curve occurs at x = 4.0 m. 

 

(g) The force (understood to be in newtons) follows from the potential energy, using Eq. 

8-20 (and Appendix E if students are unfamiliar with such derivatives). 

 

F
dU

dx
x e x   4 4b g /  

 

(h) This revisits the considerations of parts (d) and (e) (since we are returning to the 

minimum of U(x)) — but now with the advantage of having the analytic result of part (g). 

We see that the location that produces F = 0 is exactly x = 4.0 m. 

 

42. Since the velocity is constant, 

a  0  and the horizontal component of the worker's 

push F cos  (where  = 32°) must equal the friction force magnitude fk = k FN. Also, the 

vertical forces must cancel, implying 

 

 applied (8.0N)(0.70m) 5.6 JW    

 

which is solved to find F = 71 N. 
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(a) The work done on the block by the worker is, using Eq. 7-7, 

 

W Fd   cos . 71 56 102 N 9.2 m cos32 J .b gb g  

 

(b) Since fk = k (mg + F sin ), we find 2

th (60N)(9.2m) 5.6 10 J.kE f d      

 

43. (a) Using Eq. 7-8, we have applied (8.0N)(0.70m) 5.6 J.W    

 

(b) Using Eq. 8-31, the thermal energy generated is th (5.0N)(0.70m) 3.5 J.kE f d     

 

44. (a) The work is W = Fd = (35.0 N)(3.00 m) = 105 J. 

 

(b) The total amount of energy that has gone to thermal forms is (see Eq. 8-31 and Eq. 

6-2) 

Eth = k mgd = (0.600)(4.00 kg)(9.80 m/s
2
)(3.00 m) = 70.6 J. 

 

If 40.0 J has gone to the block then (70.6 – 40.0) J = 30.6 J has gone to the floor. 

 

(c) Much of the work (105 J) has been “wasted” due to the 70.6 J of thermal energy 

generated, but there still remains (105 – 70.6 ) J = 34.4 J that has gone into increasing the 

kinetic energy of the block.  (It has not gone into increasing the potential energy of the 

block because the floor is presumed to be horizontal.) 

 

45. THINK Work is done against friction while pulling a block along the floor at a 

constant speed.   

 

EXPRESS Place the x-axis along the path of the block and the y-axis normal to the floor. 

The free-body diagram is shown below. The x and the y component of Newton's second 

law are 

                    x:      F cos  – f  = 0 

     y:  FN + F sin  – mg = 0, 

 

where m is the mass of the block, F is the force exerted by the rope, f is the magnitude of 

the kinetic friction force, and  is the angle between that force and the horizontal. 
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The work done on the block by the force in the rope is cosW Fd  . Similarly, the 

increase in thermal energy of the block-floor system due to the frictional force is given by 

Eq. 8-29, th .E fd   

 

ANALYZE (a) Substituting the values given, we find the work done on the block by the 

rope’s force to be  

cos (7.68N)(4.06m)cos15.0 30.1 J.W Fd      

 

(b) The increase in thermal energy is th (7.42N)(4.06m) 30.1 J.E fd     

 

(c) We can use Newton's second law of motion to obtain the frictional and normal forces, 

then use k = f/FN to obtain the coefficient of friction. The x-component of Newton’s law 

gives  

f = F cos  = (7.68 N) cos15.0= 7.42 N. 

 

Similarly, the y-component yields  

 

FN = mg – F sin  = (3.57 kg)(9.8 m/s
2
) – (7.68 N)sin15.0= 33.0 N. 

 

Thus, the coefficient of kinetic friction is 

 

 
7.42 N

0.225.
33.0 N

k

N

f

F
     

 

LEARN In this problem, the block moves at a constant speed so that 0K  , i.e., no 

change in kinetic energy. The work done by the external force is converted into thermal 

energy of the system, thW E  . 

  

46. We work this using English units (with g = 32 ft/s), but for consistency we convert 

the weight to pounds 

1 1b
(9.0)oz 0.56lb

16oz
mg

 
  

   
 

which implies 20.018 lb s /ftm   (which can be phrased as 0.018 slug as explained in 

Appendix D). And we convert the initial speed to feet-per-second 

 

vi 
F
HG

I
KJ ( .818

3600
120mi h) 

5280 ft mi

 s h
ft s  

 

or a more “direct” conversion from Appendix D can be used. Equation 8-30 provides 

Eth = –Emec for the energy “lost” in the sense of this problem. Thus, 
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2 2 2 2

th

1 1
( ) ( ) (0.018)(120 110 ) 0 20 ft lb.

2 2
i f i fE m v v mg y y           

 

47. We use SI units so m = 0.075 kg. Equation 8-33 provides Eth = –Emec for the 

energy “lost” in the sense of this problem. Thus, 

 

2 2

th

2 2 2

1
( ) ( )

2
1

(0.075 kg)[(12 m/s) (10.5 m/s) ] (0.075 kg)(9.8 m/s )(1.1 m 2.1 m)
2
0.53 J.

i f i fE m v v mg y y    

   



 

 

48. We use Eq. 8-31 to obtain th (10N)(5.0m) 50 JkE f d    , and Eq. 7-8 to get 

 

(2.0N)(5.0m) 10 J.W Fd    

Similarly, Eq. 8-31 gives 

W K U E

U

  

  

  



th

10 35 50
 

 

which yields U = –75 J. By Eq. 8-1, then, the work done by gravity is W = –U = 75 J. 

 

49. THINK As the bear slides down the tree, its gravitational potential energy is 

converted into both kinetic energy and thermal energy.    

 

EXPRESS We take the initial gravitational potential energy to be Ui = mgL, where L is 

the length of the tree, and final gravitational potential energy at the bottom to be Uf = 0. 

To solve this problem, we note that the changes in the mechanical and thermal energies 

must sum to zero. 

 

ANALYZE (a) Substituting the values given, the change in gravitational potential energy 

is 

 2 3(25 kg)(9.8 m/s )(12 m) 2.9 10  J.f iU U U mgL           

 

(b) The final speed is 5.6 m/sfv  . Therefore, the kinetic energy is 

 

2 2 21 1
(25 kg)(5.6 m/s) 3.9 10  J.

2 2
f fK mv     

 

(c) The change in thermal energy is Eth = fL, where f is the magnitude of the average 

frictional force; therefore, from th 0E K U    , we find f to be   

 

 
2 3

23.9 10  J 2.9 10  J
2.1 10  N.

12 m

K U
f

L

    
       
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LEARN In this problem, no external work is done to the bear. Therefore, 

 

th mech th 0,W E E E K U         

 

which implies thK U E U fL       . Thus, thE fL   can be interpreted as 

the additional change (decrease) in kinetic energy due to frictional force.    

 

50. Equation 8-33 provides Eth = –Emec for the energy “lost” in the sense of this 

problem. Thus, 

 

2 2

th

2 2 2

4

1
( ) ( )

2
1

(60 kg)[(24 m/s) (22 m/s) ] (60 kg)(9.8 m/s )(14 m)
2
1.1 10  J.

i f i fE m v v mg y y    

  

 

 

 

That the angle of 25° is nowhere used in this calculation is indicative of the fact that 

energy is a scalar quantity. 

 

51. (a) The initial potential energy is 

 

U mgyi i   (520 1 kg) 9.8m s  (300 m) .53 10  J
2 6d i  

 

where +y is upward and y = 0 at the bottom (so that Uf = 0). 

 

(b) Since fk = k FN = k mg cos we have th cosk kE f d mgd     from Eq. 8-31. 

Now, the hillside surface (of length d = 500 m) is treated as an hypotenuse of a 3-4-5 

triangle, so cos  = x/d where x = 400 m. Therefore, 

 

E mgd
x

d
mgxk kth  J .      ( . ) ( ) ( . ) ( ) .0 25 520 9 8 400 51 105  

 

(c) Using Eq. 8-31 (with W = 0) we find 

 

 6 6 6

th 0 (1.53 10  J) 0 (5.1 10  J) 1.02 10  Jf i i fK K U U E            . 

 

(d) From 2 / 2,fK mv  we obtain v = 63 m/s. 

 

52. (a) An appropriate picture (once friction is included) for this problem is Figure 8-3 in 

the textbook. We apply Eq. 8-31, Eth = fk d, and relate initial kinetic energy Ki to the 

"resting" potential energy Ur: 

Ki + Ui  = fkd + Kr + Ur    20.0 J + 0 = fkd + 0 + 
1

2
kd

2
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where fk = 10.0 N and k = 400 N/m. We solve the equation for d using the quadratic 

formula or by using the polynomial solver on an appropriate calculator, with d = 0.292 m 

being the only positive root. 

 

(b) We apply Eq. 8-31 again and relate Ur to the "second" kinetic energy Ks it has at the 

unstretched position. 

Kr + Ur = fkd + Ks + Us     
1

2
kd

2
 = fkd + Ks + 0 

 

Using the result from part (a), this yields Ks = 14.2 J. 

 

53. (a) The vertical forces acting on the block are the normal force, upward, and the force 

of gravity, downward. Since the vertical component of the block's acceleration is zero, 

Newton's second law requires FN = mg, where m is the mass of the block. Thus f = k FN 

= k mg. The increase in thermal energy is given by Eth = fd = k mgD, where D is the 

distance the block moves before coming to rest. Using Eq. 8-29, we have 

 

Eth kg m s m J 0 25 35 9 8 7 8 67
2

. . . . .b gb gd ib g  

 

(b) The block has its maximum kinetic energy Kmax just as it leaves the spring and enters 

the region where friction acts. Therefore, the maximum kinetic energy equals the thermal 

energy generated in bringing the block back to rest, 67 J. 

 

(c) The energy that appears as kinetic energy is originally in the form of potential energy 

in the compressed spring. Thus, K U kximax  
1

2

2 , where k is the spring constant and x is 

the compression. Thus, 

x
K

k
  

2 2 67

640
0 46max . .

J

N m
m

b g
 

 

54. (a) Using the force analysis shown in Chapter 6, we find the normal force 

cosNF mg   (where mg = 267 N) which means  

 

fk = k NF =k mg cos . 

Thus, Eq. 8-31 yields 

 

E f d mgdk kth J     cos . . cos . .010 267 61 20 15 102b gb gb g  

 

(b) The potential energy change is  

 

U = mg(–d sin ) = (267 N)(– 6.1 m) sin 20° = –5.6  10
2
 J. 
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The initial kinetic energy is 

2 2

2

1 1 267 N
(0.457m/s ) 2.8 J.

2 2 9.8m/s
i iK mv

 
   

 
 

 

Therefore, using Eq. 8-33 (with W = 0), the final kinetic energy is 

 

K K U Ef i            th J2 8 56 10 15 10 41 102 2 2. . . . .c h  

 

Consequently, the final speed is v K mf f 2 55.  m s . 

 

55. (a) With x = 0.075 m and k  320N m,  Eq. 7-26 yields W kxs    1
2

2 0 90.  J.  For 

later reference, this is equal to the negative of U. 

 

(b) Analyzing forces, we find FN = mg, which means k k N kf F mg   . With d = x, Eq. 

8-31 yields 
E f d mgxk kth  J    ( . ) ( . ) ( . ) ( . ) . .025 25 98 0075 046  

 

(c) Equation 8-33 (with W = 0) indicates that the initial kinetic energy is 

 

K U Ei       th  J090 046 136. . .  

 

which leads to v K mi i 2 10.  m s.  

 

56. Energy conservation, as expressed by Eq. 8-33 (with W = 0) leads to 

 

2

th

2 2

1
0 0 0

2

1
(200 N/m)(0.15m) (2.0kg)(9.8m/s )(0.75m) 2.25 J

2

i f i f k

k k

E K K U U f d kx

mgd 

         

   

 

 

which yields k = 0.15 as the coefficient of kinetic friction. 

 

57. Since the valley is frictionless, the only reason for the speed being less when it 

reaches the higher level is the gain in potential energy U = mgh where h = 1.1 m. 

Sliding along the rough surface of the higher level, the block finally stops since its 

remaining kinetic energy has turned to thermal energy E f d mgdkth    , where 

0.60  . Thus, Eq. 8-33 (with W = 0) provides us with an equation to solve for the 

distance d: 

K U E mg h di      th b g  
 

where 2 / 2i iK mv  and vi = 6.0 m/s. Dividing by mass and rearranging, we obtain 
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d
v

g

hi  
2

2
12

 
. m.  

 

58. This can be worked entirely by the methods of Chapters 2–6, but we will use energy 

methods in as many steps as possible. 

 

(a) By a force analysis of the style done in Chapter 6, we find the normal force has 

magnitude FN = mg cos  (where  = 40°), which means fk = k NF  = k mg cos  where 

k = 0.15. Thus, Eq. 8-31 yields  

Eth = fk d = k mgd cos . 

 

Also, elementary trigonometry leads us to conclude that U = mgd sin . Eq. 8-33 (with 

W = 0 and Kf = 0) provides an equation for determining d: 

 

K U E

mv mgd

i

i k

 

 

  th

1

2

2 sin cos  b g  

 

where vi 14. .m s  Dividing by mass and rearranging, we obtain 

 
2

0.13m.
2 (sin cos )

i

k

v
d

g   
 


 

 

(b) Now that we know where on the incline it stops (d' = 0.13 + 0.55 = 0.68 m from the 

bottom), we can use Eq. 8-33 again (with W = 0 and now with Ki = 0) to describe the 

final kinetic energy (at the bottom): 

 

K U E

mv mgd

f

k

  

  

  th

1

2

2 sin cos  b g  

 

which — after dividing by the mass and rearranging — yields 

 

v gd k   2 2 7sin cos . .  b g m s  

 

(c) In part (a) it is clear that d increases if k decreases — both mathematically (since it is 

a positive term in the denominator) and intuitively (less friction — less energy “lost”). In 

part (b), there are two terms in the expression for v that imply that it should increase if k 

were smaller: the increased value of d' = d0 + d and that last factor sin  – k cos  which 

indicates that less is being subtracted from sin  when k is less (so the factor itself 

increases in value). 
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59. (a) The maximum height reached is h. The thermal energy generated by air resistance 

as the stone rises to this height is Eth = fh by Eq. 8-31. We use energy conservation in 

the form of Eq. 8-33 (with W = 0): 

 

K U E K Uf f i i    th  

 

and we take the potential energy to be zero at the throwing point (ground level). The 

initial kinetic energy is K mvi 
1

2
0

2 , the initial potential energy is Ui = 0, the final kinetic 

energy is Kf = 0, and the final potential energy is Uf = wh, where w = mg is the weight of 

the stone. Thus, wh fh mv 
1

2
0

2 , and we solve for the height: 

2 2

0 0

2( ) 2 (1 / )

mv v
h

w f g f w
 

 
. 

 

Numerically, we have, with m = (5.29 N)/(9.80 m/s
2
) = 0.54 kg,  

 

 
2

2

(20.0 m/s)
19.4 m

2(9.80 m/s )(1 0.265/5.29)
h  


. 

 

(b) We notice that the force of the air is downward on the trip up and upward on the trip 

down, since it is opposite to the direction of motion. Over the entire trip the increase in 

thermal energy is Eth = 2fh. The final kinetic energy is K mvf 
1

2

2 , where v is the 

speed of the stone just before it hits the ground. The final potential energy is Uf = 0. Thus, 

using Eq. 8-31 (with W = 0), we find 

 

1

2
2

1

2

2

0

2mv fh mv  .  

 

We substitute the expression found for h to obtain 

 
2

2 20
0

2 1 1

2 (1 / ) 2 2

fv
mv mv

g f w
 


 

which leads to 

 
2 2

2 2 2 2 20 0
0 0 0 0

2 2 2
1

(1 / ) (1 / )

fv fv f w f
v v v v v

mg f w w f w w f w f

  
       

    
 

 

where w was substituted for mg and some algebraic manipulations were carried out. 

Therefore, 
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0

5.29 N 0.265 N
(20.0 m/s) 19.0 m/s

5.29 N 0.265 N

w f
v v

w f

 
  

 
. 

 

60. We look for the distance along the incline d, which is related to the height ascended 

by h = d sin . By a force analysis of the style done in Chapter 6, we find the normal 

force has magnitude FN = mg cos which means fk = k mg cos. Thus, Eq. 8-33 (with W 

= 0) leads to 

0

0

   

   

K K U E

K mgd mgd

f i

i k

  th

sin cos  
 

which leads to 

d
K

mg

i

k





 


sin cos . . sin . cos

. .
  b g b gb gb g

128

4 0 9 8 30 0 30 30
4 3m  

 

61. Before the launch, the mechanical energy is mech,0 0E  . At the maximum height h 

where the speed of the beetle vanishes, the mechanical energy is mech,1E mgh  . The 

change of the mechanical energy is related to the external force by 

 

mech mech,1 mech,0 cosavgE E E mgh F d       , 

 

where Favg is the average magnitude of the external force on the beetle.  

 

(a) From the above equation, we have  

 

 
6 2

2

4 

(4.0 10  kg)(9.80 m/s )(0.30 m)
1.5 10  N.

cos (7.7 10 m)(cos 0 ) 
avg

mgh
F

d 







   

 
 

 

(b) Dividing the above result by the mass of the beetle, we obtain 

 

2

4 

(0.30 m)
  3.8 10 .

cos (7.7 10 m)(cos 0 ) 

avgF h
a g g g

m d  
    

 
 

 

62. We will refer to the point where it first encounters the “rough region” as point C (this 

is the point at a height h above the reference level). From Eq. 8-17, we find the speed it 

has at point C to be 

 

vC = vA
2
  2gh = (8.0)

2
  2(9.8)(2.0) = 4.980  5.0 m/s. 

 

Thus, we see that its kinetic energy right at the beginning of its “rough slide” (heading 

uphill towards B) is  

KC = 
1

2
 m(4.980 m/s)

2
 = 12.4m 
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(with SI units understood). Note that we “carry along” the mass (as if it were a known 

quantity); as we will see, it will cancel out, shortly. Using Eq. 8-37 (and Eq. 6-2 with FN 

= mg cos) and siny d  , we note that if d < L (the block does not reach point B), this 

kinetic energy will turn entirely into thermal (and potential) energy 

 

       KC = mgy + fk d     12.4m = mgd sin  + k mgd cos 



With k = 0.40 and = 30º, we find d = 1.49 m, which is greater than L (given in the 

problem as 0.75 m), so our assumption that d < L is incorrect.  What is its kinetic energy 

as it reaches point B?  The calculation is similar to the above, but with d replaced by L 

and the final v
2
 term being the unknown (instead of assumed zero): 

 
1

2
 m v

2
 = KC  (mgL sin + k mgL cos) . 

 

This determines the speed with which it arrives at point B:   

 

 

2

2 2

2 (sin cos )

(4.98 m/s) 2(9.80 m/s )(0.75 m)(sin30 0.4cos30 ) 3.5 m/s.

B C kv v gL     

    
 

 

63. We observe that the last line of the problem indicates that static friction is not to be 

considered a factor in this problem. The friction force of magnitude f = 4400 N 

mentioned in the problem is kinetic friction and (as mentioned) is constant (and directed 

upward), and the thermal energy change associated with it is Eth = fd (Eq. 8-31) where d 

= 3.7 m in part (a) (but will be replaced by x, the spring compression, in part (b)). 

 

(a) With W = 0 and the reference level for computing U = mgy set at the top of the 

(relaxed) spring, Eq. 8-33 leads to 

U K E v d g
f

m
i     

F
HG
I
KJ th 2  

 

which yields v  7 4. m s  for m = 1800 kg. 

 

(b) We again utilize Eq. 8-33 (with W = 0), now relating its kinetic energy at the moment 

it makes contact with the spring to the system energy at the bottom-most point. Using the 

same reference level for computing U = mgy as we did in part (a), we end up with 

gravitational potential energy equal to mg(–x) at that bottom-most point, where the spring 

(with spring constant k  15 105. N m ) is fully compressed. 

 

K mg x kx fx   b g 1

2

2  
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where K mv  
1

2
4 9 102 4. J using the speed found in part (a). Using the abbreviation  

= mg – f = 1.3  10
4
 N, the quadratic formula yields 

 

x
kK

k


 


 2 2
0 90. m  

 

where we have taken the positive root. 

 

(c) We relate the energy at the bottom-most point to that of the highest point of rebound 

(a distance d' above the relaxed position of the spring). We assume d' > x. We now use 

the bottom-most point as the reference level for computing gravitational potential energy. 

 

1

2 2
2 82

2

kx mgd fd d
kx

mg d
      


b g . m. 

 

(d) The non-conservative force (§8-1) is friction, and the energy term associated with it is 

the one that keeps track of the total distance traveled (whereas the potential energy terms, 

coming as they do from conservative forces, depend on positions — but not on the paths 

that led to them). We assume the elevator comes to final rest at the equilibrium position 

of the spring, with the spring compressed an amount deq given by 

 

eq eq 0.12m.
mg

mg kd d
k

     

 

In this part, we use that final-rest point as the reference level for computing gravitational 

potential energy, so the original U = mgy becomes mg(deq + d). In that final position, then, 

the gravitational energy is zero and the spring energy is 2

eq / 2kd . Thus, Eq. 8-33 becomes 

mg d d kd fd

d

eq eq

2

total

total

  

   

d i
b gb gb g c hb g b g

1

2

1800 9 8 012 37
1

2
15 10 012 44005 2

. . . . .

 

 

which yields dtotal = 15 m. 

 

64. In the absence of friction, we have a simple conversion (as it moves along the 

inclined ramps) of energy between the kinetic form (Eq. 7-1) and the potential form (Eq. 

8-9).  Along the horizontal plateaus, however, there is friction that causes some of the 

kinetic energy to dissipate in accordance with Eq. 8-31 (along with Eq. 6-2 where k = 

0.50 and FN = mg in this situation).  Thus, after it slides down a (vertical) distance d it 

has gained 21
2

,K mv mgd  some of which (Eth = k mgd) is dissipated, so that the 

value of kinetic energy at the end of the first plateau (just before it starts descending 

towards the lowest plateau) is  
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1

2
kK mgd mgd mgd   . 

 

In its descent to the lowest plateau, it gains mgd/2 more kinetic energy, but as it slides 

across it “loses” k mgd/2 of it.  Therefore, as it starts its climb up the right ramp, it has 

kinetic energy equal to  

1 1 1 3

2 2 2 4
kK mgd mgd mgd mgd    . 

 

Setting this equal to Eq. 8-9 (to find the height to which it climbs) we get H = ¾d.  Thus, 

the block (momentarily) stops on the inclined ramp at the right, at a height of  

 

H = 0.75d = 0.75 ( 40 cm) = 30 cm 

 

measured from the lowest plateau. 

 

65. The initial and final kinetic energies are zero, and we set up energy conservation in 

the form of Eq. 8-33 (with W = 0) according to our assumptions. Certainly, it can only 

come to a permanent stop somewhere in the flat part, but the question is whether this 

occurs during its first pass through (going rightward) or its second pass through (going 

leftward) or its third pass through (going rightward again), and so on. If it occurs during 

its first pass through, then the thermal energy generated is Eth = fkd where d  L 

and k kf mg . If it occurs during its second pass through, then the total thermal energy 

is Eth = k mg(L + d) where we again use the symbol d for how far through the level area 

it goes during that last pass (so 0  d  L). Generalizing to the n
th

 pass through, we see 

that  

Eth = k mg[(n – 1)L + d]. 

 

In this way, we have  

mgh mg n L dk   1b gc h  
 

which simplifies (when h = L/2 is inserted) to 

 

d

L
n

k

  1
1

2
. 

 

The first two terms give 1 1 2 35 k . , so that the requirement 0 1 d L  demands 

that n = 3. We arrive at the conclusion that d L 
1

2
, or 

 
1 1

(40 cm) 20 cm
2 2

d L    

 

and that this occurs on its third pass through the flat region. 
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66. (a) Equation 8-9 gives U = mgh = (3.2 kg)(9.8 m/s
2
)(3.0 m) = 94 J. 

 

(b) The mechanical energy is conserved, so K = 94 J. 

 

(c) The speed (from solving Eq. 7-1) is  

 

v = 2 / 2(94 J) /(32 kg)K m  = 7.7 m/s. 

 

67. THINK As the block is projected up the inclined plane, its kinetic energy is 

converted into gravitational potential energy and elastic potential energy of the spring. 

The block compresses the spring, stopping momentarily before sliding back down again.  

 

EXPRESS Let A be the starting point and the reference point for computing gravitational 

potential energy ( 0AU  ). The block first comes into contact with the spring at B. The 

spring is compressed by an additional amount x  at C, as shown in the figure below.  

 

 
 

By energy conservation, A A B B C CK U K U K U     . Note that  

 

21

2
g sU U U mgy kx    , 

 

i.e., the total potential energy is the sum of gravitational potential energy and elastic 

potential energy of the spring.  

 

ANALYZE (a) At the instant when 0.20 mCx  , the vertical height is 

  

( )sin (0.60 m 0.20 m)sin 40 0.514 m.C Cy d x        

 

Applying energy conservation principle gives  

 

21
16 J 0

2
A A C C C C CK U K U K mgy kx         

from which we obtain  
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2

2 2

1

2
1

16 J (1.0 kg)(9.8 m/s )(0.514 m) (200 N/m)(0.20 m) 6.96 J 7.0 J.
2

C A C CK K mgy kx  

    

 

 

(b) At the instant when 0.40 mCx  , the vertical height is 

 

( )sin (0.60 m 0.40 m)sin 40 0.64 m.C Cy d x         

 

Applying energy conservation principle, we have A A C CK U K U      . Since 0AU   , the 

initial kinetic energy that gives 0CK    is  

 

2

2 2

1

2
1

(1.0 kg)(9.8 m/s )(0.64 m) (200 N/m)(0.40 m)
2

22 J.

A C C CK U mgy kx     

 



 

 

LEARN Comparing the results found in (a) and (b), we see that more kinetic energy is 

required to move the block higher in the inclined plane to achieve a greater spring 

compression.    

 

68. (a) At the point of maximum height, where y = 140 m, the vertical component of 

velocity vanishes but the horizontal component remains what it was when it was 

launched (if we neglect air friction). Its kinetic energy at that moment is 

 

K vx
1

2
055 2. .kgb g  

 

Also, its potential energy (with the reference level chosen at the level of the cliff edge) at 

that moment is U = mgy = 755 J. Thus, by mechanical energy conservation, 

 

K K U vi x     


1550 755
2 1550 755

055

b g
.

= 54 m/s. 

 

(b) As mentioned, vx = vix so that the initial kinetic energy 

 

 2 21

2
i i x i yK m v v   

 

can be used to find vi y. We obtain vi y  52 m s . 

 

(c) Applying Eq. 2-16 to the vertical direction (with +y upward), we have 
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2 2 2 2 22 (65 m/s) (52 m/s) 2(9.8 m/s )y i yv v g y y        

 

which yields y  76 m . The minus sign tells us it is below its launch point. 

 

69. THINK The two blocks are connected by a cord. As block B falls, block A moves up 

the incline. 

 

EXPRESS If the larger mass (block B, mB = 2.0 kg) falls a vertical distance 0.25 md  , 

then the smaller mass (blocks A, mA = 1.0 kg) must increase its height by sin30 .h d   

The change in gravitational potential energy is 

 

B AU m gd m gh    . 

 

By mechanical energy conservation, mech 0,E K U      the change in kinetic 

energy of the system is K U   . 

 

ANALYZE Since the initial kinetic energy is zero, the final kinetic energy is   

 

 2

sin

( sin ) [2.0 kg (1.0 kg)sin 30 ](9.8 m/s )(0.25 m)

3.7 J.

f B A B A

B A

K K m gd m gh m gd m gd

m m gd





     

    



 

 

LEARN From the above expression, we see that in the special case where 

sinB Am m  , the two-block system would remain stationary. On the other hand, if 

sin ,A Bm m   block A will slide down the incline, with block B moving vertically 

upward.    

 

70. We use conservation of mechanical energy: the mechanical energy must be the same 

at the top of the swing as it is initially. Newton's second law is used to find the speed, and 

hence the kinetic energy, at the top. There the tension force T of the string and the force 

of gravity are both downward, toward the center of the circle. We notice that the radius of 

the circle is r = L – d, so the law can be written  

 

T mg mv L d  2 b g , 
 

where v is the speed and m is the mass of the ball. When the ball passes the highest point 

with the least possible speed, the tension is zero. Then 

 

mg m
v

L d
v g L d


  

2

b g .  
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We take the gravitational potential energy of the ball-Earth system to be zero when the 

ball is at the bottom of its swing. Then the initial potential energy is mgL. The initial 

kinetic energy is zero since the ball starts from rest. The final potential energy, at the top 

of the swing, is 2mg(L – d) and the final kinetic energy is 1
2

2 1
2

mv mg L d b g  using the 

above result for v. Conservation of energy yields 

 

mgL mg L d mg L d d L     2
1

2
3 5b g b g .  

 

With L = 1.20 m, we have d = 0.60(1.20 m) = 0.72 m. 

 

Notice that if d is greater than this value, so the highest point is lower, then the speed of 

the ball is greater as it reaches that point and the ball passes the point. If d is less, the ball 

cannot go around. Thus the value we found for d is a lower limit. 

 

71. THINK As the block slides down the frictionless incline, its gravitational potential 

energy is converted to kinetic energy, so the speed of the block increases. 

 

EXPRESS By energy conservation, .A A B BK U K U    Thus, the change in kinetic 

energy as the block moves from points A to B is 

 

( ).B A B AK K K U U U         

 

In both circumstances, we have the same potential energy change. Thus, 1 2K K   .  

 

ANALYZE With 1 2K K   , the speed of the block at B the second time is given by 

 

 2 2 2 2

,1 ,1 ,2 ,2

1 1 1 1

2 2 2 2
B A B Amv mv mv mv   

or 
2 2 2 2 2 2

,2 ,1 ,1 ,2 (2.60 m/s) (2.00 m/s) (4.00 m/s) 4.33 m/sB B A Av v v v       . 

     

LEARN The speed of the block at A is greater the second time, ,2 ,1A Av v .  This can 

happen if the block slides down from a higher position with greater initial gravitational 

potential energy.   

 

72. (a) We take the gravitational potential energy of the skier-Earth system to be zero 

when the skier is at the bottom of the peaks. The initial potential energy is Ui = mgH, 

where m is the mass of the skier, and H is the height of the higher peak. The final 

potential energy is Uf = mgh, where h is the height of the lower peak. The skier initially 

has a kinetic energy of Ki = 0, and the final kinetic energy is 
21

2
,fK mv  where v is the 

speed of the skier at the top of the lower peak. The normal force of the slope on the skier 

does no work and friction is negligible, so mechanical energy is conserved: 
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 21

2
i i f fU K U K mgH mgh mv      . 

Thus, 

 22 ( ) 2(9.8 m/s )(850 m 750 m) 44 m/sv g H h     . 

 

(b) We recall from analyzing objects sliding down inclined planes that the normal force 

of the slope on the skier is given by FN = mg cos , where  is the angle of the slope from 

the horizontal, 30° for each of the slopes shown. The magnitude of the force of friction is 

given by f = k FN = k mg cos . The thermal energy generated by the force of friction is 

fd = k mgd cos , where d is the total distance along the path. Since the skier gets to the 

top of the lower peak with no kinetic energy, the increase in thermal energy is equal to 

the decrease in potential energy. That is, k mgd cos  = mg(H – h). Consequently, 

 

 
3

(850 m 750 m)
0.036

cos (3.2 10  m)cos30
k

H h

d




 
  

 
. 

 

73. THINK As the cube is pushed across the floor, both the thermal energies of floor and 

the cube increase because of friction.   

 

EXPRESS By law of conservation of energy, we have mech thW E E    for the 

floor-cube system. Since the speed is constant, K = 0, Eq. 8-33 (an application of the 

energy conservation concept) implies 

 

mech th th th (cube) th (floor)W E E E E E        . 

 

ANALYZE With W = (15 N)(3.0 m) = 45 J, and we are told that Eth (cube) = 20 J, then 

we conclude that Eth (floor) = 25 J. 

 

LEARN The applied work here has all been converted into thermal energies of the floor 

and the cube. The amount of thermal energy transferred to a material depends on its 

thermal properties, as we shall discuss in Chapter 18.     

 

74. We take her original elevation to be the y = 0 reference level and observe that the top 

of the hill must consequently have yA = R(1 – cos 20°) = 1.2 m, where R is the radius of 

the hill. The mass of the skier is 2(600 N) /(9.8 m/s ) 61kgm   .  

 

(a) Applying energy conservation, Eq. 8-17, we have 

 

0 .B B A A B A AK U K U K K mgy        

 

Using KB  1
2

2
61 8 0kg m sb gb g. , we obtain KA = 1.2  10

3
 J. Thus, we find the speed at 

the hilltop is  
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32 2(1.2 10  J)

6.4 m/s
61 kg

A
A

K
v

m


   . 

 

Note: One might wish to check that the skier stays in contact with the hill — which is 

indeed the case here. For instance, at A we find v
2
/r  2 m/s

2
, which is considerably less 

than g. 

 

(b) With KA = 0, we have 

 

K U K U K mgyB B A A B A      0 0  

 

which yields KB = 724 J, and the corresponding speed is 

 

2 2(724 J)
4.9 m/s

61kg

B
B

K
v

m
   . 

 

(c) Expressed in terms of mass, we have 

 

K U K U

mv mgy mv mgy

B B A A

B B A A

   

  
1

2

1

2

2 2 .
 

 

Thus, the mass m cancels, and we observe that solving for speed does not depend on the 

value of mass (or weight). 

 

75. THINK This problem deals with pendulum motion. The kinetic and potential 

energies of the ball attached to the rod change with position, but the mechanical energy 

remains conserved throughout the process.  

 

EXPRESS Let L be the length of the pendulum. The connection between angle  

(measured from vertical) and height h (measured from the lowest point, which is our 

choice of reference position in computing the gravitational potential energy mgh) is given 

by h = L(1 – cos ).  

 
The free-body diagram is shown above. The initial height is at h1 = 2L, and at the lowest 

point, we have h2 = 0. The total mechanical energy is conserved throughout. 
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ANALYZE (a) Initially the ball is at h1 = 2L with
1 0K   and 1 1 (2 )U mgh mg L  . At  

the lowest point h2 = 0, we have 2

2 2

1

2
K mv   and 

2 0.U   Using energy conservation 

in the form of Eq. 8-17 leads to 

2

1 1 2 2 2

1
0 2 0

2
K U K U mgL mv        

  

This leads to 
2 2v gL . With L = 0.62 m, we have  

 

2

2 2 (9.8 m/s )(0.62 m) 4.9 m/s.v    

 

(b) At the lowest point, the ball is in circular motion with the center of the circle above it, 

so 

a v r 2 /  upward, where r = L. Newton's second law leads to 

 

T mg m
v

r
T m g

gL

L
mg    

F
HG

I
KJ 

2 4
5 .  

 

With m = 0.092 kg, the tension is T = 4.5 N. 

 

(c) The pendulum is now started (with zero speed) at 90i   (that is, hi = L), and we 

look for an angle  such that T = mg. When the ball is moving through a point at angle , 

as can be seen from the free-body diagram shown above, Newton's second law applied to 

the axis along the rod yields 

 

 
2

cos (1 cos )
mv

T mg mg
r

      

 

which (since r = L) implies v
2
 = gL(1 – cos ) at the position we are looking for. Energy 

conservation leads to 

 

 

 

         (1

K U K U

mgL mv mgL

gL gL gL

i i  

   

   

0
1

2
1

1

2
1

2 ( cos )

( ( cos )) cos )



 

 

 

where we have divided by mass in the last step. Simplifying, we obtain 

 

 1 1
cos 71

3
   
   

 
. 
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(d) Since the angle found in (c) is independent of the mass, the result remains the same if 

the mass of the ball is changed. 

 

LEARN At a given angle   with respect to the vertical, the tension in the rod is 

 
2

cos
v

T m g
r


 

  
 

 

The tangential acceleration, sinta g  , is what causes the speed and, therefore, the 

kinetic energy to change with time. Nonetheless, mechanical energy is conserved. 

 

76. (a) The table shows that the force is +(3.0 N)i
^
 while the displacement is in the +x 

direction ( d 


 = +(3.0 m)i
^
 ), and it is –(3.0 N)i

^
 while the displacement is in the –x 

direction.  Using Eq. 7-8 for each part of the trip, and adding the results, we find the 

work done is 18 J. This is not a conservative force field; if it had been, then the net work 

done would have been zero (since it returned to where it started). 

 

(b) This, however, is a conservative force field, as can be easily verified by calculating 

that the net work done here is zero. 

 

(c) The two integrations that need to be performed are each of the form  


  2x dx so that 

we are adding two equivalent terms, where each equals x
2
 (evaluated at x = 4, minus its 

value at x = 1). Thus, the work done is 2(4
2
 – 1

2
) = 30 J. 

 

(d) This is another conservative force field, as can be easily verified by calculating that 

the net work done here is zero. 

 

(e) The forces in (b) and (d) are conservative. 

 

77. THINK This problem involves graphical analyses. From the graph of potential 

energy as a function of position, the conservative force can de deduced.   

 

EXPRESS The connection between the potential energy function ( )U x  and the 

conservative force ( )F x  is given by Eq. 8-22: ( ) / .F x dU dx   A positive slope of 

( )U x  at a point means that ( )F x  is negative, and vice versa.  

 

ANALYZE (a) The force at x = 2.0 m is 

 

( 4 m) ( 1 m) (17.5 J) ( 2.8 J)
4.9 N.

4.0 m 1.0 m 4.0 m 1.0 m

dU U U x U x
F

dx x

      
        

  
 

 

(b) Since the slope of ( )U x  at x = 2.0 m is negative, the force points in the +x direction 

(but there is some uncertainty in reading the graph which makes the last digit not very 

significant). 
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(c) At x = 2.0 m, we estimate the potential energy to be 

  

( 2.0 m) ( 1.0 m) ( 4.9 J/m)(1.0 m) 7.7 JU x U x        

 

Thus, the total mechanical energy is 

 

 2 21 1
(2.0 kg)( 1.5 m/s) ( 7.7 J) 5.5 J.

2 2
E K U mv U           

 

Again, there is some uncertainty in reading the graph which makes the last digit not very 

significant. At that level (–5.5 J) on the graph, we find two points where the potential 

energy curve has that value — at x  1.5 m and x  13.5 m. Therefore, the particle 

remains in the region 1.5 < x < 13.5 m. The left boundary is at x = 1.5 m.  

 

(d) From the above results, the right boundary is at x = 13.5 m.   

 

(e) At x = 7.0 m, we read U  –17.5 J. Thus, if its total energy (calculated in the previous 

part) is E  –5.5 J, then we find 

 

1

2
12

2
352mv E U v

m
E U       J  m s( ) .  

 

where there is certainly room for disagreement on that last digit for the reasons cited 

above. 

 

LEARN Since the total mechanical energy is negative, the particle is bounded by the 

potential, with its motion confined to the region 1.5 m < x < 13.5 m. At the turning points 

(1.5 m and 13.5 m), kinetic energy is zero and the particle is momentarily at rest.  

 

78. (a) Since the speed of the crate of mass m increases from 0 to 1.20 m/s relative to the 

factory ground, the kinetic energy supplied to it is 

 

2 21 1
(300kg)(120m/s) 216 J.

2 2
K mv    

 

(b) The magnitude of the kinetic frictional force is 

 
2 3(0.400)(300kg)(9.8m/s ) 1.18 10 N.Nf F mg     

 
 

(c) Let the distance the crate moved relative to the conveyor belt before it stops slipping 

be d. Then from Eq. 2-16 (v
2
 = 2ad = 2(f / m)d) we find 

 

E fd mv Kth   
1

2

2 .  
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Thus, the total energy that must be supplied by the motor is 

 

th 2 (2)(216J) J.W K E K       

 

(d) The energy supplied by the motor is the work W it does on the system, and must be 

greater than the kinetic energy gained by the crate computed in part (b). This is due to the 

fact that part of the energy supplied by the motor is being used to compensate for the 

energy dissipated Eth while it was slipping.  

 

79. THINK As the car slides down the incline, due to the presence of frictional force, 

some of its mechanical energy is converted into thermal energy.   

 

EXPRESS The incline angle is 5.0 .    Thus, the change in height between the car's 

highest and lowest points is y = (50 m) sin  =  4.4 m. We take the lowest point (the 

car's final reported location) to correspond to the y = 0 reference level. The change in 

potential energy is given by .U mg y    

 

As for the kinetic energy, we first convert the speeds to SI units, v0 8 3 . m s  and 

v 111. m s . The change in kinetic energy is 2 21
( )

2
f iK m v v   .  The total change in 

mechanical energy is mech .E K U     

 

ANALYZE (a) Substituting the values given, we find mechE  to be 

 

2 2

mech

2 2 2

4

1
( )

2
1

(1500 kg) (11.1 m/s) (8.3 m/s) (1500 kg)(9.8 m/s )( 4.4 m)
2

23940 J 2.4 10  J

f iE K U m v v mg y       

     

    

 

 

That is, the mechanical energy decreases (due to friction) by 2.4  10
4
 J. 

 

(b) Using Eq. 8-31 and Eq. 8-33, we find th mech .kE f d E     With d = 50 m, we 

solve for fk and obtain  
4

2mech ( 2.4 10  J)
4.8 10 N.

50 m
k

E
f

d

   
     

 

LEARN The amount of mechanical energy lost is proportional to the frictional force; in 

the absence of friction, mechanical energy would have been conserved.    

 

80. We note that in one second, the block slides d = 1.34 m up the incline, which means 

its height increase is h = d sin  where 
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 
F
HG
I
KJ  tan .1 30

40
37  

 

We also note that the force of kinetic friction in this inclined plane problem is 

cosk kf mg  , where k = 0.40 and m = 1400 kg. Thus, using Eq. 8-31 and Eq. 8-33, 

we find 

W mgh f d mgdk k   sin cos  b g  
 

or W = 1.69  10
4
 J for this one-second interval. Thus, the power associated with this is 

 

 
4

4 41.69 10  J
1.69 10  W 1.7 10  W

1 s
P


     . 

 

81. (a) The remark in the problem statement that the forces can be associated with 

potential energies is illustrated as follows: the work from x = 3.00 m to x = 2.00 m is  

 

W = F2 x =(5.00 N)(–1.00 m) = –5.00 J, 

 

so the potential energy at x = 2.00 m is U2 = +5.00 J.   

 

(b) Now, it is evident from the problem statement that Emax = 14.0 J, so the kinetic energy 

at x = 2.00 m is  

K2 = Emax – U2 = 14.0 – 5.00 = 9.00 J. 

 

(c) The work from x = 2.00 m to x = 0 is W = F1 x =(3.00 N)(–2.00 m) = – 6.00 J, so the 

potential energy at x = 0 is  

 

U0 = 6.00 J + U2 = (6.00 + 5.00) J = 11.0 J. 

 

(d) Similar reasoning to that presented in part (a) then gives  

 

K0 = Emax – U0 = (14.0 – 11.0) J = 3.00 J. 

 

(e) The work from x = 8.00 m to x = 11.0 m is W = F3 x =(– 4.00 N)(3.00 m) = –12.0 J, 

so the potential energy at x = 11.0 m is U11 = 12.0 J.   

 

(f) The kinetic energy at x = 11.0 m is therefore  

 

K11 = Emax – U11 = (14.0 – 12.0) J = 2.00 J. 

 

(g) Now we have W = F4 x =(–1.00 N)(1.00 m) = –1.00 J, so the potential energy at 

12.0 mx  is  

U12 = 1.00 J + U11 = (1.00 + 12.0) J = 13.0 J. 

 

(h) Thus, the kinetic energy at x = 12.0 m is  
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K12 = Emax – U12 = (14.0 – 13.0) = 1.00 J. 

 

(i) There is no work done in this interval (from x = 12.0 m to x = 13.0 m) so the answers 

are the same as in part (g): U12 = 13.0 J. 

 

(j) There is no work done in this interval (from x = 12.0 m to x = 13.0 m) so the answers 

are the same as in part (h): K12 = 1.00 J. 

 

(k) Although the plot is not shown here, it would look like a “potential well” with 

piecewise-sloping sides: from x = 0 to x = 2 (SI units understood) the graph of U is a 

decreasing line segment from 11 to 5, and from x = 2 to x = 3, it then heads down to zero, 

where it stays until x = 8, where it starts increasing to a value of 12 (at x = 11), and then 

in another positive-slope line segment it increases to a value of 13 (at x = 12).  For 

12x   its value does not change (this is the “top of the well”). 

 

(l) The particle can be thought of as “falling” down the 0 < x < 3 slopes of the well, 

gaining kinetic energy as it does so, and certainly is able to reach x = 5. Since U = 0 at x 

= 5, then its initial potential energy (11 J) has completely converted to kinetic: now 

11.0 JK  . 

 

(m) This is not sufficient to climb up and out of the well on the large x side (x > 8), but 

does allow it to reach a “height” of 11 at x = 10.8 m. As discussed in section 8-5, this is a 

“turning point” of the motion. 

 

(n) Next it “falls” back down and rises back up the small x slope until it comes back to its 

original position. Stating this more carefully, when it is (momentarily) stopped at x = 10.8 

m it is accelerated to the left by the force 3F ; it gains enough speed as a result that it 

eventually is able to return to x = 0, where it stops again. 

 

82. (a) At x = 5.00 m the potential energy is zero, and the kinetic energy is  

 

K = 
1

2
 mv

2 
= 

1

2
 (2.00 kg)(3.45 m/s)

2
 = 11.9 J. 

 

The total energy, therefore, is great enough to reach the point x = 0 where U = 11.0 J, 

with a little “left over” (11.9 J – 11.0 J  = 0.9025 J).  This is the kinetic energy at x = 0, 

which means the speed there is  

 

v = 2(0.9025 J)/(2 kg) = 0.950 m/s. 

 

It has now come to a stop, therefore, so it has not encountered a turning point. 

 

(b) The total energy (11.9 J) is equal to the potential energy (in the scenario where it is 

initially moving rightward) at x = 10.9756  11.0 m.  This point may be found by 

interpolation or simply by using the work-kinetic energy theorem:  
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Kf = Ki + W = 0    11.9025 + (–4)d = 0      d = 2.9756  2.98 

 

(which when added to x = 8.00 [the point where F3 begins to act] gives the correct result).  

This provides a turning point for the particle’s motion. 

 

83. THINK Energy is transferred from an external agent to the block so that its speed 

continues to increase.  

 

EXPRESS According to Eq. 8-25, the work done by the external force is 

mech .W E K U      When there is no change in potential energy, 0U  , the 

expression simplifies to 

2 2

mech

1
( )

2
f iW E K m v v      . 

The average power, or average rate of work done, is given by avg /P W t  . 

 

ANALYZE (a) Substituting the values given, the change in mechanical energy is  

 

2 2 2 2 3

mech

1 1
( ) (15 kg)[(30 m/s) (10 m/s) ] 6000 J 6.0 10  J

2 2
f iE K m v v           

 

(b) From the above, we have W = 6.0  10
3
 J. Also, from Chapter 2, we know that 

 t v a 10 s . Thus, using Eq. 7-42, the average rate at which energy is transferred to 

the block is 
3

avg

6.0 10  J
600 W

10.0 s

W
P

t


  


. 

 

(c) and (d) The constant applied force is F = ma = 30 N and clearly in the direction of 

motion, so Eq. 7-48 provides the results for instantaneous power: 

 

P F v
v

v
  





RST
  300 10

900 30

W for m s

W for m s
 

 

LEARN The average of these two values found in (c) and (d) agrees with the result in 

part (b). Note that the expression for the instantaneous rate used above can be derived 

from:  

 21

2

dW d dv
P mv mv mv a F v

dt dt dt

 
        

 
 

 

84. (a) To stretch the spring an external force, equal in magnitude to the force of the 

spring but opposite to its direction, is applied. Since a spring stretched in the positive x 

direction exerts a force in the negative x direction, the applied force must be 
252.8 38.4F x x  , in the +x direction. The work it does is 
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1.00 1.00

2 2 3

0.500.50

52.8 38.4
(52.8 38.4 ) 31.0 J.

2 3
W x x dx x x

 
     

 
  

 

(b) The spring does 31.0 J of work and this must be the increase in the kinetic energy of 

the particle. Its speed is then 

 

v
K

m
  

2 2 310

217
535

.

.
. .

J

kg
m s

b g
 

 

(c) The force is conservative since the work it does as the particle goes from any point x1 

to any other point x2 depends only on x1 and x2, not on details of the motion between x1 

and x2. 

 

85. THINK This problem deals with the concept of hydroelectric generator – kinetic 

energy of water can be converted into electrical energy.  

 

EXPRESS By energy conservation, the change in kinetic energy of water in one second 

is  

 3 3 3 2 9(10 kg / m )(1200m )(9.8m/s )(100m) 1.176 10  JK U mgh Vgh         

 

Only 3/4 of this amount is transferred to electrical energy.  

 

ANALYZE The power generation (assumed constant, so average power is the same as 

instantaneous power) is 
9

8

avg

(3/ 4) (3/ 4)(1.176 10  J)
8.82 10  W.

1.0s

K
P

t

 
     

 

LEARN Hydroelectricity is the most widely used renewable energy; it accounts for 

almost 20% of the world’s electricity supply.  

 

86. (a) At B the speed is (from Eq. 8-17)  

 
2 2 2

0 12 (7.0 m/s) 2(9.8 m/s )(6.0 m) 13 m/s.v v gh      

 

(a) Here what matters is the difference in heights (between A and C): 

 
2 2 2

0 1 22 ( ) (7.0 m/s) 2(9.8 m/s )(4.0 m) 11.29 m/s 11m/s.v v g h h         

 

(c) Using the result from part (b), we see that its kinetic energy right at the beginning of 

its “rough slide” (heading horizontally toward D) is 
1

2
 m(11.29 m/s)

2
 = 63.7m (with SI 

units understood).  Note that we “carry along” the mass (as if it were a known quantity); 
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as we will see, it will cancel out, shortly. Using Eq. 8-31 (and Eq. 6-2 with FN = mg) we 

note that this kinetic energy will turn entirely into thermal energy 

 

63.7m = k mgd 

 

if d < L.  With k = 0.70, we find d = 9.3 m, which is indeed less than L (given in the 

problem as 12 m).  We conclude that the block stops before passing out of the “rough” 

region (and thus does not arrive at point D). 

 

87. THINK We have a ball attached to a rod that moves in a vertical circle. The total 

mechanical energy of the system is conserved. 

 

EXPRESS Let position A be the reference point for potential energy, 0AU  . The total 

mechanical energies at A, B and C are: 

 

 

2 2

0

2 2

2

1 1

2 2
1 1

2 2
1

2

A A A

B B B B

D D D

E mv U mv

E mv U mv mgL

E mv U mgL

  

   

  

 

 

where 0.Dv   The problem can be analyzed by applying energy conservation: 

A B DE E E  . 

 

ANALYZE (a) The condition A DE E  gives 

2

0 0

1
2

2
mv mgL v gL    

 

(b) To find the tension in the rod when the ball passes through B, we first calculate the 

speed at B. Using ,B DE E  we find  

21

2
Bmv mgL mgL   

 

or 4Bv gL . The direction of the centripetal acceleration is upward (at that moment), 

as is the tension force.  Thus, Newton’s second law gives 

 

 
2 (4 )

4Bmv m gL
T mg mg

r L
     

or T = 5mg. 

 

(c) The difference in height between C and D is L, so the “loss” of mechanical energy 

(which goes into thermal energy) is –mgL. 
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(d) The difference in height between B and D is 2L, so the total “loss” of mechanical 

energy (which all goes into thermal energy) is –2mgL.  

 

LEARN An alternative way to calculate the energy loss in (d) is to note that 

 

21
0

2
B B BE mv U mgL mgL        

which gives  

2 .B AE E E mgL mgL mgL         

 

88. (a) The initial kinetic energy is Ki  1
2

2
15 3 6 75. .b gb g J . 

 

(b) The work of gravity is the negative of its change in potential energy. At the highest 

point, all of Ki has converted into U (if we neglect air friction) so we conclude the work 

of gravity is –6.75 J. 

 

(c) And we conclude that U  6 75. J . 

 

(d) The potential energy there is U U Uf i   6 75. J . 

 

(e) If Uf = 0, then U U Ui f    675. J . 

 

(f) Since mg y U   , we obtain 0.459 my  . 

 

89. (a) By mechanical energy conversation, the kinetic energy as it reaches the floor 

(which we choose to be the U = 0 level) is the sum of the initial kinetic and potential 

energies:   

K = Ki + Ui = 
1

2
 (2.50 kg)(3.00 m/s)

2
 + (2.50 kg)(9.80 m/s

2
)(4.00 m) = 109 J. 

 

For later use, we note that the speed with which it reaches the ground is  

 

v = 2K/m  = 9.35 m/s. 

 

(b) When the drop in height is 2.00 m instead of 4.00 m, the kinetic energy is  

 

K = 
1

2
 (2.50 kg)(3.00 m/s)

2
 + (2.50 kg)(9.80 m/s

2
)(2.00 m) = 60.3 J. 

 

(c) A simple way to approach this is to imagine the can being launched from the ground 

at 0t   with a speed 9.35 m/s (see above) and calculate the height and speed at t = 

0.200 s, using Eq. 2-15 and Eq. 2-11:   
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 y = (9.35 m/s)(0.200 s) – 
1

2
 (9.80 m/s

2
)(0.200 s)

2
 = 1.67 m, 

 

             v = 9.35 m/s – (9.80 m/s
2
)(0.200 s) = 7.39 m/s. 

 

The kinetic energy is K = 
1

2
 (2.50 kg) (7.39 m/s)

2
 = 68.2 J. 

 

(d) The gravitational potential energy is 

 

U = mgy = (2.5 kg)(9.8 m/s
2
)(1.67 m) = 41.0 J . 

 

90. The free-body diagram for the trunk is shown below. The x and y applications of 

Newton's second law provide two equations:  

 

  F1 cos  – fk – mg sin   = ma 
 

FN – F1 sin  – mg cos   = 0. 

 

 
 

(a) The trunk is moving up the incline at constant velocity, so a = 0. Using fk = k FN, we 

solve for the push-force F1 and obtain 

 

F
mg k

k

1






sin cos

cos sin
.

  

  

b g
 

 

The work done by the push-force 

F1  as the trunk is pushed through a distance   up the 

inclined plane is therefore 

 

  

       
 

1 1

k

2

3

cos sin cos
cos

cos sin

50 kg 9.8 m s 6.0 m cos30 sin 30 0.20 cos30

cos30 0.20 sin 30

2.2 10 J.

kmg
W F

   


  


 



  


 

 

 

 

(b) The increase in the gravitational potential energy of the trunk is 
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2 3sin (50kg)(9.8m/s )(6.0m)sin30 1.5 10 J.U mg        

 

Since the speed (and, therefore, the kinetic energy) of the trunk is unchanged, Eq. 8-33 

leads to 

W U E1    th.  

 

Thus, using more precise numbers than are shown above, the increase in thermal energy 

(generated by the kinetic friction) is 2.24  10
3
 J – 1.47  10

3
 J = 7.7  10

2
 J. An alternate 

way to this result is to use E f kth    (Eq. 8-31). 

 

91. The initial height of the 2M block, shown in Fig. 8-69, is the y = 0 level in our 

computations of its value of Ug.  As that block drops, the spring stretches accordingly.  

Also, the kinetic energy Ksys is evaluated for the system, that is, for a total moving mass 

of 3M. 

 

(a) The conservation of energy, Eq. 8-17, leads to 

Ki + Ui = Ksys + Usys      0 + 0 = Ksys + (2M)g(–0.090) + 
1

2
 k(0.090)

2
 . 

 

Thus, with M = 2.0 kg, we obtain Ksys = 2.7 J. 

 

(b) The kinetic energy of the 2M block represents a fraction of the total kinetic energy: 

 

 
2

2

2

(2 ) / 2 2

(3 ) / 2 3

M

sys

K M v

K M v
  . 

Therefore, K2M = 
2

3
(2.7 J) = 1.8 J. 

 

(c) Here we let y = –d and solve for d. 

 

Ki + Ui = Ksys + Usys     0 + 0 = 0 + (2M)g(–d) + 
1

2
 kd

2
 . 

 

Thus, with M = 2.0 kg, we obtain d = 0.39 m. 

 

92. By energy conservation, 2 / 2mgh mv , the speed of the volcanic ash is given by 

2 .v gh  In our present problem, the height is related to the distance (on the  = 10º 

slope) d = 920 m by the trigonometric relation h = d sin. Thus,  

 

 22(9.8 m/s )(920 m)sin10 56 m/s.v     

 

93. (a) The assumption is that the slope of the bottom of the slide is horizontal, like the 

ground. A useful analogy is that of the pendulum of length R = 12 m that is pulled 
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leftward to an angle  (corresponding to being at the top of the slide at height h = 4.0 m) 

and released so that the pendulum swings to the lowest point (zero height) gaining speed 

v 6 2. .m s  Exactly as we would analyze the trigonometric relations in the pendulum 

problem, we find 

h R
h

R
    

F
HG
I
KJ  1 1 481cos cos b g  

 

or 0.84 radians. The slide, representing a circular arc of length s = R, is therefore (12 

m)(0.84) = 10 m long. 

 

(b) To find the magnitude f of the frictional force, we use Eq. 8-31 (with W = 0): 

 

0

1

2

2

  

  

  K U E

mv mgh fs

th

 

 

so that (with m = 25 kg) we obtain f = 49 N. 

 

(c) The assumption is no longer that the slope of the bottom of the slide is horizontal, but 

rather that the slope of the top of the slide is vertical (and 12 m to the left of the center of 

curvature). Returning to the pendulum analogy, this corresponds to releasing the 

pendulum from horizontal (at 1 = 90° measured from vertical) and taking a snapshot of 

its motion a few moments later when it is at angle 2 with speed v = 6.2 m/s. The 

difference in height between these two positions is (just as we would figure for the 

pendulum of length R) 

h R R R     1 12 1 2cos cos cos  b g b g  

 

where we have used the fact that cos 1 = 0. Thus, with h = –4.0 m, we obtain 2 = 

70.5° which means the arc subtends an angle of || = 19.5° or 0.34 radians. Multiplying 

this by the radius gives a slide length of s' = 4.1 m. 

 

(d) We again find the magnitude f ' of the frictional force by using Eq. 8-31 (with W = 0): 

 

0

1

2

2

  

    

  K U E

mv mgh f s

th

 

so that we obtain f ' = 1.2  10
2
 N. 

 

94. We use P = Fv to compute the force: 

 

F
P

v
 



F
HG

I
KJ
F
HG

I
KJ
 

92 10

32 5 1852
1000

3600

55 10
6

6W

knot
km h

knot

m km

s h

N.

. .

.

b g
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95. This can be worked entirely by the methods of Chapters 2–6, but we will use energy 

methods in as many steps as possible. 

 

(a) By a force analysis in the style of Chapter 6, we find the normal force has magnitude 

FN = mg cos  (where  = 39°), which means fk = k mg cos  where k = 0.28. Thus, Eq. 

