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Chapter 31 
 

 

1. (a) All the energy in the circuit resides in the capacitor when it has its maximum 

charge. The current is then zero. If Q is the maximum charge on the capacitor, then the 

total energy is 
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(b) When the capacitor is fully discharged, the current is a maximum and all the energy 

resides in the inductor. If I is the maximum current, then U = LI
2
/2 leads to 
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2. (a) We recall the fact that the period is the reciprocal of the frequency. It is helpful to 

refer also to Fig. 31-1. The values of t when plate A will again have maximum positive 

charge are multiples of the period: 

 

t nT
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where n = 1, 2, 3, 4, . The earliest time is (n = 1) 5.00 s.At   

 

(b) We note that it takes t T 1
2

 for the charge on the other plate to reach its maximum 

positive value for the first time (compare steps a and e in Fig. 31-1). This is when plate A 

acquires its most negative charge. From that time onward, this situation will repeat once 

every period. Consequently, 
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where n = 1, 2, 3, 4, . The earliest time is (n = 1) 2.50 s.t   

 

(c) At t T 1
4

, the current and the magnetic field in the inductor reach maximum values 

for the first time (compare steps a and c in Fig. 31-1). Later this will repeat every half-

period (compare steps c and g in Fig. 31-1). Therefore, 
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where n = 1, 2, 3, 4, . The earliest time is (n = 1) 1.25 s.t   

 

3. (a) The period is T = 4(1.50 s) = 6.00 s. 

 

(b) The frequency is the reciprocal of the period: f
T
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(c) The magnetic energy does not depend on the direction of the current (since UB  i
2
), 

so this will occur after one-half of a period, or 3.00 s. 

 

4. We find the capacitance from U Q C 1
2

2 : 
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5. According to U LI Q C 1
2

2 1
2

2 ,  the current amplitude is 
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6. (a) The angular frequency is 
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(b) The period is 1/f and f = /2. Therefore, T     2 2
7 0 10 2 

 rad s
s..  

(c) From  = (LC)
–1/2

, we obtain 
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7. THINK This problem explores the analogy between an oscillating LC system and an 

oscillating mass–spring system.  

 

EXPRESS Table 31-1 provides a comparison of energies in the two systems. From the 

table, we see the following correspondences: 
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ANALYZE (a) The mass m corresponds to the inductance, so m = 1.25 kg. 

 

(b) The spring constant k corresponds to the reciprocal of the capacitance, 1/C. Since the 

total energy is given by U = Q
2
/2C, where Q is the maximum charge on the capacitor and 

C is the capacitance, we have  
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(c) The maximum displacement corresponds to the maximum charge, so 
4

max 1.75 10  m.x    

 

(d) The maximum speed vmax corresponds to the maximum current. The maximum 

current is 
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Consequently, vmax = 3.02  10
–3

 m/s. 

 

LEARN The correspondences suggest that an oscillating LC system is mathematically 

equivalent to an oscillating mass–spring system. The electrical mechanical analogy can 

also be seen by comparing their angular frequencies of oscillation: 

 

 
1
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k
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8. We apply the loop rule to the entire circuit: 

 

 
1 1 1total j j jL C R L C R j j

j j j

di q di q
L iR L iR

dt C dt C
      

 
              

 
   

with 

1 1
, ,j j

j j jj

L L R R
C C

      



CHAPTER 31 1336 

 

and we require total = 0. This is equivalent to the simple LRC circuit shown in Fig. 31-

27(b). 

 

9. The time required is t = T/4, where the period is given by 2 / 2 .T LC     

Consequently, 
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10. We find the inductance from  
1

/ 2 2 .f LC  
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11. THINK The frequency of oscillation f in an LC circuit is related to the inductance L 

and capacitance C by 1/ 2 .f LC    

 

EXPRESS Since 1/ ,f C  the smaller value of C gives the larger value of f, while the 

larger value of C gives the smaller value of f.  Consequently, max min1/ 2 ,f LC   and 

min max1/ 2 .f LC    

 

ANALYZE (a) The ratio of the maximum frequency to the minimum frequency is 
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(b) An additional capacitance C is chosen so the desired ratio of the frequencies is 
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Since the additional capacitor is in parallel with the tuning capacitor, its capacitance adds 

to that of the tuning capacitor. If C is in picofarads (pF), then 

 

C
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The solution for C is 
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(c) We solve f LC1 2/   for L. For the minimum frequency, C = 365 pF + 36 pF = 

401 pF and f = 0.54 MHz. Thus, the inductance is 
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LEARN One could also use the maximum frequency condition to solve for the 

inductance of the coil in (d). The capacitance is C = 10 pF + 36 pF = 46 pF and f = 1.60 

MHz, so  
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12. (a) Since the percentage of energy stored in the electric field of the capacitor is  

(1 75.0%) 25.0%  , then 

U

U
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2

2

2

2
250%

/

/
.  
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(b) From 

U

U
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B  
2

2

2

2
750%,

/

/
.  

we find / 0.750 0.866.i I    

 

13. (a) The charge (as a function of time) is given by sinq Q t , where Q is the 

maximum charge on the capacitor and  is the angular frequency of oscillation. A sine 

function was chosen so that q = 0 at time t = 0. The current (as a function of time) is 

 

i
dq

dt
Q t  cos ,  

 

and at t = 0, it is I = Q. Since  1/ ,LC  

 

Q I LC       2 00 300 10 2 70 10 180 103 6 4. . . .A H F C.b g c hc h  

 

(b) The energy stored in the capacitor is given by 
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and its rate of change is 

dU
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Q t t

C

E 
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We use the trigonometric identity cos sin sin  t t t 1
2

2b g  to write this as 
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Q

C
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
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2

2
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The greatest rate of change occurs when sin(2t) = 1 or 2t = /2 rad. This means 
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(c) Substituting  = 2/T and sin(2t) = 1 into dUE/dt = (Q
2
/2C) sin(2t), we obtain  
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Now T LC       2 2 300 10 2 70 10 5655 103 6 4  . . .H F s,c hc h  so 
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We note that this is a positive result, indicating that the energy in the capacitor is indeed 

increasing at t = T/8. 

 

14. The capacitors C1 and C2 can be used in four different ways: (1) C1 only; (2) C2 only; 

(3) C1 and C2 in parallel; and (4) C1 and C2 in series.  

 

(a) The smallest oscillation frequency is 
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(b) The second smallest oscillation frequency is 
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(c) The second largest oscillation frequency is 
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(d) The largest oscillation frequency is 
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15. (a) The maximum charge is  

 

Q = CVmax = (1.0  10
–9

 F)(3.0 V) = 3.0  10
–9

 C. 

 

(b) From U LI Q C 1
2

2 1
2

2 /  we get 
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(c) When the current is at a maximum, the magnetic energy is at a maximum also: 

 

U LIB,max . . .       1

2

1

2
30 10 17 10 4 5 102 3 3

2
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16. The linear relationship between  (the knob angle in degrees) and frequency f is 

 

f f
f

f
 



F
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I
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F
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1
180

180 1

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where f0 = 2  10
5
 Hz. Since f = /2 = 1/2 LC , we are able to solve for C in terms of 

: 

   
2 22 2 2

0

1 81

4 1 /180 400000 180
C

Lf   
 

  
 

 

with SI units understood. After multiplying by 10
12

 (to convert to picofarads), this is 

plotted next: 
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17. (a) After the switch is thrown to position b the circuit is an LC circuit. The angular 

frequency of oscillation is  1/ LC . Consequently, 

 

  3 6

1 1
275 Hz.

2 2 2 54.0 10 H 6.20 10 F
f

LC



    
   

 
 

 

(b) When the switch is thrown, the capacitor is charged to V = 34.0 V and the current is 

zero. Thus, the maximum charge on the capacitor is  

 

Q = VC = (34.0 V)(6.20  10
–6

 F) = 2.11  10
–4

 C. 

 

The current amplitude is 

 

  42 2 275 Hz 2.11 10 C 0.365A.I Q fQ         

 

18. (a)  From V = IXC we find = I/CV.  The period is then T = 2/ = 2CV/I = 46.1 s. 

 

(b) The maximum energy stored in the capacitor is  

 

 2 7 2 91 1
(2.20 10 F)(0.250 V) 6.88 10  J

2 2
EU CV       . 

 

(c) The maximum energy stored in the inductor is also 2 / 2BU LI 6.88 nJ . 

 

(d) We apply Eq. 30-35 as V = L(di/dt)max . We can substitute L = CV
2
/I

2
 (combining 

what we found in part (a) with Eq. 31-4) into Eq. 30-35 (as written above) and solve for 

(di/dt)max .  Our result is  

 

 
2 3 2

3

2 2 7

max

(7.50 10 A)
1.02 10 A/s

/ (2.20 10 F)(0.250 V)

di V V I

dt L CV I CV





 
      

 
. 
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(e) The derivative of UB = 
1

2
 Li

2
 leads to  

 

 2 21
sin cos sin 2

2

BdU
LI t t LI t

dt
      . 

 

Therefore, 2 3

max

1 1 1
(7.50 10 A)(0.250 V) 0.938 mW.

2 2 2

BdU
LI IV

dt
  

     
 

 

 

19. The loop rule, for just two devices in the loop, reduces to the statement that the 

magnitude of the voltage across one of them must equal the magnitude of the voltage 

across the other.  Consider that the capacitor has charge q and a voltage (which we’ll 

consider positive in this discussion) V = q/C.  Consider at this moment that the current in 

the inductor at this moment is directed in such a way that the capacitor charge is 

increasing (so i = +dq/dt). Equation 30-35 then produces a positive result equal to the V 

across the capacitor: V = L(di/dt), and we interpret the fact that di/dt > 0 in this 

discussion to mean that d(dq/dt)/dt = d
2
q/dt

2
 < 0 represents a “deceleration” of the 

charge-buildup process on the capacitor (since it is approaching its maximum value of 

charge).  In this way we can “check” the signs in Eq. 31-11 (which states q/C =  L 

d
2
q/dt

2
) to make sure we have implemented the loop rule correctly. 

 

20. (a) We use U LI Q C 1
2

2 1
2

2 /  to solve for L: 

 

 
22 22

6 3max max

3

1 1 1.50V
4.00 10 F 3.60 10 H.

50.0 10 A

CV VQ
L C

C I C I I

 



     
            

       
 

 

(b) Since f = /2, the frequency is 

 

  
3

3 6

1 1
1.33 10 Hz.

2 2 3.60 10 H 4.00 10 F
f

LC   
   

 
 

 

(c) Referring to Fig. 31-1, we see that the required time is one-fourth of a period (where 

the period is the reciprocal of the frequency). Consequently, 

 

t T
f

  


  1

4

1

4

1

4 133 10
188 10

3

4

.
.
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s.

e j
 

 

21. (a) We compare this expression for the current with i = I sin(t+0). Setting (t+) = 

2500t + 0.680 = /2, we obtain t = 3.56  10
–4

 s. 

 

(b) Since  = 2500 rad/s = (LC)
–1/2

, 
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L
C

 
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

1 1

2500 64 0 10
2 50 10

2 2 6

3

 rad / s F
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.  

 

(c) The energy is 

U LI     1

2

1

2
2 50 10 160 320 102 3 2 3. . .H A J.c hb g  

 

22. For the first circuit  = (L1C1)
–1/2

, and for the second one  = (L2C2)
–1/2

. When the 

two circuits are connected in series, the new frequency is 

 

       

   

eq eq 1 2 1 2 1 2 1 1 2 2 2 1 1 2

1 1 1 2 1 2

1 1 1

/ /

1 1
,

/

L C L L C C C C L C C L C C C C

L C C C C C





  
   

 
 

 

 

where we use    1

1 1 2 2L C L C . 

 

23. (a) The total energy U is the sum of the energies in the inductor and capacitor: 

 

 
 

   
2 2

6 3 32 2
6

6

3.80 10 C 9.20 10 A 25.0 10 H
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2 2 22 7.80 10 F
E B

q i L
U U U

C

  





  
       


 

 

(b) We solve U = Q
2
/2C for the maximum charge: 

 

Q CU       2 2 7 80 10 198 10 556 106 6 6. . .F J C.c hc h  

 

(c) From U = I
2
L/2, we find the maximum current: 

 

I
U

L
 




 





2 2 198 10

250 10
126 10

6

3

2
.

.
.

J

H
A.

c h
 

 

(d) If q0 is the charge on the capacitor at time t = 0, then q0 = Q cos  and 

 

 
F
HG
I
KJ 





F
HG

I
KJ    




cos cos

.

.
. .1 1

6

6

380 10

556 10
46 9

q

Q

C

C
 

 

For  = +46.9° the charge on the capacitor is decreasing, for  = –46.9° it is increasing. 

To check this, we calculate the derivative of q with respect to time, evaluated for t = 0. 
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We obtain –Q sin , which we wish to be positive. Since sin(+46.9°) is positive and 

sin(–46.9°) is negative, the correct value for increasing charge is  = –46.9°. 

 

(e) Now we want the derivative to be negative and sin  to be positive. Thus, we take 

46.9 .     

 

24. The charge q after N cycles is obtained by substituting t = NT = 2N/' into Eq.  

31-25: 

 

   

 
 

/ 2 / 2

2 / / 2

/

cos cos 2 /

cos 2

cos .

Rt L RNT L

RN L C L

N R C L

q Qe t Qe N

Qe N

Qe





     

 



 





       

 



 

 

We note that the initial charge (setting N = 0 in the above expression) is q0 = Q cos , 

where q0 = 6.2 C is given (with 3 significant figures understood). Consequently, we 

write the above result as  0 exp /Nq q N R C L  . 

 

(a) For N = 5,     5 6.2 C exp 5 7.2 0.0000032F/12H 5.85 C.q        

 

(b) For N = 10,     10 6.2 C exp 10 7.2 0.0000032F/12H 5.52 C.q        

 

(c) For N = 100,     100 6.2 C exp 100 7.2 0.0000032F/12H 1.93 C.q        

 

25. Since   ', we may write T = 2/ as the period and  1/ LC  as the angular 

frequency. The time required for 50 cycles (with 3 significant figures understood) is 

 

     3 62
50 50 50 2 50 2 220 10 H 12.0 10 F

0.5104s.

t T LC


 


  
      

 



 

 

The maximum charge on the capacitor decays according to q Qe Rt L

max

/  2  (this is called 

the exponentially decaying amplitude in Section 31-5), where Q is the charge at time t = 0 

(if we take  = 0 in Eq. 31-25). Dividing by Q and taking the natural logarithm of both 

sides, we obtain 

ln maxq

Q

Rt

L

F
HG
I
KJ   2

 

which leads to 
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 
 

3

3max
2 220 10 H2

ln ln 0.99 8.66 10 .
0.5104s

qL
R

t Q




 

       
 

 

 

26. The assumption stated at the end of the problem is equivalent to setting  = 0 in Eq. 

31-25. Since the maximum energy in the capacitor (each cycle) is given by q Cmax /2 2 , 

where qmax is the maximum charge (during a given cycle), then we seek the time for 

which 
2 2

max
max

1
.

2 2 2 2

q Q Q
q

C C
    

 

Now qmax (referred to as the exponentially decaying amplitude in Section 31-5) is related 

to Q (and the other parameters of the circuit) by 

 

q Qe
q

Q

Rt

L

Rt L

max

/ maxln . 
F
HG
I
KJ  

 2

2
 

Setting q Qmax  / 2 , we solve for t: 

 

t
L

R

q

Q

L

R

L

R
 

F
HG
I
KJ  

F
HG
I
KJ 

2 2 1

2
2ln ln ln .max  

 

The identities ln( / ) ln ln1 2 2 21
2

     were used to obtain the final form of the 

result. 

 

27. THINK With the presence of a resistor in the RLC circuit, oscillation is damped, and 

the total electromagnetic energy of the system is no longer conserved, as some energy is 

transferred to thermal energy in the resistor. 

 

EXPRESS Let t be a time at which the capacitor is fully charged in some cycle and let 

qmax 1 be the charge on the capacitor then. The energy in the capacitor at that time is 

 

U t
q

C

Q

C
e Rt L( ) max /  1

2 2

2 2
 

 

where 

q Qe Rt L

max

/

1

2   

 

(see the discussion of the exponentially decaying amplitude in Section 31-5). One period 

later the charge on the fully charged capacitor is  

 
( )2/

max2

R t T Lq Qe   
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where 
2

,T






 and the energy is 

2 2
( ) /max 2( ) .

2 2

R t T Lq Q
U t T e

C C

     

 

ANALYZE The fractional loss in energy is 

 
/ ( ) /

/

/

| | ( ) ( )
1 .

( )

Rt L R t T L
RT L

Rt L

U U t U t T e e
e

U U t e

  




   
     

 

Assuming that RT/L is very small compared to 1 (which would be the case if the 

resistance is small), we expand the exponential (see Appendix E). The first few terms are: 

 

e
RT

L

R T

L

RT L    / .1
2

2 2

2
  

 

If we approximate   ', then we can write T as 2/. As a result, we obtain 

 

| | 2
1 1 .

U RT RT R

U L L L

  
      

 
 

 

LEARN The ratio | | /U U  can be rewritten as 

 

| | 2U

U Q


  

 

where /Q L R  (not to confuse Q with charge) is called the “quality factor” of the 

oscillating circuit. A high-Q circuit has low resistance and hence, low fractional energy 

loss. 

 

28. (a) We use I = /Xc = dC: 
 

62 2 Hz)(1.50 10 F)(30.0 V) 0.283 A .d m d mI C f C             

 

(b) I = 2(8.00  10
3
 Hz)(1.50  10

–6
 F)(30.0 V) = 2.26 A. 

 

29. (a) The current amplitude I is given by I = VL/XL, where XL = dL = 2fdL. Since the 

circuit contains only the inductor and a sinusoidal generator, VL = m. Therefore, 

 

3

30.0V
0.0955A 95.5 mA.

2 2 Hz)(50.0 10 H)

mL

L d

V
I

X f L



   
    

 
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(b) The frequency is now eight times larger than in part (a), so the inductive reactance XL 

is eight times larger and the current is one-eighth as much. The current is now  

 

I = (0.0955 A)/8 = 0.0119 A = 11.9 mA. 

 

30. (a) The current through the resistor is 

 

30.0V
0.600 A .

50.0

mI
R


  


 

 

(b) Regardless of the frequency of the generator, the current is the same, 0.600 A .I   

 

31. (a) The inductive reactance for angular frequency d is given by 
L dX L , and the 

capacitive reactance is given by XC = 1/dC. The two reactances are equal if dL = 1/dC, 

or 1/d LC  . The frequency is 

 

2

6

1 1
6.5 10  Hz.

2 2 2 H)(10 10 F)

d
df

LC



    
    

 
 

 

(b) The inductive reactance is  

 

XL = dL = 2fdL = 2(650 Hz)(6.0  10
–3

 H) = 24 . 

 

The capacitive reactance has the same value at this frequency. 

 

(c) The natural frequency for free LC oscillations is / 2f LC    , the same as 

we found in part (a). 

 

32. (a) The circuit consists of one generator across one inductor; therefore, m = VL. The 

current amplitude is  

 

325.0 V
5.22 10 A .

(377 rad/s)(12.7 H)

m m

L d

I
X L

 



      

 

(b) When the current is at a maximum, its derivative is zero. Thus, Eq. 30-35 gives L = 0 

at that instant. Stated another way, since (t) and i(t) have a 90° phase difference, then (t) 

must be zero when i(t) = I. The fact that  = 90° = /2 rad is used in part (c). 

 

(c) Consider Eq. 31-28 with / 2m   . In order to satisfy this equation, we require 

sin(dt) = –1/2. Now we note that the problem states that  is increasing in magnitude, 

which (since it is already negative) means that it is becoming more negative. Thus, 

differentiating Eq. 31-28 with respect to time (and demanding the result be negative) we 
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must also require cos(dt) < 0. These conditions imply that t must equal (2n – 5/6) [n 

= integer]. Consequently, Eq. 31-29 yields (for all values of n) 

 

i I n 
F
HG

I
KJ  

F
HG
I
KJ   sin ( . .2 522 10 4 51 103 3 








A)

3

2
A .  

 

33. THINK Our circuit consists of an ac generator that produces an alternating current, 

as well as a load that could be purely resistive, capacitive, or inductive. The nature of the 

load can be determined by the phase angle between the current and the emf.  

 

EXPRESS The generator emf and the current are given by 

 

 sin( / 4), ( ) sin( 3 / 4).m d di t I          

 

The expressions show that the emf is maximum when sin(dt – /4) = 1 or  

 

dt – /4 = (/2) ± 2n   [n = integer]. 

 

Similarly, the current is maximum when sin(dt – 3/4) = 1, or  

 

dt – 3/4 = (/2) ± 2n   [n = integer]. 

 

ANALYZE (a) The first time the emf reaches its maximum after t = 0 is when dt – /4 

= /2 (that is, n = 0). Therefore, 

 

t
d

    3 3
6 73 10 3





  rad / s)
s ..  

 

(b) The first time the current reaches its maximum after t = 0 is when dt – 3/4 = /2, as 

in part (a) with n = 0. Therefore, 

 

25 5
1.12 10 s.

 rad/s)d

t


 
   
 

 

 

(c) The current lags the emf by / 2  rad, so the circuit element must be an inductor. 

 

(d) The current amplitude I is related to the voltage amplitude VL by VL = IXL, where XL is 

the inductive reactance, given by XL = dL. Furthermore, since there is only one element 

in the circuit, the amplitude of the potential difference across the element must be the 

same as the amplitude of the generator emf: VL = m. Thus, m = IdL and 

 

3

30.0 V
0.138 H.

(620 10 A)(350 rad/s)

m

d

L
I



 
  


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LEARN The current in the circuit can be rewritten as 

 

3
( ) sin sin

4 4
d di t I I

 
  
   

       
   

 

 

where / 2.    In a purely inductive circuit, the current lags the voltage by 90 .  

 

34. (a) The circuit consists of one generator across one capacitor; therefore, m = VC. 

Consequently, the current amplitude is 

 

I
X

Cm

C

m      
  (377 rad / s)(4.15 10 F)(25.0 V) 3.91 10 A .6 2  

 

(b) When the current is at a maximum, the charge on the capacitor is changing at its 

largest rate. This happens not when it is fully charged (±qmax), but rather as it passes 

through the (momentary) states of being uncharged (q = 0). Since q = CV, then the 

voltage across the capacitor (and at the generator, by the loop rule) is zero when the 

current is at a maximum. Stated more precisely, the time-dependent emf (t) and current 

i(t) have a  = –90° phase relation, implying (t) = 0 when i(t) = I. The fact that  = –90° 

= –/2 rad is used in part (c). 

 

(c) Consider Eq. 32-28 with    1
2 m . In order to satisfy this equation, we require 

sin(dt) = –1/2. Now we note that the problem states that  is increasing in magnitude, 

which (since it is already negative) means that it is becoming more negative. Thus, 

differentiating Eq. 32-28 with respect to time (and demanding the result be negative) we 

must also require cos(dt) < 0. These conditions imply that t must equal (2n – 5/6) [n 

= integer]. Consequently, Eq. 31-29 yields (for all values of n) 

 

3 23
sin 2 (3.91 10 A) 3.38 10 A,

2
i I n

 
  

  
                

 

or 2| | 3.38 10 A.i    

 

35. The resistance of the coil is related to the reactances and the phase constant by Eq. 

31-65. Thus, 

X X

R

L C

R

L C d d





 


1/
tan ,  

which we solve for R: 

 

2

6

1 1 1 1
(2 Hz(8.8 10 H)

tan tan 75 (2 Hz)(0.94 10 F

89 .

d

d

R L
C


 





   
        

    

 
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36. (a) The circuit has a resistor and a capacitor (but no inductor).  Since the capacitive 

reactance decreases with frequency, then the asymptotic value of Z must be the resistance: 

R = 500 . 

 

(b) We describe three methods here (each using information from different points on the 

graph):   

 

method 1: At d = 50 rad/s, we have Z  700 , which gives C = (d Z
2
 - R

2
 )
1 

= 41 F. 

 

method 2: At d = 50 rad/s, we have XC   500 , which gives C = (d XC)
1 

= 40 F. 

 

method 3: At d = 250 rad/s, we have XC   100 , which gives C = (d XC)
1 

= 40 F. 

 

37. The rms current in the motor is  

 

   

rms rms
rms

2 2 2 2

420V
7.61A.

45.0 32.0L

I
Z R X

 
   

   

 

 

38. (a) The graph shows that the resonance angular frequency is 25000 rad/s, which 

means (using Eq. 31-4)  

 

C = (2
L)

1
 = [(25000)

2
 ×200 × 10

6]
1

 = 8.0 F. 

 

(b) The graph also shows that the current amplitude at resonance is 4.0 A, but at 

resonance the impedance Z becomes purely resistive (Z = R) so that we can divide the 

emf amplitude by the current amplitude at resonance to find R: 8.0/4.0 = 2.0 . 

 

39. (a) Now XL = 0, while R = 200  and XC = 1/2fdC = 177  Therefore, the 

impedance is  

 2 2 2 2(200 ) (177 ) 267 .CZ R X         

 

(b) The phase angle is 

 1 1 0 177
tan tan 41.5

200

L CX X

R
       
      

   
 

 

 (c) The current amplitude is  

36.0 V
0.135 A .

267

mI
Z


  


 

 

(d) We first find the voltage amplitudes across the circuit elements: 
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(0.135A)(200 ) 27.0V

(0.135A)(177 ) 23.9V

R

C C

V IR

V IX

   

   
 

 

The circuit is capacitive, so I leads m . The phasor diagram is drawn to scale next. 

 

 
 

40. A phasor diagram very much like Fig. 31-14(d) leads to the condition: 

 

VL – VC = (6.00 V)sin(30º) = 3.00 V. 

 

With the magnitude of the capacitor voltage at 5.00 V, this gives a inductor voltage 

magnitude equal to 8.00 V. Since the capacitor and inductor voltage phasors are 180° out 

of phase, the potential difference across the inductor is 8.00 V . 

 

41. THINK We have a series RLC circuit. Since R, L, and C are in series, the same 

current is driven in all three of them.  

 

EXPRESS The capacitive and the inductive reactances can be written as 

 

1 1
, 2

2
C L d d

d d

X X L f L
C f C

 


   


. 

 

The impedance of the circuit is 2 2( ) ,L CZ R X X    and the current amplitude is given 

by / .mI Z  

 

ANALYZE (a) Substituting the values given, we find the capacitive reactance to be 

 

6

1 1
37.9 .

2 2 z)(70.0 10 F)
C

d

X
f C 

   
   

 

 

Similarly, the inductive reactance is 

 
32 2 z)(230 10 H) 86.7 .L dX f L         
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Thus, the impedance is 

 
2 2 2 2( ) (200 ) (37.9 86.7 ) 206 .L CZ R X X           

 

(b) The phase angle is 

1 1 86.7 37.9
tan tan 13.7 .

200

L CX X

R
       
     

   
 

 

(c) The current amplitude is 

36.0 V
0.175A.

206

mI
Z


  


 

 

(d) We first find the voltage amplitudes across the circuit elements: 

 

(0.175 A)(200 ) 35.0 V

(0.175 A)(86.7 ) 15.2 V

(0.175 A)(37.9 ) 6.62V

R

L L

C C

V IR

V IX

V IX

   

   

   

 

 

Note that X XL C , so that m  leads I. The phasor diagram is drawn to scale below. 

 
 

LEARN The circuit in this problem is more inductive since .L CX X  The phase angle is 

positive, so the current lags behind the applied emf. 

 

42. (a) Since Z = R
2
 + XL

2
  and  XL = d L, then as d  0 we find Z  R = 40 . 

 

(b) L  =  XL /d  = slope = 60 mH. 

 

43. (a) Now XC = 0, while R = 200  and  

 

XL = L = 2fdL = 86.7  
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both remain unchanged. Therefore, the impedance is  

 
2 2 2 2(200 ) (86.7 ) 218 .LZ R X         

 

(b) The phase angle is, from Eq. 31-65, 

 

1 1 86.7 0
tan tan 23.4 .

200

L CX X

R
      
     

   
 

 

(c) The current amplitude is now found to be 
36.0 V

0.165 A .
218

mI
Z


  


 

 

(d) We first find the voltage amplitudes across the circuit elements: 

 

(0.165 A)(200 ) 33V

(0.165A)(86.7 ) 14.3V.

R

L L

V IR

V IX

   

   
 

 

This is an inductive circuit, so m leads I. The phasor diagram is drawn to scale next. 

 

 
44. (a) The capacitive reactance is 

 

6

1 1
16.6 .

2 2  Hz)(24.0 10 F)
CX

fC  
   

 
 

 

(b) The impedance is 

 

2 2 2 2

2 3 2

( ) (2 )

(220 ) [2 Hz)(150 10 H) 16.6 ] 422 .

L C CZ R X X R fL X

 

     

        
 

 

(c) The current amplitude is 

I
Z

m  
 220

0521
V

422
A .


.  
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(d) Now X CC 


eq

1 . Thus, XC increases as Ceq decreases. 

 

(e) Now Ceq = C/2, and the new impedance is 

 

2 3 2(220 ) [2 Hz)(150 10 H) 2(16.6 )] 408 422 .Z            

 

Therefore, the impedance decreases. 

 

(f) Since I Z 1 , it increases. 

 

45. (a) Yes, the voltage amplitude across the inductor can be much larger than the 

amplitude of the generator emf. 

 

(b) The amplitude of the voltage across the inductor in an RLC series circuit is given by 

V IX I LL L d   . At resonance, the driving angular frequency equals the natural angular 

frequency:  d LC 1/ . For the given circuit 

 

6

1.0 H
1000 .

(1.0 H)(1.0 10 F)
L

L
X

LC 
   


 

 

At resonance the capacitive reactance has this same value, and the impedance reduces 

simply: Z = R. Consequently, 

 

resonance

10 V
1.0 A .

10

m mI
Z R

 
   


 

 

The voltage amplitude across the inductor is therefore 

 
3(1.0A)(1000 ) 1.0 10 VL LV IX      

 

which is much larger than the amplitude of the generator emf. 

 

46. (a) A sketch of the phasor diagram is shown to the right. 

 

(b) We have I R = I XC, or 

I R = I XC  →   R =  
1

d C
  

which yields  

5

1 1
159 Hz

2 2 2 (50.0 )(2.00 10 F)

df
RC



   
   

 
.  

 

(c)  = tan
1

(VC /VR) = – 45. 
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(d) d = 1/RC =1.00 10
3
 rad/s. 

 

(e) I = (12 V)/ R
2
 + XC

2
  =  6/(25 2) 170 mA. 

 

47. THINK In a driven RLC circuit, the current amplitude is maximum at resonance, 

where the driven angular frequency is equal to the natural angular frequency. 

 

EXPRESS For a given amplitude m of the generator emf, the current amplitude is given 

by 

2 2
.

( 1/ )

m m

d d

I
Z R L C

 

 
 

 
 

 

To explicitly show that I is maximum when 1/ ,d LC    we differentiate I with 

respect to d and set the derivative to zero: 

 

2 2 3/ 2

2

1 1
( ) [ ( 1/ ) ] .m d d d

d d d

dI
E R L C L L

d C C
  

  

   
       

  
 

 

The only factor that can equal zero is when  d dL C ( / )1 , or  d LC 1/ . 

 

ANALYZE (a) For this circuit, the driving angular frequency is 

 

 d
LC

 





1 1

100
224

( .  H)(20.0 10 F)
 rad / s .

6
 

 

(b) When ,d   the impedance is Z = R, and the current amplitude is 

 

30.0 V
6.00 A.

5.00

mI
R


  


 

 

(c) We want to find the (positive) values of  d  for which / 2 :mI R  

2 2
.

2( 1/ )

m m

d d
RR L C

 

 


 
 

 

This may be rearranged to give 




d

d

L
C

R
F
HG

I
KJ 

1
3

2

2 . 
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Taking the square root of both sides (acknowledging the two ± roots) and multiplying by 

 dC , we obtain 

 2( ) 3 1 0.d dLC CR     

 

Using the quadratic formula, we find the smallest positive solution 

 
2 2 6

2 6

6 2 2 6

6

3 3 4 3(20.0 10 F)(5.00 )

2 2(1.00 H)(20.0 10 F)

3(20.0 10 F) (5.00 ) 4(1.00 H)(20.0 10 F)

2(1.00 H)(20.0 10 F)

219 rad/s.

CR C R LC

LC






 



     
 



   






 

 

(d) The largest positive solution 

 
2 2 6

1 6

6 2 2 6

6

3 3 4 3(20.0 10 F)(5.00 )

2 2(1.00 H)(20.0 10 F)

3(20.0 10 F) (5.00 ) 4(1.00 H)(20.0 10 F)

2(1.00 H)(20.0 10 F)

228 rad/s.

CR C R LC

LC






 



     
 



   






 

 

(e) The fractional width is 

 

1 2 228 rad/s 219 rad/s
0.040.

224 rad/s

 



 
   

 

LEARN The current amplitude as a function of d  is plotted below.  

  
 

We see that I is a maximum at 224 rad/s,d    and is at half maximum (3 A) at 219 

rad/s and 228 rad/s. 

 

48. (a) With both switches closed (which effectively removes the resistor from the 

circuit), the impedance is just equal to the (net) reactance and is equal to  
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Xnet = (12 V)/(0.447 A) = 26.85 . 

 

With switch 1 closed but switch 2 open, we have the same (net) reactance as just 

discussed, but now the resistor is part of the circuit; using Eq. 31-65 we find 

 

 net 26.85
100

tan tan15

X
R




   


. 

 

(b) For the first situation described in the problem (both switches open) we can reverse 

our reasoning of part (a) and find   

 

Xnet first = tanR = (100 ) tan(–30.9º) = –59.96 . 

 

We observe that the effect of switch 1 implies  

 

XC = Xnet – Xnet first = 26.85  – (–59.96 ) = 86.81 . 

 

Then Eq. 31-39 leads to C = 1/XC  = 30.6 F. 

 

(c) Since Xnet = XL  – XC , then we find L = XL/ = 301 mH . 

 

49. (a) Since Leq = L1 + L2 and Ceq = C1 + C2 + C3 for the circuit, the resonant frequency 

is 

       

  

  

eq eq 1 2 1 2 3

3 3 6 6 6

1 1

2 2

1

2 1.70 10 H 2.30 10 H 4.00 10 F 2.50 10 F 3.50 10 F

796Hz.

L C L L C C C


 

     

 
  


       



 

 

(b) The resonant frequency does not depend on R so it will not change as R increases. 

 

(c) Since   (L1 + L2)
–1/2

, it will decrease as L1 increases. 

 

(d) Since   Ceq

1/2  and Ceq decreases as C3 is removed,  will 

increase. 

 

50. (a) A sketch of the phasor diagram is shown to the right. 

 

(b) We have VR = VL, which implies 

 

I R = I XL   →   R  = d L 
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which yields  f = d/2 = R/2L = 318 Hz. 

 

(c)  = tan
1

(VL /VR) = +45. 

 

(d) d = R/L = 2.00×10
3 

rad/s. 

 

(e) I = (6 V)/ R
2
 + XL

2
  = 3/(40 2)  53.0 mA. 

 

51. THINK In a driven RLC circuit, the current amplitude is maximum at resonance, 

where the driven angular frequency is equal to the natural angular frequency. It then falls 

off rapidly away from resonance.  

 

EXPRESS We use the expressions found in Problem 31-47: 

 
2 2 2 2

1 2

3 3 4 3 3 4
,

2 2

CR C R LC CR C R LC

LC LC
 

     
   . 

 

The resonance angular frequency is 1/ .LC   

 

ANALYZE Thus, the fractional half width is  

 





 


d CR LC

LC
R

C

L



 1 2 2 3

2

3
.  

 

LEARN Note that the value of /d   increases linearly with R; that is, the larger the 

resistance, the broader the peak. As an example, the data of Problem 31-47 gives 

 

 
 6

2
3 20.0 10 F

5.00 3.87 10 .
1.00H

d








     

 

This is in agreement with the result of Problem 31-47. The method used there, however, 

gives only one significant figure since two numbers close in value are subtracted (1 – 

2). Here the subtraction is done algebraically, and three significant figures are obtained. 

 

52. Since the impedance of the voltmeter is large, it will not affect the impedance of the 

circuit when connected in parallel with the circuit. So the reading will be 100 V in all 

three cases. 

 

53. THINK Energy is supplied by the 120 V rms ac line to keep the air conditioner 

running. 

 

EXPRESS The impedance of the circuit is 
2 2( ) ,L CZ R X X    and the average rate of 

energy delivery is 
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2 2
2 rms rms

avg rms 2
.

R
P I R R

Z Z

  
   

 
 

 

ANALYZE (a) Substituting the values given, the impedance is 

 

   
2 2

12.0 1.30 0 12.1 .Z        

 

(b) The average rate at which energy has been supplied is 

 

   

 

22
3 3rms

avg 22

120V 12.0
1.186 10 W 1.19 10 W.

12.07

R
P

Z

 
     


 

 

LEARN In a steady-state operation, the total energy stored in the capacitor and the 

inductor stays constant. Thus, the net energy transfer is from the generator to the resistor, 

where electromagnetic energy is dissipated in the form of thermal energy. 

 

54. The amplitude (peak) value is 

 

V Vmax   2 2 100 141rms V V.b g  

 

55. The average power dissipated in resistance R when the current is alternating is given 

by P I Ravg rms

2 ,  where Irms is the root-mean-square current. Since I Irms  / 2 , where I is 

the current amplitude, this can be written Pavg = I
2
R/2. The power dissipated in the same 

resistor when the current id is direct is given by P i Rd 2 .  Setting the two powers equal to 

each other and solving, we obtain 

 

i
I

d   
2

2 60
184

.
.