8-31 yields 

Eth = fk d = k mgd cos . 

 

Also, elementary trigonometry leads us to conclude that U = –mgd sin  where 

3.7 md  . Since Ki = 0, Eq. 8-33 (with W = 0) indicates that the final kinetic energy is 

 

K U E mgdf k      th  (sin cos )    

 

which leads to the speed at the bottom of the ramp 

 

v
K

m
gd

f

k   
2

2 55  m s.sin cos .  b g  

 

(b) This speed begins its horizontal motion, where fk = k mg and U = 0. It slides a 

distance d' before it stops. According to Eq. 8-31 (with W = 0), 

 

0

0
1

2
0

1

2
2

2

  

    

    

 K U E

mv mgd

gd gd

k

k k

 th

  

   



   sin cosb gc h

 

 

where we have divided by mass and substituted from part (a) in the last step. Therefore, 

 

 


d
d k

k

sin cos
. .

  



b g
54 m  

 

(c) We see from the algebraic form of the results, above, that the answers do not depend 

on mass. A 90 kg crate should have the same speed at the bottom and sliding distance 

across the floor, to the extent that the friction relations in Chapter 6 are accurate. 

Interestingly, since g does not appear in the relation for d', the sliding distance would 

seem to be the same if the experiment were performed on Mars! 

 

96. (a) The loss of the initial K = 
1

2
 mv

2
 = 

1

2
 (70 kg)(10 m/s)

2
 is 3500 J, or 3.5 kJ. 

 

(b) This is dissipated as thermal energy; Eth = 3500 J = 3.5 kJ.  
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97. Eq. 8-33 gives 
thf i imgy K mgy E   , or 

 

 (0.50 kg)(9.8 m/s
2
)(0.80 m) = 

1

2
 (0.50 kg)(4.00 /s)

2
 + (0.50 kg)(9.8 m/s

2
)(0) – Eth 

 

which yields Eth = 4.00 J – 3.92 J = 0.080 J. 

 

98. Since the period T is (2.5 rev/s)
1

 = 0.40 s, then Eq. 4-33 leads to v = 3.14 m/s.  The 

frictional force has magnitude (using Eq. 6-2)   

 

f = k FN = (0.320)(180 N) = 57.6 N. 

 

The power dissipated by the friction must equal that supplied by the motor, so Eq. 7-48 

gives P = (57.6 N)(3.14 m/s) = 181 W. 

 

99. To swim at constant velocity the swimmer must push back against the water with a 

force of 110 N. Relative to him the water is going at 0.22 m/s toward his rear, in the same 

direction as his force. Using Eq. 7-48, his power output is obtained: 

 

P F v Fv    
 

110 022 24N m s W.b gb g.  

 

100. The initial kinetic energy of the automobile of mass m moving at speed vi is 

K mvi i
1

2

2 , where m = 16400/9.8 = 1673 kg. Using Eq. 8-31 and Eq. 8-33, this relates to 

the effect of friction force f in stopping the auto over a distance d by K fdi  , where the 

road is assumed level (so U = 0). With 

 

   113 km/h 113 km/h (1000 m/km)(1 h/3600 s) 31.4 m/s,iv     

 

we obtain 

 

 

22 1673kg (31.4 m/s)
100m.

2 2 8230 N

i iK mv
d

f f
     

 

101. With the potential energy reference level set at the point of throwing, we have (with 

SI units understood) 

E mgh mv m   
F
HG

I
KJ

1

2
9 8 81

1

2
140

2 2
. .b gb g b g  

 

which yields E = –12 J for m = 0.63 kg. This “loss” of mechanical energy is presumably 

due to air friction. 

 

102. (a) The (internal) energy the climber must convert to gravitational potential energy 

is 
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   2 690 kg 9.80 m/s 8850 m 7.8 10 J.U mgh      

 

(b) The number of candy bars this corresponds to is 

 
6

6

7.8 10 J
6.2bars.

1.25 10 J bar
N


 


 

 

103. (a) The acceleration of the sprinter is (using Eq. 2-15) 

 

a
x

t
  

2 2 7 0

16
547

2 2

2 b gb g
b g

.

.
. .

m

s
m s  

 

Consequently, the speed at t = 1.6s is v at  547 16 88. . . .m s s m s2c hb g  Alternatively, 

Eq. 2-17 could be used. 

 

(b) The kinetic energy of the sprinter (of weight w and mass m = w/g) is 

 

  
22 2 2 31 1 1

670 N/(9.8 m/s ) 8.8 m/s 2.6 10 J.
2 2 2

w
K mv v

g

 
     

 
 

 

(c) The average power is 
3

3

avg

2.6 10 J
1.6 10 W.

1.6 s

K
P

t

 
   


 

 

104. From Eq. 8-6, we find (with SI units understood) 

 

U x x dx  
b g c h     z 3 5

3

2

5

3

2

0

2 3 .  

 

(a) Using the above formula, we obtain U(2)  19 J. 

 

(b) When its speed is v = 4 m/s, its mechanical energy is 1
2

2 5mv U b g . This must equal 

the energy at the origin: 

1

2
5

1

2
02 2mv U mv U  b g b go  

 

so that the speed at the origin is 

v v
m

U Uo   2 2
5 0b g b gc h.  

 

Thus, with U(5) = 246 J, U(0) = 0 and m = 20 kg, we obtain vo = 6.4 m/s. 
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(c) Our original formula for U is changed to  

 

 2 33 5
( ) 8

2 3
U x x x     

 

in this case. Therefore, U(2) = 11 J. But we still have vo = 6.4 m/s since that calculation 

only depended on the difference of potential energy values (specifically, U(5) – U(0)). 

 

105. (a) Resolving the gravitational force into components and applying Newton’s second 

law (as well as Eq. 6-2), we find  

  

Fmachine – mg sin – k mg cos = ma. 

 

In the situation described in the problem, we have a = 0, so 

 

Fmachine = mg sin+ k mg cos = 372 N. 

 

Thus, the work done by the machine is Fmachined = 744 J = 7.4  10
2 
J. 

 

(b) The thermal energy generated is (k mg cosd = 240 J = 2.4  10
2 
J.  

 

106. (a) At the highest point, the velocity v = vx is purely horizontal and is equal to the 

horizontal component of the launch velocity (see section 4-6): vox = vo cos, where 

30   in this problem. Equation 8-17 relates the kinetic energy at the highest point to 

the launch kinetic energy: 

     Ko  = mg y + 
1

2
 mv

2
 = 

1

2
 mvox

2
 + 

1

2
 mvoy

2
, 

 

with y = 1.83 m. Since the mvox
2
/2 term on the left-hand side cancels the mv

2
/2 term on 

the right-hand side, this yields voy = 2gy  6 m/s. With voy = vo sin, we obtain  

 

vo = 11.98 m/s  12 m/s. 

 

(b) Energy conservation (including now the energy stored elastically in the spring, Eq. 

8-11) also applies to the motion along the muzzle (through a distance d that corresponds 

to a vertical height increase of d sin ): 

 
1

2
 kd

2
 = Ko + mg d sin     d = 0.11 m. 

 

107. The work done by 

F  is the negative of its potential energy change (see Eq. 8-6), 

so UB = UA – 25 = 15 J. 
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108. (a) We assume his mass is between m1 = 50 kg and m2 = 70 kg (corresponding to a 

weight between 110 lb and 154 lb). His increase in gravitational potential energy is 

therefore in the range 

 
5 5

1 2 2 10 3 10m gh U m gh U          

 

in SI units (J), where h = 443 m. 

 

(b) The problem only asks for the amount of internal energy that converts into 

gravitational potential energy, so this result is the same as in part (a). But if we were to 

consider his total internal energy “output” (much of which converts to heat) we can 

expect that external climb is quite different from taking the stairs. 

 

109. (a) We implement Eq. 8-37 as 

 

Kf  = Ki + mgyi – fk d = 0 + (60 kg)(9.8 m/s
2
)(4.0 m) – 0 = 2.35  10

3
 J. 

 

(b) Now it applies with a nonzero thermal term: 

 

Kf = Ki + mgyi – fk d = 0 + (60 kg)(9.8 m/s
2
)(4.0 m) – (500 N)(4.0 m) = 352 J. 

 

110. We take the bottom of the incline to be the y = 0 reference level. The incline angle is 

30   . The distance along the incline d (measured from the bottom) is related to height 

y by the relation y = d sin . 

 

(a) Using the conservation of energy, we have 

 

K U K U mv mgy0 0 0

21

2
0 0      top top  

 

with v0 50 . m s . This yields y = 1.3 m, from which we obtain d = 2.6 m. 

 

(b) An analysis of forces in the manner of Chapter 6 reveals that the magnitude of the 

friction force is fk = kmg cos . Now, we write Eq. 8-33 as 

 

K U K U f d

mv mgy f d

mv mgd mgd

k

k

k

0 0

0

2

0

2

1

2
0 0

1

2

   

   

 

top top

sin cos  

 

 

which — upon canceling the mass and rearranging — provides the result for d: 

 



  CHAPTER 8 

 

400 

d
v

g k




0

2

2
15

  cos sin
.b g m .  

 

(c) The thermal energy generated by friction is fkd = k mgd cos  = 26 J. 

 

(d) The slide back down, from the height y = 1.5 sin 30º, is also described by Eq. 8-33. 

With Eth  again equal to 26 J, we have 

 

K U K U f d mgy mvktop top bot bot bot        0
1

2
0 262  

 

from which we find vbot m s 21. . 

 

111. Equation 8-8 leads directly to y = 
68000 J

(9.4 kg)(9.8 m/s
2
)
  = 738 m. 

 

112. We assume his initial kinetic energy (when he jumps) is negligible. Then, his initial 

gravitational potential energy measured relative to where he momentarily stops is what 

becomes the elastic potential energy of the stretched net (neglecting air friction). Thus, 

 

U U mghnet grav   

 

where h = 11.0 m + 1.5 m = 12.5 m. With m = 70 kg, we obtain Unet = 8580 J. 

 

113. We use SI units so m = 0.030 kg and d = 0.12 m. 

 

(a) Since there is no change in height (and we assume no changes in elastic potential 

energy), then U = 0 and we have 

 2 3

mech 0

1
3.8 10  J

2
E K mv         

 

where v0 = 500 m/s and the final speed is zero. 

 

(b) By Eq. 8-33 (with W = 0) we have Eth = 3.8  10
3
 J, which implies 

 

f
E

d
  
 th  N31 104.  

 

using Eq. 8-31 with fk replaced by f (effectively generalizing that equation to include a 

greater variety of dissipative forces than just those obeying Eq. 6-2). 

 

114. (a) The kinetic energy K of the automobile of mass m at t = 30 s is 
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K mv 
F
HG

I
KJ

F
HG

I
KJ  

1

2

1

2
1500 72

1000

3600
30 102

2

5kg km h
m km

s h
J .b g b g .  

 

(b) The average power required is 

 

P
K

t
avg

J

s
W. 


 





30 10

30
10 10

5
4.

.  

 

(c) Since the acceleration a is constant, the power is P = Fv = mav = ma(at) = ma
2
t using 

Eq. 2-11. By contrast, from part (b), the average power is P
mv

t
avg 

2

2
, which becomes 

1

2

2ma t  when v = at is again utilized. Thus, the instantaneous power at the end of the 

interval is twice the average power during it:  

 

P P    2 2 10 10 2 0 104 4

avg W W.b gc h. .  

 

115. (a) The initial kinetic energy is 2(1.5 kg)(20 m/s) / 2 300 J.iK    

 

(b) At the point of maximum height, the vertical component of velocity vanishes but the 

horizontal component remains what it was when it was “shot” (if we neglect air friction). 

Its kinetic energy at that moment is 

 

 
21

(1.5 kg) (20 m/s)cos34 206 J.
2

K     

 

Thus,  U = Ki – K = 300 J – 206 J = 93.8 J. 

 

(c) Since  U = mg y, we obtain 
2

94 J
6.38 m

(1.5 kg)(9.8 m/s )
y   . 

 

116. (a) The rate of change of the gravitational potential energy is 

 

dU

dt
mg

dy

dt
mg v       68 9 8 59 39 104b gb gb g. . J s.  

 

Thus, the gravitational energy is being reduced at the rate of 3.9  10
4
 W. 

 

(b) Since the velocity is constant, the rate of change of the kinetic energy is zero. Thus 

the rate at which the mechanical energy is being dissipated is the same as that of the 

gravitational potential energy (3.9  10
4
 W). 
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117. (a) The effect of (sliding) friction is described in terms of energy dissipated as 

shown in Eq. 8-31. We have 

 

E K k k f k    
1

2
0 08

1

2
010 0 02

2 2
. . .b g b g b g  

 

where distances are in meters and energies are in joules. With k = 4000 N/m and 

80 N,kf  we obtain K = 5.6 J. 

 

(b) In this case, we have d = 0.10 m. Thus, 

 

E K k f k    0
1

2
010 010

2
. .b g b g  

which leads to K = 12 J. 

 

(c) We can approach this two ways. One way is to examine the dependence of energy on 

the variable d: 

E K k d d kd f dk     
1

2

1

2
0

2

0

2b g  

 

where d0 = 0.10 m, and solving for K as a function of d: 

 

K kd kd d f dk   
1

2

2

0b g . 

In this first approach, we could work through the / ( ) 0dK d d   condition (or with the 

special capabilities of a graphing calculator) to obtain the answer K
k

kd f kmax  
1

2
0

2b g .  

In the second (and perhaps easier) approach, we note that K is maximum where v is 

maximum — which is where a  0  equilibrium of forces. Thus, the second approach 

simply solves for the equilibrium position 

 

F f kxkspring    80. 

 

Thus, with k = 4000 N/m we obtain x = 0.02 m. But x = d0 – d so this corresponds to d = 

0.08 m. Then the methods of part (a) lead to the answer Kmax = 12.8 J  13 J. 

 

118. We work this in SI units and convert to horsepower in the last step. Thus, 

 

v 
F
HG

I
KJ 80

1000

3600
22 2km h

m km

s h
m sb g . .  

 

The force FP needed to propel the car (of weight w and mass m = w/g) is found from 

Newton’s second law: 
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F F F ma
wa

g
Pnet      

 

where F = 300 + 1.8v
2
 in SI units. Therefore, the power required is  

 

 
  

 

 

2 4

4

12000 0.92
300 1.8 22.2 22.2 5.14 10  W

9.8

1 hp
5.14 10  W 69 hp.

746 W

P

wa
P F v F v

g

  
          

   

 
   

 

 

 

119. THINK We apply energy method to analyze the projectile motion of a ball.  

 

EXPRESS We choose the initial position at the window to be our reference point for 

calculating the potential energy. The initial energy of the ball is 2

0 0

1
.

2
E mv  At the top 

of its flight, the vertical component of the velocity is zero, and the horizontal component 

(neglecting air friction) is the same as it was when it was thrown: 0 cosxv v  .  At a 

position h below the window, the energy of the ball is  

 

21

2
E K U mv mgh     

 where v is the speed of the ball. 

 

ANALYZE (a) The kinetic energy of the ball at the top of the flight is 

 

2 2 2

top 0

1 1 1
( cos ) (0.050 kg)[(8.0 m/s)cos30 ] 1.2 J

2 2 2
xK mv m v      . 

 

(b) When the ball is h = 3.0 m below the window, by energy conservation, we have  

 

2 2

0

1 1

2 2
mv mv mgh   

or  

2 2 2

0 2 (8.0 m/s) 2(9.8 m/s )(3.0 m) 11.1m/sv v gh     . 

 

(c) As can be seen from our expression above, 2

0 2 ,v v gh   which is independent of 

the mass m.  

 

(d) Similarly, the speed v is independent of the initial angle .  
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LEARN Our results demonstrate that the quantity v in the kinetic energy formula is the 

magnitude of the velocity vector; it does not depend on direction. In addition, mass 

cancels out in the energy conservation equation, so that v is independent of m.  

 

120. (a) In the initial situation, the elongation was (using Eq. 8-11)   

 

xi = 2(1.44)/3200 = 0.030 m (or 3.0 cm). 

 

In the next situation, the elongation is only 2.0 cm (or 0.020 m), so we now have less 

stored energy (relative to what we had initially). Specifically,  

 

U = 
1

2
 (3200 N/m)(0.020 m)

2
 – 1.44 J = –0.80 J. 

 

(b) The elastic stored energy for |x| = 0.020 m does not depend on whether this represents 

a stretch or a compression. The answer is the same as in part (a), U = –0.80 J. 

 

(c) Now we have |x| = 0.040 m, which is greater than xi, so this represents an increase in 

the potential energy (relative to what we had initially). Specifically,



U = 
1

2
 (3200 N/m)(0.040 m)

2
 – 1.44 J = +1.12 J 1.1 J . 

 

121. (a) With P = 1.5 MW = 1.5  10
6
 W (assumed constant) and t = 6.0 min = 360 s, the 

work-kinetic energy theorem becomes 

 

W Pt K m v vf i   
1

2

2 2d i. 
The mass of the locomotive is then 

 

m
Pt

v vf i








 

2 2 15 10 360

25 10
21 10

2 2

6

2 2

6
b gc hb g
b g b g

.
.

W s

m s m s
kg.  

 

(b) With t arbitrary, we use Pt m v vi 
1

2

2 2c h  to solve for the speed v = v(t) as a 

function of time and obtain 

 

v t v
Pt

m

t
tib g b g b gc h

   



 2 2

6

6

2
10

2 15 10

21 10
100 15

.

.
.  

 

in SI units (v in m/s and t in s). 

 

(c) The force F(t) as a function of time is 
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F t
P

v t t
b g b g 





15 10

100 15

6.

.
 

in SI units (F in N and t in s). 

 

(d) The distance d the train moved is given by 

 

 

360
1/ 2 3/ 2

360
3

0 0

0

3 4 3
( ) 100 100 6.7 10  m.

2 9 2

t

d v t dt t dt t
   

          
   

   

 

122. THINK A shuffleboard disk is accelerated over some distance by an external force, 

but it eventually comes to rest due to the frictional force.  

 

EXPRESS In the presence of frictional force, the work done on a system is 

mech th ,W E E    where mechE K U     and th .kE f d   In our situation, work 

has been done by the cue only to the first 2.0 m, and not to the subsequent 12 m of 

distance traveled.   

 

ANALYZE (a) During the final d = 12 m of motion, 0W   and we use 

 

 
1 1 2 2

21
0 0 0

2

k

k

K U K U f d

mv f d

   

   
 

 

where 0.42 kgm  and v = 4.2 m/s. This gives fk = 0.31 N. Therefore, the thermal 

energy change is th 3.7 J.kE f d    

 

(b) Using fk = 0.31 N for the entire distance dtotal = 14 m, we obtain  

 

th,total total (0.31 N)(14 m) 4.3 JkE f d     

 

for the thermal energy generated by friction. 

 

(c) During the initial d' = 2 m of motion, we have 

 

2

mech th

1
0

2
k kW E E K U f d mv f d             

 

which essentially combines Eq. 8-31 and Eq. 8-33. Thus, the work done on the disk by 

the cue is 

2 21 1
(0.42 kg)(4.2 m/s) (0.31 N)(2.0 m) 4.3 J

2 2
kW mv f d      . 
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LEARN Our answer in (c) is the same as that in (b). This is expected because all the 

work done becomes thermal energy at the end.  

 

123. The water has gained  

 

K = 
1

2
 (10 kg)(13 m/s)

2
 – 

1

2
 (10 kg)(3.2 m/s)

2
 = 794 J 

 

of kinetic energy, and it has lost U = (10 kg)(9.8 m/s
2
)(15 m) = 1470 J . 

 

of potential energy (the lack of agreement between these two values is presumably due to 

transfer of energy into thermal forms).  The ratio of these values is 0.54 = 54%. The 

mass of the water cancels when we take the ratio, so that the assumption (stated at the end 

of the problem: m = 10 kg) is not needed for the final result. 

 

124. (a) The integral (see Eq. 8-6, where the value of U at x =  is required to vanish) is 

straightforward. The result is U(x) = Gm1m2/x. 

 

(b) One approach is to use Eq. 8-5, which means that we are effectively doing the integral 

of part (a) all over again.  Another approach is to use our result from part (a) (and thus 

use Eq. 8-1). Either way, we arrive at 

 

W = 
G m1 m2

 x1
 

G m1 m2

 x1+ d
 = 

G m1 m2 d

 x1(x1 + d)
 . 

 

125. (a) During one second, the decrease in potential energy is 

 

       U mg y( ) ( .55 106  kg) 9.8m s  (50 m) 2.7 10  J
2 9d i  

 

where +y is upward and y = yf – yi. 

 

(b) The information relating mass to volume is not needed in the computation. By Eq.  

8-40 (and the SI relation W = J/s), the result follows:  

 

P = (2.7  10
9
 J)/(1 s) = 2.7  10

9
 W. 

 

(c) One year is equivalent to 24  365.25 = 8766 h which we write as 8.77 kh. Thus, the 

energy supply rate multiplied by the cost and by the time is 

 

( . .2 7 10 2 4 109 10
F
HG

I
KJ  W)(8.77 kh)

1 cent

1 kWh
cents  = $2.4  10

8
. 

 

126. The connection between angle  (measured from vertical) and height h (measured 

from the lowest point, which is our choice of reference position in computing the 
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gravitational potential energy) is given by h = L(1 – cos ) where L is the length of the 

pendulum. 

 

(a) We use energy conservation in the form of Eq. 8-17. 

 

K U K U

mgL mv mgL

1 1 2 2

1 2

2

20 1
1

2
1

  

    cos cos b g b g  

 

With L = 1.4 m, 1 = 30°, and 2 = 20°, we have 

 

v gL2 2 12 14  cos cos . b g m s. 

 

(b) The maximum speed v3 is at the lowest point. Our formula for h gives h3 = 0 when 3 

= 0°, as expected. From 

K U K U

mgL mv

1 1 3 3

1 3

20 1
1

2
0

  

   cosb g  

we obtain v3 19 . m s . 

 

(c) We look for an angle 4 such that the speed there is v v4 3 3 . To be as accurate as 

possible, we proceed algebraically (substituting v gL3

2

12 1  cosb g  at the appropriate 

place) and plug numbers in at the end. Energy conservation leads to 

 

K U K U

mgL mv mgL

mgL m
v

mgL

gL
gL

gL

1 1 4 4

1 4

2

4

1
3

2

4

1

1

4

0 1
1

2
1

1
1

2 9
1

1

2

2 1

9

  

    

   

 




cos cos

cos cos

cos
cos

cos

 

 






b g b g

b g b g
b g

 

 

where in the last step we have subtracted out mgL and then divided by m. Thus, we obtain 

 

 1

4 1

1 8
cos cos 28.2 28 .

9 9
   

      
 

 

 

127. Equating the mechanical energy at his initial position (as he emerges from the canon, 

where we set the reference level for computing potential energy) to his energy as he lands, 

we obtain 
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K K U

K

i f f

f

 

 
1

2
60 16 60 9 8 39

2
kg m s kg m s m2b gb g b gc hb g. .

 

 

which leads to Kf = 5.4  10
3
 J. 

 

128. (a) This part is essentially a free-fall problem, which can be easily done with 

Chapter 2 methods. Instead, choosing energy methods, we take y = 0 to be the ground 

level. 

K U K U mgy mvi i i      0
1

2
02  

 

Therefore v gyi 2 9 2. m s , where yi = 4.3 m. 

 

(b) Eq. 8-29 provides Eth = fkd for thermal energy generated by the kinetic friction force. 

We apply Eq. 8-31: 

 

K U K U mgy mv f di i i k       0
1

2
02 .

.
 

 

With d = yi, m = 70 kg and fk = 500 N, this yields v = 4.8 m/s. 

 

129. We want to convert (at least in theory) the water that falls through h = 500 m into 

electrical energy. The problem indicates that in one year, a volume of water equal to Az 

lands in the form of rain on the country, where A = 8  10
12

 m
2
 and z = 0.75 m. 

Multiplying this volume by the density  = 1000 kg/m
3
 leads to 

 

m A ztotal kg      1000 8 10 0 75 6 1012 15b gc hb g.  

 

for the mass of rainwater. One-third of this “falls” to the ocean, so it is m = 2  10
15

 kg 

that we want to use in computing the gravitational potential energy mgh (which will turn 

into electrical energy during the year). Since a year is equivalent to 3.2  10
7
 s, we obtain 

 

Pavg W.



 

2 10 9 8 500

32 10
31 10

15

7

11
c hb gb g.

.
.  

 

130. The spring is relaxed at y = 0, so the elastic potential energy (Eq. 8-11) is 

U kyel 
1
2

2 . The total energy is conserved, and is zero (determined by evaluating it at its 

initial position). We note that U is the same as U in these manipulations. Thus, we have 

 

0       K U U K U Ug e g e  
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where Ug = mgy = (20 N)y with y in meters (so that the energies are in Joules). We 

arrange the results in a table: 

 

position y –0.05 –0.10 –0.15 –0.20 

K (a) 0.75 (d) 1.0 (g) 0.75 (j) 0 

Ug (b) –1.0 (e) –2.0 (h) –3.0 (k) –4.0 

Ue (c) 0.25 (f) 1.0 (i) 2.25 (l) 4.0 

 

131. Let the amount of stretch of the spring be x. For the object to be in equilibrium 

 

kx mg x mg k   0 .  

 

Thus the gain in elastic potential energy for the spring is 

 

U kx k
mg

k

m g

k
e  

F
HG
I
KJ 

1

2

1

2 2

2

2 2 2

 

 

while the loss in the gravitational potential energy of the system is 

 

  
F
HG
I
KJ U mgx mg

mg

k

m g

k
g

2 2

 

 

which we see (by comparing with the previous expression) is equal to 2Ue. The reason 

why U Ug e   is that, since the object is slowly lowered, an upward external force 

(e.g., due to the hand) must have been exerted on the object during the lowering process, 

preventing it from accelerating downward. This force does negative work on the object, 

reducing the total mechanical energy of the system. 

 

132. (a) The compression is “spring-like” so the maximum force relates to the distance x 

by Hooke's law: 

F kx xx m.  



750

2 5 10
0 0030

5.
.  

 

(b) The work is what produces the “spring-like” potential energy associated with the 

compression. Thus, using Eq. 8-11, 

 

2 5 21 1
(2.5 10 )(0.0030) 1.1J.

2 2
W kx     
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(c) By Newton's third law, the force F exerted by the tooth is equal and opposite to the 

“spring-like” force exerted by the licorice, so the graph of F is a straight line of slope k. 

We plot F (in newtons) versus x (in millimeters); both are taken as positive. 

 

 
 

(d) As mentioned in part (b), the spring potential energy expression is relevant. Now, 

whether or not we can ignore dissipative processes is a deeper question. In other words, it 

seems unlikely that — if the tooth at any moment were to reverse its motion — that the 

licorice could “spring back” to its original shape. Still, to the extent that U kx
1

2

2  

applies, the graph is a parabola (not shown here) which has its vertex at the origin and is 

either concave upward or concave downward depending on how one wishes to define the 

sign of F (the connection being F = –dU/dx). 

 

(e) As a crude estimate, the area under the curve is roughly half the area of the entire 

plotting-area (8000 N by 12 mm). This leads to an approximate work of  

1

2
(8000 N) (0.012 m)  50 J. Estimates in the range 40  W  50 J are acceptable. 

 

(f) Certainly dissipative effects dominate this process, and we cannot assign it a 

meaningful potential energy. 

 

133. (a) The force (SI units understood) from Eq. 8-20 is plotted in the graph below. 

 

 
 

(b) The potential energy U(x) and the kinetic energy K(x) are shown in the next.  The 

potential energy curve begins at 4 and drops (until about x = 2); the kinetic energy curve 

is the one that starts at zero and rises (until about x = 2). 
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134. The style of reasoning used here is presented in Section 8-5. 

 

(a) The horizontal line representing E1 intersects the potential energy curve at a value of r 

 0.07 nm and seems not to intersect the curve at larger r (though this is somewhat 

unclear since U (r) is graphed only up to r = 0.4 nm). Thus, if m were propelled towards 

M from large r with energy E1 it would “turn around” at 0.07 nm and head back in the 

direction from which it came. 

 

(b) The line representing E2 has two intersection points r1  0.16 nm and r2  0.28 nm 

with the U (r) plot. Thus, if m starts in the region r1 < r < r2 with energy E2 it will bounce 

back and forth between these two points, presumably forever. 

 

(c) At r = 0.3 nm, the potential energy is roughly U = –1.1  10
–19

 J. 

 

(d) With M > > m, the kinetic energy is essentially just that of m. Since E = 1  10
–19

 J, its 

kinetic energy is K = E – U  2.1  10
–19

 J. 

 

(e) Since force is related to the slope of the curve, we must (crudely) estimate 

F   1 10 9 N  at this point. The sign of the slope is positive, so by Eq. 8-20, the force is 

negative-valued. This is interpreted to mean that the atoms are attracted to each other. 

 

(f) Recalling our remarks in the previous part, we see that the sign of F is positive 

(meaning it's repulsive) for r < 0.2 nm. 

 

(g) And the sign of F is negative (attractive) for r > 0.2 nm. 

 

(h) At r = 0.2 nm, the slope (hence, F) vanishes. 

 

135. The distance traveled up the incline can be calculated using the kinematic equations 

discussed in Chapter 2: 

v v a x x2

0

2 2 200     m . 

 

This corresponds to an increase in height equal to (200 m)sin 17 m,y    

where 5.0   . We take its initial height to be y = 0. 
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(a) Eq. 8-24 leads to 

W E m v v mgyapp    
1

2

2

0

2c h . 

 

Therefore, E  8 6 103. J . 

 

(b) From the above manipulation, we see Wapp = 8.6  10
3
 J. Also, from Chapter 2, we 

know that  t v a 10 s . Thus, using Eq. 7-42, 

 

P
W

t
avg W 






8 6 10

10
860

3.
 

 

where the answer has been rounded off (from the 856 value that is provided by the 

calculator). 

 

(c) and (d) Taking into account the component of gravity along the incline surface, the 

applied force is ma + mg sin  = 43 N and clearly in the direction of motion, so Eq. 7-48 

provides the results for instantaneous power 

 

P F v
v

v
  





RST
  430 10

1300 30

W for m / s

W for m / s
 

 

where these answers have been rounded off (from 428 and 1284, respectively). We note 

that the average of these two values agrees with the result in part (b). 

 

136. (a) Conservation of mechanical energy leads to 

 

2 2 21 1 1
0 ( )

2 2 2
i i f f i f f i fK U K U ky mv k y y mgy          

 

where 0.25 miy  is the initial depression of the spring, and f iy y  is the displacement 

of the spring from its equilibrium position when the block is at yf . Thus, the kinetic 

energy of the block can be written as 

  

2 2 21 1
( )

2 2
f f i f i fK mv k y y y mgy       . 

 

For 0,fy   the kinetic energy is 0,fK  as expected, since this corresponds to the initial 

release point.  

 

(b) At 0.050 m,fy  we have 
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2 2

2 2

1
( )

2

1
(620 N/m) (0.250 m) (0.050 m 0.250 m) (50 N)(0.050 m) 4.48 J

2

f i f i fK k y y y mgy     

      

 

 

(c) At 0.100 m,fy  we have 

2 2

2 2

1
( )

2

1
(620 N/m) (0.250 m) (0.100 m 0.250 m) (50 N)(0.100 m) 7.40 J

2

f i f i fK k y y y mgy     

      

 

 

(d) Similarly, the kinetic energy at 0.150 mfy  is 

2 2

2 2

1
( )

2

1
(620 N/m) (0.250 m) (0.150 m 0.250 m) (50 N)(0.150 m) 8.78 J

2

f i f i fK k y y y mgy     

      

 

 

(e) At 0.200 m,fy   the kinetic energy of the block is 

2 2

2 2

1
( )

2

1
(620 N/m) (0.250 m) (0.200 m 0.250 m) (50 N)(0.200 m) 8.60 J

2

f i f i fK k y y y mgy     

      

 

 

(f) The spring returns to its uncompressed state once .f iy y  Since the block becomes 

detached from the spring beyond that point, at its maximum height, K = 0, and we have 

 
2 2

2

max max

1 (620 N/m)(0.250 m)
0.388 m

2 2 2(50 N)

i
i

ky
ky mgy y

mg
     . 



414 

 

 

Chapter 9 
 

 

 

1. We use Eq. 9-5 to solve for 3 3( , ).x y   

 

(a) The x coordinate of the system’s center of mass is: 

 

     31 1 2 2 3 3
com

1 2 3

(2.00 kg)( 1.20 m) 4.00 kg 0.600 m 3.00 kg

2.00 kg 4.00 kg 3.00 kg

0.500 m.

xm x m x m x
x

m m m

   
 

   

 

 

 

Solving the equation yields x3 = –1.50 m. 

 

(b) The y coordinate of the system’s center of mass is: 

 

     31 1 2 2 3 3
com

1 2 3

(2.00 kg)(0.500 m) 4.00 kg 0.750 m 3.00 kg

2.00 kg 4.00 kg 3.00 kg

0.700 m.

ym y m y m y
y

m m m

   
 

   

 

 

 

Solving the equation yields y3 = –1.43 m. 

 

2. Our notation is as follows: x1 = 0 and y1 = 0 are the coordinates of the m1 = 3.0 kg 

particle; x2 = 2.0 m and y2 = 1.0 m are the coordinates of the m2 = 4.0 kg particle; and x3 = 

1.0 m and y3 = 2.0 m are the coordinates of the m3 = 8.0 kg particle. 

 

(a) The x coordinate of the center of mass is 

 

     
1 1 2 2 3 3

com

1 2 3

0 4.0 kg 2.0 m 8.0 kg 1.0 m
1.1 m.

3.0 kg 4.0 kg 8.0 kg

m x m x m x
x

m m m

  
  

   
 

 

(b) The y coordinate of the center of mass is 

 

     1 1 2 2 3 3
com

1 2 3

0 4.0 kg 1.0 m 8.0 kg 2.0 m
1.3 m.

3.0 kg 4.0 kg 8.0 kg

m y m y m y
y

m m m

  
  

   
 

 

(c) As the mass of m3, the topmost  particle,  is increased, the center of mass shifts toward 

that particle. As we approach the limit where m3 is infinitely more massive than the 

others, the center of mass becomes infinitesimally close to the position of m3. 

 

3. We use Eq. 9-5 to locate the coordinates. 



 

  

415 

 

(a) By symmetry xcom = –d1/2 = –(13 cm)/2 = – 6.5 cm. The negative value is due to our 

choice of the origin. 

 

(b) We find ycom as 

 

     

com, com, com, cm,

com

3 3

3 3

11 cm / 2 7.85 g/cm 3 11 cm / 2 2.7 g/cm
8.3 cm.

7.85 g/cm 2.7 g/cm

i i a a i i i a a a

i a i i a a

m y m y V y V y
y

m m V V

 

 

 
 

 


 



 

 

(c) Again by symmetry, we have zcom = (2.8 cm)/2 = 1.4 cm.  

 

4. We will refer to the arrangement as a “table.” We locate the coordinate origin at the 

left end of the tabletop (as shown in Fig. 9-37). With +x rightward and +y upward, then 

the center of mass of the right leg is at (x,y) = (+L, –L/2), the center of mass of the left leg 

is at (x,y) = (0, –L/2), and the center of mass of the tabletop is at (x,y) = (L/2, 0).  

 

(a) The x coordinate of the (whole table) center of mass is 

 

     
com

0 3 / 2

3 2

M L M M L L
x

M M M

   
 

 
. 

 

With L = 22 cm, we have xcom = (22 cm)/2 = 11 cm. 

 

(b) The y coordinate of the (whole table) center of mass is 

 

     
com

/ 2 / 2 3 0

3 5

M L M L M L
y

M M M

   
  

 
, 

or ycom = – (22 cm)/5 = – 4.4 cm.  

 

From the coordinates, we see that the whole table center of mass is a small distance 4.4 

cm directly below the middle of the tabletop. 

 

5. Since the plate is uniform, we can split it up into three rectangular pieces, with the 

mass of each piece being proportional to its area and its center of mass being at its 

geometric center.  We’ll refer to the large 35 cm   10 cm piece (shown to the left of the y 

axis in Fig. 9-38) as section 1; it has 63.6% of the total area and its center of mass is at 

(x1 ,y1) = (5.0 cm, 2.5 cm).  The top 20 cm   5 cm piece (section 2, in the first quadrant) 

has 18.2% of the total area; its center of mass is at (x2,y2) = (10 cm, 12.5 cm). The bottom 

10 cm x 10 cm piece (section 3) also has 18.2% of the total area; its center of mass is at 

(x3,y3) = (5 cm, 15 cm).   

 

(a) The x coordinate of the center of mass for the plate is  
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xcom = (0.636)x1 + (0.182)x2 + (0.182)x3  = – 0.45 cm . 

 

(b) The y coordinate of the center of mass for the plate is  

 

ycom = (0.636)y1 + (0.182)y2 + (0.182)y3  = – 2.0 cm . 

 

6. The centers of mass (with centimeters understood) for each of the five sides are as 

follows: 

1 1 1

2 2 2

3 3 3

4 4 4

   ( , , ) (0,20,20) for the side in the  plane

  ( , , ) (20,0,20) for the side in the  plane

  ( , , ) (20,20,0) for the side in the  plane

( , , ) (40,20,20) for the remaining side paral

x y z yz

x y z xz

x y z xy

x y z









5 5 5

lel to side 1

( , , ) (20,40,20) for the remaining side parallel to side 2x y z 

 

 

Recognizing that all sides have the same mass m, we plug these into Eq. 9-5 to obtain the 

results (the first two being expected based on the symmetry of the problem). 

 

(a) The x coordinate of the center of mass is 

 

x
mx mx mx mx mx

m
com cm

   


   
1 2 3 4 5

5

0 20 20 40 20

5
20  

 

(b) The y coordinate of the center of mass is 

 

y
my my my my my

m
com cm

   


   
1 2 3 4 5

5

20 0 20 20 40

5
20  

 

(c) The z coordinate of the center of mass is 

 

z
mz mz mz mz mz

m
com cm

   


   
1 2 3 4 5

5

20 20 0 20 20

5
16  

 

7. (a) By symmetry the center of mass is located on the axis of symmetry of the 

molecule – the y axis. Therefore xcom = 0. 

 

(b) To find ycom, we note that 3mHycom = mN(yN – ycom), where yN is the distance from the 

nitrogen atom to the plane containing the three hydrogen atoms: 

 

   
2 2

11 11 11

N 10.14 10 m 9.4 10 m 3.803 10 m.y          

 

Thus, 
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  
 

11

11N N
com

N H

14.0067 3.803 10 m
3.13 10 m

3 14.0067 3 1.00797

m y
y

m m






   
 

 

 

where Appendix F has been used to find the masses. 

 

8. (a) Since the can is uniform, its center of mass is at its geometrical center, a distance 

H/2 above its base. The center of mass of the soda alone is at its geometrical center, a 

distance x/2 above the base of the can. When the can is full this is H/2. Thus the center of 

mass of the can and the soda it contains is a distance 

 

h
M H m H

M m

H







/ /2 2

2

b g b g
 

 

above the base, on the cylinder axis. With H = 12 cm, we obtain h = 6.0 cm. 

 

(b) We now consider the can alone. The center of mass is H/2 = 6.0 cm above the base, 

on the cylinder axis. 

 

(c) As x decreases the center of mass of the soda in the can at first drops, then rises to H/2 

= 6.0 cm again. 

 

(d) When the top surface of the soda is a distance x above the base of the can, the mass of 

the soda in the can is mp = m(x/H), where m is the mass when the can is full (x = H). The 

center of mass of the soda alone is a distance x/2 above the base of the can. Hence 

 

h
M H m x

M m

M H m x H x

M mx H

MH mx

MH mx

p

p
















/ / / / /

/
.

2 2 2 2

2

2 2b g b g b g b gb g
b g b g  

 

We find the lowest position of the center of mass of the can and soda by setting the 

derivative of h with respect to x equal to 0 and solving for x. The derivative is 

 

dh

dx

mx

MH mx

MH mx m

MH mx

m x MmHx MmH

MH mx










 



2

2 2

2

2

2 2

2

2 2 2

2b g
c h
b g b g .  

 

The solution to m
2
x

2
 + 2MmHx – MmH

2
 = 0 is 

 

x
MH

m

m

M
   
F
HG

I
KJ1 1 .  

 

The positive root is used since x must be positive. Next, we substitute the expression 

found for x into h = (MH
2
 + mx

2
)/2(MH + mx). After some algebraic manipulation we 

obtain 
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(12 cm)(0.14 kg) 0.354 kg
1 1 1 1 4.2 cm.

0.354 kg 0.14 kg

HM m
h

m M

   
            

   
 

 

9. We use the constant-acceleration equations of Table 2-1 (with +y downward and the 

origin at the release point), Eq. 9-5 for ycom and Eq. 9-17 for 

vcom . 

 

(a) The location of the first stone (of mass m1) at t = 300  10
–3

 s is  

 

y1 = (1/2)gt
2
 = (1/2)(9.8 m/s

2
) (300  10

–3
 s)

2
 = 0.44 m, 

 

and the location of the second stone (of mass m2 = 2m1) at t = 300  10
–3

 s is  

 

y2 = (1/2)gt
2
 = (1/2)(9.8 m/s

2
)(300  10

–3
 s – 100  10

–3
 s)

2
 = 0.20 m. 

 

Thus, the center of mass is at 

 

y
m y m y

m m

m m

m m
com

m m
m









1 1 2 2

1 2

1 1

1 2

0 44 2 0 20

2
0 28

. .
. .

b g b g
 

 

(b) The speed of the first stone at time t is v1 = gt, while that of the second stone is  

 

v2 = g(t – 100  10
–3

 s). 

 

Thus, the center-of-mass speed at t = 300  10
–3

 s is 

 

     2 3 2 3 3

1 11 1 2 2
com

1 2 1 1

9.8 m/s 300 10 s 2 9.8 m/s 300 10 s 100 10 s

2

2.3 m/s.

m mm v m v
v

m m m m

      
 

 



 

10. We use the constant-acceleration equations of Table 2-1 (with the origin at the traffic 

light), Eq. 9-5 for xcom and Eq. 9-17 for

vcom . At t = 3.0 s, the location of the automobile 

(of mass m1) is 

x at1
1
2

2 1
2

2
4 0 30 18  . .m / s s m,2c hb g  

 

while that of the truck (of mass m2) is x2 = vt = (8.0 m/s)(3.0s) = 24 m. The speed of the 

automobile then is   2

1 4.0 m/s 3.0 s 12 m/s,v at    while the speed of the truck 

remains v2 = 8.0 m/s. 

 

(a) The location of their center of mass is 
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x
m x m x

m m
com

kg m kg m

kg kg
m









1 1 2 2

1 2

1000 18 2000 24

1000 2000
22

b gb g b gb g
.  

 

(b) The speed of the center of mass is 

 

v
m v m v

m m
com

 kg  m / s  kg  m / s

 kg 2000 kg
 m / s.









1 1 2 2

1 2

1000 12 2000 8 0

1000
9 3

b gb g b gb g.
.  

 

11. The implication in the problem regarding 

v0  is that the olive and the nut start at rest. 

Although we could proceed by analyzing the forces on each object, we prefer to approach 

this using Eq. 9-14. The total force on the nut-olive system is 
o n

ˆ ˆ( i j) NF F    . Thus, 

Eq. 9-14 becomes 

com
ˆ ˆ( i j) N Ma    

 

where M = 2.0 kg. Thus, 21 1
com 2 2

ˆ ˆ( i j) m/sa    . Each component is constant, so we 

apply the equations discussed in Chapters 2 and 4 and obtain 

 

2

com com

1 ˆ ˆ( 4.0 m)i (4.0 m)j
2

r a t      

 

when t = 4.0 s. It is perhaps instructive to work through this problem the long way 

(separate analysis for the olive and the nut and then application of Eq. 9-5) since it helps 

to point out the computational advantage of Eq. 9-14.  

 

12. Since the center of mass of the two-skater system does not move, both skaters will 

end up at the center of mass of the system. Let the center of mass be a distance x from the 

40-kg skater, then 

65 10 40 6 2kg m kg mb gb g b g   x x x . .  

 

Thus the 40-kg skater will move by 6.2 m. 

 

13. THINK A shell explodes into two segments at the top of its trajectory. Knowing the 

motion of one segment allows us to analyze the motion of the other using the momentum 

conservation principle. 

 

EXPRESS We need to find the coordinates of the point where the shell explodes and the 

velocity of the fragment that does not fall straight down. The coordinate origin is at the 

firing point, the +x axis is rightward, and the +y direction is upward. The y component of 

the velocity is given by v = v0 y – gt and this is zero at time t = v0 y/g = (v0/g) sin 0, where 

v0 is the initial speed and 0 is the firing angle. The coordinates of the highest point on the 

trajectory are  
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 

22

0
0 0 0 0 0 2

20 m/s
cos sin cos sin 60 cos60 17.7 m

9.8 m/s
x

v
x v t v t

g
          

and 

y v t gt
v

g
y    

0

2 0

2
2

0

2

21

2

1

2

1

2

20

9 8
60 153sin

.
sin .

  m / s

 m / s
 m.

2

b g
 

 

Since no horizontal forces act, the horizontal component of the momentum is conserved. 

In addition, since one fragment has a velocity of zero after the explosion, the momentum 

of the other equals the momentum of the shell before the explosion. At the highest point 

the velocity of the shell is v0 cos0, in the positive x direction. Let M be the mass of the 

shell and let V0 be the velocity of the fragment. Then  

 

Mv0 cos0 = MV0/2, 

 

since the mass of the fragment is M/2. This means 

 

 0 0 02 cos 2 20 m/s cos60 20 m/s.V v      

 

This information is used in the form of initial conditions for a projectile motion problem 

to determine where the fragment lands.  

 

ANALYZE Resetting our clock, we now analyze a projectile launched horizontally at 

time t = 0 with a speed of 20 m/s from a location having coordinates x0 = 17.7 m, y0 = 

15.3 m. Its y coordinate is given by y y gt 0
1
2

2 ,  and when it lands this is zero. The 

time of landing is t y g 2 0 /  and the x coordinate of the landing point is  

 

x x V t x V
y

g
      0 0 0 0

02
17 7

2 153

9 8
53.

.

.
 m 20 m / s

 m

 m / s
 m.

2b g b g
 

 

LEARN In the absence of explosion, the shell with a mass M would have landed at  

 

 
22

0
0 0 2

20 m/s
2 sin 2 sin[2(60 )] 35.3 m

9.8 m/s

v
R x

g
      

 

which is shorter than 53 mx   found above. This makes sense because the broken 

fragment, having a smaller mass but greater horizontal speed, can travel much farther 

than the original shell.  

 

14. (a) The phrase (in the problem statement) “such that it [particle 2] always stays 

directly above particle 1 during the flight” means that the shadow (as if a light were 

directly above the particles shining down on them) of particle 2 coincides with the 

position of particle 1, at each moment.  We say, in this case, that they are vertically 
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aligned.  Because of that alignment, v2x = v1 = 10.0 m/s.  Because the initial value of v2 is 

given as 20.0 m/s, then (using the Pythagorean theorem) we must have  

 
2 2

2 2 2y xv v v  =  300   m/s 

 

for the initial value of the y component of particle 2’s velocity. Equation 2-16 (or 

conservation of energy) readily yields ymax = 300/19.6 = 15.3 m.  Thus, we obtain 

 

Hmax = m2 ymax /mtotal = (3.00 g)(15.3 m)/(8.00 g) = 5.74 m. 

 

(b) Since both particles have the same horizontal velocity, and particle 2’s vertical 

component of velocity vanishes at that highest point, then the center of mass velocity 

then is simply ˆ(10.0 m/s)i (as one can verify using Eq. 9-17). 

 

(c) Only particle 2 experiences any acceleration (the free fall acceleration downward), so 

Eq. 9-18 (or Eq. 9-19) leads to  

 

acom = m2 g /mtotal = (3.00 g)(9.8 m/s
2
)/(8.00 g) = 3.68 m/s

2
 

 

for the magnitude of the downward acceleration of the center of mass of this system. 

Thus, 2

com
ˆ( 3.68 m/s ) ja   . 

 

15. (a) The net force on the system (of total mass m1 + m2) is m2g.  Thus, Newton’s 

second law leads to a = g(m2/( m1 + m2)) = 0.4g. For block 1, this acceleration is to the 

right (the i
^
 direction), and for block 2 this is an acceleration downward (the –j

^
 direction).  

Therefore, Eq. 9-18 gives 

 

acom

     

 =  
 m1 a1 

  

 + m2 a2 
  

 

 m1 + m2 
 =  

(0.6)(0.4gi
^
 ) + (0.4)(–0.4gj

^
 )

 0.6 + 0.4
  =  (2.35 i

^
 – 1.57 j

^
 ) m/s

2
 . 

 

(b) Integrating Eq. 4-16, we obtain 

 

comv = (2.35 i
^
 – 1.57j

^
 ) t 

 

(with SI units understood), since it started at rest.  We note that the ratio of the y-

component to the x-component (for the velocity vector) does not change with time, and it 

is that ratio which determines the angle of the velocity vector (by Eq. 3-6), and thus the 

direction of motion for the center of mass of the system. 

 

(c) The last sentence of our answer for part (b) implies that the path of the center-of-mass 

is a straight line.   

 

(d) Equation 3-6 leads to  = 34º.  The path of the center of mass is therefore straight, at 

downward angle 34.  
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16. We denote the mass of Ricardo as MR and that of Carmelita as MC. Let the center of 

mass of the two-person system (assumed to be closer to Ricardo) be a distance x from the 

middle of the canoe of length L and mass m. Then  

 

MR(L/2 – x) = mx + MC(L/2 + x). 

 

Now, after they switch positions, the center of the canoe has moved a distance 2x from its 

initial position. Therefore, x = 40 cm/2 = 0.20 m, which we substitute into the above 

equation to solve for MC: 

 

M
M L x mx

L x
C

R
 




 




/

/

. .

. / .

.2

2

80 0 20 30 0 20

30 2 0 20
58

3 0
2b g b gb g b gb g
b g  kg.  

 

17. There is no net horizontal force on the dog-boat system, so their center of mass does 

not move. Therefore by Eq. 9-16,  

 

M x m x m xb b d d  com   0 , 

which implies 

.d
b d

b

m
x x

m
    

 

Now we express the geometrical condition that relative to the boat the dog has moved a 

distance d = 2.4 m: 

 x x db d   

 

which accounts for the fact that the dog moves one way and the boat moves the other. We 

substitute for |xb| from above: 

m

m
x x dd

b

d d b g    

 

which leads to 
2.4 m

1.92 m.
1 / 1 (4.5 /18)

d

d b

d
x

m m
   

 
  

 

The dog is therefore 1.9 m closer to the shore than initially (where it was D = 6.1 m from 

it). Thus, it is now D |xd| = 4.2 m from the shore. 

 

18. The magnitude of the ball’s momentum change is  

 

(0.70 kg) (5.0 m/s) ( 2.0 m/s) 4.9 kg m/s.i fp m v v         

 

19. (a) The change in kinetic energy is  
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      

     

2 22 2

224 3

4

1 1 1
2100 kg 51 km/h 41 km/h

2 2 2

9.66 10  kg km/h 10  m/km 1 h/3600 s

7.5 10  J.

f iK mv mv    

  

 

 

 

(b) The magnitude of the change in velocity is  

 

       
22 2 2

41 km/h 51 km/h 65.4 km/hi fv v v         

 

so the magnitude of the change in momentum is  

 

 
 
p m v 

F
HG

I
KJ   2100 654

1000

3600
38 104 kg  km / h

 m / km

 s / h
 kg m / s.b gb g. .  

 

(c) The vector p  points at an angle  south of east, where  

 

 
F
HG
I
KJ 

F
HG

I
KJ   tan tan .1 1 41

51
39

v

v

i

f

 km / h

 km / h
 

 

20. We infer from the graph that the horizontal component of momentum px is 4.0 

kg m/s . Also, its initial magnitude of momentum po is 6.0 kg m/s .  Thus, 

coso = 
px

 po
          o =  48 . 

 

21. We use coordinates with +x horizontally toward the pitcher and +y upward. Angles 

are measured counterclockwise from the +x axis. Mass, velocity, and momentum units 

are SI. Thus, the initial momentum can be written 

p0 4 5 215  .b g  in magnitude-angle 

notation.  

 

(a) In magnitude-angle notation, the momentum change is  

 

(6.0   – 90°) – (4.5   215°) = (5.0  – 43°) 

 

(efficiently done with a vector-capable calculator in polar mode). The magnitude of the 

momentum change is therefore 5.0 kg m/s.  

 

(b) The momentum change is (6.0   0°) – (4.5   215°) = (10   15°). Thus, the 

magnitude of the momentum change is 10 kg m/s.  

 

22. (a) Since the force of impact on the ball is in the y direction, px is conserved:  

 

 1 2sin sinxi xf i ip p mv mv    . 
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With  = 30.0°, we find  = 30.0°. 

 

(b) The momentum change is  

 

         2 2
ˆ ˆ ˆcos j cos j 2 0.165 kg 2.00 m/s cos30 j

ˆ( 0.572 kg m/s)j.

i ip mv mv        

  

 

 

23. We estimate his mass in the neighborhood of 70 kg and compute the upward force F 

of the water from Newton’s second law: F mg ma  , where we have chosen +y upward, 

so that a > 0 (the acceleration is upward since it represents a deceleration of his 

downward motion through the water). His speed when he arrives at the surface of the 

water is found either from Eq. 2-16 or from energy conservation: v gh 2 , where 

12 mh , and since the deceleration a reduces the speed to zero over a distance d = 0.30 

m we also obtain v ad 2 .  We use these observations in the following. 

 

Equating our two expressions for v leads to a = gh/d. Our force equation, then, leads to 

 

F mg m g
h

d
mg

h

d
 

F
HG
I
KJ  
F
HG
I
KJ1  

 

which yields F  2.8  10
4
 kg. Since we are not at all certain of his mass, we express this 

as a guessed-at range (in kN) 25 < F < 30. 

 

Since F mg ,  the impulse 

J  due to the net force (while he is in contact with the water) 

is overwhelmingly caused by the upward force of the water: F dt Jz 
 to a good 

approximation. Thus, by Eq. 9-29, 

 

Fdt p p m ghf i    z  
0 2d i  

 

(the minus sign with the initial velocity is due to the fact that downward is the negative 

direction), which yields   2 3(70 kg) 2 9.8 m/s 12 m 1.1 10 kg m s.    Expressing this 

as a range we estimate  
3 31.0 10 kg m s 1.2 10 kg m s.F dt       

 

24. We choose +y upward, which implies a > 0 (the acceleration is upward since it 

represents a deceleration of his downward motion through the snow). 

 

(a) The maximum deceleration amax of the paratrooper (of mass m and initial speed v = 56 

m/s) is found from Newton’s second law 
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F mg masnow max   

 

where we require Fsnow = 1.2  10
5
 N. Using Eq. 2-15 v

2
 = 2amaxd, we find the minimum 

depth of snow for the man to survive: 

 

 

  

 

22 2

5
max snow

85kg 56m s
1.1 m.

2 2 2 1.2 10 N

v mv
d

a F mg
   

 
 

 

(b) His short trip through the snow involves a change in momentum 

 

   30 85kg 56m s 4.8 10 kg m s,f ip p p           

 

or 3| | 4.8 10 kg m sp    . The negative value of the initial velocity is due to the fact that 

downward is the negative direction. By the impulse-momentum theorem, this equals the 

impulse due to the net force Fsnow – mg, but since F mgsnow   we can approximate this 

as the impulse on him just from the snow. 

 

25. We choose +y upward, which means 

vi  25m s  and 


v f  10m s.  During the 

collision, we make the reasonable approximation that the net force on the ball is equal to 

Favg, the average force exerted by the floor up on the ball. 

 

(a) Using the impulse momentum theorem (Eq. 9-31) we find 

   
J mv mvf i      12 10 12 25 42. .b gb g b gb g kg m s.  

 

(b) From Eq. 9-35, we obtain 




F
J

t
avg N.   



42

0 020
21 103

.
.  

 

26. (a) By energy conservation, the speed of the victim when he falls to the floor is  

 

 2 21
2 2(9.8 m/s )(0.50 m) 3.1m/s.

2
mv mgh v gh      

 

Thus, the magnitude of the impulse is  

 

 2| | | | (70 kg)(3.1m/s) 2.2 10 N s.J p m v mv          

 

(b) With duration of 0.082 st   for the collision, the average force is  

 
2

3

avg

2.2 10 N s
2.7 10 N.

0.082 s

J
F

t

 
   

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27. THINK The velocity of the ball is changing because of the external force applied. 

Impulse-linear momentum theorem is involved.  

 

EXPRESS The initial direction of motion is in the +x direction. The magnitude of the 

average force Favg is given by 

 3

avg 2

32.4 N s
1.20 10  N.

2.70 10  s

J
F

t 


   
 

 

 

The force is in the negative direction. Using the linear momentum-impulse theorem 

stated in Eq. 9-31, we have  

 avg ( )f iF t J p m v v       . 

 

where m is the mass, vi the initial velocity, and vf  the final velocity of the ball. The 

equation can be used to solve for vf . 

 

ANALYZE (a) Using the above expression, we find  

 

     3

avg
0.40kg 14m s 1200 N 27 10 s

67m s.
0.40kg

i

f

mv F t
v

m

  
     

 

The final speed of the ball is | |fv 67 m/s.  

 

(b) The negative sign in vf indicates that the velocity is in the –x direction, which is 

opposite to the initial direction of travel. 

 

(c) From the above, the average magnitude of the force is 3 

avg 1.20 10 N.F    

 

(d) The direction of the impulse on the ball is –x, same as the applied force. 

 

LEARN In vector notation, avg ( )f iF t J p m v v      , which gives 

  

avg

f i i

F tJ
v v v

m m


     

 

Since J  or avgF  is in the opposite direction of iv , the velocity of the ball will decrease 

under the applied force. The ball first moves in the +x-direction, but then slows down and 

comes to a stop, and then reverses its direction of travel.    

 

28. (a) The magnitude of the impulse is  

 

 | | | | (0.70 kg)(13 m/s) 9.1kg m/s 9.1 N s.J p m v mv           
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(b) With duration of 35.0 10 st     for the collision, the average force is  

 

3

avg 3

9.1 N s
1.8 10 N.

5.0 10 s

J
F

t 


   
 

 

 

29. We choose the positive direction in the direction of rebound so that 

v f  0  and 


vi  0.  Since they have the same speed v, we write this as 


v vf   and 


v vi   .  Therefore, 

the change in momentum for each bullet of mass m is  

p m v mv  2 . Consequently, 

the total change in momentum for the 100 bullets (each minute)  
 
P p mv 100 200 .  

The average force is then 

 

   

  

3

avg

200 3 10 kg 500m s
5 N.

1min 60s min

P
F

t


  


 

 

30. (a) By Eq. 9-30, impulse can be determined from the “area” under the F(t) curve.  

Keeping in mind that the area of a triangle is 
1

2
 (base)(height), we find the impulse in this 

case is 1.00 N s . 

 

(b) By definition (of the average of function, in the calculus sense) the average force must 

be the result of part (a) divided by the time (0.010 s).  Thus, the average force is found to 

be 100 N. 

 

(c) Consider ten hits.  Thinking of ten hits as 10 F(t) triangles, our total time interval is 

10(0.050 s) = 0.50 s, and the total area is 10(1.0 N s ).  We thus obtain an average force 

of 10/0.50 = 20.0 N.  One could consider 15 hits, 17 hits, and so on, and still arrive at this 

same answer.  

 

31. (a) By energy conservation, the speed of the passenger when the elevator hits the 

floor is  

 2 21
2 2(9.8 m/s )(36 m) 26.6 m/s.

2
mv mgh v gh      

 

Thus, the magnitude of the impulse is  

 

 3| | | | (90 kg)(26.6 m/s) 2.39 10 N s.J p m v mv          

 

(b) With duration of 35.0 10 st     for the collision, the average force is  

 
3

5

avg 3

2.39 10 N s
4.78 10 N.

5.0 10 s

J
F

t 

 
   
 
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(c) If the passenger were to jump upward with a speed of 7.0 m/sv  , then the resulting 

downward velocity would be   

 

26.6 m/s 7.0 m/s 19.6 m/s,v v v       

 

and the magnitude of the impulse becomes  

 

 3| | | | (90 kg)(19.6 m/s) 1.76 10 N s.J p m v mv             

 

(d) The corresponding average force would be 

 
3

5

avg 3

1.76 10 N s
3.52 10 N.

5.0 10 s

J
F

t 

  
    

 
 

 

32. (a) By the impulse-momentum theorem (Eq. 9-31) the change in momentum must 

equal the “area” under the F(t) curve. Using the facts that the area of a triangle is  
1

2
 

(base)(height), and that of a rectangle is (height)(width), we find the momentum at t = 4 s 

to be (30 kg
.
m/s)i

^
. 

 

(b) Similarly (but keeping in mind that areas beneath the axis are counted negatively) we 

find the momentum at t = 7 s is (38 kg
.
m/s)i

^
. 

 

(c) At t = 9 s, we obtain v = (6.0 m/s)i
^
. 

 

33. We use coordinates with +x rightward and +y upward, with the usual conventions for 

measuring the angles (so that the initial angle becomes 180 + 35 = 215°). Using SI units 

and magnitude-angle notation (efficient to work with when using a vector-capable 

calculator), the change in momentum is 

 

     3.00 90 3.60 215 5.86 59.8 .f iJ p p p              

 

(a) The magnitude of the impulse is 5.86 kg m/s 5.86 N sJ p      . 

 

(b) The direction of J is 59.8° measured counterclockwise from the +x axis. 

 

(c) Equation 9-35 leads to 

3

avg avg 3

5.86 N s
5.86 N s    2.93 10 N.

2.00 10 s
J F t F




       


 

 

We note that this force is very much larger than the weight of the ball, which justifies our 

(implicit) assumption that gravity played no significant role in the collision. 
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(d) The direction of avgF is the same as J , 59.8° measured counterclockwise from the +x 

axis. 

 

34. (a) Choosing upward as the positive direction, the momentum change of the foot is  

 
3

foot0 (0.003 kg) ( 1.50 m s)=4.50 10  N sip m v         . 

 

(b) Using Eq. 9-35 and now treating downward as the positive direction, we have 

 
2

avg lizard  (0.090 kg)(9.80 m/s )(0.60 s) 0.529 N s.J F t m g t        

 

(c) Push is what provides the primary support. 

 

35. We choose our positive direction in the direction of the rebound (so the ball’s initial 

velocity is negative-valued). We evaluate the integral J F dt z  by adding the 

appropriate areas (of a triangle, a rectangle, and another triangle) shown in the graph (but 

with the t converted to seconds). With m = 0.058 kg and v = 34 m/s, we apply the 

impulse-momentum theorem: 

 

 

   

     

0.002 0.004 0.006

wall
0 0.002 0.004

max max max

1 1
0.002s 0.002s 0.002s 2

2 2

f iF dt mv mv F dt F dt F dt m v m v

F F F mv

        

   

   
 

 

which yields     max 0.004s 2 0.058kg 34m sF  = 9.9  10
2
 N. 

 

36. (a) Performing the integral (from time a to time b) indicated in Eq. 9-30, we obtain 

 

2 3 3(12 3 ) 12( ) ( )
b

a
t dt b a b a      

 

in SI units. If b = 1.25 s and a = 0.50 s, this gives 7.17 N s .  

 

(b) This integral (the impulse) relates to the change of momentum in Eq. 9-31.  We note 

that the force is zero at t = 2.00 s.  Evaluating the above expression for a = 0 and b = 2.00 

gives an answer of 16.0 kg m/s . 

 

37. THINK We’re given the force as a function of time, and asked to calculate the 

corresponding impulse, the average force and the maximum force.  

 

EXPRESS Since the motion is one-dimensional, we work with the magnitudes of the 

vector quantities. The impulse J  due to a force ( )F t  exerted on a body is  
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avg( )

f

i

t

t
J F t dt F t   , 

 

where avgF  is the average force and f it t t   . To find the time at which the maximum 

force occurs, we set the derivative of F with respect to time equal to zero, and solve for t. 

 

ANALYZE (a) We take the force to be in the positive direction, at least for earlier times. 

Then the impulse is 
3 3

3

3.0  10 3.0  10
6 9 2

0 0

3.0 10

6 2 9 3

0

(6.0 10 ) (2.0 10 )

1 1
(6.0 10 ) (2.0 10 ) 9.0 N s.

2 3

J Fdt t t dt

t t

 



 



      

 
      
 

 
 

 

(b) Using J = Favg t, we find the average force to be 

 

3

avg 3

9.0 N s
3.0  10  N.

3.0  10  s

J
F

t 


  

 
 

 

(c) Differentiating ( )F t  with respect to t and setting it to zero, we have  

 

 6 9 2 6 9(6.0 10 ) (2.0 10 ) (6.0 10 ) (4.0 10 ) 0
dF d

t t t
dt dt

           , 

 

which can be solved to give  t = 1.5  10
–3

 s. At that time the force is 

 

 

Fmax

6 9 36.0 10 10 2.0 10 10 4.5 10 N.        c hc h c hc h15 153 3
2

. .  

 

(d) Since it starts from rest, the ball acquires momentum equal to the impulse from the 

kick. Let m be the mass of the ball and v its speed as it leaves the foot. The speed of the 

ball immediately after it loses contact with the player’s foot is 

 

9.0 N s
  20 m/s.

0.45 kg

p J
v

m m


     

 

LEARN The force as function of time is shown 

below. The area under the curve is the impulse J. 

From the plot, we readily see that ( )F t  is a 

maximum at 0.0015 st  , with max 4500 N.F    
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38. From Fig. 9-54, +y corresponds to the direction of the rebound (directly away from 

the wall) and +x toward the right. Using unit-vector notation, the ball’s initial and final 

velocities are 

 
ˆ ˆ ˆ ˆcos i sin j 5.2 i 3.0 j

ˆ ˆ ˆ ˆcos i sin j 5.2 i 3.0 j

i

f

v v v

v v v

 

 

   

   
 

 

respectively (with SI units understood). 

 

(a) With m = 0.30 kg, the impulse-momentum theorem (Eq. 9-31) yields 

 

  ˆ ˆ2 0.30 kg (3.0 m/s j) (1.8 N s)jf iJ mv mv     . 

 

(b) Using Eq. 9-35, the force on the ball by the wall is ˆ ˆ(1.8 0.010)j (180N) j.J t    

By Newton’s third law, the force on the wall by the ball is ˆ( 180 N)j  (that is, its 

magnitude is 180 N and its direction is directly into the wall, or “down” in the view 

provided by Fig. 9-54). 

 

39. THINK This problem deals with momentum conservation. Since no external forces 

with horizontal components act on the man-stone system and the vertical forces sum to 

zero, the total momentum of the system is conserved.  

 

EXPRESS Since the man and the stone are initially at rest, the total momentum is zero 

both before and after the stone is kicked. Let ms be the mass of the stone and vs be its 

velocity after it is kicked. Also, let mm be the mass of the man and vm be his velocity after 

he kicks the stone. Then, by momentum conservation, 

 

 0 s
s s m m m s

m

m
m v m v v v

m
     . 

 

ANALYZE We take the axis to be positive in the direction of motion of the stone. Then  

 

   30.068 kg
4.0 m/s 3.0 10  m/s

91 kg

s
m s

m

m
v v

m

        

or 3| | 3.0 10  m/smv   .  

 

LEARN The negative sign in mv indicates that the man moves in the direction opposite to 

the motion of the stone. Note that his speed is much smaller (by a factor of /s mm m ) 

compared to the speed of the stone.  

 

40. Our notation is as follows: the mass of the motor is M; the mass of the module is m; 

the initial speed of the system is v0; the relative speed between the motor and the module 
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is vr; and, the speed of the module relative to the Earth is v after the separation. 

Conservation of linear momentum requires  

 

(M + m)v0 = mv + M(v – vr). 

Therefore, 

v v
Mv

M m

m

m m

r 


 


 0

34300
82

4
4 4 10km / h

4 km / h
km / h.

b gb g
.  

 

41. (a) With SI units understood, the velocity of block L (in the frame of reference 

indicated in the figure that goes with the problem) is  (v1 – 3)i
^
 .  Thus, momentum 

conservation (for the explosion at t = 0) gives 

 

mL (v1 – 3) + (mC + mR)v1 = 0 

 

which leads to      

v1  =  
3 mL

 mL + mC + mR
  = 

3(2 kg)

10 kg
  =  0.60 m/s. 

 

Next, at t = 0.80 s, momentum conservation (for the second explosion) gives 

 

mC v2   + mR (v2 + 3) = (mC + mR)v1 = (8 kg)(0.60 m/s) = 4.8 kg m/s . 

 

This yields v2 =  – 0.15.  Thus, the velocity of block C after the second explosion is  

 

v2  = –(0.15 m/s)i
^
. 

 

(b) Between t = 0 and t = 0.80 s, the block moves v1t = (0.60 m/s)(0.80 s) = 0.48 m.  

Between t = 0.80 s and t = 2.80 s, it moves an additional  

 

v2t = (– 0.15 m/s)(2.00 s) = – 0.30 m. 

 

Its net displacement since t = 0 is therefore 0.48 m – 0.30 m = 0.18 m.  

 

42. Our notation (and, implicitly, our choice of coordinate system) is as follows: the mass 

of the original body is m; its initial velocity is 

v v0 

i ; the mass of the less massive piece 

is m1; its velocity is 

v1 0 ; and, the mass of the more massive piece is m2. We note that 

the conditions m2 = 3m1 (specified in the problem) and m1 + m2 = m generally assumed in 

classical physics (before Einstein) lead us to conclude  

 

m m m m1 2

1

4

3

4
   and  .  

Conservation of linear momentum requires 

 

 0 1 1 2 2 2

3
î 0

4
mv m v m v mv mv      



 

  

433 

 

which leads to 

v v2

4

3
 i.  The increase in the system’s kinetic energy is therefore 

 

 

2

2 2 2 2 2

1 1 2 2 0

1 1 1 1 3 4 1 1
0 .

2 2 2 2 4 3 2 6
K m v m v mv m v mv mv

  
         

  
 

 

43. With 
0

ˆ ˆ(9.5 i 4.0 j) m/s,v    the initial speed is 

 

2 2 2 2

0 0 0 (9.5 m/s) (4.0 m/s) 10.31m/sx yv v v      

 

and the takeoff angle of the athlete is  

 
01 1

0

0

4.0
tan tan 22.8 .

9.5

y

x

v

v
     

      
  

 

 

Using Equation 4-26, the range of the athlete without using halteres is 

 

 
2 2

0 0
0 2

sin 2 (10.31m/s) sin 2(22.8 )
7.75 m.

9.8 m/s

v
R

g

 
    

  

On the other hand, if two halteres of mass m = 5.50 kg were thrown at the maximum 

height, then, by momentum conservation, the subsequent speed of the athlete would be 

 

 0 0

2
( 2 ) x x x x

M m
M m v Mv v v

M


      

 

Thus, the change in the x-component of the velocity is  

 

0 0 0 0

2 2 2(5.5 kg)
(9.5 m/s) 1.34 m/s.

78 kg
x x x x x x

M m m
v v v v v v

M M


         

 

The maximum height is attained when 0 0y yv v gt   , or  

 

0

2

4.0 m/s
0.41s.

9.8 m/s

yv
t

g
    

 

Therefore, the increase in range with use of halteres is  

 

 ( ) (1.34 m/s)(0.41s) 0.55 m.xR v t      
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44. We can think of the sliding-until-stopping as an example of kinetic energy converting 

into thermal energy (see Eq. 8-29 and Eq. 6-2, with FN = mg).  This leads to v
2
 = 2gd 

being true separately for each piece.  Thus we can set up a ratio: 

 







vL

vR

2

 =  
2L gdL

2R gdR

  =  
12

25
  . 

 

But (by the conservation of momentum) the ratio of speeds must be inversely 

proportional to the ratio of masses (since the initial momentum before the explosion was 

zero).  Consequently, 

 







mR

mL

2

 =  
12

25
       mR = 

2

5
 3 mL = 1.39 kg. 

 

Therefore, the total mass is   mR + mL   3.4 kg. 

 

45. THINK The moving body is an isolated system with no external force acting on it. 

When it breaks up into three pieces, momentum remains conserved, both in the x- and the 

y-directions.  

 

EXPRESS Our notation is as follows: the mass of the original body is M = 20.0 kg; its 

initial velocity is 0
ˆ(200 m/s)iv  ; the mass of one fragment is m1 = 10.0 kg; its velocity 

is 1
ˆ(100 m/s) j;v   the mass of the second fragment is m2 = 4.0 kg; its velocity is 

2
ˆ( 500 m/s)i;v    and, the mass of the third fragment is m3 = 6.00 kg. Conservation of 

linear momentum requires 

Mv m v m v m v
   

0 1 1 2 2 3 3   . 

 

The energy released in the explosion is equal to ,K  the change in kinetic energy. 

 

ANALYZE (a) The above momentum-conservation equation leads to 

 

0 1 1 2 2
3

3

3 3

ˆ ˆ ˆ(20.0 kg)(200 m/s)i (10.0 kg)(100 m/s) j (4.0 kg)( 500 m/s)i

6.00 kg

ˆ ˆ(1.00 10 m/s) i (0.167 10 m/s) j

Mv m v m v
v

m

 


  


   

. 

 

The magnitude of 

v3  is 2 2 3

3 (1000 m/s) ( 167 m/s) 1.01 10 m/sv      . It points at 

  tan
–1

 (–167/1000) = –9.48° (that is, at 9.5° measured clockwise from the +x axis). 

 

(b) The energy released is K: 
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2 2 2 2 6

1 1 2 2 3 3 0

1 1 1 1
3.23 10 J.

2 2 2 2
f iK K K m v m v m v Mv

 
         

 
 

 

LEARN The energy released in the explosion, of chemical nature, is converted into the 

kinetic energy of the fragments.  

 

46. Our +x direction is east and +y direction is north. The linear momenta for the two m = 

2.0 kg parts are then 
 
p mv mv1 1 1  j  

where v1 = 3.0 m/s, and 

 
 
p mv m v v mvx y2 2 2 2      cos  i j i sin j2e j e j   

 

where v2 = 5.0 m/s and  = 30°. The combined linear momentum of both parts is then 

 

 

     

         

 

1 2 1 2 2 1 2
ˆ ˆ ˆ ˆ ˆj cos i sin j cos i sin j

ˆ ˆ2.0 kg 5.0 m/s cos30 i 2.0 kg 3.0 m/s 5.0 m/s sin 30 j

ˆ ˆ8.66 i 11 j kg m/s.

P p p mv mv mv mv mv          

    

  

 

 

From conservation of linear momentum we know that this is also the linear momentum of 

the whole kit before it splits. Thus the speed of the 4.0-kg kit is 

 

   
2 22 2

8.66 kg m/s 11 kg m/s
3.5 m/s.

4.0 kg

x yP PP
v

M M

   
     

 

47. Our notation (and, implicitly, our choice of coordinate system) is as follows: the mass 

of one piece is m1 = m; its velocity is 1
ˆ( 30 m/s)iv   ; the mass of the second piece is m2 

= m; its velocity is 2
ˆ( 30 m/s) jv   ; and, the mass of the third piece is m3 = 3m.  

 

(a) Conservation of linear momentum requires 

 

    0 1 1 2 2 3 3 3
ˆ ˆ0 30i 30j 3mv m v m v m v m m mv          

 

which leads to 3
ˆ ˆ(10i 10j) m/sv   . Its magnitude is v3 10 2 14 m/ s . 

 

(b) The direction is 45° counterclockwise from +x (in this system where we have m1 

flying off in the –x direction and m2 flying off in the –y direction). 
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48. This problem involves both mechanical energy conservation U K Ki  1 2 , where Ui 

= 60 J, and momentum conservation 

0 1 1 2 2 m v m v
 

 

 

where m2 = 2m1. From the second equation, we find | | | |
 
v v1 22 , which in turn implies 

(since v v1 1 | |


 and likewise for v2) 

 

K m v m v m v K1 1 1

2

2 2

2

2 2

2

2

1

2

1

2

1

2
2 2

1

2
2 

F
HG
I
KJ 

F
HG
I
KJ b g .  

 

(a) We substitute K1 = 2K2 into the energy conservation relation and find 

 

U K K K Ui i    2
1

3
202 2 2 J.  

 

(b) And we obtain K1 = 2(20) = 40 J. 

 

49. We refer to the discussion in the textbook (see Sample Problem – “Conservation of 

momentum, ballistic pendulum,” which uses the same notation that we use here) for 

many of the important details in the reasoning. Here we only present the primary 

computational step (using SI units): 

 

v
m M

m
gh


  2

2.010

0.010
2(9.8) (0.12) 3.1 10  m / s.2  

 

50. (a) We choose +x along the initial direction of motion and apply momentum 

conservation: 

                  

 g) (672 m / s) (5.2 g) (428 m / s)  (700 g)

bullet bullet blockm v m v m v

v

i

  


 

 

1 2

252( .
 

 

which yields v2 = 1.81 m/s. 

 

(b) It is a consequence of momentum conservation that the velocity of the center of mass 

is unchanged by the collision. We choose to evaluate it before the collision: 

 

 bullet
com

bullet block

(5.2 g) (672 m/s)
  4.96 m/s.

5.2 g 700 g

im v
v

m m
  

 
 

 

51. In solving this problem, our +x direction is to the right (so all velocities are positive-

valued). 

 

(a) We apply momentum conservation to relate the situation just before the bullet strikes 

the second block to the situation where the bullet is embedded within the block. 
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 (0.0035 kg) (1.8035 kg)(1.4 m/s) 721 m/s.v v    

 

(b) We apply momentum conservation to relate the situation just before the bullet strikes 

the first block to the instant it has passed through it (having speed v found in part (a)). 

 

0(0.0035 kg) (1.20 kg)(0.630 m/s) (0.00350 kg)(721 m/s)v    

 

which yields v0 = 937 m/s. 

 

52. We think of this as having two parts: the first is the collision itself – where the bullet 

passes through the block so quickly that the block has not had time to move through any 

distance yet – and then the subsequent “leap” of the block into the air (up to height h 

measured from its initial position). The first part involves momentum conservation (with 

+y upward): 

001 1000 50 001 400. . .kg m s kg kg m sb gb g b g b gb g 

v  

 

which yields 

v 12. m s . The second part involves either the free-fall equations from Ch. 

2 (since we are ignoring air friction) or simple energy conservation from Ch. 8. Choosing 

the latter approach, we have 

 

1

2
50 12 50 9 8

2 2
. . . .kg m s kg m sb gb g b gd i h  

 

which gives the result h = 0.073 m. 

 

53. With an initial speed of iv , the initial kinetic energy of the car is 2 / 2i c iK m v . After 

a totally inelastic collision with a moose of mass mm , by momentum conservation, the 

speed of the combined system is 

 ( ) ,c i
c i c m f f

c m

m v
m v m m v v

m m
   


 

with final kinetic energy 
2

2
2 21 1 1

( ) ( ) .
2 2 2

c i c
f c m f c m i

c m c m

m v m
K m m v m m v

m m m m

 
     

  
 

 

(a) The percentage loss of kinetic energy due to collision is  

 

 
500 kg 1

1 1 33.3%.
1000 kg 500 kg 3

i f f c m

i i i c m c m

K K K m mK

K K K m m m m


        

  
 

 

(b) If the collision were with a camel of mass camel 300 kg,m   then the percentage loss of 

kinetic energy would be  
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camel

camel

300 kg 3
23%.

1000 kg 300 kg 13i c

mK

K m m


   

 
 

 

(c) As the animal mass decreases, the percentage loss of kinetic energy also decreases.   

 

54. The total momentum immediately before the collision (with +x upward) is  

 

pi = (3.0 kg)(20 m/s) + (2.0 kg)( –12 m/s) = 36 kg m/s . 

 

Their momentum immediately after, when they constitute a combined mass of M = 5.0 

kg, is pf = (5.0 kg) v .  By conservation of momentum, then, we obtain v = 7.2 m/s, which 

becomes their "initial" velocity for their subsequent free-fall motion.  We can use Ch. 2 

methods or energy methods to analyze this subsequent motion; we choose the latter.  The 

level of their collision provides the reference (y = 0) position for the gravitational 

potential energy, and we obtain 

K0 + U0   =  K + U          
1

2
 Mv

2
0 + 0   =  0 + Mgymax . 

 

Thus, with v0 = 7.2 m/s, we find ymax = 2.6 m. 

 

55. We choose +x in the direction of (initial) motion of the blocks, which have masses m1 

= 5 kg and m2 = 10 kg. Where units are not shown in the following, SI units are to be 

understood. 

 

(a) Momentum conservation leads to 

 

 
        

1 1 2 2 1 1 2 2

15 kg 3.0 m/s 10 kg 2.0 m/s (5 kg) 10 kg 2.5 m/s

i i f f

f

m v m v m v m v

v

  

  
 

 

which yields 1 2.0 m/sfv  . Thus, the speed of the 5.0 kg block immediately after the 

collision is 2 0. m s .  

 

(b) We find the reduction in total kinetic energy: 

 

           
2 2 2 21 1 1 1

5 kg 3 m/s 10 kg 2 m/s 5 kg 2 m/s 10 kg 2.5 m/s
2 2 2 2

1.25 J 1.3 J.

i fK K    

   

 

 

 (c) In this new scenario where 

v f2 4 0 . m s , momentum conservation leads to 


v f1 10  . m s  and we obtain 40 JK   . 
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(d) The creation of additional kinetic energy is possible if, say, some gunpowder were on 

the surface where the impact occurred (initially stored chemical energy would then be 

contributing to the result). 

 

56. (a) The magnitude of the deceleration of each of the cars is a = f /m = k mg/m = kg. 

If a car stops in distance d, then its speed v just after impact is obtained from Eq. 2-16: 

 

v v ad v ad gdk

2

0

2    2 2 2  

 

since v0 = 0 (this could alternatively have been derived using Eq. 8-31). Thus, 

 

22 2(0.13)(9.8 m/s )(8.2 m) 4.6 m/s.A k Av gd    

 

(b) Similarly, 22 2(0.13)(9.8 m/s )(6.1 m) 3.9 m/s.B k Bv gd    

 

(c) Let the speed of car B be v just before the impact. Conservation of linear momentum 

gives mBv = mAvA + mBvB, or 

 

v
m v m v

m

A A B B

B








( (1100)(4.6) (1400)(3.9)

7.5 m / s.
)

1400
 

 

(d) The conservation of linear momentum during the impact depends on the fact that the 

only significant force (during impact of duration t) is the force of contact between the 

bodies. In this case, that implies that the force of friction exerted by the road on the cars 

is neglected during the brief t. This neglect would introduce some error in the analysis. 

Related to this is the assumption we are making that the transfer of momentum occurs at 

one location, that the cars do not slide appreciably during t, which is certainly an 

approximation (though probably a good one). Another source of error is the application 

of the friction relation Eq. 6-2 for the sliding portion of the problem (after the impact); 

friction is a complex force that Eq. 6-2 only partially describes. 

 

57. (a) Let v be the final velocity of the ball-gun system. Since the total momentum of the 

system is conserved mvi = (m + M)v. Therefore,   

 

(60 g)(22 m/s)
4.4 m/s

60 g + 240 g

imv
v

m M
  


. 

 

(b) The initial kinetic energy is K mvi i 1
2

2  and the final kinetic energy is 

 

K m M v m v m Mf i   1
2

2 1
2

2 2b g b g . 
 

The problem indicates Eth  0 , so the difference Ki – Kf must equal the energy Us stored 

in the spring: 
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U mv
m v

m M
mv

m

m M
mv

M

m M
s i

i
i i 


 



F
HG

I
KJ  

1

2

1

2

1

2
1

1

2

2
2 2

2 2

b g .  

 

Consequently, the fraction of the initial kinetic energy that becomes stored in the spring 

is 

240
0.80

60+240

s

i

U M

K m M
  


. 

 

58. We think of this as having two parts: the first is the collision itself, where the blocks 

“join” so quickly that the 1.0-kg block has not had time to move through any distance yet, 

and then the subsequent motion of the 3.0 kg system as it compresses the spring to the 

maximum amount xm. The first part involves momentum conservation (with +x 

rightward): 

m1v1 = (m1+m2)v       ( . ( .2 0 30 kg)(4.0 m s)  kg)

v  

 

which yields 

v  2 7. .m s  The second part involves mechanical energy conservation: 

 

1

2
30

1

2
( .  kg) (2.7 m s)  (200 N m)2

m

2 x  

 

which gives the result xm = 0.33 m. 

 

59. As hinted in the problem statement, the velocity v of the system as a whole, when the 

spring reaches the maximum compression xm, satisfies  

 

m1v1i + m2v2i = (m1 + m2)v. 

 

The change in kinetic energy of the system is therefore 

 

 
2

2 2 2 2 21 1 2 2
1 2 1 1 2 2 1 1 2 2

1 2

( )1 1 1 1 1
( )

2 2 2 2( ) 2 2

i i
i i i i

m v m v
K m m v m v m v m v m v

m m


       


 

 

which yields K = –35 J. (Although it is not necessary to do so, still it is worth noting 

that algebraic manipulation of the above expression leads to K v
m m

m m



1
2

1 2

1 2
d i  rel

2  where 

vrel = v1 – v2). Conservation of energy then requires 

 

2

m m

1 2 2( 35 J)

2 1120 N/m

K
kx K x

k

   
      = 0.25 m. 

 

60. (a) Let mA be the mass of the block on the left, vAi be its initial velocity, and vAf be its 

final velocity. Let mB be the mass of the block on the right, vBi be its initial velocity, and 

vBf be its final velocity. The momentum of the two-block system is conserved, so  
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mAvAi +  mBvBi  = mAvAf  + mBvBf 

and  

 

(1.6 kg)(5.5 m/s) (2.4 kg)(2.5 m/s) (2.4 kg)(4.9 m/s)

1.6 kg

1.9 m/s.

A Ai B Bi B Bf

Af

A

m v m v m v
v

m

   
 


 

(b) The block continues going to the right after the collision. 

 

(c) To see whether the collision is elastic, we compare the total kinetic energy before the 

collision with the total kinetic energy after the collision. The total kinetic energy before is 

 

2 2 2 21 1 1 1
(1.6 kg)(5.5 m/s) (2.4 kg)(2.5 m/s) 31.7 J.

2 2 2 2
i A Ai B BiK m v m v      

 

The total kinetic energy after is 

 

2 2 2 21 1 1 1
(1.6 kg)(1.9 m/s) (2.4 kg)(4.9 m/s) 31.7 J.

2 2 2 2
f A Af B BfK m v m v      

 

Since Ki = Kf the collision is found to be elastic. 

 

61. THINK We have a moving cart colliding with a stationary cart. Since the collision is 

elastic, the total kinetic energy of the system remains unchanged.   

 

EXPRESS Let m1 be the mass of the cart that is originally moving, v1i be its velocity 

before the collision, and v1f be its velocity after the collision. Let m2 be the mass of the 

cart that is originally at rest and v2f be its velocity after the collision. Conservation of 

linear momentum gives 1 1 1 1 2 2 .i f fm v m v m v   Similarly, the total kinetic energy is 

conserved and we have 

2 2 2

1 1 1 1 2 2

1 1 1

2 2 2
i f fm v m v m v  . 

 

Solving for 1 fv and 2 fv , we obtain: 

1 2 1
1 1 2 1

1 2 1 2

2
,f i f i

m m m
v v v v

m m m m


 

 
 

 

The speed of the center of mass is 1 1 2 2
com 

1 2

i im v m v
v

m m





. 

 

ANALYZE (a) With  m1 = 0.34 kg, 1 1.2 m/siv  and 1 0.66 m/sfv  , we obtain 
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1 1

2 1

1 1

1.2 m/s 0.66 m/s
 (0.34 kg) 0.0987 kg 0.099 kg.

1.2 m/s 0.66 m/s

i f

i f

v v
m m

v v

  
    

  
 

 

(b) The velocity of the second cart is: 

 

1
2 1

1 2

2 2(0.34 kg)
(1.2 m/s) 1.9 m/s.

0.34 kg 0.099 kg
f i

m
v v

m m

 
   

  
 

 

(c) From the above, we find the speed of the center of mass to be  

 

1 1 2 2
com 

1 2

(0.34 kg)(1.2 m/s) 0
0.93 m/s.

0.34 kg 0.099 kg

i im v m v
v

m m

 
  

 
 

 

LEARN In solving for com ,v  values for the initial velocities were used. Since the system 

is isolated with no external force acting on it, comv  remains the same after the collision, so 

the same result is obtained if values for the final velocities are used. That is,  

 

1 1 2 2

com 

1 2

(0.34 kg)(0.66 m/s) (0.099 kg)(1.9 m/s)
0.93 m/s.

0.34 kg 0.099 kg

f fm v m v
v

m m

 
  

 
 

 

62. (a) Let m1 be the mass of one sphere, v1i be its velocity before the collision, and v1f be 

its velocity after the collision. Let m2 be the mass of the other sphere, v2i be its velocity 

before the collision, and v2f be its velocity after the collision. Then, according to Eq.  

9-75, 

v
m m

m m
v

m

m m
vf i i1

1 2

1 2

1
2

1 2

2

2








 .  

 

Suppose sphere 1 is originally traveling in the positive direction and is at rest after the 

collision. Sphere 2 is originally traveling in the negative direction. Replace v1i with v, v2i 

with –v, and v1f with zero to obtain 0 = m1 – 3m2. Thus,  

 

2 1 / 3 (300 g) /3 100 gm m   . 

 

(b) We use the velocities before the collision to compute the velocity of the center of 

mass: 

       1 1 2 2
com

1 2

300 g 2.00 m s 100 g 2.00 m s
1.00 m/s.

300 g 100 g

i im v m v
v

m m

 
  

 
 

 

63. (a) The center of mass velocity does not change in the absence of external forces.  In 

this collision, only forces of one block on the other (both being part of the same system) 

are exerted, so the center of mass velocity is 3.00 m/s before and after the collision. 
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(b) We can find the velocity v1i of block 1 before the collision (when the velocity of block 

2 is known to be zero) using Eq. 9-17: 

 

(m1 + m2)vcom = m1 v1i + 0             v1i = 12.0 m/s . 

 

Now we use Eq. 9-68 to find v2 f : 

 

v2 f  =  
2m1

m1+ m2

 v1i  = 6.00 m/s . 

 

64. First, we find the speed v of the ball of mass m1 right before the collision (just as it 

reaches its lowest point of swing). Mechanical energy conservation (with h = 0.700 m) 

leads to 

2

1 1

1
2 3.7 m s.

2
m gh m v v gh     

 

(a) We now treat the elastic collision using Eq. 9-67: 

 

1 2
1

1 2

0.5 kg 2.5 kg
(3.7 m/s) 2.47 m/s

0.5 kg 2.5 kg
f

m m
v v

m m

 
   

 
 

 

which means the final speed of the ball is 2 47. .m s  

 

(b) Finally, we use Eq. 9-68 to find the final speed of the block: 

 

1
2

1 2

2 2(0.5 kg)
(3.7 m/s) 1.23 m/s.

0.5 kg 2.5 kg
f

m
v v

m m
  

 
 

 

65. THINK We have a mass colliding with another stationary mass. Since the collision is 

elastic, the total kinetic energy of the system remains unchanged.   

 

EXPRESS Let m1 be the mass of the body that is originally moving, v1i be its velocity 

before the collision, and v1f be its velocity after the collision. Let m2 be the mass of the 

body that is originally at rest and v2f be its velocity after the collision. Conservation of 

linear momentum gives 

 1 1 1 1 2 2i f fm v m v m v  . 

 

Similarly, the total kinetic energy is conserved and we have 

 

2 2 2

1 1 1 1 2 2

1 1 1

2 2 2
i f fm v m v m v  . 

 

The solution to 1 fv  is given by Eq. 9-67: 1 2
1 1

1 2

.f i

m m
v v

m m





 We solve for m2 to obtain 
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1 1

2 1

1 1

.
i f

i f

v v
m m

v v





 

The speed of the center of mass is 

1 1 2 2
com 

1 2

i im v m v
v

m m





. 

 

ANALYZE (a) given that v vf i1 1 4 / , we find the second mass to be 

 

1 1 1 1
2 1 1 1

1 1 1 1

/ 4 3 3
(2.0 kg) 1.2 kg

/ 4 5 5

i f i i

i f i i

v v v v
m m m m

v v v v

  
     

  
. 

 

(b) The speed of the center of mass is 
  1 1 2 2

com

1 2

2.0 kg 4.0 m/s
2.5 m s

2.0 kg 1.2 kg

i im v m v
v

m m


  

 
. 

 

LEARN The final speed of the second mass is 

 

1
2 1

1 2

2 2(2.0 kg)
(4.0 m/s) 5.0 m/s.

2.0 kg 1.2 kg
f i

m
v v

m m

 
   

  
 

 

Since the system is isolated with no external force acting on it, comv  remains the same 

after the collision, so the same result is obtained if values for the final velocities are used: 

 

1 1 2 2

com

1 2

(2.0 kg)(1.0 m/s) (1.2 kg)(5.0 kg)
2.5 m/s

2.0 kg 1.2 kg

f fm v m v
v

m m

 
  

 
. 

 

66. Using Eq. 9-67 and Eq. 9-68, we have after the collision 

 

1 2 1 1
1 1

1 2 1 1

1 1
2 1

1 2 1 1

0.40
(4.0 m/s) 1.71 m/s

0.40

2 2
(4.0 m/s) 5.71 m/s.

0.40

f i

f i

m m m m
v v

m m m m

m m
v v

m m m m

 
  

 

  
 

 

 

(a) During the (subsequent) sliding, the kinetic energy of block 1 2

1 1 1

1

2
f fK m v  is 

converted into thermal form (Eth =  k m1 g d1).  Solving for the sliding distance d1 we 

obtain d1 = 0.2999 m  30 cm. 

 

(b) A very similar computation (but with subscript 2 replacing subscript 1) leads to block 

2’s sliding distance d2 = 3.332 m  3.3 m. 
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67. We use Eq 9-67 and 9-68 to find the velocities of the particles after their first 

collision (at x = 0 and t = 0): 

 

1 2
1 1

1 2

1
2 1

1 2

0.30 kg 0.40 kg
(2.0 m/s) 0.29 m/s

0.30 kg 0.40 kg

2 2(0.30 kg)
(2.0 m/s) 1.7 m/s.

0.30 kg 0.40 kg

f i

f i

m m
v v

m m

m
v v

m m

 
   

 

  
 

 

 

At a rate of motion of 1.7 m/s, 2xw = 140 cm (the distance to the wall and back to x = 0) 

will be traversed by particle 2 in 0.82 s.  At t = 0.82 s, particle 1 is located at  

 

x = (–2/7)(0.82) = –23 cm, 

 

and particle 2 is “gaining” at a rate of (10/7) m/s leftward; this is their relative velocity at 

that time.  Thus, this “gap” of 23 cm between them will be closed after an additional time 

of (0.23 m)/(10/7 m/s) = 0.16 s has passed.  At this time (t = 0.82 + 0.16 = 0.98 s) the two 

particles are at  x = (–2/7)(0.98) = –28 cm. 

 

68. (a) If the collision is perfectly elastic, then Eq. 9-68 applies 

 

v2 =  
2m1

m1+ m2

 v1i =  
2m1

m1+  (2.00)m1

 2gh  = 
2

3
 2gh  

 

where we have used the fact (found most easily from energy conservation) that the speed 

of block 1 at the bottom of the frictionless ramp is 2gh  (where h = 2.50 m).  Next, for 

block 2’s “rough slide” we use Eq. 8-37: 

 
1

2
 m2 v2

2
 =  Eth =  fk d  =  k m2 g d  

 

where k = 0.500.  Solving for the sliding distance d, we find that m2 cancels out and we 

obtain d = 2.22 m. 

(b) In a completely inelastic collision, we apply Eq. 9-53: v2 = 
m1

m1+ m2

 v1i   (where, as 

above, v1i = 2gh ).   Thus, in this case we have v2 = 2gh /3. Now, Eq. 8-37 (using the 

total mass since the blocks are now joined together) leads to a sliding distance of 

0.556 md   (one-fourth of the part (a) answer). 

 

69. (a) We use conservation of mechanical energy to find the speed of either ball after it 

has fallen a distance h. The initial kinetic energy is zero, the initial gravitational potential 

energy is M gh, the final kinetic energy is 1
2

2Mv , and the final potential energy is zero. 

Thus Mgh Mv 1
2

2  and v gh 2 .  The collision of the ball of M with the floor is an 

elastic collision of a light object with a stationary massive object. The velocity of the 

light object reverses direction without change in magnitude. After the collision, the ball is 
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traveling upward with a speed of 2gh . The ball of mass m is traveling downward with 

the same speed. We use Eq. 9-75 to find an expression for the velocity of the ball of mass 

M after the collision: 

 

 
2 2 3

2 2 2  .Mf Mi mi

M m m M m m M m
v v v gh gh gh

M m M m M m M m M m

  
    

    
 

 

For this to be zero, m = M/3. With M = 0.63 kg, we have m = 0.21 kg.  

 

(b) We use the same equation to find the velocity of the ball of mass m after the collision: 

 

v
m M

M m
gh

M

M m
gh

M m

M m
ghmf  












2

2
2

3
2  

 

which becomes (upon substituting M = 3m) v ghmf  2 2  .  We next use conservation of 

mechanical energy to find the height h' to which the ball rises. The initial kinetic energy 

is 1
2

2mvm f , the initial potential energy is zero, the final kinetic energy is zero, and the final 

potential energy is mgh'. Thus, 

 

1

2 2
42

2

mv mgh h
v

g
hm f

m f
   ' ' . 

 

With h = 1.8 m, we have 7.2 mh  .  

 

70. We use Eqs. 9-67, 9-68, and 4-21 for the elastic collision and the subsequent 

projectile motion. We note that both pucks have the same time-of-fall t (during their 

projectile motions).  Thus, we have 

x2 = v2 t     where x2 = d  and  v2  =  
2m1

m1+ m2

 v1i 

 

x1 = v1 t     where x1 = 2d  and  v1  =  
m1  m2

m1+ m2

 v1i  . 

Dividing the first equation by the second, we arrive at  

 

d

2d
  =   

2m1

m1 + m2
 v1i t

m1 m2

 m1 + m2
 v1i t

  . 

 

After canceling v1i , t, and d, and solving, we obtain m2 = 1.0 kg. 

 

71. We apply the conservation of linear momentum to the x and y axes respectively. 
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1 1 1 1 1 2 2 2

1 1 1 2 2 2

cos cos

      0 sin sin .

i f f

f f

m v m v m v

m v m v

 

 

 

 
 

 

We are given 5

2 1.20 10 m/sfv   , 1 64.0   and 2 51.0 .   Thus, we are left with two 

unknowns and two equations, which can be readily solved. 

 

(a) We solve for the final alpha particle speed using the y-momentum equation: 

 

     

   

5

2 2 2 5

1

1 1

16.0 1.20 10 sin 51.0sin
4.15 10  m/s

sin 4.00 sin 64.0

f

f

m v
v

m





 
   


. 

 

(b) Plugging our result from part (a) into the x-momentum equation produces the initial 

alpha particle speed: 

           

1 1 1 2 2 2

1

1

5 5

5

cos cos

4.00 4.15 10 cos 64.0 16.0 1.2 10 cos 51.0

4.00

        4.84 10  m/s .

f f

i

i

m v m v
v

m

 


    


 

 

 

72. We orient our +x axis along the initial direction of motion, and specify angles in the 

“standard” way — so  = –90° for the particle B, which is assumed to scatter 

“downward” and  > 0 for particle A, which presumably goes into the first quadrant. We 

apply the conservation of linear momentum to the x and y axes, respectively. 

 

cos cos

     0 sin sin

B B B B A A

B B A A

m v m v m v

m v m v

 

 

  

  
 

 

(a) Setting vB  = v and 2Bv v  , the y-momentum equation yields 

m v m
v

A A B sin
2

 

 

and the x-momentum equation yields m v m vA A B cos .  Dividing these two equations, we 

find tan  1
2

, which yields  = 27°.  

 

(b) We can formally solve for Av  (using the y-momentum equation and the fact that 

  1 5 )  

 v
m

m
vA

B

A

5

2
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but lacking numerical values for v and the mass ratio, we cannot fully determine the final 

speed of A. Note: substituting cos 2 5 ,   into the x-momentum equation leads to 

exactly this same relation (that is, no new information is obtained that might help us 

determine an answer).  

 

73. Suppose the objects enter the collision along lines 

that make the angles  > 0 and  > 0 with the x axis, as 

shown in the diagram that follows. Both have the same 

mass m and the same initial speed v. We suppose that 

after the collision the combined object moves in the 

positive x direction with speed V. 

 

Since the y component of the total momentum of the two-

object system is conserved,  

mv sin  – mv sin  = 0. 

 
This means  = . Since the x component is conserved,  

 

2mv cos  = 2mV. 

 

We now use V v 2  to find that cos . 1 2  This means  = 60°. The angle between the 

initial velocities is 120°.  

 

74. (a) Conservation of linear momentum implies  

 

A A B B A A B Bm v m v m v m v    . 

 

Since mA = mB = m = 2.0 kg, the masses divide out and we obtain  

 

 
ˆ ˆ ˆ ˆ ˆ ˆ (15i 30j) m/s ( 10i 5j) m/s ( 5i 20 j) m/s

ˆ ˆ(10i 15 j) m/s .

B A B Av v v v           

 
 

 

(b) The final and initial kinetic energies are 

 

K mv mv

K mv mv

f A B

i A B

        

        

1

2

1

2

1

2
2 0 5 20 10 15 8 0 10

1

2

1

2

1

2
2 0 15 30 10 5 13 10

2 2 2 2 2 2 2

2 2 2 2 2 2 3

' ' ( . ) ( ) .

( . ) ( ) .

c h

c h

 J

  J .

 

 

The change kinetic energy is then K = –5.0  10
2
 J (that is, 500 J of the initial kinetic 

energy is lost). 
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75. We orient our +x axis along the initial direction of motion, and specify angles in the 

“standard” way — so  = +60° for the proton (1), which is assumed to scatter into the 

first quadrant and  = –30° for the target proton (2), which scatters into the fourth 

quadrant (recall that the problem has told us that this is perpendicular to ). We apply the 

conservation of linear momentum to the x and y axes, respectively. 

 

1 1 1 1 2 2

1 1 2 2

  cos cos

    0  sin sin .

m v m v m v

m v m v

 

 

  

  
 

 

We are given v1 = 500 m/s, which provides us with two unknowns and two equations, 

which is sufficient for solving. Since m1 = m2 we can cancel the mass out of the equations 

entirely. 

 

(a) Combining the above equations and solving for 2v  we obtain 

 

1
2

sin (500 m/s)sin(60 )
433 m/s.

sin ( ) sin (90 )

v
v



 


   

 
 

 

We used the identity sin cos – cos sin = sin (– ) in simplifying our final 

expression. 

 

(b) In a similar manner, we find 

 

1
1

sin (500 m/s)sin( 30 )
250 m/s .

sin ( ) sin ( 90 )

v
v



 

 
   

  
 

 

76. We use Eq. 9-88. Then 

 

 rel

6090 kg
ln 105 m/s (253 m/s) ln 108 m/s.

6010 kg

i
f i

f

M
v v v

M

   
        

  

 

 

77. THINK The mass of the faster barge is increasing at a constant rate. Additional force 

must be provided in order to maintain a constant speed.   

 

EXPRESS We consider what must happen to the coal that lands on the faster barge 

during a time interval t. In that time, a total of m of coal must experience a change of 

velocity (from slow to fast) fast slow ,v v v    where rightwards is considered the positive 

direction. The rate of change in momentum for the coal is therefore 

 

fast slow

( )
( )

p m m
v v v

t t t

   
    

   
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which, by Eq. 9-23, must equal the force exerted by the (faster) barge on the coal. The 

processes (the shoveling, the barge motions) are constant, so there is no ambiguity in 

equating 




p

t
 with 

dp

dt
.  Note that we ignore the transverse speed of the coal as it is 

shoveled from the slower barge to the faster one.  

 

ANALYZE (a) With fast 20 km/h 5.56 m/sv   , slow 10 km/h 2.78 m/sv    and the 

rate of mass change ( / ) 1000 kg/min (16.67 kg/s)m t    , the force that must be 

applied to the faster barge is 

 

fast fast slow( ) (16.67 kg/s)(5.56 m/s 2.78 m/s) 46.3N
m

F v v
t

 
     

 
 

 

(b) The problem states that the frictional forces acting on the barges does not depend on 

mass, so the loss of mass from the slower barge does not affect its motion (so no extra 

force is required as a result of the shoveling). 

 

LEARN The force that must be applied to the faster barge in order to maintain a constant 

speed is equal to the rate of change of momentum of the coal.  

 

78. We use Eq. 9-88 and simplify with vi = 0, vf = v, and vrel = u. 

 

v v v
M

M

M

M
ef i

i

f

i

f

v u   rel ln /  

(a) If v = u we obtain 
M

M
ei

f

 1 2 7. .  

(b) If v = 2u we obtain 
M

M
ei

f

 2 7 4. .  

 

79. THINK As fuel is consumed, both the mass and the speed of the rocket will change.   

 

EXPRESS The thrust of the rocket is given by T = Rvrel where R is the rate of fuel 

consumption and vrel is the speed of the exhaust gas relative to the rocket. On the other 

hand, the mass of fuel ejected is given by Mfuel = R t ,  where t  is the time interval of 

the burn. Thus, the mass of the rocket after the burn is  

 

Mf = Mi – Mfuel . 

 

ANALYZE (a) Given that R = 480 kg/s and vrel = 3.27  10
3
 m/s, we find the thrust to be 

 

  3 6

rel 480kg s 3.27 10 m s 1.57 10 N.T Rv      
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(b) With the mass of fuel ejected given by Mfuel = R t   (480 kg/s)(250 s) = 1.2010
5
 kg, 

the final mass of the rocket is  

 

Mf = Mi – Mfuel = (2.55  10
5
 kg ) – (1.20  10

5
 kg) = 1.35 10

5
 kg. 

 

(c) Since the initial speed is zero, the final speed of the rocket is 

 

 
5

3 3

rel 5

2.55 10 kg
ln 3.27 10 m/s ln 2.08 10 m s.

1.35 10 kg

i
f

f

M
v v

M

 
     

 
 

 

LEARN The speed of the rocket continues to rise as the fuel is consumed. From the first 

rocket equation given in Eq. 9-87, the thrust of the rocket is related to the acceleration by 

T Ma . Using this equation, we find the initial acceleration to be 

  

 
6

2

5

1.57 10 N
6.16 m/s .

2.55 10 kg
i

i

T
a

M


  


 

 

80. The velocity of the object is  

 

 ˆ ˆ ˆ ˆ(3500 160 ) i 2700 j 300k (160 m/s)i.
dr d

v t
dt dt

        

 

(a) The linear momentum is    4ˆ ˆ250 kg 160 m/s i ( 4.0 10 kg m/s) i.p mv        

 

(b) The object is moving west (our – î  direction).  

 

(c) Since the value of 

p  does not change with time, the net force exerted on the object is 

zero, by Eq. 9-23.  

 

81. We assume no external forces act on the system composed of the two parts of the last 

stage. Hence, the total momentum of the system is conserved. Let mc be the mass of the 

rocket case and mp the mass of the payload. At first they are traveling together with 

velocity v. After the clamp is released mc has velocity vc and mp has velocity vp. 

Conservation of momentum yields  

 

(mc + mp)v = mcvc + mpvp. 

 

(a) After the clamp is released the payload, having the lesser mass, will be traveling at the 

greater speed. We write vp = vc + vrel, where vrel is the relative velocity. When this 

expression is substituted into the conservation of momentum condition, the result is 

 

m m v m v m v m vc p c c p c p   d i rel .  

Therefore, 
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       rel 290.0 kg 150.0 kg 7600 m/s 150.0 kg 910.0 m/s

290.0 kg 150.0 kg

7290 m/s.

c p p

c

c p

m m v m v
v

m m

   
 

 



 

 

(b) The final speed of the payload is vp = vc + vrel = 7290 m/s + 910.0 m/s = 8200 m/s. 

 

(c) The total kinetic energy before the clamp is released is 

 

K m m vi c p     
1

2

1

2
290 0 7600 1271 102 2 10d i b gb g. .kg 150.0 kg m / s J.  

 

(d) The total kinetic energy after the clamp is released is 

 

 
     

2 22 2

10

1 1 1 1
290.0 kg 7290 m/s 150.0 kg 8200 m/s

2 2 2 2

1.275 10 J.

f c c p pK m v m v   

 

 

 

The total kinetic energy increased slightly. Energy originally stored in the spring is 

converted to kinetic energy of the rocket parts. 

 

82. Let m be the mass of the higher floors. By energy conservation, the speed of the 

higher floors just before impact is  

 21
2 .

2
mgd mv v gd    

 

The magnitude of the impulse during the impact is 

 

2 2
| | | | 2

d d
J p m v mv m gd mg W

g g
         

 

where W mg  represents the weight of the higher floors. Thus, the average force exerted 

on the lower floor is  

avg

2J W d
F

t t g
 
 

 

  

With avgF sW , where s is the safety factor, we have 

 

2

3 2

1 2 1 2(4.0 m)
6.0 10 .

1.5 10 s 9.8 m/s

d
s

t g 
   
 

 

 

83. (a) Momentum conservation gives 
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mR vR + mL vL  = 0       (0.500 kg) vR + (1.00 kg)(1.20 m/s)  =  0 

 

which yields vR = 2.40 m/s. Thus, x = vR t = (2.40 m/s)(0.800 s) = 1.92 m. 

 

(b) Now we have  mR vR + mL (vR   1.20 m/s)  =  0, which yields 

 

(1.2 m/s) (1.20 m/s)(1.00 kg)
0.800 m/s.

1.00 kg 0.500 kg

L
R

L R

m
v

m m
  

 
 

 

Consequently, x = vR t = 0.640 m. 

 

84. (a) This is a highly symmetric collision, and when we analyze the y-components of 

momentum we find their net value is zero.  Thus, the stuck-together particles travel along 

the x axis. 

 

(b) Since it is an elastic collision with identical particles, the final speeds are the same as 

the initial values.  Conservation of momentum along each axis then assures that the 

angles of approach are the same as the angles of scattering.  Therefore, one particle 

travels along line 2, the other along line 3. 

 

(c) Here the final speeds are less than they were initially.  The total x-component cannot 

be less, however, by momentum conservation, so the loss of speed shows up as a 

decrease in their y-velocity-components.  This leads to smaller angles of scattering.  

Consequently, one particle travels through region B, the other through region C; the paths 

are symmetric about the x-axis.  We note that this is intermediate between the final states 

described in parts (b) and (a). 

 

(d) Conservation of momentum along the x-axis leads (because these are identical 

particles) to the simple observation that the x-component of each particle remains 

constant:   

vf x = v cos = 3.06 m/s. 

 

(e) As noted above, in this case the speeds are unchanged; both particles are moving at 

4.00 m/s in the final state. 

 

85. Using Eq. 9-67 and Eq. 9-68, we have after the first collision 

 

1 2 1 1
1 1 1 1

1 2 1 1

1 1
2 1 1 1

1 2 1 1

2 1

2 3

2 2 2
.

2 3

f i i i

f i i i

m m m m
v v v v

m m m m

m m
v v v v

m m m m

 
   

 

  
 

 

 

After the second collision, the velocities are 
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v2 ff  = 
m2  m3

m2+ m3

 v2 f  =  
m2

3m2

 
2

3
 v1i  =   

2

9
 v1i 

 

v3 ff  = 
2m2

m2+ m3

 v2 f   =  
2m2

3m2

 
2

3
 v1i  =  

4

9
 v1i  . 

 

(a) Setting v1i  = 4 m/s, we find v3 ff   1.78 m/s. 

 

(b) We see that v3 ff  is less than v1i . 

 

(c) The final kinetic energy of block 3 (expressed in terms of the initial kinetic energy of 

block 1) is 
2

2 2

3 3 3 1 1 1

1 1 4 64
(4 )

2 2 9 81
ff i iK m v m v K

 
   

 
. 

 

We see that this is less than K1i . 

 

(d) The final momentum of block 3 is  p3ff = m3 v3 ff   = (4m1)( )
16

9
v1 > m1v1. 

 

86. (a) We use Eq. 9-68 twice: 

 

                                v2 =  
2m1

m1 + m2

 v1i  =  
2m1

1.5m1 

 (4.00 m/s) =  
16

3
 m/s 

 

            v3 =  
2m2

m2 + m3

 v2  =  
2m2

1.5m2

 (16/3 m/s) =  
64

9
 m/s  = 7.11 m/s . 

 

(b) Clearly, the speed of block 3 is greater than the (initial) speed of block 1. 

 

(c) The kinetic energy of block 3 is  
3 2

2 2

3 3 3 1 1 1

1 1 16 64

2 2 9 81
f i iK m v m v K

   
     

   
. 

 

We see the kinetic energy of block 3 is less than the (initial) K of block 1.  In the final 

situation, the initial K is being shared among the three blocks (which are all in motion), 

so this is not a surprising conclusion. 

 

(d) The momentum of block 3 is   
2

3 3 3 1 1 1

1 16 4

2 9 9
f i ip m v m v p

   
     

   
 

 

and is therefore less than the initial momentum (both of these being considered in 

magnitude, so questions about  sign do not enter the discussion).  
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87. We choose our positive direction in the direction of the rebound (so the ball’s initial 

velocity is negative-valued 

vi  52. m s ). 

 

(a) The speed of the ball right after the collision is 

 
22 2( / 2) / 2

3.7 m/s.
2

f i i i
f

K K mv v
v

m m m
      

 

(b) With m = 0.15 kg, the impulse-momentum theorem (Eq. 9-31) yields 

 

     0.15 kg 3.7 m/s 0.15 kg 5.2 m/s 1.3 N s.f iJ mv mv         

 

(c) Equation 9-35 leads to Favg = J/t = 1.3/0.0076 = 1.8  10
2
 N. 

 

88. We first consider the 1200 kg part. The impulse has magnitude J and is (by our 

choice of coordinates) in the positive direction. Let m1 be the mass of the part and v1 be 

its velocity after the bolts are exploded. We assume both parts are at rest before the 

explosion. Then J = m1v1, so 

v
J

m
1

1

300

1200
0 25 




N s

kg
m s. .  

 

The impulse on the 1800 kg part has the same magnitude but is in the opposite direction, 

so – J = m2v2, where m2 is the mass and v2 is the velocity of the part. Therefore, 

 

v
J

m
2

2

300

1800
0167   


 

N s

kg
m s. .  

 

Consequently, the relative speed of the parts after the explosion is  

 

u = 0.25 m/s – (–0.167 m/s) = 0.417 m/s. 

 

89. THINK The momentum of the car changes as it turns and collides with a tree. 

 

EXPRESS Let the initial and final momenta of the car be i ip mv  and f fp mv , 

respectively. The impulse on it equals the change in its momentum:  

 

( )f i f iJ p p p m v v      . 

 

The average force over the duration t is given by avg /F J t  . 

 

ANALYZE (a) The initial momentum of the car is 
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 
p mvi i   1400 53kg m s j 7400kg m s jb gb g b g.    

 

and the final momentum after making the turn is  ˆ7400kg m s ifp    (note that the 

magnitude remains the same, only the direction is changed). Thus, the impulse is 

 

  3 ˆ ˆ7.4 10 N s i j .f iJ p p       

 

(b) The initial momentum of the car after the turn is  ˆ7400kg m s iip    and the final 

momentum after colliding with a tree is 0.fp   The impulse acting on it is 

 
3 ˆ( 7.4 10 N s)i.f iJ p p         

 

(c) The average force on the car during the turn is 

 

  
  avg

ˆ ˆ7400kg m s i j
ˆ ˆ1600 N i j

4.6 s

p J
F

t t

 
    
 

 

 

and its magnitude is  

  3

avg 1600N 2 2.3 10 N.F     

 

(d) The average force during the collision with the tree is 

 

 
 4

avg 3

ˆ7400kg m s i ˆ2.1 10 N i
350 10 s

J
F

t 

 
     

 
 

 

and its magnitude is 4

avg 2.1 10 N.F    

 

(e) As shown in (c), the average force during the turn, in unit vector notation, is  

  avg
ˆ ˆ1600 N i jF   . The force is 45° below the positive x axis. 

 

 

LEARN During the turn, the average force 

avgF  is in the same direction as J , or p . 

Its x and y components have equal 

magnitudes. The x component is positive 

and the y component is negative, so the 

force is 45° below the positive x axis. 
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90. (a) We find the momentum 

pn r  of the residual nucleus from momentum conservation. 

 

 22 23ˆ ˆ0 ( 1.2 10 kg m/s) i ( 6.4 10 kg m/s) jn i e v n r n rp p p p p               

 

Thus, 22 23ˆ ˆ(1.2 10 kg m/s) i (6.4 10 kg m/s) jn rp        .  Its magnitude is 

 

   
2 2

22 23 22| | 1.2 10 kg m/s 6.4 10 kg m/s 1.4 10 kg m/s.n rp             

 

(b) The angle measured from the +x axis to 

pn r  is 

23
1

22

6.4 10 kg m/s
tan 28 .

1.2 10 kg m/s







  
   

  
 

 

 (c) Combining the two equations p = mv and K mv 1
2

2 , we obtain (with p = pn r and  

m = mn r) 

 
 

2
222

19

26

1.4 10 kg m/s
1.6 10 J.