A

2
A.  

 

56. (a) The power consumed by the light bulb is P = I
2
R/2. So we must let Pmax/Pmin = 

(I/Imin)
2
 = 5, or 

I

I

Z

Z

Z

Z

R L

R

m

mmin

min

max

max

min

max/

/
.

F
HG
I
KJ 
F
HG

I
KJ 
F
HG
I
KJ 

F
H
GG

I
K
JJ 

2 2 2 2 2
2

5




b g
 

 

We solve for Lmax: 

   L
R

max

/

.
.    2 2 120 1000

2 60 0
7 64 10

2

2



V W

Hz
H.

b g
b g

 

 

(b) Yes, one could use a variable resistor. 
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(c) Now we must let 

R R

R

max ,
F

HG
I
KJ bulb

bulb

2

5  

or 

R Rmax . .    5 1 5 1
120

1000
17 8

2

d i d i b g
bulb

V

W
  

 

(d) This is not done because the resistors would consume, rather than temporarily store, 

electromagnetic energy. 

 

57. We shall use 

 

2 2

avg 2 22
.

2 2 1/

m m

d d

R R
P

Z R L C

 

 
 

  
 

 

 

where Z R L Cd d  2 2
1 /b g  is the impedance.  

 

(a) Considered as a function of C, Pavg has its largest value when the factor 

 
22 1/d dR L C    has the smallest possible value. This occurs for 1/ ,d dL C  or 

 

C
Ld

 


 


1 1

2 60 0 60 0 10
117 10

2 2 2 3

4

 b g b g c h. .
.

Hz H
F.  

 

The circuit is then at resonance. 

 

(b) In this case, we want Z
2
 to be as large as possible. The impedance becomes large 

without bound as C becomes very small. Thus, the smallest average power occurs for C = 

0 (which is not very different from a simple open switch). 

 

(c) When dL = 1/dC, the expression for the average power becomes 

 
2

avg ,
2

mP
R


  

 

so the maximum average power is in the resonant case and is equal to 

 

 

 

2

avg

30.0V
90.0 W.

2 5.00
P  


 

 

(d) At maximum power, the reactances are equal: XL = XC. The phase angle  in this case 

may be found from 
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tan , 



X X

R

L C 0  

which implies  = 0 .  

 

(e) At maximum power, the power factor is cos  = cos 0° = 1.  

 

(f) The minimum average power is Pavg = 0 (as it would be for an open switch). 

 

(g) On the other hand, at minimum power XC  1/C is infinite, which leads us to set 

tan   . In this case, we conclude that  = –90°. 

 

(h) At minimum power, the power factor is cos  = cos(–90°) = 0. 

 

58. This circuit contains no reactances, so rms = IrmsRtotal. Using Eq. 31-71, we find the 

average dissipated power in resistor R is 

 

P I R
r R

RR
m 


F
HG
I
KJrms

2 
2

.  

 

In order to maximize PR we set the derivative equal to zero: 

 

   

 

 

 

22
2

4 3

2
0

m
mR

r R r R R r RdP
R r

dR r R r R

          
 

 

 

59. (a) The rms current is 

 

 

        

rms rms
rms

22

22

2 1/ 2

75.0V

15.0 2 550Hz 25.0mH 1/ 2 550Hz 4.70 F

2.59A.

I
Z R fL fC

 

 

  

 
 



     



 

 

(b) The rms voltage across R is   rms 2.59A 15.0 38.8VabV I R    . 

 

(c) The rms voltage across C is  

 

 
  

rms
rms

2.59A
159V

2 2 550Hz 4.70 F
bc C

I
V I X

fC  
    . 

 

(d) The rms voltage across L is  
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    rms rms2 2 2.59A 550 Hz 25.0mH 224 Vcd LV I X I fL      . 

 

(e) The rms voltage across C and L together is  

 

 159.5V 223.7V 64.2 Vbd bc cdV V V     . 

 

(f) The rms voltage across R, C, and L together is 

 

   
2 22 2 38.8V 64.2V 75.0Vad ab bdV V V     . 

 

(g) For the resistor R, the power dissipated is 
 

22 38.8V
100 W.

15.0

ab
R

V
P

R
  


 

(h) No energy dissipation in C. 

 

(i) No energy dissipation in L. 

 

60. The current in the circuit satisfies i(t) = I sin(dt – ), where 

 

 

        

22

22

1/

45.0 V

16.0 3000rad/s 9.20mH 1/ 3000rad/s 31.2 F

1.93A

m m

d d

I
Z R L C

 

 



 
 



     



 

and 

  

   

1 1

1

1/
tan tan

3000rad/s 9.20mH 1
tan

16.0 3000rad/s 16.0 31.2 F

46.5 .

L C d dX X L C

R R

 




 



    
    

   

 
  

  

 

 

 

(a) The power supplied by the generator is 

 

 

        

( ) ( ) sin sin

1.93A 45.0V sin 3000rad/s 0.442 ms sin 3000rad/s 0.442 ms 46.5

41.4 W.

g d m dP i t t I t t      

        



 

 

(b) With  
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( ) sin( / 2) cos( )c c d c dv t V t V t           

 

where / ,c dV I C the rate at which the energy in the capacitor changes is 

 

     

 

  
    

2

2

2

6

2

sin cos sin 2
2

1.93A
sin 2 3000rad/s 0.442ms 2 46.5

2 3000rad/s 31.2 10 F

17.0 W.

c c

d d d

d d

d q q
P i iv

dt C C

I I
I t t t

C C
     

 



 
   

 

 
         

 

     


 

 

 

(c) The rate at which the energy in the inductor changes is 

 

     

         

2 2

2

1 1
sin sin sin 2

2 2

1
3000rad/s 1.93A 9.20mH sin 2 3000rad/s 0.442ms 2 46.5

2

44.1 W.

L d d d d

d di d
P Li Li LI t I t LI t

dt dt dt
      

 
              

 

    



 

 

(d) The rate at which energy is being dissipated by the resistor is 

 

        
22 2 2 2sin 1.93A 16.0 sin 3000rad/s 0.442ms 46.5

14.4 W.

R dP i R I R t         


 

 

(e) Equal. 44.1W 17.0 W 14.4W 41.5 W .L R c gP P P P         

 

61. THINK We have an ac generator connected to a “black box,” whose load is of the 

form of an RLC circuit. Given the functional forms of the emf and the current in the 

circuit, we can deduce the nature of the load. 

 

EXPRESS In general, the driving emf and the current can be written as 

 

 ( ) sin , ( ) sin( ).m d dt t i t I t        

 

Thus, we have 75 V,m   I = 1.20 A, and 42     for this circuit. The power factor of 

the circuit is simply given by cos. 

 

ANALYZE (a) With  = – 42.0°, we obtain cos  = cos(– 42.0°) = 0.743. 
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(b) Since the phase constant is negative,  < 0, t –  > t. The current leads the emf. 

 

(c) The phase constant is related to the reactance difference by tan  = (XL – XC)/R. We 

have  

tan  = tan(– 42.0°) = –0.900, 

 

a negative number. Therefore, XL – XC is negative, which implies that XC > XL. The 

circuit in the box is predominantly capacitive. 

 

(d) If the circuit were in resonance, XL would be the same as XC, then tan  would be zero, 

and  would be zero as well. Since  is not zero, we conclude the circuit is not in 

resonance. 

 

(e) Since tan  is negative and finite, neither the capacitive reactance nor the resistance is 

zero. This means the box must contain a capacitor and a resistor.  

 

(f) The inductive reactance may be zero, so there need not be an inductor. 

 

(g) Yes, there is a resistor. 

 

(h) The average power is 

 

P Imavg V A W.  
1

2

1

2
750 120 0 743 334 cos . . . .b gb gb g  

 

(i) The answers above depend on the frequency only through the phase constant , which 

is given. If values were given for R, L, and C, then the value of the frequency would also 

be needed to compute the power factor. 

 

LEARN The phase constant  allows us to calculate the power factor and deduce the 

nature of the load in the circuit. In (f) we stated that the inductance may be set to zero. If 

there is an inductor, then its reactance must be smaller than the capacitive reactance, XL < 

XC.  

 

62. We use Eq. 31-79 to find 

 

V V
N

N
s p

s

p


F
HG
I
KJ 

F
HG
I
KJ  100

500

50
100 103V V.b g .  

 

63. THINK The transformer in this problem is a step-down transformer. 

 

EXPRESS If Np is the number of primary turns, and Ns is the number of secondary turns, 

then the step-down voltage in the secondary circuit is 
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.s
s p

p

N
V V

N

 
   

 

 

 

By Ohm’s law, the current in the secondary circuit is given by / .s s sI V R  

   

ANALYZE (a) The step-down voltage is 

 

V V
N

N
s p

s

p


F
HG
I
KJ 

F
HG
I
KJ 120

10

500
2 4V V.b g .  

 

(b) The current in the secondary is I
V

R
s

s

s

  
2 4

15
016

.
.

V
A.


 

 

We find the primary current from Eq. 31-80: 

 

I I
N

N
p s

s

p


F
HG
I
KJ 

F
HG
I
KJ   016

10

500
32 10 3. .A A.b g  

 

(c) As shown above, the current in the secondary is 0.16A.sI   

 

LEARN In a transformer, the voltages and currents in the secondary circuit are related to 

that in the primary circuit by 

, .
ps

s p s p

p s

NN
V V I I

N N

   
     

  

 

 

64. For step-up transformer: 

 

(a) The smallest value of the ratio /s pV V is achieved by using T2T3 as primary and T1T3 as 

secondary coil: V13/V23 = (800 + 200)/800 = 1.25. 

 

(b) The second smallest value of the ratio /s pV V is achieved by using T1T2 as primary and 

T2T3 as secondary coil: V23/V13 = 800/200 = 4.00. 

 

(c) The largest value of the ratio /s pV V is achieved by using T1T2 as primary and T1T3 as 

secondary coil: V13/V12 = (800 + 200)/200 = 5.00. 

 

For the step-down transformer, we simply exchange the primary and secondary coils in 

each of the three cases above.   

 

(d) The smallest value of the ratio /s pV V is 1/5.00 = 0.200. 
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(e) The second smallest value of the ratio /s pV V is 1/4.00 = 0.250. 

 

(f) The largest value of the ratio /s pV V is 1/1.25 = 0.800. 

 

65. (a) The rms current in the cable is I P Vtrms

3W / 80 10 V A.    / .250 10 31253 c h  

Therefore, the rms voltage drop is  V I R  rms A V3125 2 0 30 19. . .b gb gb g . 

 

(b) The rate of energy dissipation is P I Rd   rms

2 A W.3125 2 0 60 59. . .b gb gb g  

 

(c) Now Irms

3W / 8.0 10 V A   250 10 31253 c h . , so   31.25A 0.60 19V.V      

 

(d) Pd   3125 0 60 59 10
2 2. . .A W.b g b g  

 

(e)  3 3

rms 250 10 W/ 0.80 10 V 312.5 AI     , so   312.5A 0.60V    21.9 10 V .  

 

(f)    
2 4312.5A 0.60 5.9 10 W.dP       

 

66. (a) The amplifier is connected across the primary windings of a transformer and the 

resistor R is connected across the secondary windings.  

 

(b) If Is is the rms current in the secondary coil then the average power delivered to R is 

P I Rsavg 
2 . Using sI    /p s pN N I , we obtain 

 

P
I N

N
R

p p

s

avg 
F
HG
I
KJ

2

.  

 

Next, we find the current in the primary circuit. This is effectively a circuit consisting of 

a generator and two resistors in series. One resistance is that of the amplifier (r), and the 

other is the equivalent resistance Req of the secondary circuit. Therefore, 

 

I
r R r N N R

p

p s







 rms

eq

rms

/d i2
 

 

where Eq. 31-82 is used for Req. Consequently, 

 
2 2

avg 2
2

( / )
.

( / )

p s

p s

N N R
P

r N N R



  
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Now, we wish to find the value of Np/Ns such that Pavg is a maximum. For brevity, let x = 

(Np/Ns)
2
. Then 

P
Rx

r xR
avg 



 2

2b g ,  

and the derivative with respect to x is 

 

dP

dx

R r xR

r xR

avg






 2

3

b g
b g .  

This is zero for  

   / 1000 / 10 100.x r R      

 

We note that for small x, Pavg increases linearly with x, and for large x it decreases in 

proportion to 1/x. Thus x = r/R is indeed a maximum, not a minimum. Recalling x = 

(Np/Ns)
2
, we conclude that the maximum power is achieved for 

  

/ 10p sN N x  . 

 

The diagram that follows is a schematic of a transformer with a ten to one turns ratio. An 

actual transformer would have many more turns in both the primary and secondary coils. 

 

 
 

67. (a) Let  t   / /4 2  to obtain   33 / 4 3 / 4 350rad/s 6.73 10 s.t           

 

(b) Let / 4 / 2t     to obtain   3/ 4 / 4 350rad/s 2.24 10 s.t           

 

(c) Since i leads  in phase by /2, the element must be a capacitor. 

 

(d) We solve C from X C IC m 


 b g 1
/ : 

  

  

3
56.20 10 A

5.90 10 F.
30.0 V 350rad/sm

I
C

 




     
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68. (a) We observe that d = 12566 rad/s. Consequently, XL = 754  and XC = 199 . 

Hence, Eq. 31-65 gives 

 
F

HG
I
KJ 

tan .1 122
X X

R

L C  rad .  

 

(b) We find the current amplitude from Eq. 31-60:  

 

I
R X X

m

L C


 




2 2
0 288

( )
. A .  

 

69. (a) Using  = 2f , XL = L, XC = 1/C and tan() = (XL XC)/R, we find  

 

= tan
1

[(16.022 – 33.157)/40.0] = –0.40473  –0.405 rad. 

 

(b) Equation 31-63 gives I = 120/ 40
2
 + (16-33)

2 
  = 2.7576  2.76 A. 

 

(c) XC  > XL     capacitive. 

 

70. (a) We find L from X L fLL   2 :  

 

 

3
3

3

1.30 10
4.60 10 Hz.

2 2 45.0 10 H

LX
f

L  

 
   


 

 

(b) The capacitance is found from XC = (C)
–1

 = (2fC)
–1

: 

 

  
8

3 3

1 1
2.66 10 F.

2 2 4.60 10 Hz 1.30 10C

C
fX 

   
  

 

 

(c) Noting that XL  f and XC  f 
–1

, we conclude that when f is doubled, XL doubles and 

XC reduces by half. Thus,  

 

XL = 2(1.30  10
3
  ) = 2.60  10

3
  . 

 

(d) XC = 1.30  10
3
 /2 = 6.50  10

2
 . 

 

71. (a) The impedance is  Z = (80.0 V)/(1.25 A) = 64.0 . 

 

(b) We can write cos  = R/Z. Therefore, 

 

R = (64.0 )cos(0.650 rad) = 50.9 . 

 

(c) Since the current leads the emf, the circuit is capacitive. 
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72. (a) From Eq. 31-65, we have 

 

 
F

HG
I
KJ 

F
HG

I
KJ

 tan tan
( / . )

( / . )

1 1 150

2 00

V V

V

V V

V

L C

R

L L

L

 

 

which becomes tan
–1

 (2/3 ) = 33.7° or 0.588 rad. 

 

(b) Since  > 0, it is inductive (XL > XC). 

 

(c) We have VR = IR = 9.98 V, so that VL = 2.00VR = 20.0 V and VC = VL/1.50 = 13.3 V. 

Therefore, from Eq. 31-60, we have 

 

2 2 2 2( ) (9.98 V) (20.0 V 13.3 V) 12.0 Vm R L CV V V        . 

 

73. (a) From Eq. 31-4, we have L = (2
C)

1
 = ((2f)

2
C)

1
 = 2.41 H. 

 

(b) The total energy is the maximum energy on either device (see Fig. 31-4).  Thus, we 

have Umax = 
1

2
 LI

2
 = 21.4 pJ. 

 

(c) Of several methods available to do this part, probably the one most “in the spirit” of 

this problem (considering the energy that was calculated in part (b)) is to appeal to Umax = 
1

2
 Q

2
/C (from Chapter 26) to find the maximum charge: Q = 2CUmax  = 82.2 nC. 

 

74. (a) Equation 31-4 directly gives 1/ LC   5.7710
3
 rad/s. 

 

(b) Equation 16-5 then yields T = 2/1.09 ms. 

 

(c) Although we do not show the graph here, we describe it:  it is a cosine curve with 

amplitude 200 C and period given in part (b). 

 

75. (a) The impedance is 
125V

39.1 .
3.20A

mZ
I


     

 

(b) From V IRR m   cos ,  we get 

 

R
I

m  
 cos V rad

A

125 0 982

320
217

b g b gcos .

.
. .  

 

(c) Since X XL C   sin sin . , 0 982 radb g  we conclude that XL < XC. The circuit is 

predominantly capacitive. 

 

76. (a) Equation 31-39 gives f = /2 = (2CXC)
1

 = 8.84 kHz. 
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(b) Because of its inverse relationship with frequency, the reactance will go down by a 

factor of 2 when f increases by a factor of 2.  The answer is XC = 6.00 . 

 

77. THINK The three-phase generator has three ac voltages that are 120° out of phase 

with each other. 

 

EXPRESS To calculate the potential difference between any two wires, we use the 

following trigonometric identity: 

 

   sin sin 2sin 2 cos 2               , 

 

where  and  are any two angles. 

 

ANALYZE (a) We consider the following combinations: V12 = V1 – V2, V13 = V1 – V3, 

and V23 = V2 – V3. For V12, 

 

V A t A t A
t

A td d
d

d12 120 2
120

2

2 120

2
3 60    

F
HG
I
KJ

 F
HG

I
KJ   sin( ) sin( ) sin cos cos 


b g 

 

where sin 60 3 2.   Similarly, 

 

 

13

2 240240
sin( ) sin ( 240 ) 2 sin cos

2 2

3 cos 120

d
d d

d

t
V A t A t A

A t


 



    
         

   

  



and 

 

23

2 360120
sin( 120 ) sin ( 240 ) 2 sin cos

2 2

3 cos 180 .

d
d d

d

t
V A t A t A

A t


 



    
           

   

  

 

 

All three expressions are sinusoidal functions of t with angular frequency d. 

 

(b) We note that each of the above expressions has an amplitude of 3 .A  

 

LEARN A three-phase generator provides a smoother flow of power than a single-phase 

generator.  

 

78. (a) The effective resistance Reff satisfies I R Prms

2

eff mechanical , or 

 

R
P

I
eff

mechanical

rms

2

hp W / hp

A
  

0100 746

0 650
177

2

.

.
.

b gb g
b g   
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(b) This is not the same as the resistance R of its coils, but just the effective resistance for 

power transfer from electrical to mechanical form. In fact I Rrms

2  would not give Pmechanical 

but rather the rate of energy loss due to thermal dissipation. 

 

79. THINK The total energy in the LC circuit is the sum of electrical energy stored in the 

capacitor, and the magnetic energy stored in the inductor. Energy is conserved.  

 

EXPRESS Let UE be the electrical energy in the capacitor and UB be the magnetic 

energy in the inductor. The total energy is U = UE + UB. When UE = 0.500UB (at time t), 

then UB = 2.00UE and U = UE + UB = 3.00UE. Now, UE is given by q C2 2/ , where q is 

the charge on the capacitor at time t. The total energy U is given by Q C2 2/ , where Q is 

the maximum charge on the capacitor.  

 

ANALYZE (a) Thus,  
2 23.00

0.577 .
2 2 3.00

Q q Q
q Q

C C
      

 

(b) If the capacitor is fully charged at time t = 0, then the time-dependent charge on the 

capacitor is given by q Q t cos . This implies that the condition q = 0.577Q is satisfied 

when cost = 0.557, or t = 0.955 rad. Since   2 / T  (where T is the period of 

oscillation), 0.955 / 2 ,t T T   or t / T = 0.152. 

 

LEARN The fraction of total energy that is of electrical nature at a given time t is given 

by 

 
2 2

2 2

2

( / 2 )cos 2
cos cos

/ 2

EU Q C t t
t

U Q C T

 


 
    

 
. 

 

A plot of /EU U as a function of /t T is given below. 

 

 
 

From the plot, we see that / 1/ 3EU U   at t / T = 0.152. 

 

80. (a) The reactances are as follows: 

 



 

  

1371 

 1 5 1

2 2 2 2

2 2 (400 Hz)(0.0242 H) 60.82

(2 ) [2 (400 Hz)(1.21 10 F)] 32.88

( ) (20.0 ) (60.82 32.88 ) 34.36 .

L d

C d

L C

X f L

X f C

Z R X X

 

   

   

    

         

 

 

With 90.0 V,   we have 

 
rms

90.0 V 2.62 A
2.62 A 1.85 A

34.36 2 2

I
I I

Z


      


. 

 

Therefore, the rms potential difference across the resistor is VR rms = Irms R = 37.0 V. 

 

(b) Across the capacitor, the rms potential difference is VC rms = Irms XC = 60.9 V. 

 

(c) Similarly, across the inductor, the rms potential difference is VL rms = Irms XL = 113 V. 

 

(d) The average rate of energy dissipation is Pavg = (Irms)
2
R = 68.6 W. 

 

81. THINK Since the current lags the generator emf, the phase angle is positive and the 

circuit is more inductive than capacitive. 

 

EXPRESS Let VL be the maximum potential difference across the inductor, VC be the 

maximum potential difference across the capacitor, and VR be the maximum potential 

difference across the resistor. The phase constant is given by 

 

1tan .L C

R

V V

V
   
  

 
 

 

The maximum emf is related to the current amplitude by ,m IZ   where Z is the 

impedance.  

 

ANALYZE (a) With / 2.00C LV V  and / 2.00,R LV V  we find the phase constant to be 

 

 1 1/ 2.00
tan tan 1.00 45.0 .

/ 2.00

L L

L

V V

V
   
    

 
 

 

(b) The resistance is related to the impedance by cos .R Z   Thus,   

 

  
3

30.0V cos 45cos
70.7 .

300 10 A

mR
I

 



   


 

 

LEARN With R and I known, the inductive and capacitive reactances are, respectively, 

2.00 141 ,LX R    and 70.7CX R   . Similarly, the impedance of the circuit is 
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3(30.0 V) /(300 10 A) 100mZ
I

      . 

 

82. From Umax = 
1

2
 LI

2
 we get I = 0.115 A. 

 

83. From Eq. 31-4 we get   f = 1/2 LC  = 1.84 kHz. 

 

84. (a) With a phase constant of 45º the (net) reactance must equal the resistance in the 

circuit, which means the circuit impedance becomes  

 

Z = R 2    R = Z/ 2  = 707 . 

 

(b) Since f = 8000 Hz, then d  = 2(8000) rad/s.  The net reactance (which, as observed, 

must equal the resistance) is therefore  

 

XL – XC  = dL – (dC)
1

 = 707 . 

 

We are also told that the resonance frequency is 6000 Hz, which (by Eq. 31-4) means  

 

 
2 2 2 2 2 2

1 1 1 1

(2 ) 4 4 (6000 Hz)
C

L f L f L L   
    . 

 

Substituting this for C in our previous expression (for the net reactance) we obtain an 

equation that can be solved for the self-inductance.  Our result is L = 32.2 mH. 

 

(c) C = ((2(6000))
2
L)

1 
 = 21.9 nF. 

 

85. THINK The current and the charge undergo sinusoidal oscillations in the LC circuit. 

Energy is conserved.  

 

EXPRESS The angular frequency oscillation is related to the capacitance C and 

inductance L by 1/ .LC   The electrical energy and magnetic energy in the circuit as 

a function of time are given by 

 

 

2 2
2

2
2 2 2 2 2

cos ( )
2 2

1 1
sin ( ) sin ( ).

2 2 2

E

B

q Q
U t

C C

Q
U Li L Q t t

C

 

    

  

    

 

 

The maximum value of UE is 2 / 2 ,Q C  which is the total energy in the circuit, U. 

Similarly, the maximum value of UB is also 2 / 2 ,Q C  which can also be written as 2 / 2LI  

using .I Q   
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ANALYZE (a) Using the fact that  = 2f, the inductance is  

 

   
7

22 2 2
2 3 6

1 1 1
6.89 10 H.

4 4 10.4 10 Hz 340 10 F
L

C f C  




    

 
 

 

(b) The total energy may be calculated from the inductor (when the current is at 

maximum): 

U LI       1

2

1

2
689 10 7 20 10 179 102 7 3

2
11. . .H A J.c hc h  

 

(c) We solve for Q from U Q C 1
2

2 / :  

 

Q CU       2 2 340 10 179 10 110 106 11 7F J C.c hc h. .  

 

LEARN Figure 31-4 of the textbook illustrates the oscillations of electrical and magnetic 

energies. The total energy 2 / 2E BU U U Q C    remains constant. When UE is 

maximum, UB is zero, and vice versa.   

 

86. From Eq. 31-60, we have 2 2 2(220 V /3.00 A) 69.3 .L LR X X      

 

87. When the switch is open, we have a series LRC circuit involving just the one 

capacitor near the upper right corner. Equation 31-65 leads to 

 

o

1

tan tan( 20 ) tan 20 .

d

d

L
C

R








       

 

Now, when the switch is in position 1, the equivalent capacitance in the circuit is 2C. In 

this case, we have 

1

1

2
tan tan10.0 .

d

d

L
C

R








    

 

Finally, with the switch in position 2, the circuit is simply an LC circuit with current 

amplitude 

2
2 1

1

m m m

LC d
dd

d

I
Z L

CL
C

  






  
 

 
 
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where we use the fact that 1( )d dC L    in simplifying the square root (this fact is 

evident from the description of the first situation, when the switch was open). We solve 

for L, R and C from the three equations above, and the results are as follows: 

 

(a) 
2 o

120V
165

tan (2.00A) tan ( 20.0 )

mR
I





 
   

 
, 

 

(b) 1

2 o

tan 120V tan10.0
1 2 1 2 0.313 H

tan 2 (60.0 Hz)(2.00 A) tan ( 20.0 )

m

d

L
I

 

 

   
       

    
, 

 

(c) and 

   
2

1 0

5

2.00 A

2 1 tan / tan 2(2 )(60.0 Hz)(120 V) 1 tan10.0 / tan( 20.0 )

1.49 10  F.

d m

I
C

    



 
    

 

 

 

88. (a) Eqs. 31-4 and 31-14 lead to  

 

61
1.27 10 C .Q I LC



     

 

(b) We choose the phase constant in Eq. 31-12 to be     , so that i0 = I in Eq.  

31-15). Thus, the energy in the capacitor is 

 

U
q

C

Q

C
tE  

2 2
2

2 2
(sin ) .  

 

Differentiating and using the fact that 2 sin  cos   = sin 2, we obtain 

 

dU

dt

Q

C
tE 

2

2
2 sin .  

 

We find the maximum value occurs whenever sin 2 1t  , which leads (with n = odd 

integer) to 

5 41
8.31 10 s, 2.49 10 s, .

2

n n n
t LC

  

 

      
  

 

 

The earliest time is 58.31 10 s.t    

 

(c) Returning to the above expression for /EdU dt  with the requirement that sin2 1t  , 

we obtain 
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dU

dt

Q

C

I LC

C

I

LC

I L

C

EF
HG
I
KJ      

max

. .
2

2
2

3

2 2 2
544 10

d i
J / s  

 

89. THINK In this problem, we demonstrate that in a driven RLC circuit, the energies 

stored in the capacitor and the inductor stay constant; however, energy is transferred from 

the driving emf device to the resistor.  

 

EXPRESS The energy stored in the capacitor is given by U q CE 
2 2/ . Similarly, the 

energy stored in the inductor is 21
2

.BU Li  The rate of energy supply by the driving emf 

device is ,P i   where sin( )di I     and sin .m dt    The rate with which energy 

dissipates in the resistor is 2 .RP i R  

 

ANALYZE (a) Since the charge q is a periodic function of t with period T, so must be UE. 

Consequently, UE will not be changed over one complete cycle. Actually, UE has period 

T/2, which does not alter our conclusion. 

 

(b) Since the current i is a periodic function of t with period T, so must be UB.  

 

(c) The energy supplied by the emf device over one cycle is 

 

0 0 0
sin( )sin( ) [sin cos cos sin ]sin( )

cos ,
2

T T T

m d d m d d d

m

U P dt I t t dt I t t t dt

T
I

           

 

    



  

 

where we have used   

2

0 0
sin ( ) , sin( )cos( ) 0.

2

T T

d d d

T
t dt t t dt      

 

(d) Over one cycle, the energy dissipated in the resistor is  

 

2 2 2

0 0
sin ( ) .

2

T T

R R d

T
U P dt I R t dt I R       

 

(e) Since      m m R m m mI I V I IR I Rcos / / ,  b g b g 2  the two quantities are indeed the 

same. 

 

LEARN In solving for (c) and (d), we could have used Eqs. 31-74 and 31-71: By doing 

so, we find the energy supplied by the generator to be 

 

P T I T T Imavg rms rms 
F
HG
I
KJ   cos cosb g 1

2
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where we substitute I I mrms rmsand / / .2 2   Similarly, the energy dissipated by 

the resistor is 

P T I V T I I R T T I RRavg,resistor rms rms rms  
F
HG
I
KJb g b g 1

2

2 . 

 

The same results are obtained without any integration. 

 

90. From Eq. 31-4, we have C = (2
L)

1
 = ((2f)

2
L)

1
 = 1.59 F. 

 

91. Resonance occurs when the inductive reactance equals the capacitive reactance.  

Reactances of a certain type add (in series) just like resistances. Thus, since the resonance 

values are the same for both circuits, we have for each circuit: 

 

 
1 2

1 2

1 1
,L L

C C
 

 
   

 

and adding these equations we find 

 1 2

1 2

1 1 1
L L

C C




 
   

 
. 

Since eq 1 2L L L   and 1 1 1

eq 1 2( )C C C    , 

 

Leq = 
eq

1

C
       resonance in the combined circuit. 

 

92. When switch S1 is closed and the others are open, the inductor is essentially out of the 

circuit and what remains is an RC circuit. The time constant is C = RC. When switch S2 

is closed and the others are open, the capacitor is essentially out of the circuit. In this case, 

what we have is an LR circuit with time constant L = L/R. Finally, when switch S3 is 

closed and the others are open, the resistor is essentially out of the circuit and what 

remains is an LC circuit that oscillates with period 2T LC . Substituting L = RL and 

C = C/R, we obtain 2 C LT    . 

 

93. (a) We note that we obtain the maximum value in Eq. 31-28 when we set 

 

t
fd

   




1

4

1

4 60
0 00417

( )
. s  

 

or 4.17 ms. The result is  m msin( sin( ) .   90 360  V .  

 

(b) At t = 4.17 ms, the current is 
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sin ( ) sin (90 ( 24.3 )) (0.164A) cos(24.3 )

0.1495A 0.150 A.

di I t I        

 
 

 

Ohm’s law directly gives 

 

(0.1495A)(200 ) 29.9V.Rv iR     

 

(c) The capacitor voltage phasor is 90° less than that of the current. Thus, at t = 4.17 ms, 

we obtain 

 

sin(90 ( 24.3 ) 90 ) sin(24.3 ) (0.164A)(177 )sin(24.3 )

11.9V.

C C Cv I X IX          


 

 

(d) The inductor voltage phasor is 90° more than that of the current. Therefore, at t =  

4.17 ms, we find 

 

sin(90 ( 24.3 ) 90 ) sin(24.3 ) (0.164A)(86.7 )sin(24.3 )

5.85V.

L L Lv I X IX            

 
 

 

(e) Our results for parts (b), (c) and (d) add to give 36.0 V, the same as the answer for 

part (a).  
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Chapter 32 
 
 

1. We use 
6

1
0Bnn

   to obtain 

 

 
5

6

1

1Wb 2Wb 3Wb 4Wb 5Wb 3Wb .B Bn

n

              

 

2. (a)   The flux through the top is +(0.30 T)r
2
 where r = 0.020 m.  The flux through the 

bottom is +0.70 mWb as given in the problem statement.  Since the net flux must be zero 

then the flux through the sides must be negative and exactly cancel the total of the 

previously mentioned fluxes.  Thus (in magnitude) the flux though the sides is 1.1 mWb. 

 

(b) The fact that it is negative means it is inward. 

 

3. THINK Gauss’ law for magnetism states that the net magnetic flux through any closed 

surface is zero.  

 

EXPRESS Mathematically, Gauss’ law for magnetism is expressed as 0.B dA   Now, 

our Gaussian surface has the shape of a right circular cylinder with two end caps and a 

curved surface. Thus,  

1 2 ,CB dA     

 

where 1 is the magnetic flux through the first end cap, 2 is the magnetic flux through 

the second end cap, and C is the magnetic flux through the curved surface. Over the first 

end the magnetic field is inward, so the flux is 1 = –25.0 Wb. Over the second end the 

magnetic field is uniform, normal to the surface, and outward, so the flux is 2 = AB = 

r
2
B, where A is the area of the end and r is the radius of the cylinder.  

 

ANALYZE (a) Substituting the values given, the flux through the second end is  

 

   
2 3 5

2 0.120m 1.60 10 T 7.24 10 Wb 72.4 Wb.        

 

Since the three fluxes must sum to zero, 

 

1 2 25.0 Wb 72.4 Wb 47.4 Wb.C          

 

Thus, the magnitude is | | 47.4 Wb.C    
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(b) The minus sign in 
C indicates that the flux is inward through the curved surface. 

 

LEARN Gauss’ law for magnetism implies that magnetic monopoles do not exist; the 

simplest magnetic structure is a magnetic dipole (having a north pole and a south pole).  

 

4. From Gauss’ law for magnetism, the flux through S1 is equal to that through S2, the 

portion of the xz plane that lies within the cylinder. Here the normal direction of S2 is +y. 

Therefore, 

0 0
1 2 left

1
( ) ( ) ( ) 2 ( ) 2 ln3 .

2 2

r r r

B B
r r r

i iL
S S B x L dx B x L dx L dx

r x

 

   
     

    

 

5. THINK Changing electric flux induces a magnetic field. 

 

EXPRESS Consider a circle of radius r between the plates, with its center on the axis of 

the capacitor. Since there is no current between the capacitor plates, the Ampere-

Maxwell’s law reduces to  

0 0
Ed

B dA
dt

 


  , 

 

where B  is the magnetic field at points on the circle, and E  is the electric flux through 

the circle. Since the B  field on the circle is in the tangential direction, and 
2 ,E AE R E    where R is the radius of the capacitor, we have 

2

0 02
dE

rB R
dt

     

or 

 
2

0 0

2

R dE
B r R

r dt

 
  . 

 

ANALYZE Solving for dE/dt, we obtain 

 

  

   

7 3

13

22
12 2 2 3

0 0

2 2.0 10 T 6.0 10 m2 V
2.4 10 .

m s4 T m A 8.85 10 C /N m 3.0 10 m

dE Br

dt R 

 

  

 
   

    
 

 

LEARN Outside the capacitor, the induced magnetic field decreases with increased 

radial distance r, from a maximum value at the plate edge r = R. 

 

6. The integral of the field along the indicated path is, by Eq. 32-18 and Eq. 32-19, equal 

to  

 
0 0 2

enclosed area (4.0 cm)(2.0 cm)
(0.75 A) 52 nT m

total area 12 cm
di 
 

   
 

. 
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7. (a) Inside we have (by Eq. 32-16) 2

0 1 / 2dB i r R  , where 
1 0.0200 m,r   

0.0300 m,R   and the displacement current is given by Eq. 32-38 (in SI units):  

 

 12 2 2 3 14

0 (8.85 10 C /N m )(3.00 10 V/m s) 2.66 10 AE
d

d
i

dt
   

        . 

Thus, we find  

 
7 14

190 1

2 2

(4 10 T m/A)(2.66 10 A)(0.0200 m)
1.18 10  T

2 2 (0.0300 m)

di r
B

R

 

 

 
  

    . 

 

(b) Outside we have (by Eq. 32-17) 0 2/ 2dB i r   where r2 = 0.0500 cm.  Here we 

obtain  
7 14

190

2

(4 10 T m/A)(2.66 10 A)
1.06 10  T

2 2 (0.0500 m)

diB
r

 

 

 
  

     

 

8. (a) Application of Eq. 32-3 along the circle referred to in the second sentence of the 

problem statement (and taking the derivative of the flux expression given in that sentence) 

leads to 

 0 0(2 ) 0.60 V m/s
r

B r
R

    . 

 

Using r = 0.0200 m (which, in any case, cancels out) and R = 0.0300 m, we obtain 

 
12 2 2 7

0 0

17

(0.60 V m/s) (8.85 10 C /N m )(4 10 T m/A)(0.60 V m/s)

2 2 (0.0300 m)

3.54 10  T .

B
R

 

 

 



     
 

 

 

 

(b) For a value of r larger than R, we must note that the flux enclosed has already reached 

its full amount (when r = R in the given flux expression).  Referring to the equation we 

wrote in our solution of part (a), this means that the final fraction ( /r R ) should be 

replaced with unity.  On the left hand side of that equation, we set r = 0.0500 m and solve.  

We now find  

 
12 2 2 7

0 0

17

(0.60 V m/s) (8.85 10 C /N m )(4 10 T m/A)(0.60 V m/s)

2 2 (0.0500 m)

2.13 10  T .

B
r

 

 

 



     
 

 

 

 

9. (a) Application of Eq. 32-7 with A = r
2
 (and taking the derivative of the field 

expression given in the problem) leads to 

 

  2

0 0(2 ) 0.00450 V/m sB r r     . 
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For r = 0.0200 m, this gives  

 

0 0

12 2 2 7

22

1
(0.00450 V/m s)

2
1

(8.85 10 C /N m )(4 10 T m/A)(0.0200 m)(0.00450 V/m s)
2
5.01 10  T .

B r 

 



 

     

 

 

 

(b) With r > R, the expression above must replaced by 

 

 2

0 0(2 ) 0.00450 V/m sB r R     . 

 

Substituting r = 0.050 m and R = 0.030 m, we obtain B = 4.51  10
22 

T. 