2 2 5.8 10 kg

p
K

m







 
   


 

 

91. No external forces with horizontal components act on the cart-man system and the 

vertical forces sum to zero, so the total momentum of the system is conserved. Let mc be 

the mass of the cart, v be its initial velocity, and vc be its final velocity (after the man 

jumps off). Let mm be the mass of the man. His initial velocity is the same as that of the 

cart and his final velocity is zero. Conservation of momentum yields (mm + mc)v = mcvc. 

Consequently, the final speed of the cart is  

 

v
v m m

m
c

m c

c








b g b gb g2 3 75 39

39
6 7

.
.

 m / s kg kg

kg
m / s.  

 

The cart speeds up by 6.7 m/s – 2.3 m/s = + 4.4 m/s. In order to slow himself, the man 

gets the cart to push backward on him by pushing forward on it, so the cart speeds up.  

 

92. The fact that they are connected by a spring is not used in the solution. We use Eq.  

9-17 for 

vcom:  

     com 1 1 2 2 21.0 kg 1.7 m/s 3.0 kgMv m v m v v     

 

which yields 

v2 057 . m / s. The direction of 


v2  is opposite that of 


v1  (that is, they are 

both headed toward the center of mass, but from opposite directions). 

 

93. THINK A completely inelastic collision means that the railroad freight car and the 

caboose car move together after the collision. The motion is one-dimensional.  
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EXPRESS Let mF be the mass of the freight car and vF be its initial velocity. Let mC be 

the mass of the caboose and v be the common final velocity of the two when they are 

coupled. Conservation of the total momentum of the two-car system leads to  

 

mFvF = (mF + mC)v     F F

F C

m v
v

m m



. 

The initial kinetic energy of the system is K m vi F F
1

2

2  and the final kinetic energy is 

 

K m m v m m
m v

m m

m v

m m
f F C F C

F F

F C

F F

F C

   





1

2

1

2

1

2

2
2 2

2

2 2

b g b g b g b g .  
 

Since 27% of the original kinetic energy is lost, we have Kf = 0.73Ki. Combining with the 

two equations above allows us to solve for Cm , the mass of the caboose.    

 

ANALYZE With Kf = 0.73Ki, or  

 

 
 

2 2
21 1

0.73
2 2

F F
F F

F C

m v
m v

m m

 
  

  
 

 

we obtain m m mF F C b g 0 73. ,  which we use in solving for the mass of the caboose: 

 

m m mC F F     
0 27

0 73
0 37 0 37 318 10 118 104 4.

.
. . . . .b gc hkg kg  

 

LEARN Energy is lost during an inelastic collision, but momentum is still conserved 

because there’s no external force acting on the two-car system.  

 

94. Let mc be the mass of the Chrysler and vc be its velocity. Let mf be the mass of the 

Ford and vf be its velocity. Then the velocity of the center of mass is 

 

v
m v m v

m m

c c f f

c f

com

kg km / h kg km / h

kg kg
km / h











2400 80 1600 60

2400 1600
72

b gb g b gb g
.  

 

We note that the two velocities are in the same direction, so the two terms in the 

numerator have the same sign. 

 

95. THINK A billiard ball undergoes glancing collision with another identical billiard 

ball. The collision is two-dimensional.   
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EXPRESS The mass of each ball is m, and the initial speed of one of the balls is 

1 2.2m s.iv   We apply the conservation of linear momentum to the x and y axes 

respectively: 

1 1 1 2 2

1 1 2 2

cos cos

   0 sin sin

i f f

f f

mv mv mv

mv mv

 

 

 

 
 

 

The mass m cancels out of these equations, and we are left with two unknowns and two 

equations, which is sufficient to solve.  

 

ANALYZE (a) Solving the simultaneous equations leads to  

 

 2 1
1 1 2 1

1 2 1 2

sin sin
,

sin( ) sin( )
f i f iv v v v

 

   
 

 
 

 

Since 2 1 / 2 1.1m/sf iv v   and 2 60   , we have  

 

1
1

1

sin 1 1
tan

sin( 60 ) 2 3





  

 
 

 

or 1 30   . Thus, the speed of ball 1 after collision is 

 

 2
1 1 1 1

1 2

sin sin 60 3 3
(2.2 m/s) 1.9 m/s

sin( ) sin(30 60 ) 2 2
f i i iv v v v



 


    

  
. 

 

(b) From the above, we have  = 30°, measured clockwise from the +x-axis, or 

equivalently, 30°, measured counterclockwise from the +x-axis. 

 

(c) The kinetic energy before collision is 2

1

1

2
i iK mv . After the collision, we have 

 2 2

1 2

1

2
f f fK m v v   

Substituting the expressions for 1 fv  and 2 fv  found above gives 

 
2 2

22 1
12 2

1 2 1 2

sin sin1

2 sin ( ) sin ( )
f iK m v

 

   

 
  

  
 

 

Since 1 30    and 2 60 ,    1 2sin( ) 1    and 2 2 2 2

1 2 1 1sin sin sin cos 1       , 

and indeed, we have 2

1

1

2
f i iK mv K  , which means that energy is conserved.  
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LEARN One may verify that when two identical masses collide elastically, they will 

move off perpendicularly to each other with 1 2 90 .     

 

 96. (a) We use Eq. 9-87. The thrust is 

 

   24 4

rel 4.0 10 kg 2.0m s 8.0 10 N.Rv Ma      

 

(b) Since vrel = 3000 m/s, we see from part (a) that R  27 kg/s. 

 

97. The diagram below shows the situation as the incident ball (the left-most ball) makes 

contact with the other two.  

 

 
 

It exerts an impulse of the same magnitude on each ball, along the line that joins the 

centers of the incident ball and the target ball. The target balls leave the collision along 

those lines, while the incident ball leaves the collision along the x axis. The three dashed 

lines that join the centers of the balls in contact form an equilateral triangle, so both of the 

angles marked  are 30°. Let v0 be the velocity of the incident ball before the collision 

and V be its velocity afterward. The two target balls leave the collision with the same 

speed. Let v represent that speed. Each ball has mass m. Since the x component of the 

total momentum of the three-ball system is conserved, 

 

mv mV mv0 2  cos  

 

and since the total kinetic energy is conserved,  

 

1

2

1

2
2

1

2
0

2 2 2mv mV mv 
F
HG
I
KJ .  

 

We know the directions in which the target balls leave the collision so we first eliminate 

V and solve for v. The momentum equation gives V = v0 – 2v cos , so  

 
2V  2 2 2

0 04 cos 4 cosv v v v    
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and the energy equation becomes 2

0v  2 2 2 2

0 04 cos 4 cos 2 .v v v v v     Therefore,  

 

v
v







 


2

1 2

2 10 30

1 2 30
6 930

2 2

cos

cos

( cos

cos
. .





 m s)
 m s  

 

(a) The discussion and computation above determines the final speed of ball 2 (as labeled 

in Fig. 9-76) to be 6.9 m/s. 

 

(b) The direction of ball 2 is at 30° counterclockwise from the +x axis.  

 

(c) Similarly, the final speed of ball 3 is 6.9 m/s. 

 

(d) The direction of ball 3 is at 30° counterclockwise from the +x axis.  

 

(e) Now we use the momentum equation to find the final velocity of ball 1:  

 

V v v     0 2 10 2 693 30 2 0cos ( . cos .  m s  m s) m s.  

 

So the speed of ball 1 is | |V  2.0 m/s. 

 

(f) The minus sign indicates that it bounces back in the – x direction. The angle is 180°. 

 

98. (a) The momentum change for the 0.15 kg object is  

 

 p 


  = (0.15)[2 i
^
 + 3.5 j

^
 –3.2 k

^
 – (5 i

^
 +6.5 j

^
 +4 k

^
 )] = (–0.450i

^
 – 0.450j

^
 – 1.08k

^
) kg m/s . 

 

(b) By the impulse-momentum theorem (Eq. 9-31), J  


 =  p 


 , we have 

 

J  


 = (–0.450i
^
 – 0.450j

^
 – 1.08k

^
) N s . 

 

(c) Newton’s third law implies Jwall  
    

 = – Jball  
    

 (where Jball  
    

 is the result of part (b)), so 

 

Jwall  
    

 = (0.450i
^
 + 0.450j

^
 + 1.08k

^
) N s . 

 

99. (a) We place the origin of a coordinate system at the center of the pulley, with the x 

axis horizontal and to the right and with the y axis downward. The center of mass is 

halfway between the containers, at x = 0 and y = ,  where   is the vertical distance from 

the pulley center to either of the containers. Since the diameter of the pulley is 50 mm, 

the center of mass is at a horizontal distance of 25 mm from each container.  

 

(b) Suppose 20 g is transferred from the container on the left to the container on the right. 

The container on the left has mass m1 = 480 g and is at x1 = –25 mm. The container on 
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the right has mass m2 = 520 g and is at x2 = +25 mm. The x coordinate of the center of 

mass is then  

x
m x m x

m m
com

 g  mm  g  mm

 g 520 g
 mm.






 


1 1 2 2

1 2

480 25 520 25

480
10

b gb g b gb g
.  

 

The y coordinate is still  . The center of mass is 26 mm from the lighter container, along 

the line that joins the bodies. 

 

(c) When they are released the heavier container moves downward and the lighter 

container moves upward, so the center of mass, which must remain closer to the heavier 

container, moves downward.  

 

(d) Because the containers are connected by the string, which runs over the pulley, their 

accelerations have the same magnitude but are in opposite directions. If a is the 

acceleration of m2, then –a is the acceleration of m1. The acceleration of the center of 

mass is  

a
m a m a

m m
a

m m

m m
com 

 








1 2

1 2

2 1

1 2

b g
.  

 

We must resort to Newton’s second law to find the acceleration of each container. The 

force of gravity m1g, down, and the tension force of the string T, up, act on the lighter 

container. The second law for it is m1g – T = –m1a. The negative sign appears because a 

is the acceleration of the heavier container. The same forces act on the heavier container 

and for it the second law is m2g – T = m2a. The first equation gives T = m1g + m1a. This is 

substituted into the second equation to obtain m2g – m1g – m1a = m2a, so  

 

a = (m2 – m1)g/(m1 + m2). 

Thus,  

a
g m m

m m
com

2

2
 m / s  g  g

 g
 m / s









  2 1

2

1 2

2

2

2

2
9 8 520 480

480 520 g
16 10

b g
b g

c hb g
b g

.
. .  

 

The acceleration is downward. 

 

100. (a) We use Fig. 9-21 of the text (which treats both angles as positive-valued, even 

though one of them is in the fourth quadrant; this is why there is an explicit minus sign in 

Eq. 9-80 as opposed to it being implicitly in the angle). We take the cue ball to be body 1 

and the other ball to be body 2. Conservation of the x and the components of the total 

momentum of the two-ball system leads to:  

 

mv1i = mv1f cos 1 + mv2f cos 2 
 

       0 = –mv1f sin 1 + mv2f sin 2. 

 

The masses are the same and cancel from the equations. We solve the second equation for 

sin 2: 
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sin sin
.

.
sin . . 2

1

2

1

350

2 00
22 0 0 656 

F
HG

I
KJ 

v

v

f

f

 m / s

 m / s
 .  

 

Consequently, the angle between the second ball and the initial direction of the first is 2 

= 41.0°. 

 

(b) We solve the first momentum conservation equation for the initial speed of the cue 

ball. 

1  1 1 2 2cos cos (3.50 m/s)cos 22.0 (2.00 m/s)cos41.0 4.75 m/s .i f fv v v        

 

(c) With SI units understood, the initial kinetic energy is  

 

K mv m mi i  
1

2

1

2
4 75 1132 2( . ) .  

and the final kinetic energy is 

 

K mv mv m mf f f    
1

2

1

2

1

2
350 2 00 811

2

2

2 2 2( . ) ( . ) . .c h  

 

Kinetic energy is not conserved. 

 

101. This is a completely inelastic collision, followed by projectile motion. In the 

collision, we use momentum conservation. 

 

 shoes together (3.2 kg)(3.0 m/s) (5.2 kg)p p v    

 

Therefore, 

v 1.8 m/ s  toward the right as the combined system is projected from the 

edge of the table. Next, we can use the projectile motion material from Ch. 4 or the 

energy techniques of Ch. 8; we choose the latter. 

 

                                                              

 kg) (1.8 m / s) (5.2 kg) (9.8 m / s  m) 0

edge edge floor floor

2 2

floor

K U K U

K

  

  
1

2
52 0 40( . ) ( .

 

 

Therefore, the kinetic energy of the system right before hitting the floor is Kfloor = 29 J. 

 

102. (a) Since the center of mass of the man-balloon system does not move, the balloon 

will move downward with a certain speed u relative to the ground as the man climbs up 

the ladder.  

 

(b) The speed of the man relative to the ground is vg = v – u. Thus, the speed of the center 

of mass of the system is 
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v
mv Mu

M m

m v u Mu

M m

g

com 





 




b g
0.  

This yields  

 
(80 kg)(2.5 m/s)

0.50 m/s.
320 kg + 80 kg

mv
u

M m
  


 

 

 (c) Now that there is no relative motion within the system, the speed of both the balloon 

and the man is equal to vcom, which is zero. So the balloon will again be stationary. 

 

103. The velocities of m1 and m2 just after the collision with each other are given by Eq. 

9-75 and Eq. 9-76 (setting v1i = 0): 

2 2 1
1 2 2 2

1 2 1 2

2
,f i f i

m m m
v v v v

m m m m


 

 
 

 

After bouncing off the wall, the velocity of m2 becomes –v2f. In these terms, the problem 

requires 1 2f fv v  , or  

2 2 1
2 2

1 2 1 2

2
i i

m m m
v v

m m m m


 

 
 

which simplifies to 

2
3

2 2 1 2
1m m m m

m
    b g  . 

 

With m1 = 6.6 kg, we have m2 = 2.2 kg. 

 

104. We treat the car (of mass m1) as a “point-mass” (which is initially 1.5 m from the 

right end of the boat).  The left end of the boat (of mass m2) is initially at x = 0 (where the 

dock is), and its left end is at x = 14 m.  The boat’s center of mass (in the absence of the 

car) is initially at x = 7.0 m. We use Eq. 9-5 to calculate the center of mass of the system: 

 

xcom = 
m1x1 + m2x2

 m1 + m2 
  =  

(1500 kg)(14 m – 1.5 m) + (4000 kg)(7 m)

 1500 kg + 4000 kg
  =  8.5 m. 

 

In the absence of external forces, the center of mass of the system does not change.  Later, 

when the car (about to make the jump) is near the left end of the boat (which has moved 

from the shore an amount x), the value of the system center of mass is still 8.5 m.  The 

car (at this moment) is thought of as a “point-mass” 1.5 m from the left end, so we must 

have  

       xcom = 
m1x1 + m2x2

 m1 + m2 
  =  

(1500 kg)(x + 1.5 m) + (4000 kg)(7 m + x)

 1500 kg + 4000 kg
  =  8.5 m. 

 

Solving this for x, we find x = 3.0 m. 

 

105. THINK Both momentum and energy are conserved during an elastic collision.  

 



 

  

465 

EXPRESS Let m1 be the mass of the object that is originally moving, v1i be its velocity 

before the collision, and v1f be its velocity after the collision. Let 2m M  be the mass of 

the object that is originally at rest and v2f  be its velocity after the collision. Conservation 

of linear momentum gives 1 1 1 1 2 2 .i f fm v m v m v   Similarly, the total kinetic energy is 

conserved and we have 

2 2 2

1 1 1 1 2 2

1 1 1

2 2 2
i f fm v m v m v  . 

Solving for 
1 fv and 2 fv , we obtain: 

1 2 1
1 1 2 1

1 2 1 2

2
,f i f i

m m m
v v v v

m m m m


 

 
 

The second equation can be inverted to give 1
2 1

2

2
1i

f

v
m m

v

 
   

 

.  

 

ANALYZE With m1 = 3.0 kg, v1i = 8.0 m/s and v2f = 6.0 m/s, the above expression leads 

to  

1
2 1

2

2 2(8.0 m/s)
1 (3.0 kg) 1 5.0 kg

6.0 m/s

i

f

v
m M m

v

   
         

  

 

 

LEARN Our analytic expression for 
2m  shows that if the two masses are equal, then 

2 1f iv v , and the pool player’s result is recovered.  

 

106. We denote the mass of the car as M and that of the sumo wrestler as m. Let the 

initial velocity of the sumo wrestler be v0 > 0 and the final velocity of the car be v. We 

apply the momentum conservation law.  

 

(a) From mv0 =  (M + m)v we get  

 

v
mv

M m






0 242

2140 242
054

(
. .

 kg)(5.3 m / s)

 kg  kg
 m / s  

 

(b) Since vrel = v0, we have  

 

mv Mv m v v mv M m v0 0     relb g b g , 

 

and obtain v = 0 for the final speed of the flatcar.  

 

(c) Now mv0 = Mv + m (v – vrel), which leads to  

 

v
m v v

m M












0 242 53 53

242
11

rel kg m / s m / s

kg 2140 kg
m / s

b g b gb g. .
. .  
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107. THINK To successfully launch a rocket from the ground, fuel is consumed at a rate 

that results in a thrust big enough to overcome the gravitational force.  

 

EXPRESS The thrust of the rocket is given by T = Rvrel where R is the rate of fuel 

consumption and vrel is the speed of the exhaust gas relative to the rocket. 

 

ANALYZE (a) The exhaust speed is vrel = 1200 m/s. For the thrust to equal the weight 

Mg where M = 6100 kg, we must have  

 

 
2

rel

rel

(6100 kg)(9.8 m/s )
49.8 kg/s 50 kg/s

1200 m/s

Mg
T Rv Mg R

v
       . 

 

(b) Using Eq. 9-42 with the additional effect due to gravity, we have 

 

Rv Mg Marel    

so that requiring a = 21 m/s
2
 leads to  

 
2 2

2

rel

( ) (6100 kg)(9.8 m/s 21m/s )
156.6 kg/s 1.6 10 kg/s

1200 m/s

M g a
R

v

 
     . 

 

LEARN A greater upward acceleration requires a greater fuel consumption rate. To be 

launched from Earth’s surface, the initial acceleration of the rocket must exceed 
29.8 m/sg  . This means that the rate R must be greater than 50 kg/s.  

 

108. Conservation of momentum leads to  

 

(900 kg)(1000 m/s) = (500 kg)(vshuttle – 100 m/s) + (400 kg)(vshuttle) 

 

which yields vshuttle = 1055.6 m/s for the shuttle speed and vshuttle – 100 m/s =  955.6 m/s 

for the module speed (all measured in the frame of reference of the stationary main 

spaceship).  The fractional increase in the kinetic energy is 

 
2 2

3

2

(500 kg)(955.6 m/s) / 2 (400 kg)(1055.6 m/s) / 2
1 2.5 10 .

(900 kg)(1000 m/s) / 2

f

i i

KK

K K

 
      

 

109. THINK In this problem, we are asked to locate the center of mass of the Earth-

Moon system. 

 

EXPRESS We locate the coordinate origin at the center of Earth.  Then the distance rcom 

of the center of mass of the Earth-Moon system is given by 

 

com
M ME

M E

m r
r

m m



 

where mM is the mass of the Moon, mE is the mass of Earth, and rME is their separation.  
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ANALYZE (a) With 245.98 10 kgEm   , 227.36 10 kgMm    and 83.82 10 mMEr    

(these values are given in Appendix C), we find the center of mass to be at  

 

 
  22 8

6 3

com 22 24

7.36 10 kg 3.82 10 m
4.64 10 m 4.6 10  km.

7.36 10 kg 5.98 10 kg
r

 
    

  
 

 

(b) The radius of Earth is RE = 6.37  10
6
 m, so com / 0.73 73%Er R   . 

 

LEARN The center of mass of the Earth-Moon system is located inside the Earth!  

 

110. (a) The magnitude of the impulse is equal to the change in momentum: 

 

J = mv – m(–v) = 2mv = 2(0.140 kg)(7.80 m/s) = 2.18 kg m/s 

 

(b) Since in the calculus sense the average of a function is the integral of it divided by the 

corresponding interval, then the average force is the impulse divided by the time t.  

Thus, our result for the magnitude of the average force is 2mv/t. With the given values, 

we obtain 

Favg = 
2(0.140 kg)(7.80 m/s)

0.00380 s
   = 575 N . 

 

111. THINK The water added to the sled will move at the same speed as the sled.  

 

EXPRESS Let the mass of the sled be sm and its initial speed be iv . If the total mass of 

water being scooped up is wm , then by momentum conservation, ( )s i s w fm v m m v  , 

where fv  is the final speed of the sled-water system.     

 

ANALYZE With 2900 kgsm  , 920 kgwm   and 250 m/siv  , we obtain  

 

  2900 kg 250 m/s
189.8 m/s 190 m/s

2900 kg 920 kg

s i
f

s w

m v
v

m m
   

 
. 

 

LEARN The water added to the sled can be regarded as undergoing completely inelastic 

collision with the sled. Some kinetic energy is converted into other forms of energy 

(thermal, sound, etc.) and the final speed of the sled-water system is smaller than the 

initial speed of the sled alone.    

 

112. THINK The pellets that were fired carry both kinetic energy and momentum. Force 

is exerted by the rigid wall in stopping the pellets.  

 

EXPRESS Let m be the mass of a pellet and v be its velocity as it hits the wall, then its 

momentum is p = mv, toward the wall. The kinetic energy of a pellet is 2 / 2.K mv  The 
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force on the wall is given by the rate at which momentum is transferred from the pellets 

to the wall. Since the pellets do not rebound, each pellet that hits transfers p. If N pellets 

hit in time t, then the average rate at which momentum is transferred would 

be  avg /F p N t   . 

 

ANALYZE (a) With m = 2.0  10
–3

 kg and v = 500 m/s, the momentum of a pellet is  

 

p = mv = (2.0  10
–3

 kg)(500 m/s) = 1.0 kg ∙ m/s. 

 

(b) The kinetic energy of a pellet is K mv    1

2

1

2
2 0 10 500 2 5 102 3 2 2. .kg m s J .c hb g  

 

(c) With ( / ) 10/ s,N t    the average force on the wall from the stream of pellets is 

 

  1

avg 1.0kg m s 10s 10 N.
N

F p
t

 
    

 
 

 

The force on the wall is in the direction of the initial velocity of the pellets. 

 

(d) If t is the time interval for a pellet to be brought to rest by the wall, then the 

average force exerted on the wall by a pellet is 

 

3

avg 3

1.0kg m s
1.7 10 N.

0.6 10 s

p
F

t 


    

 
 

 

The force is in the direction of the initial velocity of the pellet. 

 

(e) In part (d) the force is averaged over the time a pellet is in contact with the wall, while 

in part (c) it is averaged over the time for many pellets to hit the wall. Hence, avg avgF F  .   

 

LEARN During the majority of this time, no pellet is in contact with the wall, so the 

average force in part (c) is much less than the average force in part (d). 

 

113. We convert mass rate to SI units: R = (540 kg/min)/(60 s/min) = 9.00 kg/s. In the 

absence of the asked-for additional force, the car would decelerate with a magnitude 

given by Eq. 9-87: relRv M a , so that if a = 0 is desired then the additional force must 

have a magnitude equal to R vrel (so as to cancel that effect): 

 

  rel 9.00 kg / s 3.20 m/s 28.8N.F Rv    

 

114. First, we imagine that the small square piece (of mass m) that was cut from the large 

plate is returned to it so that the large plate is again a complete 6 m  6 m (d =1.0 m) 

square plate (which has its center of mass at the origin). Then we “add” a square piece of 
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“negative mass” (–m) at the appropriate location to obtain what is shown in the figure. If 

the mass of the whole plate is M, then the mass of the small square piece cut from it is 

obtained from a simple ratio of areas: 

m M M m
F
HG
I
KJ  

2 0

6 0
9

2

.

.
.

m

m
 

 

(a) The x coordinate of the small square piece is x = 2.0 m (the middle of that square 

“gap” in the figure). Thus the x coordinate of the center of mass of the remaining piece is 

 

x
m x

M m

m

m m
com

m
m



 




 

b g
b g

b g2 0

9
0 25

.
. .  

 

(b) Since the y coordinate of the small square piece is zero, we have ycom = 0. 

 

115. THINK We have two forces acting on two masses separately. The masses will 

move according to Newton’s second law.   

 

EXPRESS Let 
1F  be the force acting on m1, and 

2F  the force acting on m2. According to 

Newton’s second law, their displacements are 

 

 2 2 2 21 2
1 1 2 2

1 2

1 1 1 1
,

2 2 2 2

F F
d a t t d a t t

m m

   
         

   

 

 

The corresponding displacement of the center of mass is 

 

2 2 21 1 2 2 1 1 2 2 1 2
cm

1 2 1 2 1 1 2 2 1 2

1 1 1

2 2 2

m d m d m F m F F F
d t t t

m m m m m m m m m m

      
                     

. 

 

ANALYZE (a) The two masses are 3

1 2.00 10 kgm   and 3

2 4.00 10 kg.m    With 

the forces given by 1
ˆ ˆ( 4.00 N)i (5.00 N)jF    and 2

ˆ ˆ(2.00 N)i (4.00 N)jF   , and 
32.00 10 st   , we obtain 

 

 

2 3 21 2
cm 3 3

1 2

4 4

ˆ ˆ1 1 ( 4.00 N 2.00 N)i (5.00 N 4.00 N)j
(2.00 10 s)

2 2 2.00 10 kg 4.00 10 kg

ˆ ˆ( 6.67 10  m)i (3.33 10  m) j.

F F
d t

m m



 

 

     
        

    

 

 

The magnitude of cmd  is  

 
4 2 4 2 4

cm ( 6.67 10  m) (3.33 10  m) 7.45 10  md           
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or 0.745 mm. 

 

(b) The angle of 
cmd  is given by  

 
4

1 1

4

3.33 10  m 1
tan tan 153 ,

6.67 10  m 2



 



   
       

    
 

 

measured counterclockwise from +x-axis.  

 

(c) The velocities of the two masses are 

 

1 2
1 1 2 2

1 2

,
Ft F t

v a t v a t
m m

    , 

 

and the velocity of the center of mass is 

 

1 1 2 2 1 1 2 2 1 2
cm

1 2 1 2 1 1 2 2 1 2

m v m v m Ft m F t F F
v t

m m m m m m m m m m

      
                     

. 

 

The corresponding kinetic energy of the center of mass is 

 

 
2

2 21 2
cm 1 2 cm

1 2

| |1 1
( )

2 2

F F
K m m v t

m m


  


 

  

With 1 2
ˆ ˆ| | | ( 2.00 N)i (1.00 N)j| 5 NF F     , we get   

 
2 2

2 3 2 31 2
cm 3 3

1 2

| |1 1 ( 5 N)
(2.00 10 s) 1.67 10  J.

2 2 2.00 10 kg 4.00 10 kg

F F
K t

m m

 

 


    

   
 

 

LEARN The motion of the center of the mass could be analyzed as though a force 

1 2F F F   is acting on a mass 1 2M m m  .  Thus, the acceleration of the center of the 

mass is 1 2
cm

1 2

F F
a

m m





. 

 

116. (a) The center of mass does not move in the absence of external forces (since it was 

initially at rest). 

 

(b) They collide at their center of mass.  If the initial coordinate of P is x = 0 and the 

initial coordinate of Q is x = 1.0 m, then Eq. 9-5 gives 
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xcom  =  
m1x1 + m2x2

 m1 + m2 
 =  

0 + (0.30 kg)(1.0 m)

0.1 kg  +  0.3 kg
 = 0.75 m. 

 

Thus, they collide at a point 0.75 m from P’s original position. 

 

117. This is a completely inelastic collision, but Eq. 9-53 (V = 
m1

m1+ m2

 v1i) is not easily 

applied since that equation is designed for use when the struck particle is initially 

stationary.  To deal with this case (where particle 2 is already in motion), we return to the 

principle of momentum conservation: 

 
1 1 2 2 1 2

ˆ ˆ ˆ ˆ2(4i 5j) 4(6i 2j)
( )

2 4
m v m v m m V V

  
    


. 

 

(a) In unit-vector notation, then, V 


= (2.67 m/s)i
^
 + (3.00 m/s)j

^
 . 

 

(b) The magnitude of V 


 is | |V  4.01 m/s. 

 

(c) The direction of V 


 is 48.4 (measured clockwise from the +x axis). 

 

118. We refer to the discussion in the textbook (Sample Problem – “Elastic collision, two 

pendulums,” which uses the same notation that we use here) for some important details in 

the reasoning. We choose rightward in Fig. 9-20 as our +x direction. We use the notation 
v  when we refer to velocities and v when we refer to speeds (which are necessarily 

positive). Since the algebra is fairly involved, we find it convenient to introduce the 

notation m = m2 – m1 (which, we note for later reference, is a positive-valued quantity). 

 

(a) Since 

v ghi1 12   where h1 = 9.0 cm, we have 

 


v

m m

m m
v

m

m m
ghf i1

1 2

1 2

1

1 2

12



 




 

 

which is to say that the speed of sphere 1 immediately after the collision is 

 

v m m m ghf1 1 2 12  b gc h  

 

and that 

v f1  points in the –x direction. This leads (by energy conservation 

m gh m vf f1 1
1
2 1 1

2 ) to 

h
v

g

m

m m
hf

f

1

1

2

1 2

2

1
2

 


F
HG

I
KJ


.  

 

With m1 = 50 g and m2 = 85 g, this becomes 1 0.60 cmfh  . 



 CHAPTER 9 472 

 

(b) Equation 9-68 gives 

v
m

m m
v

m

m m
ghf i2

1

1 2

1
1

1 2

1

2 2
2





 

 

which leads (by energy conservation m gh m vf f2 2
1
2 2 2

2 ) to 

 

h
v

g

m

m m
hf

f

2

2

2

1

1 2

2

1
2

2
 



F
HG

I
KJ .  

 

With m1 = 50 g and m2 = 85 g, this becomes  h f2 4 9 . cm . 

 

(c) Fortunately, they hit again at the lowest point (as long as their amplitude of swing was 

“small,” this is further discussed in Chapter 16). At the risk of using cumbersome 

notation, we refer to the next set of heights as h1ff and h2ff. At the lowest point (before this 

second collision) sphere 1 has velocity  2 1gh f  (rightward in Fig. 9-20) and sphere 2 

has velocity  2 1gh f  (that is, it points in the –x direction). Thus, the velocity of sphere 

1 immediately after the second collision is, using Eq. 9-75, 

 

 

 

 

 

1 2 2
1 1 2

1 2 1 2

2 1
1 1

1 2 1 2 1 2 1 2

2

1 2

12

1 2

2
2 2

2 2
2 2

4
     2  .

ff f f

m m m
v gh gh

m m m m

m mm m
gh gh

m m m m m m m m

m m m
gh

m m


  

 

    
    

      

 
 



 

 

This can be greatly simplified (by expanding (m)
2
 and (m1 + m2)

2
) to arrive at the 

conclusion that the speed of sphere 1 immediately after the second collision is simply 

v ghff1 12  and that 

v ff1  points in the –x direction. Energy conservation 

m gh m vff ff1 1
1
2 1 1

2d i  leads to 

h
v

g
hff

ff

1

1

2

1
2

9 0   .  cm . 

 

(d) One can reason (energy-wise) that h1 ff = 0 simply based on what we found in part (c). 

Still, it might be useful to see how this shakes out of the algebra. Equation 9-76 gives the 

velocity of sphere 2 immediately after the second collision: 
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v
m

m m
gh

m m

m m
gh

m

m m

m

m m
gh

m

m m

m

m m
gh

ff f f2
1

1 2

1
2 1

1 2

2

1

1 2 1 2

1

1 2

1

1 2

1

2
2 2

2
2

2
2











 

F
HG

I
KJ  





F
HG

I
KJ

e j

     
 

 

 

which vanishes since ( )( ) ( )( )2 2 01 1m m m m   . Thus, the second sphere (after the 

second collision) stays at the lowest point, which basically recreates the conditions at the 

start of the problem (so all subsequent swings-and-impacts, neglecting friction, can be 

easily predicted, as they are just replays of the first two collisions). 

 

119. (a) Each block is assumed to have uniform density, so that the center of mass of 

each block is at its geometric center (the positions of which are given in the table [see 

problem statement] at t = 0).  Plugging these positions (and the block masses) into Eq. 9-

29 readily gives xcom = –0.50 m (at t = 0). 

 

(b) Note that the left edge of block 2 (the middle of which is still at x = 0) is at x = –2.5 

cm, so that at the moment they touch the right edge of block 1 is at x = –2.5 cm and thus 

the middle of block 1 is at x = –5.5 cm.  Putting these positions (for the middles) and the 

block masses into Eq. 9-29 leads to xcom = –1.83 cm or  –0.018 m (at t = (1.445 m)/(0.75 

m/s) = 1.93 s). 

 

(c) We could figure where the blocks are at t = 4.0 s and use Eq. 9-29 again, but it is 

easier (and provides more insight) to note that in the absence of external forces on the 

system the center of mass should move at constant velocity: 

 

1 1 2 2
com

1 2

m v m v
v

m m





= 0.25 m/s i

^
  

 

as can be easily verified by putting in the values at t = 0.  Thus,  

 

xcom = xcom initial  +  comv t  =  (–0.50 m) +  (0.25 m/s)(4.0 s)  =  +0.50 m . 

 

120. One approach is to choose a moving coordinate system that travels the center of 

mass of the body, and another is to do a little extra algebra analyzing it in the original 

coordinate system (in which the speed of the m = 8.0 kg mass is v0 = 2 m/s, as given). 

Our solution is in terms of the latter approach since we are assuming that this is the 

approach most students would take. Conservation of linear momentum (along the 

direction of motion) requires 

 

 0 1 1 2 2 1 2(8.0)(2.0) (4.0) (4.0)mv m v m v v v      

 

which leads to v v2 14   in SI units (m/s). We require 
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 2 2 2 2 2 2

1 1 2 2 0 1 2

1 1 1 1 1 1
16 (4.0) (4.0) (8.0) (2.0)

2 2 2 2 2 2
K m v m v mv v v

   
          

   
 

 

which simplifies to v v2

2

1

216   in SI units. If we substitute for v2 from above, we find 

 

( )4 161

2

1

2  v v  

 

which simplifies to 2 8 01

2

1v v  , and yields either v1 = 0 or v1 = 4 m/s. If v1 = 0 then v2 = 

4 – v1 = 4 m/s, and if v1 = 4 m/s then v2 = 0.  

 

(a) Since the forward part continues to move in the original direction of motion, the speed 

of the rear part must be zero.  

 

(b) The forward part has a velocity of 4.0 m/s along the original direction of motion. 

 

121. We use m1 for the mass of the electron and m2 = 1840m1 for the mass of the 

hydrogen atom. Using Eq. 9-68, 

v
m

m m
v vf i i2

1

1 1

1 1

2

1840

2

1841



  

 

we compute the final kinetic energy of the hydrogen atom: 

 

K m
v

m vf
i

i2 1
1

2

2 1 1

21

2
1840

2

1841

1840 4

1841

1

2
1840

F
HG
I
KJ 

F
HG

I
KJb g b g( ) ( )

 

 

so we find the fraction to be 1840 4 1841 2 2 102 3b gb g   . ,  or 0.22%. 

 

122. Denoting the new speed of the car as v, then the new speed of the man relative to the 

ground is v – vrel. Conservation of momentum requires 

 

W

g

w

g
v

W

g
v

w

g
v v

F
HG
I
KJ 
F
HG
I
KJ 
F
HG
I
KJ 0 relb g.  

 

Consequently, the change of velocity is 

 

rel
0

(915 N)(4.00 m/s)
1.10 m/s.

(2415 N) (915 N)

w v
v v v

W w
     

 
 

 

123. Conservation of linear momentum gives .J f J fmv MV mv MV    Similarly, the 

total kinetic energy is conserved: 
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2 2 2 21 1 1 1

2 2 2 2
J f J fmv MV mv MV   . 

 

Solving for fv and J fV , we obtain: 

 

1

2 2
,f J J f J

m M M m M m
v v V V v V

m M m M m M m M

 
   

   
 

Since ,m M  the above expressions can be simplified to  

 

1 2 ,f J J f Jv v V V V     

 

The velocity of the probe relative to the Sun is 

 

1 2 (10.5 km/s) 2( 13.0 km/s) 36.5 km/sf Jv v V         . 

 

The speed is 1| | 36.5 km/s.fv   

 

124. (a) The change in momentum (taking upwards to be the positive direction) is 

 

 p 


  =  (0.550 kg)[ (3 m/s)j
^
 – (–12 m/s)j

^
 ] =  (+8.25 kg

.
m/s) j

^
 . 

 

(b) By the impulse-momentum theorem (Eq. 9-31) J  


 =  p 


 =  (+8.25 N
.
s) j

^
 . 

 

(c) By Newton’s third law, Jc  
  

 =  – Jb  
  

 = (–8.25 N
.
s) j

^
 . 

 

125. (a) Since the initial momentum is zero, then the final momenta must add (in the 

vector sense) to 0. Therefore, with SI units understood, we have  

 

      
 

3 1 2 1 1 2 2

27 6 27 6

19 19

ˆ ˆ16.7 10 6.00 10 i 8.35 10 8.00 10 j

ˆ ˆ1.00 10 i 0.67 10 j kg m/s.

p p p m v m v

 

 

     

       

     

 

 

(b) Dividing by m3 = 11.7  10
– 27

 kg and using the Pythagorean theorem we find the 

speed of the third particle to be v3 = 1.03  10
7
 m/s. The total amount of kinetic energy is  

 

1

2

1

2

1

2
119 101 1

2

2 2

2

3 3

2 12m v m v m v    . .J  

 

126. Using Eq. 9-67, we have after the elastic collision 
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v1 f  = 
m1  m2

m1+ m2

 v1i = 
200 g

600 g
 v1i = 

1

3
 (3.00 m/s) = 1.00 m/s . 

 

(a) The impulse is therefore  

 

J = m1v1 f  – m1v1i = (0.200 kg)(–1.00 m/s) – (0.200 kg)(3.00 m/s) = – 0.800 N
.
s  

            = – 0.800 kg
.
m/s,  

 

or | J | = –0.800 kg
.
m/s. 

 

(b) For the completely inelastic collision Eq. 9-75 applies  

 

v1 f  = V = 
m1

m1+ m2

 v1i = + 1.00 m/s . 

Now the impulse is   

 

J = m1v1 f  – m1v1i = (0.200 kg)(1.00 m/s ) – (0.200 kg)(3.00 m/s) = 0.400 N
.
s  

              = 0.400 kg
.
m/s. 

 

127. We use Eq. 9-88 and simplify with vf – vi = v, and vrel = u. 

 

 
rel ln

f v ui
f i

f i

MM
v v v e

M M


 

     
 

 

 

If  v = 2.2 m/s and u = 1000 m/s, we obtain 
M M

M
e

i f

i


  1 0 00220 0022. . .  

 

128. Using the linear momentum-impulse theorem, we have  

 

 avg ( )f iJ F t p m v v      . 

 

where m is the mass, vi the initial velocity, and vf  the final velocity of the ball. With 

0iv  , we obtain  

3
avg (32 N)(14 10 s)

2.24m s.
0.20kg

f

F t
v

m

 
    
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Chapter 10 
 

 

1. The problem asks us to assume vcom
and  are constant. For consistency of units, we 

write 

vcom mi h
ft mi

60min h
ft min

F
HG

I
KJ 85

5280
7480b g .  

 

Thus, withx  60ft , the time of flight is 

 

com (60 ft) /(7480 ft/min) 0.00802mint x v    . 

 

During that time, the angular displacement of a point on the ball’s surface is 

 

   t 1800 000802 14rev min rev .b gb g. min
 

 

2. (a) The second hand of the smoothly running watch turns through 2 radians during 

60 s . Thus, 

 
2

0.105 rad/s.
60


    

 

(b) The minute hand of the smoothly running watch turns through 2 radians during 

3600 s . Thus, 

    2

3600
175 10 3
.  rad / s.  

 

(c) The hour hand of the smoothly running 12-hour watch turns through 2 radians 

during 43200 s. Thus, 

    2

43200
145 10 4
.  rad / s.  

 

3. The falling is the type of constant-acceleration motion you had in Chapter 2. The time 

it takes for the buttered toast to hit the floor is 

 

 
2

2 2(0.76 m)
0.394 s.

9.8 m/s

h
t

g
     

 

(a) The smallest angle turned for the toast to land butter-side down is 

min 0.25 rev / 2 rad.     This corresponds to an angular speed of  

 



   CHAPTER 10 478 

min
min

/ 2 rad
4.0 rad/s.

0.394 st

 



  


 

 

(b) The largest angle (less than 1 revolution) turned for the toast to land butter-side down 

is max 0.75 rev 3 / 2 rad.     This corresponds to an angular speed of  

 

max
max

3 / 2 rad
12.0 rad/s.

0.394 st

 



  


 

 

4. If we make the units explicit, the function is 

 

    2 2 3 32.0 rad 4.0 rad/s 2.0 rad/st t     

 

but in some places we will proceed as indicated in the problem—by letting these units be 

understood. 

 

(a) We evaluate the function  at t = 0 to obtain 0 = 2.0 rad. 

 

(b) The angular velocity as a function of time is given by Eq. 10-6: 

 

    2 3 28.0 rad/s 6.0 rad/s
d

t t
dt


     

 

which we evaluate at t = 0 to obtain 0 = 0. 

 

(c) For t = 4.0 s, the function found in the previous part is  

 

4 = (8.0)(4.0) + (6.0)(4.0)
2
 = 128 rad/s. 

 

If we round this to two figures, we obtain 4  1.310
2
 rad/s. 

 

(d) The angular acceleration as a function of time is given by Eq. 10-8: 

 

  2 38.0 rad/s 12 rad/s
d

t
dt


     

 

which yields 2 = 8.0 + (12)(2.0) = 32 rad/s
2
 at t = 2.0 s. 

 

(e) The angular acceleration, given by the function obtained in the previous part, depends 

on time; it is not constant. 

 

5. Applying Eq. 2-15 to the vertical axis (with +y downward) we obtain the free-fall time: 
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2

0 2

1 2(10 m)
1.4 s.

2 9.8 m/s
yy v t gt t       

 

Thus, by Eq. 10-5, the magnitude of the average angular velocity is 

 

avg

(2.5 rev) (2  rad/rev)
11 rad/s.

1.4 s


    

 

6. If we make the units explicit, the function is 

 

   4 0 30 10 3. . . rad / s  rad / s  rad / s2 2 3b g c h c ht t t  

 

but generally we will proceed as shown in the problem—letting these units be understood. 

Also, in our manipulations we will generally not display the coefficients with their proper 

number of significant figures. 

 

(a) Equation 10-6 leads to 

      
d

dt
t t t t t4 3 4 6 32 3 2c h .  

 

Evaluating this at t = 2 s yields 2 = 4.0 rad/s. 

 

(b) Evaluating the expression in part (a) at t = 4 s gives 4 = 28 rad/s. 

 

(c) Consequently, Eq. 10-7 gives 

 


 

avg

2 rad / s



4 2

4 2
12 .  

(d) And Eq. 10-8 gives 

 




      
d

dt

d

dt
t t t4 6 3 6 62 .c h  

 

Evaluating this at t = 2 s produces 2 = 6.0 rad/s
2
. 

 

(e) Evaluating the expression in part (d) at t = 4 s yields 4 = 18 rad/s
2
. We note that our 

answer for avg does turn out to be the arithmetic average of 2 and 4 but point out that 

this will not always be the case. 

 

7. (a) To avoid touching the spokes, the arrow must go through the wheel in not more 

than 

t  
1 8

0 050
/

.
 rev

2.5 rev / s
 s.  
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The minimum speed of the arrow is then vmin .  
20

400 4 0
 cm

0.050 s
 cm / s  m / s.  

 

(b) No—there is no dependence on radial position in the above computation. 

 

8. (a) We integrate (with respect to time) the 6.0t
4
 – 4.0t

2
 expression, taking into 

account that the initial angular velocity is 2.0 rad/s.  The result is  

 

1.2 t
5
 – 1.33 t

3
 + 2.0. 

 

(b) Integrating again (and keeping in mind that o = 1) we get  



0.20t
6
 – 0.33 t

4
 + 2.0 t + 1.0 . 

 

9. (a) With  = 0 and  = – 4.2 rad/s
2
, Eq. 10-12 yields t = –o/ = 3.00 s. 

 

(b) Eq. 10-4 gives  o = o
2 

/ 218.9 rad. 

 

10. We assume the sense of rotation is positive, which (since it starts from rest) means all 

quantities (angular displacements, accelerations, etc.) are positive-valued. 

 

(a) The angular acceleration satisfies Eq. 10-13: 

 

 2 21
25 rad (5.0 s) 2.0 rad/s .

2
     

 

(b) The average angular velocity is given by Eq. 10-5: 

 




avg

 rad

5.0 s
 rad / s.  



t

25
50.  

 

(c) Using Eq. 10-12, the instantaneous angular velocity at t = 5.0 s is 

 

 22.0 rad/s (5.0 s) 10 rad/s .    

 

(d) According to Eq. 10-13, the angular displacement at t = 10 s is 

 

2 2 2

0

1 1
0 (2.0 rad/s ) (10 s) 100 rad.

2 2
t        

 

Thus, the displacement between t = 5 s and t = 10 s is  = 100 rad – 25 rad = 75 rad. 
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11. We assume the sense of initial rotation is positive. Then, with 0 = +120 rad/s and  

= 0 (since it stops at time t), our angular acceleration (‘‘deceleration’’) will be negative-

valued:  = – 4.0 rad/s
2
. 

 

(a) We apply Eq. 10-12 to obtain t. 

 

 
0 2

0 120 rad/s
30 s.

4.0 rad/s
t t  


    


 

(b) And Eq. 10-15 gives 

 

3

0

1 1
( ) (120 rad/s 0)(30 s) 1.8 10  rad.

2 2
t         

 

Alternatively, Eq. 10-14 could be used if it is desired to only use the given information 

(as opposed to using the result from part (a)) in obtaining . If using the result of part (a) 

is acceptable, then any angular equation in Table 10-1 (except Eq. 10-12) can be used to 

find . 

 

12. (a) We assume the sense of rotation is positive. Applying Eq. 10-12, we obtain 

 

 3 2

0

(3000 1200) rev/min
9.0 10  rev/min .

(12 / 60) min
t   


       

(b) And Eq. 10-15 gives 

 

0

1 1 12
( ) (1200 rev/min 3000 rev/min)  min

2 2 60
t  

 
     

 
= 24.2 10  rev. 

 

13. The wheel has angular velocity 0 = +1.5 rad/s = +0.239 rev/s at t = 0, and has 

constant value of angular acceleration  < 0, which indicates our choice for positive 

sense of rotation. At t1 its angular displacement (relative to its orientation at t = 0) is 1 = 

+20 rev, and at t2 its angular displacement is 2 = +40 rev and its angular velocity is 

2 0  . 

 

(a) We obtain t2 using Eq. 10-15: 

 

 2 0 2 2 2

1 2(40 rev)
335 s

2 0.239 rev/s
t t        

 

which we round off to 2

2 3.4 10  st   . 

  

(b) Any equation in Table 10-1 involving  can be used to find the angular acceleration; 

we select Eq. 10-16. 
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2 4 2

2 2 2 2 2

1 2(40 rev)
7.12 10  rev/s

2 (335 s)
t t             

 

which we convert to  = – 4.5  10
–3

 rad/s
2
. 

 

(c) Using   1 0 1
1
2 1

2 t t  (Eq. 10-13) and the quadratic formula, we have 

 
2 2 4 2

0 0 1

1 4 2

2 (0.239 rev/s) (0.239 rev/s) 2(20 rev)( 7.12 10  rev/s )

7.12 10  rev/s
t

  







       
 

 
 

 

which yields two positive roots: 98 s and 572 s. Since the question makes sense only if t1 

< t2 we conclude the correct result is t1 = 98 s. 

 

14. The wheel starts turning from rest (0 = 0) at t = 0, and accelerates uniformly at  > 0, 

which makes our choice for positive sense of rotation. At t1 its angular velocity is 1 = 

+10 rev/s, and at t2 its angular velocity is 2 = +15 rev/s. Between t1 and t2 it turns 

through  = 60 rev, where t2 – t1 = t. 

  

(a) We find  using Eq. 10-14: 

 
2 2

2 2 2

2 1

(15 rev/s) (10 rev/s)
2 1.04 rev/s

2(60 rev)
    


       

 

which we round off to 1.0 rev/s
2
. 

 

(b) We find t using Eq. 10-15:  1 2

1 2(60 rev)
4.8 s.

2 10 rev/s 15 rev/s
t t        


 

 

(c) We obtain t1 using Eq. 10-12: 
1 0 1 1 2

10 rev/s
9.6 s.

1.04 rev/s
t t        

 

(d) Any equation in Table 10-1 involving  can be used to find 1 (the angular 

displacement during 0  t  t1); we select Eq. 10-14. 

 
2

2 2

1 0 1 1 2

(10 rev/s)
2 48 rev.

2(1.04 rev/s )
         

 

15. THINK We have a wheel rotating with constant angular acceleration. We can apply 

the equations given in Table 10-1 to analyze the motion.  

 

EXPRESS Since the wheel starts from rest, its angular displacement as a function of 

time is given by 21
2

t  . We take 1t  to be the start time of the interval so that 

2 1 4.0 st t  . The corresponding angular displacements at these times are 
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2 2

1 1 2 2

1 1
,

2 2
t t      

 

Given 
2 1     , we can solve for 

1t , which tells us how long the wheel has been in 

motion up to the beginning of the 4.0 s-interval.  

 

ANALYZE The above expressions can be combined to give 

 2 2

2 1 2 1 2 1 2 1

1 1
( )( )

2 2
t t t t t t             

 

With 120 rad  , 23.0 rad/s  , and 
2 1 4.0 st t  , we obtain  

 

2 1 2

2 1

2( ) 2(120 rad)
20 s

( ) (3.0 rad/s )(4.0 s)
t t

t t






   


, 

 

which can be further solved to give 2 12.0 st   and 1 8.0 st  . So, the wheel started from 

rest 8.0 s before the start of the described 4.0 s interval. 

 

LEARN We can readily verify the results by calculating 1  and 2  explicitly: 

 

2 2 2

1 1

2 2 2

2 2

1 1
(3.0 rad/s )(8.0 s) 96 rad

2 2
1 1

(3.0 rad/s )(12.0 s) 216 rad.
2 2

t

t

 

 

  

  

 

 

Indeed the difference is 2 1 120 rad      . 

 

16. (a) Eq. 10-13 gives 

 o = o t  +  
1

2
 t

2
  =  0  + 

1

2
 (1.5 rad/s²) t1

2
 

 

where  o = (2 rev)(2  rad/rev).  Therefore, t1 = 4.09 s.  

 

(b) We can find the time to go through a full 4 rev (using the same equation to solve for a 

new time t2) and then subtract the result of part (a) for t1 in order to find this answer. 

 

(4 rev)(2  rad/rev)  =  0  + 
1

2
 (1.5 rad/s²) t2

2
           t2  = 5.789 s. 

 

Thus, the answer is 5.789 s – 4.093 s  1.70 s.  

 

17. The problem has (implicitly) specified the positive sense of rotation. The angular 

acceleration of magnitude 0.25 rad/s
2
 in the negative direction is assumed to be constant 

over a large time interval, including negative values (for t). 
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(a) We specify max with the condition  = 0 (this is when the wheel reverses from  

positive rotation to rotation in the negative direction). We obtain max using Eq. 10-14: 

 
2 2

o
max 2

(4.7 rad/s)
44 rad.

2 2( 0.25 rad/s )





    


 

 

(b) We find values for t1 when the angular displacement (relative to its orientation at t = 0) 

is 1 = 22 rad (or 22.09 rad if we wish to keep track of accurate values in all intermediate 

steps and only round off on the final answers). Using Eq. 10-13 and the quadratic formula, 

we have 
2

o o 12

1 o 1 1 1

21

2
t t t

   
  



  
     

 

which yields the two roots 5.5 s and 32 s. Thus, the first time the reference line will be at 

1 = 22 rad is t = 5.5 s.  

 

(c) The second time the reference line will be at 1 = 22 rad is t = 32 s.  

 

(d) We find values for t2 when the angular displacement (relative to its orientation at t = 0) 

is 2 = –10.5 rad. Using Eq. 10-13 and the quadratic formula, we have 

 
2

o o 22

2 o 2 2 2

21

2
t t t

   
  



  
     

 

which yields the two roots –2.1 s and 40 s. Thus, at t = –2.1 s the reference line will be at 

2 = –10.5 rad.  

 

(e) At t = 40 s the reference line will be at 2 = –10.5 rad.  

 

(f) With radians and seconds understood, the graph of  versus t is shown below (with the 

points found in the previous parts indicated as small dots). 
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18. (a) A complete revolution is an angular displacement of  = 2 rad, so the angular 

velocity in rad/s is given by  = /T = 2/T. The angular acceleration is given by 

 




  
d

dt T

dT

dt

2
2


.  

 

For the pulsar described in the problem, we have 

 

dT

dt





 


126 10

316 10
4 00 10

5

7

13.

.
. .

s / y

s / y
 

Therefore, 

  
F
HG

I
KJ     2

0 033
4 00 10 2 3 1013 9

( .
( . ) . .

s)
rad / s

2

2
 

 

The negative sign indicates that the angular acceleration is opposite the angular velocity 

and the pulsar is slowing down. 

 

(b) We solve  = 0 + t for the time t when  = 0: 

 

 10 30

9 2

2 2
8.3 10 s 2.6 10   years

( 2.3 10 rad/s )(0.033 s)
t

T

  

  
         

 
 

 

(c) The pulsar was born 1992–1054 = 938 years ago. This is equivalent to (938 y)(3.16  

10
7
 s/y) = 2.96  10

10
 s. Its angular velocity at that time was 

 

9 2 10

0

2 2
( 2.3 10 rad/s )( 2.96 10 s) 258 rad/s.

0.033 s
t t

T
     
            

 

Its period was 

T     2 2

258
2 4 10 2 

 rad / s
s..  

 

19. (a) Converting from hours to seconds, we find the angular velocity (assuming it is 

positive) from Eq. 10-18: 

 

  4

3

3

2.90 10 km/h 1.000 h / 3600 s
2.50 10 rad/s.

3.22 10 km

v

r
 


   


 

 

(b) The radial (or centripetal) acceleration is computed according to Eq. 10-23: 

 

a rr      2 3
2

62 50 10 322 10 20 2. . . .rad / s m m/ s2c h c h  
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(c) Assuming the angular velocity is constant, then the angular acceleration and the 

tangential acceleration vanish, since 

 




   
d

dt
a rt0 0and .  

 

20. The function    e t  where  = 0.40 rad and  = 2 s
–1

 is describing the angular 

coordinate of a line (which is marked in such a way that all points on it have the same 

value of angle at a given time) on the object. Taking derivatives with respect to time 

leads to d
dt

te   and d

dt

te
2

2

2  .  

 

(a) Using Eq. 10-22, we have a r
d

dt
rt   

2

2
6 4. .cm / s2  

 

(b) Using Eq. 10-23, we get a r
d

dt
rr  

F
HG
I
KJ 

2

2

2 6. .cm / s2  

 

21. We assume the given rate of 1.2  10
–3

 m/y is the linear speed of the top; it is also 

possible to interpret it as just the horizontal component of the linear speed but the 

difference between these interpretations is arguably negligible. Thus, Eq. 10-18 leads to 

 

 


 


12 10

55
218 10

3
5.

.
m / y

m
rad / y  

 

which we convert (since there are about 3.16  10
7
 s in a year) to  = 6.9  10

–13
 rad/s. 

 

22. (a) Using Eq. 10-6, the angular velocity at t = 5.0s is 

 




   
 

d

dt

d

dt
t

t t5 0

2

5 0

0 30 2 0 30 50 30
. .

. ( . )( . ) .c h rad / s.  

 

(b) Equation 10-18 gives the linear speed at t = 5.0s: (3.0 rad/s)(10 m) 30 m/s.v r    

  

(c) The angular acceleration is, from Eq. 10-8, 

 




  
d

dt

d

dt
t( . ) . .0 60 0 60 rad / s2

 
 

Then, the tangential acceleration at t = 5.0s is, using Eq. 10-22, 

 

a rt    ( . .10 6 0m) 0.60 rad / s m/ s2 2c h  

 



 

  

487 

(d) The radial (centripetal) acceleration is given by Eq. 10-23: 

 

a rr    2 2
30 10 90. .rad / s m m/ s2b g b g  

 

23. THINK A positive angular acceleration is required in order to increase the angular 

speed of the flywheel.   

 

EXPRESS The linear speed of the flywheel is related to its angular speed by v r , 

where r is the radius of the wheel. As the wheel is accelerated, its angular speed at a later 

time is 0 t    . 

 

ANALYZE (a) The angular speed of the wheel, expressed in rad/s, is 

 

0

(200 rev/min)(2 rad/rev)
20.9 rad/s.

60 s / min



   

 

(b) With r = (1.20 m)/2 = 0.60 m, using Eq. 10-18, we find the linear speed to be 

 

0 (0.60 m)(20.9 rad/s) 12.5 m/s.v r    

 

(c) With t = 1 min,  = 1000 rev/min and 0 = 200 rev/min, Eq. 10-12 gives the required 

acceleration: 

20 800 rev / min .
t

 



   

 

(d) With the same values used in part (c), Eq. 10-15 becomes 

 

 0

1 1
(200 rev/min 1000 rev/min)(1.0 min) 600 rev.

2 2
t        

 

LEARN An alternative way to solve for (d) is to use Eq. 10-13: 

 

2 2 2

0 0

1 1
0 (200 rev/min)(1.0 min) (800 rev/min )(1.0 min) 600 rev.

2 2
t t           

 

24. Converting 33
1

3
  rev/min to radians-per-second, we get  = 3.49 rad/s. Combining 

v r (Eq. 10-18) with t = d/v wheret is the time between bumps (a distance d apart), 

we arrive at the rate of striking bumps: 

 
1

199 / s
r

t d


 


. 

 

25. THINK The linear speed of a point on Earth’s surface depends on its distance from 

the Earth’s axis of rotation.   



   CHAPTER 10 488 

 

EXPRESS To solve for the linear speed, we use v = r, where r is the radius of its orbit. 

A point on Earth at a latitude of 40° moves along a circular path of radius r = R cos40°, 

where R is the radius of Earth (6.4  10
6
 m). On the other hand, r = R at the equator. 

 

ANALYZE (a) Earth makes one rotation per day and 1 d is (24 h) (3600 s/h) = 8.64  

10
4
 s, so the angular speed of Earth is 

5

4

2 rad
7.3 10 rad/s.

8.64 10 s
 
  


 

 

(b) At latitude of 40°, the linear speed is   

 
5 6 2( cos 40 ) (7.3 10 rad/s)(6.4 10 m)cos40 3.5 10 m/s.v R          

 

(c) At the equator (and all other points on Earth) the value of  is the same (7.3  10
–5

 

rad/s). 