 

10. (a) Here, the enclosed electric flux is found by integrating 

 
3

2

0 0

1
2 (0.500 V/m s)(2 ) 1

2 3

r r

E

r r
E rdr t rdr t r

R R
  

  
        

   
   

 

with SI units understood.  Then (after taking the derivative with respect to time) Eq. 32-3 

leads to   
3

2

0 0

1
(2 )

2 3

r
B r r

R
   

 
  

 
. 

 

For r = 0.0200 m and R = 0.0300 m, this gives B = 3.09  10
20 

T. 

 

(b) The integral shown above will no longer (since now r > R) have r as the upper limit; 

the upper limit is now R.  Thus, 
3

2 21 1

2 3 6
E

R
t R t R

R
 
 

    
 

.

Consequently, Eq. 32-3 becomes 

2

0 0

1
(2 )

6
B r R     

which for r = 0.0500 m, yields   

 
2 12 7 2

200 0 (8.85 10 )(4 10 )(0.030)
1.67 10  T .

12 12(0.0500)

R
B

r

   
 

     

 

11. (a) Noting that the magnitude of the electric field (assumed uniform) is given by E = 

V/d (where d = 5.0 mm), we use the result of part (a) in Sample Problem 32.01 – 

“Magnetic field induced by changing electric field:” 
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 0 0 0 0 .
2 2

r rdE dV
B r R

dt d dt

   
    

 

We also use the fact that the time derivative of sin (t) (where  = 2f = 2(60)  377/s 

in this problem) is  cos(t). Thus, we find the magnetic field as a function of r (for r  

R; note that this neglects “fringing” and related effects at the edges): 

 

 0 0 0 0 max
max maxcos

2 2

r rV
B V t B

d d

    
     

 

where Vmax = 150 V. This grows with r until reaching its highest value at r = R = 30 mm: 

 

     

 

12 3

0 0 max
max

3

12

4 H m 8.85 10 F m 30 10 m 150V 377 s

2 2 5.0 10 m

1.9 10 T.

r R

RVB
d

  
  

 



  
 



 

 

 

(b) For r  0.03 m, we use the expression  

 

max 0 0 max / 2B rV d    

 

found in part (a) (note the B  r dependence), and for r  0.03 m we perform a similar 

calculation starting with the result of part (b) in Sample Problem 32.01 — “Magnetic 

field induced by changing electric field:” 

 

 

 

2 2 2

0 0 0 0 0 0
max max

max max max

2

0 0 max

cos
2 2 2

   for
2

R R RdE dV
B V t

r dt rd dt rd

R V
r R

rd

     
 

  

     
       
     

 

 

 

(note the B  r
–1

 dependence — see also Eqs. 32-16 and 

32-17). The plot, with SI units understood, is shown to 

the right. 

 

12. From Sample Problem 32.01 — “Magnetic field 

induced by changing electric field,” we know that B  r 

for r  R and B  r
–1

 for r  R. So the maximum value of 

B occurs at r = R, and there are two possible values of r 

at which the magnetic field is 75% of Bmax. We denote 

these two values as r1 and r2, where r1 < R and r2 > R.  

 

(a) Inside the capacitor, 0.75 Bmax/Bmax = r1/R, or r1 = 0.75 R = 0.75 (40 mm) =30 mm. 

 

(b) Outside the capacitor, 0.75 Bmax/Bmax = (r2/R)
–1

, or  
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r2 = R/0.75 = 4R/3 = (4/3)(40 mm) = 53 mm. 

 

(c) From Eqs. 32-15 and 32-17, 

 

  

 

7

50 0
max

4 10 T m A 6.0A
3.0 10 T.

2 2 2 0.040m

di i
B

R R

 

  




 

      

 

13. Let the area plate be A and the plate separation be d. We use Eq. 32-10: 

 

i
d

dt

d

dt
AE A

d

dt

V

d

A

d

dV

dt
d

E  
F
HG
I
KJ 

F
HG
I
KJ  


0 0 0

0 b g ,  

or 

dV

dt

i d

A

i

C

d d  


 
 0

6

515
7 5 10

.
. .

A

2.0 10 F
V s  

 

Therefore, we need to change the voltage difference across the capacitor at the rate of 
57.5 10  V/s . 

 

14. Consider an area A, normal to a uniform electric field 

E . The displacement current 

density is uniform and normal to the area. Its magnitude is given by Jd = id/A. For this 

situation , 0 ( / )di A dE dt , so 

J
A

A
dE

dt

dE

dt
d  

1
0 0  .  

 

15. THINK The displacement current is related to the changing electric flux by 

0( / ).d Ei d dt   

 

EXPRESS Let A be the area of a plate and E be the magnitude of the electric field 

between the plates. The field between the plates is uniform, so E = V/d, where V is the 

potential difference across the plates and d is the plate separation.  

 

ANALYZE Thus, the displacement current is 

 

0
0 0 0

( )
.E

d

Ad d EA dE dV
i A

dt dt dt d dt


  


     

 

Now, 0A/d is the capacitance C of a parallel-plate capacitor (not filled with a dielectric), 

so 

i C
dV

dt
d  .  

 

LEARN The real current charging the capacitor is 
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  
dq d dV

i CV C
dt dt dt

   . 

Thus, we see that di i . 

 

16. We use Eq. 32-14: 0 ( / ).di A dE dt  Note that, in this situation, A is the area over 

which a changing electric field is present. In this case r > R, so A = R
2
. Thus, 

 

  
12

22 12 2 2
0 0

2.0A V
7.2 10 .

m s8.85 10 C /N m 0.10m

d di idE

dt A R    
    

 
 

 

17. (a) Using Eq. 27-10, we find E J
i

A
  

 









 162 10 100

500 10
0 324

8

6

.

.
. .

 m A

m
V m

2

c hb g
 

 

(b) The displacement current is 

 

   12 8

0 0 0 0

16

8.85 10 F/m 1.62 10 2000A s

2.87 10 A.

E
d

d dE d i di
i A A

dt dt dt A dt


      



  
        

 

 

 

(c) The ratio of fields is 
 

 

16
180

0

due to 2 2.87 10 A
2.87 10 .

due to 2 100A

d d d
B i i r i

B i i r i

 

 




      

 

18. From Eq. 28-11, we have i = ( / R ) e
t/

  since we are ignoring the self-inductance of 

the capacitor. Equation 32-16 gives 

 0

22

di r
B

R




 . 

 

Furthermore, Eq. 25-9 yields the capacitance  

 

 
2

110 (0.05 m)
2.318 10 F

0.003 m
C

     , 

 

so that the capacitive time constant is  

 

 = (20.0 × 10
6 
)(2.318 × 10

11 
F) = 4.636 × 10

4 
s. 

 

At t = 250 × 10
6 

s, the current is 

 

i = 
12.0 V

20.0 x 10
6 


  e
t/

  = 3.50  × 10
7 

A . 
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Since i = id (see Eq. 32-15) and r = 0.0300 m, then (with plate radius R = 0.0500 m) we 

find 
7 7

130

2 2

(4 10 T m/A)(3.50 10 A)(0.030 m)
8.40 10  T

2 2 (0.050 m)

di r
B

R



 

 
  

    . 

 

19. (a) Equation 32-16 (with Eq. 26-5)  gives, with A = R
2
,  

 
2

0 0 0
02 2 2

7 2

( ) 1

2 2 2 2

1
(4 10 T m/A)(6.00 A/m )(0.0200 m) 75.4 nT .

2

d d d
d

i r J Ar J R r
B J r

R R R

   


  



   

   

  

(b) Similarly, Eq. 32-17 gives 
2

0 0 67.9 nT
2 2

d di J R
B

r r

  

 
   . 

 

20. (a) Equation 32-16 gives  0

2
2.22 T

2

di r
B

R





  .  

(b) Equation 32-17 gives 0 2.00 T
2

diB
r





  .  

 

21. (a) Equation 32-11 applies (though the last term is zero) but we must be careful with 

id,enc .  It is the enclosed portion of the displacement current, and if we related this to the 

displacement current density Jd , then 

 

 
3

2 2

enc
0 0

1
2 (4.00 A/m )(2 ) 1 / 8

2 3

r r

d d

r
i J r dr r R r dr r

R
  

 
     

 
   

 

with SI units understood.  Now, we apply Eq. 32-17 (with id replaced with id,enc) or start 

from scratch with Eq. 32-11, to get 
0 enc

27.9 nT
2

di
B

r




  . 

 

(b) The integral shown above will no longer (since now r > R) have r as the upper limit; 

the upper limit is now R.  Thus,  

 
3

2 2

enc

1 4
8

2 3 3
d d

R
i i R R

R
 
 

    
 

. 

Now Eq. 32-17 gives 0 15.1 nT
2

diB
r




  .  

 

22. (a) Eq. 32-11 applies (though the last term is zero) but we must be careful with id,enc .  

It is the enclosed portion of the displacement current.  Thus Eq. 32-17 (which derives 

from Eq. 32-11) becomes, with id replaced with id,enc, 
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0 enc 0 (3.00 A)( / )

2 2

di r R
B

r r

 

 
   

 

which yields (after canceling r, and setting R = 0.0300 m) B = 20.0 T. 

 

(b) Here id = 3.00 A, and we get 0 12.0 T
2

diB
r





  . 

 

23. THINK The electric field between the plates in a parallel-plate capacitor is changing, 

so there is a nonzero displacement current 
0( / )d Ei d dt   between the plates. 

 

EXPRESS Let A be the area of a plate and E be the magnitude of the electric field 

between the plates. The field between the plates is uniform, so E = V/d, where V is the 

potential difference across the plates and d is the plate separation. The current into the 

positive plate of the capacitor is 

 

   0
0 0

( ) E
A ddq d dV d Ed dE

i CV C A
dt dt dt d dt dt dt


 


      , 

 

which is the same as the displacement current.  

 

ANALYZE (a) Thus, at any instant the displacement current id in the gap between the 

plates equals the conduction current i in the wires: id = i = 2.0 A. 

 

(b) The rate of change of the electric field is 

 

dE

dt A

d

dt

i

A

E d
F
HG

I
KJ  


 



1 2 0

85 10 10
2 3 10

0

0

0
12 2

11






 .

. .
. .

A

8 F m m

V

m sc hb g  

 

(c) The displacement current through the indicated path is 

 

 
2

2

2

0.50m
2.0 A 0.50 A.

1.0m
d d

d
i i

L

   
      

  
 

 

(d) The integral of the field around the indicated path is 

 
 
B ds id        z 0

16 7126 10 050 6 3 10. . .H m A T m.c hb g  

 

LEARN the displacement through the dashed path is proportional to the area encircled by 

the path since the displacement current is uniformly distributed over the full plate area.  

 

24. (a) From Eq. 32-10, 
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     

   

5 4 4

0 0 0 0

12 2 2 2 2 4

8

4.0 10 6.0 10 6.0 10 V m s

8.85 10 C /N m 4.0 10 m 6.0 10 V m s

2.1 10 A.

E
d

d dE d
i A A t A

dt dt dt
   

 




         
 

      

  

 

 

Thus, the magnitude of the displacement current is 8| | 2.1 10 A.di
   

 

(b) The negative sign in di implies that the direction is downward.  

 

(c) If one draws a counterclockwise circular loop s around the plates, then according to 

Eq. 32-18, 

s
dB ds iz   

 
0 0,  

 

which means that 
 
B ds  0 . Thus 


B  must be clockwise. 

 

25. (a) We use 
 
B ds I z 0 enclosed  to find 

 

 
   

2

0 6 2 30 enclosed
0

7

1 1
1.26 10 H m 20A m 50 10 m

2 2 2 2

6.3 10 T.

d

d

J rI
B J r

r r




 

 




     

 

 

 

(b) From 2 2

0 0
E

d d

d dE
i J r r

dt dt
   


   , we get 

 

dE

dt

Jd 


 
 0

12

1220

885 10
2 3 10

A m

F m

V

m s

2

.
. . 

 

26. (a) Since i = id (Eq. 32-15) then the portion of displacement current enclosed is 

 

 
2

,enc 2

/ 3
1.33A.

9
d

R i
i i

R




    

 

(b) We see from Sample Problem 32.01 — “Magnetic field induced by changing electric 

field” that the maximum field is at r = R and that (in the interior) the field is simply 

proportional to r. Therefore, 

B

B

r

Rmax

.
 

300mT

12.0mT
 

 

which yields r = R/4 = (1.20 cm)/4 = 0.300 cm.  
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(c) We now look for a solution in the exterior region, where the field is inversely 

proportional to r (by Eq. 32-17): 

B

B

R

rmax

.
 

300mT

12.0mT
 

 

which yields r = 4R = 4(1.20 cm) = 4.80 cm.   

 

27. (a) In region a of the graph, 

 

  
5 5

12 2

0 0 6

4.5 10 N C 6.0 10 N C
8.85 10 F m 1.6m 0.71A.

4.0 10 s

E
d

d dE
i A

dt dt
  



   
    



 

(b) id  dE/dt = 0. 

 

(c) In region c of the graph, 

 

  
5

12 2

0 6

4.0 10 N C
| | 8.85 10 F m 1.6m 2.8A.

2.0 10 s
d

dE
i A

dt
 



 
   


 

 

28. (a) Figure 32-35 indicates that i = 4.0 A when t = 20 ms.  Thus,  

 

Bi = oi/2r  = 0.089 mT. 

 

(b) Figure 32-35 indicates that i = 8.0 A when t = 40 ms. Thus, Bi  0.18 mT. 

 

(c) Figure 32-35 indicates that i = 10 A when t > 50 ms. Thus, Bi   0.220 mT.  

 

(d) Equation 32-4 gives the displacement current in terms of the time-derivative of the 

electric field: id = oA(dE/dt), but using Eq. 26-5 and Eq. 26-10 we have E = i/A (in 

terms of the real current); therefore, id = o(di/dt). For 0 < t < 50 ms, Fig. 32-35 indicates 

that di/dt = 200 A/s.  Thus,  

Bid = oid /2r  = 6.4  10
22 

T. 

 

(e) As in (d), Bid = oid /2r  = 6.4  10
22 

T. 

 

(f) Here di/dt = 0, so (by the reasoning in the previous step) B = 0. 

 

(g) By the right-hand rule, the direction of iB at t = 20 s is out of the page. 

 

(h) By the right-hand rule, the direction of idB at t = 20 s is out of the page. 

 

29. (a) At any instant the displacement current id in the gap between the plates equals the 

conduction current i in the wires. Thus imax = id max = 7.60 A. 
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(b) Since id = 0 (dE/dt), we have 

 

d

dt

i
E dF

HG
I
KJ  




  





max

max .
. .

 0

6

12

57 60 10
859 10

A

8.85 10 F m
V m s  

 

(c) Let the area plate be A and the plate separation be d. The displacement current is 

 

  0
0 0 0

E
d

Ad d d V dV
i AE A

dt dt dt d d dt


  

    
      

   
. 

 

Now the potential difference across the capacitor is the same in magnitude as the emf of 

the generator, so V = m sin t and dV/dt = m cos t. Thus, 0 m( / )cosdi A d t    

and max 0 m / .di A d   This means 

 

      
212

30 m

6

max

8.85 10 F m 0.180 m 130rad s 220 V
3.39 10 m,

7.60 10 Ad

A
d

i

 






 
   


 

 

where A = R
2
 was used. 

 

(d) We use the Ampere-Maxwell law in the form 
 
B ds Id z 0 , where the path of 

integration is a circle of radius r between the plates and parallel to them. Id is the 

displacement current through the area bounded by the path of integration. Since the 

displacement current density is uniform between the plates, Id = (r
2
/R

2
)id, where id is the 

total displacement current between the plates and R is the plate radius. The field lines are 

circles centered on the axis of the plates, so 

B  is parallel to ds


. The field has constant 

magnitude around the circular path, so 
 
B ds rB z 2 . Thus, 

 
2

0
0 2 2

2       .
2

d
d

i rr
rB i B

R R


 



 
   

 
 

 

The maximum magnetic field is given by 

 

   

 

6

120 max
max 22

4 T m A 7.6 10 A 0.110m
5.16 10 T.

2 2 0m

di r
B

R



 

 


  

   


 

 

30. (a) The flux through Arizona is 

 

        B Ar 43 10 295 000 10 13 106 3
2

7T km m km Wb2c hc hc h, . ,  
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inward. By Gauss’ law this is equal to the negative value of the flux ' through the rest of 

the surface of the Earth. So ' = 1.3  10
7
 Wb. 

 

(b) The direction is outward. 

 

31. The horizontal component of the Earth’s magnetic field is given by Bh i Bcos , 

where B is the magnitude of the field and i  is the inclination angle. Thus 

 

B
Bh

i

 



cos cos




16

73
55

T
T .  

 

32. (a) The potential energy of the atom in association with the presence of an external 

magnetic field 

Bext  is given by Eqs. 32-31 and 32-32: 

 

orb ext orb, ext ext .z BU B B m B          

 

For level E1 there is no change in energy as a result of the introduction of 

Bext , so U m  

= 0, meaning that m = 0 for this level.  

 

(b) For level E2 the single level splits into a triplet (i.e., three separate ones) in the 

presence of 

Bext , meaning that there are three different values of m . The middle one in 

the triplet is unshifted from the original value of E2 so its m  must be equal to 0. The 

other two in the triplet then correspond to m  = –1 and m  = +1, respectively. 

 

(c) For any pair of adjacent levels in the triplet, |m | = 1. Thus, the spacing is given by 

 
24 24| ( ) | | | (9.27 10 J/T)(0.50T) 4.64 10 J.B B BU m B m B B                

 

33. THINK An electron in an atom has both orbital angular momentum and spin angular 

momentum; the z components of the angular momenta are quantized.    

 

EXPRESS The z component of the orbital angular momentum is give by 

 

orb,
2

z

m h
L 


 

 

where h is the Planck constant and m  is the orbital magnetic quantum number. The 

corresponding z component of the orbital magnetic dipole moment is  

 

orb, Bz m   
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where 
B / 4eh m   is the Bohr magneton. When placed in an external field 

ext ,B  the 

energy associated with the orientation of 
orb  is given by 

 

orb ext .U B   

 

ANALYZE (a) Since m  = 0, Lorb,z = m h/2 = 0. 

 

(b) Since m  = 0, orb,z = – m B = 0. 

 

(c) Since m  = 0, then from Eq. 32-32, U = –orb,zBext = – m BBext = 0. 

 

(d) Regardless of the value of m , we find for the spin part 

 

U B Bs z B           , . . .9 27 10 35 32 1024 25J T mT Jc hb g  

 

(e) Now m  = –3, so 

   27

34 34

orb,

3 6.63 10 J s
3.16 10 J s 3.2 10 J s

2 2
z

m h
L

 



 
  

         

 

(f) and    24 23 23

orb, 3 9.27 10 J T 2.78 10 J T 2.8 10 J T .z Bm             

 

(g) The potential energy associated with the electron’s orbital magnetic moment is now 

 

  23 3 25

orb, ext 2.78 10 J T 35 10 T 9.7 10 J.zU B          

 

(h) On the other hand, the potential energy associated with the electron spin, being 

independent of m , remains the same: ±3.2  10
–25

 J. 

 

LEARN Spin is an intrinsic angular momentum that is not associated with the motion of 

the electron. Its z component is quantized, and can be written as 

 

2

s
z

m h
S 


 

   

where 1/ 2sm    is the spin magnetic quantum number. 

 

34. We use Eq. 32-27 to obtain  

 

U = –(s,zB) = –Bs,z, 
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where  s z e Beh m,    4  (see Eqs. 32-24 and 32-25). Thus, 

 

U B BB B B           b g c hb g2 2 9 27 10 0 25 4 6 1024 24. . . .J T T J  

 

35. We use Eq. 32-31: orb, z = – m B. 

 

(a) For m  = 1, orb,z = –(1) (9.3  10
–24

 J/T) = –9.3  10
–24

 J/T. 

 

(b) For m  = –2, orb,z = –(–2) (9.3  10
–24

 J/T) = 1.9  10
–23

 J/T. 

 

36. Combining Eq. 32-27 with Eqs. 32-22 and 32-23, we see that the energy difference is 

 

2 BU B   

 

where B is the Bohr magneton (given in Eq. 32-25). With U = 6.00  10
25

 J, we obtain 

B = 32.3 mT. 

 

37. (a) A sketch of the field lines (due to the presence of the bar magnet) in the vicinity of 

the loop is shown below: 

 
 

(b) The primary conclusion of Section 32-9 is two-fold: 

u  is opposite to 


B , and the 

effect of 

F  is to move the material toward regions of smaller | |B  values. The direction 

of the magnetic moment vector (of our loop) is toward the right in our sketch, or in the +x 

direction. 

 

(c) The direction of the current is clockwise (from the perspective of the bar magnet). 

 

(d) Since the size of | |B  relates to the “crowdedness” of the field lines, we see that 

F  is 

toward the right in our sketch, or in the +x direction. 

 

38. An electric field with circular field lines is induced as the magnetic field is turned on. 

Suppose the magnetic field increases linearly from zero to B in time t. According to Eq. 

31-27, the magnitude of the electric field at the orbit is given by 

 

E
r dB

dt

r B

t

F
HG
I
KJ 
F
HG
I
KJ2 2

,  



 

  

1393 

 

where r is the radius of the orbit. The induced electric field is tangent to the orbit and 

changes the speed of the electron, the change in speed being given by 

 

v at
eE

m
t

e

m

r B

t
t

erB

me e e

  
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ 2 2

.  

 

The average current associated with the circulating electron is i = ev/2r and the dipole 

moment is 

 2 1
.

2 2

ev
Ai r evr

r
 



 
   

 
 

The change in the dipole moment is 

 

   
F
HG
I
KJ 

1

2

1

2 2 4

2 2

er v er
erB

m

e r B

me e

.  

 

39. For the measurements carried out, the largest ratio of the magnetic field to the 

temperature is (0.50 T)/(10 K) = 0.050 T/K. Look at Fig. 32-14 to see if this is in the 

region where the magnetization is a linear function of the ratio. It is quite close to the 

origin, so we conclude that the magnetization obeys Curie’s law. 

 

40. (a) From Fig. 32-14 we estimate a slope of B/T = 0.50 T/K when M/Mmax = 50%. So  

 

B = 0.50 T = (0.50 T/K)(300 K) = 1.5×10
2
 T. 

 

(b) Similarly, now B/T  2 so B = (2)(300) = 6.0×10
2
 T. 

 

(c) Except for very short times and in very small volumes, these values are not attainable 

in the lab. 

 

41. THINK As defined in Eq. 32-38, magnetization is the dipole moment per unit 

volume.  

 

EXPRESS Let M be the magnetization and   be the volume of the cylinder (  r L2 , 

where r is the radius of the cylinder and L is its length). The dipole moment is given by  

= M. 

 

ANALYZE Substituting the values given, we obtain  

 

        M r L   2 3
2

2 2530 10 500 10 2 08 10. . . .A m m m J Tc h c h c h  

 

LEARN In a sample with N atoms, the magnetization reaches maximum, or saturation, 

when all the dipoles are completely aligned, leading to max / .M N  
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42. Let 

K kT B B B      
3

2
2

   
  d i  

which leads to 

T
B

k
 










4

3

4 10 10 050

3 138 10
0 48

23

23

 . .

.
. .

J T T

J K
K

c hb g
c h  

 

43. (a) A charge e traveling with uniform speed v around a circular path of radius r takes 

time T = 2r/v to complete one orbit, so the average current is 

 

.
2

e ev
i

T r
   

 

The magnitude of the dipole moment is this multiplied by the area of the orbit: 

 

2 .
2 2

ev evr
r

r
 


   

 

Since the magnetic force with magnitude evB is centripetal, Newton’s law yields evB = 

mev
2
/r, so / .er m v eB  Thus, 

 
F
HG
I
KJ 
F
HG
I
KJ
F
HG
I
KJ 

1

2

1 1

2

2ev
m v

eB B
m v

K

B

e
e

eb g .  

 

The magnetic force  ev B
 

 must point toward the center of the circular path. If the 

magnetic field is directed out of the page (defined to be +z direction), the electron will 

travel counterclockwise around the circle. Since the electron is negative, the current is in 

the opposite direction, clockwise and, by the right-hand rule for dipole moments, the 

dipole moment is into the page, or in the –z direction. That is, the dipole moment is 

directed opposite to the magnetic field vector. 

 

(b) We note that the charge canceled in the derivation of  = Ke/B. Thus, the relation  = 

Ki/B holds for a positive ion.  

 

(c) The direction of the dipole moment is –z, opposite to the magnetic field. 

 

(d) The magnetization is given by M = ene + ini, where e is the dipole moment of an 

electron, ne is the electron concentration, i is the dipole moment of an ion, and ni is the 

ion concentration. Since ne = ni, we may write n for both concentrations. We substitute e 

= Ke/B and i = Ki/B to obtain 

 

   
21 3

20 21 25.3 10 m
6.2 10 J+7.6 10 J 3.1 10 A m.

1.2T
e i

n
M K K

B


 

        
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44. Section 32-10 explains the terms used in this problem and the connection between M 

and . The graph in Fig. 32-39 gives a slope of 

 

max

ext

/ 0.15
0.75 K/T

/ 0.20 T/K

M M

B T
   .  

Thus we can write 

 
max

0.800 T
(0.75 K/T) 0.30

2.00 K




  . 

 

45. THINK According to statistical mechanics, the probability of a magnetic dipole 

moment placed in an external magnetic field having energy U is / ,U kTP e  where k is 

the Boltzmann’s constant.  

    

EXPRESS The orientation energy of a dipole in a magnetic field is given by .U B    

So if a dipole is parallel with ,B  then ;U B   however, U B   if the alignment is 

anti-parallel. We use the notation /( ) B kTP e   for the probability of a dipole that is 

parallel to 

B , and /( ) B kTP e     for the probability of a dipole that is anti-parallel to 

the field. The magnetization may be thought of as a “weighted average” in terms of these 

probabilities. 

 

ANALYZE (a) With N atoms per unit volume, we find the magnetization to be 

 

   

   

 
tanh .

B kT B kT

B kT B kT

N e eN P N P B
M N

P P e e kT

 

 

    


 





   
    

    
 

 

(b) For B kT  (that is, B kT/  1) we have e
±B/kT

  1 ± B/kT, so 

 

M N
B

kT

N B kT B kT

B kT B kT

N B

kT


F
HG
I
KJ 

  

  


   

 


tanh .

1 1

1 1

2b g b g
b g b g  

 

(c) For B kT  we have tanh(B/kT)  1, so tanh .
B

M N N
kT


 

 
  

 
 

 

(d) One can easily plot the tanh function using, for instance, a graphical calculator. One 

can then note the resemblance between such a plot and Fig. 32-14. By adjusting the 

parameters used in one’s plot, the curve in Fig. 32-14 can reliably be fit with a tanh 

function. 

 

LEARN As can be seen from Fig. 32-14, the magnetization M is linear in B/kT in the 

regime / 1B T  . On the other hand, when ,B T  M approaches a constant.    
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46. From Eq. 29-37 (see also Eq. 29-36) we write the torque as   = Bh sin where the 

minus indicates that the torque opposes the angular displacement  (which we will 

assume is small and in radians).  The small angle approximation leads to 

hB    which is an indicator for simple harmonic motion (see section 16-5, 

especially Eq. 16-22).  Comparing with Eq. 16-23, we then find the period of oscillation 

is 

2
h

I
T

B



  

 

where I is the rotational inertial that we asked to solve for. Since the frequency is given as 

0.312 Hz, then the period is T = 1/f = 1/(0.312 Hz) = 3.21 s. Similarly, Bh = 18.0  10
6

 T 

and = 6.80  10
4

 J/T.  The above relation then yields I = 3.19  10
9 2kg m .  

  

47. THINK In this problem, we model the Earth’s magnetic dipole moment with a 

magnetized iron sphere.   

 

EXPRESS If the magnetization of the sphere is saturated, the total dipole moment is total 

= N, where N is the number of iron atoms in the sphere and  is the dipole moment of an 

iron atom. We wish to find the radius of an iron sphere with N iron atoms. The mass of 

such a sphere is Nm, where m is the mass of an iron atom. It is also given by 4R
3
/3, 

where  is the density of iron and R is the radius of the sphere. Thus Nm = 4R
3
/3 and 

 

N
R

m


4

3

3
.  

We substitute this into total = N  to obtain 

 
1 33

total
total

34
.

3 4

mR
R

m

 




 
    

 
 

 

 

ANALYZE (a) The mass of an iron atom is 

 

m      56 56 166 10 9 30 1027 26u u kg u kg.b gc h. .  

 

Therefore, the radius of the iron sphere is 

 

R 
 

 

L
N
MM

O
Q
PP  





3 9 30 10 8 0 10

4 21 10
18 10

26 22

23

1 3

5
. .

.
.

kg J T

kg m J T
m.

3

c hc h
c hc h  
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(b) The volume of the sphere is V Rs     
4 4

182 10 2 53 103 5
3

16






. .m m3c h  and the 

volume of the Earth is 

 
3

3 6 21 34 4
6.37 10 m 1.08 10 m ,E EV R

 
    

 
 

 

so the fraction of the Earth’s volume that is occupied by the sphere is 

 
16 3

5

21 3

2.53 10 m
2.3 10 .

1.08 10 m

s

E

V

V


  


 

 

LEARN The finding that s EV V  makes it unlikely that our simple model of a 

magnetized iron sphere could explain the origin of Earth’s magnetization.  

 

48. (a) The number of iron atoms in the iron bar is 

 

N 


 
7 9 50 10

55847 6 022 10
4 3 10

23

23
. . .

. .
. .

g cm cm cm

g mol mol

3 2c hb gc h
b g c h  

 

Thus the dipole moment of the iron bar is 

 

     21 10 4 3 10 8 923 23. . . .J T A m2c hc h  

 

(b)  = B sin 90° = (8.9 A · m
2
)(1.57 T) = 13 N · m. 

 

49. THINK Exchange coupling is a quantum phenomenon in which electron spins of one 

atom interact with those of neighboring atoms. 

 

EXPRESS The field of a dipole along its axis is given by Eq. 30-29:  

 

B
z


 0

32
,  

 

where  is the dipole moment and z is the distance from the dipole. The energy of a 

magnetic dipole 

  in a magnetic field 


B  is given by 

 

U B B    
 
  cos , 

 

where  is the angle between the dipole moment and the field. 

 

ANALYZE (a) Thus, the magnitude of the magnitude field at a distance 10 nm away 

from the atom is 
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  
 

7 23

6
4 10 T m A 1.5 10 J T

3.0 10 T.
2 m

B

 





  
  

 
 

 

(b) The energy required to turn it end-for-end (from  = 0° to  = 180°) is 

 

U B         2 2 15 10 30 10 9 0 1023 6 29 10 . . .J T T J = 5.6 10 eV.c hc h  

 

(c) The mean kinetic energy of translation at room temperature is about 0.04 eV. Thus, if 

dipole-dipole interactions were responsible for aligning dipoles, collisions would easily 

randomize the directions of the moments and they would not remain aligned. 

 

LEARN The persistent alignment of magnetic dipole moments despite the randomizing 

tendency due to thermal agitation is what gives the ferromagnetic materials their 

permanent magnetism.   

 

50. (a)  Equation 29-36 gives  

 

  = rod B sin = (2700 A/m)(0.06 m)(0.003 m)
2
(0.035 T)sin(68°) = 1.49  10

4  
N m . 

 

We have used the fact that the volume of a cylinder is its length times its (circular) cross 

sectional area. 

 

(b) Using Eq. 29-38, we have 

 

U = – rod B(cos f  – cos i) 

                     = –(2700 A/m)(0.06 m)(0.003m)
2
(0.035T)[cos(34°) – cos(68°)] 

=  –72.9 J. 

 

51. The saturation magnetization corresponds to complete alignment of all atomic dipoles 

and is given by Msat = n, where n is the number of atoms per unit volume and  is the 

magnetic dipole moment of an atom. The number of nickel atoms per unit volume is n = 

/m, where  is the density of nickel. The mass of a single nickel atom is calculated using 

m = M/NA, where M is the atomic mass of nickel and NA is Avogadro’s constant. Thus, 

 

  3 23

22 3

28 3

8.90g cm 6.02 10 atoms mol
9.126 10 atoms cm

58.71g mol

9.126 10 atoms m .

AN
n

M

 
   

 

 

 

The dipole moment of a single atom of nickel is 

 

  



  M

n

sat

3

2A m

m
A m

4 70 10

9126 10
515 10

5

28

24.

.
. .  
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52. The Curie temperature for iron is 770°C. If x is the depth at which the temperature 

has this value, then 10°C + (30°C/km)x = 770°C. Therefore, 

 

x 
  




770 10
25

C C

30 C km
km.  

 

53. (a) The magnitude of the toroidal field is given by B0 = 0nip, where n is the number 

of turns per unit length of toroid and ip is the current required to produce the field (in the 

absence of the ferromagnetic material). We use the average radius (ravg = 5.5 cm) to 

calculate n: 

3

2

avg

400 turns
1.16 10 turns/m .

2 2 m)

N
n

r  
   


 

Thus, 

i
B

n
p  



  






0

0

3

7

0 20 10

4
014



.

( /
.

T

T m / A)(1.16 10 m)
 A .

3 
 

 

(b) If  is the magnetic flux through the secondary coil, then the magnitude of the emf 

induced in that coil is  = N(d/dt) and the current in the secondary is is = /R, where R is 

the resistance of the coil. Thus, 

i
N

R

d

dt
s 
F
HG
I
KJ


.  

 

The charge that passes through the secondary when the primary current is turned on is 

 

0
.s

N d N N
q i dt dt d

R dt R R

 
        

 

The magnetic field through the secondary coil has magnitude B = B0 + BM = 801B0, 

where BM is the field of the magnetic dipoles in the magnetic material. The total field is 

perpendicular to the plane of the secondary coil, so the magnetic flux is  = AB, where A 

is the area of the Rowland ring (the field is inside the ring, not in the region between the 

ring and coil). If r is the radius of the ring’s cross section, then A = r
2
. Thus, 

 

  801 2

0r B . 

 

The radius r is (6.0 cm – 5.0 cm)/2 = 0.50 cm and 

 
2 2 3 5801 m) (0.20 10 T) 1.26 10 Wb .         

 

Consequently, 
5

550(1.26 10 Wb)
7.9 10 C .

8.0
q




  

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54. (a) At a distance r from the center of the Earth, the magnitude of the magnetic field is 

given by 

20

3
1 3sin ,

4
mB

r

 



   

 

where  is the Earth’s dipole moment and m is the magnetic latitude. The ratio of the 

field magnitudes for two different distances at the same latitude is 

 

B

B

r

r

2

1

1

3

2

3
 .  

 

With B1 being the value at the surface and B2 being half of B1, we set r1 equal to the 

radius Re of the Earth and r2 equal to Re + h, where h is altitude at which B is half its 

value at the surface. Thus, 

1

2

3

3




R

R h

e

eb g .  

 

Taking the cube root of both sides and solving for h, we get 

 

    1 3 1 3 32 1 2 1 6370km 1.66 10 km.eh R       

 

(b) For maximum B, we set sin m = 1.00. Also, r = 6370 km – 2900 km = 3470 km. Thus, 

 

   

 
 

7 22 2

220
max 33 6

4

4 10 T m A 8.00 10 A m
1 3sin 1 3 1.00

4 4 m

3.83 10 T.

mB
r

 

 





   
    



 

 

 

(c) The angle between the magnetic axis and the rotational axis of the Earth is 11.5°, so 

m = 90.0° – 11.5° = 78.5° at Earth’s geographic north pole. Also r = Re = 6370 km. Thus, 

 

   

 

7 22 2

20

33

5

4 10 T m A 8.0 10 J T 1 3sin 78.5
1 3sin

4 4 m

6.11 10 T.

m

E

B
R

 

 







    
   



 

 

 

(d) i    tan tan . . .1 2 785 84 2b g  

 

(e) A plausible explanation to the discrepancy between the calculated and measured 

values of the Earth’s magnetic field is that the formulas we used are based on dipole 

approximation, which does not accurately represent the Earth’s actual magnetic field 



 

  

1401 

distribution on or near its surface. (Incidentally, the dipole approximation becomes more 

reliable when we calculate the Earth’s magnetic field far from its center.) 

 

55. (a) From 2

eiA i R    we get  

i
Re

 



 



  2

22

6

88 0 10
6 3 10

.
.

J / T

 m)
A .

2
 

 

(b) Yes, because far away from the Earth the fields of both the Earth itself and the current 

loop are dipole fields. If these two dipoles cancel each other out, then the net field will be 

zero. 

 

(c) No, because the field of the current loop is not that of a magnetic dipole in the region 

close to the loop. 

 

56. (a) The period of rotation is T = 2/ and in this time all the charge passes any fixed 

point near the ring. The average current is i = q/T = q/2 and the magnitude of the 

magnetic dipole moment is 

2 21
.

2 2

q
iA r q r


  


    

 

(b) We curl the fingers of our right hand in the direction of rotation. Since the charge is 

positive, the thumb points in the direction of the dipole moment. It is the same as the 

direction of the angular momentum vector of the ring. 

 

57. The interacting potential energy between the magnetic dipole of the compass and the 

Earth’s magnetic field is  

U B Be e    
 
  cos , 

 

where  is the angle between 

  and 


Be . For small angle 

 

U B B Be e e   


 b g     
F
HG
I
KJ  cos 1

2

1

2

2
2  

 

where  = Be. Conservation of energy for the compass then gives 

 
2

21 1
const.

2 2

d
I

dt




 
  

 
 

 

This is to be compared with the following expression for the mechanical energy of a 

spring-mass system: 

1

2

1

2

2

2m
dx

dt
kx

F
HG
I
KJ   const. ,  
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which yields   k m . So by analogy, in our case 

 


  

  
I

B

I

B

ml

e e

2 12
,  

which leads to 




 



 





ml

Be

2 2 2
2 2

6

2

12

0 050 4 0 10 45

12 16 10
8 4 10

. .
. .

kg m rad s

T
J T

b gc h b g
c h  

 

58. (a) Equation 30-22 gives  0

2
222 T

2

ir
B

R





  .  

 

(b) Equation 30-19 (or Eq. 30-6) gives 0 167 T
2

i
B

r





  .  

 

(c) As in part (b), we obtain a field of 0 22.7 T
2

i
B

r





  . 

 

(d) Equation 32-16 (with Eq. 32-15) gives 0

2
1.25 T

2

di r
B

R





  .   

 

(e) As in part (d), we get 0

2
3.75 T

2

di r
B

R





  .   

 

(f) Equation 32-17 yields B = 22.7 T. 

 

(g) Because the displacement current in the gap is spread over a larger cross-sectional 

area, values of B within that area are relatively small. Outside that cross-sectional area, 

the two values of B are identical.  

 

59. (a) We use the result of part (a) in Sample Problem 32.01 — “Magnetic field induced 

by changing electric field:” 

B
r dE

dt
r R 

 0 0

2
forb g ,  

where r = 0.80R , and 

 

dE

dt

d

dt

V

d d

d

dt
V e

V

d
et t

F
HG
I
KJ    1

0
0 


c h .  

 

Here V0 = 100 V. Thus, 
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B t
r V

d
e

V r

d
e

e

e

t t

t

t

b g
c hd ib gb gb g

c hb g
c h


F
HG
I
KJ 
F
HG

I
KJ  

 
  



  

 

 







 

 



 



 0 0 0 0 0 0

7 12

3

12

13 12

2 2

4 10 885 10 100 080 16

2 12 10 50

12 10

2 T m A V mm

s mm

T

C

N m ms

ms

2

. .

.

. .

 

 

The magnitude is  13 12ms( ) 1.2 10 T .tB t e    

 

(b) At time t = 3, B(t) = –(1.2  10
–13

 T)e
–3/

 = –5.9  10
–15

 T, with a magnitude |B(t)|= 

5.9  10
–15

 T. 

 

60. (a) From Eq. 32-1, we have 

 

      2 3

in out
0.0070Wb 0.40T 9.2 10 Wb.B B r          

 

Thus, the magnetic of the magnetic flux is 9.2 mWb. 

 

(b) The flux is inward. 

 

61. THINK The Earth’s magnetic field at a given latitude has both horizontal and vertical 

components. 

 

EXPRESS Let Bh and Bv be the horizontal and vertical components of the Earth’s 

magnetic field, respectively. Since Bh and Bv are perpendicular to each other, the 

Pythagorean theorem leads to 2 2

h vB B B  . The tangent of the inclination angle is given 

by tan / .i v hB B   

 

ANALYZE (a) Substituting the expression given in the problem statement, we have 

 

2 2

2 2 2 20 0 0

3 3 3

20

3

cos sin cos 4sin
4 2 4

1 3sin ,
4

h v m m m m

m

B B B
r r r

r

     

 

   
            

     

  


 

 

where cos
2
 m + sin

2
 m = 1 was used. 

 

(b) The inclination i is related to m by 
 
 

3

0

3

0

2 sin
tan 2 tan .

4 cos

mv
i m

h m

rB

B r

 


 

 
   

 
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LEARN At the magnetic equator (m = 0), i = 0 , and the field is 

 

   

 

7 22 2

50

33 6

4 10 T m A 8.00 10 A m
3.10 10 T.

4 4 6.37 10 m
B

r

 



   

   
  

 

 

62. (a) At the magnetic equator (m = 0), the field is 

 

   

 

7 22 2

50

33 6

4 10 T m A 8.00 10 A m
3.10 10 T.

4 4 6.37 10 m
B

r

 

 




   

   


 

 

(b) i = tan
–1

 (2 tan m) = tan
–1

 (0) = 0 . 

 

(c) At m = 60.0°, we find 

 

 2 5 2 50

3
1 3sin 3.10 10 1 3sin 60.0 5.59 10 T.

4
mB

r

 




          

 

(d)i = tan
–1

 (2 tan 60.0°) = 73.9°. 

 

(e) At the north magnetic pole (m = 90.0°), we obtain 

 

   
22 5 50

3
1 3sin 3.10 10 1 3 1.00 6.20 10 T.

4
mB

r

 




         

 

(f) i = tan
–1

 (2 tan 90.0°) = 90.0°. 

 

63. Let R be the radius of a capacitor plate and r be the distance from axis of the capacitor. 

For points with r  R, the magnitude of the magnetic field is given by 

 

B
r dE

dt

 0 0

2
,  

and for r  R, it is 

B
R

r

dE

dt

 0 0

2

2
. 

 

The maximum magnetic field occurs at points for which r = R, and its value is given by 

either of the formulas above: 

B
R dE

dt
max .

 0 0

2
 

 

There are two values of r for which B = Bmax/2: one less than R and one greater.  
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(a) To find the one that is less than R, we solve 

 

   0 0 0 0

2 4

r dE

dt

R dE

dt
  

 

for r. The result is r = R/2 = (55.0 mm)/2 = 27.5 mm.  

 

(b) To find the one that is greater than R, we solve 

 

   0 0

2

0 0

2 4

R

r

dE

dt

R dE

dt
  

 

for r. The result is r = 2R = 2(55.0 mm) = 110 mm. 

 

64. (a) Again from Fig. 32-14, for M/Mmax = 50% we have B/T = 0.50. So T = B/0.50 = 

2/0.50 = 4 K. 

 

(b) Now B/T = 2.0, so T = 2/2.0 = 1 K. 

 

65. Let the area of each circular plate be A and that of the central circular section be a. 

Then 

 

2

2
4 .

2

A R

a R




   

 

Thus, from Eqs. 32-14 and 32-15 the total discharge current is given by i = id = 4(2.0 A) 

= 8.0 A. 

 

66. Ignoring points where the determination of the slope is problematic, we find the 

interval of largest | | /E t   is 6 s < t < 7 s. During that time, we have, from Eq. 32-14, 

 

12 2 2 2 6 5

0

| |
(8.85 10 C /N m )(2.0m )(2.0 10 V m) 3.5 10 A.d

E
i A

t
  

      


 

 

67. (a) Using Eq. 32-13 but noting that the capacitor is being discharged, we have 

 

15

12 2 2 2

0

| | 5.0 A
8.8 10 V/m s

(8.85 10 C /N m )(0.0080 m)

d E i

dt A 
       

 
 . 

 

(b) Assuming a perfectly uniform field, even so near to an edge (which is consistent with 

the fact that fringing is neglected in Section 32-4), we follow part (a) of Sample Problem 

32.02 — “Treating a changing electric field as a displacement current” and relate the 

(absolute value of the) line integral to the portion of displacement current enclosed: 
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7

0 ,enc 0 2
5.9 10 Wb/m.d

WH
B ds i i

L
   

     
 

  

 

68. (a) Using Eq. 32-31, we find  

 

orb,z = –3B = –2.78  10
–23

 J/T. 

 

That these are acceptable units for magnetic moment is seen from Eq. 32-32 or Eq. 32-27; 

they are equivalent to A·m
2
. 

 

(b) Similarly, for m  4we obtain orb,z = 3.71  10
–23

 J/T. 

 

69. (a) Since the field lines of a bar magnet point toward its South pole, then the 

B  

arrows in one’s sketch should point generally toward the left and also towards the central 

axis. 

 

(b) The sign of 
 
B dA  for every dA


 on the side of the paper cylinder is negative. 

 

(c) No, because Gauss’ law for magnetism applies to an enclosed surface only. In fact, if 

we include the top and bottom of the cylinder to form an enclosed surface S then 

s
B dAz  
 

0  will be valid, as the flux through the open end of the cylinder near the 

magnet is positive. 

 

70. (a) From Eq. 21-3, 

E
e

r
 

  


 



4

160 10 8 99 10

52 10
53 10

2

19 9 2

11
2

11

 

. .

.
. .

C N m C

m
N C

2c hc h
c h

 

 

(b) We use Eq. 29-28: 
  

 

7 26

20

33 11

4 10 T m A 1.4 10 J T
2.0 10 T .

2 2 5.2 10 m

p
B

r



 

 





  
   


 

 

(c) From Eq. 32-30, 


 




orb J T

J Tp

e

p

B

p

eh m
  




 





4 9 27 10

14 10
6 6 10

24

26

2 .

.
. .  

 

71. (a) A sketch of the field lines (due to the presence of the bar magnet) in the vicinity of 

the loop is shown below: 

 
 



 

  

1407 

(b) For paramagnetic materials, the dipole moment

  is in the same direction as 


B . From 

the above figure,

  points in the –x direction. 

 

(c) Form the right-hand rule, since 

  points in the –x direction, the current flows 

counterclockwise, from the perspective of the bar magnet. 

 

(d) The effect of 

F  is to move the material toward regions of larger 


B  values. Since the 

size of 

B  relates to the “crowdedness” of the field lines, we see that 


F  is toward the left, 

or –x. 

 

72. (a)  Inside the gap of the capacitor, B1 = oid r1 /2R
2
 (Eq. 32-16); outside the gap the 

magnetic field is B2 = oid /2r2 (Eq. 32-17).  Consequently, B2 = B1R
2
/r1 r2 = 16.7 nT. 

 

(b) The displacement current is id  = 2B1R
2
/or1  = 5.00 mA. 

 

73. THINK The z component of the orbital angular momentum is give 

by orb, / 2 ,zL m h   where h is the Planck constant and m  is the orbital magnetic 

quantum number.  

 

EXPRESS The “limit” for m  is 3. This means that the allowed values of m are: 

0, 1, 2, and 3.    

 

ANALYZE (a) The number of different m ’s is 2(3) + 1 = 7. Since Lorb,z m , there are 

a total of seven different values of Lorb,z. 

 

(b) Similarly, since orb,z m , there are also a total of seven different values of orb,z. 

 

(c) The greatest allowed value of Lorb,z is given by | m |maxh/2 = 3h/2. 

 

(d) Similar to part (c), since orb,z = – m B, the greatest allowed value of orb,z is given by 

| m |maxB = 3eh/4me. 

 

(e) From Eqs. 32-23 and 32-29 the z component of the net angular momentum of the 

electron is given by 

net, orb, , .
2 2

s
z z s z

m hm h
L L L   

 
 

 

For the maximum value of Lnet,z let m  = [ m ]max = 3 and ms 
1
2

. Thus 

 

L
h h

znet ,
max

.
. 

F
HG
I
KJ 3

1

2 2

35

2 
 



CHAPTER 32 1408 

 

(f) Since the maximum value of Lnet,z is given by [mJ]maxh/2 with [mJ]max = 3.5 (see the 

last part above), the number of allowed values for the z component of Lnet,z is given by 

2[mJ]max + 1 = 2(3.5) + 1 = 8. 

 

LEARN As we shall see in Chapter 40, the allowed values of m  range from   to + , 

where  is called the orbital quantum number.  

 

74. The definition of displacement current is Eq. 32-10, and the formula of greatest 

convenience here is Eq. 32-17: 

 

  6

7

0

2 0.0300m 2.00 10 T2
0.300 A .

4 10 T m A
d

r B
i



 






  

 
 

 

75. (a) The complete set of values are  

 

{4,3,2,1, 0, +1, +2, +3, +4}        nine values in all. 

 

(b) The maximum value is 4B = 3.71  10
23 

J/T. 

 

(c) Multiplying our result for part (b) by 0.250 T gives U = +9.27  10
24 

J. 

 

(d) Similarly, for the lower limit, U = 9.27  10
24 

J. 

 

76. (a) The z component of the orbital magnetic dipole moment is  

 

orb, Bz m   

 

where 24

B / 4 9.27 10 J/Teh m      is the Bohr magneton. For 3,lm   we have 

 
24 23

orb, B (3)(9.27 10 J T) 2.78 10 J T.z m           

 

(b) Similarly, for 4,lm    the result is 

 
24 23

orb, B ( 4)(9.27 10 J T) 3.71 10 J T.z m           
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Chapter 33 
 

 

1. Since    , we find f is equal to 

 
8 9

9

2 9 2

(3.0 10 m/s)(0.0100 10 m)
7.49 10 Hz.

(632.8 10 m)

c c 

 





   
     

 
 

 

2. (a) The frequency of the radiation is 

 

f
c

 


 
  



30 10

10 10 6 4 10
4 7 10

8

5 6

3.

( . )( .
.

m / s

m)
Hz. 

 

(b) The period of the radiation is 

 

T
f

 


 


1 1

4 7 10
212 3 32

3.
min

Hz
 s  s.  

 

3. (a) From Fig. 33-2 we find the smaller wavelength in question to be about 515 nm. 

 

(b) Similarly, the larger wavelength is approximately 610 nm. 

 

(c) From Fig. 33-2 the wavelength at which the eye is most sensitive is about 555 nm.  

 

(d) Using the result in (c), we have 

 
8

143.00 10 m/s
5.41 10 Hz

555 nm

c
f


   


. 

 

(e) The period is T = 1/f = (5.41  10
14

 Hz)
–1

 = 1.85  10
–15

 s. 

 

4. In air, light travels at roughly c = 3.0  10
8
 m/s. Therefore, for t = 1.0 ns, we have a 

distance of 

d ct    ( . .30 10 0 308 9m/ s) (1.0 10 s) m.  

 

5. THINK The frequency of oscillation of the current in the LC circuit of the generator is 

f LC1 2/  , where C is the capacitance and L is the inductance. This frequency is the 

same as the frequency of an electromagnetic wave. 

 

EXPRESS If f is the frequency and  is the wavelength of an electromagnetic wave, then 

f = c. Thus, 
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

2 LC
c .  

 

ANALYZE The solution for L is 

 

L
Cc

 


 
 







 

2

2 2

9
2

2 12 8
2

21

4

550 10

4 17 10 2 998 10
500 10

m

F m / s
H.

c h
c hc h.

.  

 

This is exceedingly small. 

 

LEARN The frequency is 

 

 
8

14

9

3.0 10 m/s
5.45 10 Hz

550 10 m

c
f

 


   


. 

 

The EM wave is in the visible spectrum. 

 

6. The emitted wavelength is 

 

    8 6 122 2 2.998 10 m/s 0.253 10 H 25.0 10 F 4.74 m.
c

c LC
f

            

 

7. The intensity is the average of the Poynting vector: 

 

I S
cBm  

 


 




avg

2
m / s T

H / m
W / m

2

0

8 4
2

6
2

6

2

30 10 10 10

2 126 10
12 10



. .

.
. .

c hc h
c h

 

 

8. The intensity of the signal at Proxima Centauri is 

 

I
P

r
 




  

4

10 10

4 4 3 9 46 10
4 8 10

2

6

15
2

29

 

.

. .
. .

W

ly m / ly
W / m2

b gc h
 

 

9. If P is the power and t is the time interval of one pulse, then the energy in a pulse is 

 

E P t      100 10 10 10 10 1012 9 5W s J.c hc h. .  

 

10. (a)  Setting v = c in the wave relation kv =  = 2f, we find f = 1.91  10
8 

Hz. 

 

(b) Erms = Em/ 2  = Bm/c 2  = 18.2 V/m. 

 

(c) I = (Erms)
2
/co = 0.878 W/m

2
. 
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11. (a) The amplitude of the magnetic field is 

 

9 9

8

2.0V/m
6.67 10 T 6.7 10 T.

2.998 10 m/s

m
m

E
B

c

      


 

 

(b) Since the -waveE oscillates in the z direction and travels in the x direction, we have Bx 

= Bz = 0. So, the oscillation of the magnetic field is parallel to the y axis. 

 

(c) The direction (+x) of the electromagnetic wave propagation is determined by E B . If 

the electric field points in +z, then the magnetic field must point in the –y direction. 

 

With SI units understood, we may write 

 

 

 

15

15

8

9 15

2.0cos 10 /
cos 10

3.0 10

6.7 10 cos 10

y m

t x cx
B B t

c

x
t

c






     
     

  

  
    

  

 

 

12. (a) The amplitude of the magnetic field in the wave is 

 

B
E

c
m

m 


  500

2 998 10
167 10

8

8.

.
.

V / m

m / s
T.  

 

(b) The intensity is the average of the Poynting vector: 

 

I S
E

c

m  
  

 




avg

2
V / m

T m / A m / s
W / m

2

0

2

7 8

2

2

500

2 4 10 2 998 10
331 10



.

.
. .

b g
c hc h

 

 

13. (a) We use I = 2

mE /20c to calculate Em: 

 

E Im c     

 

2 2 4 10 140 10 2 998 10

103 10

0

7 3 8

3

  T m / A W / m m / s

V / m.

2c hc hc h. .

.

 

 

(b) The magnetic field amplitude is therefore 

 

Bm  



  E

c

m 103 10

2 998 10
343 10

4

8

6.

.
.

V / m

m / s
T. 

 



CHAPTER 33 1412 

14. From the equation immediately preceding Eq. 33-12, we see that the maximum value 

of B/t is Bm . We can relate Bm to the intensity:  

 

02
m

m

c IE
B

c c


  , 

 

and relate the intensity to the power P (and distance r) using Eq. 33-27.   Finally, we 

relate to wavelength using  = kc = 2c/.  Putting all this together, we obtain 

 

 60

max

2 2
3.44 10  T/s

4

PB c

t c r

 

 

 
   

 
. 

 

15. (a) The average rate of energy flow per unit area, or intensity, is related to the electric 

field amplitude Em by I E cm 2

02/  , so 

 

E cIm     

 

 



2 2 4 10 2 998 10 10 10

8 7 10

0

7 8 6 2

2

  H / m m / s W / m

V / m

c hc hc h.

. .

 

 

(b) The amplitude of the magnetic field is given by 

 

B
E

c
m

m 



 


8 7 10

2 998 10
2 9 10

2

8

10.

.
.

V / m

m / s
T. 

 

(c) At a distance r from the transmitter, the intensity is 2/ 2 ,I P r   where P is the power 

of the transmitter over the hemisphere having a surface area 22 r . Thus 

 

   
2

2 6 2 32 2 m 10 10 W/m 6.3 10 W.P r I          

 

16. (a) The power received is 

 

 
 

2
12 22

2
6

 m / 4
1.0 10 W 1.4 10 W.

4 6.37 10 m
rP

  
   

 
 

 

(b) The power of the source would be 

 

  
 

12
2

2 4 15 15

2
6

1.0 10 W
4 4 2.2 10 ly 9.46 10 m/ly 1.1 10 W.

4 6.37 10 m
P r I 



 
       

   
 

 

 

17. (a) The magnetic field amplitude of the wave is 
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B
E

c
m

m 


  2 0

2 998 10
6 7 10

8

9.

.
.

V / m

m / s
T.  

(b) The intensity is 

 

I
E

c

m 
  

 



2

0

2

7 8

3

2

2 0

2 4 10 2 998 10
53 10



.

.
. .

V / m

T m / A m / s
W / m2b g

c hc h
 

 

(c) The power of the source is 

 

   
22 3 2

avg4 4 10m 5.3 10 W/m 6.7 W.P r I        

 

18. Equation 33-27 suggests that the slope in an intensity versus inverse-square-distance 

graph (I plotted versus r 
2 

) is P/4.  We estimate the slope to be about 20 (in SI units), 

which means the power is P = 4(30)  2.5 ×10
2
 W. 

 

19. THINK The plasma completely reflects all the energy incident on it, so the radiation 

pressure is given by pr = 2I/c, where I is the intensity.  

 

EXPRESS The intensity is I = P/A, where P is the power and A is the area intercepted by 

the radiation.  

 

ANALYZE Thus, the radiation pressure is 

 

 
   

9

7

6 2 8

2 1.5 10 W2 2
1.0 10 Pa.

1.00 10 m 2.998 10 m/s
r

I P
p

c Ac 


    

 
 

 

LEARN In the case of total absorption, the radiation pressure would be / ,rp I c  a 

factor of 2 smaller than the case of total reflection.  

 

20. (a) The radiation pressure produces a force equal to 

 

   
   

2
2 6

2 2 8

8

W/m 6.37 10 m
6.0 10 N.

2.998 10 m/s
r r e e

I
F p R R

c

   
       

 
 

 

(b) The gravitational pull of the Sun on the Earth is 

 

     

 

11 2 2 30 24

grav 22 11

22

6.67 10 N m / kg 2.0 10 kg 5.98 10 kg

1.5 10 m

3.6 10 N,

s e

es

GM M
F

d

   
 



 
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which is much greater than Fr. 

 

21. Since the surface is perfectly absorbing, the radiation pressure is given by pr = I/c, 

where I is the intensity. Since the bulb radiates uniformly in all directions, the intensity a 

distance r from it is given by I = P/4r
2
, where P is the power of the bulb. Thus 

 

p
P

r c
r  


  

4

500

2 998 10
59 10

2 2 8

8

  

W

4 m m / s
Pa.b g c h.

.  

 

22. The radiation pressure is 

 

p
I

c
r  


  10

2 998 10
33 10

8

8W / m

m / s
Pa.

2

.
.  

 

23. (a) The upward force supplied by radiation pressure in this case (Eq. 33-32) must be 

equal to the magnitude of the pull of gravity (mg).  For a sphere, the “projected” area 

(which is a factor in Eq. 33-32) is that of a circle A = r
2
 (not the entire surface area of 

the sphere) and the volume (needed because the mass is given by the density multiplied 

by the volume: m = V) is 34 /3V r .  Finally, the intensity is related to the power P of 

the light source and another area factor 4R
2
, given by Eq. 33-27.  In this way, with 

4 31.9 10 kg/m ,   equating the forces leads to 

 
3

2 11

2

4 1
4 4.68 10 W

3

r g
P R c

r


 



 
   

 
. 

 

(b) Any chance disturbance could move the sphere from being directly above the source, 

and then the two force vectors would no longer be along the same axis. 

 

24. We require Fgrav = Fr or 

G
mM

d

IA

c

s

es

2

2
 ,  

and solve for the area A: 

 

A
cGmM

Id

s

es

 
   

 

  



2

6 67 10 1500

2 140 10 150 10

9 5 10 0 95

2

11

3 11

5

( . / )(

( . )( .

. . .

N m kg kg)(1.99 10 kg)(2.998 10 m / s)

W / m m)

m km

2 2 30 8

2 2

2 2

 

 

25. THINK In this problem we relate radiation pressure to energy density in the incident 

beam. 
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EXPRESS Let f be the fraction of the incident beam intensity that is reflected. The 

fraction absorbed is 1 – f. The reflected portion exerts a radiation pressure of 

 

02
r

f I
p

c
  

and the absorbed portion exerts a radiation pressure of 

 

p
f I

c
a 

( )
,

1 0  

 

where I0 is the incident intensity. The factor 2 enters the first expression because the 

momentum of the reflected portion is reversed. The total radiation pressure is the sum of 

the two contributions: 

0 0 0
total

2 (1 ) (1 )
.r a

f I f I f I
p p p

c c

  
     

 

ANALYZE To relate the intensity and energy density, we consider a tube with length   

and cross-sectional area A, lying with its axis along the propagation direction of an 

electromagnetic wave. The electromagnetic energy inside is U uA ,  where u is the 

energy density. All this energy passes through the end in time t c  / ,  so the intensity is 

 

.
U uA c

I uc
At A

    

 

Thus u = I/c. The intensity and energy density are positive, regardless of the propagation 

direction. For the partially reflected and partially absorbed wave, the intensity just outside 

the surface is  

I = I0 + f I0 = (1 + f )I0, 

 

where the first term is associated with the incident beam and the second is associated with 

the reflected beam. Consequently, the energy density is 

 

u
I

c

f I

c
 

( )
,

1 0  

the same as radiation pressure. 

 

LEARN In the case of total reflection, f = 1, and total 02 / .rp p I c   On the other hand, 

the energy density is 0/ 2 / ,u I c I c  which is the same as total.p  Similarly, for total 

absorption, f = 0, total 0 / ,ap p I c  and since 0 ,I I  we have 0/ / ,u I c I c   which 

again is the same as total.p   

 

26. The mass of the cylinder is ( / 4) ,m D H    where D is the diameter of the cylinder. 

Since it is in equilibrium 
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2 2

net

2
0.

4 4
r

HD g D I
F mg F

c

    
       

  
 

We solve for H: 

 

2

2 2 8 3 3

7

2 2 1

/ 4

2(4.60W)

m) / 4](9.8m/s )(3.0 10 m/s)(1.20 10 kg/m )

4.91 10 m.

I P
H

gc D gc 





 
   

 


  

 

 

 

27. THINK Electromagnetic waves travel at speed of light, and carry both linear 

momentum and energy. 

 

EXPRESS The speed of the electromagnetic wave is c f  ,  where  is the wavelength 

and f is the frequency of the wave. The angular frequency is 2 ,f    and the angular 

wave number is 2 /k   . The magnetic field amplitude is related to the electric field 

amplitude by / .m mB E c  The intensity of the wave is given by Eq. 33-26: 

 

 2 2

rms

0 0

1 1

2
mI E E

c c 
  . 

 

ANALYZE (a) With  = 3.0 m, the frequency of the wave is 

 

f
c

 


 


2 998 10

30
10 10

8
8.

.
.

m / s

m
Hz. 

 

(b) From the value of f obtained in (a), we find the angular frequency to be 

 

     2 2 6 3 108  f Hz) rad / s..  

 

(c) The corresponding angular wave number is 

 

k   
2 2

21






 m
rad / m..  

 

(d) With Em = 300 V/m, the magnetic field amplitude is 

 

6

8

300V/m
1.0 10 T.

2.998 10 m/s

m
m

E
B

c

   

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(e) Since 

E  is in the positive y direction, 


B  must be in the positive z direction so that 

their cross product 
 
E B  points in the positive x direction (the direction of propagation). 

 

(f) The intensity of the wave is 

 
2 2

2 2 2

8

0

(300V/m)
119W/m 1.2 10 W/m .

2 2(4 H/m)(2.998 10 m/s)

mE
I

c  
    

 
 

 

(g) Since the sheet is perfectly absorbing, the rate per unit area with which momentum is 

delivered to it is I/c, so 

 

dp

dt

IA

c
 


  ( )( . )

.
.

119 2 0

2 998 10
8 0 10

8

7W / m m

m / s
N.

2 2

 

 

(h) The radiation pressure is 

 

p
dp dt

A
r  


 


/ .

.
.

8 0 10

2 0
4 0 10

7
7N

m
Pa.

2
 

 

LEARN The energy density is given by 

 

 
2

7 3

8

119 W/m
4.0 10 J/m

2.998 10 m/s

I
u

c

   


 

 

which is the same as the radiation pressure pr. 

 

28. (a) Assuming complete absorption, the radiation pressure is 

 

p
I

c
r  




  1 10

3 0 10
4 7 10

3

8

6.4

.
. .

W m

m s
N m

2
2  

 

(b) We compare values by setting up a ratio: 

 

p

p

r

0

6

5

114 7 10

10 10
4 7 10




 


.

.
. .

N m

N m

2

2
 

 

29. THINK The laser beam carries both energy and momentum. The total momentum of 

the spaceship and light is conserved. 

 

EXPRESS If the beam carries energy U away from the spaceship, then it also carries 

momentum p = U/c away. By momentum conservation, this is the magnitude of the 

momentum acquired by the spaceship. If P is the power of the laser, then the energy 

carried away in time t is U = Pt.  
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ANALYZE We note that there are 86400 seconds in a day. Thus, p = Pt/c and, if m is 

mass of the spaceship, its speed is 

 

v
p

m

Pt

mc
  



 
  (

( .
.

10 10

15 10
19 10

3

3

3W)(86400 s)

kg)(2.998 10 m / s)
m / s.

8
 

 

LEARN As expected, the speed of the spaceship is proportional to the power of the laser 

beam. 

 

30. (a) We note that the cross-section area of the beam is d 
2
/4, where d is the diameter 

of the spot (d = 2.00). The beam intensity is 

 

I
P

d
 




 



 
2

3

9
2

9 2

4

500 10

2 00 633 10 4
397 10

/

.

. /
. .

W

m
W / m

b gc h
 

 

(b) The radiation pressure is 

 

p
I

c
r  






397 10

2 998 10
132

9 2

8

.

.
.

W / m

m / s
Pa.  

 

(c) In computing the corresponding force, we can use the power and intensity to eliminate 

the area (mentioned in part (a)). We obtain 

 

F
d

p
P

I
pr r r

F
HG
I
KJ 
F
HG
I
KJ 




 



 2 3

2

11

4

500 10 132
167 10

. .
.

W Pa

3.97 10 W / m
N.

9

c hb g
 

 

(d) The acceleration of the sphere is 

 

a
F

m

F

d

r r  


 

 



( / )

( .

)[( . )(

. .

  3

11

9

3

6

6 167 10

2 00 633 10

314 10

N)

kg / m m)]

m / s

3 3

2

 

 

31. We shall assume that the Sun is far enough from the particle to act as an isotropic 

point source of light.  

 

(a) The forces that act on the dust particle are the radially outward radiation force rF  and 

the radially inward (toward the Sun) gravitational force gF .  Using Eqs. 33-32 and 33-27, 

the radiation force can be written as 
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22

2 24 4

S S
r

P P RIA R
F

c r c r c




   , 

 

where R is the radius of the particle, and 2A R  is the cross-sectional area. On the other 

hand, the gravitational force on the particle is given by Newton’s law of gravitation (Eq. 

13-1): 

 
3 3

2 2 2

(4 / 3) 4

3

S S S
g

GM m GM R GM R
F

r r r

   
   , 

 

where 3(4 /3)m R   is the mass of the particle. When the two forces balance, the 

particle travels in a straight path. The condition that r gF F  implies 

 
2 3

2 2

4

4 3

S SP R GM R

r c r

 
 , 

which can be solved to give 

 
26

8 3 3 11 3 2 30

7

3 3(3.9 10 W)

16 16 (3 10 m/s)(3.5 10 kg/m )(6.67 10  m /kg s )(1.99 10 kg)

1.7 10  m .

S

S

P
R

c GM   




 

    

 

 

(b) Since gF  varies with 3R  and rF  varies with 2 ,R  if the radius R is larger, then g rF F , 

and the path will be curved toward the Sun (like path 3).  

 

32. After passing through the first polarizer the initial intensity I0 reduces by a factor of 

1/2. After passing through the second one it is further reduced by a factor of cos
2
 ( – 

1 – 2) = cos
2
 (1 + 2). Finally, after passing through the third one it is again reduced by 

a factor of cos
2
 ( – 2 – 3) = cos

2
 (2 + 3). Therefore, 

 

2 2 2 2

1 2 2 3

0

4

1 1
cos ( )cos ( ) cos (50 50 )cos (50 50 )

2 2

4.5 10 .

fI

I
   



       

 

 

 

Thus, 0.045% of the light’s initial intensity is transmitted. 

 

33. THINK Unpolarized light becomes polarized when it is sent through a polarizing 

sheet. In this problem, three polarizing sheets are involved, we work through the system 

sheet by sheet, applying either the one-half rule or the cosine-squared rule. 

 

EXPRESS Let I0 be the intensity of the unpolarized light that is incident on the first 

polarizing sheet. The transmitted intensity is, by one-half rule, I I1
1
2 0 ,  and the direction 

of polarization of the transmitted light is 1 = 40° counterclockwise from the y axis in the 
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diagram. For the second sheet (and the third one as well), we apply the cosine-squared 

rule: 

 2

2 1 2cosI I   

 

where 
2   is the angle between the direction of polarization that is incident on that sheet 

and the polarizing direction of the sheet. 

 

ANALYZE The polarizing direction of the second sheet is 2 = 20° clockwise from the y 

axis, so 
2  40° + 20° = 60°. The transmitted intensity is 

 

I I I2 1 060
1

2
60  cos cos2 2 ,  

 

and the direction of polarization of the transmitted light is 20° clockwise from the y axis. 

The polarizing direction of the third sheet is 3 = 40° counterclockwise from the y axis. 

Consequently, the angle between the direction of polarization of the light incident on that 

sheet and the polarizing direction of the sheet is 20° + 40° = 60°. The transmitted 

intensity is 

2 4 2

3 2 0 0

1
cos 60 cos 60 3.1 10 .

2
I I I I       

 

Thus, 3.1% of the light’s initial intensity is transmitted. 

 

LEARN When two polarizing sheets are crossed ( 90   ), no light passes through and 

the transmitted intensity is zero. 

 

34. In this case, we replace I0 cos
2
 70° by 1

2 0I  as the intensity of the light after passing 

through the first polarizer. Therefore, 

 

I If      
1

2
90 70

1

2
43 20 190

2 2cos ( ) ( )(cos ) .W / m W / m2 2  

 

35. The angle between the direction of polarization of the light incident on the first 

polarizing sheet and the polarizing direction of that sheet is 1 = 70°. If I0 is the intensity 

of the incident light, then the intensity of the light transmitted through the first sheet is 

 

I I1 0

2

1

243 70 503  cos ( )cos . . W / m W / m2 2  

 

The direction of polarization of the transmitted light makes an angle of 70° with the 

vertical and an angle of 2 = 20° with the horizontal. 2 is the angle it makes with the 

polarizing direction of the second polarizing sheet. Consequently, the transmitted 

intensity is 

I I2 1

2

2

2503 20 4 4  cos ( . )cos . . W / m W / m2 2  
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36. (a) The fraction of light that is transmitted by the glasses is 

 

I

I

E

E

E

E E

E

E E

f f v

v h

v

v v0

2

0

2

2

2 2

2

2 22 3
016 







( . )
. . 

 

(b) Since now the horizontal component of 

E  will pass through the glasses, 

 

I

I

E

E E

E

E E

f h

v h

v

v v0

2

2 2

2

2 2

2 3

2 3
084







( . )

( . )
. .  

 

37. THINK A polarizing sheet can change the direction of polarization of the incident 

beam since it allows only the component that is parallel to its polarization direction to 

pass.  

 

EXPRESS The 90° rotation of the polarization direction cannot be done with a single 

sheet. If a sheet is placed with its polarizing direction at an angle of 90° to the direction 

of polarization of the incident radiation, no radiation is transmitted. 

 

ANALYZE (a) The 90° rotation of the polarization direction can be done with two sheets. 

We place the first sheet with its polarizing direction at some angle , between 0 and 90°, 

to the direction of polarization of the incident radiation. Place the second sheet with its 

polarizing direction at 90° to the polarization direction of the incident radiation. The 

transmitted radiation is then polarized at 90° to the incident polarization direction. The 

intensity is  
2 2 2 2

0 0cos cos (90 ) cos sinI I I      , 

 

where 0I  is the incident radiation. If  is not 0 or 90°, the transmitted intensity is not zero. 

 

(b) Consider n sheets, with the polarizing direction of the first sheet making an angle of  

= 90°/n relative to the direction of polarization of the incident radiation. The polarizing 

direction of each successive sheet is rotated 90°/n in the same sense from the polarizing 

direction of the previous sheet. The transmitted radiation is polarized, with its direction of 

polarization making an angle of 90° with the direction of polarization of the incident 

radiation. The intensity is  
2

0 cos (90 / )nI I n  . 

 

We want the smallest integer value of n for which this is greater than 0.60I0. We start 

with n = 2 and calculate 2cos (90 / )n n . If the result is greater than 0.60, we have obtained 

the solution. If it is less, increase n by 1 and try again. We repeat this process, increasing 

n by 1 each time, until we have a value for which 2cos (90 / )n n  is greater than 0.60. The 

first one will be n = 5. 

 

LEARN The intensities associated with n = 1 to 5 are: 
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2

1 0
4

2 0 0 0
6

3 0 0
8

4 0 0
10

5 0 0

cos (90 ) 0

cos (45 ) / 4 0.25

cos (30 ) 0.422

cos (22.5 ) 0.531

cos (18 ) 0.605

n

n

n

n

n

I I

I I I I

I I I

I I I

I I I











  

   

  

  

  

 

 

38. We note the points at which the curve is zero (2 = 0 and 90) in Fig. 33-43.  We 

infer that sheet 2 is perpendicular to one of the other sheets at 2 = 0, and that it is 

perpendicular to the other of the other sheets when 2 = 90.  Without loss of generality, 

we choose 1 = 0, 3 = 90.   Now, when 2 = 30, it will be  = 30 relative to sheet 1 

and  = 60 relative to sheet 3.  Therefore, 

 

 2 21
cos ( )cos ( ) 9.4%

2

f

i

I

I
     . 

 

39. (a) Since the incident light is unpolarized, half the intensity is transmitted and half is 

absorbed. Thus the transmitted intensity is I = 5.0 mW/m
2
. The intensity and the electric 

field amplitude are related by I E cm 2

02/ , so  

 

E cIm     



2 2 4

19

0

3 ( )

.

  H / m)(3.00 10 m / s)(5.0 10 W / m

V / m.

8 2

 

 

(b) The radiation pressure is pr = Ia/c, where Ia is the absorbed intensity. Thus 

 

pr 



 


50 10

300 10
17 10

3

8

11.

.
.

W / m

m / s
Pa.

2

 

 

40. We note the points at which the curve is zero (2 = 60 and 140) in Fig. 33-44.  We 

infer that sheet 2 is perpendicular to one of the other sheets at 2 = 60, and that it is 

perpendicular to the other of the other sheets when 2 = 140.  Without loss of generality, 

we choose 1 = 150, 3 = 50.   Now, when 2 = 90, it will be | | = 60 relative to 

sheet 1 and | | = 40 relative to sheet 3.  Therefore, 

 

2 21
cos ( )cos ( ) 7.3%

2

f

i

I

I
     . 

 

41. As the polarized beam of intensity I0 passes the first polarizer, its intensity is reduced 

to 2

0 cos .I   After passing through the second polarizer, which makes a 90 angle with 

the first filter, the intensity is  
2 2

0 0( cos )sin /10I I I    
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which implies sin
2
  cos

2
  = 1/10, or sin cos = sin2 /2 =1/ 10 . This leads to  = 70° 

or 20°. 