 

(d) The latitude at the equator is 0° and the speed is 

 
5 6 2(7.3 10 rad/s)(6.4 10 m) 4.6 10 m/s.v R        

 

LEARN The linear speed at the poles is zero since cos90 0r R   . 

 

26. (a) The angular acceleration is 

 




 


 


t

0 150

2 2
114

 rev / min

 h)(60 min /1h)
 rev / min2

( .
. .  

 

(b) Using Eq. 10-13 with t = (2.2) (60) = 132 min, the number of revolutions is 

 

  
22 2 3

0

1 1
(150 rev/min)(132 min) 1.14 rev/min 132min 9.9 10 rev.

2 2
t t          

 

(c) With r = 500 mm, the tangential acceleration is 

 

a rt   
F
HG
I
KJ
F
HG
I
KJ 114

2

. rev / min
2 rad

1 rev

1 min

60 s
(500 mm)2c h 

 

 

which yields at = –0.99 mm/s
2
. 

 

(d) The angular speed of the flywheel is  

 

(75 rev/min)(2 rad/rev)(1 min/ 60 s) 7.85 rad/s.     
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With r = 0.50 m, the radial (or centripetal) acceleration is given by Eq. 10-23: 

 
2 2 2(7.85 rad/s) (0.50 m) 31m/sra r    

 

which is much bigger than at. Consequently, the magnitude of the acceleration is 

 

| | .

a a a ar t r   2 2 31 m/ s2  

 

27. (a) The angular speed in rad/s is 

 

 
F
HG

I
KJ
F
HG

I
KJ 33

1

3

2

60
349rev / min

rad / rev

s / min
rad / s.


.  

 

Consequently, the radial (centripetal) acceleration is (using Eq. 10-23) 

 

a r    2 2 2349 6 0 10. ( . .rad / s m) 0.73 m/ s2b g  

 

(b) Using Ch. 6 methods, we have ma = fs   fs,max = s mg, which is used to obtain the 

(minimum allowable) coefficient of friction: 

 

 s

a

g
,min

.

.
. .  

0 73

9 8
0 075  

 

(c) The radial acceleration of the object is ar = 2
r, while the tangential acceleration is at 

= r. Thus, 

| | ( ) ( ) .

a a a r r rr t     2 2 2 2 2 4 2     

 

If the object is not to slip at any time, we require 

 

f mg ma mrs s,max max max .     4 2
 

 

Thus, since  = t (from Eq. 10-12), we find 

 
4 2 4 2 4 2

max max max

,min

( / ) (0.060) 3.49 (3.4 / 0.25)
0.11.

9.8
s

r r t

g g

   


  
   

 

 

28. Since the belt does not slip, a point on the rim of wheel C has the same tangential 

acceleration as a point on the rim of wheel A. This means that ArA = CrC, where A is 

the angular acceleration of wheel A and C is the angular acceleration of wheel C. Thus, 
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 C
A

C

C

r

r

F
HG
I
KJ 
F
HG
I
KJ 

10

25
16 0 64

cm

cm
rad / s rad / s2 2( . ) . .  

 

With the angular speed of wheel C given by 
C Ct  , the time for it to reach an angular 

speed of  = 100 rev/min = 10.5 rad/s starting from rest is 

 

t C

C

  




105

0 64
16

.

.

rad / s

rad / s
s.

2
 

 

29. (a) In the time light takes to go from the wheel to the mirror and back again, the 

wheel turns through an angle of  = 2/500 = 1.26  10
–2

 rad. That time is 

 

t
c

 


  2 2 500

2 998 10
334 10

8

6 (

.
.

m)

m / s
s  

 

so the angular velocity of the wheel is 

 




 



 



t

126 10

334 10
38 10

2

6

3.

.
.

rad

s
rad / s.  

 

(b) If r is the radius of the wheel, the linear speed of a point on its rim is 

 

   3 23.8 10 rad/s 0.050 m 1.9 10 m/s.v r      

 

30. (a) The tangential acceleration, using Eq. 10-22, is 

 

a rt    14 2 2 83. ( . .rad / s cm) 40.2 cm/ s2 2c h  

 

(b) In rad/s, the angular velocity is  = (2760)(2/60) = 289 rad/s, so 

 

a rr     2 289 00283( ( . .rad / s) m) 2.36 10 m/ s2 3 2  

 

(c) The angular displacement is, using Eq. 10-14, 

 
2 2

3

2

(289 rad/s)
2.94 10 rad.

2 2(14.2 rad/s )





     

 

Then, using Eq. 10-1, the distance traveled is 

 

s r    ( .00283 m)(2.94 10 rad) 83.2 m.3  
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31. (a) The upper limit for centripetal acceleration (same as the radial acceleration – see 

Eq. 10-23) places an upper limit of the rate of spin (the angular velocity ) by 

considering a point at the rim (r = 0.25 m).  Thus, max = a/r  = 40 rad/s. Now we apply 

Eq. 10-15 to first half of the motion (where o = 0): 

 

 o =  
1

2
 (o + )t      400 rad  =  

1

2
 (0 + 40 rad/s)t 

 

which leads to t = 20 s.  The second half of the motion takes the same amount of time 

(the process is essentially the reverse of the first); the total time is therefore 40 s. 

 

(b) Considering the first half of the motion again, Eq. 10-11 leads to 

 

 = o + t          =   
40 rad/s

20 s
    =  2.0 rad/s

2 
. 

 

32. (a) The linear speed at  t = 15.0 s is 

 

v a tt  0.500m s s m s
2

150 7 50d i b g. . .  

 

 The radial (centripetal) acceleration at that moment is 

 

a
v

r
r   

2 2
7 50

30 0

.

.
.

m s

m
1.875m s2b g

 

Thus, the net acceleration has magnitude: 

 

a a at r    2 2
2 2

0500 1875 194. . . .m s m s m s2 2 2c h c h  

 

 (b) We note that 
 
a vt || . Therefore, the angle between 


v  and 


a  is 

 

tan tan
.

.
. F

HG
I
KJ 

F
HG
I
KJ  1 1 1875

05
751

a

a

r

t

 

 

so that the vector is pointing more toward the center of the track than in the direction of 

motion. 

 

33. THINK We want to calculate the rotational inertia of a wheel, given its rotational 

energy and rotational speed. 

 

 EXPRESS The kinetic energy (in J) is given by K I 1
2

2 ,  where I is the rotational 

inertia (in kg m2 ) and  is the angular velocity (in rad/s).  
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ANALYZE Expressing the angular speed as  

 

(602 rev/min)(2 rad/rev)
63.0 rad/s,

60 s/min



 

 
 

we find the rotational inertia to be I
K

   
2 2 24400

630
12 3

2

(

( .
. .

J)

rad / s)
kg m

2

2  

 

LEARN Note the analogy between rotational kinetic energy 21
2

I  and 21
2

,mv  the 

kinetic energy associated with linear motion.  

 

34. (a) Equation 10-12 implies that the angular acceleration should be the slope of the 

 vs t graph.  Thus, = 9/6 = 1.5 rad/s
2
. 

 

(b) By Eq. 10-34, K is proportional to 2
.  Since the angular velocity at t = 0 is –2 rad/s 

(and this value squared is 4) and the angular velocity at t = 4 s is 4 rad/s (and this value 

squared is 16), then the ratio of the corresponding kinetic energies must be 

 
Ko

 K4
  =  

4

16
       Ko  = K4/4  =  0.40 J . 

 

35. THINK The rotational inertia of a rigid body depends on how its mass is distributed.  

 

EXPRESS Since the rotational inertia of a cylinder is I MR 1
2

2  (Table 10-2(c)), its 

rotational kinetic energy is 

2 2 21 1
.

2 4
K I MR    

 

ANALYZE (a) For the smaller cylinder, we have 

2 2 3

1

1
(1.25 kg)(0.25 m) (235 rad/s) 1.08 10 J.

4
K     

 

(b) For the larger cylinder, we obtain  

 

2 2 3

2

1
(1.25 kg)(0.75 m) (235 rad/s) 9.71 10 J.

4
K     

 

LEARN The ratio of the rotational kinetic energies of the two cylinders having the same 

mass and angular speed is 
2 2

22 2

1 1

0.75 m
(3) 9.

0.25 m

K R

K R

   
      

  
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36. The parallel axis theorem (Eq. 10-36) shows that I increases with h.  The phrase “out 

to the edge of the disk” (in the problem statement) implies that the maximum h in the 

graph is, in fact, the radius R of the disk.  Thus, R = 0.20 m.  Now we can examine, say, 

the h = 0 datum and use the formula for Icom (see Table 10-2(c)) for a solid disk, or 

(which might be a little better, since this is independent of whether it is really a solid disk) 

we can the difference between the h = 0 datum and the h = hmax =R datum and relate that 

difference to the parallel axis theorem (thus the difference is M(hmax)
2  

= 0.10 2kg m ).  In 

either case, we arrive at M = 2.5 kg. 

 

37. THINK We want to calculate the rotational inertia of a meter stick about an axis 

perpendicular to the stick but not through its center.  

 

EXPRESS We use the parallel-axis theorem: I = Icom + Mh
2
, where Icom is the rotational 

inertia about the center of mass (see Table 10-2(d)), M is the mass, and h is the distance 

between the center of mass and the chosen rotation axis. The center of mass is at the 

center of the meter stick, which implies h = 0.50 m – 0.20 m = 0.30 m.  

 

ANALYZE With 0.56 kgM   and 1.0 m,L   we have 

 

I MLcom

2kg m kg m    1

12

1

12
056 10 4 67 102 2 2. . . .b gb g  

 

Consequently, the parallel-axis theorem yields 

 

I        4 67 10 056 0 30 9 7 102 2 2. . . . .kg m kg m kg m2 2b gb g  

 

LEARN A greater moment of inertia comI I  means that it is more difficult to rotate the 

meter stick about this axis than the case where the axis passes through the center.  

 

38. (a) Equation 10-33 gives  

Itotal = md
2
 + m(2d)

2
 + m(3d)

2
 = 14 md

2
. 

 

If the innermost one is removed then we would only obtain m(2d)
2
 + m(3d)

2
 = 13 md

2
.  

The percentage difference between these is (13 – 14)/14 = 0.0714  7.1%. 

 

(b) If, instead, the outermost particle is removed, we would have md
2
 + m(2d)

2
 = 5 md

2
.  

The percentage difference in this case is 0.643  64%. 

 

39. (a) Using Table 10-2(c) and Eq. 10-34, the rotational kinetic energy is 

 

2 2 2 2 2 71 1 1 1
(500kg)(200  rad/s) (1.0m) 4.9 10 J.

2 2 2 4
K I MR  

 
     

 
 

 

(b) We solve P = K/t (where P is the average power) for the operating time t. 
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t
K

P
 




 

4 9 10
6 2 10

7
3.

.
J

8.0 10 W
s

3
 

 

which we rewrite as t  1.0 ×10
2
 min. 

 

40. (a) Consider three of the disks (starting with the one at point O): OO .  The first one 

(the one at point O, shown here with the plus sign inside) has rotational inertial (see item 

(c)  in Table 10-2) I = 
1

2
 mR

2
.  The next one (using the parallel-axis theorem) has  

 

I = 
1

2
 mR

2
 + mh

2
 

 

where h = 2R. The third one has I = 
1

2
 mR

2
 + m(4R)

2
. If we had considered five of the 

disks  OOOO  with the one at O in the middle, then the total rotational inertia is  

 

I = 5(
1

2
 mR

2
) + 2(m(2R)

2
 + m(4R)

2
). 

 

The pattern is now clear and we can write down the total I for the collection of fifteen 

disks: 

I = 15(
1

2
 mR

2
) + 2(m(2R)

2
 + m(4R)

2 
+ m(6R)

2
+ … + m(14R)

2
) = 

2255

2
 mR

2
. 

 

The generalization to N disks (where N is assumed to be an odd number) is 

  

I =  
1

6
(2N

2
 + 1)NmR

2
. 

 

In terms of the total mass (m = M/15) and the total length (R = L/30), we obtain  

 

I = 0.083519ML
2
   (0.08352)(0.1000 kg)(1.0000 m)

2
 = 8.352 ×10

3
 kg‧m

2
. 

 

(b) Comparing to the formula (e) in Table 10-2 (which gives roughly I =0.08333 ML
2
), 

we find our answer to part (a) is 0.22% lower. 

 

41. The particles are treated “point-like” in the sense that Eq. 10-33 yields their rotational 

inertia, and the rotational inertia for the rods is figured using Table 10-2(e) and the 

parallel-axis theorem (Eq. 10-36). 

 

(a) With subscript 1 standing for the rod nearest the axis and 4 for the particle farthest 

from it, we have 
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2 2

2 2 2 2

1 2 3 4

2 2 2 2

2

1 1 1 3
(2 )

12 2 12 2

8 8
5 (1.2 kg)(0.056 m) +5(0.85 kg)(0.056 m)

3 3

=0.023 kg m .

I I I I I Md M d md Md M d m d

Md md

      
                        

  



 

 

(b) Using Eq. 10-34, we have 

 

2 2 2 2 2

3

1 4 5 4 5
(1.2 kg) (0.85 kg) (0.056 m) (0.30 rad/s)

2 3 2 3 2

1.1 10  J.

K I M m d 



   
       

   

 

 

 

42. (a) We apply Eq. 10-33: 

 

        
4

2 2 2 22 2 3 2

1

50 2.0 25 4.0 25 3.0 30 4.0 g cm 1.3 10  g cm .x i i

i

I m y


          
   

 

(b) For rotation about the y axis we obtain 

 

I m xy i i

i

       


 2

1

4
2 2 2 2 250 2 0 25 0 25 30 30 2 0 55 10. . . . .b g b g b g b g b g   g cm2  

 

(c) And about the z axis, we find (using the fact that the distance from the z axis is 

x y2 2 ) 

I m x y I Iz i i i x y

i

          


 2 2

1

4

c h 1.3 10 5.5 10 1.9 10  g cm3 2 2 2 .  

 

(d) Clearly, the answer to part (c) is A + B. 

 

43. THINK Since the rotation axis does not pass through the center of the block, we use 

the parallel-axis theorem to calculate the rotational inertia. 

 

EXPRESS According to Table 10-2(i), the rotational inertia of a uniform slab about an 

axis through the center and perpendicular to the large faces is given by 

I
M

a bcom  
12

2 2c h.  A parallel axis through the corner is a distance h a b / /2 2
2 2b g b g  

from the center. Therefore,  

     2 2 2 2 2 2 2

com .
12 4 3

M M M
I I Mh a b a b a b         

 

ANALYZE With 0.172 kg,M   3.5 cma   and 8.4 cm,b   we have 
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 2 2 2 2 4 20.172 kg
[(0.035 m) (0.084 m) ] 4.7 10  kg m .

3 3

M
I a b         

 

LEARN A greater moment of inertia comI I  means that it is more difficult to rotate the 

block about the axis through the corner than the case where the axis passes through the 

center.  

 

44. (a) We show the figure with its axis of rotation (the thin horizontal line). 

 

 
 

We note that each mass is  r = 1.0 m from the axis. Therefore, using Eq. 10-26, we obtain  

 
2 2 24 (0.50 kg) (1.0 m) 2.0 kg m .i iI m r     

 

(b) In this case, the two masses nearest the axis are r = 1.0 m away from it, but the two 

furthest from the axis are 2 2(1.0 m) (2.0 m)r    from it. Here, then, Eq. 10-33 leads to 

 

I mri i     2 2 22 050 10 2 050 50 6 0. . . . . . kg   m  kg   m  kg m2b g c h b g c h  

 

(c) Now, two masses are on the axis (with r = 0) and the other two are a distance 
2 2(1.0 m) (1.0 m)r    away. Now we obtain 22.0 kg m .I    

 

45. THINK Torque is the product of the force applied and the moment arm. When two 

torques act on a body, the net torque is their vector sum.     

 

EXPRESS We take a torque that tends to cause a counterclockwise rotation from rest to 

be positive and a torque tending to cause a clockwise rotation to be negative. Thus, a 

positive torque of magnitude r1 F1 sin 1 is associated with 

F1  and a negative torque of 

magnitude r2F2 sin 2 is associated with 

F2 . The net torque is consequently 

 

   r F r F1 1 1 2 2 2sin sin .  

 

ANALYZE Substituting the given values, we obtain 

 

 1 1 1 2 2 2sin sin (1.30 m)(4.20 N)sin 75 (2.15 m)(4.90 N)sin 60

3.85 N m.

r F r F      

  
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LEARN Since 0  , the body will rotate clockwise about the pivot point.  

 

46. The net torque is 

 

 

sin sin sin

(10)(8.0)sin135 (16)(4.0)sin 90 (19)(3.0)sin160

12 N m.

A B C A A A B B B C C CF r F r F r           

   

 

 

 

47. THINK In this problem we have a pendulum made up of a ball attached to a massless 

rod. There are two forces acting on the ball, the force of the rod and the force of gravity.  

 

EXPRESS No torque about the pivot point 

is associated with the force of the rod since 

that force is along the line from the pivot 

point to the ball. As can be seen from the 

diagram, the component of the force of 

gravity that is perpendicular to the rod is 

mg sin . If   is the length of the rod, then 

the torque associated with this force has 

magnitude  

sinmg  . 

  

ANALYZE With 0.75 kgm  , 1.25 m and  30   , we find the torque to be  

 

sinmg   (0.75)(9.8)(1.25)sin30  4.6 N m . 

 

LEARN The moment arm of the gravitational force mg is sin . Alternatively, we may 

say that  is the moment arm of sin ,mg   the tangential component of the gravitational 

force. Both interpretations lead to the same result: ( )( sin ) ( sin )( )mg mg    . 

 

48. We compute the torques using  = rF sin . 

 

(a) For 30    (0.152 m)(111 N)sin30 8.4 N ma     . 

 

(b) For 90   , (0.152 m)(111 N)sin90 17 N mb     . 

 

(c) For 180   , (0.152 m)(111N)sin180 0c    . 

 

49. THINK Since the angular velocity of the diver changes with time, there must be a 

non-vanishing angular acceleration.   
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EXPRESS To calculate the angular acceleration , we use the kinematic equation 

   0 t , where 0 is the initial angular velocity,  is the final angular velocity and t 

is the time. If I is the rotational inertia of the diver, then the magnitude of the torque 

acting on her is I  .  

 

ANALYZE (a) Using the values given, the angular acceleration is 

 


 










0

3

26 20

220 10
28 2

t

.
. .

rad / s

s
rad / s  

(b) Similarly, we find the magnitude of the torque on the diver to be 

 

      I 12 0 28 2 338 102 2. . .kg m rad / s N m.2c hc h  

 

LEARN A net toque results in an angular acceleration that changes angular velocity. The 

equation I   implies that the greater the rotational inertia I, the greater the torque 

required for a given angular acceleration . 

 

50. The rotational inertia is found from Eq. 10-45. 

 

I    




32 0

250
128

.

.
. kg m2  

 

51. (a) We use constant acceleration kinematics. If down is taken to be positive and a is 

the acceleration of the heavier block m2, then its coordinate is given by y at 1
2

2 , so 

 

a
y

t
    2 2 0 750

500
6 00 10

2 2

2 2( . )

( . )
. .

m

s
m / s  

 

Block 1 has an acceleration of  6.00  10
–2

 m/s
2
 upward. 

 

(b) Newton’s second law for block 2 is 
2 2 2m g T m a  , where m2 is its mass and T2 is the 

tension force on the block. Thus, 

 

 2 2 2

2 2( ) (0.500 kg) 9.8 m/s 6.00 10 m/s 4.87 N.T m g a        

 

(c) Newton’s second law for block 1 is 
1 1 1 ,m g T m a    where T1 is the tension force on 

the block. Thus, 

 

 2 2 2

1 1( ) (0.460 kg) 9.8 m/s 6.00 10 m/s 4.54 N.T m g a        

 

(d) Since the cord does not slip on the pulley, the tangential acceleration of a point on the 

rim of the pulley must be the same as the acceleration of the blocks, so  



 

  

499 

 

  









a

R

6 00 10

500 10
120

2 2

2

2.

.
. .

m / s

m
rad / s  

 

(e) The net torque acting on the pulley is 2 1( )T T R   . Equating this to I we solve for 

the rotational inertia: 

 

 
    2

2 1 2 2

2

4.87 N 4.54 N 5.00 10 m
1.38 10 kg m .

1.20 rad/s

T T R
I






 

      

 

52. According to the sign conventions used in the book, the magnitude of the net torque 

exerted on the cylinder of mass m and radius R is 

 

net 1 2 3 (6.0 N)(0.12 m) (4.0 N)(0.12 m) (2.0 N)(0.050 m) 71N m.F R F R F r          

 

(a) The resulting angular acceleration of the cylinder (with I MR 1
2

2  according to Table 

10-2(c)) is 

 2net

21
2

71N m
9.7 rad/s

(2.0kg)(0.12 m)I





   . 

 

(b) The direction is counterclockwise (which is the positive sense of rotation). 

 

53. Combining Eq. 10-45 (net= I ) with Eq. 10-38 gives RF2 – RF1 = I ,  where 

/ t  by Eq. 10-12 (with = 0). Using item (c) in Table 10-2 and solving for F2  we 

find 

F2 = 
2

MR

t


  + F1  =   

(0.02)(0.02)(250)

2(1.25)
   +  0.1 =  0.140 N. 

 

54. (a) In this case, the force is mg = (70 kg)(9.8 m/s
2
), and the “lever arm” (the 

perpendicular distance from point O to the line of action of the force) is 0.28 m.  Thus, 

the torque (in absolute value) is (70 kg)(9.8 m/s
2
)(0.28 m).  Since the moment-of-inertia 

is I = 65 2kg m , then Eq. 10-45 gives 3.0 rad/s
2
.  

 

(b) Now we have another contribution (1.4 m  300 N) to the net torque, so 

 

|net| = (70 kg)(9.8 m/s
2
)(0.28 m) + (1.4 m)(300 N) = (65 2kg m )



which leads to = 9.4 rad/s
2
. 

 

55. Combining Eq. 10-34 and Eq. 10-45, we have RF = I, where is given by /t 

(according to Eq. 10-12, since o = 0 in this case). We also use the fact that 
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I =  Iplate + Idisk 

 

where Idisk = 
1

2
 MR

2
  (item (c) in Table 10-2). Therefore,  

Iplate =  
RFt


  –  

1

2
 MR

2
  =  2.51  10

4
 2kg m . 

 

56. With counterclockwise positive, the angular acceleration  for both masses satisfies 

 

 2 2

1 2 1 2 ,mgL mgL I mL mL        

 

by combining Eq. 10-45 with Eq. 10-39 and Eq. 10-33. Therefore, using SI units, 

 

    2

1 2 2

2 2 2 2

1 2

9.8 m/s 0.20 m 0.80 m
8.65 rad/s

(0.20 m) (0.80 m)

g L L

L L



   

 
 

 

where the negative sign indicates the system starts turning in the clockwise sense. The 

magnitude of the acceleration vector involves no radial component (yet) since it is 

evaluated at t = 0 when the instantaneous velocity is zero. Thus, for the two masses, we 

apply Eq. 10-22: 

 

(a)   2

1 1| | 8.65 rad/s 0.20 m 1.7 m/s.a L    

 

(b)   2 2

2 2| | 8.65 rad/s 0.80 m 6.9 m/s .a L    

 

57. Since the force acts tangentially at r = 0.10 m, the angular acceleration (presumed 

positive) is 




  



 

I

Fr

I

t t
t t

05 0 3 010

10 10
50 30

2

3

2
. . .

.

c hb g
 

in SI units (rad/s
2
). 

 

(a) At t = 3 s, the above expression becomes  = 4.2 × 10
2
 rad/s

2
. 

 

(b) We integrate the above expression, noting that o = 0, to obtain the angular speed at t 

= 3 s: 

 
3

2 3 3 2

0
0

25 10 5.0 10 rad/s.dt t t       

 

58. (a) The speed of v of the mass m after it has descended d = 50 cm is given by v
2
 = 2ad 

(Eq. 2-16). Thus, using g = 980 cm/s
2
, we have 
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v ad
mg d

M m
 





 2

2(2

2

4(50)(980)(50)

2(50)
1.4 10  cm / s.2)

400
 

 

(b) The answer is still 1.4  10
2
 cm/s = 1.4 m/s, since it is independent of R. 

 

59. With  = (1800)(2/60) = 188.5 rad/s, we apply Eq. 10-55: 

 

 
74600 W

396 N m
188.5 rad/s

P       . 

 

60. (a) We apply Eq. 10-34: 

 

2 2 2 2 2

2 2

1 1 1 1

2 2 3 6

1
(0.42 kg)(0.75 m) (4.0 rad/s) 0.63 J.

6

K I mL mL  
 

   
 

 

 

 

(b) Simple conservation of mechanical energy leads to K = mgh. Consequently, the 

center of mass rises by 

 
2 2 2 2 2 2

2

(0.75 m) (4.0 rad/s)
0.153 m 0.15 m.

6 6 6(9.8 m/s )

K mL L
h

mg mg g

 
       

 

61. The initial angular speed is   = (280 rev/min)(2/60) = 29.3 rad/s.  

 

(a) Since the rotational inertia is (Table 10-2(a)) 2 2(32 kg)(1.2 m) 46.1 kg mI    , the 

work done is 

2 2 2 41 1
0 (46.1kg m )(29.3 rad/s) 1.98 10  J

2 2
W K I           . 

 

(b) The average power (in absolute value) is therefore 

 

| |
|

P
W

t
 


 

| 19.8 10
1.32 10  W.

3
3

 15
 

62. (a) Eq. 10-33 gives  

 

Itotal = md
2
 + m(2d)

2
 + m(3d)

2
 = 14 md

2
, 

 

where d = 0.020 m and m = 0.010 kg.  The work done is  

 

W = K = 
1

2
 If

 2
  –  

1

2
 Ii

2
, 
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where f  = 20 rad/s and i = 0.  This gives W = 11.2 mJ. 

 

(b) Now, f  = 40 rad/s and i = 20 rad/s, and we get W = 33.6 mJ. 

 

(c) In this case, f  = 60 rad/s and i = 40 rad/s.  This gives W = 56.0 mJ. 

 

(d) Equation 10-34 indicates that the slope should be 
1

2
 I.  Therefore, it should be  

 

7md
2 

= 2.80  10
5

 J
.
s

2
/ rad

2
. 

 

63. THINK As the meter stick falls by rotating about the axis passing through one end of 

the stick, its potential energy is converted into rotational kinetic energy. 

 

EXPRESS We use   to denote the length of the stick. The meter stick is initially at rest 

so its initial kinetic energy is zero. Since its center of mass is  / 2  from either end, its 

initial potential energy is 1
2

,gU mg  where m is its mass. Just before the stick hits the 

floor, its final potential energy is zero, and its final kinetic energy is 1
2

2I ,  where I is its 

rotational inertia about an axis passing through one end of the stick and  is the angular 

velocity. Conservation of energy yields 

 

1

2

2mg I
mg

I



  

1

2
  .  

 

The free end of the stick is a distance   from the rotation axis, so its speed as it hits the 

floor is (from Eq. 10-18) 

v
mg

I
 

3

.  

 

ANALYZE Using Table 10-2 and the parallel-axis theorem, the rotational inertial is 
21

3
,I m  so  

v g  3 3 9.8 m / s 1.00 m  5.42 m / s.2 c hb g  

 

LEARN The linear speed of a point on the meter stick depends on its distance from the 

axis of rotation. One may show that the speed of the center of mass is 

 

cm

1
( / 2) 3 .

2
v g   

 

64. (a) We use the parallel-axis theorem to find the rotational inertia: 

 

      
2 22 2 2 2

com

1 1
20 kg 0.10 m 20 kg 0.50 m 0.15 kg m .

2 2
I I Mh MR Mh         
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(b) Conservation of energy requires that Mgh I 1
2
 2 , where  is the angular speed of 

the cylinder as it passes through the lowest position. Therefore, 

 
2

2

2 2(20 kg)(9.8 m/s ) (0.050 m)
11 rad/s.

0.15 kg m

Mgh

I
   


 

 

65. (a) We use conservation of mechanical energy to find an expression for 2
 as a 

function of the angle  that the chimney makes with the vertical. The potential energy of 

the chimney is given by U = Mgh, where M is its mass and h is the altitude of its center 

of mass above the ground. When the chimney makes the angle  with the vertical, h = 

(H/2) cos . Initially the potential energy is Ui = Mg(H/2) and the kinetic energy is zero. 

The kinetic energy is 1
2

2I  when the chimney makes the angle  with the vertical, where 

I is its rotational inertia about its bottom edge. Conservation of energy then leads to 

 

MgH Mg H I MgH I/ ( / ) / ) (2 2 12    cos
1

2
( cos ).2     

 

The rotational inertia of the chimney about its base is I = MH
2
/3 (found using Table  

10-2(e) with the parallel axis theorem). Thus 

 
23 3(9.80 m/s )

(1 cos ) (1 cos35.0 ) 0.311 rad/s.
55.0 m

g

H
        

 

(b) The radial component of the acceleration of the chimney top is given by ar = H2
, so  

 

ar = 3g (1 – cos ) = 3 (9.80 m/s
2
)(1– cos 35.0  ) = 5.32 m/s

2
 . 

 

(c) The tangential component of the acceleration of the chimney top is given by at = H, 

where  is the angular acceleration. We are unable to use Table 10-1 since the 

acceleration is not uniform. Hence, we differentiate  



2
 = (3g/H)(1 – cos ) 

 

with respect to time, replacing d / dt with , and d / dt with , and obtain 

 

d

dt
g H g H


    

2

2   2 (3  sin (3 sin ./ ) / )  

Consequently,  
2

23(9.80 m/s )3
sin sin 35.0 8.43 m/s .

2 2

g
a H
t

       
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(d) The angle  at which at = g is the solution to 
3

2

g
g sin     .  Thus, sin  = 2/3 and we 

obtain  = 41.8°. 

 

66. From Table 10-2, the rotational inertia of the spherical shell is 2MR
2
/3, so the kinetic 

energy (after the object has descended distance h) is 

 

K MR I mv
F
HG

I
KJ  

1

2

2

3

1

2

1

2
sphere pulley

2 2 2 2  .  

 

Since it started from rest, then this energy must be equal (in the absence of friction) to the 

potential energy mgh with which the system started. We substitute v/r for the pulley’s 

angular speed and v/R for that of the sphere and solve for v. 

 

2

21 1
2 2 3

3 2

2
 

1 ( / ) (2 / 3 )

2(9.8)(0.82)
1.4 m/s.

1 3.0 10 /((0.60)(0.050) ) 2(4.5) / 3(0.60)

I M

r

mgh gh
v

m I mr M m



 
   

 
  

 

 

67. Using the parallel axis theorem and items (e) and (h) in Table 10-2, the rotational 

inertia is 

 

I  =  
1

12
 mL

2
 + m(L/2)

2
  +  

1

2
 mR

2
  + m(R + L)

2
  = 10.83mR

2
 , 

 

where L = 2R  has been used.  If we take the base of the rod to be at the coordinate origin 

(x = 0, y = 0) then the center of mass is at  

 

y = 
mL/2 + m(L + R)

m + m
  =  2R . 

 

Comparing the position shown in the textbook figure to its upside down (inverted) 

position shows that the change in center of mass position (in absolute value) is |y| = 4R.  

The corresponding loss in gravitational potential energy is converted into kinetic energy.  

Thus, 

                  K = (2m)g(4R)              
= 9.82 rad/s  

 

where Eq. 10-34 has been used. 

 

68. We choose ± directions such that the initial angular velocity is 0 = – 317 rad/s and 

the values for ,  and F are positive. 

 

(a) Combining Eq. 10-12 with Eq. 10-45 and Table 10-2(f) (and using the fact that  = 0) 

we arrive at the expression 
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
 


F
HG

I
KJ 
F
HG
I
KJ  

2

5

2

5

2 0

2

0MR
t

MR

t
.  

 

With t = 15.5 s, R = 0.226 m, and M = 1.65 kg, we obtain  = 0.689 N · m. 

 

(b) From Eq. 10-40, we find F =  /R = 3.05 N. 

 

(c) Using again the expression found in part (a), but this time with R = 0.854 m, we get 

9.84 N m   .  

 

(d) Now, F =  / R = 11.5 N. 

 

69. The volume of each disk is r
2
h where we are using h to denote the thickness (which 

equals 0.00500 m).  If we use R (which equals 0.0400 m) for the radius of the larger disk 

and r (which equals 0.0200 m) for the radius of the smaller one, then the mass of each is 

m = r
2
h and M = R

2
h where = 1400 kg/m

3
 is the given density.  We now use the 

parallel axis theorem as well as item (c) in Table 10-2 to obtain the rotation inertia of the 

two-disk assembly: 

 

   I = 
1

2
 MR

2
 +  

1

2
 mr

2
 + m(r + R)

2
 = h[ 

1

2
 R

4 
+ 

1

2
 r

4
 + r

2
(r + R)

2 
] = 6.16  10

5
 2kg m . 

 

70. The wheel starts turning from rest (0 = 0) at t = 0, and accelerates uniformly at 
22.00 rad/s  . Between t1 and t2 the wheel turns through  = 90.0 rad, where t2 – t1 = 

t = 3.00 s. We solve (b) first. 

 

(b) We use Eq. 10-13 (with a slight change in notation) to describe the motion for t1  t  

t2: 

  





   

 
    1

2

1

1

2 2
t t

t

t
( )  

 

which we plug into Eq. 10-12, set up to describe the motion during 0  t  t1: 

 

 1 0 1 1 1

90.0 (2.00)(3.00)
(2.00)

2 3.00 2

t
t t t

t

 
   

 
       


 

 

yielding t1 = 13.5 s. 

 

(a) Plugging into our expression for 1 (in previous part) we obtain 

 


 

1
2

90 0

300

2 00 300

2
27 0    







t

t .

.

( . )( . )
.  rad / s.  

 

71. THINK Since the string that connects the two blocks does not slip, the pulley rotates 

about its axel as the blocks move.   
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EXPRESS We choose positive coordinate directions (different choices for each item) so 

that each is accelerating positively, which will allow us to set a2 = a1 = R (for simplicity, 

we denote this as a). Thus, we choose rightward positive for m2 = M (the block on the 

table), downward positive for m1 = M (the block at the end of the string) and (somewhat 

unconventionally) clockwise for positive sense of disk rotation. This means that we 

interpret  given in the problem as a positive-valued quantity. Applying Newton’s second 

law to m1, m2 and (in the form of Eq. 10-45) to M, respectively, we arrive at the following 

three equations (where we allow for the possibility of friction f2 acting on m2): 

 

m g T m a

T f m a

T R T R I

1 1 1 1

2 2 2 2

1 2

 

 

  

 

 

ANALYZE (a) From Eq. 10-13 (with 0 = 0) we find the magnitude of the pulley’s 

angular acceleration to be 

 

2 2

0 2 2

1 2 2(0.130 rad)
31.4 rad/s .

2 (0.0910 s)
t t

t


          

 

(b) From the fact that a = R (noted above), the acceleration of the blocks is  

 

 2

2 2

2 2(0.024 m)(0.130 rad)
0.754 m/s .

(0.0910 s)

R
a

t


    

 

(c) From the first of the above equations, we find the string tension 1T  to be 

 

  2

1 1 1 2 2

2 2(0.024 m)(0.130 rad)
(6.20 kg) 9.80 m/s 56.1 N.

(0.0910 s)

R
T m g a M g

t

   
        

   

 

(d) From the last of the above equations, we obtain the second tension: 

 
4 2 2

2 1

(7.40 10 kg m )(31.4 rad/s )
56.1 N 55.1 N.

0.024 m

I
T T

R

  
      

 

LEARN The torque acting on the pulley is 1 2( )I T T R    . If the pulley becomes 

massless, then 0I   and we recover the expected result: 1 2.T T  

 

72. (a) Constant angular acceleration kinematics can be used to compute the angular 

acceleration . If 0 is the initial angular velocity and t is the time to come to rest, then 

00 t   , which gives 
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2 20 39.0 rev/s
1.22 rev/s 7.66 rad/s

32.0 st


          . 

 

(b) We use  = I, where  is the torque and I is the rotational inertia. The contribution of 

the rod to I is M2 12/  (Table 10-2(e)), where M is its mass and   is its length. The 

contribution of each ball is m  / ,2
2b g  where m is the mass of a ball. The total rotational 

inertia is 

I
M m

   
 2 2 2 2

12
2

4

6 40 120

12

106 120

2

. . . .kg m kg mb gb g b gb g
 

 

which yields I = 1.53 kg m2
. The torque, therefore, is 

 

      153 7 66 117. . .kg m rad / s N m.2 2c hc h  

 

(c) Since the system comes to rest the mechanical energy that is converted to thermal 

energy is simply the initial kinetic energy 

 

K Ii     
1

2

1

2
153 2 39 4 59 100

2 2 4 . .kg m rad / s J.2c h b gb gc h  

 

(d) We apply Eq. 10-13: 

 

      0

2 21

2
2 39 32 0

1

2
7 66 32 0t t b gb gc hb g c hb grad / s s rad / s s2. . .  

 

which yields 3920 rad or (dividing by 2) 624 rev for the value of angular displacement . 

 

(e) Only the mechanical energy that is converted to thermal energy can still be computed 

without additional information. It is 4.59  10
4
 J no matter how  varies with time, as 

long as the system comes to rest. 

 

73. The Hint given in the problem would make the computation in part (a) very 

straightforward (without doing the integration as we show here), but we present this 

further level of detail in case that hint is not obvious or — simply — in case one wishes 

to see how the calculus supports our intuition. 

 

(a) The (centripetal) force exerted on an infinitesimal portion of the blade with mass dm 

located a distance r from the rotational axis is (Newton’s second law) dF = (dm)2
r, 

where dm can be written as (M/L)dr and the angular speed is  

 

  320 2 60    33.5 rad s . 

 

Thus for the entire blade of mass M and length L the total force is given by 
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     
22

2 2

0

5

110kg 33.5 rad s 7.80m

2 2

4.81 10 N.

LM M L
F dF rdm rdr

L


     

 

    

 

(b) About its center of mass, the blade has I ML 2 12/  according to Table 10-2(e), and 

using the parallel-axis theorem to “move” the axis of rotation to its end-point, we find the 

rotational inertia becomes I ML 2 / 3. Using Eq. 10-45, the torque (assumed constant) is 

 

  
22 41 1 33.5rad/s

110kg 7.8 m 1.12 10 N m.
3 3 6.7s

I ML
t


 

   
        

    
 

 

(c) Using Eq. 10-52, the work done is 

 

    
2 22 2 2 61 1 1 1

0 110kg 7.80m 33.5rad/s 1.25 10 J.
2 2 3 6

W K I ML 
 

        
 

 

 

74. The angular displacements of disks A and B can be written as: 

 

 21
, .

2
A A B Bt t      

(a) The time when A B   is given by 

  

 2

2

21 2(9.5 rad/s)
    8.6 s.

2 (2.2 rad/s )

A
A B

B

t t t


 


      

 

(b) The difference in the angular displacement is  

 

 2 21
9.5 1.1 .

2
A B A Bt t t t            

 

For their reference lines to align momentarily, we only require 2 N   , where N is an 

integer. The quadratic equation can be readily solve to yield 

 

 
29.5 (9.5) 4(1.1)(2 ) 9.5 90.25 27.6

.
2(1.1) 2.2

N

N N
t

   
   

 

The solution 0 8.63 st  (taking the positive root) coincides with the result obtained in (a), 

while 0 0t  (taking the negative root) is the moment when both disks begin to rotate. In 

fact, two solutions exist for N = 0, 1, 2, and 3. 
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75. The magnitude of torque is the product of the force magnitude and the distance from 

the pivot to the line of action of the force. In our case, it is the gravitational force that 

passes through the walker’s center of mass. Thus, 

 

 .I rF rmg     

 

(a) Without the pole, with 215 kg mI   , the angular acceleration is  

 
2

2

2

(0.050 m)(70 kg)(9.8 m/s )
2.3 rad/s .

15 kg m

rF rmg

I I
    


 

 

(b) When the walker carries a pole, the torque due to the gravitational force through the 

pole’s center of mass opposes the torque due to the gravitational force that passes through 

the walker’s center of mass. Therefore,  

 

 2 2

net (0.050 m)(70 kg)(9.8 m/s ) (0.10 m)(14 kg)(9.8 m/s ) 20.58 N mi i

i

r F      , 

 

and the resulting angular acceleration is 

 

2net

2

20.58 N m
1.4 rad/s .

15 kg mI





  


 

 

76. The motion consists of two stages. The first, the interval 0  t  20 s, consists of 

constant angular acceleration given by 

 

  
50

2 0
2 5

2.

.
. .

rad s

s
rad s  

 

The second stage, 20 < t  40 s, consists of constant angular velocity    / .t  

Analyzing the first stage, we find 

 

 2

1 20
20

1
500 rad, 50 rad s.

2 t
t

t t   




     

 

Analyzing the second stage, we obtain  

 

   3

2 1 500 rad 50 rad/s 20 s 1.5 10 rad.t          

 

77. THINK The record turntable comes to a stop due to a constant angular acceleration. 

We apply equations given in Table 10-1 to analyze the rotational motion. 
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EXPRESS We take the sense of initial rotation to be positive. Then, with 0 > 0 and  = 

0 (since it stops at time t), our angular acceleration is negative-valued. The angular 

acceleration is constant, so we can apply Eq. 10-12 ( = 0 + t), which gives 

0( ) / t    . Similarly, the angular displacement can be found by using Eq. 10-13: 

2

0 0

1
.

2
t t       

 

ANALYZE (a) To obtain the requested units, we use t = 30 s  = 0.50 min. With 

0 33.33 rev/min,   we find the angular acceleration to be 

 

2 233.33 rev/min
66.7 rev/min 67 rev/min .

0.50min
        

 

(b) Substituting the value of  obtained above into Eq. 10-13, we get 

  

2 2 2

0

1 1
(33.33 rev/min)(0.50 min) ( 66.7rev/min )(0.50 min) 8.33 rev.

2 2
t t         

 

LEARN To solve for the angular displacement in (b), we may also use Eq. 10-15: 

 

0

1 1
( ) (33.33 rev/min 0)(0.50 min) 8.33 rev.

2 2
t        

 

78. We use conservation of mechanical energy. The center of mass is at the midpoint of 

the cross bar of the H and it drops by L/2, where L is the length of any one of the rods. 

The gravitational potential energy decreases by MgL/2, where M is the mass of the body. 

The initial kinetic energy is zero and the final kinetic energy may be written 1
2

2I , 

where I is the rotational inertia of the body and  is its angular velocity when it is vertical. 

Thus, 

0 2 2    MgL I MgL I/ / .
1

2
   

 

Since the rods are thin the one along the axis of rotation does not contribute to the 

rotational inertia. All points on the other leg are the same distance from the axis of 

rotation, so that leg contributes (M/3)L
2
, where M/3 is its mass. The cross bar is a rod that 

rotates around one end, so its contribution is (M/3)L
2
/3 = ML

2
/9. The total rotational 

inertia is  

I = (ML
2
/3) + (ML

2
/9) = 4ML

2
/9. 

 

Consequently, the angular velocity is 

 
2

2

9 9(9.800 m/s )
6.06 rad/s.

4 / 9 4 4(0.600 m)

MgL MgL g

I ML L
       
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79. THINK In this problem we compare the rotational inertia between a solid cylinder 

and a hoop.    

 

EXPRESS According to Table 10-2, the rotational inertia formulas for a cylinder of 

radius R and mass M, and a hoop of radius r and mass M are 

 

2 21
, .

2
C HI MR I Mr   

 

Equating 
C HI I  allows us to deduce the relationship between r and R. 

 

ANALYZE (a) Since both the cylinder and the hoop have the same mass, then they will 

have the same rotational inertia (
C HI I ) if  2 2/ 2R r   →  / 2.r R  

 

(b) We require the rotational inertia of any given body to be written as 2 ,I Mk  where 

M is the mass of the given body and k is the radius of the “equivalent hoop.” It follows 

directly that k I M / . 

 

LEARN Listed below are some examples of equivalent hoop and their radii: 

 

2 2

2

2

1
( / 2) / 2

2

2 2 2

5 5 5

C C

S S

I MR M R k R

I MR M R k R

   

 
     

 

 

 

80. (a) Using Eq. 10-15, we have 60.0 rad = 
1

2
 (1 + 2)(6.00 s) . With 2 = 15.0 rad/s, 

then 1 = 5.00 rad/s. 

 

(b) Eq. 10-12 gives  = (15.0 rad/s – 5.0 rad/s)/(6.00 s) = 1.67 rad/s
2
. 

 

(c) Interpreting  now as 1  and  as 1  = 10.0 rad  (and o = 0)  Eq. 10-14 leads to 

 

o =  – 
2

1

2




 + 1 = 2.50 rad . 

 

81. The center of mass is initially at height h L 
2

40sin  when the system is released 

(where L = 2.0 m). The corresponding potential energy Mgh (where M = 1.5 kg) becomes 

rotational kinetic energy 1
2

2I  as it passes the horizontal position (where I is the 

rotational inertia about the pin). Using Table 10-2 (e) and the parallel axis theorem, we 

find  

I ML M L ML  1
12

2 2 1
3

22( / ) .  
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Therefore, 

 2 21 1 3 sin 40
sin 40 3.1 rad/s.

2 2 3

L g
Mg ML

L
 

 
     

 
 

 

82. The rotational inertia of the passengers is (to a good approximation) given by Eq. 10-

53: I mR NmR  2 2
 where N is the number of people and m is the (estimated) mass 

per person. We apply Eq. 10-52: 

 

2 2 21 1

2 2
W I NmR    

 

where R = 38 m and N = 36  60 = 2160 persons. The rotation rate is constant so that  = 

/t which leads to  = 2/120 = 0.052 rad/s. The mass (in kg) of the average person is 

probably in the range 50  m  100, so the work should be in the range 

 

1

2
2160 50 38 0 052

1

2
2160 100 38 0 052

2 10 4 10

2 2 2 2

5 5

b gb gb g b g b gb gb g b g. . 

   

W

WJ J.

 

 

83. We choose positive coordinate directions (different choices for each item) so that 

each is accelerating positively, which will allow us to set a a R1 2    (for simplicity, 

we denote this as a). Thus, we choose upward positive for m1, downward positive for m2, 

and (somewhat unconventionally) clockwise for positive sense of disk rotation. Applying 

Newton’s second law to m1m2 and (in the form of Eq. 10-45) to M, respectively, we 

arrive at the following three equations. 

 

T m g m a

m g T m a

T R T R I

1 1 1 1

2 2 2 2

2 1

 

 

  

 

 

(a) The rotational inertia of the disk is I MR 1
2

2  (Table 10-2(c)), so we divide the third 

equation (above) by R, add them all, and use the earlier equality among accelerations — 

to obtain: 

m g m g m m M a2 1 1 2

1

2
   
F
HG

I
KJ  

which yields 24 1.57 m/s .
25

a g   

 

(b) Plugging back in to the first equation, we find  

 

1 1
29 4.55 N
25

T m g   
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where it is important in this step to have the mass in SI units: m1 = 0.40 kg. 

 

(c) Similarly, with m2 = 0.60 kg, we find 2 2
5 4.94 N.
6

T m g   

 

84. (a) The longitudinal separation between Helsinki and the explosion site is 

 102 25 77 .       The spin of the Earth is constant at 

 

  
1 rev

1 day

360

24 h
 

 

so that an angular displacement of   corresponds to a time interval of 

 

t  


F
HG
I
KJ 77

24 h

360
5.1 h.b g  

 

(b) Now       102 20 122b g  so the required time shift would be 

 

t  


F
HG
I
KJ 122

24

360
81b g h

h. .  

 

85. To get the time to reach the maximum height, we use Eq. 4-23, setting the left-hand 

side to zero.  Thus, we find  

t = 
(60 m/s)sin(20

o
)

9.8 m/s
2   = 2.094 s. 

 

Then (assuming = 0) Eq. 10-13 gives  

 

 o = o t  = (90 rad/s)(2.094 s) = 188 rad, 

 

which is equivalent to roughly 30 rev. 

 

86. In the calculation below, M1 and M2 are the ring masses, R1i and R2i are their inner 

radii, and R1o and R2o are their outer radii.  Referring to item (b) in Table 10-2, we 

compute 

I = 
1

2
 M1 (R1i

2
 + R1o

2
) + 

1

2
 M2 (R2i

2
 + R2o

2
)   = 0.00346 2kg m

 
. 

 

Thus, with Eq. 10-38 (rF where r = R2o) and  = I(Eq. 10-45), we find  

 

  = 
(0.140)(12.0)

0.00346
  = 485 rad/s

2 
. 

 

Then Eq. 10-12 gives = t = 146 rad/s. 
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87. We choose positive coordinate directions so that each is accelerating positively, 

which will allow us to set abox = R (for simplicity, we denote this as a). Thus, we choose 

downhill positive for the m = 2.0 kg box and (as is conventional) counterclockwise for 

positive  sense of wheel rotation. Applying Newton’s second law to the box and (in the 

form of Eq. 10-45) to the wheel, respectively, we arrive at the following two equations 

(using  as the incline angle 20°, not as the angular displacement of the wheel). 

 

mg T ma

TR I

sin



 


 

 

Since the problem gives a = 2.0 m/s
2
, the first equation gives the tension T = m (g sin  – 

a) = 2.7 N. Plugging this and R = 0.20 m into the second equation (along with the fact 

that  = a/R) we find the rotational inertia  

 

I = TR
2
/a = 0.054 kg m2

. 

 

88. (a) We use  = I, where  is the net torque acting on the shell, I is the rotational 

inertia of the shell, and  is its angular acceleration. Therefore, 

 

I  


 




960

6 20
155

N m

rad / s
kg m

2

2

.
.  

 

(b) The rotational inertia of the shell is given by I = (2/3) MR
2
 (see Table 10-2 of the text). 

This implies 

M
I

R
 




3

2

3 155

2 190
64 4

2

2

2

kg m

m
kg

c h
b g.

. .  

 

89. Equation 10-40 leads to   = mgr = (70 kg) (9.8 m/s
2
) (0.20 m)= 1.4  10

2
 N m . 

 

90. (a) Equation 10-12 leads to 2

o / (25.0 rad/s) /(20.0 s) 1.25 rad/s .t        

 

(b) Equation 10-15 leads to o

1 1
(25.0 rad/s)(20.0 s) 250 rad.

2 2
t     

 

(c) Dividing the previous result by 2 we obtain  = 39.8 rev. 

 

91. THINK As the box falls, gravitational force gives rise to a torque that causes the 

wheel to rotate. 

 

EXPRESS We employ energy methods to solve this problem; thus, considerations of 

positive versus negative sense (regarding the rotation of the wheel) are not relevant. 
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(a) The speed of the box is related to the angular speed of the wheel by v = R, where 
2

box box / 2K m v . The rotational kinetic energy of the wheel is 2

rot / 2K I . 

 

ANALYZE (a) With box 0.60 J,K   we find the speed of the box to be 

 

2 box
box box

box

21 2(6.0 J)
1.41 m/s ,

2 6.0 kg

K
K m v v

m
      

 

implying that the angular speed is  = (1.41 m/s)/(0.20 m) = 7.07 rad/s. Thus, the kinetic 

energy of rotation is  

2 2 2

rot

1 1
(0.40 kg m )(7.07 rad/s) 10.0 J.

2 2
K I     

 

(b) Since it was released from rest, we will take the initial position to be our reference 

point for gravitational potential. Energy conservation requires 

 

    0 0 box0 0 6.0 J 10.0 J .K U K U m g h          

Therefore,  

2

box

6.0 J 10.0 J
0.27 m.

(6.0 kg)(9.8 m/s )

K
h

m g


    

 

LEARN As the box falls, its gravitational potential energy gets converted into kinetic 

energy of the box as well as rotational kinetic energy of the wheel; the total energy 

remains conserved.  

 

92. (a) The time for one revolution is the circumference of the orbit divided by the speed 

v of the Sun: T = 2R/v, where R is the radius of the orbit. We convert the radius: 

 

R     2 3 104.  ly 9.46 10  km/ ly 2.18 10  km12 17c hc h  

 

where the ly   km conversion can be found in Appendix D or figured “from basics” 

(knowing the speed of light). Therefore, we obtain 

 

T 


 
2 218 10

55 10

17

15
 .

.
 km

250 km / s
 s.

c h
 

 

(b) The number of revolutions N is the total time t divided by the time T for one 

revolution; that is, N = t/T. We convert the total time from years to seconds and obtain 

 

N 
 




4 5 10

55 10
26

9

15

.

.

 y 3.16 10  s / y

 s
.

7c hc h
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93. THINK The applied force P accelerates the block. In addition, it gives rise to a 

torque that causes the wheel to undergo angular acceleration.   

 

EXPRESS We take rightward to be positive for the block and clockwise negative for the 

wheel (as is conventional). With this convention, we note that the tangential acceleration 

of the wheel is of opposite sign from the block’s acceleration (which we simply denote as 

a); that is, 
ta a  . Applying Newton’s second law to the block leads to P T ma  , 

where T is the tension in the cord. Similarly, applying Newton’s second law (for rotation) 

to the wheel leads to TR I  . Noting that R = at = – a, we multiply this equation by 

R and obtain 

2

2
 .

I
TR Ia T a

R
    

 
Adding this to the above equation (for the block) leads to 2( / ) .P m I R a   Thus, the 

angular acceleration is  

2( / )

a P

R m I R R
    


 

 

ANALYZE With 2.0 kg,m  20.050 kg m ,I   3.0 NP   and 0.20 mR  , we find  

 

2

2 2 2

3.0 N
4.62 rad/s

( / ) [2.0 kg (0.050 kg m ) /(0.20 m) ](0.20 m)

P

m I R R
      

  
 , 

 

or 2| | 4.62 rad/s .   

 

LEARN The greater the applied force P, the greater the (magnitude of) angular 

acceleration. Note that the negative sign in  should not be mistaken for a deceleration; it 

simply indicates the clockwise sense to the motion. 
 

94. First, we convert the angular velocity:  = (2000 rev/min)(2 /60) = 209 rad/s. Also, 

we convert the plane’s speed to SI units: (480)(1000/3600) = 133 m/s. We use Eq. 10-18 

in part (a) and (implicitly) Eq. 4-39 in part (b). 

 

(a) The speed of the tip as seen by the pilot is v rt    209 15 314rad s m m sb gb g. , 

which (since the radius is given to only two significant figures) we write as 
23.1 10 m stv   .  

 

(b) The plane’s velocity 

vp  and the velocity of the tip 


vt  (found in the plane’s frame of 

reference), in any of the tip’s positions, must be perpendicular to each other. Thus, the 

speed as seen by an observer on the ground is 

 

v v vp t     2 2 2 2 2133 314 34 10m s m s m sb g b g . . 
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95. The distances from P to the particles are as follows: 

 

r a m M

r b a m M

r a m M

1

2

2 2

3

2

2

 

  

 

for lower left

for top

for lower right

1

2

1

b g
b g

b g
 

 

The rotational inertia of the system about P is 

 

 
3

2 2 2

1

3 ,i i

i

I m r a b M


    

 

which yields 20.208 kg mI    for M = 0.40 kg, a = 0.30 m, and b = 0.50 m. Applying Eq. 

10-52, we find 

  
22 21 1

0.208 kg m 5.0 rad/s 2.6 J.
2 2

W I     

 

96. In the figure below, we show a pull tab of a beverage can. Since the tab is pivoted, 

when pulling on one end upward with a force 
1F , a force 

2F  will be exerted on the other 

end. The torque produced by 
1F  must be balanced by the torque produced by 

2F  so that 

the tab does not rotate. 

 
The two forces are related by 

 1 1 2 2r F r F  

 

where 1 1.8 cmr  and 2 0.73 cmr  . Thus, if F1 = 10 N,  

 

 1
2 1

2

1.8 cm
(10 N) 25 N.

0.73 cm

r
F F

r

   
     

  
 

 

97. The centripetal acceleration at a point P that is r away from the axis of rotation is 

given by Eq. 10-23: 2 2/a v r r  , where v r , with 2000 rev/min  209.4 rad/s.    

 

(a) If points A and P are at a radial distance rA = 1.50 m and r = 0.150 m from the axis, 

the difference in their acceleration is 

 

 2 2 4 2( ) (209.4 rad/s) (1.50 m 0.150 m) 5.92 10 m/sA Aa a a r r         . 
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(b) The slope is given by 2 4 2/ 4.39 10 / sa r    . 

 

98. Let T be the tension on the rope. From Newton’s second law, we have  

 

     ( )T mg ma T m g a     . 

 

 Since the box has an upward acceleration a = 0.80 m/s
2
, the tension is given by  

 
2 2(30 kg)(9.8 m/s 0.8 m/s ) 318 N.T     

 

The rotation of the device is described by app /F R Tr I Ia r   . The moment of inertia 

can then be obtained as 

 

 
app 2

2

( ) (0.20 m)[(140 N)(0.50 m) (318 N)(0.20 m)]
1.6 kg m

0.80 m/s

r F R Tr
I

a

 
     

 

99. (a) With r = 0.780 m, the rotational inertia is 

 

I Mr   2 2
130 0 780 0 791. . . .kg m kg m2b gb g  

 

(b) The torque that must be applied to counteract the effect of the drag is 

 

       rf 0 780 2 30 10 179 102 2. . .m N N m.b gc h  

 

100. We make use of Table 10-2(e) as well as the parallel-axis theorem, Eq. 10-34, where 

needed. We use   (as a subscript) to refer to the long rod and s to refer to the short rod. 

 

(a) The rotational inertia is 

I I I m L m Ls s s       

1

12

1

3
0 0192 2 . .kg m2  

 

(b) We note that the center of the short rod is a distance of h = 0.25 m from the axis. The 

rotational inertia is 

I I I m L m h m Ls s s s      

1

12

1

12

2 2 2  

 

which again yields I = 0.019 kg m2
. 

 

101. (a) The linear speed of a point on belt 1 is  

 

 2

1 (15 cm)(10 rad/s) 1.5 10  cm/sA Av r     . 
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(b) The angular speed of pulley B is 

 

 
15 cm

    (10 rad/s) 15 rad/s
10 cm

A A
B B A A B

B

r
r r

r


  

 
     

 
. 

 

(c) Since the two pulleys are rigidly attached to each other, the angular speed of pulley 

B  is the same as that of pulley B, that is, 15 rad/sB  . 

 

(d) The linear speed of a point on belt 2 is  

 

 2 (5 cm)(15 rad/s) 75 cm/sB Bv r     . 

 

(e) The angular speed of pulley C is 

 

5 cm
    (15 rad/s) 3.0 rad/s

25 cm

B B
C C B B C

C

r
r r

r


   



  
     

 
 

 

102. (a) The rotational inertia relative to the specified axis is 

 

I mr M L M L M Li i    2 2 2 2
2 2 2b g b g b g  

 

which is found to be I = 4.6 kg m2
. Then, with  = 1.2 rad/s, we obtain the kinetic 

energy from Eq. 10-34: 

K I 
1

2
332 . J.  