 

42. We examine the point where the graph reaches zero:  2 = 160º.  Since the polarizers 

must be “crossed” for the intensity to vanish, then 1 = 160º – 90º  = 70º.  Now we 

consider the case  2 = 90º (which is hard to judge from the graph).  Since 1 is still equal 

to 70º, then the angle between the polarizers is now   =20º.  Accounting for the 

“automatic” reduction (by a factor of one-half) whenever unpolarized light passes 

through any polarizing sheet, then our result is  

 
1

2
 cos

2
() = 0.442  44%. 

 

43. Let I0 be the intensity of the incident beam and f be the fraction that is polarized. Thus, 

the intensity of the polarized portion is f I0. After transmission, this portion contributes 

f I0 cos
2
  to the intensity of the transmitted beam. Here  is the angle between the 

direction of polarization of the radiation and the polarizing direction of the filter. The 

intensity of the unpolarized portion of the incident beam is (1– f )I0 and after transmission, 

this portion contributes (1 – f )I0/2 to the transmitted intensity. Consequently, the 

transmitted intensity is 

2

0 0

1
cos (1 ) .

2
I f I f I    

 

As the filter is rotated, cos
2
  varies from a minimum of 0 to a maximum of 1, so the 

transmitted intensity varies from a minimum of 

 

I f Imin ( ) 
1

2
1 0  

to a maximum of 

max 0 0 0

1 1
(1 ) (1 ) .

2 2
I f I f I f I      

 

The ratio of Imax to Imin is 

I

I

f

f

max

min

.




1

1
 

 

Setting the ratio equal to 5.0 and solving for f, we get f = 0.67. 

 

44. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain 

 

 2 2

0 2 2

1
cos cos (90 )

2
I I    . 
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Using trig identities, we rewrite this as 2

2

0

1
sin (2 )

8

I

I
 . 

 

(a) Therefore we find 2 = 
1

2
 sin

–1
 0.40 = 19.6.   

 

(b) Since the first expression we wrote is symmetric under the exchange 2  90 – 2, 

we see that the angle's complement, 70.4, is also a solution. 

 

45. Note that the normal to the refracting surface is vertical in the diagram. The angle of 

refraction is 2 = 90° and the angle of incidence is given by tan 1 = L/D, where D is the 

height of the tank and L is its width. Thus 

 

1 1

1

1.10 m
tan tan 52.31 .

0.850 m

L

D
     
     

   
 

 

The law of refraction yields 

 

n n1 2
2

1

100
90

52 31
126 





F
HG

I
KJ 

sin

sin
( . )

sin

sin .
. ,




 

 

where the index of refraction of air was taken to be unity. 

 

46. (a) For the angles of incidence and refraction to be equal, the graph in Fig. 33-47(b) 

would consist of a “y = x” line at 45º in the plot. Instead, the curve for material 1 falls 

under such a “y = x” line, which tells us that all refraction angles are less than incident 

ones.  With 2 < 1 Snell’s law implies n2 > n1 . 

 

(b) Using the same argument as in (a), the value of n2 for material 2 is also greater than that 

of water (n1). 

 

(c) It’s easiest to examine the topmost point of each curve.  With 2 = 90º and 1 = ½(90º), 

and with n2 = 1.33 (Table 33-1), we find  n1 = 1.9 from Snell’s law. 

 

(d) Similarly, with 2 = 90º and 1 = ¾(90º), we obtain  n1 = 1.4. 

 

47. The law of refraction states 

 

n n1 2sin sin1 2  .  

 

We take medium 1 to be the vacuum, with n1 = 1 and 1 = 32.0°. Medium 2 is the glass, 

with 2 = 21.0°. We solve for n2: 
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n n2 1
1

2

100
32 0

210
148 





F
HG

I
KJ 

sin

sin
( . )

sin .

sin .
. .




 

 

48. (a) For the angles of incidence and refraction to be equal, the graph in Fig. 33-48(b) 

would consist of a “y = x” line at 45º in the plot.  Instead, the curve for material 1 falls 

under such a “y = x” line, which tells us that all refraction angles are less than incident 

ones.  With 2 < 1 Snell’s law implies n2 > n1 . 

 

(b) Using the same argument as in (a), the value of n2 for material 2 is also greater than that 

of water (n1). 

 

(c) It’s easiest to examine the right end-point of each curve. With 1 = 90º and 2 = 

¾(90º), and with n1 = 1.33 (Table 33-1) we find, from Snell’s law, n2 = 1.4 for material 1. 

 

(d) Similarly, with 1 = 90º and 2 = ½(90º), we obtain  n2 = 1.9. 

 

49. The angle of incidence for the light ray on mirror B is 90° – . So the outgoing ray r' 

makes an angle 90° – (90° – ) =  with the vertical direction, and is antiparallel to the 

incoming one. The angle between i and r' is therefore 180°. 

 

50. (a) From  n1sin1 = n2sin2  and  n2sin2 = n3sin3, we find n1sin1 = n3sin3. This has 

a simple implication: that 1 =3 when n1 = n3. Since we are given 1 = 40º in Fig. 33-

50(a), then we look for a point in Fig. 33-50(b) where 3 = 40º.  This seems to occur at n3 

=  1.6, so we infer that n1 = 1.6. 

 

(b) Our first step in our solution to part (a) shows that information concerning n2 

disappears (cancels) in the manipulation.  Thus, we cannot tell; we need more 

information. 

 

(c) From 1.6sin70 = 2.4sin3 we obtain 3 = 39. 

 

51. (a) Approximating n = 1 for air, we have 

 

1 1 5 5sin (1)sin 56.9n        

 

and with the more accurate value for nair in Table 33-1, we obtain 56.8°. 

 

(b) Equation 33-44 leads to 

 

n n n n1 1 2 2 3 3 4 4sin sin sin sin       

so that 

1 1
4 1

4

sin sin 35.3 .
n

n
   

   
 
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52. (a) A simple implication of Snell’s law is that 2 = 1 when n1 = n2.  Since the angle of 

incidence is shown in Fig. 33-52(a) to be 30º, we look for a point in Fig. 33-52(b) where 

2 = 30º.  This seems to occur when n2 = 1.7.  By inference, then, n1 = 1.7. 

 

(b) From 1.7sin(60º) = 2.4sin(2) we get 2 = 38.  

 

53. THINK The angle with which the light beam emerges from the triangular prism 

depends on the index of refraction of the prism.  

 

EXPRESS Consider diagram (a) shown next. The incident angle is  and the angle of 

refraction is 2. Since 
2 90     and 2 180 ,     we have 

 

 2

1
90 90 180 .

2 2


         

 

 
(a) 

 
(b) 

 

ANALYZE Next, examine diagram (b) and consider the triangle formed by the two 

normals and the ray in the interior. One can show that  is given by 

 22( )    . 

 

Upon substituting /2 for 2, we obtain 2( / 2)     which yields ( ) / 2.     

Thus, using the law of refraction, we find the index of refraction of the prism to be 

 
1
2

1
2 2

sin ( )sin
.

sin sin
n

 

 


   

 

LEARN The angle  is called the deviation angle. Physically, it represents the total angle 

through which the beam has turned while passing through the prism. This angle is 

minimum when the beam passes through the prism “symmetrically,” as it does in this 

case. Knowing the value of  and  allows us to determine the value of n for the prism 

material.    

 

54. (a) Snell’s law gives   nair sin(50º) = n2b sin 2b and nair sin(50º) = n2r sin 2r where we 

use subscripts b and r for the blue and red light rays.  Using the common approximation 

for air’s index (nair = 1.0) we find the two angles of refraction to be 30.176 and 30.507.  

Therefore,  = 0.33. 
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(b) Both of the refracted rays emerge from the other side with the same angle (50) with 

which they were incident on the first side (generally speaking, light comes into a block at 

the same angle that it emerges with from the opposite parallel side).  There is thus no 

difference (the difference is 0) and thus there is no dispersion in this case. 

 

55. THINK Light is refracted at the air–water interface. To calculate the length of the 

shadow of the pole, we first calculate the angle of refraction using the Snell’s law.  

 

EXPRESS Consider a ray that grazes the top of the pole, as shown in the diagram below. 

  

 
 

Here 1 = 90° –  = 90° –55° = 35°, 1 050 . m,  and 2 150 . m.  The length of the 

shadow is d = x + L.  

 

ANALYZE The distance x is given by 

  

x   1 1 050 035tan ( . . m) tan35 m.  

 

According to the law of refraction, n2 sin 2 = n1 sin 1. We take n1 = 1 and n2 = 1.33 

(from Table 33-1). Then, 




2

1 1

2

1 350

133
2555

F
HG
I
KJ 

F
HG

I
KJ   sin

sin
sin

sin .

.
. .

n
 

L is given by 

L   2 2 150 072tan ( . . m) tan25.55 m.  

 

Thus, the length of the shadow is d = 0.35 m + 0.72 m = 1.07 m. 

 

LEARN If the pole were empty with no water, then 1 2   and the length of the shadow 

would be 

1 1 2 1 1 2 1tan tan ( ) tand         

 

by simple geometric consideration. 

 



CHAPTER 33 1428 

 

56. (a) We use subscripts b and r for the blue and red light rays.  Snell’s law gives  

 

2b = sin
1







1

1.343
 sin(70)  = 44.403 

2r = sin
1







1

1.331
 sin(70)  = 44.911 

 

for the refraction angles at the first surface (where the normal axis is vertical).  These rays 

strike the second surface (where A is) at complementary angles to those just calculated 

(since the normal axis is horizontal for the second surface).  Taking this into 

consideration, we again use Snell’s law to calculate the second refractions (with which 

the light re-enters the air):  

 

3b = sin
1

[1.343sin(90 2b)] = 73.636 

3r = sin
1

[1.331sin(90 2r)] = 70.497 

 

which differ by 3.1 (thus giving a rainbow of angular width 3.1). 

 

(b) Both of the refracted rays emerge from the bottom side with the same angle (70) with 

which they were incident on the topside (the occurrence of an intermediate reflection 

[from side 2] does not alter this overall fact: light comes into the block at the same angle 

that it emerges with from the opposite parallel side).  There is thus no difference (the 

difference is 0) and thus there is no rainbow in this case. 

 

57. Reference to Fig. 33-24 may help in the visualization of why there appears to be a 

“circle of light” (consider revolving that picture about a vertical axis). The depth and the 

radius of that circle (which is from point a to point f in that figure) is related to the 

tangent of the angle of incidence. Thus, the diameter D of the circle in question is 

 

D h h
n

c

w

 
F
HG
I
KJ

L
NM

O
QP


F
HG
I
KJ

L
NM

O
QP 

 2 2
1

2 80 0
1

133
1821 1tan tan sin . tan sin

.
 cm cm.b g  

 

58. The critical angle is  c
n


F
HG
I
KJ 

F
HG
I
KJ   sin sin

.
.1 11 1

18
34  

 

59. THINK Total internal reflection happens when the angle of incidence exceeds a 

critical angle such that Snell’s law gives 2sin 1  .  

 

EXPRESS When light reaches the interfaces between two materials with indices of 

refraction n1 and n2, if n1 > n2, and the incident angle exceeds a critical value given by 

 

 1 2

1

sinc

n

n
   

  
 

, 
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then total internal reflection will occur.  

 

In our case, the incident light ray is perpendicular to the face ab. Thus, no refraction 

occurs at the surface ab, so the angle of incidence at surface ac is   = 90° – , as shown 

in the figure below.  

 
 

ANALYZE (a) For total internal reflection at the second surface, ng sin (90° – ) must be 

greater than na. Here ng is the index of refraction for the glass and na is the index of 

refraction for air. Since sin (90° – ) = cos , we want the largest value of  for which ng 

cos   na. Recall that cos  decreases as  increases from zero. When  has the largest 

value for which total internal reflection occurs, then ng cos  = na, or 

 

 
F
HG
I
KJ 

F
HG
I
KJ   cos cos

.
. .1 1 1

152
48 9

n

n

a

g

 

 

The index of refraction for air is taken to be unity. 

 

(b) We now replace the air with water. If nw = 1.33 is the index of refraction for water, 

then the largest value of  for which total internal reflection occurs is 

 

 
F
HG
I
KJ 

F
HG
I
KJ   cos cos

.

.
. .1 1 133

152
29 0

n

n

w

g

 

 

LEARN Total internal reflection cannot occur if the incident light is in the medium with 

lower index of refraction. With 1

2 1sin ( / ),c n n   we see that the larger the ratio 2 1/ ,n n  

the larger the value of c.  

 

60. (a) The condition (in Eq. 33-44) required in the critical angle calculation is 3 = 90°. 

Thus (with 2 = c, which we don’t compute here), 

 

n n n1 1 2 2 3 3sin sin sin     

 

leads to 1 =  = sin
–1

 n3/n1 = 54.3°. 

 

(b) Yes. Reducing  leads to a reduction of 2 so that it becomes less than the critical 

angle; therefore, there will be some transmission of light into material 3. 
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(c) We note that the complement of the angle of refraction (in material 2) is the critical 

angle. Thus, 

n n n
n

n
n nc1 2 2

3

2

2

2

2

3

21sin = cos  
F
HG
I
KJ    

leading to  = 51.1°. 

 

(d) No. Reducing  leads to an increase of the angle with which the light strikes the 

interface between materials 2 and 3, so it becomes greater than the critical angle. 

Therefore, there will be no transmission of light into material 3. 

 

61. (a) We note that the complement of the angle of refraction (in material 2) is the 

critical angle.  Thus, 

 

2

2 23
1 2 2 2 3

2

sin cos 1c

n
n n n n n

n
 

 
     

 
 

 

leading to  = 26.8. 

 

(b) Increasing  leads to a decrease of the angle with which the light strikes the interface 

between materials 2 and 3, so it becomes greater than the critical angle; therefore, there 

will be some transmission of light into material 3. 

 

62. (a) Reference to Fig. 33-24 may help in the visualization of why there appears to be a 

“circle of light” (consider revolving that picture about a vertical axis). The depth and the 

radius of that circle (which is from point a to point f in that figure) is related to the 

tangent of the angle of incidence. The diameter of the circle in question is given by d = 

2h tan c. For water n = 1.33, so Eq. 33-47 gives sin c = 1/1.33, or c = 48.75°. Thus, 

 

2 tan 2(2.00 m)(tan 48.75 ) 4.56 m.cd h      

 

(b) The diameter d of the circle will increase if the fish descends (increasing h). 

 

63. (a) A ray diagram is shown below.  
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Let 1 be the angle of incidence and 2 be the angle of refraction at the first surface. Let 

3 be the angle of incidence at the second surface. The angle of refraction there is 4 = 

90°. The law of refraction, applied to the second surface, yields n sin 3 = sin 4 = 1. As 

shown in the diagram, the normals to the surfaces at P and Q are perpendicular to each 

other. The interior angles of the triangle formed by the ray and the two normals must sum 

to 180°, so 3 = 90° – 2 and  

 

sin sin cos sin .   3 2 2

2

290 1    b g  

 

According to the law of refraction, applied at Q, n 1 12

2 sin .  The law of refraction, 

applied to point P, yields sin 1 = n sin 2, so sin 2 = (sin 1)/n and 

 

n
n

1 1
2

1

2
 

sin
.


 

 

Squaring both sides and solving for n, we get 

 

n  1 2

1sin .  

 

(b) The greatest possible value of sin
2
 1 is 1, so the greatest possible value of n is 

nmax . . 2 141  

 

(c) For a given value of n, if the angle of incidence at the first surface is greater than 1, 

the angle of refraction there is greater than 2 and the angle of incidence at the second 

face is less than 3 (= 90° – 2). That is, it is less than the critical angle for total internal 

reflection, so light leaves the second surface and emerges into the air. 

 

(d) If the angle of incidence at the first surface is less than 1, the angle of refraction there 

is less than 2 and the angle of incidence at the second surface is greater than 3. This is 

greater than the critical angle for total internal reflection, so all the light is reflected at Q. 

 

64. (a) We refer to the entry point for the original incident ray as point A (which we take 

to be on the left side of the prism, as in Fig. 33-53), the prism vertex as point B, and the 

point where the interior ray strikes the right surface of the prism as point C. The angle 

between line AB and the interior ray is  (the complement of the angle of refraction at the 

first surface), and the angle between the line BC and the interior ray is  (the complement 

of its angle of incidence when it strikes the second surface). When the incident ray is at 

the minimum angle for which light is able to exit the prism, the light exits along the 

second face. That is, the angle of refraction at the second face is 90°, and the angle of 

incidence there for the interior ray is the critical angle for total internal reflection. Let 1 

be the angle of incidence for the original incident ray and 2 be the angle of refraction at 

the first face, and let 3 be the angle of incidence at the second face. The law of refraction, 

applied to point C, yields n sin 3 = 1, so  
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sin 3 = 1/n = 1/1.60 = 0.625   3 = 38.68°. 

 

The interior angles of the triangle ABC must sum to 180°, so  +  = 120°. Now,  = 

90° – 3 = 51.32°, so  = 120° – 51.32° = 69.68°. Thus, 2 = 90° –  = 21.32°. The law of 

refraction, applied to point A, yields  

 

sin 1 = n sin 2 = 1.60 sin 21.32° = 0.5817. 

 

Thus 1 = 35.6°. 

 

(b) We apply the law of refraction to point C. Since the angle of refraction there is the 

same as the angle of incidence at A, n sin 3 = sin 1. Now,  +  = 120°,  = 90° – 3, 

and  = 90° – 2, as before. This means 2 + 3 = 60°. Thus, the law of refraction leads to 

 

 1 2 1 2 2sin sin 60 sin sin60 cos cos60 sinn n n            

 

where the trigonometric identity  

 

sin(A – B) = sin A cos B – cos A sin B 

 

is used. Next, we apply the law of refraction to point A: 

 

 1 2 2 1sin sin sin 1/ sinn n       

 

which yields  cos sin / sin .  2

2

2

2 2

11 1 1    nc h  Thus, 

 

sin sin / sin cos sin  1

2 2

1 160 1 1 60    n nb g  

or 

1 60 601

2 2

1    cos sin sin sin .b g  n  

 

Squaring both sides and solving for sin 1, we obtain 

 

sin
sin

cos sin

. sin

cos sin
.1 2 2 2 2

60

1 60 60

160 60

1 60 60
080



   




   


n

b g b g
 

 

and 1 = 53.1°. 

 

65. When examining Fig. 33-61, it is important to note that the angle (measured from the 

central axis) for the light ray in air, , is not the angle for the ray in the glass core, which 

we denote '. The law of refraction leads to 
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1

1
sin sin

n
    

 

assuming air 1.n  The angle of incidence for the light ray striking the coating is the 

complement of ', which we denote as 'comp, and recall that 

 

sin cos sin .       comp 1 2  

 

In the critical case, 'comp must equal c specified by Eq. 33-47. Therefore, 

 

n

n n

2

1

2

1

2

1 1
1

      
F
HG

I
KJsin sin sin  comp  

 

which leads to the result:  sin .  n n1

2

2

2  With n1 = 1.58 and n2 = 1.53, we obtain 

 

    sin . . . .1 2 2158 153 232c h  

 

66. (a) We note that the upper-right corner is at an angle (measured from the point where 

the light enters, and measured relative to a normal axis established at that point the 

normal at that point would be horizontal in Fig. 33-62) is at tan
1

(2/3) = 33.7º.  The angle 

of refraction is given by 

nair sin 40º = 1.56 sin 2 

 

which yields 2 = 24.33º if we use the common approximation nair = 1.0, and yields 2 = 

24.34º if we use the more accurate value for nair found in Table 33-1. The value is less 

than 33.7º, which means that the light goes to side 3. 

 

(b) The ray strikes a point on side 3, which is 0.643 cm below that upper-right corner, and 

then (using the fact that the angle is symmetrical upon reflection) strikes the top surface 

(side 2) at a point 1.42 cm to the left of that corner.  Since 1.42 cm is certainly less than 3 

cm we have a self-consistency check to the effect that the ray does indeed strike side 2 as 

its second reflection (if we had gotten 3.42 cm instead of 1.42 cm, then the situation 

would be quite different). 

 

(c) The normal axes for sides 1 and 3 are both horizontal, so the angle of incidence (in the 

plastic) at side 3 is the same as the angle of refraction was at side 1.  Thus,  

 

1.56 sin 24.3º = nair sin air         air = 40 . 

 

(d) It strikes the top surface (side 2) at an angle (measured from the normal axis there, 

which in this case would be a vertical axis) of  90º   2 = 66º, which is much greater than 
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the critical angle for total internal reflection (sin
1

(nair /1.56 ) = 39.9º).  Therefore, no 

refraction occurs when the light strikes side 2. 

 

(e) In this case, we have  

nair sin 70º = 1.56 sin 2 

 

which yields 2 = 37.04º if we use the common approximation nair = 1.0, and yields 2 = 

37.05º if we use the more accurate value for nair found in Table 33-1.  This is greater than 

the 33.7º mentioned above (regarding the upper-right corner), so the ray strikes side 2 

instead of side 3. 

 

(f) After bouncing from side 2 (at a point fairly close to that corner) it goes to side 3. 

 

(g) When it bounced from side 2, its angle of incidence (because the normal axis for side 

2 is orthogonal to that for side 1) is 90º   2 = 53º, which is much greater than the critical 

angle for total internal reflection (which, again, is sin
1

(nair /1.56 ) = 39.9º).  Therefore, no 

refraction occurs when the light strikes side 2.  

 

(h) For the same reasons implicit in the calculation of part (c), the refracted ray emerges 

from side 3 with the same angle (70) that it entered side 1. We see that the occurrence of 

an intermediate reflection (from side 2) does not alter this overall fact: light comes into 

the block at the same angle that it emerges with from the opposite parallel side. 

 

67. (a) In the notation of this problem, Eq. 33-47 becomes 

 

 c

n

n
 sin 1 3

2

 

 

which yields n3 =  1.39 for c =  = 60°. 

 

(b) Applying Eq. 33-44 to the interface between material 1 and material 2, we have 

 

n n2 130sin sin   

 

which yields  = 28.1°. 

 

(c) Decreasing  will increase  and thus cause the ray to strike the interface (between 

materials 2 and 3) at an angle larger than c. Therefore, no transmission of light into 

material 3 can occur. 

 

68. (a) We use Eq. 33-49:  B wn    tan tan1 1 133 531( . ) . .  

 

(b) Yes, since nw depends on the wavelength of the light. 
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69. THINK A reflected wave will be fully polarized if it strikes the boundary at the 

Brewster angle. 

 

EXPRESS The angle of incidence for which reflected light is fully polarized is given by 

Eq. 33-48: 

1 2

1

tanB

n

n
   

  
 

 

 

where n1 is the index of refraction for the medium of incidence and n2 is the index of 

refraction for the second medium. The angle B is called the Brewster angle. 

 

ANALYZE With  n1 = 1.33 and n2 = 1.53, we obtain  

 
1 1

2 1tan ( / ) tan (1.53/1.33) 49.0 .B n n       

 

LEARN In general, reflected light is partially polarized, having components both parallel 

and perpendicular to the plane of incidence. However, it can be completely polarized 

when incident at the Brewster angle.    

 

70. Since the layers are parallel, the angle of refraction regarding the first surface is the 

same as the angle of incidence regarding the second surface (as is suggested by the 

notation in Fig. 33-64). We recall that as part of the derivation of Eq. 33-49 (Brewster’s 

angle), the refracted angle is the complement of the incident angle: 

 

  2 1 190  ( ) .c  

 

We apply Eq. 33-49 to both refractions, setting up a product: 

 

3 32
B1 2 B 2 3 1 2

1 2 1

(tan ) (tan )      (tan )(tan ).
n nn

n n n
    

   
     

   
 

 

Now, since 2 is the complement of 1 we have 

 

tan tan( )
tan

. 


2 1

1

1
 c  

 

Therefore, the product of tangents cancel and we obtain n3/n1 = 1. Consequently, the third 

medium is air: n3 = 1.0. 

 

71. THINK All electromagnetic waves, including visible light, travel at the same speed c 

in vacuum. 

 

EXPRESS The time for light to travel a distance d in free space is t = d/c, where c is the 

speed of light (3.00  10
8
 m/s). 
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ANALYZE (a) We take d to be 150 km = 150  10
3
 m. Then, 

 

t
d

c
 




  150 10

300 10
500 10

3

8

4m

m / s
s.

.
.  

 

(b) At full moon, the Moon and Sun are on opposite sides of Earth, so the distance 

traveled by the light is  

 

d = (1.5  10
8
 km) + 2 (3.8  10

5
 km) = 1.51  10

8
 km = 1.51  10

11
 m. 

 

The time taken by light to travel this distance is 

 
11

8

1.51 10 m
500 s 8.4 min.

3.00 10 m/s

d
t

c


   


 

 

(c) We take d to be 2(1.3  10
9
 km) = 2.6  10

12
 m. Then, 

 

t
d

c
 




  

2 6 10
8 7 10 2 4

12
3.

. .
m

3.00 10 m / s
s  h.

8
 

 

(d) We take d to be 6500 ly and the speed of light to be 1.00 ly/y. Then, 

 

t
d

c
  

6500
6500

 ly

1.00 ly / y
 y.  

 

The explosion took place in the year 1054 – 6500 = –5446 or 5446 B.C. 

 

LEARN Since the speed c is constant, the travel time is proportional to the distance. The 

radio signals at 150 km away reach you almost instantly.   

 

72. (a) The expression Ey = Em sin(kx – t) fits the requirement “at point P … [it] is 

decreasing with time” if we imagine P is just to the right (x > 0) of the coordinate origin 

(but at a value of x less than /2k = /4 which is where there would be a maximum, at t = 

0).  It is important to bear in mind, in this description, that the wave is moving to the right.   

Specifically, 1(1/ )sin (1/ 4)Px k   so that Ey = (1/4) Em   at t = 0, there.  Also, Ey = 0 

with our choice of expression for Ey .  Therefore, part (a) is answered simply by solving 

for xP. Since k = 2f/c we find  

 1 1
sin 30.1 nm

2 4
P

c
x

f

  
  

 
. 

 

(b) If we proceed to the right on the x axis (still studying this “snapshot” of the wave at t 

= 0) we find another point where Ey = 0 at a distance of one-half wavelength from the 
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previous point where Ey = 0.  Thus (since = c/f ) the next point is at x = 
1

2
  = 

1

2
 c/f and is 

consequently a distance  c/2f   xP  = 345 nm to the right of P. 

 

73. THINK The electric and magnetic components of the electromagnetic waves are 

always in phase, perpendicular to each other, and perpendicular to the direction of 

propagation of the wave.  

 

EXPRESS The electric and magnetic fields can be written as sinusoidal functions of 

position and time as: 

 sin( ), sin( )m mE E kx t B B kx t      

 

where Em and Bm are the amplitudes of the fields, and  and k, are the angular frequency 

and angular wave number of the wave, respectively. The two amplitudes are related by 

Eq. 33-4: / ,m mE B c  where c is the speed of the wave. 

 

ANALYZE (a) From kc =  where k = 1.00  10
6
 m

–1
, we obtain  = 3.00  10

14
 rad/s. 

The magnetic field amplitude is, from Eq. 33-5,  

 

Bm = Em/c = (5.00 V/m)/c = 1.67  10
–8

 T. 

 

From the argument of the sinusoidal fucntion for E, we see that the direction of 

propagation is in the –z direction. Since 

E Ey ,j  and that 


B  is perpendicular to E  and 

,E B , we conclude that the only non-zero component of 

B  is Bx, so that we have  

 
8 6 14(1.67 10  T)sin[(1.00 10 / m) (3.00 10 / s) ].xB z t      

 

(b) The wavelength is  = 2/k = 6.28  10
–6

 m. 

 

(c) The period is T = 2/ = 2.09  10
–14

 s. 

 

(d) The intensity is 

I
c


F
HG

I
KJ 

1 5 00

2
0 0332

0

2



.
. .

V m
W m2  

 

(e) As noted in part (a), the only nonzero component of 

B  is Bx. The magnetic field 

oscillates along the x axis. 

 

(f) The wavelength found in part (b) places this in the infrared portion of the spectrum. 

 

LEARN Electromagnetic wave is a transverse wave. Knowing the functional form of the 

electric field allows us to determine the corresponding magnetic field, and vice versa.   

 

 



CHAPTER 33 1438 

 

74. (a) Let r be the radius and  be the density of the particle. Since its volume is (4/3)r
3
, 

its mass is m = (4/3)r
3
. Let R be the distance from the Sun to the particle and let M be 

the mass of the Sun. Then, the gravitational force of attraction of the Sun on the particle 

has magnitude 

F
GMm

R

GM r

R
g  

2

3

2

4

3

 
.  

 

If P is the power output of the Sun, then at the position of the particle, the radiation 

intensity is I = P/4R
2
, and since the particle is perfectly absorbing, the radiation pressure 

on it is 

p
I

c

P

R c
r  

4 2
.  

 

All of the radiation that passes through a circle of radius r and area A r  2 ,  

perpendicular to the direction of propagation, is absorbed by the particle, so the force of 

the radiation on the particle has magnitude 

 
2 2

2 2
.

4 4
r r

Pr Pr
F p A

R c R c




    

 

The force is radially outward from the Sun. Notice that both the force of gravity and the 

force of the radiation are inversely proportional to R
2
. If one of these forces is larger than 

the other at some distance from the Sun, then that force is larger at all distances. The two 

forces depend on the particle radius r differently: Fg is proportional to r
3
 and Fr is 

proportional to r
2
. We expect a small radius particle to be blown away by the radiation 

pressure and a large radius particle with the same density to be pulled inward toward the 

Sun. The critical value for the radius is the value for which the two forces are equal. 

Equating the expressions for Fg and Fr, we solve for r: 

 

r
P

GM c


3

16 
.  

 

(b) According to Appendix C, M = 1.99  10
30

 kg and P = 3.90  10
26

 W. Thus, 

 

r 


    

  

3 390 10

16 199 10 300 10

58 10

26

30 8

7

( .

/ )( . )( .

.

W)

N m kg kg)(1.0 10 kg / m m / s)

m.

2 2 3 3 
 

 

75. THINK Total internal reflection happens when the angle of incidence exceeds a 

critical angle such that Snell’s law gives 2sin 1  .  
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EXPRESS When light reaches the interfaces between two materials with indices of 

refraction n1 and n2, if n1 > n2, and the incident angle exceeds a critical value given by 

 

 1 2

1

sinc

n

n
   

  
 

, 

then total internal reflection will occur.  

 

Referring to Fig. 33-65, let 1 = 45° be the angle of incidence at the first surface and 2 

be the angle of refraction there. Let 3 be the angle of incidence at the second surface. 

The condition for total internal reflection at the second surface is  

 

n sin 3  1. 

 

We want to find the smallest value of the index of refraction n for which this inequality 

holds. The law of refraction, applied to the first surface, yields  

 

n sin 2 = sin 1. 

 

Consideration of the triangle formed by the surface of the slab and the ray in the slab tells 

us that 3 = 90° – 2. Thus, the condition for total internal reflection becomes  

 

1  n sin(90° – 2) = n cos 2. 

 

Squaring this equation and using sin
2
 2 + cos

2
 2 = 1, we obtain 1  n

2
 (1 – sin

2
 2). 

Substituting sin 2 = (1/n) sin 1 now leads to 

 

1 12
2

1

2

2 2

1 
F
HG

I
KJ  n

n
n

sin
sin .


  

 

The smallest value of n for which this equation is true is given by 1 = n
2
 – sin

2
 1. We 

solve for n: 

n      1 1 45 1222

1

2sin sin . .  

 

LEARN With n = 1.22, we have 1

2 sin [(1/1.22)sin 45 ] 35 ,      which gives 3 = 

90° – 35° = 55° as the angle of incidence at the second surface. We can readily verify that 

n sin 3 = (1.22) sin55° = 1, meeting the threshold condition for total internal reflection.  

 

76. Since some of the angles in Fig. 33-66 are measured from vertical axes and some are 

measured from horizontal axes, we must be very careful in taking differences.  For 

instance, the angle difference between the first polarizer struck by the light and the 

second is 110º (or 70º depending on how we measure it; it does not matter in the final 

result whether we put 1 = 70º or put 1 = 110º).  Similarly, the angle difference 

between the second and the third is 2 = 40º, and between the third and the fourth is 3 
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= 40º, also.  Accounting for the “automatic” reduction (by a factor of one-half) whenever 

unpolarized light passes through any polarizing sheet, then our result is the incident 

intensity multiplied by 

 2 2 2

1 2 3

1
cos ( )cos ( )cos ( )

2
     . 

 

Thus, the light that emerges from the system has intensity equal to 0.50 W/m
2
. 

 

77. (a) The first contribution to the overall deviation is at the first refraction: 

  1  i r . The next contribution to the overall deviation is the reflection. Noting that 

the angle between the ray right before reflection and the axis normal to the back surface 

of the sphere is equal to r, and recalling the law of reflection, we conclude that the angle 

by which the ray turns (comparing the direction of propagation before and after the 

reflection) is  2 180 2  r .  The final contribution is the refraction suffered by the ray 

upon leaving the sphere:   3  i r  again. Therefore, 

 

dev 1 2 3 180 2 4 .i r             

 

(b) We substitute  r n i sin ( sin )1 1  into the expression derived in part (a), using the two 

given values for n. The higher curve is for the blue light. 

 

 
 

(c) We can expand the graph and try to estimate the minimum, or search for it with a 

more sophisticated numerical procedure. We find that the dev minimum for red light is 

137.63°137.6°, and this occurs at i = 59.52°. 

 

(d) For blue light, we find that the dev minimum is 139.35°139.4°, and this occurs at i 

= 59.52°. 

 

(e) The difference in dev in the previous two parts is 1.72°. 

 

78. (a) The first contribution to the overall deviation is at the first refraction: 

  1  i r . The next contribution(s) to the overall deviation is (are) the reflection(s). 
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Noting that the angle between the ray right before reflection and the axis normal to the 

back surface of the sphere is equal to r, and recalling the law of reflection, we conclude 

that the angle by which the ray turns (comparing the direction of propagation before and 

after [each] reflection) is 180 2 .r r     Thus, for k reflections, we have  2  k r  to 

account for these contributions. The final contribution is the refraction suffered by the ray 

upon leaving the sphere:   3  i r  again. Therefore, 

 

dev 1 2 3 2( ) (180 2 ) (180 ) 2 2( 1) .i r r i rk k k                      

 

(b) For k = 2 and n = 1.331 (given in Problem 33-77), we search for the second-order 

rainbow angle numerically. We find that the dev minimum for red light is 230.37° 

230.4  , and this occurs at i = 71.90°. 

 

(c) Similarly, we find that the second-order dev minimum for blue light (for which n = 

1.343) is 233.48° 233.5  , and this occurs at i = 71.52°. 

 

(d) The difference in dev in the previous two parts is approximately 3.1°. 

 

(e) Setting k = 3, we search for the third-order rainbow angle numerically. We find that 

the dev minimum for red light is 317.5°, and this occurs at i = 76.88°. 

 

(f) Similarly, we find that the third-order dev minimum for blue light is 321.9°, and this 

occurs at i = 76.62°. 

 

(g) The difference in dev in the previous two parts is 4.4°. 

 

79. THINK We apply law of refraction to both interfaces to calculate the sideway 

displacement. 

 

EXPRESS Let  be the angle of incidence and 2 be the angle of refraction at the left 

face of the plate. Let n be the index of refraction of the glass. Then, the law of refraction 

yields  

 

sin   = n sin 2. 

 

The angle of incidence at the right face is also 2. If 3 is the angle of emergence there, 

then  

n sin 2 = sin 3. 
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ANALYZE (a) Combining the two expressions gives sin 3 = sin , which implies that 3 

= . Thus, the emerging ray is parallel to the incident ray. 

 

(b) We wish to derive an expression for x in terms of . If D is the length of the ray in the 

glass, then D cos 2 = t and D = t/cos 2. The angle  in the diagram equals  – 2 and 

  

x = D sin  = D sin ( – 2). 

Thus, 

x
t


sin( )

cos
.

 


2

2

 

 

If all the angles , 2, 3, and  – 2 are small and measured in radians, then sin   , sin 

2  2, sin( – 2)   – 2, and cos 2  1. Thus x  t( – 2). The law of refraction 

applied to the point of incidence at the left face of the plate is now   n2, so 2  /n 

and 

x t
n

n t

n
 
F
HG
I
KJ 




 1b g
.  

 

LEARN The thicker the glass, the greater the displacement x. Note in the limit n = 1 (no 

glass), 0x  , as expected.  

 

80. (a) The magnitude of the magnetic field is 

 

B
E

c
 


  100

3 0 10
3 3 10

8

7V m

m s
T.

.
.  

 

(b) With
  
E B S  0 ,  where ˆ ˆk and ( j)E E S S   , one can verify easily that since 

ˆ ˆ ˆk ( i) j, B     has to be in the x direction.  

 

81. (a) The polarization direction is defined by the electric field (which is perpendicular 

to the magnetic field in the wave, and also perpendicular to the direction of wave travel).  

The given function indicates the magnetic field is along the x axis (by the subscript on B) 
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and the wave motion is along –y axis (see the argument of the sine function).  Thus, the 

electric field direction must be parallel to the  z axis. 

 

(b) Since k is given as 1.57  10
7
/m, then  = 2/k = 4.0  10

7 
m, which means f = c/ = 

7.5  10
14 

Hz. 

 

(c) The magnetic field amplitude is given as Bm = 4.0  10
6 

T.  The electric field 

amplitude Em is equal to Bm divided by the speed of light c.  The rms value of the electric 

field is then Em divided by 2 .  Equation 33-26 then gives I = 1.9 kW/m
2
. 

 

82. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain 

 

 2 2

0 1 2

1
cos cos

2
I I     

 

where 1 190 60       and 2 290 60      . This yields I/I0 = 0.031. 

 

83. THINK The index of refraction encountered by light generally depends on the 

wavelength of the light. 

 

EXPRESS The critical angle for total internal reflection is given by sin c = 1/n. With an 

index of refraction n = 1.456 at the red end, the critical angle is c = 43.38° for red. 

Similarly, with n = 1.470 at the blue end, the critical angle is c = 42.86° for blue. 

 

ANALYZE (a) An angle of incidence of  = 42.00° is less than the critical angles for 

both red and blue light, so the refracted light is white.  

 

(b) An angle of incidence of  = 43.10° is slightly less than the critical angle for red light 

but greater than the critical angle for blue light, so the refracted light is dominated by red 

end.  

 

(c) An angle of incidence of  = 44.00° is greater than the critical angles for both red and 

blue light, so there is no refracted light.  

 

LEARN The dependence of the index of refraction of fused quartz on wavelength is 

shown in Fig. 33-18. From the figure, we see that the index of refraction is greater for a 

shorter wavelength. Such dependence results in the spreading of light as it enters or 

leaves quartz, a phenomenon called “chromatic dispersion.”  

 

84. Using Eqs. 33-40 and 33-42, we obtain 

 

    2 2

0final

0 0

/ 2 cos 45 cos 45 1
0.125.

8

II

I I

 
    
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85. We write m    where   4 33R  is the volume. Plugging this into F = ma and 

then into Eq. 33-32 (with A = R
2
, assuming the light is in the form of plane waves), we 

find 


4

3

3 2 R
a

I R

c
 . 

This simplifies to 

a
I

cR


3

4
 

 

which yields a = 1.5  10
–9

 m/s
2
. 

 

86. Accounting for the “automatic” reduction (by a factor of one-half) whenever 

unpolarized light passes through any polarizing sheet, then our result is  

 
1

2
 (cos

2
(30º))

3
 = 0.21. 

 

87. THINK Since the radar beam is emitted uniformly over a hemisphere, the source 

power is also the same everywhere within the hemisphere. 

 

EXPRESS The intensity of the beam is given by  

 

22

P P
I

A r
   

 

where A = 2r
2
 is the area of a hemisphere. The power of the aircraft’s reflection is equal 

to the product of the intensity at the aircraft’s location and its cross-sectional area: 

.r rP IA  The intensity is related to the amplitude of the electric field by Eq. 33-26: 
2 2

rms 0 0/ / 2 .mI E c E c    

 

ANALYZE (a) Substituting the values given we get  

 
3

6 2

2 3 2

180 10 W
3.5 10  W/m

2 2 (90 10  m)

P
I

r 


   


. 

 

(b) The power of the aircraft’s reflection is 

 
6 2 2 7(3.5 10  W/m )(0.22 m ) 7.8 10  Wr rP IA       . 

 

(c) Back at the radar site, the intensity is 

 
7

17 2

2 3 2

7.8 10  W
1.5 10  W/m

2 2 (90 10  m)

r
r

P
I

r 




   


. 
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(d) From 2

0/ 2 ,r mI E c  we find the amplitude of the electric field to be 

 

 
8 17 2

0

7

2 2(3.0 10 m/s)(4 T m A)(1.5 10  W/m )

1.1 10  V/m.

m rE c I  



     

 

 

 

(e) The rms value of the magnetic field is  

 

 
7

16rms
rms 8

1.1 10  V/m
2.5 10 T.

2 2(3.0 10 m/s)

mE E
B

c c




    


 

 

LEARN The intensity due to a power source decreases with the square of the distance. 

Also, as emphasized in Sample Problem — “Light wave: rms values of the electric and 

magnetic fields,” one cannot compare the values of the two fields because they are 

measured in different units. Both components are on the same basis from the perspective 

of wave propagation, and they have the same average energy.  

 

88. The amplitude of the magnetic field in the wave is 

 

B
E

c
m

m 



 


320 10

2 998 10
107 10

4

8

12.

.
.

V / m

m / s
T. 

 

89. From Fig. 33-19 we find nmax = 1.470 for  = 400 nm and nmin = 1.456 for  = 700 nm.  

(a) The corresponding Brewster’s angles are  



B,max = tan
–1

 nmax = tan
–1

 (1.470) = 55.8°, 

 

(b) and B,min = tan
–1

 (1.456) = 55.5°. 

 

90. (a) Suppose there are a total of N transparent layers (N = 5 in our case). We label 

these layers from left to right with indices 1, 2, …, N. Let the index of refraction of the air 

be n0. We denote the initial angle of incidence of the light ray upon the air-layer boundary 

as i and the angle of the emerging light ray as f. We note that, since all the boundaries 

are parallel to each other, the angle of incidence j at the boundary between the j-th and 

the (j + 1)-th layers is the same as the angle between the transmitted light ray and the 

normal in the j-th layer. Thus, for the first boundary (the one between the air and the first 

layer) 
n

n

i1

0 1


sin

sin
,




 

 

for the second boundary 
n

n

2

1

1

2


sin

sin
,




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and so on. Finally, for the last boundary 

 
n

nN

N

f

0 
sin

sin
,




 

 

Multiplying these equations, we obtain 

 

n

n

n

n

n

n

n

nN

i N

f

1

0

2

1

3

2

0

1

1

2

2

3

F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ 
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ 

sin

sin

sin

sin

sin

sin

sin

sin
.
















 

 

We see that the L.H.S. of the equation above can be reduced to n0/n0 while the R.H.S. is 

equal to sini/sinf. Equating these two expressions, we find 

 

sin sin sin ,  f i i

n

n

F
HG
I
KJ 0

0

 

 

which gives i = f. So for the two light rays in the problem statement, the angle of the 

emerging light rays are both the same as their respective incident angles. Thus, f = 0 for 

ray a, 

 

(b) and f = 20° for ray b. 

 

(c) In this case, all we need to do is to change the value of n0 from 1.0 (for air) to 1.5 (for 

glass). This does not change the result above. That is, we still have f = 0 for ray a, 

 

(d) and f = 20° for ray b. 

 

Note that the result of this problem is fairly general. It is independent of the number of 

layers and the thickness and index of refraction of each layer. 

 

91. (a) At r = 40 m, the intensity is 

 

  

3
2

22 2

4(3.0 10 W)
83W m .

4 ) 4 rad 40m

P P
I

d r   






   

  
 

 

 

(b)     P r I4 4 17 102 2 6 m) W m W.2(83 ) .  

 

92. The law of refraction requires that  

 

sin 1/sin 2 = nwater = const. 
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We can check that this is indeed valid for any given pair of 1 and 2. For example, sin 

10° / sin 8° = 1.3, and sin 20° / sin 15°30' = 1.3, etc. Therefore, the index of refraction of 

water is nwater = 1.3. 

 

93. We remind ourselves that when the unpolarized light passes through the first sheet, its 

intensity is reduced by a factor of 2.  Thus, to end up with an overall reduction of one-

third, the second sheet must cause a further decrease by a factor of two-thirds (since 

(1/2)(2/3) = 1/3).  Thus, cos
2 = 2/3        = 35.  

 

94. (a) The magnitude of the electric field at point P is  

 

 
1.00

(25.0 A) 0.0833 V/m.
300 m

V iR
E

l l

 
    

 
 

 

The direction of E  at point P is in the +x direction, same as the current. 

 

(b) We use Ampere’s law: 
 
B ds i z 0 , where the integral is around a closed loop and i 

is the net current through the loop. The magnitude of the magnetic field is 

 

  

 

7

30

3

4 10 T m/A 25.0A
4.00 10 T.

2 2 1.25 10 m

i
B

r



 







 
   


 

 

The direction of B  at point P is in the +z direction (out of the page). 

 

(c) From 0/S E B   , we find the magnitude of the Poynting vector to be 

 

 

3
2

7
0

(0.0833V/m)(4.0 10 T)
265W/m .

2 4 10 T m/A

EB
S








  

 
 

 

(d) Since S  points in the direction of ,E B  using the right-hand-rule, the direction of S  

at point P is in the y direction. 

 

95. (a) For the cylindrical resistor shown in Figure 33-74, the magnetic field is in the ̂ , 

or clockwise direction. On the other hand, the electric field is in the same direction as the 

current, ˆ.z  Since 0/S E B   , S  is in the direction of ˆ ˆˆ( ) ( ) ,z r      or radially 

inward.  

 

(b) The magnitudes of the electric and magnetic fields are / /E V l iR l   and 

0 / 2 ,B i a   respectively. Thus,  
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2

0

0 0

1
.

2 2

iEB iR i R
S

l a al



   

  
    

  
 

 

Noting that the magnitude of the Poynting vector S is constant, we have 

 

  
2

22 .
2

i R
S dA SA al i R

al




 
    

 
  

 

96. The average rate of energy flow per unit area, or intensity, is related to the electric 

field amplitude Em by I E cm 2

02/  , implying that the rate of energy absorbed is 
2

abs 0/ 2mP IA E A c  . If all the energy is used to heat up the sheet (converting to its 

internal energy), then 

int
abs s

dE dT
P mc

dt dt
  , 

 

where cs is the specific heat of the material. Solving for dT/dt, we find  

 
2 2

0 0

.
2 2

m m
s

s

E A E AdT dT
mc

dt c dt mc c 
    

 

97. Let I0 be the intensity of the unpolarized light that is incident on the first polarizing 

sheet. The transmitted intensity is, by one-half rule, 1
1 02

.I I  For the second sheet, we 

apply the cosine-squared rule: 

 2 2

2 1 0

1
cos cos

2
I I I    

 

where   is the angle between the direction of polarization of the two sheets. With 

2 0/ /100,I I p  we solve for  and obtain 

2 12

0

1
cos cos

100 2 50

I p p

I
  

 
      

 
. 

 

98. The cross-sectional area of the beam on the surface is cos .A   In a time interval t, 

the volume of the beam that’s been reflected is ( cos ) ,V A c t    and the momentum 

carried by this volume is 2( / )( cos ) .p I c A c t   Upon being reflected, the change in 

momentum is 

 22 cos 2 cos /p p IA t c      

 

Thus, the radiation pressure is 

 

2 22
cos cosr

r r

F p I
p p

A A t c
 


   


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where 2 /rp I c   is the radiation pressure when 0.   

 

99. Consider the figure shown to the right. The y-

component of the force cancels out, and we’re left 

with the x-component: 

 

 2 cos 2( )cosx rdF dF p dA   . 

 

Using the result from Problem 98: 
2(2 / )cosrp I c  , and dA RLd , where L is the 

length of the cylinder, we obtain 

 

 

 
/ 2

3

0

4 8
2(2 cos / )cos cos

3

xF IR IR
I c Rd d

L c c



        . 

 

100. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain 

 

2 2

0 1 2

1
cos cos

2
I I     

 

where 1 1 2(90 ) 110         is the relative angle between the first and the second 

polarizing sheets, and 2 290 50       is the relative angle between the second and the 

third polarizing sheets. Thus, we have I/I0 = 0.024. 

 

101. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain 

 

2 2

0

1
cos cos .

2
I I     

 

With 2 1      = 60° – 20° = 40° and 3 2( / 2 )        = 40° + 30° = 70°, we get 

I/I0 = 0.034. 

 

102. We use Eq. 33-33 for the force, where A is the area of the reflecting surface (4.0 m
2
).  

The intensity is gotten from Eq. 33-27 where P = PS  is in Appendix C (see also Sample 

Problem 33-2) and r = 3.0  10
11 

m (given in the problem statement).  Our result for the 

force is 9.2 N. 

 

103. Eq. 33-5 gives B = E/c, which relates the field values at any instant — and so relates 

rms values to rms values, and amplitude values to amplitude values, as the case may be. 

Thus, the rms value of the magnetic field is  

 

rmsB  (0.200 V/m)/(3  10
8
 m/s) = 6.67  10

–10
 T, 
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which (upon multiplication by 2 ) yields an amplitude value of magnetic field equal to 

9.43  10
–10

 T. 

 

104. (a) The Sun is far enough away that we approximate its rays as “parallel” in this 

Figure. That is, if the sunray makes angle  from horizontal when the bird is in one 

position, then it makes the same angle  when the bird is any other position. Therefore, 

its shadow on the ground moves as the bird moves: at 15 m/s. 

 

(b) If the bird is in a position, a distance x > 0 from the wall, such that its shadow is on 

the wall at a distance 0  y  h from the top of the wall, then it is clear from the Figure 

that tan = y/x. Thus, 

 

dy

dt

dx

dt
    tan ( . 15 8 7m / s) tan30 m / s,  

 

which means that the distance y (which was measured as a positive number downward 

from the top of the wall) is shrinking at the rate of 8.7 m/s. 

 

(c) Since tan grows as 0   < 90° increases, then a larger value of |dy/dt| implies a 

larger value of . The Sun is higher in the sky when the hawk glides by. 

 

(d) With |dy/dt| = 45 m/s, we find 

hawk

/

tan

dy dtdx
v

dt 
   

 

so that we obtain  = 72° if we assume vhawk = 15 m/s. 

 

105. (a) The wave is traveling in the –y direction (see §16-5 for the significance of the 

relative sign between the spatial and temporal arguments of the wave function). 

 

(b) Figure 33-5 may help in visualizing this. The direction of propagation (along the y 

axis) is perpendicular to 

B  (presumably along the x axis, since the problem gives Bx and 

no other component) and both are perpendicular to 

E  (which determines the axis of 

polarization). Thus, the wave is z-polarized. 

 

(c) Since the magnetic field amplitude is Bm = 4.00 T, then (by Eq. 33-5) Em = 1199 

V/m 31.20 10  V/m  . Dividing by 2  yields Erms = 848 V/m. Then, Eq. 33-26 gives 

 

I
I

c
E  

0

3191 10rms

2 2W / m. .  

 

(d) Since kc =  (equivalent to c = f ), we have 

 



 

  

1451 

k
c




  2 00 10
6 67 10

15
6.

. .m 1  

 

Summarizing the information gathered so far, we have (with SI units understood) 

 
3 6 15(1.2 10 V/m) sin[(6.67 10 / m) (2.00 10 / s) ].zE y t      

 

(e)  = 2/k = 942 nm. 

 

(f) This is an infrared light. 

 

106. (a) The angle of incidence B,1 at B is the complement of the critical angle at A; its 

sine is 
2

3
,1

2

sin cos 1B c

n

n
 

 
   

 
 

 

so that the angle of refraction B,2 at B becomes 

 

22

1 132 2
,2

3 2 3

sin 1 sin 1 35.1B

nn n

n n n
  

 
          

    
 

. 

 

(b) From n1 sin  = n2 sin c = n2(n3/n2), we find 

 

 1 3

1

sin 49.9
n

n
   
   

 
. 

 

(c) The angle of incidence A,1 at A is the complement of the critical angle at B; its sine is 

 
2

3
,1

2

sin cos 1A c

n

n
 

 
   

 
. 

 

so that the angle of refraction A,2 at A becomes 

 

22

1 132 2
,2

3 2 3

sin 1 sin 1 35.1A

nn n

n n n
  

 
          

    
 

. 

(d)  From 
2

2 23
1 2 ,1 2 2 3

2

sin sin 1A

n
n n n n n

n
 

 
     

 
, 
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we find 

2 2

2 31

1

sin 26.1
n n

n
 

 
   
 
 

 

 

(e) The angle of incidence B,1 at B is the complement of the Brewster angle at A; its sine 

is 

 2
,1

2 2

2 3

sin B

n

n n
 


 

 

so that the angle of refraction B,2 at B becomes 

 

2
1 2

,2
2 2

3 2 3

sin 60.7B

n

n n n
 

 
   
  

. 

(f) From 

3
1 2 Brewster 2

2 2

2 3

sin sin
n

n n n
n n

  


 , 

we find 

1 2 3

2 2

1 2 3

sin 35.3
n n

n n n
 

 
   
  

 . 

 

107. (a) and (b) At the Brewster angle, incident + refracted = B + 32.0° = 90.0°, so B = 

58.0° and  

nglass = tan B = tan 58.0° = 1.60. 

 

108. We take the derivative with respect to x of both sides of Eq. 33-11: 

 
2 2

2
.

E E B B

x x x x t x t

        
       

         
 

 

Now we differentiate both sides of Eq. 33-18 with respect to t: 

 









F
HG
I
KJ  



 









F
HG

I
KJ 



t

B

x

B

x t t

E

t

E

t

2

0 0 0 0

2

2
    .  

 

Substituting 2 2 2E x B x t       from the first equation above into the second one, we 

get 
2 2 2 2 2

2

0 0 2 2 2 2 2

0 0

1
         .

E E E E E
c

t x t x x
 

 

    
   

    
  



 

  

1453 

 

Similarly, we differentiate both sides of Eq. 33-11 with respect to t 

 
2 2

2
,

E B

x t t

 
 

  
 

 

and differentiate both sides of Eq. 33-18 with respect to x 

 





 



 

2

2 0 0

2B

x

E

x t
  . 

 

Combining these two equations, we get 

 















2

2

0 0

2

2

2
2

2

1B

t

B

x
c

B

x 
. 

109. (a) From Eq. 33-1, 

 








   

2

2

2

2

2E

t t
E kx t E kx tm msin( ) sin( ),    

and 

 

c
E

x
c

x
E kx t k c kx t E kx tm m

2
2

2

2
2

2

2 2 2







      sin( ) sin( ) sin( ).     

 

Consequently, 










2

2

2
2

2

E

t
c

E

x
 

 

is satisfied. Analogously, one can show that Eq. 33-2 satisfies 

 
2 2

2

2 2
.

B B
c

t x

 


 
 

 

(b) From E E f kx tm ( ),  

 






 




 

2

2

2

2

2
2

2

E

t
E

f kx t

t
E

d f

du
m m

u kx t

( )




 

 

and 

c
E

x
c E

f kx t

t
c E k

d f

du
m m

u kx t

2
2

2

2
2

2

2 2
2

2






 




 

( )



 

 

Since  = ck the right-hand sides of these two equations are equal. Therefore, 
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2 2

2

2 2
.

E E
c

t x

 


 
 

 

Changing E to B and repeating the derivation above shows that B B f kx tm ( )  

satisfies  
2 2

2

2 2
.

B B
c

t x

 


 
 

 

110. Since intensity is power divided by area (and the area is spherical in the isotropic 

case), then the intensity at a distance of r = 20 m from the source is 

 

I
P

r
 

4
0 040

2
. .W m2  

 

as illustrated in Sample Problem 33-2. Now, in Eq. 33-32 for a totally absorbing area A, 

we note that the exposed area of the small sphere is that on a flat circle A = (0.020 m)
2
 = 

0.0013 m
2
. Therefore,  

 

F
IA

c
 


  ( . )( . )

.
0 040 0 0013

3 10
17 10

8

13 N. 

 

 

 

 

 

 

 

 

 

 

 



1455 

 

 

Chapter 34 
 

 

1. The bird is a distance d2 in front of the mirror; the plane of its image is that same 

distance d2 behind the mirror. The lateral distance between you and the bird is d3 = 5.00 

m. We denote the distance from the camera to the mirror as d1, and we construct a right 

triangle out of d3 and the distance between the camera and the image plane (d1 + d2). 

Thus, the focus distance is 

 

     
2 2 22

1 2 3 4.30 m 3.30 m 5.00 m 9.10 m.d d d d        

 

2. The image is 10 cm behind the mirror and you are 30 cm in front of the mirror. You 

must focus your eyes for a distance of 10 cm + 30 cm = 40 cm. 

 

3. The intensity of light from a point source varies as the inverse of the square of the 

distance from the source. Before the mirror is in place, the intensity at the center of the 

screen is given by IP = A/d 
2
, where A is a constant of proportionality. After the mirror is 

in place, the light that goes directly to the screen contributes intensity IP, as before. 

Reflected light also reaches the screen. This light appears to come from the image of the 

source, a distance d behind the mirror and a distance 3d from the screen. Its contribution 

to the intensity at the center of the screen is 

 

2 2
.

(3 ) 9 9

P
r

IA A
I

d d
    

 

The total intensity at the center of the screen is 

 

10
.

9 9

P
P r P P

I
I I I I I      

 

The ratio of the new intensity to the original intensity is I/IP = 10/9 = 1.11. 

 

4. When S is barely able to see B, the light rays from B must reflect to S off the edge of 

the mirror. The angle of reflection in this case is 45°, since a line drawn from S to the 

mirror’s edge makes a 45° angle relative to the wall. By the law of reflection, we find 

 

3.0m
tan 45 1 1.5m.

/ 2 2 2

x d
x

d
        

 

5. THINK This problem involves refraction at air–water interface and reflection from a 

plane mirror at the bottom of the pool.   
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EXPRESS We apply the law of refraction, assuming all angles are in radians: 

 

sin

sin
,






n

n

w

air

 

 

which in our case reduces to '  /nw (since both  and ' 

are small, and nair  1). We refer to our figure on the right. 

 

The object O is a vertical distance d1 above the water, and 

the water surface is a vertical distance d2 above the mirror. 

We are looking for a distance d (treated as a positive 

number) below the mirror where the image I of the object is 

formed. In the triangle O AB 

 

1 1| | tan ,AB d d    

 

and in the triangle CBD 

2
2 2

2
| | 2 tan 2 .

w

d
BC d d

n


      

 

Finally, in the triangle ACI, we have |AI| = d + d2.  

 

ANALYZE Therefore, 

 

 

2 2
2 2 2 1 2 1 2

2 2| | | | | | 1
| |

tan

2 200cm
250cm 200cm 351cm.

1.33

w w

d dAC AB BC
d AI d d d d d d d

n n




  

 
            

 

   

 

 

LEARN If the pool were empty without water, then   , and the distance would be  

1 2 2 1 22d d d d d d     . This is precisely what we expect from a plane mirror. 

 

6. We note from Fig. 34-34 that m = 
1

2
  when p = 5 cm.  Thus Eq. 34-7 (the magnification 

equation) gives us i = 10 cm in that case.  Then, by Eq. 34-9 (which applies to mirrors 

and thin lenses) we find the focal length of the mirror is f = 10 cm.  Next, the problem 

asks us to consider p = 14 cm.  With the focal length value already determined, then Eq. 

34-9 yields i = 35 cm for this new value of object distance.  Then, using Eq. 34-7 again, 

we find m = i/p = 2.5. 

 

7. We use Eqs. 34-3 and 34-4, and note that m = –i/p. Thus, 
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1 1 1 2

p pm f r
   . 

 

We solve for p: p
r

m
 
F
HG
I
KJ  

F
HG

I
KJ 2

1
1 350

1
1

2 50
105

.

.
.

cm

2
cm.  

 

8. The graph in Fig. 34-35 implies that  f = 20 cm, which we can plug into Eq. 34-9 (with 

p =  70 cm) to obtain i =  +28 cm. 

 

9. THINK A concave mirror has a positive value of focal length.   

 

EXPRESS For spherical mirrors, the focal length f is related to the radius of curvature r 

by / 2f r . The object distance p, the image distance i, and the focal length f are related 

by Eq. 34-4: 

 
1 1 1

p i f
  . 

 

The value of i is positive for a real images, and negative for virtual images.  

 

The corresponding lateral magnification is / .m i p   The value of m is positive for 

upright (not inverted) images, and negative for inverted images. Real images are formed 

on the same side as the object, while virtual images are formed on the opposite side of the 

mirror.  

 

ANALYZE (a) With f = +12 cm and p = +18 cm, the radius of curvature is r = 2f = 2(12 

cm) = + 24 cm.  

 

(b) The image distance is 
(18 cm)(12 cm)

36 cm.
18 cm 12 cm

pf
i

p f
  

 
 

 

(c) The lateral magnification is m = i/p =  (36 cm)/(18 cm) = 2.0.   

 

(d) Since the image distance i is positive, the image is real (R). 

 

(e) Since the magnification m is negative, the image is inverted (I).   

 

(f) A real image is formed on the same side as the object. 

 

LEARN The situation in this problem is similar to 

that illustrated in Fig. 34-10(c). The object is outside 

the focal point, and its image is real and inverted.  
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10. A concave mirror has a positive value of focal length.   

 

(a) Then (with  f = +10 cm and p =  +15 cm), the radius of curvature is 2 20 cmr f  .  

 

(b) Equation 34-9 yields i =  pf /( p f ) = +30 cm.   

 

(c)Then, by Eq. 34-7, m = i/p = –2.0.   

 

(d) Since the image distance computation produced a positive value, the image is real (R).  

 

(e) The magnification computation produced a negative value, so it is inverted (I).   

 

(f) A real image is formed on the same side as the object. 

 

11. THINK A convex mirror has a negative value of focal length.   

 

EXPRESS For spherical mirrors, the focal length f is related to the radius of curvature r 

by / 2f r . The object distance p, the image distance i, and the focal length f are related 

by Eq. 34-4: 

 
1 1 1

p i f
  . 

 

The value of i is positive for a real images, and negative for virtual images.  

 

The corresponding lateral magnification is 

 
i

m
p

  . 

 

The value of m is positive for upright (not inverted) images, and negative for inverted 

images. Real images are formed on the same side as the object, while virtual images are 

formed on the opposite side of the mirror.  

 

ANALYZE (a) With f = –10 cm and p = +8 cm, the radius of curvature is r = 2f = –20 cm. 

 

(b) The image distance is 
(8 cm)( 10 cm)

4.44 cm.
8 cm ( 10) cm

pf
i

p f


   

  
 

 

(c) The lateral magnification is m = i/p = (4.44 cm)/(8.0 cm) = +0.56.   

 

(d) Since the image distance is negative, the image is virtual (V).   

 

(e) The magnification m is positive, so the image is upright [not inverted] (NI).   

 

(f) A virtual image is formed on the opposite side of the mirror from the object.  
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LEARN The situation in this problem is similar 

to that illustrated in Fig. 34-11(c). The mirror is 

convex, and its image is virtual and upright.  

 

 
12. A concave mirror has a positive value of focal length.   

 

(a) Then (with  f = +36 cm and p =  +24 cm), the radius of curvature is r = 2f = + 72 cm. 

 

(b) Equation 34-9 yields i =  pf /( p f ) =  –72 cm.   

 

(c) Then, by Eq. 34-7, m = i/p = +3.0.   

 

(d) Since the image distance is negative, the image is virtual (V).   

 

(e) The magnification computation produced a positive value, so it is upright [not 

inverted] (NI).   

 

(f) A virtual image is formed on the opposite side of the mirror from the object.   

 

13. THINK A concave mirror has a positive value of focal length.   

 

EXPRESS For spherical mirrors, the focal length f is related to the radius of curvature r 

by / 2f r .  

 

The object distance p, the image distance i, and the focal length f are related by Eq. 34-4: 

 

 
1 1 1

p i f
  . 

 

The value of i is positive for real images and negative for virtual images.  

 

The corresponding lateral magnification is / .m i p  The value of m is positive for 

upright (not inverted) images, and is negative for inverted images. Real images are 

formed on the same side as the object, while virtual images are formed on the opposite 

side of the mirror.  

 

ANALYZE With  f = +18 cm and p =  +12 cm, the radius of curvature is r = 2f = + 36 cm. 

 

(b) Equation 34-9 yields i =  pf /( p f ) =  –36 cm.   

 

(c) Then, by Eq. 34-7, m = i/p = +3.0.   

 

(d) Since the image distance is negative, the image is virtual (V).   
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(e) The magnification computation produced a positive value, so it is upright [not 

inverted] (NI).   

 

(f) A virtual image is formed on the opposite side of the mirror from the object. 

 

LEARN The situation in this problem is similar to 

that illustrated in Fig. 34-11(a). The mirror is 

concave, and its image is virtual, enlarged, and 

upright. 

 
 

14. A convex mirror has a negative value of focal length.   

 

(a) Then (with  f = –35 cm and p =  +22 cm), the radius of curvature is r = 2f = –70 cm. 

 

(b) Equation 34-9 yields i =  pf /( p f ) =  –14 cm.   

 

(c) Then, by Eq. 34-7, m = i/p = +0.61.   

 

(d) Since the image distance is negative, the image is virtual (V).   

 

(e) The magnification computation produced a positive value, so it is upright [not 

inverted] (NI).   

 

(f) The side where a virtual image forms is opposite from the side where the object is. 

 

15. THINK A convex mirror has a negative value of focal length.   

 

EXPRESS For spherical mirrors, the focal length f is related to the radius of curvature r 

by / 2f r .  

 

The object distance p, the image distance i, and the focal length f are related by Eq. 34-4: 

 

 
1 1 1

p i f
  . 

 

The value of i is positive for a real images, and negative for virtual images.  

 

The corresponding lateral magnification is / .m i p  The value of m is positive for 

upright (not inverted) images, and is negative for inverted images. Real images are 

formed on the same side as the object, while virtual images are formed on the opposite 

side of the mirror.  
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ANALYZE (a) With f = –8 cm and p =  +10 cm, the radius of curvature is r = 2f = 2(–8 

cm) = –16 cm.   

 

(b) The image distance is 
(10 cm)( 8 cm)

4.44 cm.
10 cm ( 8) cm

pf
i

p f


   

  
 

 

(c) The lateral magnification is m = i/p = (4.44 cm)/(10 cm) = +0.44. 

 

(d) Since the image distance is negative, the image is virtual (V).   

 

(e) The magnification m is positive, so the image is upright [not inverted] (NI).   

 

(f) A virtual image is formed on the opposite side of the mirror from the object. 

 

LEARN The situation in this problem is similar to that illustrated in Fig. 34-11(c). The 

mirror is convex, and its image is virtual and upright.  

 

16. A convex mirror has a negative value of focal length.   

 

(a) Then (with  f = –14 cm and p =  +17 cm), the radius of curvature is r = 2f = –28 cm. 

 

(b) Equation 34-9 yields i =  pf /( p f ) =  –7.7 cm.   

 

(c) Then, by Eq. 34-7, m = i/p = +0.45.   

 

(d) Since the image distance is negative, the image is virtual (V).   

 

(e) The magnification computation produced a positive value, so it is upright [not 

inverted] (NI).   

 

(f) A virtual image is formed on the opposite side of the mirror from the object. 

 

17. (a) The mirror is concave. 

 

(b) f = +20 cm (positive, because the mirror is concave). 

 

(c) r = 2f = 2(+20 cm) = +40 cm.  

 

(d) The object distance p = +10 cm, as given in the table. 

 

(e) The image distance is i = (1/f – 1/p)
–1

 = (1/20 cm – 1/10 cm)
–1

 = –20 cm. 

 

(f) m = –i/p = –(–20 cm/10 cm) = +2.0.  

 

(g) The image is virtual (V). 
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(h) The image is upright or not inverted (NI).  

 

(i) A virtual image is formed on the opposite side of the mirror from the object. 

 

18. (a) Since the image is inverted, we can scan Figs. 34-8, 34-10, and 34-11 in the 

textbook and find that the mirror must be concave.  

 

(b) This also implies that we must put a minus sign in front of the “0.50” value given for 

m. To solve for f, we first find i = –pm = +12 cm from Eq. 34-6 and plug into Eq. 34-4; 

the result is f = +8 cm.  

 

(c) Thus, r = 2f = +16 cm.  

 

(d) p = +24 cm, as given in the table. 

 

(e) As shown above, i = –pm = +12 cm. 

 

(f) m = –0.50, with a minus sign. 

 

(g) The image is real (R), since i > 0.  

 

(h) The image is inverted (I), as noted above. 

 

(i) A real image is formed on the same side as the object. 

 

19. (a) Since r < 0 then (by Eq. 34-3) f < 0, which means the mirror is convex.  

 

(b) The focal length is f = r/2 = –20 cm.  

 

(c) r = – 40 cm, as given in the table.  

 

(d) Equation 34-4 leads to p = +20 cm. 

 

(e) i = –10 cm, as given in the table. 

 

(f) Equation 34-6 gives m = +0.50.  

 

(g) The image is virtual (V).  

 

(h) The image is upright, or not inverted (NI).  

 

(i) A virtual image is formed on the opposite side of the mirror from the object. 

 

20. (a) From Eq. 34-7, we get i =  mp = +28 cm, which implies the image is real (R) and 

on the same side as the object.  Since m < 0, we know it was inverted (I).  From Eq. 34-9, 
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we obtain f = ip/(i + p) =  +16 cm, which tells us (among other things) that the mirror is 

concave.  

 

(b) f = ip/(i + p) =  +16 cm. 

 

(c) r = 2f = +32 cm. 

 

(d) p = +40 cm, as given in the table. 

 

(e) i =  mp = +28 cm. 

 

(f) m = 0.70, as given in the table. 

 

(g) The image is real (R).  

 

(h) The image is inverted (I). 

 

(i) A real image is formed on the same side as the object. 

 

21. (a) Since f > 0, the mirror is concave.  

 

(b) f = + 20 cm, as given in the table. 

 

(c) Using Eq. 34-3, we obtain r = 2f = +40 cm.  

 

(d) p = + 10 cm, as given in the table. 

 

(e) Equation 34-4 readily yields i =  pf /( p f ) = +60 cm.  

 

(f) Equation 34-6 gives m = –i/p = –2.0.  

 

(g) Since i > 0, the image is real (R). 

 

(h) Since m < 0, the image is inverted (I).  

 

(i) A real image is formed on the same side as the object. 

 

22. (a) Since 0 < m < 1, the image is upright but smaller than the object. With that in 

mind, we examine the various possibilities in Figs. 34-8, 34-10, and 34-11, and note that 

such an image (for reflections from a single mirror) can only occur if the mirror is convex.  

 

(b) Thus, we must put a minus sign in front of the “20” value given for f, that is, f = – 20 

cm.  

 

(c) Equation 34-3 then gives r = 2f = –40 cm.  
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(d) To solve for i and p we must set up Eq. 34-4 and Eq. 34-6 as a simultaneous set and 

solve for the two unknowns. The results are p = +180 cm = +1.8 m, and 

 

(e)  i = –18 cm. 

 

(f) m = 0.10, as given in the table. 

 

(g) The image is virtual (V) since i < 0.  

 

(h) The image is upright, or not inverted (NI), as already noted.  

 

(i) A virtual image is formed on the opposite side of the mirror from the object. 

 

23. THINK A positive value for the magnification means that the image is upright (not 

inverted). 

 

EXPRESS For spherical mirrors, the focal length f is related to the radius of curvature r 

by / 2f r . The object distance p, the image distance i, and the focal length f are related 

by Eq. 34-4: 

 
1 1 1

p i f
  . 

 

The value of i is positive for a real images, and negative for virtual images. The 

corresponding lateral magnification is / .m i p  The value of m is positive for upright 

(not inverted) images, and is negative for inverted images. Real images are formed on the 

same side as the object, while virtual images are formed on the opposite side of the mirror.  

 

ANALYZE (a) The magnification is given by / .m i p  Since p > 0, a positive value for 

m means that the image distance (i) is negative, implying a virtual image. A positive 

magnification of magnitude less than unity is only possible for convex mirrors.   

 

(b) With ,i mp   we may write (1 1/ )p f m  . For 0 < m < 1, a positive value for p can 

be obtained only if  f < 0.  Thus, with a minus sign, we have f = 30 cm. 

 

(c) The radius of curvature is r = 2f = –60 cm. 

 

(d) The object distance is p = f (1 – 1/m) = (30 cm)(1 –1/0.20) =  + 120 cm = 1.2 m. 

 

(e) The image distance is i = –mp =  –(0.20)(120 cm) = –24 cm. 

 

(f) The magnification is m = +0.20, as given in the Table. 

 

(g) As discussed in (a), the image is virtual (V). 

 

(h) As discussed in (a), the image is upright, or not inverted (NI). 
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(i) A virtual image is formed on the opposite side of the mirror from the object. 

 

LEARN The situation in this problem is 

similar to that illustrated in Fig. 34-11(c). 

The mirror is convex, and its image is 

virtual and upright.  

 
 

24. (a) Since m =  1/2 < 0, the image is inverted. With that in mind, we examine the 

various possibilities in Figs. 34-8, 34-10, and 34-11, and note that an inverted image (for 

reflections from a single mirror) can only occur if the mirror is concave (and if p > f ).  

 

(b) Next, we find i from Eq. 34-6 (which yields i = mp = 30 cm) and then use this value 

(and Eq. 34-4) to compute the focal length; we obtain f = +20 cm.  

 

(c) Then, Eq. 34-3 gives r = 2f = +40 cm.  

 

(d) p = 60 cm, as given in the table. 

 

(e) As already noted, i = +30 cm.  

 

(f) m =  1/2, as given. 

 

(g) Since i > 0, the image is real (R).  

 

(h) As already noted, the image is inverted (I).  

 

(i) A real image is formed on the same side as the object. 

 

25. (a) As stated in the problem, the image is inverted (I), which implies that it is real (R).  

It also (more directly) tells us that the magnification is equal to a negative value: m = 

0.40.  By Eq. 34-7, the image distance is consequently found to be i = +12 cm.  Real 

images don’t arise (under normal circumstances) from convex mirrors, so we conclude 

that this mirror is concave. 

 

(b) The focal length is f = +8.6 cm, using Eq. 34-9, f = +8.6 cm.  

 

(c) The radius of curvature is r = 2f = +17.2 cm  17 cm. 

 

(d) p = +30 cm, as given in the table. 

 

(e) As noted above, i = +12 cm. 

 

(f) Similarly, m = 0.40, with a minus sign. 
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(g) The image is real (R).  

 

(h) The image is inverted (I). 

 

(i) A real image is formed on the same side as the object. 

 

26. (a) We are told that the image is on the same side as the object; this means the image 

is real (R) and further implies that the mirror is concave. 

 

(b) The focal distance is f = +20 cm.   

 

(c) The radius of curvature is r = 2f = +40 cm. 

 

(d) p = +60 cm, as given in the table. 

 

(e) Equation 34-9 gives i = pf/(p – f) =  +30 cm. 

 

(f) Equation 34-7 gives m = i/p = 0.50. 