 

(b) In this case the axis of rotation would appear as a standard y axis with origin at P. 

Each of the 2M balls are a distance of r = L cos 30° from that axis. Thus, the rotational 

inertia in this case is 

I mr M r M r M Li i    2 2 2 2
2 2 2b g b g b g  

 

which is found to be I = 4.0 kg m2
.  Again, from Eq. 10-34 we obtain the kinetic energy 

 

K I 
1

2
2 92 . J.  

 

103. We make use of Table 10-2(e) and the parallel-axis theorem in Eq. 10-36. 

 

(a) The moment of inertia is 

 

 2 2 2 2 21 1
(3.0 kg)(4.0 m) (3.0 kg)(1.0 m) 7.0 kg m .

12 12
I ML Mh       
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(b) The rotational kinetic energy is 

 

 2 rot
rot 2

21 2(20 J)
   = 2.4 rad/s

2 7 kg m

K
K I

I
    


. 

 

The linear speed of the end B is given by (2.4 rad/s)(3.00 m) 7.2 m/sB ABv r   , where 

rAB is the distance between A and B. 

 

(c) The maximum angle  is attained when all the rotational kinetic energy is transformed 

into potential energy. Moving from the vertical position (= 0) to the maximum angle  , 

the center of mass is elevated by (1 cos )ACy d    , where dAC = 1.00 m is the distance 

between A and the center of mass of the rod. Thus, the change in potential energy is 

 

 2(1 cos ) 20 J (3.0 kg)(9.8 m/s )(1.0 m)(1 cos )ACU mg y mgd           

 

which yields cos 0.32  , or 71   . 

 

104. (a) The particle at A has r = 0 with respect to the axis of rotation. The particle at B is 

r = L = 0.50 m from the axis; similarly for the particle directly above A in the figure. The 

particle diagonally opposite A is a distance r L 2 0 71. m  from the axis. Therefore, 

 

I m r mL m Li i     2 2
2

2 2d i 0.20 kg m2 .  

 

(b) One imagines rotating the figure (about point A) clockwise by 90° and noting that the 

center of mass has fallen a distance equal to L as a result. If we let our reference position 

for gravitational potential be the height of the center of mass at the instant AB swings 

through vertical orientation, then 

 

  0 0 00 4 0.K U K U m gh K        

 

Since h0 = L = 0.50 m, we find K = 3.9 J. Then, using Eq. 10-34, we obtain 

 

21
6.3 rad/s.

2
AK I      

 

105. (a) We apply Eq. 10-18, using the subscript J for the Jeep. 

 

  
v

r

J

J

114 km h

0.100 km
 

 

which yields 1140 rad/h or (dividing by 3600) 0.32 rad/s for the value of the angular 

speed . 
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(b) Since the cheetah has the same angular speed, we again apply Eq. 10-18, using the 

subscript c for the cheetah. 

 

    5 292m 1140 rad h 1.048 10 m h 1.0 10  km/hc cv r       

 

for the cheetah’s speed. 

 

106. Using Eq. 10-7 and Eq. 10-18, the average angular acceleration is 

 




avg

2rad / s  









t

v

r t

25 12

0 75 2 6 2
56

. .
. .b gb g  

 

107. (a) Using Eq. 10-1, the angular displacement is 

 

 


 


56
14 10

2

2.
.

m

8.0 10 m
rad .  

 

(b) We use   1
2

2t  (Eq. 10-13) to obtain t: 

 

t  



2 2 14 10

15
14

2

2





.

.

rad

rad s
s .

c h
 

 

108. (a) We obtain 

 

(33.33 rev / min) (2  rad/rev)
3.5 rad/s.

60 s/min



   

 

(b) Using Eq. 10-18, we have (15)(3.49) 52 cm/s.v r    

 

(c) Similarly, when r = 7.4 cm we find v = r = 26 cm/s. The goal of this exercise is to 

observe what is and is not the same at different locations on a body in rotational motion 

( is the same, v is not), as well as to emphasize the importance of radians when working 

with equations such as Eq. 10-18. 
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Chapter 11 
 

 

1. The velocity of the car is a constant  

 

  ˆ ˆ80 km/h (1000 m/km)(1 h/3600 s) i ( 22m s)i,v      

 

and the radius of the wheel is r = 0.66/2 = 0.33 m. 

 

(a) In the car’s reference frame (where the lady perceives herself to be at rest) the road is 

moving toward the rear at 

v vroad m s   22 ,  and the motion of the tire is purely 

rotational. In this frame, the center of the tire is “fixed” so vcenter = 0. 

 

(b) Since the tire’s motion is only rotational (not translational) in this frame, Eq. 10-18 

gives top
ˆ( 22m/s)i.v    

 

(c) The bottom-most point of the tire is (momentarily) in firm contact with the road (not 

skidding) and has the same velocity as the road: bottom
ˆ( 22m s)i .v    This also follows 

from Eq. 10-18. 

 

(d) This frame of reference is not accelerating, so “fixed” points within it have zero 

acceleration; thus, acenter = 0. 

 

(e) Not only is the motion purely rotational in this frame, but we also have  = constant, 

which means the only acceleration for points on the rim is radial (centripetal). Therefore, 

the magnitude of the acceleration is 

 
2 2

23

top

(22 m/s)
1.5 10 m s .

0.33 m

v
a

r
     

 

(f) The magnitude of the acceleration is the same as in part (d): abottom = 1.5  10
3
 m/s

2
. 

 

(g) Now we examine the situation in the road’s frame of reference (where the road is 

“fixed” and it is the car that appears to be moving). The center of the tire undergoes 

purely translational motion while points at the rim undergo a combination of translational 

and rotational motions. The velocity of the center of the tire is ˆ( 22m s)i.v     

 

(h) In part (b), we found 

v vtop,car    and we use Eq. 4-39: 

 

top, ground top, car car, ground
ˆ ˆ ˆi i 2 iv v v v v v      
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which yields 2v = +44 m/s.  

 

(i) We can proceed as in part (h) or simply recall that the bottom-most point is in firm 

contact with the (zero-velocity) road. Either way, the answer is zero. 

 

(j) The translational motion of the center is constant; it does not accelerate. 

 

(k) Since we are transforming between constant-velocity frames of reference, the 

accelerations are unaffected. The answer is as it was in part (e): 1.5  10
3
 m/s

2
. 

 

(1) As explained in part (k), a = 1.5  10
3
 m/s

2
. 

 

2. The initial speed of the car is 

 

 80 km/h (1000 m/km)(1 h/3600 s) 22.2 m/sv   . 

 

The tire radius is R = 0.750/2 = 0.375 m. 

 

(a) The initial speed of the car is the initial speed of the center of mass of the tire, so Eq. 

11-2 leads to  

com0

0

22.2 m/s
59.3 rad/s.

0.375 m

v

R
     

 

(b) With  = (30.0)(2) = 188 rad and  = 0, Eq. 10-14 leads to 

 

 

2
2 2 2

0

(59.3 rad/s)
2 9.31 rad/s .

2 188 rad
         

 

(c) Equation 11-1 gives R = 70.7 m for the distance traveled. 

 

3. THINK The work required to stop the hoop is the negative of the initial kinetic energy 

of the hoop.  

 

EXPRESS From Eq. 11-5, the initial kinetic energy of the hoop is 2 21 1
2 2

,iK I mv   

where I = mR
2
 is its rotational inertia about the center of mass. Eq. 11-2 relates the 

angular speed to the speed of the center of mass:  = v/R. Thus, 

 
2

2 2 2 2 21 1 1 1
( )

2 2 2 2
i

v
K I mv mR mv mv

R


 
     

 
 

 

ANALYZE With m = 140 kg, and the speed of its center of mass v = 0.150 m/s, we find 

the initial kinetic energy to be 
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  
22 140 kg 0.150 m/s 3.15 JiK mv    

 

which implies that the work required is 3.15 Jf i iW K K K K        . 

 

LEARN By the work-kinetic energy theorem, the work done is negative since it 

decreases the kinetic energy. A rolling body has two types of kinetic energy: rotational 

and translational.  

 

4. We use the results from section 11.3. 

 

(a) We substitute I M R 2
5

2  (Table 10-2(f)) and a = – 0.10g into Eq. 11-10: 

 

  


 010
1 7 52

5

2 2
.

sin sin

/
g

g

MR MR

g 

c h  

 

which yields  = sin
–1

 (0.14) = 8.0°. 

 

(b) The acceleration would be more. We can look at this in terms of forces or in terms of 

energy. In terms of forces, the uphill static friction would then be absent so the downhill 

acceleration would be due only to the downhill gravitational pull. In terms of energy, the 

rotational term in Eq. 11-5 would be absent so that the potential energy it started with 

would simply become 1
2

2mv  (without it being “shared” with another term) resulting in a 

greater speed (and, because of Eq. 2-16, greater acceleration). 

 

5. Let M be the mass of the car (presumably including the mass of the wheels) and v be 

its speed. Let I be the rotational inertia of one wheel and  be the angular speed of each 

wheel. The kinetic energy of rotation is 

K Irot 
F
HG
I
KJ4

1

2

2 , 

 

where the factor 4 appears because there are four wheels. The total kinetic energy is 

given by  

K Mv I 1
2

2 1
2

24( ) . 

 

The fraction of the total energy that is due to rotation is 

 

fraction rot 


K

K

I

Mv I

4

4

2

2 2




.  

 

For a uniform disk (relative to its center of mass) I mR 1
2

2  (Table 10-2(c)). Since the 

wheels roll without sliding  = v/R (Eq. 11-2). Thus the numerator of our fraction is 
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4 4
1

2
22 2

2

2I mR
v

R
mv 

F
HG
I
KJ
F
HG
I
KJ   

and the fraction itself becomes 

 

 2

2 2

2 102 2 1
fraction 0.020.

2 2 1000 50

mv m

Mv mv M m
    

 
 

 

The wheel radius cancels from the equations and is not needed in the computation. 

 

6. We plug a =   – 3.5 m/s
2
 (where the magnitude of this number was estimated from the 

“rise over run” in the graph),  = 30º, M = 0.50 kg, and R = 0.060 m into Eq. 11-10 and 

solve for the rotational inertia.  We find I = 7.2  10
4

 kg
.
m

2
. 

 

7. (a) We find its angular speed as it leaves the roof using conservation of energy. Its 

initial kinetic energy is Ki = 0 and its initial potential energy is Ui = Mgh where 

6.0sin30 3.0 mh    (we are using the edge of the roof as our reference level for 

computing U). Its final kinetic energy (as it leaves the roof) is (Eq. 11-5) 

 

K Mv If  1
2

2 1
2

2 . 

 

Here we use v to denote the speed of its center of mass and  is its angular speed — at 

the moment it leaves the roof. Since (up to that moment) the ball rolls without sliding we 

can set v = R = v where R = 0.10 m. Using I MR 1
2

2  (Table 10-2(c)), conservation of 

energy leads to 

2 2 2 2 2 2 2 21 1 1 1 3
.

2 2 2 4 4
Mgh Mv I MR MR MR         

 

The mass M cancels from the equation, and we obtain 

 

   
1 4

3

1

010

4

3
9 8 30 63

R
gh

.
. . .

m
m s m rad s2c hb g  

 

(b) Now this becomes a projectile motion of the type examined in Chapter 4. We put the 

origin at the position of the center of mass when the ball leaves the track (the “initial” 

position for this part of the problem) and take +x leftward and +y downward. The result 

of part (a) implies v0 = R = 6.3 m/s, and we see from the figure that (with these positive 

direction choices) its components are 

 

0 0

0 0

cos30 5.4 m s

sin 30 3.1 m s.

x

y

v v

v v

 

 
 

 

The projectile motion equations become 
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x v t y v t gtx y  0 0

21

2
and .  

 

We first find the time when y = H = 5.0 m from the second equation (using the quadratic 

formula, choosing the positive root): 
2

0 0 2
0.74s.

y yv v gH
t

g

  
   

 

Then we substitute this into the x equation and obtain x  54 0 74 4 0. . .m s s m.b gb g  

 

8. (a) Let the turning point be designated P. By energy conservation, the mechanical 

energy at x = 7.0 m is equal to the mechanical energy at P. Thus, with Eq. 11-5, we have 

 

  75 J  =  
1

2
 mvp

2
 +  

1

2
 Icom p

2
  + Up . 

 

Using item (f) of Table 10-2 and Eq. 11-2 (which means, if this is to be a turning point, 

that p = vp = 0), we find Up = 75 J.  On the graph, this seems to correspond to x = 2.0 m, 

and we conclude that there is a turning point (and this is it).  The ball, therefore, does not 

reach the origin. 

 

(b) We note that there is no point (on the graph, to the right of x = 7.0 m) taht is shown      

“higher” than 75 J, so we suspect that there is no turning point in this direction, and we 

seek the velocity vp at x = 13 m.  If we obtain a real, nonzero answer, then our      

suspicion is correct (that it does reach this point P at x = 13 m). By energy conservation, 

the mechanical energy at x = 7.0 m is equal to the mechanical energy at P. Therefore, 

 

     75 J  =  
1

2
 mvp

2
 +  

1

2
 Icom p

2
  + Up . 

 

Again, using item (f) of Table 11-2, Eq. 11-2 (less trivially this time) and Up = 60 J (from 

the graph), as well as the numerical data given in the problem, we find vp = 7.3 m/s. 

 

9. To find where the ball lands, we need to know its speed as it leaves the track (using 

conservation of energy). Its initial kinetic energy is Ki = 0 and its initial potential energy 

is Ui = M gH. Its final kinetic energy (as it leaves the track) is given by Eq. 11-5: 

 

K Mv If  1
2

2 1
2

2  

 

and its final potential energy is M gh. Here we use v to denote the speed of its center of 

mass and  is its angular speed — at the moment it leaves the track. Since (up to that 

moment) the ball rolls without sliding we can set  = v/R. Using I MR 2
5

2  (Table 10-

2(f)), conservation of energy leads to 
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2 2 2 2

2

1 1 1 2

2 2 2 10

7
.

10

MgH Mv I Mgh Mv Mv Mgh

Mv Mgh

     

 

 

 

The mass M cancels from the equation, and we obtain 

 

v g H h    
10

7

10

7
9 8 6 0 2 0 7 48

2b g d ib g. . . . .m s m m m s  

 

Now this becomes a projectile motion of the type examined in Chapter 4. We put the 

origin at the position of the center of mass when the ball leaves the track (the “initial” 

position for this part of the problem) and take +x rightward and +y downward. Then 

(since the initial velocity is purely horizontal) the projectile motion equations become 

 

21
, .

2
x vt y gt    

 

Solving for x at the time when y = h, the second equation gives t h g 2 .  Then, 

substituting this into the first equation, we find 

 

 
 

2

2 2.0 m2
7.48 m/s 4.8 m.

9.8 m/s

h
x v

g
    

 

10. From I MR 2
3

2  (Table 10-2(g)) we find 

 
 

2

22

3 0.040 kg m3
2.7 kg.

2 2 0.15 m

I
M

R


    

 

It also follows from the rotational inertia expression that 1
2

2 1
3

2 2I MR  . Furthermore, 

it rolls without slipping, vcom = R, and we find 

 

K

K K

MR

mR MR

rot

com rot




1
3

2 2

1
2

2 2 1
3

2 2



 
.  

 

(a) Simplifying the above ratio, we find Krot/K = 0.4. Thus, 40% of the kinetic energy is 

rotational, or  

Krot = (0.4)(20 J) = 8.0  J. 

 

(b) From 2 21
rot 3

8.0JK M R    (and using the above result for M) we find 
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  
1

015

3 8 0

2 7
20

.

.

.m

J

kg
rad s

b g
 

 

which leads to vcom = (0.15 m)(20 rad/s) = 3.0 m/s. 

 

(c) We note that the inclined distance of 1.0 m corresponds to a height h = 1.0 sin 30° = 

0.50 m. Mechanical energy conservation leads to 

 

 20Ji f f fK K U K Mgh      

 

which yields (using the values of M and h found above) Kf = 6.9 J. 

 

(d) We found in part (a) that 40% of this must be rotational, so 

 

 
  2 2

3 0.40 6.9 J1 1
0.40

3 0.15 m 2.7 kg
f f fMR K     

 

which yields f = 12 rad/s and leads to 

 

  com 0.15 m 12 rad/s 1.8 m/s.f fv R    

 

11. With app
ˆ(10  N)iF  , we solve the problem by applying Eq. 9-14 and Eq. 11-37. 

 

(a) Newton’s second law in the x direction leads to 

 

  2

app     10N 10kg 0.60 m s 4.0 N.s sF f ma f       

 

In unit vector notation, we have ˆ( 4.0 N)isf   , which points leftward. 

 

(b) With R = 0.30 m, we find the magnitude of the angular acceleration to be  

 

|| = |acom| / R = 2.0 rad/s
2
, 

 

from Eq. 11-6. The only force not directed toward (or away from) the center of mass is 
f s ,  and the torque it produces is clockwise: 

 

    20.30m 4.0 N 2.0rad sI I     

 

which yields the wheel’s rotational inertia about its center of mass: I  0 60. .kg m2  
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12. Using the floor as the reference position for computing potential energy, mechanical 

energy conservation leads to 

 

 2 2

release top top com

1 1
2 .

2 2
U K U mgh mv I mg R       

 

Substituting  I mr 2
5

2  (Table 10-2(f)) and   v rcom  (Eq. 11-2), we obtain 

 

 

2

2 2 2com
com com

1 1 2 7
2 2

2 2 5 10

v
mgh mv mr mgR gh v gR

r

  
       

  
 

 

where we have canceled out mass m in that last step. 

 

(a) To be on the verge of losing contact with the loop (at the top) means the normal force 

is nearly zero. In this case, Newton’s second law along the vertical direction (+y 

downward) leads to 

mg ma g
v

R r
r  



com

2

 

 

where we have used Eq. 10-23 for the radial (centripetal) acceleration (of the center of 

mass, which at this moment is a distance R – r from the center of the loop). Plugging the 

result  v g R rcom

2  b g  into the previous expression stemming from energy considerations 

gives 

gh g R r gR  
7

10
2b gb g  

 

which leads to 2.7 0.7 2.7 .h R r R    With R = 14.0 cm , we have  

 

h = (2.7)(14.0 cm) = 37.8 cm. 

 

(b) The energy considerations shown above (now with h = 6R) can be applied to point Q 

(which, however, is only at a height of R) yielding the condition 

 

g R v gR6
7

10
b g  com

2  

 

which gives us v g Rcom

2  50 7 . Recalling previous remarks about the radial acceleration, 

Newton’s second law applied to the horizontal axis at Q leads to 

 

 
 

2

com 50

7

v gR
N m m

R r R r
 

 
 

which (for R r ) gives  
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4 2
250 50(2.80 10  kg)(9.80 m/s )

1.96 10  N.
7 7

mg
N




     

 

(b) The direction is toward the center of the loop. 

 

13. The physics of a rolling object usually requires a separate and very careful discussion 

(above and beyond the basics of rotation discussed in Chapter 10); this is done in the first 

three sections of Chapter 11. Also, the normal force on something (which is here the 

center of mass of the ball) following a circular trajectory is discussed in Section 6-6.  

Adapting Eq. 6-19 to the consideration of forces at the bottom of an arc, we have 

  

FN – Mg = Mv
2
/r 

 

which tells us (since we are given FN = 2Mg) that the center of mass speed (squared) is v
2
 

= gr, where r is the arc radius (0.48 m)  Thus, the ball’s angular speed (squared) is  

 

2
 = v

2
/R

2
 = gr/R

2
, 

 

where R is the ball’s radius. Plugging this into Eq. 10-5 and solving for the rotational 

inertia (about the center of mass), we find 

 

      Icom = 2MhR
2
/r – MR

2
 = MR

2
[2(0.36/0.48) – 1] . 

 

Thus, using the  notation suggested in the problem, we find   

 

 = 2(0.36/0.48) – 1 = 0.50. 

 

14. To find the center of mass speed v on the plateau, we use the projectile motion 

equations of Chapter 4.  With voy = 0 (and using “h” for h2) Eq. 4-22 gives the time-of-

flight as t = 2h/g .  Then Eq. 4-21 (squared, and using d for the horizontal displacement) 

gives v
2 

= gd
2
/2h.  Now, to find the speed vp at point P, we apply energy conservation, 

that is, mechanical energy on the plateau is equal to the mechanical energy at P. With Eq. 

11-5, we obtain  
1

2
 mv

2
 +  

1

2
 Icom 

2
 + mgh1 =  

1

2
 mvp

2
 +  

1

2
 Icom p

2
 . 

 

Using item (f) of Table 10-2, Eq. 11-2, and our expression (above) v
2 

= gd
2
/2h, we obtain 

 

gd
2
/2h + 10gh1/7 = vp

2
 

 

which yields (using the values stated in the problem) vp = 1.34 m/s. 

 

15. (a) We choose clockwise as the negative rotational sense and rightward as the 

positive translational direction. Thus, since this is the moment when it begins to roll 

smoothly, Eq. 11-2 becomes  

v Rcom m    011. .b g  
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This velocity is positive-valued (rightward) since  is negative-valued (clockwise) as 

shown in the figure. 

 

(b) The force of friction exerted on the ball of mass m is  kmg  (negative since it points 

left), and setting this equal to macom leads to 

 

a gcom

2 2m s m s      0 21 9 8 21. . .b g c h  

 

where the minus sign indicates that the center of mass acceleration points left, opposite to 

its velocity, so that the ball is decelerating. 

 

(c) Measured about the center of mass, the torque exerted on the ball due to the frictional 

force is given by    mgR . Using Table 10-2(f) for the rotational inertia, the angular 

acceleration becomes (using Eq. 10-45) 

 

  
 

2

2

2

5 0.21 9.8 m/s5
47 rad s

2 5 2 2 0.11 m

mgR g

I m R R

  


 
       

 

where the minus sign indicates that the angular acceleration is clockwise, the same 

direction as  (so its angular motion is “speeding up’’). 

 

(d) The center of mass of the sliding ball decelerates from vcom,0 to vcom during time t 

according to Eq. 2-11: v v gtcom com,0   .  During this time, the angular speed of the ball 

increases (in magnitude) from zero to   according to Eq. 10-12: 

 

 


  t
gt

R

v

R

5

2

com  

 

where we have made use of our part (a) result in the last equality. We have two equations 

involving vcom, so we eliminate that variable and find 

 

 

  
com,0

2

2 2 8.5 m/s
1.2 s.

7 7 0.21 9.8 m/s

v
t

g
    

 

(e) The skid length of the ball is (using Eq. 2-15) 

 

        
22 2

com,0

1 1
8.5 m/s 1.2 s 0.21 9.8 m/s 1.2 s 8.6 m.

2 2
x v t g t       

 

(f) The center of mass velocity at the time found in part (d) is 
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   2

com com,0 8.5 m/s 0.21 9.8 m/s 1.2 s 6.1 m/s.v v gt      

 

16. Using energy conservation with Eq. 11-5 and solving for the rotational inertia (about 

the center of mass), we find 

 

      Icom = 2MhR
2
/r – MR

2
 = MR

2
[2g(H – h)/v

2
 – 1] . 

 

Thus, using the  notation suggested in the problem, we find   

 

 = 2g(H – h)/v
2
  –  1. 

 

To proceed further, we need to find the center of mass speed v, which we do using the 

projectile motion equations of Chapter 4.  With voy = 0, Eq. 4-22 gives the time-of-flight 

as t = 2h/g .  Then Eq. 4-21 (squared, and using d for the horizontal displacement) gives 

v
2 

= gd
2
/2h.  Plugging this into our expression for  gives  

 

2g(H – h)/v
2
 – 1 = 4h(H – h)/d

2
  –  1. 

 

Therefore, with the values given in the problem, we find  = 0.25. 

 

17. THINK The yo-yo has both translational and rotational types of motion.   

 

EXPRESS The derivation of the acceleration is given by Eq. 11-13: 

 

a
g

I MR
com

com

 
1 0

2
 

 

where M is the mass of the yo-yo, cmI  is the rotational inertia and R0 is the radius of the 

axel. The positive direction is upward. The time it takes for the yo-yo to reach the end of 

the string can be found by solving the kinematic equation y a tcom com 1
2

2 . 

 

ANALYZE (a) With 2

com 950 g cm ,I    M =120 g, R0 = 0.320 cm and g = 980 cm/s
2
, we 

obtain 

    

2
2 2

com 22

980 cm/s
| | 12.5 cm/s 13 cm/s .

1 950 g cm 120 g 0.32 cm
a   

 
 

 

(b) Taking the coordinate origin at the initial position, Eq. 2-15 leads to y a tcom com 1
2

2 . 

Thus, we set ycom = – 120 cm and find 

 

 com

2

com

2 120cm2
4.38  s 4.4  s.

12.5 cm s

y
t

a


   


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(c) As the yo-yo reaches the end of the string, its center of mass velocity is given by Eq. 

2-11:  

 

   2

com com 12.5 cm s 4.38s 54.8 cm sv a t    , 

 

so its linear speed then is approximately 
com| |v 55 cm/s. 

 

(d) The translational kinetic energy of the yo-yo is  

 

  
22 2

trans com

1 1
0.120 kg 0.548 m s 1.8 10 J.

2 2
K mv      

 

(e) The angular velocity is  = – vcom/R0 , so the rotational kinetic energy is 

 
2 2

2 5 2com
rot com com 3

0

1 1 1 0.548 m s
(9.50 10 kg m )

2 2 2 3.2 10 m

1.393 J 1.4 J

v
K I I

R
 



   
       

  
 

 

 

(f) The angular speed is  

 

com 2

3

0

0.548 m/s
1.7 10 rad/s

3.2 10 m

v

R



   


 27rev s . 

 

LEARN As the yo-yo rolls down, its gravitational potential energy gets converted into 

both translational kinetic energy as well as rotational kinetic energy of the wheel. To 

show that the total energy remains conserved, we note that the initial energy is 

 

 2(0.120 kg)(9.80 m/s )(1.20 m) 1.411 Ji iU Mgy    

 

which is equal to the sum of transK  (= 0.018 J) and rotK  (= 1.393 J).   

 

18. (a) The derivation of the acceleration is found in § 11-4; Eq. 11-13 gives 

 

a
g

I MR
com

com

 
1 0

2
 

 

where the positive direction is upward. We use 2

com / 2I MR  where the radius is R = 

0.32 m and M = 116 kg is the total mass (thus including the fact that there are two disks) 

and obtain 

 
22 2

0 0
1 ( / 2) 1 / / 2

g g
a

MR MR R R
  

 
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which yields a = –g/51 upon plugging in R0 = R/10 = 0.032 m. Thus, the magnitude of the 

center of mass acceleration is 0.19 m/s
2
.  

 

(b) As observed in §11-4, our result in part (a) applies to both the descending and the 

rising yo-yo motions. 

 

(c) The external forces on the center of mass consist of the cord tension (upward) and the 

pull of gravity (downward). Newton’s second law leads to 

 

T Mg ma T M g
g

    
F
HG
I
KJ51

 = 1.1  10
3
 N. 

 

(d) Our result in part (c) indicates that the tension is well below the ultimate limit for the 

cord. 

 

(e) As we saw in our acceleration computation, all that mattered was the ratio R/R0 (and, 

of course, g). So if it’s a scaled-up version, then such ratios are unchanged and we obtain 

the same result. 

 

(f) Since the tension also depends on mass, then the larger yo-yo will involve a larger 

cord tension. 

 

19. If we write 

r x y z   i + j + k,  then (using Eq. 3-30) we find 

 
r F  is equal to 

 

yF zF zF xF xF yFz y x z y x  d i b g d i  i + j + k.  

 

With (using SI units) x = 0, y = – 4.0, z = 5.0, Fx = 0, Fy = –2.0, and  Fz = 3.0 (these latter 

terms being the individual forces that contribute to the net force), the expression above 

yields 
ˆ( 2.0N m)i.r F       

 

20. If we write 

r x y z    i j k,  then (using Eq. 3-30) we find 

 
r F  is equal to 

 

yF zF zF xF xF yFz y x z y x    d i b g d i  .i j k  

 

(a) In the above expression, we set (with SI units understood) x = –2.0, y = 0, z = 4.0, Fx 

= 6.0, Fy = 0, and Fz = 0. Then we obtain ˆ(24N m)j.r F      

 

(b) The values are just as in part (a) with the exception that now Fx = –6.0. We find 
ˆ( 24N m)j.r F       

 

(c) In the above expression, we set x = –2.0, y = 0, z = 4.0, Fx = 0, Fy = 0, and Fz = 6.0. 

We get  ˆ(12N m)j.r F      



 

  

535 

 

(d) The values are just as in part (c) with the exception that now Fz = –6.0. We find 
ˆ( 12N m)j.r F       

 

21. If we write 

r x y z    i j k,  then (using Eq. 3-30) we find 

 
r F  is equal to 

 

yF zF zF xF xF yFz y x z y x    d i b g d i  .i j k  

 

(a) In the above expression, we set (with SI units understood) x = 0, y = – 4.0, z = 3.0, Fx 

= 2.0, Fy = 0, and  Fz = 0. Then we obtain  

 

 ˆ ˆ6.0j 8.0k N m.r F       

 

This has magnitude 2 2(6.0 N m) (8.0 N m) 10 N m     and is seen to be parallel to 

the yz plane. Its angle (measured counterclockwise from the +y direction) is 

tan .  1 8 6 53b g  

 

(b) In the above expression, we set x = 0, y = – 4.0, z = 3.0, Fx = 0, Fy = 2.0, and Fz = 4.0. 

Then we obtain ˆ( 22N m)i.r F       The torque has magnitude 22 N m  and points in 

the –x direction. 

 

22. Equation 11-14 (along with Eq. 3-30) gives 

 

r F    = 4.00i
^
  +(12.0 + 2.00Fx)j

^
 + (14.0 + 3.00Fx)k

^
  

 

with SI units understood. Comparing this with the known expression for the torque (given 

in the problem statement), we see that Fx must satisfy two conditions:  

 

12.0 + 2.00Fx = 2.00   and  14.0 + 3.00Fx = –1.00. 

 

The answer (Fx = –5.00 N) satisfies both conditions. 

 

23. We use the notation 

r  to indicate the vector pointing from the axis of rotation 

directly to the position of the particle. If we write 

      r x y z  i j k,  then (using Eq.  

3-30) we find 
 
 r F  is equal to 

 

          y F z F z F x F x F y Fz y x z y xd i b g d i  i j k.  

 

(a) Here, 
 
 r r .  Dropping the primes in the above expression, we set (with SI units 

understood) x = 0, y = 0.5, z = –2.0, Fx = 2.0, Fy = 0, and Fz = –3.0. Then we obtain  
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 ˆ ˆ ˆ1.5i 4.0j 1.0k N m.r F         

 

(b) Now 
  
  r r ro where 

o
ˆ ˆ2.0i 3.0k.r    Therefore, in the above expression, we set 

2.0, 0.5, 1.0, 2.0, 0x yx y z F F       , and 3.0.zF    Thus, we obtain  

 

 ˆ ˆ ˆ1.5i 4.0 j 1.0k N m.r F          

 

24. If we write 

      r x y z  i j k,  then (using Eq. 3-30) we find 

 
 r F  is equal to 

 

          y F z F z F x F x F y Fz y x z y xd i b g d i  .i j k  

 

(a) Here, 
 
 r r  where  ˆ ˆ ˆ3.0i 2.0j 4.0k,r     and 

 
F F 1.  Thus, dropping the prime in 

the above expression, we set (with SI units understood) x = 3.0, y = –2.0, z = 4.0, Fx = 3.0, 

Fy = –4.0, and Fz = 5.0. Then we obtain   

 
  
      r F1 6 0 30 6 0.  .  . i j k N m.e j  

 

(b) This is like part (a) but with 
 
F F 2 .  We plug in Fx = –3.0, Fy = –4.0, and Fz =  –5.0 

and obtain   
  
      r F2 26 30 18 .  i j k N m.e j  

 

(c) We can proceed in either of two ways. We can add (vectorially) the answers from 

parts (a) and (b), or we can first add the two force vectors and then compute 
   
   r F F1 2d i  (these total force components are computed in the next part). The result 

is 

   1 2
ˆ ˆ32i 24k N m.r F F        

 

(d) Now 
  
  r r ro  where o

ˆ ˆ ˆ3.0i 2.0j 4.0k.r     Therefore, in the above expression, we 

set 0, 4.0, 0,x y z      and 

3.0 3.0 0

4.0 4.0 8.0

5.0 5.0 0.

x

y

z

F

F

F

  

  

  

 

We get 
   
     r F F1 2 0d i .  

 

25. THINK We take the cross product of r  and F  to find the torque   on a particle. 
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EXPRESS If we write ˆ ˆ ˆi j kr x y z    and ˆ ˆ ˆi j k,x y zF F F F    then (using Eq. 3-30) 

the general expression for torque can be written as  

 

     ˆ ˆ ˆi j k.z y x z y xr F yF zF zF xF xF yF          

 

ANALYZE (a) With ˆ ˆ(3.0 m)i (4.0 m)jr    and ˆ ˆ( 8.0 N)i (6.0 N)jF    , we have 

 

      ˆ ˆ3.0m 6.0N 4.0m 8.0N k (50N m) k.         

 

(b) To find the angle   between 

r  and 


F , we use Eq. 3-27: | | sinr F rF   . Now 

r x y  2 2 50. m  and F F Fx y  2 2 10 N.  Thus,  

 

rF   50 10 50. m N N m,b gb g  

 

the same as the magnitude of the vector product calculated in part (a). This implies sin  

= 1 and = 90°.  

 

LEARN Our result (= 90°) implies that 

r  and 


F  are perpendicular to each other.  A 

useful check is to show that their dot product is zero. This is indeed the case: 

 

ˆ ˆ ˆ ˆ[(3.0 m)i (4.0 m)j] [( 8.0 N)i (6.0 N) j]

(3.0 m)( 8.0 N) (4.0 m)(6.0 N) 0.

r F     

   
 

 

26. We note that the component of 

v  perpendicular to 


r  has magnitude v sin  where 

= 30°. A similar observation applies to 

F . 

 

(a) Eq. 11-20 leads to  

    23.0 m 2.0 kg 4.0 m/s sin30 12 kg m s.rmv      

 

(b) Using the right-hand rule for vector products, we find 
 
r p  points out of the page, or 

along the +z axis, perpendicular to the plane of the figure. 

 

(c) Similarly, Eq. 10-38 leads to 

  

  2sin 3.0 m 2.0 N sin 30 3.0N m.rF      

 

(d) Using the right-hand rule for vector products, we find 
 
r F  is also out of the page, or 

along the +z axis, perpendicular to the plane of the figure. 
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27. THINK We evaluate the cross product mr v  to find the angular momentum  

on the object, and the cross product of r F  for the torque  . 

 

EXPRESS Let ˆ ˆ ˆi j kr x y z    be the position vector of the object, ˆ ˆ ˆi j kx y zv v v v    its 

velocity vector, and m its mass. The cross product of r  and v  is (using Eq. 3-30) 

 

     ˆ ˆ ˆi j k.z y x z y xr v yv zv zv xv xv yv        

 

Since only the x and z components of the position and velocity vectors are nonzero (i.e., 

0 and 0yy v  ), the above expression becomes 
 
r v xv zvz z   b g j.  As for the torque, 

writing ˆ ˆ ˆi j k,x y zF F F F    we find 
 
r F  to be 

 

     ˆ ˆ ˆi j k.z y x z y xr F yF zF zF xF xF yF          

 

ANALYZE (a) With ˆ ˆ(2.0 m)i (2.0 m)kr   and ˆ ˆ( 5.0 m/s)i (5.0 m/s)k,v     in 

unit-vector notation, the angular momentum of the object is 

 

           ˆ ˆj 0.25 kg 2.0 m 5.0 m s 2.0 m 5.0 m s j 0.z xm xv zv          

 

(b) With x = 2.0 m, z = –2.0 m, Fy = 4.0 N and all other components zero, the expression 

above yields  
ˆ ˆ(8.0 N m)i (8.0 N m)k .r F        

 

LEARN The fact that 0  implies that r  and v  are parallel to each other ( 0r v  ). 

Using | | sinr F rF    , we find the angle between 

r  and 


F  to be 

 

8 2 N m
sin 1 90

(2 2 m)(4.0 N)rF


 


       

 

That is, 

r  and 


F  are perpendicular to each other.  

 

28. If we write 

      r x y z  i j k,  then (using Eq. 3-30) we find 

 
 r v  is equal to 

 

          y v z v z v x v x v y vz y x z y xd i b g d i  .i j k  

 

(a) Here, r r   where ˆ ˆ3.0i 4.0j.r    Thus, dropping the primes in the above expression, 

we set (with SI units understood) 3.0, 4.0, 0, 30, 60x yx y z v v     , and vz = 0. Then 

(with m = 2.0 kg) we obtain  
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  2 2 ˆ(6.0 10 kg m s)k.m r v      

 

(b) Now 
  
  r r ro  where 

o
ˆ ˆ2.0i 2.0j.r    Therefore, in the above expression, we set 

5.0, 2.0, 0, 30, 60x yx y z v v       , and vz  0 . We get   

 

  2 2 ˆ(7.2 10 kg m s)k.m r v       

 

29. For the 3.1 kg particle, Eq. 11-21 yields  

 

    2

1 1 1 2.8 m 3.1kg 3.6 m/s 31.2 kg m s.r mv     

 

Using the right-hand rule for vector products, we find this 
 
r p1 1b g  is out of the page, or 

along the +z axis, perpendicular to the plane of Fig. 11-41. And for the 6.5 kg particle, we 

find 

    2

2 2 2 1.5 m 6.5 kg 2.2 m/s 21.4 kg m s.r mv     

 

And we use the right-hand rule again, finding that this 
 
r p2 2b g  is into the page, or in 

the –z direction.  

 

(a) The two angular momentum vectors are in opposite directions, so their vector sum is 

the difference of their magnitudes: L     1 2 9 8. .kg m s2  

 

(b) The direction of the net angular momentum is along the +z axis. 

 

30. (a) The acceleration vector is obtained by dividing the force vector by the (scalar) 

mass:  

 a  


  = F 


/m = (3.00 m/s
2
)i
^
 – (4.00 m/s

2
)j
^
 + (2.00 m/s

2
)k

^
. 

 

(b) Use of Eq. 11-18 leads directly to  

 

L 


 =  (42.0 kg
.
m

2
/s)i

^
 + (24.0 kg

.
m

2
/s)j

^
 + (60.0 kg

.
m

2
/s)k

^
. 

 

(c) Similarly, the torque is  

 

r F    = (–8.00 N m )i
^
 – (26.0 N m )j

^
 – (40.0 N m )k

^
. 

 

(d) We note (using the Pythagorean theorem) that the magnitude of the velocity vector is 

7.35 m/s and that of the force is 10.8 N.  The dot product of these two vectors is  

 v  
 .

F 


 = – 48 (in SI units).  Thus, Eq. 3-20 yields  



 = cos
1

[48.0/(7.35 10.8)] = 127. 
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31. (a) Since the speed is (momentarily) zero when it reaches maximum height, the 

angular momentum is zero then. 

 

(b) With the convention (used in several places in the book) that clockwise sense is to be 

associated with the negative sign, we have L = – r m v  where r = 2.00 m, m = 0.400 kg, 

and v is given by free-fall considerations (as in Chapter 2). Specifically, ymax is 

determined by Eq. 2-16 with the speed at max height set to zero; we find ymax = vo
2
/2g 

where vo = 40.0 m/s. Then with y = 
1

2
 ymax, Eq. 2-16 can be used to give v = vo / 2 .  In this 

way we arrive at L = –22.6 2kg m /s . 

 

(c) As mentioned in the previous part, we use the minus sign in writing  = – rF with the 

force F being equal (in magnitude) to mg.  Thus,  = –7.84 N m . 

 

(d) Due to the way r  is defined it does not matter how far up the ball is.  The answer is 

the same as in part (c),  = –7.84 N m . 

 

32. The rate of change of the angular momentum is 

 

1 2
ˆ ˆ(2.0 N m)i (4.0 N m)j.

d

dt
        

 

Consequently, the vector d dt

  has a magnitude  

22(2.0 N m) 4.0 N m 4.5N m       

and is at an angle  (in the xy plane, or a plane parallel to it) measured from the positive x 

axis, where     

1 4.0 N m
tan 63

2.0 N m
    
    

 
, 

 

the negative sign indicating that the angle is measured clockwise as viewed “from above” 

(by a person on the z  axis). 

 

33. THINK We evaluate the cross product mr v  to find the angular momentum  

on the particle, and the cross product of r F  for the torque  . 

 

EXPRESS Let ˆ ˆ ˆi j kr x y z    be the position vector of the object, ˆ ˆ ˆi j kx y zv v v v    its 

velocity vector, and m its mass. The cross product of r  and v  is 

 

     ˆ ˆ ˆi j k.z y x z y xr v yv zv zv xv xv yv        

 

The angular momentum is given by the vector product mr v  . As for the torque, 

writing ˆ ˆ ˆi j k,x y zF F F F    then we find 
 
r F  to be 
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     ˆ ˆ ˆi j k.z y x z y xr F yF zF zF xF xF yF          

 

ANALYZE (a) Substituting m = 3.0 kg, x = 3.0 m, y = 8.0 m, z = 0, vx = 5.0 m/s, 

6.0 m/syv    and vz = 0 into the above expression, we obtain 

 

  2ˆ ˆ3.0 kg [(3.0 m)( 6.0 m/s) (8.0 m)(5.0 m/s)]k ( 174 kg m s)k.       

 

(b) Given that 

r x y  i j  and 


F Fx i , the corresponding torque is 

 

   ˆ ˆ ˆ ˆi j i k.x xx y F yF        

 

Substituting the values given, we find  

 

   ˆ ˆ8.0m 7.0N k (56N m)k.      

 

(c) According to Newton’s second law 
 

  d dt ,  so the rate of change of the angular 

momentum is 56 kg m
2
/s

2
, in the positive z direction. 

 

LEARN The direction of  is in the z-direction, which is perpendicular to both r  and 

v . Similarly, the torque   is perpendicular to both r  and F (i.e,   is in the direction 

normal to the plane formed by r  and F ). 

 

34. We use a right-handed coordinate system with k  directed out of the xy plane so as to 

be consistent with counterclockwise rotation (and the right-hand rule). Thus, all the 

angular momenta being considered are along the – k  direction; for example, in part (b) 
  4 0 2. t k  in SI units. We use Eq. 11-23. 

 

(a) The angular momentum is constant so its derivative is zero. There is no torque in this 

instance. 

 

(b) Taking the derivative with respect to time, we obtain the torque: 

 

 
2

ˆ ˆ4.0k ( 8.0  N m)k
d dt

t
dt dt

       . 

 

This vector points in the – k  direction (causing the clockwise motion to speed up) for all t 

> 0. 

 

(c) With ˆ( 4.0 )kt   in SI units, the torque is 
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    1 2.0ˆ ˆ ˆ4.0k 4.0k k N m
2

d t

dt t t


   
         

   
. 

 

This vector points in the – k  direction (causing the clockwise motion to speed up) for all t 

> 0 (and it is undefined for t < 0). 

 

(d) Finally, we have 

   
2

3 3

2 8.0ˆ ˆ ˆ4.0k 4.0k k N m.
dt

dt t t


    
        

   
 

 

This vector points in the + k  direction (causing the initially clockwise motion to slow 

down) for all t > 0. 

 

35. (a) We note that  

d r
v

dt
 = 8.0t i

^
  – (2.0 + 12t)j

^
  

 

with SI units understood.  From Eq. 11-18 (for the angular momentum) and Eq. 3-30, we 

find the particle’s angular momentum is 8t
2
k
^
 . Using Eq. 11-23 (relating its time-

derivative to the (single) torque) then yields 


 = (48t k
^
) N m . 

 

(b) From our (intermediate) result in part (a), we see the angular momentum increases in 

proportion to t
2
. 

 

36. We relate the motions of the various disks by examining their linear speeds (using Eq. 

10-18).  The fact that the linear speed at the rim of disk A must equal the linear speed at 

the rim of disk C leads to A = 2C . The fact that the linear speed at the hub of disk A 

must equal the linear speed at the rim of disk B leads to A = 
1

2
 B .  Thus, B = 4C .  The 

ratio of their angular momenta depend on these angular velocities as well as their 

rotational inertias (see item (c) in Table 11-2), which themselves depend on their masses.  

If h is the thickness and is the density of each disk, then each mass is R
2
h.  Therefore, 

 

LC

LB
  = 

(½)RC 

2
 h RC 

2
 C

(½)RB 

2
 h RB 

2
B

  = 1024. 

 

37. (a) A particle contributes mr2 to the rotational inertia. Here r is the distance from the 

origin O to the particle. The total rotational inertia is 

 

     
2 2 2 2 2 2

3 2

3 2 14 14(2.3 10 kg)(0.12 m)

4.6 10  kg m .

I m d m d m d md 



     

  
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(b) The angular momentum of the middle particle is given by Lm = Im, where Im = 4md 
2
 

is its rotational inertia. Thus  

 

 2 2 2 3 24 4(2.3 10 kg)(0.12 m) (0.85 rad/s) 1.1 10  kg m /s.mL md          

 

(c) The total angular momentum is  

 

 2 2 2 3 214 14(2.3 10 kg)(0.12 m) (0.85 rad/s) 3.9 10  kg m /s.I md          

 

38. (a) Equation 10-34 gives  = /I and Eq. 10-12 leads to  = t = t/I. Therefore, the 

angular momentum at t = 0.033 s is 

 

   216N m 0.033s 0.53kg m sI t       

 

where this is essentially a derivation of the angular version of the impulse-momentum 

theorem. 

 

(b) We find 

  
3 2

16 N m 0.033 s
440rad/s

1.2 10 kg m

t

I







  

 
 

which we convert as follows:  

 

 = (440 rad/s)(60 s/min)(1 rev/2rad)  4.2 ×10
3
 rev/min. 

 

39. THINK A non-zero torque is required to change the angular momentum of the 

flywheel. We analyze the rotational motion of the wheel using the equations given in 

Table 10-1.  

 

EXPRESS Since the torque is equal to the rate of change of angular momentum,  = 

dL/dt, the average torque acting during any interval t  is simply given by 

 avg  L L tf id i  ,  where Li is the initial angular momentum and Lf is the final angular 

momentum. For uniform angular acceleration, the angle turned is 2

0 / 2t t    , and 

the work done on the wheel is W  . 

 

ANALYZE (a) Substituting the values given, the average torque is  

 
2 2

avg

(0.800 kg m s) (3.00 kg m s)
1.47 N m

1.50 s

f iL L

t


   
   


, 

 

or avg| | 1.47 N m   . In this case the negative sign indicates that the direction of the 

torque is opposite the direction of the initial angular momentum, implicitly taken to be 

positive. 



  CHAPTER 11 544 

 

(b) If the angular acceleration  is uniform, so is the torque and  = /I. Furthermore, 0 

= Li/I, and we obtain 

 

     
222

2

3.00kg m s 1.50 s 1.467 N m 1.50 s / 2/ 2
20.4rad.

0.140kg m

iLt t

I




   
  


 

 

(c) Using the values of  and  found above, we find the work done on the wheel to be 

 

  1.47 N m 20.4rad 29.9 J.W        

 

(d) The average power is the work done by the flywheel (the negative of the work done 

on the flywheel) divided by the time interval: 

 

avg

29.9 J
19.9W.

1.50s

W
P

t


    


 

 

LEARN An alternative way to calculate the work done on the wheel is to apply the 

work-kinetic energy theorem: 

 

2 2 2 2

2 21 1
( )

2 2 2

f f ii
f i f i

L L LL
W K K K I I

I I I
 

     
            

    

 

Substituting the values given, we have 

 
2 2 2 2 2 2

2

(0.800 kg m s) (3.00 kg m s)
29.9 J

2 2(0.140kg m )

f iL L
W

I

   
  


 

 

which agrees with that calculated in part (c). 

 

40. Torque is the time derivative of the angular momentum. Thus, the change in the 

angular momentum is equal to the time integral of the torque. With 

(5.00 2.00 ) N mt    , the angular momentum (in units 2kg m /s ) as a function of time 

is  

 2

0( ) (5.00 2.00 ) 5.00 1.00L t dt t dt L t t       . 

 

Since 25.00 kg m /sL    when 1.00 st  , the integration constant is 0 1L   . Thus, the 

complete expression of the angular momentum is  

 
2( ) 1 5.00 1.00L t t t    . 

 

At 3.00 st  , we have 2 2( 3.00) 1 5.00(3.00) 1.00(3.00) 23.0 kg m /s.L t         
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41. (a) For the hoop, we use Table 10-2(h) and the parallel-axis theorem to obtain 

 

I I mh mR mR mR1

2 2 2 21

2

3

2
    com .  

 

Of the thin bars (in the form of a square), the member along the rotation axis has 

(approximately) no rotational inertia about that axis (since it is thin), and the member 

farthest from it is very much like it (by being parallel to it) except that it is displaced by a 

distance h; it has rotational inertia given by the parallel axis theorem: 

 

I I mh mR mR2

2 2 20    com .  

 

Now the two members of the square perpendicular to the axis have the same rotational 

inertia (that is I3 = I4). We find I3 using Table 10-2(e) and the parallel-axis theorem: 

 

I I mh mR m
R

mR3

2 2

2

21

12 2

1

3
   

F
HG
I
KJ com .  

Therefore, the total rotational inertia is 

 

I I I I mR1 2 3 4

219

6
16     . .kg m2  

(b) The angular speed is constant: 




  


t

2

2 5
2 5


.

. rad s.  

Thus, L I  total

2kg m s. 4 0.  

 

42. The results may be found by integrating Eq. 11-29 with respect to time, keeping in 

mind that Li 
  

 = 0 and that the integration may be thought of as “adding the areas” under 

the line-segments (in the plot of the torque versus time, with “areas” under the time axis 

contributing negatively). It is helpful to keep in mind, also, that the area of a triangle is 
1

2
 

(base)(height). 

 

(a) We find that L 


 =  24 2kg m / s  at t = 7.0 s. 

 

(b) Similarly, L 


 = 1.5 2kg m / s  at t = 20 s.   

 

43. We assume that from the moment of grabbing the stick onward, they maintain rigid 

postures so that the system can be analyzed as a symmetrical rigid body with center of 

mass midway between the skaters. 

 

(a) The total linear momentum is zero (the skaters have the same mass and equal and 

opposite velocities). Thus, their center of mass (the middle of the 3.0 m long stick) 

remains fixed and they execute circular motion (of radius r = 1.5 m) about it.  
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(b) Using Eq. 10-18, their angular velocity (counterclockwise as seen in Fig. 11-47) is 

 

1.4 m/s
0.93 rad/s.

1.5 m

v

r
     

 

(c) Their rotational inertia is that of two particles in circular motion at r = 1.5 m, so Eq. 

10-33 yields 

  
22 22 50 kg 1.5 m 225 kg m .I mr     

 

Therefore, Eq. 10-34 leads to 

 

  
22 21 1

225 kg m 0.93rad/s 98 J.
2 2

K I     

 

(d) Angular momentum is conserved in this process. If we label the angular velocity 

found in part (a)  i  and the rotational inertia of part (b) as Ii, we have 

 

  2225 kg m 0.93rad/s .i i f fI I     

 

The final rotational inertia is mrf

2  where rf = 0.5 m so 225 kg m .fI    Using this 

value, the above expression gives  f  8 4. rad s.  

 

(e) We find 

  
22 2 21 1

25 kg m 8.4rad/s 8.8 10 J.
2 2

f f fK I       

 

(f) We account for the large increase in kinetic energy (part (e) minus part (c)) by noting 

that the skaters do a great deal of work (converting their internal energy into mechanical 

energy) as they pull themselves closer — “fighting” what appears to them to be large 

“centrifugal forces” trying to keep them apart. 

 

44. So that we don’t get confused about ± signs, we write the angular speed to the lazy 

Susan as   and reserve the  symbol for the angular velocity (which, using a common 

convention, is negative-valued when the rotation is clockwise). When the roach “stops” 

we recognize that it comes to rest relative to the lazy Susan (not relative to the ground). 

 

(a) Angular momentum conservation leads to 

 

mvR I mR I f   0

2c h  

 

which we can write (recalling our discussion about angular speed versus angular velocity) 

as 
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mvR I mR I f    0

2c h .  

 

We solve for the final angular speed of the system: 

 
3 2

0

2 3 2 2

| | (0.17 kg)(2.0 m/s)(0.15 m) (5.0 10  kg m )(2.8 rad/s)
| |

(5.0 10  kg m ) (0.17 kg)(0.15 m)

      4.2 rad/s.

f

mvR I

mR I








   
 

   



 

 

(b) No, K Kf i  and — if desired — we can solve for the difference: 

 

K K
mI v R Rv

mR I
i f 

 

2

22

0

2 2

0

2

 
 

 

which  is clearly positive. Thus, some of the initial kinetic energy is “lost” — that is, 

transferred to another form. And the culprit is the roach, who must find it difficult to stop 

(and “internalize” that energy). 

 

45. THINK No external torque acts on the system consisting of the man, bricks, and 

platform, so the total angular momentum of the system is conserved.  

 

EXPRESS Let Ii be the initial rotational inertia of the system and let If be the final 

rotational inertia. Then Iii = Iff  by angular momentum conservation. The kinetic 

energy (of rotational nature) is given by 2 / 2.K I    

 

ANALYZE (a) The final angular momentum of the system is 

 

  
2

2

6.0 kg m
1.2rev s 3.6rev s.

2.0 kg m

i
f i

f

I

I
 

   
         

 

 

(b) The initial kinetic energy is K Ii i i
1

2

2 ,  and the final kinetic energy is 

K If f f
1

2

2 ,  so that their ratio is 

  

  

222

22 2

2.0kg m 3.6rev s / 2/ 2
3.0.

/ 2 6.0kg m 1.2rev s / 2

f f f

i i i

K I

K I






  


 

 

(c) The man did work in decreasing the rotational inertia by pulling the bricks closer to 

his body. This energy came from the man’s internal energy. 

 

LEARN The work done by the person is equal to the change in kinetic energy: 
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2 2 23 2 (6.0kg m )(2 1.2rad s) 341 Jf i i i i i iW K K K K K I           . 

 

46. Angular momentum conservation I Ii i f f   leads to 






f

i

i

f

i

I

I
  3  

which implies 
22

2

/ 2
3.

/ 2

f f f f f

i i i i i

K I I

K I I

 

 

 
   

 
 

 

47. THINK No external torque acts on the system consisting of the train and wheel, so 

the total angular momentum of the system (which is initially zero) remains zero.  

 

EXPRESS Let I = MR
2
 be the rotational inertia of the wheel (which we treat as a hoop). 

Its angular momentum is  
2

wheel
ˆ ˆ( )k k,L I M R     

 

where k  is up in Fig. 11-48 and that last step (with the minus sign) is done in recognition 

that the wheel’s clockwise rotation implies a negative value for . The linear speed of a 

point on the track is R and the speed of the train (going counterclockwise in Fig. 11-

48 with speed v  relative to an outside observer) is therefore   v v R  where v is its 

speed relative to the tracks. Consequently, the angular momentum of the train is 

 train k̂ .L m v R R   Conservation of angular momentum yields 

 

 2

wheel train
ˆ ˆ0 k kL L MR m v R R        

 

which we can use to solve for  . 

 

ANALYZE Solving for the angular speed, the result is 

 

   2

0.15 m/s
| | 0.17 rad/s.

/ 1 (1.1 1)(0.43 m)

mvR v

M m R M m R
    

  
 

 

LEARN By angular momentum conservation, we must have wheel train ,L L   which 

means that train and the wheel must have opposite senses of rotation.  

 

48. Using Eq. 11-31 with angular momentum conservation, Li 
  

 = Lf 
  

 (Eq. 11-33) leads to 

the ratio of rotational inertias being inversely proportional to the ratio of angular 

velocities.  Thus, If /Ii = 6/5 = 1.0 + 0.2.  We interpret the “1.0” as the ratio of disk 

rotational inertias (which does not change in this problem) and the “0.2” as the ratio of 

the roach rotational inertial to that of the disk.  Thus, the answer is 0.20. 
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49. (a) We apply conservation of angular momentum:   

 

I11 + I22 = (I1 + I2). 

 

The angular speed after coupling is therefore 

 

     2 2

1 1 2 2

2 2

1 2

3.3kg m 450 rev min 6.6kg m 900 rev min

3.3kg m 6.6kg m

750 rev min.

I I

I I

 


  
 

   



 

 

(b) In this case, we obtain 

 

     2 2

1 1 2 2

2 2

1 2

3.3 kg m 450 rev/min 6.6 kg m 900 rev/min

3.3 kg m 6.6 kg m

450 rev min

I I

I I

 


   
 

   

 

 

 

or | | 450 rev min  . 

 

(c) The minus sign indicates that 

  is clockwise, that is, in the direction of the second 

disk’s initial angular velocity. 

 

50. We use conservation of angular momentum:  

 

Imm = Ipp. 

 

The respective angles m and p by which the motor and probe rotate are therefore related 

by 

I dt I I dt Im m m m p p p p     z z  

which gives 




m

p p

m

I

I
 

 

 
 



12 30

2 0 10
180000

3

kg m

kg m

2

2

c hb g
.

.  

 

The number of  revolutions for the rotor is then  

 

N = (1.8  10
5
)º/(360º/rev) = 5.0  10

2
 rev. 

 

51. THINK No external torques act on the system consisting of the two wheels, so its 

total angular momentum is conserved.  
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EXPRESS Let I1 be the rotational inertia of the wheel that is originally spinning at  ib g  
and I2 be the rotational inertia of the wheel that is initially at rest. Then by angular 

momentum conservation, ,i fL L  or I I Ii f1 1 2  b g  and 

 

 f i

I

I I




1

1 2

 

 

where  f  is the common final angular velocity of the wheels.  

 

ANALYZE (a) Substituting I2 = 2I1 and  i  800 rev min,  we obtain 

 

1 1

1 2 1 1

1
(800 rev/min) (800 rev/min) 267 rev/min.

2( ) 3
f i

I I

I I I I
    

 
 

 

(b) The initial kinetic energy is K Ii i 1
2 1

2  and the final kinetic energy is 

K I If f 1
2 1 2

2b g . We rewrite this as 

K I I
I

I I
If

i
i 



F
HG

I
KJ 

1

2
2

2

1

6
1 1

1

1 1

2

2b g 
 .  

 

Therefore, the fraction lost is 

 
2

2

/ 6 2
1 1 0.667.

/ 2 3

i f f i

i i i i

K K K IK

K K K I






        

 

LEARN The situation here is analogous to the case of completely inelastic collision, in 

which some energy is lost but momentum remains conserved.    

 

52. We denote the cockroach with subscript 1 and the disk with subscript 2. The 

cockroach has a mass m1 = m, while the mass of the disk is m2 = 4.00 m. 

 

(a) Initially the angular momentum of the system consisting of the cockroach and the disk 

is 

L m v r I m R m Ri i i i   1 1 1 2 2 1 0

2

2 0

21

2
   .  

 

After the cockroach has completed its walk, its position (relative to the axis) is r Rf1 2  

so the final angular momentum of the system is 

 

L m
R

m Rf f f
F
HG
I
KJ 1

2

2

2

2

1

2
  .  

Then from Lf = Li we obtain 
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 f m R m R m R m R
1

4

1

2

1

2
1

2

2 0 1

2

2

2
F
HG

I
KJ  
F
HG

I
KJ.  

Thus, 
2 2

1 2 2 1
0 0 0 02 2

1 2 2 1

2 1 ( / ) 2 1 2
1.33 .

4 2 1/ 4 ( / ) 2 1/ 4  2
f

m R m R m m

m R m R m m
    

      
        

      
 

 

With  = 0.260 rad/s, we have f =0.347 rad/s.  

 

(b) We substitute I = L/ into K I
1

2

2  and obtain K L
1

2
 . Since we have Li = Lf, 

the kinetic energy ratio becomes 

0 0

/ 2
1.33.

/ 2

f f f

i i

LK

K L

 

 
    

 

(c) The cockroach does positive work while walking toward the center of the disk, 

increasing the total kinetic energy of the system. 

 

53. The axis of rotation is in the middle of the rod, with r = 0.25 m from either end. By 

Eq. 11-19, the initial angular momentum of the system (which is just that of the bullet, 

before impact) is rmv sin  where m = 0.003 kg and  = 60°. Relative to the axis, this is 

counterclockwise and thus (by the common convention) positive. After the collision, the 

moment of inertia of the system is  

I = Irod + mr
2
 

 

where Irod = ML
2
/12 by Table 10-2(e), with M = 4.0 kg and L = 0.5 m. Angular 

momentum conservation leads to 

 

2 21
sin .

12
rmv ML mr 

 
  
 

 

Thus, with  = 10 rad/s, we obtain 

 

       

  

2 2
1

12
3

4.0 kg 0.5 m 0.003 kg 0.25 m 10rad/s
1.3 10 m/s.

0.25 m 0.003 kg sin 60
v


  


 

 

54. We denote the cat with subscript 1 and the ring with subscript 2. The cat has a mass 

m1 = M/4, while the mass of the ring is m2 = M = 8.00 kg. The moment of inertia of the 

ring is 2 2

2 2 1 2( ) / 2I m R R   (Table 10-2), and I1 = m1r
2
 for the cat, where r is the 

perpendicular distance from the axis of rotation.  

 

Initially the angular momentum of the system consisting of the cat (at r = R2) and the ring 

is 
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2
2 2 2 2 2 1

1 1 1 2 2 1 0 2 2 1 2 0 1 2 0 2

1 2

1 1
( ) 1 1 .

2 2
i i i i

m R
L m v r I m R m R R m R

m R
   

  
         

  
 

 

After the cat has crawled to the inner edge at 
1r R  the final angular momentum of the 

system is 
2

2 2 2 2 2 2
1 1 2 1 2 1 1 2

1 1

1 1
( ) 1 1 .

2 2
f f f f

m R
L m R m R R m R

m R
  

  
       

  
 

Then from Lf = Li we obtain 

 

 

2

2 1
2 2

1 2 22

2
0 1 2 2

2

1 1

1
1 1

2 1 2(0.25 1)
(2.0) 1.273

1 2(1 4)1
1 1

2

f

m R

m RR

R m R

m R





 
  

    
   

      
 

. 

 

Thus, 01.273f  . Using  =8.00 rad/s, we have f =10.2 rad/s. By substituting I = 

L/ into 2 / 2K I , we obtain / 2K L . Since Li = Lf, the kinetic energy ratio 

becomes 

0

/ 2
1.273.

/ 2

f f f f

i i i

K L

K L

 

 
    

 

which implies 0.273f i iK K K K    . The cat does positive work while walking toward 

the center of the ring, increasing the total kinetic energy of the system. 

 

Since the initial kinetic energy is given by 

 

 

2
2 2 2 2 2 2 2 1

1 2 2 1 2 0 1 2 0 2

1 2

2 2 2

1 1 1 1
( ) 1 1

2 2 2 2

1
(2.00 kg)(0.800 m) (8.00 rad/s) [1+(1/2)(4)(0.5 +1)]

2

=143.36 J,

i

m R
K m R m R R m R

m R
 

   
        

    

  

 

the increase in kinetic energy is  

 

(0.273)(143.36 J) 39.1 J.K    

 

55. For simplicity, we assume the record is turning freely, without any work being done 

by its motor (and without any friction at the bearings or at the stylus trying to slow it 

down). Before the collision, the angular momentum of the system (presumed positive) is 

Ii i  where Ii   50 10 4. kg m2  and  i  4 7. .rad s  The rotational inertia afterward is  
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I I mRf i  2  

 

where m = 0.020 kg and R = 0.10 m. The mass of the record (0.10 kg), although given in 

the problem, is not used in the solution. Angular momentum conservation leads to 

 

I I
I

I mR
i i f f f

i i

i

  


  



2

34. rad / s.  

 

56. Table 10-2 gives the rotational inertia of a thin rod rotating about a perpendicular axis 

through its center. The angular speeds of the two arms are, respectively, 

 

1

2

(0.500 rev)(2  rad/rev)
4.49 rad/s

0.700 s

(1.00 rev)(2  rad/rev)
8.98 rad/s.

0.700 s







 

 

 

 

Treating each arm as a thin rod of mass 4.0 kg and length 0.60 m, the angular momenta 

of the two arms are 

 

 

2 2 2

1 1 1

2 2 2

2 2 2

(4.0 kg)(0.60 m) (4.49rad/s) 6.46 kg m /s

(4.0 kg)(0.60 m) (8.98rad/s) 12.92 kg m /s.

L I mr

L I mr

 

 

    

    
 

 

From the athlete’s reference frame, one arm rotates clockwise, while the other rotates 

counterclockwise. Thus, the total angular momentum about the common rotation axis 

though the shoulders is 

 
2 2 2

2 1 12.92 kg m /s 6.46 kg m /s 6.46 kg m /s.L L L         

 

57. Their angular velocities, when they are stuck to each other, are equal, regardless of 

whether they share the same central axis. The initial rotational inertia of the system is, 

using Table 10-2(c), 

0 bigdisk smalldiskI I I   

 

where 2

bigdisk / 2I MR . Similarly, since the small disk is initially concentric with the big 

one, I mrsmalldisk 
1
2

2 . After it slides, the rotational inertia of the small disk is found from 

the parallel axis theorem (using h = R – r). Thus, the new rotational inertia of the system 

is 

 
22 21 1
.

2 2
I MR mr m R r     

 

(a) Angular momentum conservation, I00 = I, leads to the new angular velocity: 
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 

2 2

0 22 2

( / 2) ( / 2)
.

( / 2) ( / 2)

MR mr

MR mr m R r
 




  
 

 

Substituting M = 10m and R = 3r, this becomes  = 0(91/99). Thus, with 0 = 20 rad/s, 

we find  = 18 rad/s. 

 

(b) From the previous part, we know that 

 

0

0

91 91
, .

99 99

I

I




   

 

Plugging these into the ratio of kinetic energies, we have 

 
2 22

2

0 0 0 0 0

/ 2 99 91
0.92.

/ 2 91 99

K I I

K I I

 

 

   
      

  
 

 

58. The initial rotational inertia of the system is  Ii = Idisk + Istudent,  where Idisk = 300 

kg  m
2
 (which, incidentally, does agree with Table 10-2(c)) and Istudent = mR

2
 where 

60 kgm   and R = 2.0 m.  

 

The rotational inertia when the student reaches r = 0.5 m is If = Idisk + mr
2
. Angular 

momentum conservation leads to 

I I
I mR

I mr
i i f f f i     





disk

disk

2

2
 

 

which yields, for i = 1.5 rad/s, a final angular velocity of f = 2.6 rad/s. 

 

59. By angular momentum conservation (Eq. 11-33), the total angular momentum after 

the explosion must be equal to that before the explosion: 

 

 p r p rL L L L     
 

( )
L

2
mvp +  

1

12
 ML

2  = Ip  +  
1

12
 ML

2  

 

where one must be careful to avoid confusing the length of the rod (L = 0.800 m) with the 

angular momentum symbol.  Note that Ip = m(L/2)
2
 by Eq.10-33, and  

 

 = vend/r = (vp  6)/(L/2), 

 

where the latter relation follows from the penultimate sentence in the problem (and “6” 

stands for “6.00 m/s” here). Since M = 3m and  = 20 rad/s, we end up with enough 

information to solve for the particle speed: vp = 11.0 m/s. 
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60. (a) With r = 0.60 m, we obtain I = 0.060 + (0.501)r
2
 = 0.24 kg ∙ m

2
. 

 

(b) Invoking angular momentum conservation, with SI units understood, 

 

       0 0 00.001 0.60 0.24 4.5fL mv r I v      

 

which leads to v0 = 1.8  10
3
 m/s. 

 

61. We make the unconventional choice of clockwise sense as positive, so that the 

angular velocities in this problem are positive. With r = 0.60 m and I0 = 0.12 kg ∙ m
2
, the 

rotational inertia of the putty-rod system (after the collision) is  

 

I = I0 + (0.20)r
2
 = 0.19 kg ∙ m

2
. 

 

Invoking angular momentum conservation 0 fL L  or 0 0I I  , we have 

 

  
2

0
0 2

0.12 kg m
2.4rad/s 1.5rad/s.

0.19 kg m

I

I
 


  


 

 

62. The aerialist is in extended position with 2

1 19.9 kg mI   during the first and last 

quarter of the turn, so the total angle rotated in 
1t  is 1 0.500 rev.   In 2t  he is in a tuck 

position with 2

2 3.93 kg mI   , and the total angle rotated is 2 3.500 rev.   Since there 

is no external torque about his center of mass, angular momentum is conserved, 

1 1 2 2I I  . Therefore, the total flight time can be written as 

 

 1 2 1 2 1
1 2 1 2

1 2 2 2 1 2 2 2

1
.

/

I
t t t

I I I

   
 

    

 
        

 
 

 

Substituting the values given, we find 2  to be 

 
2

1
2 1 2 2

2

1 1 19.9 kg m
(0.500 rev) 3.50 rev 3.23 rev/s.

1.87 s 3.93 kg m

I

t I
  

   
       

  
 

 

63. This is a completely inelastic collision, which we analyze using angular momentum 

conservation. Let m and v0 be the mass and initial speed of the ball and R the radius of the 

merry-go-round. The initial angular momentum is 

 

 
0 0 0 0 0 cos37r p R mv      

 

where = 37° is the angle between

v0 and the line tangent to the outer edge of the merry-

go-around. Thus, 0 19 kg m s2 . Now, with SI units understood, 
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     2 2 2

0 19 kg m 150 30 1.0fL I R R         

so that  = 0.070 rad/s. 

 

64. We treat the ballerina as a rigid object rotating around a fixed axis, initially and then 

again near maximum height. Her initial rotational inertia (trunk and one leg extending 

outward at a 90  angle) is  

 

 2 2 2

trunk leg 0.660 kg m 1.44 kg m 2.10 kg m .iI I I         

 

Similarly, her final rotational inertia (trunk and both legs extending outward at a 30    

angle) is  

 

 2 2 2 2 2

trunk leg2 sin 0.660 kg m 2(1.44 kg m )sin 30 1.38 kg m ,fI I I           

 

where we have used the fact that the effective length of the extended leg at an angle θ is 

sinL L    and 2 .I L Once airborne, there is no external torque about the ballerina’s  

center of mass  and her angular momentum cannot change. Therefore, i fL L  or 

i i f fI I  , and the ratio of the angular speeds is 

 
2

2

2.10 kg m
1.52.

1.38 kg m

f i

i f

I

I






  


 

 

65. THINK If we consider a short time interval from just before the wad hits to just after 

it hits and sticks, we may use the principle of conservation of angular momentum. The 

initial angular momentum is the angular momentum of the falling putty wad.  

 

EXPRESS The wad initially moves along a line that is d/2 distant from the axis of 

rotation, where d is the length of the rod. The angular momentum of the wad is mvd/2 

where m and v are the mass and initial speed of the wad. After the wad sticks, the rod has 

angular velocity  and angular momentum I, where I is the rotational inertia of the 

system consisting of the rod with the two balls (each having a mass M) and the wad at its 

end. Conservation of angular momentum yields mvd/2 = I where I = (2M + m)(d/2)
2
 . 

The equation allows us to solve for .  

 

ANALYZE (a) With M = 2.00 kg, d = 0.500 m, m = 0.0500 kg, and v = 3.00 m/s, we find 

the angular speed to be 

 

  

   

2 0.0500 kg 3.00 m/s2

2 2 2 2.00 kg 0.0500 kg 0.500 m

0.148 rad s.

mvd mv

I M m d
   

 


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(b) The initial kinetic energy is K mvi 
1
2

2 ,  the final kinetic energy is K If 
1
2

2 ,  and 

their ratio is  

K K I mvf i   2 2 .  

 

When I M m d 2 42b g  and   2 2mv M m db g  are substituted, the ratio becomes 

 

 
0.0500 kg

0.0123.
2 2 2.00 kg 0.0500 kg

f

i

K m

K M m
  

 
 

 

(c) As the rod rotates, the sum of its kinetic and potential energies is conserved. If one of 

the balls is lowered a distance h, the other is raised the same distance and the sum of the 

potential energies of the balls does not change. We need consider only the potential 

energy of the putty wad. It moves through a 90° arc to reach the lowest point on its path, 

gaining kinetic energy and losing gravitational potential energy as it goes. It then swings 

up through an angle , losing kinetic energy and gaining potential energy, until it 

momentarily comes to rest. Take the lowest point on the path to be the zero of potential 

energy. It starts a distance d/2 above this point, so its initial potential energy is 

( / 2)iU mg d . If it swings up to the angular position , as measured from its lowest 

point, then its final height is (d/2)(1 – cos ) above the lowest point and its final potential 

energy is  

U mg df  2 1b gb gcos .  

 

The initial kinetic energy is the sum of that of the balls and wad:  

 

  
22 21 1

2 2 .
2 2

iK I M m d     

 

At its final position, we have Kf = 0. Conservation of energy provides the relation: 

 

   
2

21
2 1 cos .

2 2 2 2
i i f f

d d d
U K U K mg M m mg 

 
        

 
 

 

When this equation is solved for cos , the result is 

 

 
 

  
 

2

2

2

1 2
cos

2 2

2 2.00 kg 0.0500 kg1 0.500 m
0.148 rad s

2 20.0500 kg 9.8 m s

0.0226.

M m d

mg
 

   
    

  

       
  
 

 
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Consequently, the result for  is 91.3°. The total angle through which it has swung is 90° 

+ 91.3° = 181°. 

 

LEARN This problem is rather involved. To summarize, we calculated  using angular 

momentum conservation. Some energy is lost due to the inelastic collision between the 

putty wad and one of the balls. However, in the subsequent motion, energy is conserved, 

and we apply energy conservation to find the angle at which the system comes to rest 

momentarily.   

 

66. We make the unconventional choice of clockwise sense as positive, so that the 

angular velocities (and angles) in this problem are positive. Mechanical energy 

conservation applied to the particle (before impact) leads to 

 

mgh mv v gh  
1

2
22  

 

for its speed right before undergoing the completely inelastic collision with the rod. The 

collision is described by angular momentum conservation: 

 

mvd I md rod

2c h  

 

where Irod is found using Table 10-2(e) and the parallel axis theorem: 

 

I Md M
d

Mdrod  
F
HG
I
KJ 

1

12 2

1

3

2

2

2 .  

 

Thus, we obtain the angular velocity of the system immediately after the collision: 

 

2 2

2

( / 3)

md gh

Md md
 


 

 

which means the system has kinetic energy  2 2

rod / 2,I md   which will turn into 

potential energy in the final position, where the block has reached a height H (relative to 

the lowest point) and the center of mass of the stick has increased its height by H/2. From 

trigonometric considerations, we note that H = d(1 – cos), so we have 

 

  
 

 
2 2

2 2

rod 2 2

21 1
1 cos

2 2 2 ( / 3) 2

m d ghH M
I md mgH Mg m gd

Md md
 

 
       

  
 

 

from which we obtain 
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       

2
1 1

1 1

/
cos 1 cos 1

/ 2 / 3 1 / 2 1 / 3

(20 cm/ 40 cm)
cos 1 cos (0.85)

(1 1)(1 2/3)

32 .

m h h d

m M m M M m M m
  

 

   
               

 
   

  

 

 

 

67. (a) We consider conservation of angular momentum (Eq. 11-33) about the center of 

the rod: 

21
0

12
i fL L dmv ML      

 

where negative is used for “clockwise.” Item (e) in Table 11-2 and Eq. 11-21 (with r = d) 

have also been used.  This leads to 

 

d = 
ML

2 


12 m v
  =  

M(0.60 m)
2 

(80 rad/s)

12(M/3)(40 m/s)
  =  0.180 m . 

 

(b) Increasing d causes the magnitude of the negative (clockwise) term in the above 

equation to increase.  This would make the total angular momentum negative before the 

collision, and (by Eq. 11-33) also negative afterward. Thus, the system would rotate 

clockwise if d were greater. 

 

68. (a) The angular speed of the top is 30 rev/s 30(2 ) rad/s   . The precession rate of 

the top can be obtained by using Eq. 11-46: 

 

 
2

4 2

(0.50 kg)(9.8 m/s )(0.040 m)
2.08 rad/s 0.33 rev/s.

(5.0 10  kg m )(60  rad/s)

Mgr

I 
   

 
 

 

(b) The direction of the precession is clockwise as viewed from overhead. 

 

69. The precession rate can be obtained by using Eq. 11-46 with r = (11/2) cm = 0.055 m. 

Noting that Idisk = MR
2
/2 and its angular speed is 

 

22 (1000)
1000 rev/min  rad/s 1.0 10  rad/s,

60


      

we have  
2

2 2 2 2

2 2(9.8 m/s )(0.055 m)
0.041 rad/s.

( / 2) (0.50 m) (1.0 10  rad/s)

Mgr gr

MR R 
   


 

 

70. Conservation of energy implies that mechanical energy at maximum height up the 

ramp is equal to the mechanical energy on the floor. Thus, using Eq. 11-5, we have 
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2 2 2 2

com com

1 1 1 1

2 2 2 2
f fmv I mgh mv I      

 

where vf  = f = 0 at the point on the ramp where it (momentarily) stops.  We note that the 

height h relates to the distance traveled along the ramp d by h = d sin(15º).  Using item (f) 

in Table 10-2 and Eq. 11-2, we obtain 

 

 

2

2 2 2 2 21 1 2 1 1 7
sin15 .

2 2 5 2 5 10

v
mgd mv mR mv mv mv

R

  
       

  
 

 

After canceling m and plugging in d = 1.5 m, we find v = 2.33 m/s. 

 

71. THINK The applied force gives rise to a torque that causes the cylinder to rotate to 

the right at a constant angular acceleration.  

 

EXPRESS We make the unconventional choice of clockwise sense as positive, so that 

the angular acceleration is positive (as is the linear acceleration of the center of mass, 

since we take rightwards as positive). We approach this in the manner of Eq. 11-3 (pure 

rotation about point P) but use torques instead of energy. The torque (relative to point P) 

is PI  , where 

2 2 21 3

2 2
PI MR MR MR    

 

with the use of the parallel-axis theorem and Table 10-2(c). The torque is due to the appF  

force and can be written as app (2 )F R  . In this way, we find 

 

2

app

3
2

2
PI MR RF  

 
   

 
. 

 

The equation allows us to solve for the angular acceleration , which is related to the 

acceleration of the center of mass as com /a R  . 

 

ANALYZE (a) With 10 kgM  , R = 0.10 m and app 12 N,F   we obtain 

 

 2

app app 2

com 2

2 4 4 12 N
1.6 m/s .

3 /2 3 3(10 kg)

R F F
a R

MR M
      

 

(b) The magnitude of the angular acceleration is 

 
2 2

com / (1.6 m/s ) /(0.10 m) 16 rad/sa R    . 
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(c) Applying Newton’s second law in its linear form yields 12 N comb g f Ma .  

Therefore, f = –4.0 N. Contradicting what we assumed in setting up our force equation, 

the friction force is found to point rightward with magnitude 4.0 N, i.e., ˆ(4.0 N)if  . 

 

LEARN As the cylinder rolls to the right, the frictional force also points to the right to 

oppose the tendency to slip.    

 

72. The rotational kinetic energy is K I 1
2

2 ,  where I = mR
2
 is its rotational inertia 

about the center of mass (Table 10-2(a)), m = 140 kg, and   = vcom/R (Eq. 11-2). The 

ratio is 

  

21
comtransl 2

221
rot com2

1.00.
mvK

K mR v R
   

 

73. This problem involves the vector cross product of vectors lying in the xy plane. For 

such vectors, if we write 

   r x y i + j , then (using Eq. 3-30) we find 

 
 
     r v x v y vy xd i k.  

 

(a) Here, 

r  points in either the i  or the i  direction (since the particle moves along 

the x axis). It has no y  or z  components, and neither does 

v , so it is clear from the 

above expression (or, more simply, from the fact that  i i = 0 ) that 



 
   m r vb g 0  in 

this case. 

 

(b) The net force is in the i  direction (as one finds from differentiating the velocity 

expression, yielding the acceleration), so, similar to what we found in part (a), we obtain 

    
 
r F 0 . 

 

(c) Now, 
  
  r r ro  where 


ro i j 2 0 50.  .   (with SI units understood) and points from (2.0, 

5.0, 0) to the instantaneous position of the car (indicated by 

r , which points in either the 

+x or –x directions, or nowhere (if the car is passing through the origin)). Since 
 
r v  0  

we have (plugging into our general expression above) 

 



   
         m r v m r v tb g b g b g b gb g b gc he jo k30 2 0 0 50 2 0 3. . . .   

 

which yields 3 2ˆ( 30 k) kg m/st   .  

 

(d) The acceleration vector is given by 
 
a tdv

dt
  6 0 2. i  in SI units, and the net force on 

the car is ma

.  In a similar argument to that given in the previous part, we have 

 
    
          m r a m r a tb g b g b g b gb g b gc he jo k30 2 0 0 50 6 0 2. . . .   
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which yields 2 ˆ( 90 k) N m.t     

 

(e) In this situation, 
  
  r r ro  where 


ro i j 2 0 50.  .   (with SI units understood) and 

points from (2.0, –5.0, 0) to the instantaneous position of the car (indicated by 

r , which 

points in either the +x or –x directions, or nowhere (if the car is passing through the 

origin)). Since 
 
r v  0  we have (plugging into our general expression above) 

 



   
          m r v m r v tb g b g b g b gb g b gc he jo k30 2 0 0 50 2 0 3. . . .   

 

which yields 3 2ˆ(30 k) kg m /s.t    

 

(f) Again, the acceleration vector is given by 

a t 6 0 2. i  in SI units, and the net force on 

the car is ma

.  In a similar argument to that given in the previous part, we have 

 
    
           m r a m r a tb g b g b g b gb g b gc he jo k30 2 0 0 50 6 0 2. . . .   

 

which yields 2 ˆ(90 k) N m.t     

 

74. For a constant (single) torque, Eq. 11-29 becomes 

 

 .
dL L

dt t



 


 

Thus, we obtain  

 
2600 kg m /s

12 s
50 N m

L
t



 
   


. 



75. THINK No external torque acts on the system consisting of the child and the merry-

go-round, so the total angular momentum of the system is conserved.  

 

EXPRESS An object moving along a straight line has angular momentum about any 

point that is not on the line. The magnitude of the angular momentum of the child about 

the center of the merry-go-round is given by Eq. 11-21, mvR, where R is the radius of the 

merry-go-round. 

 

ANALYZE (a) In terms of the radius of gyration k, the rotational inertia of the merry-go-

round is I = Mk
2
. With M = 180 kg and k = 0.91 m, we obtain  

 

I = (180 kg) (0.910 m)
2
 = 149 kg m

2
. 

 

(b) The magnitude of angular momentum of the running child about the axis of rotation 

of the merry-go-round is 
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    2

child 44.0 kg 3.00 m s 1.20 m 158 kg m /s.L mvR     

 

(c) The initial angular momentum is given by child ;iL L mvR   the final angular 

momentum is given by Lf = (I + mR
2
) , where  is the final common angular velocity of 

the merry-go-round and child. Thus mvR I mR  2c h  and 

 

 





 


mvR

I mR2 2

158

149 44 0 120
0 744

kg m s

kg m kg m
rad s

2

2 . .
. .b gb g  

 

LEARN The child initially had an angular velocity of  

 

0

3.00 m/s
2.5 rad/s

1.20 m

v

R
    . 

 

After he jumped onto the merry-go-round, the rotational inertia of the system (merry-go-

round + child) increases, so the angular velocity decreases by angular momentum 

conservation.    

 

76. Item (i) in Table 10-2 gives the moment of inertia about the center of mass in terms of 

width a (0.15 m) and length b (0.20 m).  In using the parallel axis theorem, the distance 

from the center to the point about which it spins (as described in the problem) is 

(a/4)
2
 + (b/4)

2 
.  If we denote the thickness as h (0.012 m) then the volume is abh, which 

means the mass is abh (where = 2640 kg/m
3
 is the density).  We can write the kinetic 

energy in terms of the angular momentum by substituting = L/I  into Eq. 10-34: 

 

K = 
1

2
  
L

2

I
  =  

1

2
  

(0.104)
2

abh((a
2
 + b

2
)/12 + (a/4)

2
 + (b/4)

2 
)
  =  0.62 J . 

 

77. THINK Our system consists of two particles moving in opposite directions along 

parallel lines. The angular momentum of the system about a point is the vector sum of the 

two individual angular momenta.  

 
 

EXPRESS The diagram above shows the particles and their lines of motion. The origin 

is marked O and may be anywhere. We set up our coordinate system in such a way that  
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+x is to the right, +y up and +z out of the page. The angular momentum of the system 

about O is 

 
1 2 1 1 2 2 1 1 2 2( )r p r p m r v r v           

since 1 2m m m  .   

 

ANALYZE (a) With 
1 1îv v , the angular momentum of particle 1 has magnitude  

 

 1 1 1sin  mvr mv d h    

 

and is in the –z-direction, or into the page. On the other hand, with 
2 2îv v  , the angular 

momentum of particle 2 has magnitude 2 2 2 mvr mvhsin , and is in the +z-direction, 

or out of the page. The net angular momentum has magnitude  

 

( )mv d h mvh mvd     

 

which depends only on the separation between the two lines and not on the location of the 

origin. Thus, if O is midway between the two lines, the total angular momentum is 

 
4 5 2(2.90 10  kg)(5.46 m/s)(0.042 m) 6.65 10  kg m /smvd         

 

and is into the page.  

 

(b) As indicated above, the expression does not change. 

 

(c) Suppose particle 2 is traveling to the right. Then  

 

( ) ( 2 )mv d h mvh mv d h     . 

 

This result now depends on h, the distance from the origin to one of the lines of motion. 

If the origin is midway between the lines of motion, then h d  2  and 0 .  

 

(d) As we have seen in part (c), the result depends on the choice of origin.  

 

LEARN Angular momentum is a vector quantity. For a system of many particles, the 

total angular momentum about a point is  

 

1 2 i i i i

i i

m r v       . 

 

78. (a) Using Eq. 2-16 for the translational (center-of-mass) motion, we find 

 

v v a x a
v

x

2

0

2 0

2

2
2

    

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which yields a = –4.11 for v0 = 43 and x  225  (SI units understood). The magnitude of 

the linear acceleration of the center of mass is therefore 4.11 m/s
2
. 

 

(b) With R = 0.250 m, Eq. 11-6 gives  

 
2| | / 16.4rad/s .a R    

 

If the wheel is going rightward, it is rotating in a clockwise sense. Since it is slowing 

down, this angular acceleration is counterclockwise (opposite to ) so (with the usual 

convention that counterclockwise is positive) there is no need for the absolute value signs 

for . 

 

(c) Equation 11-8 applies with Rfs representing the magnitude of the frictional torque. 

Thus,  

Rfs = I = (0.155 kg·m
2
) (16.4 rad/s

2
) = 2.55 N m . 

 

79. We use L = I and K I 1
2

2  and observe that the speed of points on the rim 

(corresponding to the speed of points on the belt) of wheels A and B must be the same (so 

ARA = BrB).  

 

(a) If LA = LB (call it L) then the ratio of rotational inertias is 

 

1
0.333.

3

A A A A

B B B B

I L R

I L R

 

 
      

 

(b) If we have KA = KB (call it K) then the ratio of rotational inertias becomes 

 
2 2

2

2

2 1
0.111.

2 9

A A B A

B B A B

I K R

I K R

 

 

   
       

   
 

 

80. The total angular momentum (about the origin) before the collision (using Eq. 11-18 

and Eq. 3-30 for each particle and then adding the terms) is  

 

Li 
  

 = [(0.5 m)(2.5 kg)(3.0 m/s) + (0.1 m)(4.0 kg)(4.5 m/s)]k
^
. 

 

The final angular momentum of the stuck-together particles (after the collision) measured 

relative to the origin is (using Eq. 11-33) 

 

Lf 
  

 = Li 
  

 = (5.55 2kg m /s )k
^
. 

 

81. THINK As the wheel rolls without slipping down an inclined plane, its gravitational 

potential energy is converted into translational and rotational kinetic energies.  



  CHAPTER 11 566 

 

EXPRESS As the wheel-axel system rolls down the inclined plane by a distance d, the 

change in potential energy is sinU mgd   . By energy conservation, the total kinetic 

energy gained is  

 2 2

trans rot

1 1
sin

2 2
U K K K mgd mv I        . 

 

Since the axel rolls without slipping, the angular speed is given by /v r  , where r is 

the radius of the axel. The above equation then becomes 

 
2 2

2

rot

1
sin 1 1

2

mr mr
mgd I K

I I
 

   
      

   
. 

 

ANALYZE (a) With m=10.0 kg, d = 2.00 m, r = 0.200 m, and 20.600 kg m ,I    the 

rotational kinetic energy may be obtained as 

 
2

rot 2 2

2

sin (10.0 kg)(9.80 m/s )(2.00 m)sin 30.0
58.8 J

(10.0 kg)(0.200 m)
1 1

0.600 kg m

mgd
K

mr

I

 
   

 


. 

 

(b) The translational kinetic energy is trans rot 98 J 58.8 J 39.2 J.K K K       

 

LEARN One may show that 2 / 2 /3mr I  , which implies that trans rot/ 2 /3K K   . 

Equivalently, we may write trans / 2 /5K K    and rot / 3/5.K K    So as the wheel 

rolls down, 40% of the kinetic energy is translational while the other 60% is rotational.  

 

82. (a) We use Table 10-2(e) and the parallel-axis theorem to obtain the rod’s rotational 

inertia about an axis through one end: 

 

I I Mh ML M
L

ML   
F
HG
I
KJ com

2 2

2

21

12 2

1

3
 

 

where L = 6.00 m and M = 10.0/9.8 = 1.02 kg. Thus, the inertia is 212.2 kg mI   . 

 

(b) Using  = (240)(2/60) = 25.1 rad/s, Eq. 11-31 gives the magnitude of the angular 

momentum as  

  2 212.2 kg m 25.1rad/s 308 kg m /sI     . 

 

Since it is rotating clockwise as viewed from above, then the right-hand rule indicates 

that its direction is down. 
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83. We note that its mass is M = 36/9.8 = 3.67 kg and its rotational inertia is 

I MRcom 
2

5

2  (Table 10-2(f)). 

 

(a) Using Eq. 11-2, Eq. 11-5 becomes 

 
2

2 2 2 2 2com
com com com com

1 1 1 2 1 7

2 2 2 5 2 10

v
K I Mv MR Mv Mv

R


  
       

   
 

 

which yields K = 61.7 J for vcom = 4.9 m/s. 

 

(b) This kinetic energy turns into potential energy Mgh at some height h = d sin  where 

the sphere comes to rest. Therefore, we find the distance traveled up the  = 30° incline 

from energy conservation: 

 
2

2 com
com

77
sin   3.43m.

10 10 sin

v
Mv Mgd d

g



     

 

(c) As shown in the previous part, M cancels in the calculation for d. Since the answer is 

independent of mass, then it is also independent of the sphere’s weight. 

 

84. (a) The acceleration is given by Eq. 11-13: 

 

a
g

I MR
com

com


1 0

2
 

 

where upward is the positive translational direction. Taking the coordinate origin at the 

initial position, Eq. 2-15 leads to 

 

y v t a t v t
gt

I MR
com com,0 com com,0

com

   


1

2 1

2
1
2

2

0

2
 

 

where ycom = – 1.2 m and  vcom,0 = – 1.3 m/s. Substituting Icom kg m 0 000095 2. , M = 

0.12 kg, R0 = 0.0032 m, and g = 9.8 m/s
2
, we use the quadratic formula and find 

 

  

  

  

   

com

2
0

2

com
2

com 0

2

2

com,0 com,0

2 9.8 1.22

1 0.000095 0.12 0.0032

2

1

0.000095

0.12 0.0032

1

1 1.3 (1.3)

9.8

21.7 or 0.885

I

MR

gy

I MR
v v

t
g






 



    
 



 
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where we choose t = 0.89 s as the answer. 

 

(b) We note that the initial potential energy is Ui = Mgh and h = 1.2 m (using the bottom 

as the reference level for computing U). The initial kinetic energy is as shown in Eq. 11-5, 

where the initial angular and linear speeds are related by Eq. 11-2. Energy conservation 

leads to 

        

2

com,02

com,0

0

2
2 5 2 2

1 1

2 2

1 1 1.3 m/s
0.12 kg 1.3 m/s 9.5 10 kg m 0.12 kg 9.8 m/s 1.2 m

2 2 0.0032 m

9.4 J.

f i i

v
K K U mv I Mgh

R



 
     

 

 
     

 


 

(c) As it reaches the end of the string, its center of mass velocity is given by Eq. 2-11: 

 

v v a t v
gt

I MR
com com com com

com

   


, , .0 0

0

21
 

Thus, we obtain 

  

  

2

com 2

2

9.8 m/s 0.885 s
1.3 m/s 1.41 m/s

0.000095 kg m
1

0.12 kg 0.0032 m

v     




  

 

so its linear speed at that moment is approximately 14. m s . 

 

(d) The translational kinetic energy is  

 

  
221 1

com2 2
0.12 kg 1.41m/s 0.12 J.mv     

 

(e) The angular velocity at that moment is given by 

 

2com

0

1.41m/s
441rad/s 4.4 10 rad/s

0.0032 m

v

R



       . 

 

(f) And the rotational kinetic energy is 

 

1

2

1

2
9 50 10 441 9 22 5 2 2

Icom kg m rad s J    . . .c hb g  

 

85. The initial angular momentum of the system is zero. The final angular momentum of 

the girl-plus-merry-go-round is (I + MR
2
)  which we will take to be positive. The final 

angular momentum we associate with the thrown rock is negative: –mRv, where v is the 

speed (positive, by definition) of the rock relative to the ground. 
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(a) Angular momentum conservation leads to 

 

 2

2
0 .

mRv
I MR mRv

I MR
     


 

 

(b) The girl’s linear speed is given by Eq. 10-18: 

 

R
mvR

I MR
 



2

2
.  

 

86. (a) Interpreting h as the height increase for the center of mass of the body, then (using 

Eq. 11-5) mechanical energy conservation, i fK U ,  leads to 

 
2 2

2 2 2

com

1 1 1 1 3

2 2 2 2 4

v v
mv I mgh mv I mg

R g


  
       

   
 

 

from which v cancels and we obtain I mR 1
2

2 . 

 

(b) From Table 10-2(c), we see that the body could be a solid cylinder. 
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1. (a) The center of mass is given by  

 

com

0 0 0 ( )(2.00 m) ( )(2.00 m) ( )(2.00 m)
1.00 m.

6

m m m
x

m

    
   

 

(b) Similarly, we have  

 

com

0 ( )(2.00 m) ( )(4.00 m) ( )(4.00 m) ( )(2.00 m) 0
2.00 m.

6

m m m m
y

m

    
   

 

(c) Using Eq. 12-14 and noting that the gravitational effects are different at the different 

locations in this problem, we have 

 
6

1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
cog 6

1 1 2 2 3 3 4 4 5 5 6 6

1

0.987 m.
i i i

i

i i

i

x m g
x m g x m g x m g x m g x m g x m g

x
m g m g m g m g m g m g

m g





    
  

    




 

 

(d) Similarly, we have  
6

1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
cog 6

1 1 2 2 3 3 4 4 5 5 6 6

1

0 (2.00)(7.80 ) (4.00)(7.60 ) (4.00)(7.40 ) (2.00)(7.60 ) 0

8.0 7.80 7.60 7.40 7.60 7.80

1.97 m.

i i i

i

i i

i

y m g
y m g y m g y m g y m g y m g y m g

y
m g m g m g m g m g m g

m g

m m m m

m m m m m m





    
 

    

    


    







 

 

2. Our notation is as follows: M = 1360 kg is the mass of the automobile; L = 3.05 m is 

the horizontal distance between the axles; (3.05 1.78) m 1.27 m   is the horizontal 

distance from the rear axle to the center of mass; F1 is the force exerted on each front 

wheel; and F2 is the force exerted on each back wheel. 

 

(a) Taking torques about the rear axle, we find 

 
2

3

1

(1360kg)(9.80m/s ) (1.27m)
2.77 10 N.

2 2(3.05m)

Mg
F

L
     
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(b) Equilibrium of forces leads to
1 22 2 ,F F Mg  from which we obtain F2

3389 10 . N . 

 

3. THINK Three forces act on the sphere: the tension force 

T  of the rope, the force of 

the wall 
NF , and the force of gravity mg


.  

 

EXPRESS The free-body diagram is shown to the right. 

The tension force 

T  acts along the rope, the force of the 

wall 
NF  acts horizontally away from the wall, and the force 

of gravity mg


 acts downward. Since the sphere is in 

equilibrium they sum to zero. Let  be the angle between the 

rope and the vertical. Then Newton’s second law gives  

 

          vertical component :     T cos  – mg = 0  

      horizontal component :      FN – T sin  = 0.   

 
 

ANALYZE (a) We solve the first equation for the tension: T = mg/ cos . We substitute 

cos  L L r/ 2 2 to obtain 

 
2 2 22 2 (0.85 kg)(9.8 m/s ) (0.080 m) (0.042 m)

9.4 N
0.080 m

mg L r
T

L


   . 

 

(b) We solve the second equation for the normal force: sinNF T  . 

Using sin  r L r/ 2 2 , we obtain 

 
2 2 2

2 2 2 2

(0.85 kg)(9.8 m/s )(0.042 m)
4.4 N.

(0.080 m)
N

Tr mg L r r mgr
F

L LL r L r


    

 
 

 

LEARN Since the sphere is in static equilibrium, the vector sum of all external forces 

acting on it must be zero. 

 

4. The situation is somewhat similar to that depicted for problem 10 (see the figure that 

accompanies that problem in the text). By analyzing the forces at the “kink” where 

F  is 

exerted, we find (since the acceleration is zero) 2T sin  = F, where  is the angle (taken 

positive) between each segment of the string and its “relaxed” position (when the two 

segments are collinear). Setting T = F therefore yields  = 30º. Since  = 180º – 2 is the 

angle between the two segments, then we find  = 120º. 

 

5. The object exerts a downward force of magnitude F = 3160 N at the midpoint of the 

rope, causing a “kink” similar to that shown for problem 10 (see the figure that 

accompanies that problem in the text). By analyzing the forces at the “kink” where 

F  is 

exerted, we find (since the acceleration is zero) 2T sin = F, where  is the angle (taken 
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positive) between each segment of the string and its “relaxed” position (when the two 

segments are collinear). In this problem, we have 

 

1 0.35m
tan 11.5 .

1.72m
   
   

 
 

 

Therefore, T = F/(2sin ) = 7.92 × 10
3
 N. 

 

6. Let 1 15 . m and
2 (5.0 1.5) m 3.5 m   . We denote tension in the cable closer to 

the window as F1 and that in the other cable as F2. The force of gravity on the scaffold 

itself (of magnitude msg) is at its midpoint, 3 2 5 . m from either end. 

 

(a) Taking torques about the end of the plank farthest from the window washer, we find 

 
2 2

2 3
1

1 2

2

(80kg) (9.8m/s ) (3.5m)+(60kg)(9.8m/s ) (2.5m)

5.0m

8.4 10 N.

w sm g m g
F


 



 

 

 

(b) Equilibrium of forces leads to 

 
2 3

1 2 (60kg+80kg)(9.8m/s ) 1.4 10 Ns wF F m g m g       

 

which (using our result from part (a)) yields F2

253 10 . N . 

 

7. The forces on the ladder are shown in the diagram below.  

 
F1 is the force of the window, horizontal because the window is frictionless. F2 and F3 are 

components of the force of the ground on the ladder. M is the mass of the window cleaner 

and m is the mass of the ladder. 

 

The force of gravity on the man acts at a point 3.0 m up the ladder and the force of 

gravity on the ladder acts at the center of the ladder. Let  be the angle between the 

ladder and the ground. We use 2 2cos /  or sin /  d L L d L    to find  = 60º. Here L 
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is the length of the ladder (5.0 m) and d is the distance from the wall to the foot of the 

ladder (2.5 m). 

 

(a) Since the ladder is in equilibrium the sum of the torques about its foot (or any other 

point) vanishes. Let be the distance from the foot of the ladder to the position of the 

window cleaner. Then,  

  1cos / 2 cos sin 0Mg mg L F L     , 

and 
2

1

2

( / 2) cos [(75kg) (3.0m)+(10kg)(2.5m)](9.8m/s )cos60

sin (5.0m)sin 60

2.8 10 N.

M mL g
F

L





 
 



 

 

 

This force is outward, away from the wall. The force of the ladder on the window has the 

same magnitude but is in the opposite direction: it is approximately 280 N, inward. 

 

(b) The sum of the horizontal forces and the sum of the vertical forces also vanish: 

 

F F

F Mg mg

1 3

2

0

0

 

  
 

 

The first of these equations gives F F3 1

22 8 10  . N and the second gives 

 
2 2

2 ( ) (75kg 10kg)(9.8m/s ) 8.3 10 NF M m g      . 

 

The magnitude of the force of the ground on the ladder is given by the square root of the 

sum of the squares of its components: 

 

F F F       2

2

3

2 2 2 228 10 83 10 88 10( . ( . .N) N) N.2 2  

 

(c) The angle  between the force and the horizontal is given by  

 

tan   = F3/F2 = (830 N)/(280 N) = 2.94, 

 

so  = 71º. The force points to the left and upward, 71º above the horizontal. We note that 

this force is not directed along the ladder. 

 

8. From 
  
  r F , we note that persons 1 through 4 exert torques pointing out of the 

page (relative to the fulcrum), and persons 5 through 8 exert torques pointing into the 

page. 

 

(a) Among persons 1 through 4, the largest magnitude of torque is (330 N)(3 m) = 990 

N·m, due to the weight of person 2. 
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(b) Among persons 5 through 8, the largest magnitude of torque is (330 N)(3 m) = 990 

N·m, due to the weight of person 7. 

 

9. THINK In order for the meter stick to remain in equilibrium, the net force acting on it 

must be zero. In addition, the net torque about any point must also be zero. 

 

EXPRESS Let the x axis be along the 

meter stick, with the origin at the zero 

position on the scale. The forces acting on 

it are shown to the right. The coins are at x 

= x1 = 0.120 m, and 10.0 gm   is their 

total mass. The knife edge is at x = x2 = 

0.455 m and exerts force 

F . The mass of 

the meter stick is M, and the force of 

gravity acts at the center of the stick, x = x3 

= 0.500 m.   
Since the meter stick is in equilibrium, the sum of the torques about x2 must vanish:  

 

Mg(x3 – x2) – mg(x2 – x1) = 0. 

 

ANALYZE Solving the equation above for M, we find the mass of the meter stick to be 

 

2 1

3 2

0.455m 0.120m
(10.0g) 74.4 g.

0.500m 0.455m

x x
M m

x x

    
     

   
 

 

LEARN Since the torque about any point is zero, we could have chosen x1. In this case, 

balance of torques requires that 

 2 1 3 1( ) ( ) 0F x x Mg x x     

 

The fact that the net force is zero implies ( )F M m g  . Substituting this into the above 

equation gives the same result as before: 

2 1

3 2

x x
M m

x x

 
  

 
. 

 

10. (a) Analyzing vertical forces where string 1 and string 2 meet, we find 

 

1

40N
49N.

cos cos 35

Aw
T


  


 

 

(b) Looking at the horizontal forces at that point leads to 

 

2 1 sin35 (49N)sin35 28N.T T      
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(c) We denote the components of T3 as Tx (rightward) and Ty (upward). Analyzing 

horizontal forces where string 2 and string 3 meet, we find Tx = T2 = 28 N. From the 

vertical forces there, we conclude Ty = wB  = 50 N. Therefore, 

 

2 2

3 57 N.x yT T T    

 

(d) The angle of string 3 (measured from vertical) is 

 

1 1 28
tan tan 29 .

50

x

y

T

T
  

   
          

 

 

11. THINK The diving board is in equilibrium, so the net force and net torque must be 

zero.  

 

EXPRESS We take the force of the left pedestal to be F1 at x = 0, where the x axis is 

along the diving board. We take the force of the right pedestal to be F2 and denote its 

position as x = d. Upward direction is taken to be positive and W is the weight of the 

diver, located at x = L. The following two equations result from setting the sum of forces 

equal to zero (with upwards positive), and the sum of torques (about x2) equal to zero: 

 

1 2

1

0

( ) 0

F F W

F d W L d

  

  
 

 

ANALYZE (a) The second equation gives 

 

1

3.0m
(580 N) 1160 N

1.5m

L d
F W

d

  
       

   
 

 

which should be rounded off to 3

1 1.2 10  NF    . Thus, 3

1| | 1.2 10  N.F    

 

(b) Since F1 is negative, this force is downward. 

 

(c) The first equation gives 2 1 580N 1160N 1740NF W F     . 

 

which should be rounded off to 3

2 1.7 10  NF   . Thus, 3

2| | 1.7 10  N.F    

 

(d) The result is positive, indicating that this force is upward. 

 

(e) The force of the diving board on the left pedestal is upward (opposite to the force of 

the pedestal on the diving board), so this pedestal is being stretched.  

 



CHAPTER 12 576 

(f) The force of the diving board on the right pedestal is downward, so this pedestal is 

being compressed. 

 

LEARN We can relate F1 and F2 via 
1 2

L d
F F

L

 
  

 
. The expression makes it clear 

that the two forces must be of opposite signs, i.e., one acting downward and the other 

upward.      

 

12. The angle of each half of the rope, measured from the dashed line, is 

 

1 0.30m
tan 1.9 .

9.0m
   
   

 
 

 

Analyzing forces at the “kink” (where 

F  is exerted) we find 

 

3550 N
8.3 10 N.

2sin 2sin1.9

F
T


   


 

 

13. The (vertical) forces at points A, B, and P are FA, FB, and FP, respectively. We note 

that FP = W and is upward. Equilibrium of forces and torques (about point B) lead to 

 

0

0.
A B

A

F F W

bW aF

  

 
 

(a) From the second equation, we find  

 

FA = bW/a = (15/5)W = 3W = 33(900 N) 2.7 10  N  . 

 

(b) The direction is upward since FA > 0. 

 

(c) Using this result in the first equation above, we obtain  

 

 34 4(900 N) 3.6 10 NB AF W F W         , 

or 3| | 3.6 10 NBF   . 

 

(d) FB points downward, as indicated by the negative sign. 

 

14. With pivot at the left end, Eq. 12-9 leads to 

 

– ms g 
L

2
  –  Mgx +  TR L  = 0 

 

where ms is the scaffold’s mass (50 kg) and M is the total mass of the paint cans (75 kg). 

The variable x indicates the center of mass of the paint can collection (as measured from 

the left end), and TR is the tension in the right cable (722 N).  Thus we obtain x = 0.702 m. 
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15. (a) Analyzing the horizontal forces (which add to zero) we find Fh = F3 = 5.0 N. 

 

(b) Equilibrium of vertical forces leads to Fv = F1 + F2 = 30 N. 

 

(c) Computing torques about point O, we obtain 

 

     
2 3

10 N 3.0m + 5.0 N 2.0m
1.3m.

30 N
vF d F b Fa d      

 

16. The forces exerted horizontally by the obstruction and vertically (upward) by the 

floor are applied at the bottom front corner C of the crate, as it verges on tipping. The 

center of the crate, which is where we locate the gravity force of magnitude mg = 500 N, 

is a horizontal distance   0 375. mfrom C. The applied force of magnitude F = 350 N is 

a vertical distance h from C. Taking torques about C, we obtain 

 

(500 N)(0.375m)
0.536m.

350 N

mg
h

F
    

 

17. (a) With the pivot at the hinge, Eq. 12-9 gives  

 

TLcos – mg 
L

2
  = 0. 

 

This leads to 78 .    Then the geometric relation tan = L/D gives D = 0.64 m. 

 

(b) A higher (steeper) slope for the cable results in a smaller tension.  Thus, making D 

greater than the value of part (a) should prevent rupture. 

 

18. With pivot at the left end of the lower scaffold, Eq. 12-9 leads to 

 

– m2 g 
L2

2
  – mgd + TR L2  = 0 

 

where m2 is the lower scaffold’s mass (30 kg) and L2 is the lower scaffold’s length (2.00 

m).  The mass of the package (m = 20 kg) is a distance d = 0.50 m from the pivot, and TR 

is the tension in the rope connecting the right end of the lower scaffold to the larger 

scaffold above it.  This equation yields TR = 196 N.  Then Eq. 12-8 determines TL (the 

tension in the cable connecting the right end of the lower scaffold to the larger scaffold 

above it):  TL = 294 N.  Next, we analyze the larger scaffold (of length L1 = L2 + 2d and 

mass m1, given in the problem statement) placing our pivot at its left end and using Eq. 

12-9: 

– m1 g 
L1

2
  – TL d – TR (L1 – d) + T L1 = 0. 

This yields T = 457 N. 
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19. Setting up equilibrium of torques leads to a simple “level principle” ratio: 

 

2.6cm
(40 N) (40 N) 8.7 N.

12cm

d
F

L
     

 

20. Our system consists of the lower arm holding a 

bowling ball. As shown in the free-body diagram, the 

forces on the lower arm consist of T  from the biceps 

muscle, F  from the bone of the upper arm, and the 

gravitational forces, mg  and Mg . Since the system is in 

static equilibrium, the net force acting on the system is 

zero: 

net,0 ( )yF T F m M g     . 

 

In addition, the net torque about O must also vanish: 

 

net0 ( )( ) (0) ( )( ) ( )
O

d T F D mg L Mg     . 

 

(a) From the torque equation, we find the force on the lower arms by the biceps muscle to 

be   
2

2

( ) [(1.8 kg)(0.15 m) (7.2 kg)(0.33 m)](9.8 m/s )

0.040 m

648 N 6.5 10 N.

mD ML g
T

d

 
 

  

 

 

(b) Substituting the above result into the force equation, we find F  to be 

 

 2 2( ) 648 N (7.2 kg 1.8 kg)(9.8 m/s ) 560 N 5.6 10 N.F T M m g          

 

21. (a) We note that the angle between the cable and the strut is  

 

 = – = 45º – 30º = 15º. 

 

The angle between the strut and any vertical force (like the weights in the problem) is  = 

90º – 45º = 45º. Denoting M = 225 kg and m = 45.0 kg, and   as the length of the boom, 

we compute torques about the hinge and find 

 

 2
sin sin sin sin / 2

.
sin sin

Mg mg Mg mg
T

   

 

 
   

 

The unknown length   cancels out and we obtain T = 6.63 × 10
3
 N. 
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(b) Since the cable is at 30º from horizontal, then horizontal equilibrium of forces 

requires that the horizontal hinge force be 

 
3= cos30 = 5.74 10 N.xF T    

 

(c) And vertical equilibrium of forces gives the vertical hinge force component: 

 
3sin30 5.96 10 N.yF Mg mg T       

 

22. (a) The problem asks for the person’s pull (his force exerted on the rock) but since we 

are examining forces and torques on the person, we solve for the reaction force 

1NF (exerted leftward on the hands by the rock). At that point, there is also an upward 

force of static friction on his hands, f1, which we will take to be at its maximum value 

1 1NF . We note that equilibrium of horizontal forces requires 
1 2N NF F (the force exerted 

leftward on his feet); on his feet there is also an upward static friction force of magnitude 

2FN2. Equilibrium of vertical forces gives 

 

2

1 2 1

1 2

+ = 0 = = 3.4 10 N.
+

N

mg
f f mg F

 
    

 

(b) Computing torques about the point where his feet come in contact with the rock, we 

find 

 
  1 1

1 1

1

+
+ = 0  = = 0.88 m.

N

N

N

mg d w F w
mg d w f w F h h

F


    

 

(c) Both intuitively and mathematically (since both coefficients are in the denominator) 

we see from part (a) that 1NF  would increase in such a case.  

 

(d) As for part (b), it helps to plug part (a) into part (b) and simplify: 

 

h d w d= + +2 1a f   

 

from which it becomes apparent that h should decrease if the coefficients decrease. 

 

23. The beam is in equilibrium: the sum of the forces and the sum of the torques acting 

on it each vanish. As shown in the figure, the beam makes an angle of 60º with the 

vertical and the wire makes an angle of 30º with the vertical. 

 

(a) We calculate the torques around the hinge. Their sum is  

 

TL sin 30º – W(L/2) sin 60º = 0. 

 

Here W is the force of gravity acting at the center of the beam, and T is the tension force 

of the wire. We solve for the tension: 
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 222N sin 60sin60
= = =192 N.

2 sin30 2 sin30

W
T



 
 

 

(b) Let Fh be the horizontal component of the force exerted by the hinge and take it to be 

positive if the force is outward from the wall. Then, the vanishing of the horizontal 

component of the net force on the beam yields Fh – T sin 30º = 0 or 

 

 = sin30 = 192.3N sin30 = 96.1N.hF T    

 

(c) Let Fv be the vertical component of the force exerted by the hinge and take it to be 

positive if it is upward. Then, the vanishing of the vertical component of the net force on 

the beam yields Fv + T cos 30º – W = 0 or 

 

 = cos30 = 222N 192.3N cos30 = 55.5N.vF W T     

 

24. As shown in the free-body diagram, the forces on the climber consist of T  from the 

rope, normal force
NF  on her feet, upward static frictional force ,sf  and downward 

gravitational force mg .  

 
Since the climber is in static equilibrium, the net force acting on her is zero. Applying 

Newton’s second law to the vertical and horizontal directions, we have 

 

net,

net,

0 sin

0 cos .

x N

y s

F F T

F T f mg





  

   




 

 

In addition, the net torque about O (contact point between her feet and the wall) must also 

vanish: 

net0 sin sin(180 )
O

mgL TL         

From the torque equation, we obtain  

 

sin / sin(180 ).T mg       
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Substituting the expression into the force equations, and noting that
s s Nf F , we find 

the coefficient of static friction to be 

 

cos sin cos / sin(180 )

sin sin sin / sin(180 )

1 sin cos / sin(180 )
.

sin sin / sin(180 )

s
s

N

f mg T mg mg

F T mg

    


    

   

   

   
  

 

  


 

 

  

With 40    and 30   , the result is  

 

1 sin cos / sin(180 ) 1 sin 40 cos30 / sin(180 40 30 )

sin sin / sin(180 ) sin 40 sin 30 / sin(180 40 30 )

1.19.

s

   


   

        
 

      



 

 

25. THINK At the moment when the wheel leaves the lower floor, the floor no longer 

exerts a force on it.  

 

EXPRESS As the wheel is raised over the obstacle, the only forces acting are the force F 

applied horizontally at the axle, the force of gravity mg acting vertically at the center of 

the wheel, and the force of the step corner, shown as the two components fh and fv.  

 

  
 

If the minimum force is applied the wheel does not accelerate, so both the total force and 

the total torque acting on it are zero. 

 

We calculate the torque around the step corner. The second diagram (above right) 

indicates that the distance from the line of F to the corner is r – h, where r is the radius of 

the wheel and h is the height of the step. The distance from the line of mg to the corner is 

r r h rh h2 2 22   b g . Thus, 

F r h mg rh h   b g 2 02 . 

 

ANALYZE The solution for F is 
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2 2 2 22
2

2 2

2(6.00 10 m)(3.00 10 m) (3.00 10 m)2
= (0.800 kg)(9.80 m/s )

(6.00 10 m) (3.00 10 m)

13.6 N.

rh h
F mg

r h

  

 

   


   



  

LEARN The applied force here is about 1.73 times the weight of the wheel. If the height 

is increased, the force that must be applied also goes up. Below we plot F/mg as a 

function of the ratio /h r .  The required force increases rapidly as / 1h r  .  

 

 
 

26. As shown in the free-body diagram, the forces on the climber consist of the normal 

forces 1NF  on his hands from the ground and 
2NF  on his feet from the wall, static 

frictional force ,sf  and downward gravitational force mg . Since the climber is in static 

equilibrium, the net force acting on him is zero.  

Applying Newton’s second law to the vertical and 

horizontal directions, we have 

 

net, 2

net, 1

0

0 .

x N s

y N

F F f

F F mg

  

  




 

 

In addition, the net torque about O (contact point 

between his feet and the wall) must also vanish: 

 

net 20 cos sinN

O

mgd F L     . 

 
 

The torque equation gives  

 

2 cos / sin cot /NF mgd L mgd L    . 

 

On the other hand, from the force equation we have 2N sF f  and 1 .NF mg  These 

expressions can be combined to yield 

2 1 cots N N

d
f F F

L
  . 
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On the other hand, the frictional force can also be written as 
1s s Nf F , where 

s  is the 

coefficient of static friction between his feet and the ground. From the above equation 

and the values given in the problem statement, we find 
s  to be  

 

2 2 2 2

0.914 m 0.940 m
cot 0.216

2.10 m(2.10 m) (0.914 m)
s

d a d

L LL a
    

 
. 

 

27. (a) All forces are vertical and all distances are measured along an axis inclined at  = 

30º. Thus, any trigonometric factor cancels out and the application of torques about the 

contact point (referred to in the problem) leads to 

 

       2 2

3

tricep

15kg 9.8m/s 35cm 2.0kg 9.8m/s 15cm
1.9 10 N.

2.5cm
F


    

 

(b) The direction is upward since tricep 0F  . 

 

(c) Equilibrium of forces (with upward positive) leads to 

 

     2 2

tricep humer 15kg 9.8m/s 2.0kg 9.8m/s 0F F     

 

and thus to 3

humer 2.1 10 NF    , or 3

humer| | 2.1 10 NF   . 

 

(d) The negative sign implies that humerF points downward. 

 

28. (a) Computing torques about point A, we find 

 

T L Wx W
L

bmax maxsin = +
2

F
HG
I
KJ. 