 

(g) As noted above, the image is real (R). 

 

(h) The image is inverted (I) since m < 0. 

 

(i) A real image is formed on the same side as the object. 

 

27. (a) The fact that the focal length is given as a negative value means the mirror is 

convex.   

 

(b) f = –30 cm, as given in the Table. 

 

(c) The radius of curvature is r = 2f = –60 cm.  

 

(d) Equation 34-9 gives p = if /(i – f) = +30 cm. 

 

(e) i = –15, as given in the table. 

 

(f) From Eq. 34-7, we get m = +1/2 = 0.50.    

 

(g) The image distance is given as a negative value (as it would have to be, since the 

mirror is convex), which means the image is virtual (V). 

 

(h) Since m > 0, the image is upright (not inverted: NI). 

 

(i) The image is on the opposite side of the mirror as the object. 

 

28. (a) The fact that the magnification is 1 means that the mirror is flat (plane).  



 

  

1467 

 

(b) Flat mirrors (and flat “lenses” such as a window pane) have f =  (or f = – since the 

sign does not matter in this extreme case). 

 

(c) The radius of curvature is  r = 2f =  (or r = –) by Eq. 34-3.  

 

(d) p = + 10 cm, as given in the table. 

 

(e) Equation 34-4 readily yields i =  pf /( p f ) = –10 cm.  

 

(f) The magnification is m = –i/p = +1.0. 

 

(g) The image is virtual (V) since i < 0. 

 

(h) The image is upright, or not inverted (NI).  

 

(i) A virtual image is formed on the opposite side of the mirror from the object. 

 

29. THINK A convex mirror has a negative value of focal length.   

 

EXPRESS For spherical mirrors, the focal length f is related to the radius of curvature r 

by / 2f r . The object distance p, the image distance i, and the focal length f are related 

by Eq. 34-4: 

 
1 1 1

p i f
  . 

 

The value of i is positive for a real images, and negative for virtual images. The 

corresponding lateral magnification is / .m i p  The value of m is positive for upright 

(not inverted) images, and is negative for inverted images. Real images are formed on the 

same side as the object, while virtual images are formed on the opposite side of the mirror.  

 

ANALYZE (a) The mirror is convex, as given. 

 

(b) Since the mirror is convex, the radius of curvature is negative, so r = – 40 cm. Then, 

the focal length is f = r/2 = (–40 cm)/2  = –20 cm.  

 

(c) The radius of curvature is r = – 40 cm. 

 

(d) The fact that the mirror is convex also means that we need to insert a minus sign in 

front of the “4.0” value given for i, since the image in this case must be virtual. Eq. 34-4 

leads to  

 
( 4.0 cm)( 20 cm)

5.0 cm
4.0 cm ( 20 cm)

if
p

i f

 
  

   
 

 

(e) As noted above, i = – 4.0 cm. 
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(f) The magnification is m = / ( 4.0 cm) /(5.0 cm)i p     = +0.80.  

 

(g) The image is virtual (V) since i < 0.  

 

(h) The image is upright, or not inverted (NI). 

 

(i) A virtual image is formed on the opposite side of the mirror from the object. 

 

LEARN The situation in this problem is 

similar to that illustrated in Fig. 34-11(c). 

The mirror is convex, and its image is virtual 

and upright.  

 
 

30. We note that there is “singularity” in this graph (Fig. 34-36) like there was in Fig. 34-

35), which tells us that there is no point where p = f  (which causes Eq. 34-9 to “blow 

up”).  Since p > 0, as usual, then this means that the focal length is not positive.  We 

know it is not a flat mirror since the curve shown does decrease with p, so we conclude it 

is a convex mirror.   We examine the point where m = 0.50 and p = 10 cm. Combining Eq. 

34-7 and Eq. 34-9 we obtain  

 
i f

m
p p f

   


. 

 

This yields f = –10 cm (verifying our expectation that the mirror is convex). Now, for 

21 cm,p   we find m = – f /(p – f)  = +0.32. 

 

31. (a) From Eqs. 34-3 and 34-4, we obtain  

 

 
2

pf pr
i

p f p r
 

 
. 

 

Differentiating both sides with respect to time and using vO = –dp/dt, we find 

 

v
di

dt

d

dt

pr

p r

rv p r v pr

p r

r

p r
vI

O O

O 


F
HG
I
KJ 

  






F
HG
I
KJ2

2 2

2 2
2

2b g
b g . 

 

(b) If p = 30 cm, we obtain vI 


L
NM

O
QP


15

15
50 056

2

cm

2 30 cm cm
cm / s cm / s.b g b g. .  

 

(c) If p = 8.0 cm, we obtain vI 


L
NM

O
QP

 
15

15
50 11 10

2

3cm

2 8.0 cm cm
cm / s cm / s.b g b g. .  
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(d) If p = 1.0 cm, we obtain 
 

 

2

15cm
5.0cm/s 6.7cm/s.

2 1.0cm 15cm
Iv

 
  

  

 

 

32. In addition to n1 =1.0, we are given (a) n2 = 1.5,  (b) p = +10 cm, and (c) r = +30 cm. 

 

(d) Equation 34-8 yields i n
n n

r

n

p





F
HG

I
KJ 




F
HG

I
KJ  



2
2 1 1

1

15
15 10

30

10

10
18.

. . .

cm cm
cm.  

 

(e) The image is virtual (V) and upright since 0i .  

 

(f) The object and its image are on the same side. The ray diagram would be similar to 

Fig. 34-12(c) in the textbook. 

 

33. THINK An image is formed by refraction through a spherical surface. A negative 

value for the image distance implies that the image is virtual. 

 

EXPRESS Let n1 be the index of refraction of the material where the object is located, n2 

be the index of refraction of the material on the other side of the refracting surface, and r 

be the radius of curvature of the surface. The image distance i is related to the object 

distance p by Eq. 34-8: 

 1 2 2 1n n n n

p i r


  . 

 

The value of i is positive for a real images, and negative for virtual images. 

 

ANALYZE In addition to n1 =1.0, we are given (a) n2 = 1.5,  (b) p = +10 cm, and (d) 

13 cmi  . 

 

(c) Eq. 34-8 yields 

   
1 1

1 2
2 1

1.0 1.5
1.5 1.0 32.5cm 33 cm

10 cm 13 cm

n n
r n n

p i

 
   

          
  

. 

 

(e) The image is virtual (V) and upright.  

 

(f) The object and its image are on the same side.  

 

LEARN The ray diagram for this problem is similar 

to the one shown in Fig. 34-12(e). Here refraction 

always directs the ray away from the central axis; the 

images are always virtual, regardless of the object 

distance. 
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34. In addition to n1 =1.5, we are given (b) p = +100, (c) r = 30 cm, and (d) 600i  cm. 

 

(a) We manipulate Eq. 34-8 to separate the indices: 

 

 1 1
2 2 2

1 1 1 1 1.5 1.5
       0.035 0.035

30 600 100 30

n n
n n n

r i p r

      
               

       
 

 

which implies n2 = 1.0.  

 

(e) The image is real (R) and inverted. 

 

(f) The object and its image are on the opposite side. The ray diagram would be similar to 

Fig. 34-12(b) in the textbook.  

 

35. THINK An image is formed by refraction through a spherical surface. Whether the 

image is real or virtual depends on the relative values of n1 and n2, and on the geometry.  

 

EXPRESS Let n1 be the index of refraction of the material where the object is located, n2 

be the index of refraction of the material on the other side of the refracting surface, and r 

be the radius of curvature of the surface. The image distance i is related to the object 

distance p by Eq. 34-8: 

 1 2 2 1n n n n

p i r


  . 

 

The value of i is positive for a real images, and negative for virtual images. 

 

ANALYZE In addition to n1 =1.5, we are also given (a) n2 = 1.0,  (b) p = +70 cm, and (c) 

r = +30 cm. Notice that 2 1n n . 

 

(d) We manipulate Eq. 34-8 to find the image distance: 

 

i n
n n

r

n

p





F
HG

I
KJ 




F
HG

I
KJ  

 

2
2 1 1

1 1

10
10 15

30

15

70
26.

. . .

cm cm
cm.  

 

(e) The image is virtual (V) and upright.  

 

(f) The object and its image are on the same side.  

 

LEARN The ray diagram for this problem is similar to 

the one shown in Fig. 34-12(f). Here refraction always 

directs the ray away from the central axis; the images 

are always virtual, regardless of the object distance. 
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36. In addition to n1 =1.5, we are given (a) n2 =1.0,  (c) r = 30 cm and (d) 7.5i  cm. 

 

(b)We manipulate Eq. 34-8 to find p: 

 

1

2 1 2

1.5
10 cm.

1.0 1.5 1.0
30 cm 7.5 cm

n
p

n n n

r i

  
    

 

 

(e) The image is virtual (V) and upright.  

 

(f) The object and its image are on the same side. The ray diagram would be similar to 

Fig. 34-12(d) in the textbook. 

 

37. In addition to n1 =1.5, we are given (a) n2 =1.0,  (b) p = +10 cm, and (d) 6.0i  cm. 

 

(c) We manipulate Eq. 34-8 to find r: 

 

   
1 1

1 2
2 1

1.5 1.0
1.0 1.5 30 cm.

10 cm 6.0 cm

n n
r n n

p i

 
   

         
  

 

 

(e) The image is virtual (V) and upright.  

 

(f) The object and its image are on the same side. The ray diagram would be similar to 

Fig. 34-12(f) in the textbook, but with the object and the image located closer to the 

surface. 

 

38. In addition to n1 =1.0, we are given (a) n2=1.5,  (c) r = +30 cm, and (d) 600i  . 

 

(b) Equation 34-8 gives 1

2 1 2

1.0
71cm.

1.5 1.0 1.5
30 cm 600 cm

n
p

n n n

r i

  
  

 

 

(e) With 0i  , the image is real (R) and inverted.  

 

(f) The object and its image are on the opposite side. The ray diagram would be similar to 

Fig. 34-12(a) in the textbook. 

 

39. (a) We use Eq. 34-8 and note that n1 = nair = 1.00, n2 = n, p = , and i = 2r: 

 

100

2

1.
.


 

n

r

n

r
 

 

We solve for the unknown index: n = 2.00. 

 

(b) Now i = r so Eq. 34-8 becomes 
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n

r

n

r


1
,  

 

which is not valid unless n  or .r   It is impossible to focus at the center of the 

sphere. 

 

40. We use Eq. 34-8 (and Fig. 34-11(d) is useful), with n1 = 1.6 and n2 = 1 (using the 

rounded-off value for air): 

16 1 1 16. .

p i r
 


. 

 

Using the sign convention for r stated in the paragraph following Eq. 34-8 (so that 

5.0 cmr  ), we obtain i = –2.4 cm for objects at p = 3.0 cm. Returning to Fig. 34-38 

(and noting the location of the observer), we conclude that the tabletop seems 7.4 cm 

away. 

 

41. (a) We use Eq. 34-10: 

 

f n
r r

  
F
HG
I
KJ

L
NM

O
QP

 




F
HG

I
KJ

L
NM

O
QP

 

 

( ) ( . )1
1 1

15 1
1 1

20
40

1 2

1 1

cm
cm.  

 

(b) From Eq. 34-9, 

i
f p

 
F
HG
I
KJ  
F
HG

I
KJ  

 

1 1 1

40

1

40

1 1

cm cm
.  

 

42. Combining Eq. 34-7 and Eq. 34-9, we have m( p – f ) = – f.  The graph in Fig. 34-39 

indicates that m = 0.5 where p = 15 cm, so our expression yields f = –15 cm.  Plugging 

this back into our expression and evaluating at p = 35 cm yields m = +0.30. 

 

43. We solve Eq. 34-9 for the image distance: 

 
1

1 1
.

fp
i

f p p f



 
   

 
 

The height of the image is 

h mh
i

p
h

fh

p f
i p p

p
 

F
HG
I
KJ 







(

.
.

75

27 0 075
50

mm)(1.80 m)

m m
mm.  

 

44. The singularity the graph (where the curve goes to ) is at p = 30 cm, which implies 

(by Eq. 34-9) that f = 30 cm > 0 (converging type lens).  For p = 100 cm, Eq. 34-9 leads 

to i =  +43 cm. 

 

45. Let the diameter of the Sun be ds and that of the image be di. Then, Eq. 34-5 leads to 
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   2 8

3

11

20.0 10 m 2 6.96 10 m
| | 1.86 10 m 1.86 mm.

1.50 10 m
i s s s

i f
d m d d d

p p




    

         
   

 

 

46. Since the focal length is a constant for the whole graph, then 1/p + 1/i = constant.  

Consider the value of the graph at p = 20 cm; we estimate its value there to be –10 cm.  

Therefore, 1/20 + 1/(–10) = 1/70 + 1/inew .  Thus, inew = –16 cm. 

 

47. THINK Our lens is of double-convex type. We apply lens maker’s equation to 

analyze the problem. 

 

 EXPRESS The lens maker’s equation is given by Eq. 34-10: 

 

1
1

1 1

1 2f
n

r r
  

F
HG
I
KJb g  

 

where f is the focal length, n is the index of refraction, r1 is the radius of curvature of the 

first surface encountered by the light and r2 is the radius of curvature of the second 

surface. Since one surface has twice the radius of the other and since one surface is 

convex to the incoming light while the other is concave, set r2 = –2r1 to obtain 

 

1
1

1 1

2

3 1

21 1 1f
n

r r

n

r
  

F
HG

I
KJ 


( )

( )
.  

 

ANALYZE (a) We solve for the smaller radius r1: 

 

r
n f

1

3 1

2

3 15 1 60

2
45







( ) ( . )( mm)
mm.  

 

(b) The magnitude of the larger radius is 2 1| | 2 90 mm.r r    

 

LEARN An image of an object can be formed with a lens because it can bend the light 

rays, but the bending is possible only if the index of refraction of the lens is different 

from that of its surrounding medium. 

 

48. Combining Eq. 34-7 and Eq. 34-9, we have m( p – f ) = –f.  The graph in Fig. 34-42 

indicates that m = 2 where p = 5 cm, so our expression yields f = 10 cm.  Plugging this 

back into our expression and evaluating at p = 14 cm yields m = –2.5. 

 

49. THINK The image is formed on the screen, so the sum of the object distance and the 

image distance is equal to the distance between the slide and the screen.  

 

EXPRESS Using Eq. 34-9: 
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1 1 1

f p i
   

 

and noting that p + i = d = 44 cm, we obtain p
2
 – dp + df = 0. 

 

ANALYZE The focal length is f = 11 cm. Solving the quadratic equation, we find the 

solution to p to be 

 

p d d df      
1

2
4 22 44 4 44 222( ) ( (cm

1

2
cm) cm)(11 cm) cm.2  

 

LEARN Since p > f, the object is outside the focal length. The image distance is i = d – p 

= 44 –22 = 22 cm. 

 

50. We recall that for a converging (C) lens, the focal length value should be positive ( f = 

+4 cm).   

 

(a) Equation 34-9 gives i =  pf/(p – f) = +5.3 cm.  

 

(b) Equation 34-7 gives m = /i p = 0.33.   

 

(c) The fact that the image distance i is a positive value means the image is real (R). 

 

(d) The fact that the magnification is a negative value means the image is inverted (I).   

 

(e) The image is on the opposite side of the object (see Fig. 34-16(a)). 

 

51. We recall that for a converging (C) lens, the focal length value should be positive ( f = 

+16 cm).   

 

(a) Equation 34-9 gives i =  pf/(p – f)  = – 48 cm.  

 

(b) Equation 34-7 gives m = /i p  = +4.0.   

 

(c) The fact that the image distance is a negative value means the image is virtual (V). 

 

(d) A positive value of magnification means the image is not inverted (NI). 

 

(e) The image is on the same side as the object (see Fig. 34-16(b)). 

 

52. We recall that for a converging (C) lens, the focal length value should be positive ( f = 

+35 cm).   

 

(a) Equation 34-9 gives i =  pf/(p – f) = –88 cm. 
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(b) Equation 34-7 give m = /i p = +3.5.   

 

(c) The fact that the image distance is a negative value means the image is virtual (V). 

 

(d) A positive value of magnification means the image is not inverted (NI).   

 

(e) The image is on the same side as the object (see Fig. 34-16(b)). 

 

53. THINK For a diverging (D) lens, the focal length value is negative. 

 

EXPRESS The object distance p, the image distance i, and the focal length f are related 

by Eq. 34-9: 

1 1 1

f p i
  . 

 

The value of i is positive for a real images, and negative for virtual images. The 

corresponding lateral magnification is / .m i p   The value of m is positive for upright 

(not inverted) images, and is negative for inverted images. 

 

ANALYZE For this lens, we have f = –12 cm and p = +8.0 cm.   

 

(a) The image distance is 
(8.0 cm)( 12 cm)

4.8 cm.
8.0 cm ( 12) cm

pf
i

p f


   

  
 

 

(b) The magnification is m = / ( 4.8 cm) /(8.0 cm)i p   = +0.60.   

 

(c) The fact that the image distance is a negative value means the image is virtual (V). 

 

(d) A positive value of magnification means the image is not inverted (NI).   

 

(e) The image is on the same side as the object. 

 

LEARN The ray diagram for this problem is 

similar to the one shown in Fig. 34-16(c). The 

lens is diverging, forming a virtual image with 

the same orientation as the object, and on the 

same side as the object. 

 
 

54. We recall that for a diverging (D) lens, the focal length value should be negative ( f 

= –6  cm).   

 

(a) Equation 34-9 gives i =  pf/(p – f) = –3.8 cm. 

 

(b) Equation 34-7 gives m = /i p  =  +0.38.   
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(c) The fact that the image distance is a negative value means the image is virtual (V). 

 

(d) A positive value of magnification means the image is not inverted (NI).   

 

(e) The image is on the same side as the object (see Fig. 34-16(c)). 

 

55. THINK For a diverging (D) lens, the value of the focal length is negative. 

 

EXPRESS The object distance p, the image distance i, and the focal length f are related 

by Eq. 34-9: 

1 1 1

f p i
  . 

 

The value of i is positive for a real images, and negative for virtual images. The 

corresponding lateral magnification is / .m i p   The value of m is positive for upright 

(not inverted) images, and is negative for inverted images. 

 

ANALYZE For this lens, we have f = –14 cm and p = +22.0 cm.   

 

(a) The image distance is 
(22 cm)( 14 cm)

8.6 cm.
22 cm ( 14) cm

pf
i

p f


   

  
 

 

(b) The magnification is m = / ( 8.6 cm) /(22 cm)i p   = +0.39.   

 

(c) The fact that the image distance is a negative value means the image is virtual (V). 

 

(d) A positive value of magnification means the image is not inverted (NI).   

 

(e) The image is on the same side as the object. 

 

LEARN The ray diagram for this problem is similar to the one shown in Fig. 34-16(c). 

The lens is diverging, forming a virtual image with the same orientation as the object, and 

on the same side as the object. 

 

56. We recall that for a diverging (D) lens, the focal length value should be negative ( f 

= –31  cm).   

 

(a) Equation 34-9 gives i =  pf/( p– f) = –8.7 cm.  

 

(b) Equation 34-7 gives m = /i p = +0.72.   

 

(c) The fact that the image distance is a negative value means the image is virtual (V). 

 

(d) A positive value of magnification means the image is not inverted (NI).   
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(e) The image is on the same side as the object (see Fig. 34-16(c)). 

 

57. THINK For a converging (C) lens, the focal length value is positive. 

 

EXPRESS The object distance p, the image distance i, and the focal length f are related 

by Eq. 34-9: 

1 1 1

f p i
  . 

 

The value of i is positive for a real images, and negative for virtual images. The 

corresponding lateral magnification is / .m i p   The value of m is positive for upright 

(not inverted) images, and is negative for inverted images. 

 

ANALYZE For this lens, we have f = +20 cm and p = +45.0 cm.   

 

(a) The image distance is 
(45 cm)(20 cm)

36 cm.
45 cm 20 cm

pf
i

p f
   

 
 

 

(b) The magnification is m = / ( 36 cm) /(45 cm) 0.80.i p      

 

(c) The fact that the image distance is a positive value means the image is real (R). 

 

(d) A negative value of magnification means the image is inverted (I).   

 

(e) The image is on the opposite side of the object. 

 

LEARN The ray diagram for this problem is similar to the one shown in Fig. 34-16(a). 

The lens is converging, forming a real, inverted image on the opposite side of the object. 

 

58. (a) Combining Eq. 34-9 and Eq. 34-10 gives i = –63 cm. 

 

(b) Equation 34-7 gives m = /i p = +2.2.  

 

(c) The fact that the image distance is a negative value means the image is virtual (V). 

 

(d) A positive value of magnification means the image is not inverted (NI).  

 

(e) The image is on the same side as the object. 

  

59. THINK Since r1 is positive and r2 is negative, our lens is of double-convex type. We 

apply lens maker’s equation to analyze the problem. 

 

EXPRESS The lens maker’s equation is given by Eq. 34-10: 
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1
1

1 1

1 2f
n

r r
  

F
HG
I
KJb g  

 

where f is the focal length, n is the index of refraction, r1 is the radius of curvature of the 

first surface encountered by the light and r2 is the radius of curvature of the second 

surface. The object distance p, the image distance i, and the focal length f are related by 

Eq. 34-9: 

1 1 1

f p i
  . 

 

ANALYZE For this lens, we have r1 = +30 cm, r2 = – 42 cm, n = 1.55 and p = +75 cm.   

 

(a) The focal length is  

 1 2

2 1

( 30 cm)( 42 cm)
31.8 cm

( 1)( ) (1.55 1)( 42 cm 30 cm)

r r
f

n r r

 
   

    
. 

 

Thus, the image distance is 
(75 cm)(31.8 cm)

55 cm.
75 cm 31.8 cm

pf
i

p f
   

 
 

 

(b) Eq. 34-7 give m = / (55 cm) /(75 cm)i p  = 0.74.   

 

(c) The fact that the image distance is a positive value means the image is real (R). 

 

(d) The fact that the magnification is a negative value means the image is inverted (I).   

 

(e) The image is on the side opposite from the object. 

 

LEARN The ray diagram for this problem is 

similar to the one shown in Fig. 34-16(a). The 

lens is converging, forming a real, inverted 

image on the opposite side of the object. 

 

 

60. (a) Combining Eq. 34-9 and Eq. 34-10 gives i = –26 cm.  

 

(b) Equation 34-7 gives m = /i p = +4.3.  

 

(c) The fact that the image distance is a negative value means the image is virtual (V). 

 

(d) A positive value of magnification means the image is not inverted (NI).  

 

(e) The image is on the same side as the object. 
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61. (a) Combining Eq. 34-9 and Eq. 34-10 gives i = –18 cm.  

 

(b) Equation 34-7 gives m = /i p = +0.76.  

 

(c) The fact that the image distance is a negative value means the image is virtual (V). 

 

(d) A positive value of magnification means the image is not inverted (NI).  

 

(e) The image is on the same side as the object. 

 

62. (a) Equation 34-10 yields  

1 2

2 1

30 cm
( 1)( )

r r
f

n r r
 

 
 

 

Since f > 0, this must be a converging (“C”) lens. From Eq. 34-9, we obtain 

 

1 1
15cm.

1 1 1 1
30 cm 10 cm

i

f p

  
 

 

 

(b) Equation 34-6 yields m = /i p = –(–15 cm)/(10 cm) = +1.5.  

 

(c) Since i < 0, the image is virtual (V).  

 

(d) Since m > 0, the image is upright, or not inverted (NI).  

 

(e) The image is on the same side as the object. The ray diagram is similar to Fig. 34-16(b) 

of the textbook. 

 

63. (a) Combining Eq. 34-9 and Eq. 34-10 gives i = –30 cm. 

 

(b) Equation 34-7 gives m = /i p = +0.86.  

 

(c) The fact that the image distance is a negative value means the image is virtual (V). 

 

(d) A positive value of magnification means the image is not inverted (NI).  

 

(e) The image is on the same side as the object. 

 

64. (a) Equation 34-10 yields  

 
1

1 2

1
1/ 1/ 120 cm.

1
f r r

n


   


 

 

Since f < 0, this must be a diverging (“D”) lens. From Eq. 34-9, we obtain 
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1 1
9.2cm .

1 1 1 1
120 cm 10 cm

i

f p

  
 



 

 

(b) Equation 34-6 yields m = /i p = –(–9.2 cm)/(10 cm) = +0.92.  

 

(c) Since i < 0, the image is virtual (V).  

 

(d) Since m > 0, the image is upright, or not inverted (NI).  

 

(e) The image is on the same side as the object. The ray diagram is similar to Fig. 34-16(c) 

of the textbook. 

 

65. (a) Equation 34-10 yields 1

1 2

1
(1/ 1/ ) 30 cm.

1
f r r

n

   


 Since f < 0, this must be 

a diverging (“D”) lens. From Eq. 34-9, we obtain 

 

1 1
7.5cm.

1 1 1 1
30 cm 10 cm

i

f p

  
 



 

 

(b) Equation 34-6 yields m = /i p = –(–7.5 cm)/(10 cm) = +0.75.  

 

(c) Since i < 0, the image is virtual (V).  

 

(d) Since m > 0, the image is upright, or not inverted (NI).  

 

(e) The image is on the same side as the object. The ray diagram is similar to Fig. 34-16(c) 

of the textbook. 

 

66. (a) Combining Eq. 34-9 and Eq. 34-10 gives i = –9.7 cm.  

 

(b) Equation 34-7 gives m = /i p = +0.54.  

 

(c) The fact that the image distance is a negative value means the image is virtual (V). 

 

(d) A positive value of magnification means the image is not inverted (NI).  

 

(e) The image is on the same side as the object. 

 

67. (a) Combining Eq. 34-9 and Eq. 34-10 gives i = +84 cm.  

 

(b) Equation 34-7 gives m = /i p = 1.4.   

 

(c) The fact that the image distance is a positive value means the image is real (R). 
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(d) The fact that the magnification is a negative value means the image is inverted (I).   

 

(e) The image is on the side opposite from the object. 

 

68. (a) A convex (converging) lens, since a real image is formed. 

 

(b) Since i = d – p and i/p = 1/2, 

 

p
d

  
2

3

2 40 0

3
26 7

.
.

cm
cm.

b g
 

(c) The focal length is 

 

 
1 1

2 40.0 cm1 1 1 1 2
8.89 cm .

/ 3 2 / 3 9 9

d
f

i p d d

 
   

         
  

 

 

69. (a) Since f > 0, this is a converging lens (“C”).  

 

(d) Equation 34-9 gives 

1 1
10cm.

1 1 1 1
10 cm 5.0 cm

i

f p

  
 

 

 

(e) From Eq. 34-6, m = –(–10 cm)/(5.0 cm) = +2.0.  

 

(f) The fact that the image distance i is a negative value means the image is virtual (V). 

 

(g) A positive value of magnification means the image is not inverted (NI).  

 

(h) The image is on the same side as the object. 

 

70. (a) The fact that m < 1 and that the image is upright (not inverted: NI) means the lens 

is of the diverging type (D) (it may help to look at Fig. 34-16 to illustrate this). 

 

(b) A diverging lens implies that f = –20 cm, with a minus sign. 

 

(d) Equation 34-9 gives i = –5.7 cm.  

 

(e) Equation 34-7 gives m = /i p = +0.71.   

 

(f) The fact that the image distance i is a negative value means the image is virtual (V). 

 

(h) The image is on the same side as the object. 
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71. (a) Eq. 34-7 yields i = –mp = –(0.25)(16 cm) = –4.0 cm. Equation 34-9 gives f = –5.3 

cm, which implies the lens is of the diverging type (D).  

 

(b) From (a), we have f = –5.3 cm. 

 

(d) Similarly, i = –4.0 cm. 

 

(f) The fact that the image distance i is a negative value means the image is virtual (V). 

 

(g) A positive value of magnification means the image is not inverted (NI).  

 

(h) The image is on the same side as the object. 

  

72. (a) Equation 34-7 readily yields i = +4.0 cm.  Then Eq. 34-9 gives f = +3.2 cm, which 

implies the lens is of the converging type (C).  

 

(b) From (a), we have f = +3.2 cm. 

 

(d) Similarly, i = +4.0 cm. 

 

(f) The fact that the image distance is a positive value means the image is real (R). 

 

(g) The fact that the magnification is a negative value means the image is inverted (I).   

 

(h) The image is on the opposite side of the object. 

 

73. (a) Using Eq. 34-6 (which implies the image is inverted) and the given value of p, we 

find i = –mp = +5.0 cm; it is a real image. Equation 34-9 then yields the focal length: f = 

+3.3 cm. Therefore, the lens is of the converging (“C”) type.  

 

(b) From (a), we have f = +3.3 cm. 

 

(d) Similarly, i = –mp = +5.0 cm. 

 

(f) The fact that the image distance is a positive value means the image is real (R). 

 

(g) The fact that the magnification is a negative value means the image is inverted (I).   

 

(h) The image is on the side opposite from the object. The ray diagram is similar to Fig. 

34-16(a) of the textbook.  

 

74. (b) Since this is a converging lens (“C”) then f > 0, so we should put a plus sign in 

front of the “10” value given for the focal length.  

 

(d) Equation 34-9 gives 
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1 1
20cm.

1 1 1 1
10 cm 20 cm

i

f p

  
 

 

 

(e) From Eq. 34-6, m = –20/20 = –1.0.  

 

(f) The fact that the image distance is a positive value means the image is real (R). 

 

(g) The fact that the magnification is a negative value means the image is inverted (I).   

 

(h) The image is on the side opposite from the object. 

 

75. THINK Since the image is on the same side as the object, it must be a virtual image.   

 

EXPRESS The object distance p, the image distance i, and the focal length f are related 

by Eq. 34-9: 

1 1 1

f p i
  . 

 

The value of i is positive for a real images, and negative for virtual images. The 

corresponding lateral magnification is / .m i p   The value of m is positive for upright 

(not inverted) images, and is negative for inverted images. 

 

ANALYZE (a) Since the image is virtual (on the same side as the object), the image 

distance i is negative. By substituting /( )i fp p f   into / ,m i p  we obtain 

 

 .
i f

m
p p f

   


 

 

The fact that the magnification is less than 1.0 implies that f must be negative. This 

means that the lens is of the diverging (“D”) type.  

 

(b) Thus, the focal length is 10 cm.f    

 

(d) The image distance is 
(5.0 cm)( 10 cm)

3.3 cm.
5.0 cm ( 10 cm)

pf
i

p f


   

  
 

 

(e) The magnification is / ( 3.3 cm) /(5.0 cm) 0.67m i p    . 

 

(f) The fact that the image distance i is a negative value means the image is virtual (V). 

 

(g) A positive value of magnification means the image is not inverted (NI).  
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LEARN The ray diagram for this problem is similar to the one shown in Fig. 34-16(c). 

The lens is diverging, forming a virtual image with the same orientation as the object, and 

on the same side as the object. 

 

76. (a) We are told the magnification is positive and greater than 1. Scanning the single-

lens-image figures in the textbook (Figs. 34-16, 34-17, and 34-19), we see that such a 

magnification (which implies an upright image larger than the object) is only possible if 

the lens is of the converging (“C”) type (and if p < f ).  

 

(b) We should put a plus sign in front of the “10” value given for the focal length.  

 

(d) Equation 34-9 gives 
1 1

10cm.
1 1 1 1

10 cm 5.0 cm

i

f p

  
 

 

(e) / 2.0m i p  . 

 

(f) The fact that the image distance i is a negative value means the image is virtual (V). 

 

(g) A positive value of magnification means the image is not inverted (NI).  

 

(h) The image is on the same side as the object. 

 

77. THINK A positive value for the magnification m means that the image is upright (not 

inverted). In addition, m > 1 indicates that the image is enlarged. 

 

EXPRESS The object distance p, the image distance i, and the focal length f are related 

by Eq. 34-9: 

1 1 1

f p i
  . 

 

The value of i is positive for a real images, and negative for virtual images. The 

corresponding lateral magnification is / .m i p   The value of m is positive for upright 

(not inverted) images, and is negative for inverted images. 

 

ANALYZE (a) Combining Eqs. 34-7 and 34-9, we find the focal length to be 

 

 
16 cm

80 cm
1 1/ 1 1/1.25

p
f

m
  

 
. 

 

Since the value of f is positive, the lens is of the converging type (C).  

 

(b) From (a), we have f = +80 cm. 

 

(d) The image distance is (1.25)(16 cm) 20 cm.i mp       
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(e) The magnification is m = + 1.25, as given. 

 

(f) The fact that the image distance i is a negative value means the image is virtual (V). 

 

(g) A positive value of magnification means the image is not inverted (NI).  

 

(h) The image it is on the same side as the object. 

 

LEARN The ray diagram for this problem is similar to the one shown in Fig. 34-16(b). 

The lens is converging. With the object placed inside the focal point (p < f), we have a 

virtual image with the same orientation as the object, and on the same side as the object. 

 

78. (a) We are told the absolute value of the magnification is 0.5 and that  the image was 

upright (NI). Thus, m = +0.5. Using Eq. 34-6 and the given value of p, we find i = –5.0 

cm; it is a virtual image. Equation 34-9 then yields the focal length: f = –10 cm. 

Therefore, the lens is of the diverging (“D”) type.  

 

(b) From (a), we have f = –10 cm. 

 

(d) Similarly, i = –5.0 cm. 

 

(e) m = +0.5, with a plus sign. 

 

(f) The fact that the image distance i is a negative value means the image is virtual (V). 

 

(h) The image is on the same side as the object. 

 

79. (a) The fact that m > 1 means the lens is of the converging type (C) (it may help to 

look at Fig. 34-16 to illustrate this). 

 

(b) A converging lens implies f = +20 cm, with a plus sign.   

 

(d) Equation 34-9 then gives i = –13 cm. 

 

(e) Equation 34-7 gives m = /i p = +1.7.   

 

(f) The fact that the image distance i is a negative value means the image is virtual (V). 

 

(g) A positive value of magnification means the image is not inverted (NI).  

 

(h) The image is on the same side as the object. 

 

80. (a) The image from lens 1 (which has f1 = +15 cm) is at i1 = –30 cm (by Eq. 34-9). 

This serves as an “object” for lens 2 (which has f2 = +8 cm) with p2 = d – i1 = 40 cm.  

Then Eq. 34-9 (applied to lens 2) yields i2 = +10 cm. 
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(b) Equation 34-11 yields M = m1m2 1 1 2 2 1 2 1 2( / )( / ) /i p i p i i p p    = –0.75.  

 

(c) The fact that the (final) image distance is a positive value means the image is real (R). 

 

(d) The fact that the magnification is a negative value means the image is inverted (I).   

 

(e) The image is on the side opposite from the object (relative to lens 2). 

 

81. (a) The image from lens 1 (which has f1 = +8 cm) is at i1 = 24 cm (by Eq. 34-9). This 

serves as an “object” for lens 2 (which has f2 = +6 cm) with p2 = d – i1 = 8 cm.  Then Eq. 

34-9 (applied to lens 2) yields i2 = +24 cm. 

 

(b) Equation 34-11 yields M = m1m2 1 1 2 2 1 2 1 2( / )( / ) /i p i p i i p p    = +6.0.  

 

(c)The fact that the (final) image distance is a positive value means the image is real (R). 

 

(d) The fact that the magnification is positive means the image is not inverted (NI).   

 

(e) The image is on the side opposite from the object (relative to lens 2).  

 

82. (a) The image from lens 1 (which has f1 = –6 cm) is at i1 = –3.4 cm (by Eq. 34-9). 

This serves as an “object” for lens 2 (which has f2 = +6 cm) with p2 = d – i1 = 15.4 cm.  

Then Eq. 34-9 (applied to lens 2) yields i2 = +9.8 cm. 

 

(b) Equation 34-11 yields M = –0.27.  

 

(c) The fact that the (final) image distance is a positive value means the image is real (R). 

 

(d) The fact that the magnification is a negative value means the image is inverted (I).  

 

(e) The image is on the side opposite from the object (relative to lens 2). 

 

83. THINK In a system with two lenses, the image formed by lens 1 serves the “object” 

for lens 2. 

 

EXPRESS To analyze two-lens systems, we first ignore lens 2, and apply the standard 

procedure used for a single-lens system. The object distance p1, the image distance i1, and 

the focal length f1 are related by: 

1 1 1

1 1 1

f p i
  . 

 

Next, we ignore the lens 1 but treat the image formed by lens 1 as the object for lens 2. 

The object distance p2 is the distance between lens 2 and the location of the first image. 

The location of the final image, i2, is obtained by solving  
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2 2 2

1 1 1

f p i
   

where f2 is the focal length of lens 2. 

 

ANALYZE (a) Since lens 1 is converging, f1 = +9 cm, and we find the image distance to 

be 

1 1
1

1 1

(20 cm)(9 cm)
16.4 cm.

20 cm 9 cm

p f
i

p f
  

 
 

 

This serves as an “object” for lens 2 (which has f2 = +5 cm) with an object distance given 

by p2 = d – i1 = –8.4 cm. The negative sign means that the “object” is behind lens 2. 

Solving the lens equation, we obtain 

 

2 2
2

2 2

( 8.4 cm)(5.0 cm)
3.13 cm.

8.4 cm 5.0 cm

p f
i

p f


  

  
 

    

(b) Te overall magnification is M = m1m2 1 1 2 2 1 2 1 2( / )( / ) /i p i p i i p p    = –0.31.   

 

(c) The fact that the (final) image distance is a positive value means the image is real (R). 

 

(d) The fact that the magnification is a negative value means the image is inverted (I).  

 

(e) The image it is on the side opposite from the object (relative to lens 2).  

 

LEARN Since this result involves a negative value for p2 (and perhaps other “non-

intuitive” features), we offer a few words of explanation: lens 1 is converging the rays 

towards an image (that never gets a chance to form due to the intervening presence of 

lens 2) that would be real and inverted (and 8.4 cm beyond lens 2’s location).  Lens 2, in 

a sense, just causes these rays to converge a little more rapidly, and causes the image to 

form a little closer (to the lens system) than if lens 2 were not present.    