We solve for the maximum distance: 

 

 max
max

sin / 2 (500 N)sin30.0 (200 N) / 2
3.00 m 1.50m.

300 N

bT W
x L

W

    
    
   

 

 

(b) Equilibrium of horizontal forces gives max= cos = 433N.xF T   

 

(c) And equilibrium of vertical forces gives max= + sin = 250 N.y bF W W T   

 

29. The problem states that each hinge supports half the door’s weight, so each vertical 

hinge force component is Fy = mg/2 = 1.3 × 10
2
 N. Computing torques about the top 

hinge, we find the horizontal hinge force component (at the bottom hinge) is 
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 2(27kg)(9.8m/s ) 0.91 m/2
80 N.

2.1m 2(0.30m)
hF  


 

 

Equilibrium of horizontal forces demands that the horizontal component of the top hinge 

force has the same magnitude (though opposite direction).  

 

(a) In unit-vector notation, the force on the door at the top hinge is 

 

 2

top
ˆ ˆ( 80 N)i (1.3 10 N)jF     . 

 

(b) Similarly, the force on the door at the bottom hinge is 

 
2

bottom
ˆ ˆ( 80 N)i (1.3 10 N)jF     . 

 

30. (a) The sign is attached in two places: at x1 = 1.00 m (measured rightward from the 

hinge) and at x2 = 3.00 m. We assume the downward force due to the sign’s weight is 

equal at these two attachment points, each being half the sign’s weight of mg. The angle 

where the cable comes into contact (also at x2) is  

 

 = tan
–1

(dv/dh) = tan
–1

(4.00 m/3.00 m) 

 

and the force exerted there is the tension T. Computing torques about the hinge, we find 

 

     

  

2 21 11 1
2 21 22 2

2

50.0 kg 9.8 m/s 1.00 m (50.0 kg) (9.8m/s ) (3.00 m)
=

sin 3.00 m 0.800

408 N.

mgx mgx
T

x 






 

 

(b) Equilibrium of horizontal forces requires that the horizontal hinge force be  

 

Fx = T cos  = 245 N. 

 

(c) The direction of the horizontal force is rightward. 

 

(d) Equilibrium of vertical forces requires that the vertical hinge force be  

 

Fy = mg – T sin  = 163 N. 

 

(e) The direction of the vertical force is upward. 

 

31. The bar is in equilibrium, so the forces and the torques acting on it each sum to zero. 

Let Tl be the tension force of the left-hand cord, Tr be the tension force of the right-hand 

cord, and m be the mass of the bar. The equations for equilibrium are: 
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vertical force components:

horizontal force components:

torques:

 

cos cos 0

sin sin 0

cos 0.

l r

l r

r

T T mg

T T

mgx T L

 

 



  

  

 

 

 

The origin was chosen to be at the left end of the bar for purposes of calculating the 

torque. The unknown quantities are Tl, Tr, and x. We want to eliminate Tl and Tr, then 

solve for x. The second equation yields Tl = Tr sin  /sin  and when this is substituted 

into the first and solved for Tr the result is  

 

sin

sin cos cos sin
r

mg
T



   



. 

 

This expression is substituted into the third equation and the result is solved for x: 

 

x L L=
+

=
+

.
sin cos

sin cos cos sin

sin cos

sin

 

   

 

 b g  

 

The last form was obtained using the trigonometric identity  

 

sin(A + B) = sin A cos B + cos A sin B. 

 

For the special case of this problem  +  = 90º and sin( + ) = 1. Thus, 

 

 = sin cos = 6.10 m  sin36.9 cos53.1 = 2.20  m.x L      

 

32. (a) With kF ma mg   the magnitude of the deceleration is  

 

|a| = kg = (0.40)(9.8 m/s
2
) = 3.92 m/s

2
. 

 

(b) As hinted in the problem statement, we can use Eq. 12-9, evaluating the torques about 

the car’s center of mass, and bearing in mind that the friction forces are acting 

horizontally at the bottom of the wheels; the total friction force there is fk = kgm = 3.92m 

(with SI units understood, and m is the car’s mass), a vertical distance of 0.75 meter 

below the center of mass.  Thus, torque equilibrium leads to 

 

             (3.92m)(0.75) + FNr (2.4) –  FNf (1.8)  = 0 . 

 

Equation 12-8 also holds (the acceleration is horizontal, not vertical), so we have FNr + 

FNf = mg, which we can solve simultaneously with the above torque equation.  The mass 

is obtained from the car’s weight: m = 11000/9.8, and we obtain FNr = 3929  4000 N. 

Since each involves two wheels then we have (roughly) 2.010
3
 N on each rear wheel. 
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(c) From the above equation, we also have FNf = 7071  7000 N, or 3.510
3
 N on each 

front wheel, as the values of the individual normal forces. 

 

(d) For friction on each rear wheel, Eq. 6-2 directly yields  

 
2

1 ( / 2) (0.40)(3929 N/ 2) 7.9 10 Nr k Nrf F     . 

 

(e) Similarly, for friction on the front rear wheel, Eq. 6-2 gives 

 
3

1 ( / 2) (0.40)(7071 N / 2) 1.4 10 Nf k Nff F     . 

 

33. (a) With the pivot at the hinge, Eq. 12-9 yields 

 

 cos 0aTL F y   . 

 

This leads to T = (Fa/cos)(y/L) so that we can interpret Fa/cos as the slope on the 

tension graph (which we estimate to be 600 in SI units).  Regarding the Fh graph, we use 

Eq. 12-7 to get  

Fh = Tcos   Fa = (Fa)(y/L)  Fa 

 

after substituting our previous expression. The result implies that the slope on the Fh 

graph (which we estimate to be  –300) is equal to Fa , or Fa = 300 N and (plugging back 

in) = 60.0.    

 

(b) As mentioned in the previous part, Fa = 300 N. 

 

34. (a) Computing torques about the hinge, we find the tension in the wire: 

 

TL Wx T
Wx

L
sin

sin



 = 0 = .  

 

(b) The horizontal component of the tension is T cos , so equilibrium of horizontal 

forces requires that the horizontal component of the hinge force is 

 

F
Wx

L

Wx

L
x = = .

sin
cos

tan




F
HG
I
KJ  

 

(c) The vertical component of the tension is T sin , so equilibrium of vertical forces 

requires that the vertical component of the hinge force is 

 

F W
Wx

L
W

x

L
y = = 1 .
F
HG
I
KJ 

F
HG
I
KJsin

sin


  
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35. THINK We examine the box when it is about to tip. Since it will rotate about the 

lower right edge, this is where the normal force of the floor is exerted.  

 

EXPRESS The free-body diagram is shown below. The normal force is labeled 
NF , the 

force of friction is denoted by f, the applied force by F, and the force of gravity by W. 

Note that the force of gravity is applied at the center of the box. When the minimum force 

is applied the box does not accelerate, so the sum of the horizontal force components 

vanishes: F – f = 0, the sum of the vertical force components vanishes: 0NF W  , and 

the sum of the torques vanishes:  

FL – WL/2 = 0. 

 

Here L is the length of a side of the box and the origin was chosen to be at the lower right 

edge. 

 

ANALYZE (a) From the torque equation, we find 
890 N

445N.
2 2

W
F     

 

(b) The coefficient of static friction must be large enough that the box does not slip. The 

box is on the verge of slipping if s = f/FN. According to the equations of equilibrium  

 

FN = W = 890 N 

  f = F = 445 N, 

so 

445 N
0.50.

890 N
s

N

f

F
     

 

(c) The box can be rolled with a smaller applied force if the force points upward as well 

as to the right. Let  be the angle the force makes with the horizontal. The torque 

equation then becomes  

FL cos  + FL sin  – WL/2 = 0, 

with the solution 

F
W


2(cos sin )

.
 

 

 

We want cos + sin  to have the largest possible value. This occurs if  = 45º, a result 

we can prove by setting the derivative of  cos + sin  equal to zero and solving for . 

The minimum force needed is  
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890 N
315N.

2(cos 45 sin 45 ) 2(cos 45 sin 45 )

W
F   

   
 

 

 
LEARN The applied force as a function of  is plotted below. From the figure, we 

readily see that 0    corresponds to a maximum and 45    a minimum.  

 
 

36. As shown in the free-body diagram, the forces on the climber consist of the normal 

force from the wall, the vertical component vF  and the horizontal component hF  of the 

force acting on her four fingertips, and the downward gravitational force mg .  

 
Since the climber is in static equilibrium, the net force acting on her is zero. Applying 

Newton’s second law to the vertical and horizontal directions, we have 

 

net,

net,

0 4

0 4 .

x h N

y v

F F F

F F mg

  

  




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In addition, the net torque about O (contact point between her feet and the wall) must also 

vanish: 

net0 ( ) (4 )h

O

mg a F H   . 

 

(a) From the torque equation, we find the horizontal component of the force on her 

fingertip to be 
2(70 kg)(9.8 m/s )(0.20 m)

17 N.
4 4(2.0 m)

h

mga
F

H
    

(b) From the y-component of the force equation, we obtain 

 
2

2(70 kg)(9.8 m/s )
1.7 10 N.

4 4
v

mg
F      

 

37. The free-body diagram below shows the forces acting on the plank. Since the roller is 

frictionless, the force it exerts is normal to the plank and makes the angle  with the 

vertical.  

 
Its magnitude is designated F. W is the force of gravity; this force acts at the center of the 

plank, a distance L/2 from the point where the plank touches the floor. NF  is the normal 

force of the floor and f is the force of friction. The distance from the foot of the plank to 

the wall is denoted by d. This quantity is not given directly but it can be computed using 

d = h/tan.  

 

The equations of equilibrium are: 

 

horizontal force components:

vertical force components:

torques:

 
 2

sin 0

cos 0

cos 0.

N

L
N

F f

F W F

F d fh W d







 

  

   

 

 

The point of contact between the plank and the roller was used as the origin for writing 

the torque equation. 
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When  = 70º the plank just begins to slip and f = sFN, where s is the coefficient of 

static friction. We want to use the equations of equilibrium to compute FN and f for  = 

70º, then use s = f /FN to compute the coefficient of friction. 

 

The second equation gives F = (W – FN)/cos and this is substituted into the first to 

obtain  

f = (W – FN) sin/cos = (W – FN) tan. 

 

This is substituted into the third equation and the result is solved for FN: 

 

  2

2

/2 cos + tan (1 tan ) ( / 2)sin
= ,

+ tan (1 tan )
N

d L h h L
F W W

d h h

   

 

  



 

 

where we have used d = h/tan and multiplied both numerator and denominator by tan . 

We use the trigonometric identity 1+ tan
2 = 1/cos

2 and multiply both numerator and 

denominator by cos
2  to obtain 

2= 1 cos sin .
2

N

L
F W

h
 

 
 

 
 

 

Now we use this expression for FN in f = (W – FN) tan  to find the friction: 

 

f
WL

h
=

2
.2sin cos   

 

Substituting these expressions for f and FN into s = f/FN leads to 

 


 

 
s

L

h L
=

2
.

2

2

sin cos

sin cos
 

 

Evaluating this expression for  = 70º, L = 6.10 m and h = 3.05 m gives 

 

 

   

2

2

6.1m sin 70 cos70
= = 0.34.

2 3.05m 6.1m sin70 cos 70
s

 

  
 

 

38. The phrase “loosely bolted” means that there is no torque exerted by the bolt at that 

point (where A connects with B). The force exerted on A at the hinge has x and y 

components Fx and Fy. The force exerted on A at the bolt has components Gx and Gy, and 

those exerted on B are simply –Gx and – Gy by Newton’s third law. The force exerted on 

B at its hinge has components Hx and Hy. If a horizontal force is positive, it points 

rightward, and if a vertical force is positive it points upward. 

 

(a) We consider the combined A system, which has a total weight of Mg where M = 

122 kg and the line of action of that downward force of gravity is x = 1.20 m from the 
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wall. The vertical distance between the hinges is y = 1.80 m. We compute torques about 

the bottom hinge and find 

797 N.x

Mgx
F

y
     

If we examine the forces on A alone and compute torques about the bolt, we instead find 

 

265 NA
y

m gx
F    

 

where mA = 54.0 kg and  = 2.40 m (the length of beam A). Thus, in unit-vector notation, 

we have 

 ˆ ˆ ˆ ˆi j ( 797 N)i (265 N)jx yF F F     . 

 

(b) Equilibrium of horizontal and vertical forces on beam A readily yields  

 

Gx = – Fx = 797 N,     Gy = mAg – Fy = 265 N. 

 

In unit-vector notation, we have 
ˆ ˆ ˆ ˆi j ( 797 N)i (265 N)jx yG G G     . 

 

(c) Considering again the combined A system, equilibrium of horizontal and vertical 

forces readily yields Hx = – Fx = 797 N and Hy = Mg – Fy = 931 N. In unit-vector notation, 

we have 
ˆ ˆ ˆ ˆi j ( 797 N)i (931 N)jx yH H H     . 

 

(d) As mentioned above, Newton’s third law (and the results from part (b)) immediately 

provide – Gx = – 797 N and – Gy = – 265 N for the force components acting on B at the 

bolt. In unit-vector notation, we have 

 
ˆ ˆ ˆ ˆi j ( 797 N)i (265 N)jx yG G G       . 

 

39. The diagrams show the forces on the two sides of the ladder, separated. FA and FE are 

the forces of the floor on the two feet, T is the tension force of the tie rod, W is the force 

of the man (equal to his weight), Fh is the horizontal component of the force exerted by 

one side of the ladder on the other, and Fv is the vertical component of that force. Note 

that the forces exerted by the floor are normal to the floor since the floor is frictionless. 

Also note that the force of the left side on the right and the force of the right side on the 

left are equal in magnitude and opposite in direction. Since the ladder is in equilibrium, 

the vertical components of the forces on the left side of the ladder must sum to zero:  

 

Fv + FA – W = 0. 

 

The horizontal components must sum to zero: T – Fh = 0.  
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The torques must also sum to zero. We take the origin to be at the hinge and let L be the 

length of a ladder side. Then  

 

FAL cos  – W(L – d) cos  – T(L/2) sin  = 0. 

 

Here we recognize that the man is a distance d from the bottom of the ladder (or L – d 

from the top), and the tie rod is at the midpoint of the side. 

 

The analogous equations for the right side are FE – Fv = 0, Fh – T = 0, and FEL cos  – 

T(L/2) sin  = 0. There are 5 different equations: 

0,

0

cos ( )cos ( / 2)sin 0

0

cos ( / 2)sin 0.

v A

h

A

E v

E

F F W

T F

F L W L d T L

F F

F L T L

  

 

  

 

   

 

 

 

 

The unknown quantities are FA, FE, Fv, Fh, and T. 

 

(a) First we solve for T by systematically eliminating the other unknowns. The first 

equation gives FA = W – Fv and the fourth gives Fv = FE. We use these to substitute into 

the remaining three equations to obtain 

0

cos cos ( )cos ( / 2)sin 0

cos ( / 2)sin 0.

h

E

E

T F

WL F L W L d T L

F L T L

   

 

 

    

 

 

 

The last of these gives FE = Tsin/2cos = (T/2) tan. We substitute this expression into 

the second equation and solve for T. The result is 

 

.
tan

Wd
T

L 
  

 

To find tan, we consider the right triangle formed by the upper half of one side of the 

ladder, half the tie rod, and the vertical line from the hinge to the tie rod. The lower side 
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of the triangle has a length of 0.381 m, the hypotenuse has a length of 1.22 m, and the 

vertical side has a length of 122 0 381 116
2 2

. . .m m mb g b g  . This means  

 

tan  = (1.16m)/(0.381m) = 3.04. 

Thus, 

(854 N)(1.80 m)
207 N.

(2.44 m)(3.04)
T    

 

(b) We now solve for FA. We substitute ( / 2) tan / 2v EF F T Wd L    into the equation 

Fv + FA – W = 0 and solve for FA. The solution is 

 

 
1.80 m

1 (854 N) 1 539 N
2 2(2.44 m)

A v

d
F W F W

L

  
        

   
. 

 

(c) Similarly,
1.80 m

(854 N) 315 N
2 2(2.44 m)

E

d
F W

L
   . 

 

40. (a) Equation 12-9 leads to 

TL sin  –  mpgx – mbg( )
L

2
 = 0 . 

 

This can be written in the form of a straight line (in the graph) with 

 

T = (“slope”) 
x

L
   +  “y-intercept” 

 

where “slope” = mpg/sin and “y-intercept” = mbg/2sin.  The graph suggests that the 

slope (in SI units) is 200 and the y-intercept is 500.  These facts, combined with the given 

mp + mb = 61.2 kg datum, lead to the conclusion:  

 

sin = 61.22g/1200   = 30.0º. 

 

(b) It also follows that mp = 51.0 kg. 

 

(c) Similarly, mb = 10.2 kg. 

 

41. The force diagram shown depicts the situation just before the crate tips, when the 

normal force acts at the front edge. However, it may also be used to calculate the angle 

for which the crate begins to slide. W is the force of gravity on the crate, NF  is the normal 

force of the plane on the crate, and f is the force of friction. We take the x-axis to be down 

the plane and the y-axis to be in the direction of the normal force. We assume the 

acceleration is zero but the crate is on the verge of sliding. 
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(a) The x and y components of Newton’s second law are 

 

sin 0 and cos 0NW f F W      

 

respectively. The y equation gives FN = W cos . Since the crate is about to slide  

 

f = sFN = sW cos , 

 

where s is the coefficient of static friction. We substitute into the x equation and find 

 

.sin cos 0 tans sW W         

 

This leads to  = tan
–1

 s = tan
–1

 (0.60) = 31.0º. 

 

In developing an expression for the total torque about the center of mass when the crate is 

about to tip, we find that the normal force and the force of friction act at the front edge. 

The torque associated with the force of friction tends to turn the crate clockwise and has 

magnitude fh, where h is the perpendicular distance from the bottom of the crate to the 

center of gravity. The torque associated with the normal force tends to turn the crate 

counterclockwise and has magnitude / 2NF , where   is the length of an edge. Since the 

total torque vanishes, / 2Nfh F . When the crate is about to tip, the acceleration of the 

center of gravity vanishes, so sinf W   and cosNF W  . Substituting these 

expressions into the torque equation, we obtain 

 

1 1 1.2m
tan tan 33.7 .

2 2(0.90m)h
       

 

As  is increased from zero the crate slides before it tips.  

 

(b) It starts to slide when  = 31º. 

 

(c) The crate begins to slide when  

 

 = tan
–1

 s = tan
–1

 (0.70) = 35.0º 
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and begins to tip when  = 33.7º. Thus, it tips first as the angle is increased. 

 

(d) Tipping begins at  = 33.7  34. 

 

42. Let x be the horizontal distance between the firefighter 

and the origin O (see the figure) that makes the ladder on the 

verge of sliding. The forces on the firefighter + ladder system 

consist of the horizontal force 
wF  from the wall, the vertical 

component 
pyF  and the horizontal component 

pxF  of the force 

pF  on the ladder from the pavement, and the downward 

gravitational forces Mg  and mg , where M and m are the 

masses of the firefighter and the ladder, respectively.  

 

Since the system is in static equilibrium, the net force acting 

on the system is zero. Applying Newton’s second law to the 

vertical and horizontal directions, we have 

 

net,

net,

0

0 ( ) .

x w px

y py

F F F

F F M m g

  

   




 

 

Since the ladder is on the verge of sliding, px s pyF F . Therefore, we have  

 

( )w px s py sF F F M m g     . 

 

In addition, the net torque about O (contact point between the ladder and the wall) must 

also vanish: 

net0 ( ) ( ) ( ) 0
3

w

O

a
h F x Mg mg      . 

Solving for x, we obtain  

 

( / 3) ( ) ( / 3) ( ) ( / 3)w s shF a mg h M m g a mg h M m a m
x

Mg Mg M

     
    

 

Substituting the values given in the problem statement (with 2 2 7.58 ma L h   ), the 

fraction of ladder climbed is 

 

( ) ( / 3) (9.3 m)(0.53)(72 kg 45 kg) (7.58 m / 3)(45 kg)

(72 kg)(7.58 m)

0.848 85%.

sh M m a mx

a Ma

    
 

 
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43. THINK The weight of the object hung on the end provides the source of shear stress. 

 

EXPRESS The shear stress is given by F/A, where F is the magnitude of the force 

applied parallel to one face of the aluminum rod and A is the cross–sectional area of the 

rod. In this case F = mg, where m is the mass of the object. The cross-sectional area is 
2A r  where r is the radius of the rod.   

 

ANALYZE (a) Substituting the values given, we find the shear stress to be 

 
2

6 2

2 2

(1200kg)(9.8m/s )
6.5 10 N/m .

(0.024m)

F mg

A r 
     

 

(b) The shear modulus G is given by 

G
F A

x L


/

/
, 

 

where L is the protrusion of the rod and x is its vertical deflection at its end. Thus, 

 
6 2

5

10 2

( / ) (6.5 10 N/m )(0.053m)
1.1 10 m.

3.0 10 N/m

F A L
x

G


    


 

 

LEARN As expected, the extent of vertical deflection x is proportional to F, the weight 

of the object hung from the end. On the other hand, it is inversely proportional to the 

shear modulus G.  

 

44. (a) The Young’s modulus is given by 

 
6 2

10 2stress 150 10 N/m
slope of the stress-strain curve 7.5 10 N/m .

strain 0.002
E


      

 

(b) Since the linear range of the curve extends to about 2.9×10
8
 N/m

2
, this is 

approximately the yield strength for the material. 

 

45. (a) Since the brick is now horizontal and the cylinders were initially the same length 

 , then both have been compressed an equal amount . Thus, 

 

 






 

FA

A E

F

A EA A

B

B B

and  

which leads to 

F

F

A E

A E

A E

A E

A

B

A A

B B

B B

B B

  
( )( )

.
2 2

4  

 

When we combine this ratio with the equation FA + FB = W, we find FA/W = 4/5 = 0.80. 



 

  

597 

 

(b) This also leads to the result FB/W = 1/5 = 0.20. 

 

(c) Computing torques about the center of mass, we find FAdA = FBdB, which leads to 

 

1
0.25.

4

A B

B A

d F

d F
    

 

46. Since the force is (stress × area) and the displacement is (strain × length), we can 

write the work integral (eq. 7-32) as 

 

  W = Fdx   = (stress) A (differential strain)L  = AL (stress) (differential strain) 

 

which means the work is  (thread cross-sectional area) × (thread length) × (graph area 

under curve). The area under the curve is   

 

 1 2 1 3 2 2 3 1 3 2

9 2 9 2 9 2

8 2

1 1 1 1
graph area ( )( ) ( )( ) ( ) ( )

2 2 2 2

1
(0.12 10 N/m )(1.4) (0.30 10 N/m )(1.0) (0.80 10 N/m )(0.60)

2

4.74 10 N/m .

as a b s s b c s s as b s s c s s           

       

 

 

 

(a) The kinetic energy that would put the thread on the verge of breaking is simply equal 

to W: 
12 2 3 8 2

5

(graph area) (8.0 10  m )(8.0 10  m)(4.74 10 N/m )

3.03 10  J.

K W AL  



     

 
 

 

(b) The kinetic energy of the fruit fly of mass 6.00 mg and speed 1.70 m/s is 

 

 2 6 2 61 1
(6.00 10 kg)(1.70 m/s) 8.67 10  J.

2 2
f f fK m v        

 

(c) Since fK W , the fruit fly will not be able to break the thread. 

 

(d) The kinetic energy of a bumble bee of mass 0.388 g and speed 0.420 m/s is  

 

2 4 2 51 1
(3.99 10 kg)0.420 m/s) 3.42 10  J.

2 2
b b bK m v        

 

(e) On the other hand, since bK W , the bumble bee will be able to break the thread. 

 

47. The flat roof (as seen from the air) has area A = 150 m × 5.8 m = 870 m
2
. The volume 

of material directly above the tunnel (which is at depth d = 60 m) is therefore  
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V = A × d = (870 m
2
) × (60 m) = 52200 m

3
. 

 

Since the density is  = 2.8 g/cm
3
 = 2800 kg/m

3
, we find the mass of material supported 

by the steel columns to be m = V = 1.46 × 10
8
 kg. 

 

(a) The weight of the material supported by the columns is mg = 1.4 × 10
9
 N. 

 

(b) The number of columns needed is 

 

n 


 




143 10

400 10 960 10
75

9

1
2

6 4 2

.

( )( )
.

N

N / m m2
 

 

48. Since the force is (stress × area) and the displacement is (strain × length), we can 

write the work integral (Eq. 7-32) as 

 

  W = Fdx   = (stress) A (differential strain)L  = AL (stress) (differential strain) 

 

which means the work is  (wire area) × (wire length) × (graph area under curve).  Since 

the area of a triangle (see the graph in the problem statement) is  
1

2
 (base)(height)  then we 

determine the work done to be 

 

     W = (2.00 × 10
6

 m
2
)(0.800 m)( )

1

2
(1.0 × 10

3
)(7.0 × 10

7 
N/m

2
) = 0.0560 J. 

 

49. (a) Let FA and FB be the forces exerted by the wires on the log and let m be the mass 

of the log. Since the log is in equilibrium, FA + FB – mg = 0. Information given about the 

stretching of the wires allows us to find a relationship between FA and FB. If wire A 

originally had a length LA and stretches by LA , then L F L AEA A A / , where A is the 

cross-sectional area of the wire and E is Young’s modulus for steel (200 × 10
9
 N/m

2
). 

Similarly, L F L AEB B B / . If    is the amount by which B was originally longer than A 

then, since they have the same length after the log is attached, A BL L    . This means 

 

F L

AE

F L

AE

A A B B  .  

We solve for FB: 

F
F L

L

AE

L
B

A A

B B

 


.  

We substitute into FA + FB – mg = 0 and obtain 

 

F
mgL AE

L L
A

B

A B







.  

The cross-sectional area of a wire is  
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A r      2 3
2

6120 10 4 52 10. .m m2c h . 

 

Both LA and LB may be taken to be 2.50 m without loss of significance. Thus 

 
2 6 2 9 2 3(103kg)(9.8m/s ) (2.50m) (4.52 10 m )(200 10 N/m )(2.0 10 m)

2.50m 2.50m

866 N.

AF
    






 

 

(b) From the condition FA + FB – mg = 0, we obtain 

 
2(103kg)(9.8m/s ) 866N 143N.B AF mg F      

 

(c) The net torque must also vanish. We place the origin on the surface of the log at a 

point directly above the center of mass. The force of gravity does not exert a torque about 

this point. Then, the torque equation becomes FAdA – FBdB = 0, which leads to 

 

143N
0.165.

866 N

A B

B A

d F

d F
    

 

50. On the verge of breaking, the length of the thread is 

 

0 0 0 0 0(1 / ) (1 2) 3L L L L L L L L       , 

 

where  0 0.020 mL  is the original length, and 0strain / 2L L   , as given in the 

problem. The free-body diagram of the system is shown below.  

 

 
 

The condition for equilibrium is 2 sinmg T  , where m is the mass of the insect and  

(stress)T A . Since the volume of the thread remains constant as it is being stretched, 

we have 0 0V A L AL  , or 0 0 0( / ) / 3A A L L A  . The vertical distance y  is 

 
2 2

2 2 0 0
0 0

9
( / 2) ( / 2) 2

4 4

L L
y L L L      . 

Thus, the mass of the insect is  
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0 0 0

0

12 2 8 2
4

2

2( / 3)(stress)sin 2 (stress) 4 2 (stress)2 sin

3 3 / 2 9

4 2(8.00 10  m )(8.20 10 N/m )
4.21 10 kg

9(9.8 m/s )

A A AT y
m

g g g L g







   

 
  

 

or 0.421 g.  

 

51. Let the forces that compress stoppers A and B be FA and FB, respectively. Then 

equilibrium of torques about the axle requires  

 

FR = rAFA + rBFB. 

 

If the stoppers are compressed by amounts |yA| and |yB|, respectively, when the rod 

rotates a (presumably small) angle  (in radians), then | | | . y r y rA A B B  and |  

 

Furthermore, if their “spring constants” k are identical, then k = |F/y| leads to the 

condition FA/rA = FB/rB, which provides us with enough information to solve. 

 

(a) Simultaneous solution of the two conditions leads to 

 

2

2 2 2 2

(5.0 cm)(7.0 cm)
(220 N) 118 N 1.2 10  N.

(7.0 cm) +(4.0 cm)

A
A

A B

Rr
F F

r r
    


 

 

(b) It also yields 

2 2 2 2

(5.0 cm)(4.0 cm)
(220 N) 68 N.

(7.0 cm) +(4.0 cm)

B
B

A B

Rr
F F

r r
  


 

 

52. (a) If L (= 1500 cm) is the unstretched length of the rope and L  2 8. cm is the 

amount it stretches, then the strain is 

 

L L/ . / .   2 8 1500 19 10 3cm cmb g b g . 

 

(b) The stress is given by F/A where F is the stretching force applied to one end of the 

rope and A is the cross-sectional area of the rope. Here F is the force of gravity on the 

rock climber. If m is the mass of the rock climber then F = mg. If r is the radius of the 

rope then A r  2 . Thus the stress is 

 
2

7 2

2 3 2

(95kg)(9.8m/s )
1.3 10 N/m .

(4.8 10 m)

F mg

A r  
   


 

 

(c) Young’s modulus is the stress divided by the strain:  

 

E = (1.3 × 10
7
 N/m

2
) / (1.9 × 10

–3
) = 6.9 × 10

9
 N/m

2
. 
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53. THINK The slab can remain in static equilibrium if the combined force of the 

friction and the bolts is greater than the component of the weight of the slab along the 

incline. 

  

EXPRESS We denote the mass of the slab as m, its density as  , and volume as 

V LTW . The angle of inclination is 26   . The component of the weight of the slab 

along the incline is 1 sin sinF mg Vg    , and the static force of friction is 

 

cos coss s N s sf F mg Vg        . 

 

ANALYZE (a) Substituting the values given, we find 
1F  to be 

  
3 2 7

1 sin kg/m )(43m)(2.5m)(12m)(9.8m/s )sin 26 1.8 10 N.F Vg         

 

(b) Similarly, the static force of friction is 

  
3 2

7

cos kg/m )(43m)(2.5m)(12m)(9.8m/s )cos 26

1.4 10 N.

s sf Vg      

 
 

 

(c) The minimum force needed from the bolts to stabilize the slab is 

  
7 7 6

2 1 1.77 10 N 1.42 10 N 3.5 10 N.sF F f         

 

If the minimum number of bolts needed is n, then 2 / ,GF nA S  where 
8 23.6 10 N/mGS    is the shear stress. Solving for n, we find   

  
6

8 2 4 2

3.5 10 N
15.2

(3.6 10 N/m )(6.4 10 m )
n




 

 
 

 

Therefore, 16 bolts are needed. 

 

LEARN In general, the number of bolts needed to maintain static equilibrium of the slab 

is  

1 s

G

F f
n

S A


 . 

Thus, no bolt would be necessary if 1sf F . 

 

54. The notation and coordinates are as shown in Fig. 12-7 in the textbook.  Here, the 

ladder's center of mass is halfway up the ladder (unlike in the textbook figure).  Also, we 

label the x and y forces at the ground fs and FN, respectively.  Now, balancing forces, we 

have 
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 Fx = 0        fs  =  Fw 

   Fy = 0        FN  = mg . 

 

Since fs = fs, max, we divide the equations to obtain 

 

   
,maxs

N

f

F
= s = 

Fw

mg
 . 

Now, from  z = 0 (with axis at the ground) we have mg(a/2)  Fwh = 0.  But from the 

Pythagorean theorem, h = 2 2 ,L a  where L is the length of the ladder.  Therefore, 

2 2

/ 2
.

2

wF a a

mg h L a
 


   

In this way, we find 

2 2 2

2
3.4 m.

2 1 4

s
s

s

La
a

L a





   

 
 

 

55. THINK Block A can be in equilibrium if friction is present between the block and 

the surface in contact.   

 

EXPRESS The free-body diagrams for blocks A, B and the knot (denoted as C) are 

shown below.  

 
 

The tensions in the three strings are denoted as AT , BT  and CT Analyzing forces at C, the 

conditions for static equilibrium are  

 

cos , sinC B C AT T T T    

 

which can be combined to give tan /A BT T  . On the other hand, equilibrium condition 

for block B implies B BT m g . Similarly, for block A, the conditions are 

, ,N A A AF m g f T   
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For the static force to be at its maximum value, we have 
,s N A s Af F m g   . 

Combining all the equations leads to  

 

tan s A s AA

B B B

m g mT

T m g m

 
    . 

 

ANALYZE Solving for s , we get  

 

5.0 kg
tan tan30 0.29

10 kg

B
s

A

m

m
 

   
      

  
 

 

LEARN The greater the mass of block B, the greater the static coefficient s  would be 

required for block A to be in equilibrium.  

  

56. (a) With pivot at the hinge (at the left end), Eq. 12-9 gives 

 

                    – mgx – Mg 
L

2
   +  Fh h = 0 

 

where m is the man’s mass and M is that of the ramp; Fh is the leftward push of the right 

wall onto the right edge of the ramp.  This equation can be written in the form (for a 

straight line in a graph)   

Fh = (“slope”)x  +  (“y-intercept”), 

 

where the “slope” is mg/h and the “y-intercept” is MgD/2h. Since h = 0.480 m 

and 4.00 mD  , and the graph seems to intercept the vertical axis at 20 kN, then we find 

M = 500 kg. 

 

(b) Since the “slope” (estimated from the graph) is  (5000 N)/(4 m), then the man’s mass 

must be m = 62.5 kg. 

 

57. With the x axis parallel to the incline (positive uphill), then 

 

 Fx = 0       T cos 25  mg sin 45  =  0. 

Therefore,  

2sin 45 sin 45
(10 kg)(9.8 m/s ) 76 N

cos25 cos 25
T mg

 
  

 
. 

 

58. The beam has a mass M = 40.0 kg and a length L = 0.800 m. The mass of the package 

of tamale is m = 10.0 kg. 

 

(a) Since the system is in static equilibrium, the normal force on the beam from roller A is 

equal to half of the weight of the beam:  



CHAPTER 12 604 

 

FA = Mg/2 = (40.0 kg)(9.80 m/s
2
)/2 = 196 N. 

 

(b) The normal force on the beam from roller B is equal to half of the weight of the beam 

plus the weight of the tamale:  

 

FB = Mg/2 + mg = (40.0 kg)(9.80 m/s
2
)/2 + (10.0 kg)(9.80 m/s

2
) = 294 N. 

 

(c) When the right-hand end of the beam is centered over roller B, the normal force on the 

beam from roller A is equal to the weight of the beam plus half of the weight of the 

tamale:  

FA = Mg + mg/2 = (40.0 kg)(9.8 m/s
2
) + (10.0 kg)(9.80 m/s

2
)/2 = 441 N. 

 

(d) Similarly, the normal force on the beam from roller B is equal to half of the weight of 

the tamale:  

FB = mg/2 = (10.0 kg)(9.80 m/s
2
)/2 = 49.0 N. 

 

(e) We choose the rotational axis to pass through roller B. When the beam is on the verge 

of losing contact with roller A, the net torque is zero. The balancing equation may be 

written as  

( / 4 )     
4

L M
mgx Mg L x x

M m
   


. 

 

Substituting the values given, we obtain x = 0.160 m. 

 

59. THINK The bucket is in static equilibrium. The forces acting on it are the downward 

force of gravity and the upward tension force of cable A.  

 

EXPRES Since the bucket is in equilibrium, the tension force of cable A is equal to the 

weight of the bucket: AT W mg  . To solve for BT  and CT , we use the coordinates axes 

defined in the diagram. Cable A makes an angle of 2 = 66.0º with the negative y axis, 

cable B makes an angle of 27.0º with the positive y axis, and cable C is along the x axis. 

The y components of the forces must sum to zero since the knot is in equilibrium. This 

means  

TB cos 27.0º – TA cos 66.0º = 0. 

 

Similarly, the fact that the x components of forces must also sum to zero implies  

 

TC + TB sin 27.0º – TA sin 66.0º = 0 . 

 

ANALYZE (a) Substituting the values given, we find the tension force of cable A to be 

 
2 3(817 kg)(9.80m/s ) 8.01 10 NAT mg    . 

 

(b) Equilibrium condition for the y-components gives 
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3 3cos66.0 cos66.0
(8.01 10 N) 3.65 10 N.

cos 27.0 cos 27.0
B AT T

    
       

    
 

 

(c) Using the equilibrium condition for the x-components, we have   

 
3 3

3

sin 66.0 sin 27.0 (8.01 10 N)sin 66.0 (3.65 10 N)sin 27.0

5.66 10 N.

C A BT T T       

 
 

 

LEARN One may verify that the tensions obey law of sine: 

 

 
1 2 2 1sin(180 ) sin(90 ) sin(90 )

CA B
TT T

   
 

   
 . 

 

60. (a) Equation 12-8 leads to T1 sin40º  + T2 sin = mg . Also, Eq. 12-7 leads to 

 

T1 cos40º  T2 cos = 0. 

 

Combining these gives the expression  

 

2
cos tan 40 sin

mg
T

 



. 

 

To minimize this, we can plot it or set its derivative equal to zero.  In either case, we find 

that it is at its minimum at  = 50.  

 

(b) At  = 50, we find T2 = 0.77mg.  

 

61. The cable that goes around the lowest pulley is cable 1 and has tension T1 = F. That 

pulley is supported by the cable 2 (so T2 = 2T1 = 2F) and goes around the middle pulley. 

The middle pulley is supported by cable 3 (so T3 = 2T2 = 4F) and goes around the top 

pulley. The top pulley is supported by the upper cable with tension T, so T = 2T3 = 8F. 

Three cables are supporting the block (which has mass m = 6.40 kg): 

 

1 2 3 8.96 N.
7

mg
T T T mg F       

 

Therefore, T = 8(8.96 N) = 71.7 N. 

 

62. To support a load of W = mg = (670 kg)(9.8 m/s
2
) = 6566 N, the steel cable must 

stretch an amount proportional to its “free” length: 
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L
W

AY
L A r

F
HG
I
KJ where  2  

and r = 0.0125 m. 

 

(a) If L = 12 m, then 4

2 11 2

6566 N
(12 m) 8.0 10 m.

(0.0125 m) (2.0 10 N/m )
L



 
    

 
 

 

(b) Similarly, when L = 350 m, we findL  0 023. m. 

 

63. (a) The center of mass of the top brick cannot be further (to the right) with respect to 

the brick below it (brick 2) than L/2; otherwise, its center of gravity is past any point of 

support and it will fall. So a1 = L/2 in the maximum case. 

 

(b) With brick 1 (the top brick) in the maximum situation, then the combined center of 

mass of brick 1 and brick 2 is halfway between the middle of brick 2 and its right edge. 

That point (the combined com) must be supported, so in the maximum case, it is just 

above the right edge of brick 3. Thus, a2 = L/4. 

 

(c) Now the total center of mass of bricks 1, 2, and 3 is one-third of the way between the 

middle of brick 3 and its right edge, as shown by this calculation: 

 

x
m m L

m

L
com =

2 0 + / 2

3
=

6

a f a f
  

 

where the origin is at the right edge of brick 3. This point is above the right edge of brick 

4 in the maximum case, so a3 = L/6. 

 

(d) A similar calculation, 




x
m m L

m

L
com =

3 0 + / 2

4
=

8

b g b g
 

shows that a4 = L/8. 

 

(e) We find 
4

1
25 / 24ii

h a L


  . 

 

64. Since all surfaces are frictionless, the contact force 

F  exerted by the lower sphere on 

the upper one is along that 45° line, and the forces exerted by walls and floors are 

“normal” (perpendicular to the wall and floor surfaces, respectively). Equilibrium of 

forces on the top sphere leads to the two conditions 

 

wall cos45 and sin 45 .F F F mg     

 

And (using Newton’s third law) equilibrium of forces on the bottom sphere leads to the 

two conditions 



 

  

607 

wall floorcos45 and sin 45 .F F F F mg      

 

(a) Solving the above equations, we find 
floorF   = 2mg. 

 

(b) We obtain for the left side of the container, F´wall = mg. 

 

(c) We obtain for the right side of the container, Fwall = mg. 

 

(d) We get / sin 45 2F mg mg  . 

 

65. (a) Choosing an axis through the hinge, perpendicular to the plane of the figure and 

taking torques that would cause counterclockwise rotation as positive, we require the net 

torque to vanish: 

 sin90 sin65 0FL Th    

 

where the length of the beam is L = 3.2 m and the height at which the cable attaches is h 

= 2.0 m. Note that the weight of the beam does not enter this equation since its line of 

action is directed towards the hinge. With F = 50 N, the above equation yields  

 

(50 N)(3.2 m)
88 N

sin 65 (2.0 m)sin 65

FL
T

h
  

 
. 

 

(b) To find the components of 

Fp we balance the forces: 

 

0 cos 25

0 sin 25
x px

y py

F F T F

F F T W

    

    
 

 

where W is the weight of the beam (60 N). Thus, we find that the hinge force components 

are Fpx = 30 N pointing rightward, and Fpy = 97 N pointing upward. In unit-vector 

notation, ˆ ˆ(30 N)i (97 N)j.pF    

 

66. Adopting the usual convention that torques that would produce counterclockwise 

rotation are positive, we have (with axis at the hinge) 

 

0 sin 60 0
2

z

L
TL Mg

 
     

 
 

 

where L = 5.0 m and M = 53 kg. Thus, T = 300 N. Now (with Fp for the force of the hinge) 

 

      

     

F F T

F F Mg T

x px

y py

0 150

0 260

cos

sin





N

N
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where  = 60°. Therefore, 2 2ˆ ˆ( 1.5 10  N)i (2.6 10  N)j.pF       

 

67. The cube has side length l and volume V = l 
3
. We use p B V V  / for the pressure p. 

We note that 

    V

V

l

l

l l l

l

l l

l

l

l
 

 
 

3

3

3 3

3

2

3

3
3

( )
.  

 

Thus, the pressure required is 

 
11 2

9 23 3(1.4 10 N/m )(85.5cm 85.0cm)
2.4 10 N/m .

85.5cm

B l
p

l

  
     

 

68. (a) The angle between the beam and the floor is  

 

sin
1 

(d /L) = sin
1 

(1.5/2.5) = 37, 

 

so that the angle between the beam and the weight vector W  


of the beam is 53.  With L = 

2.5 m being the length of the beam, and choosing the axis of rotation to be at the base, 

 

 z  =  0       PL – W 





L

2
 sin 53  =  0 

Thus, P = ½ W sin 53 = 200 N. 

 

(b) Note that 

P  


 + W  


 = (200  90) + (500  –127) = (360  –146) 

 

using magnitude-angle notation (with angles measured relative to the beam, where 

"uphill" along the beam would correspond to 0) with the unit newton understood.  The 

"net force of the floor" Ff 


 is equal and opposite to this (so that the total net force on the 

beam is zero), so that |Ff 


 | = 360 N and is directed 34 counterclockwise from the beam. 

 

(c) Converting that angle to one measured from true horizontal, we have  = 34 + 37 = 

71.  Thus, fs = Ff cos and FN = Ff sin .  Since fs = fs, max, we divide the equations to 

obtain 

,max

N

s

F

f
 =  

1

s
  =  tan . 

Therefore, s = 0.35. 

 

69. THINK Since the rod is in static equilibrium, the net torque about the hinge must be 

zero. 
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EXPRESS The free-body diagram is shown below (not to scale). The tension in the rope 

is denoted as T.  Since the rod is in rotational equilibrium, the net torque about the hinge, 

denoted as O, must be zero. This implies 

 

– mg sin1 
L

2
  +  T L cos   =  0 , 

 

where 1 2 90      . 

 

ANALYZE Solving for T gives 

 

1 1

1 2 1 2

sin sin

2 cos( 90 ) 2 sin( )

mg mg
T

 

   
 

   
. 



With 1 = 60 and T = mg/2, we have 2sin 60 sin(60 )   , which yields 2 = 60. 

 

LEARN A plot of /T mg as a function of 2  is shown below. The other solution, 2 = 0, 

is rejected since it corresponds to the limit where the rope becomes infinitely long.  

 

 
 

70. (a) Setting up equilibrium of torques leads to 

 

2

far end (73kg)(9.8m/s ) (2700 N)
4 2

L L
F L    

 

which yields Ffar end = 1.5 × 10
3
 N. 

 

(b) Then, equilibrium of vertical forces provides 

 

F Fnear end far end)(9.8 N.    ( ) .73 2700 19 103  

 

71. THINK Upon applying a horizontal force, the cube may tip or slide, depending on 

the friction between the cube and the floor. 

 

EXPRESS When the cube is about to move, we are still able to apply the equilibrium 

conditions, but (to obtain the critical condition) we set static friction equal to its 
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maximum value and picture the normal force 
NF  as a concentrated force (upward) at the 

bottom corner of the cube, directly below the point O where P is being applied. Thus, the 

line of action of 
NF  passes through point O and exerts no torque about O (of course, a 

similar observation applied to the pull P). Since FN = mg in this problem, we have fsmax = 

cmg applied a distance h away from O. And the line of action of force of gravity (of 

magnitude mg), which is best pictured as a concentrated force at the center of the cube, is 

a distance L/2 away from O. Therefore, equilibrium of torques about O produces 

 

(8.0 cm)
0.57

2 2 2(7.0 cm)
c c

L L
mgh mg

h
 

 
     

 
 

 

for the critical condition we have been considering. We now interpret this in terms of a 

range of values for . 

 

ANALYZE (a) For it to slide but not tip, a value of  less than c is needed, since 

then — static friction will be exceeded for a smaller value of P, before the pull is strong 

enough to cause it to tip. Thus, the required condition is  

 

  c =L/2h = 0.57. 

 

(b) And for it to tip but not slide, we need  greater than c is needed, since now — static 

friction will not be exceeded even for the value of P which makes the cube rotate about 

its front lower corner. That is, we need to have   c =L/2h = 0.57 in this case. 

 

LEARN Note that the value c depends only on the ratio /L h . The cube will tend to 

slide when  is mall (think about the limit of a frictionless floor), and tend to tip over 

when the friction is sufficiently large.   

 

72. We denote the tension in the upper left string (bc) as T´ and the tension in the lower 

right string (ab) as T. The supported weight is W = Mg = (2.0 kg)(9.8 m/s
2
) = 19.6 N. The 

force equilibrium conditions lead to 

 

cos60 cos 20

sin 60 sin 20

T T

T W T

   

    
 

horizontal forces

vertical forces.
 

 (a) We solve the above simultaneous equations and find 

 

19.6 N
15 N.

tan 60 cos20 sin 20 tan 60 cos 20 sin 20

W
T   

     
 

 

(b) Also, we obtain  

T´ = T cos 20º / cos 60º = 29 N. 

 

73. THINK The force of the ground prevents the ladder from sliding.    
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EXPRESS The free-body diagram for the ladder is 

shown to the right. We choose an axis through O, the 

top (where the ladder comes into contact with the wall), 

perpendicular to the plane of the figure and take torques 

that would cause counterclockwise rotation as positive. 

The length of the ladder is 10 mL  . Given that 

8.0 mh  , the horizontal distance to the wall is 

 

2 2 2 2(10 m) (8 m) 6.0mx L h     . 

 

Note that the line of action of the applied force 
F intersects the wall at a height of (8.0 m) /5 1.6m .  

 

 

 
In other words, the moment arm for the applied force (in terms of where we have chosen 

the axis) is  

( )sin ( )( / ) (8.0 m)(8.0 m/10.0 m) 6.4mr L d L d h L       . 

 

The moment arm for the weight is / 2 3.0mx  , half the horizontal distance from the wall 

to the base of the ladder. Similarly, the moment arms for the x and y components of the 

force at the ground 

Fgd i  are  h = 8.0 m and x = 6.0 m, respectively. Thus, we have 

 

, ,

, ,

( / 2)

(6.4 m) (3.0 m) (8.0 m) (6.0 m) 0.

z g x g y

g x g y

Fr W x F h F x

F W F F

     

    
 

 

In addition, from balancing the vertical forces we find that W = Fg,y (keeping in mind that 

the wall has no friction). Therefore, the above equation can be written as 

 

,(6.4 m) (3.0 m) (8.0 m) (6.0 m) 0.z g xF W F W       

 

ANALYZE (a) With F = 50 N and W = 200 N, the above equation yields , 35 Ng xF  . 

Thus, in unit vector notation we obtain 

 
ˆ ˆ(35 N)i+(200 N)j.gF   

 

(b) Similarly, with F = 150 N and W = 200 N, the above equation yields , 45 Ng xF   . 

Therefore, in unit vector notation we obtain 

 
ˆ ˆ( 45 N)i+(200 N)j.gF    

 

(c) Note that the phrase “start to move towards the wall” implies that the friction force is 

pointed away from the wall (in the i  direction). Now, if ,g xf F   and 
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, 200 NN g yF F  are related by the (maximum) static friction relation (f = fs,max = s FN) 

with s = 0.38, then we find 
, 76 Ng xF   . Returning this to the above equation, we 

obtain 

2( / 2) (200 N)(3.0m) (0.38)(200N)(8.0m)
1.9 10 N.

6.4m

sW x Wh
F

r





 
     

 

LEARN The force needed to move the ladder toward the wall would decrease with a 

larger r  or a smaller s . 

 

74. One arm of the balance has length 1  and the other has length 2 . The two cases 

described in the problem are expressed (in terms of torque equilibrium) as 

 

m m m m1 1 2 1 2 2    and .  

 

We divide equations and solve for the unknown mass: m m m 1 2 . 

 

75. Since GA exerts a leftward force T at the corner A, then (by equilibrium of horizontal 

forces at that point) the force Fdiag in CA must be pulling with magnitude 

 

diag 2.
sin 45

T
F T 


 

 

This analysis applies equally well to the force in DB. And these diagonal bars are pulling 

on the bottom horizontal bar exactly as they do to the top bar, so the bottom bar CD is the 

“mirror image” of the top one (it is also under tension T). Since the figure is symmetrical 

(except for the presence of the turnbuckle) under 90° rotations, we conclude that the side 

bars (DA and BC) also are under tension T (a conclusion that also follows from 

considering the vertical components of the pull exerted at the corners by the diagonal 

bars). 

 

(a) Bars that are in tension are BC, CD, and DA. 

 

(b) The magnitude of the forces causing tension is 535 NT  . 

 

(c) The magnitude of the forces causing compression on CA and DB is 

 

diag 2 (1.41)535 N 757 NF T   . 

 

76. (a) For computing torques, we choose the axis to be at support 2 and consider torques 

that encourage counterclockwise rotation to be positive. Let m = mass of gymnast and M 

= mass of beam. Thus, equilibrium of torques leads to 

 

1(1.96m) (0.54m) (3.92m) 0.Mg mg F    
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Therefore, the upward force at support 1 is F1 = 1163 N (quoting more figures than are 

significant — but with an eye toward using this result in the remaining calculation). In 

unit-vector notation, we have 3

1
ˆ(1.16 10  N)jF   . 

 

(b) Balancing forces in the vertical direction, we have F F Mg mg1 2 0    , so that the 

upward force at support 2 is F2 =1.74×10
3
 N. In unit-vector notation, we have 

3

2
ˆ(1.74 10  N)jF   . 

 

77. (a) Let d = 0.00600 m.  In order to achieve the same final lengths, wires 1 and 3 must 

stretch an amount d more than wire 2 stretches: 

 

L1 = L3 = L2 + d . 

 

Combining this with Eq. 12-23 we obtain 

F1 = F3 =  F2 + 
dAE

L
 . 

 

Now, Eq. 12-8 produces F1 + F3 + F2 – mg = 0.  Combining this with the previous 

relation (and using Table 12-1) leads to 3

1= 1380 N 1.38 10 NF   .  

 

(b) Similarly, F2 = 180 N. 

 

78. (a) Computing the torques about the hinge, we have  

 

sin 40 sin50 ,
2

L
TL W    

 

where the length of the beam is L = 12 m and the tension is T = 400 N. Therefore, the 

weight is 671 NW  , which means that the gravitational force on the beam is 
ˆ( 671 N)jwF   . 

 

(b) Equilibrium of horizontal and vertical forces yields, respectively, 

 

hinge 

hinge 

400 N

671 N

x

y

F T

F W

 

 
 

 

where the hinge force components are rightward (for x) and upward (for y). In unit-vector 

notation, we have hinge
ˆ ˆ(400 N)i (671 N)jF   . 

 

79. We locate the origin of the x axis at the edge of the table and choose rightward 

positive. The criterion (in part (a)) is that the center of mass of the block above another 

must be no further than the edge of the one below; the criterion in part (b) is more subtle 
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and is discussed below. Since the edge of the table corresponds to x = 0 then the total 

center of mass of the blocks must be zero. 

 

(a) We treat this as three items: one on the upper left (composed of two bricks, one 

directly on top of the other) of mass 2m whose center is above the left edge of the bottom 

brick; a single brick at the upper right of mass m, which necessarily has its center over the 

right edge of the bottom brick (so a1 = L/2 trivially); and, the bottom brick of mass m. 

The total center of mass is 

 

( )( ) ( / )2 2

4
02 2 2m a L ma m a L

m

   
  

 

which leads to a2 = 5L/8. Consequently, h = a2 + a1 = 9L/8. 

 

(b) We have four bricks (each of mass m) where the center 

of mass of the top one and the center of mass of the bottom 

one have the same value, xcm = b2 – L/2. The middle layer 

consists of two bricks, and we note that it is possible for 

each of their centers of mass to be beyond the respective 

edges of the bottom one! This is due to the fact that the top brick is exerting downward 

forces (each equal to half its weight) on the middle blocks — and in the extreme case, 

this may be thought of as a pair of concentrated forces exerted at the innermost edges of 

the middle bricks. Also, in the extreme case, the support force (upward) exerted on a 

middle block (by the bottom one) may be thought of as a concentrated force located at the 

edge of the bottom block (which is the point about which we compute torques, in the 

following).  

 

If (as indicated in our sketch, where 

Ftop  has magnitude mg/2) we consider equilibrium of 

torques on the rightmost brick, we obtain 

 

mg b L
mg

L b1 1

1

2 2

F
HG

I
KJ  ( )  

 

which leads to b1 = 2L/3. Once we conclude from symmetry that b2 = L/2, then we also 

arrive at h = b2 + b1 = 7L/6. 

 

80. The assumption stated in the problem (that the density does not change) is not meant 

to be realistic; those who are familiar with Poisson’s ratio (and other topics related to the 

strengths of materials) might wish to think of this problem as treating a fictitious material 

(which happens to have the same value of E as aluminum, given in Table 12-1) whose 

density does not significantly change during stretching.  Since the mass does not change 

either, then the constant-density assumption implies the volume (which is the circular 

area times its length) stays the same: 

 

       (r
2
L)new = (r

2
L)old          L = L[(1000/999.9)

2
 – 1] . 
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 Now, Eq. 12-23 gives 

 

     F = r
2 

EL/L  =  r
2
(7.0 x 10

9 
N/m

2
)[(1000/999.9)

2
 – 1] . 

 

Using either the new or old value for r gives the answer F = 44 N. 

 

81. Where the crosspiece comes into contact with the beam, there is an upward force of 

2F (where F is the upward force exerted by each man). By equilibrium of vertical forces, 

W = 3F where W is the weight of the beam. If the beam is uniform, its center of gravity is 

a distance L/2 from the man in front, so that computing torques about the front end leads 

to 

W
L

Fx
W

x
2

2 2
3

 
F
HG
I
KJ  

 

which yields x = 3L/4 for the distance from the crosspiece to the front end. It is therefore 

a distance L/4 from the rear end (the “free” end). 

 

82. The force F exerted on the beam is F = 7900 N, as computed in the Sample Problem. 

Let F/A = Su/6, where 6 250 10 N/muS    is the ultimate strength (see Table 12-1). Then 

 

4 2

6 2

6 6(7900 N)
9.5 10 m .

50 10 N/mu

F
A

S

   


 

 

Thus the thickness is 4 29.5 10  m 0.031mA    . 

 

83. (a)   Because of Eq. 12-3, we can write 

 

          T  


  +  (mB g   –90º) + (mA g   –150º)  = 0 . 

 

Solving the equation, we obtain T  


 = (106.34   63.963º).   Thus, the magnitude of the 

tension in the upper cord is 106 N,   

 

(b) and its angle (measured counterclockwise from the +x axis) is 64.0. 

 

84. (a) and (b)  With +x rightward and +y upward (we assume the adult is pulling with 

force P  


 to the right), we have 

 

    Fy = 0       W = T cos   = 270 N 

 Fx = 0       P = T sin   = 72 N 

where  = 15. 
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(c) Dividing the above equations leads to 

 
P

W
  =  tan   . 

 

Thus, with W = 270 N and P = 93 N, we find  = 19. 

 

85. Our system is the second finger bone. Since the system is in 

static equilibrium, the net force acting on it is zero. In addition, 

the torque about any point must be zero. We set up the torque 

equation about point O where 
cF  act: 

 

net0 sin ( ) sin ( ) sin
3

t v h

O

d
F d F d F   

 
     

 
 . 

 

Solving for tF  and substituting the values given, we obtain  

 

2

3( sin sin ) 3[(162.4 N)sin10 (13.4 N)sin80 ]
175.6 N

sin sin 45

1.8 10 N.

v h
t

F F
F

 



  
  



 

 

86. (a) Setting up equilibrium of torques leads to a simple “level principle” ratio: 

 

2

catch

(91/ 2 10)cm
(11kg)(9.8m/s ) 42 N.

91cm
F


   

 

(b) Then, equilibrium of vertical forces provides 

 
2

hinge catch(11kg)(9.8m/s ) 66 N.F F    

 

87. (a) For the net force to be zero, 1 2 3 0,F F F    we require 

 

3 1 2
ˆ ˆ ˆ ˆ(8.40 N)i (5.70 N)j (16.0 N)i (4.10 N)j

ˆ ˆ( 24.4 N)i (1.60 N)j

F F F           
   

  

 

 

Thus, 3 24.4 NxF   . 

 

(b) Similarly, 3 1.60 NyF  . 

 

(c) The angle 3F  makes relative to the +x-axis is  
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31 1

3

1.60 N
tan tan 176.25 .

24.4 N

y

x

F

F
     
      

  
 

 

88. We solve part (b) first. 

 

(b) The critical tilt angle corresponds to the situation where the line of action of gF  

passes through the supporting edge (point O in the figure).  

 

 
At this state, the normal force also passes through the supporting edge, so the net torque 

is zero and the Tower is in static equilibrium. However, this equilibrium is unstable and 

the Tower is on the verge of falling over. From the figure, we find the critical angle to be  

 

1 1/ 2 7.44 m
tan tan tan 7.18

/ 2 59.1 m

D D D

h h h
      
        

   
 

 

(a) From the figure, the maximum displacement is  

 

max sin (59.1 m)sin7.18 7.38 ml h      

 

Thus, the additional displacement to put the Tower on the verge of toppling is 

 

max 7.38 m 4.01 m 3.37 ml l l       

 

 

 

 