 

84. (a) The image from lens 1 (which has f1 = +12 cm) is at i1 = +60 cm (by Eq. 34-9). 

This serves as an “object” for lens 2 (which has f2 = +10 cm) with p2 = d – i1 = 7 cm.  

Then Eq. 34-9 (applied to lens 2) yields i2 = –23 cm. 

 

(b) Equation 34-11 yields M = m1m2 1 1 2 2 1 2 1 2( / )( / ) /i p i p i i p p    = –13.  

 

(c) The fact that the (final) image distance is negative means the image is virtual (V). 

 

(d) The fact that the magnification is a negative value means the image is inverted (I). 

 

(e) The image is on the same side as the object (relative to lens 2). 
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85. (a) The image from lens 1 (which has f1 = +6 cm) is at i1 = –12 cm (by Eq. 34-9). This 

serves as an “object” for lens 2 (which has f2 = –6 cm) with p2 = d – i1 = 20 cm.  Then Eq. 

34-9 (applied to lens 2) yields i2 = –4.6 cm. 

 

(b) Equation 34-11 yields M = +0.69.  

 

(c) The fact that the (final) image distance is negative means the image is virtual (V). 

 

(d) The fact that the magnification is positive means the image is not inverted (NI).   

 

(e) The image is on the same side as the object (relative to lens 2). 

 

86. (a) The image from lens 1 (which has f1 = +8 cm) is at i1 = +24 cm (by Eq. 34-9). This 

serves as an “object” for lens 2 (which has f2 = –8 cm) with p2 = d – i1 = 6 cm.  Then Eq. 

34-9 (applied to lens 2) yields i2 = –3.4 cm. 

 

(b) Equation 34-11 yields M = –1.1.  

 

(c) The fact that the (final) image distance is negative means the image is virtual (V). 

 

(d) The fact that the magnification is a negative value means the image is inverted (I).  

 

(e) The image is on the same side as the object (relative to lens 2). 

 

87. (a) The image from lens 1 (which has f1 = –12 cm) is at i1 = –7.5 cm (by Eq. 34-9). 

This serves as an “object” for lens 2 (which has f2 = –8 cm) with  

 

p2 = d – i1 = 17.5 cm. 

 

Then Eq. 34-9 (applied to lens 2) yields i2 = –5.5 cm. 

 

(b) Equation 34-11 yields M = +0.12.  

 

(c) The fact that the (final) image distance is negative means the image is virtual (V). 

 

(d) The fact that the magnification is positive means the image is not inverted (NI). 

 

(e) The image is on the same side as the object (relative to lens 2). 

 

88. The minimum diameter of the eyepiece is given by 

 

d
d

m
ey

ob mm

36
mm.  



75
21.  

 

89. THINK The compound microscope shown in Fig. 34-20 consists of an objective and 

an eyepiece. It’s used for viewing small objects that are very close to the objective. 
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EXPRESS Let fob be the focal length of the objective, and fey be the focal length of the 

eyepiece. The distance between the two lenses is 

 

L = s + fob + fey, 

 

where s is the tube length. The magnification of the objective is 

 

 
ob

i s
m

p f
     

 

and the angular magnification produced by the eyepiece is ey(25 cm) / .m f   

 

ANALYZE (a) The tube length is 

  

s = L – fob – fey = 25.0 cm – 4.00 cm – 8.00 cm = 13.0 cm. 

 

(b) We solve (1/p) + (1/i) = (1/fob) for p. The image distance is  

 

i = fob + s = 4.00 cm + 13.0 cm = 17.0 cm, 

so  

  ob

ob

17.0 cm 4.00 cm
5.23 cm.

17.0 cm 4.00 cm

if
p

i f
  

 
 

 

(c) The magnification of the objective is m
i

p
     

17 0

523
325

.

.
. .

cm

cm
 

 

(d) The angular magnification of the eyepiece is m
f

   
25 25

313
cm cm

8.00 cmey

. .  

 

(e) The overall magnification of the microscope is 

 

M mm     325 313 102. . . .b gb g  

 

LEARN The objective produces a real image I of the object inside the focal point of the 

eyepiece (i  > fey). Image I then serves as the object for the eyepiece, which produces a 

virtual image I   seen by the observer.  

 

90. (a) Now, the lens-film distance is i
f p

 
F
HG
I
KJ  
F
HG

I
KJ 

 

1 1 1

50

1

100
53

1 1

.
.

cm cm
cm. 

 

(b) The change in the lens-film distance is 5.3 cm – 5.0 cm = 0.30 cm. 
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91. THINK This problem is about human eyes. We model the cornea and eye lens as a 

single effective thin lens, with image formed at the retina.   

 

EXPRESS When the eye is relaxed, its lens focuses far-away objects on the retina, a 

distance i behind the lens. We set p =  in the thin lens equation to obtain 1/i = 1/f, where 

f is the focal length of the relaxed effective lens. Thus, i = f = 2.50 cm. When the eye 

focuses on closer objects, the image distance i remains the same but the object distance 

and focal length change.  

 

ANALYZE (a) If p is the new object distance and f ' is the new focal length, then 

 

1 1 1

p i f
 


.  

We substitute i = f and solve for f ':  


 f
pf

f p

40 0 2 50

40 0
2 35

. .

.
.

cm cm

cm + 2.50 cm
cm.

b gb g
 

 

(b) Consider the lens maker’s equation 

1
1

1 1

1 2f
n

r r
  

F
HG
I
KJb g  

 

where r1 and r2 are the radii of curvature of the two surfaces of the lens and n is the index 

of refraction of the lens material. For the lens pictured in Fig. 34-46, r1 and r2 have about 

the same magnitude, r1 is positive, and r2 is negative. Since the focal length decreases, the 

combination (1/r1) – (1/r2) must increase. This can be accomplished by decreasing the 

magnitudes of both radii. 

 

LEARN When focusing on an object near the eye, the lens bulges a bit (smaller radius of 

curvature), and its focal length decreases.   

 

92. We refer to Fig. 34-20. For the intermediate image, p = 10 mm and  

 

i = (fob + s + fey) – fey = 300 m – 50 mm = 250 mm, 

so 

1 1 1 1

250

1

10
9 62

f i p
f

ob

ob
mm mm

mm,      .  

 

and  

s = (fob + s + fey) – fob – fey = 300 mm – 9.62 mm – 50 mm = 240 mm. 

 

Then from Eq. 34-14, 

M
s

f f
   

F
HG

I
KJ
F
HG

I
KJ  ob ey

cm mm

9.62 mm

mm

50 mm

25 240 150
125.  
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93. (a) Without the magnifier,  = h/Pn (see Fig. 34-19). With the magnifier, letting  

 

i = – |i| = – Pn, 

we obtain 

1 1 1 1 1 1 1

p f i f i f Pn

      .  

Consequently, 

m
h p

h P

f P

P

P

f fn

n

n

n








 


   

/

/

/ /

/
.

1 1

1
1 1

25 cm
 

 

With f = 10 cm, 
25 cm

1 3.5
10 cm

m    . 

 

(b) In the case where the image appears at infinity, let | |i i  , so that 

1/ 1/ 1/ 1/p i p f   , we have 

/ 1/ 25 cm
.

/ 1/

n

n n

Ph p f
m

h P P f f







      

 

With f = 10 cm, 
25 cm

2.5.
10 cm

m    

 

94. By Eq. 34-9, 1/i + 1/p is equal to constant (1/f ). Thus,  

 

1/(–10) + 1/(15) = 1/inew + 1/(70). 

This leads to inew = –21 cm. 

 

95. A converging lens has a positive-valued focal length, so f1 = +8 cm, f2 = +6 cm, and f3 

= +6 cm. We use Eq. 34-9 for each lens separately, “bridging the gap” between the results 

of one calculation and the next with p2 = d12  – i1 and p3 = d23  – i2.  We also use Eq. 34-7 

for each magnification (m1, etc.), and m = m1 m2 m3  (a generalized version of Eq. 34-11) 

for the net magnification of the system.  Our intermediate results for image distances are 

i1 = 24 cm and i2 = –12 cm.  Our final results are as follows:  

 

(a) i3 = +8.6 cm. 

 

(b) m =  +2.6. 

 

(c) The image is real (R). 

 

(d) The image is not inverted (NI). 

 

(e) It is on the opposite side of lens 3 from the object (which is expected for a real final 

image). 
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96. A converging lens has a positive-valued focal length, and a diverging lens has a 

negative-valued focal length. Therefore, f1 =  – 6.0 cm, f2 = +6.0 cm, and f3 = +4.0 cm. We 

use Eq. 34-9 for each lens separately, “bridging the gap” between the results of one 

calculation and the next with p2 = d12  – i1 and p3 = d23  – i2.  We also use Eq. 34-7 for 

each magnification (m1, etc.), and m = m1 m2 m3  (a generalized version of Eq. 34-11) for 

the net magnification of the system.  Our intermediate results for image distances are i1 

= –2.4 cm and i2 = 12 cm.  Our final results are as follows:  

 

(a) i3 = – 4.0 cm. 

 

(b) m = 1.2. 

 

(c) The image is virtual (V). 

 

(d) The image is inverted (I). 

 

(e) It is on the same side as the object (relative to lens 3) as expected for a virtual image. 

 

97. A converging lens has a positive-valued focal length, so f1 = +6.0 cm, f2 = +3.0 cm, 

and f3 = +3.0 cm. We use Eq. 34-9 for each lens separately, “bridging the gap” between 

the results of one calculation and the next with p2 = d12  – i1 and p3 = d23  – i2.  We also use 

Eq. 34-7 for each magnification (m1, etc.), and m = m1 m2 m3  (a generalized version of Eq. 

34-11) for the net magnification of the system.  Our intermediate results for image 

distances are i1 = 9.0 cm and i2 = 6.0 cm.  Our final results are as follows:  

 

(a) i3 = +7.5 cm. 

 

(b) m = 0.75. 

 

(c) The image is real (R). 

 

(d) The image is inverted (I).  

 

(e) It is on the opposite side of lens 3 from the object (which is expected for a real final 

image). 

 

98. A converging lens has a positive-valued focal length, so f1 = +6.0 cm, f2 = +6.0 cm, 

and f3 = +5.0 cm. We use Eq. 34-9 for each lens separately, “bridging the gap” between 

the results of one calculation and the next with p2 = d12  – i1 and p3 = d23  – i2.  We also use 

Eq. 34-7 for each magnification (m1, etc.), and m = m1 m2 m3  (a generalized version of Eq. 

34-11) for the net magnification of the system.  Our intermediate results for image 

distances are i1 = –3.0 cm and i2 = 9.0 cm.  Our final results are as follows:  

 

(a) i3 = +10 cm. 

 

(b) m =  +0.75. 
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(c) The image is real (R). 

 

(d) The image is not inverted (NI). 

 

(e) It is on the opposite side of lens 3 from the object (which is expected for a real final 

image).  

 

99. A converging lens has a positive-valued focal length, and a diverging lens has a 

negative-valued focal length. Therefore, f1 =  – 8.0 cm, f2 =  – 16 cm, and f3 = +8.0 cm. 

We use Eq. 34-9 for each lens separately, “bridging the gap” between the results of one 

calculation and the next with p2 = d12  – i1 and p3 = d23  – i2.  We also use Eq. 34-7 for 

each magnification (m1, etc.), and m = m1 m2 m3  (a generalized version of Eq. 34-11) for 

the net magnification of the system.  Our intermediate results for image distances are i1 

= –4.0 cm and i2 = –6.86 cm.  Our final results are as follows:  

 

(a) i3 = +24.2 cm. 

 

(b) m = 0.58. 

 

(c) The image is real (R). 

 

(d) The image is inverted (I). 

 

(e) It is on the opposite side of lens 3 from the object (as expected for a real image). 

 

100. A converging lens has a positive-valued focal length, and a diverging lens has a 

negative-valued focal length. Therefore, f1 =  +6.0 cm, f2 =  4.0 cm, and f3 = 12 cm. We 

use Eq. 34-9 for each lens separately, “bridging the gap” between the results of one 

calculation and the next with p2 = d12  – i1 and p3 = d23  – i2.  We also use Eq. 34-7 for 

each magnification (m1, etc.), and m = m1 m2 m3  (a generalized version of Eq. 34-11) for 

the net magnification of the system.  Our intermediate results for image distances are i1 

= –12 cm and i2 = –3.33 cm.  Our final results are as follows:  

 

(a) i3 = – 5.15 cm – 5.2 cm . 

 

(b) m = +0.285   +0.29. 

 

(c) The image is virtual (V). 

 

(d) The image is not inverted (NI). 

 

(e) It is on the same side as the object (relative to lens 3) as expected for a virtual image. 

 

101. THINK In this problem we convert the Gaussian form of the thin-lens formula to 

the Newtonian form.  
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EXPRESS For a thin lens, the Gaussian form of the thin-lens formula gives (1/p) + (1/i) 

= (1/f ), where p is the object distance, i is the image distance, and f is the focal length. To 

convert the formula to the Newtonian form, let p = f + x, where x is positive if the object 

is outside the focal point and negative if it is inside. In addition, let i = f + x', where x' is 

positive if the image is outside the focal point and negative if it is inside. 

 

ANALYZE From the Gaussian form, we solve for I and obtain: 

 

i
fp

p f



.  

Substituting p = f + x gives 

i
f f x

x


( )
.  

With i = f + x', we have 

   


 x i f
f f x

x
f

f

x

( ) 2

 

which leads to xx' = f 
2
. 

 

LEARN The Newtonain form is equivalent to the Gaussian form, and it provides another 

convenient way to analyze problems involving thin lenses. 

 

102. (a) There are three images. Two are formed by single reflections from each of the 

mirrors and the third is formed by successive reflections from both mirrors. The positions 

of the images are shown on the two diagrams that follow. The diagram on the left shows 

the image I1, formed by reflections from the left-hand mirror. It is the same distance 

behind the mirror as the object O is in front, and lies on the line perpendicular to the 

mirror and through the object. Image I2 is formed by light that is reflected from both 

mirrors. 

 
 

We may consider I2 to be the image of I1 formed by the right-hand mirror, extended. I2 is 

the same distance behind the line of the right-hand mirror as I1 is in front, and it is on the 

line that is perpendicular to the line of the mirror. The diagram on the right shows image 

I3, formed by reflections from the right-hand mirror. It is the same distance behind the 

mirror as the object is in front, and lies on the line perpendicular to the mirror and 
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through the object. As the diagram shows, light that is first reflected from the right-hand 

mirror and then from the left-hand mirror forms an image at I2. 

 

(b) For  = 45°, we have two images in the second mirror caused by the object and its 

“first” image, and from these one can construct two new images I and I' behind the first 

mirror plane. Extending the second mirror plane, we can find two further images of I and 

I' that are on equal sides of the extension of the first mirror plane. This circumstance 

implies there are no further images, since these final images are each other’s “twins.” We 

show this construction in the figure below. Summarizing, we find 1 + 2 + 2 + 2 = 7 

images in this case. 

 
 

(c) For  = 60°, we have two images in the second mirror caused by the object and its 

“first” image, and from these one can construct two new images I and I' behind the first 

mirror plane. The images I and I' are each other’s “twins” in the sense that they are each 

other’s reflections about the extension of the second mirror plane; there are no further 

images. Summarizing, we find 1 + 2 + 2 = 5 images in this case. 

 

For  = 120°, we have two images I'1 and I2 behind the extension of the second mirror 

plane, caused by the object and its “first” image (which we refer to here as I1). No further 

images can be constructed from I'1 and I2, since the method indicated above would place 

any further possibilities in front of the mirrors. This construction has the disadvantage of 

deemphasizing the actual ray-tracing, and thus any dependence on where the observer of 

these images is actually placing his or her eyes. It turns out in this case that the number of 

images that can be seen ranges from 1 to 3, depending on the locations of both the object 

and the observer.  

 

(d) Thus, the smallest number of images that can be seen is 1. For example, if the 

observer’s eye is collinear with I1 and I'1, then the observer can only see one image (I1 

and not the one behind it). Note that an observer who stands close to the second mirror 

would probably be able to see two images, I1 and I2. 

 

(e) Similarly, the largest number would be 3. This happens if the observer moves further 

back from the vertex of the two mirrors. He or she should also be able to see the third 

image, I'1, which is essentially the “twin” image formed from I1 relative to the extension 

of the second mirror plane. 
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103. THINK Two lenses in contact can be treated as one single lens with an effective 

focal length. 

 

EXPRESS We place an object far away from the composite lens and find the image 

distance i. Since the image is at a focal point, i = f, where f equals the effective focal 

length of the composite. The final image is produced by two lenses, with the image of the 

first lens being the object for the second. For the first lens, (1/p1) + (1/i1) = (1/f1), where f1 

is the focal length of this lens and i1 is the image distance for the image it forms. Since p1 

= , i1 = f1. The thin lens equation, applied to the second lens, is (1/p2) + (1/i2) = (1/f2), 

where p2 is the object distance, i2 is the image distance, and f2 is the focal length. If the 

thickness of the lenses can be ignored, the object distance for the second lens is p2 = –i1. 

The negative sign must be used since the image formed by the first lens is beyond the 

second lens if i1 is positive. This means the object for the second lens is virtual and the 

object distance is negative. If i1 is negative, the image formed by the first lens is in front 

of the second lens and p2 is positive.  

 

ANALYZE In the thin lens equation, we replace p2 with –f1 and i2 with f to obtain 

 

  
1 1 1

1 2f f f
 

or 

1 1 1

1 2

1 2

1 2f f f

f f

f f
  


.  

 

Thus, the effective focal length of the system is f
f f

f f




1 2

1 2

.  

 

LEARN The reciprocal of the focal length, 1/f, is known as the power of the lens, a 

quantity used by the optometrists to specify the strength of eyeglasses. From the 

derivation above, we see that when two lenses are in contact, the power of the effective 

lens is the sum of the two powers.   

 

104. (a) In the closest mirror M1, the “first” image I1 is 10 cm behind M1 and therefore 

20 cm from the object O. This is the smallest distance between the object and an image 

of the object. 

 

(b) There are images from both O and I1 in the more distant mirror, M2: an image I2 

located at 30 cm behind M2. Since O is 30 cm in front of it, I2 is 60 cm from O. This is 

the second smallest distance between the object and an image of the object. 

 

(c) There is also an image I3 that is 50 cm behind M2 (since I1 is 50 cm in front of it). 

Thus, I3 is 80 cm from O. In addition, we have another image I4 that is 70 cm behind M1 

(since I2 is 70 cm in front of it). The distance from I4 to O for is 80 cm. 
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(d) Returning to the closer mirror M1, there is an image I5 that is 90 cm behind the mirror 

(since I3 is 90 cm in front of it). The distances (measured from O) for I5 is 100 cm = 1.0 

m.  

 

105. (a) The “object” for the mirror that results in that box image is equally in front of the 

mirror (4 cm). This object is actually the first image formed by the system (produced by 

the first transmission through the lens); in those terms, it corresponds to i1 = 10 – 4 =  

6 cm. Thus, with f1 = 2 cm, Eq. 34-9 leads to 

1 1 1
300

1 1 1

1
p i f

p    . cm.  

 

(b) The previously mentioned box image (4 cm behind the mirror) serves as an “object” 

(at p3 = 14 cm) for the return trip of light through the lens (f3 = f1 = 2 cm). This time, Eq. 

34-9 leads to 

1 1 1
2 33

3 3 3

3
p i f

i    . cm.  

 

106. (a) First, the lens forms a real image of the object located at a distance 

 

i
f p f f

f1

1 1

1

1 1

1

1

1 1 1 1

2
2 

F
HG

I
KJ  
F
HG

I
KJ 

 

 

to the right of the lens, or at  

p2 = 2(f1 + f2) – 2f1 = 2f2 

 

in front of the mirror. The subsequent image formed by the mirror is located at a distance 

 

i
f p f f

f2

2 2

1

2 2

1

2

1 1 1 1

2
2 

F
HG

I
KJ  
F
HG

I
KJ 

 

 

to the left of the mirror, or at  

p'1 = 2(f1 + f2) – 2f2 = 2f1 

 

to the right of the lens. The final image formed by the lens is at a distance i'1 to the left of 

the lens, where 

  


F
HG

I
KJ  
F
HG

I
KJ 

 

i
f p f f

f1

1 1

1

1 1

1

1

1 1 1 1

2
2 .  

 

This turns out to be the same as the location of the original object.  

 

(b) The lateral magnification is 

 

m
i

p

i

p

i

p

f

f

f

f

f

f
 
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I
KJ 
F
HG
I
KJ 





F
HG
I
KJ  
F
HG
I
KJ 
F
HG
I
KJ 
F
HG
I
KJ  

1

1

2

2

1

1

1

1

2

2

1

1

2

2

2

2

2

2
10. . 



CHAPTER 34 1498 

 

(c) The final image is real (R). 

 

(d) It is at a distance i'1 to the left of the lens, 

 

(e) and inverted (I), as shown in the figure below.  

 
 

107. THINK The nature of the lenses, whether converging or diverging, can be 

determined from the magnification and orientation of the images they produce. 

 

EXPRESS By examining the ray diagrams shown in Fig. 34-16(a) – (c), we see that only 

a converging lens can produce an enlarged, upright image, while the image produced by a 

diverging lens is always virtual, reduced in size, and not inverted.  

 

ANALYZE (a) In this case m > +1 and we know that lens 1 is converging (producing a 

virtual image), so that our result for focal length should be positive. Since  

|P + i1| = 20 cm and i1 = – 2p1, we find p1 = 20 cm and i1 = – 40 cm. Substituting these 

into Eq. 34-9, 

1 1 1

1 1 1

p i f
   

leads to  

 1 1
1

1 1

(20 cm)( 40 cm)
40 cm,

20 cm ( 40 cm)

p i
f

p i


   

  
 

 

which is positive as we expected. 

 

(b) The object distance is p1 = 20 cm, as shown in part (a). 

 

(c) In this case 0 < m < 1 and we know that lens 2 is diverging (producing a virtual 

image), so that our result for focal length should be negative. Since |p + i2| = 20 cm and 

i2 = – p2/2, we find p2 = 40 cm and i2 = – 20 cm. Substituting these into Eq. 34-9 leads to 

 

2 2
2

2 2

(40 cm)( 20 cm)
40 cm,

40 cm ( 20 cm)

p i
f

p i


   

  
 

 

which is negative as we expected. 

 

(d) The object distance is p2 = 40 cm, as shown in part (c). 
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LEARN The ray diagram for lens 1 is similar to the one shown in Fig. 34-16(b). The lens 

is converging. With the fly inside the focal point (p1 < f1), we have a virtual image with 

the same orientation, and on the same side as the object. On the other hand, the ray 

diagram for lens 2 is similar to the one shown in Fig. 34-16(c). The lens is diverging, 

forming a virtual image with the same orientation but smaller in size as the object, and on 

the same side as the object. 

 

108. We use Eq. 34-10, with the conventions for signs discussed in the text. 

 

(a) For lens 1, the biconvex (or double convex) case, we have 

 

f n
r r
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F
HG
I
KJ
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NM

O
QP
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
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I
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 
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1
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1 1

b g b g.
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(b) Since f > 0 the lens forms a real image of the Sun. 

 

(c) For lens 2, of the planar convex type, we find 

 

 

1

1 1
1.5 1 80cm.

40cm
f



  
     

   
 

 

(d) The image formed is real (since f > 0). 

 

(e) Now for lens 3, of the meniscus convex type, we have 

 

 

1

1 1
1.5 1 240cm 2.4 m.

40cm 60cm
f



  
      

  
 

 

(f) The image formed is real (since f > 0). 

 

(g) For lens 4, of the biconcave type, the focal length is 

 

 

1

1 1
1.5 1 40cm.

40cm 40cm
f



  
     

  
 

 

(h) The image formed is virtual (since f < 0). 

 

(i) For lens 5 (plane-concave), we have  

1

1 1
1.5 1 80cm.

40cm
f



  
     

  
 

 

(j) The image formed is virtual (since f < 0). 
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(k) For lens 6 (meniscus concave),  

1

1 1
1.5 1 240cm 2.4 m.

60cm 40cm
f



  
      

  
 

 

(l) The image formed is virtual (since f < 0). 

 

109. (a) The first image is figured using Eq. 34-8, with n1 = 1 (using the rounded-off 

value for air) and n2 = 8/5. 

1 8

5

16 1

p i r
 

.
 

For a “flat lens” r = , so we obtain  

i = – 8p/5 = – 64/5 

 

(with the unit cm understood) for that object at p = 10 cm. Relative to the second surface, 

this image is at a distance of 3 + 64/5 = 79/5. This serves as an object in order to find the 

final image, using Eq. 34-8 again (and r = ) but with n1 = 8/5 and n2 = 4/3. 

 

8

5

4

3
0







p i
 

which produces (for p' = 79/5)  

 

i' = – 5p/6 = – 79/6  – 13.2. 

 

This means the observer appears 13.2 + 6.8 = 20 cm from the fish. 

 

(b) It is straightforward to “reverse” the above reasoning, the result being that the final 

fish image is 7.0 cm to the right of the air-wall interface, and thus 15 cm from the 

observer. 

 

110. Setting nair = 1, nwater = n, and  p =  r/2 in Eq. 34-8 (and being careful with the sign 

convention for r in that equation), we obtain i =  –r/(1 + n), or |i| = r/(1 + n).  Then we use 

similar triangles (where h is the size of the fish and h  is that of the “virtual fish”) to set 

up the ratio 

h
r – |i|

  =  
 h 

 r/2 
  . 

 

Using our previous result for |i|, this gives h/h = 2(1 – 1/(1 + n)) = 1.14. 

 

111. (a) Parallel rays are bent by positive-f lenses to their focal points F1, and rays that 

come from the focal point positions F2 in front of positive-f lenses are made to emerge 

parallel. The key, then, to this type of beam expander is to have the rear focal point F1 of 

the first lens coincide with the front focal point F2 of the second lens. Since the triangles 

that meet at the coincident focal point are similar (they share the same angle; they are 
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vertex angles), then Wf/f2 = Wi/f1 follows immediately. Substituting the values given, we 

have  

 2

1

30.0 cm
(2.5 mm) 6.0 mm.

12.5 cm
f i

f
W W

f
    

 

(b) The area is proportional to W 
2
. Since intensity is defined as power P divided by area, 

we have  
22 2 2

21 1

2 2 2

2 2

    1.6 kW/m .
f f i

f i

i i f

P WI W f f
I I

I P W W f f

 
      

 
 

 

(c) The previous argument can be adapted to the first lens in the expanding pair being of 

the diverging type, by ensuring that the front focal point of the first lens coincides with 

the front focal point of the second lens. The distance between the lenses in this case is  

 

f2 – |f1| = 30.0 cm – 26.0 cm = 4.0 cm. 

 

112. The water is medium 1, so n1 = nw, which we simply write as n. The air is medium 2, 

for which n2  1. We refer to points where the light rays strike the water surface as A (on 

the left side of Fig. 34-56) and B (on the right side of the picture). The point midway 

between A and B (the center point in the picture) is C. The penny P is directly below C, 

and the location of the “apparent” or virtual penny is V. We note that the angle CVB  

(the same as CVA ) is equal to 2, and the angle CPB  (the same as CPA ) is equal to 

1. The triangles CVB and CPB share a common side, the horizontal distance from C to B 

(which we refer to as x). Therefore, 

tan . 2  
x

d

x

da

1and tan  

 

Using the small angle approximation (so a ratio of tangents is nearly equal to a ratio of 

sines) and the law of refraction, we obtain 

2 2 1

1 1 2 a

tan sin
          

tan sin

a

x
d n d

n
x n d
d

 

 
      

 

which yields the desired relation: da = d/n. 

 

113. The top view of the arrangement is depicted in the figure below. 
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From the figure, we obtain 

 
25 3

tan
12x

    

which gives 100 cm.x   

 

114. Consider the ray diagram below. 

 
 

Since / 2,        we readily see that ,  i.e., the angle of incidence is equal to 

the angle of reflection. To show that AOB is the shortest path, consider an incident ray 

AO  with a reflected ray ,O B  where the angle of incidence is not equal to the angle of 

reflection. From the figure, we have 

 

 AO B AO O B A O O B A B A O OB AO OB AOB                  

 

The inequality comes from the fact that the sum of the two sides of a triangle is always 

greater than the hypotenuse.  

 

115. We refer to Fig. 34-2 in the textbook. Consider the two light rays, r and r', which are 

closest to and on either side of the normal ray (the ray that reverses when it reflects). 

Each of these rays has an angle of incidence equal to  when they reach the mirror. 

Consider that these two rays reach the top and bottom edges of the pupil after they have 

reflected. If ray r strikes the mirror at point A and ray r' strikes the mirror at B, the 

distance between A and B (call it x) is 

x do 2 tan  

 

where do is the distance from the mirror to the object. We can construct a right triangle 

starting with the image point of the object (a distance do behind the mirror; see I in Fig. 

34-2). One side of the triangle follows the extended normal axis (which would reach from 

I to the middle of the pupil), and the hypotenuse is along the extension of ray r (after 

reflection). The distance from the pupil to I is dey + do, and the small angle in this triangle 

is again . Thus, 

tan 


R

d doey

 

 

where R is the pupil radius (2.5 mm). Combining these relations, we find 
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x d
R

d d
o

o







2 2 100
2 5

300 100ey

mm
mm

mm mm
b g .

 

 

which yields x = 1.67 mm. Now, x serves as the diameter of a circular area A on the 

mirror, in which all rays that reflect will reach the eye. Therefore, 

 

A x  
1

4 4
167 2 22 2 2


. . .mm mmb g  

 

116. For an object in front of a thin lens, the object distance p and the image distance i are 

related by (1/p) + (1/i) = (1/f ), where f is the focal length of the lens. For the situation 

described by the problem, all quantities are positive, so the distance x between the object 

and image is x = p + i. We substitute i = x – p into the thin lens equation and solve for x: 

 

x
p

p f




2

.  

 

To find the minimum value of x, we set dx/dp = 0 and solve for p. Since 

 

dx

dp

p p f

p f






( )

( )
,

2
2

 

 

the result is p = 2f. The minimum distance is 

 

x
p

p f

f

f f
fmin

( )
.







2 22

2
4  

 

This is a minimum, rather than a maximum, since the image distance i becomes large 

without bound as the object approaches the focal point. 

 

117. (a) If the object distance is x, then the image distance is D – x and the thin lens 

equation becomes 

1 1 1

x D x f



 .  

 

We multiply each term in the equation by fx(D – x) and obtain x
2
 – Dx + Df = 0. Solving 

for x, we find that the two object distances for which images are formed on the screen are 

 

x
D D D f

x
D D D f

1 2

4

2

4

2


 


 b g b g
and .  

 

The distance between the two object positions is 
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d x x D D f   2 1 4b g.  

 

(b) The ratio of the image sizes is the same as the ratio of the lateral magnifications. If the 

object is at p = x1, the magnitude of the lateral magnification is 

 

m
i

p

D x

x
1

1

1

1

1

 


.  

 

Now x D d1
1
2

 b g,  where d D D f b g,  so 

 

m
D D d

D d

D d

D d
1

2

2


 








b g
b g

/

/
.  

 

Similarly, when the object is at x2, the magnitude of the lateral magnification is 

 

m
I

p

D x

x

D D d

D d

D d

D d
2

2

2

2

2

2

2
 




 








b g
b g

/

/
.  

 

The ratio of the magnifications is 

 

m

m

D d D d

D d D d

D d

D d

2

1

2


 

 






F
HG
I
KJ

b g b g
b g b g

/

/
.  

 

118. (a) Our first step is to form the image from the first lens. With p1 = 10 cm and 

1 15 cmf   , Eq. 34-9 leads to 

1

1 1 1

1 1 1
6.0cm.i

p i f
      

 

The corresponding magnification is m1 = –i1/p1 = 0.60. This image serves the role of 

“object” for the second lens, with p2 = 12 + 6.0 = 18 cm, and f2 = 12 cm. Now, Eq. 34-9 

leads to 

2

2 2 2

1 1 1
36 cmi

p i f
    . 

 

(b) The corresponding magnification is m2 = –i2/p2 = –2.0, which results in a net 

magnification of m = m1m2 = –1.2. The height of the final image is (in absolute value) 

(1.2)(1.0 cm) = 1.2 cm.  

 

(c) The fact that i2 is positive means that the final image is real. 
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(d) The fact that m is negative means that the orientation of the final image is inverted 

with respect to the (original) object.  

 

119. (a) Without the diverging lens (lens 2), the real image formed by the converging lens 

(lens 1) is located at a distance 

i
f p

1

1 1

1 1

1 1 1

20

1

40
40 

F
HG

I
KJ  
F
HG

I
KJ 

 

cm cm
cm  

 

to the right of lens 1. This image now serves as an object for lens 2, with p2 = –(40 cm – 

10 cm) = –30 cm. So 

i
f p

2

2 2

1 1

1 1 1

15

1

30
30 

F
HG

I
KJ 





F
HG

I
KJ  

 

cm cm
cm.  

 

Thus, the image formed by lens 2 is located 30 cm to the left of lens 2. 

 

(b) The magnification is m = (–i1/p1)  (–i2/p2) = +1.0 > 0, so the image is not inverted. 

 

(c) The image is virtual since i2 < 0. 

 

(d) The magnification is m = (–i1/p1)  (–i2/p2) = +1.0, so the image has the same size as 

the object. 

 

120. (a) For the image formed by the first lens 

 

i
f p

1

1 1

1 1

1 1 1

10

1

20
20 

F
HG

I
KJ  
F
HG

I
KJ 

 

cm cm
cm.  

 

For the subsequent image formed by the second lens p2 = 30 cm – 20 cm = 10 cm, so 

 

i
f p

2

2 2

1 1

1 1 1

12 5

1

10
50 

F
HG

I
KJ  
F
HG

I
KJ  

 

. cm cm
cm.  

 

Thus, the final image is 50 cm to the left of the second lens, which means that it coincides 

with the object.  

 

(b) The magnification is 

 

m
i

p

i

p

F
HG
I
KJ
F
HG
I
KJ 
F
HG
I
KJ

F
HG

I
KJ  

1

1

2

2

20 50
50

cm

20cm

cm

10cm
. ,  

 

which means that the final image is five times larger than the original object. 
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(c) The image is virtual since i2 < 0. 

 

(d) The image is inverted since m < 0. 

 

121. (a) We solve Eq. 34-9 for the image distance i: i = pf/(p – f ). The lens is diverging, 

so its focal length is f = –30 cm. The object distance is p = 20 cm. Thus, 

 

i 


 
 

20 30

20 30
12

cm cm

cm cm
cm.

b gb g
b g b g  

 

The negative sign indicates that the image is virtual and is on the same side of the lens as 

the object.  

 

(b) The ray diagram, drawn to scale, is shown below. 

 
122. (a) Suppose that the lens is placed to the left of the mirror. The image formed by the 

converging lens is located at a distance 

 

i
f p

 
F
HG
I
KJ  
F
HG

I
KJ 

 

1 1 1

050

1

10
10

1 1

. .
.

m m
m  

 

to the right of the lens, or 2.0 m – 1.0 m = 1.0 m in front of the mirror. The image formed 

by the mirror for this real image is then at 1.0 m to the right of the mirror, or 2.0 m + 1.0 

m = 3.0 m to the right of the lens. This image then results in another image formed by the 

lens, located at a distance 
11

1 1 1 1
0.60m

0.50m 3.0m
i

f p



  
       

   
 

 

to the left of the lens (that is, 2.6 cm from the mirror). 

 

(b) The lateral magnification is 

 

m
i

p

i

p
 
F
HG
I
KJ 





F
HG
I
KJ  
F
HG
I
KJ 
F
HG

I
KJ  

10

10

0 60

30
0 20

.

.

.

.
. .

m

m

m

m
 

 

(c) The final image is real since i' > 0. 
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(d) The image is to the left of the lens. 

 

(e) It also has the same orientation as the object since m > 0. Therefore, the image is not 

inverted.  

 

123. (a) We use Eq. 34-8 (and Fig. 34-12(b) is useful), with n1 = 1 (using the rounded-off 

value for air) and n2 = 1.5. 

1 15 15 1

p i r
 

. .
 

 

Using the sign convention for r stated in the paragraph following Eq. 34-8 (so that r = 

+6.0 cm), we obtain i = –90 cm for objects at p = 10 cm. Thus, the object and image are 

80 cm apart. 

 

(b) The image distance i is negative with increasing magnitude as p increases from very 

small values to some value p0 at which point i . Since 1/(–) = 0, the above 

equation yields 

0

0

1 1.5 1
2 .p r

p r


    

 

Thus, the range for producing virtual images is 0 < p  12 cm. 

 

124. (a) Suppose one end of the object is a distance p from the mirror and the other end is 

a distance p + L. The position i1 of the image of the first end is given by 

 

1 1 1

1p i f
   

 

where f is the focal length of the mirror. Thus, i
f

p f

p

1 


.  The image of the other end is 

located at 

i
f p L

p L f
2 



 

b g
,  

so the length of the image is 

   





 


  
L i i

fp

p f

f p L

p L f

f L

p f p L f
1 2

2b g
b gb g .  

 

Since the object is short compared to p – f, we may neglect the L in the denominator and 

write 

 


F
HG
I
KJL L

f

p f

2

. 
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(b) The lateral magnification is m = –i/p and since i = fp/(p – f ), this can be written m 

= –f/(p – f ). The longitudinal magnification is 

 

 





F
HG
I
KJ m

L

L

f

p f
m

2

2 .  

 

125. Consider a single ray from the source to the mirror and let  be the angle of 

incidence. The angle of reflection is also  and the reflected ray makes an angle of 2 

with the incident ray.  

 
 

Now we rotate the mirror through the angle  so that the angle of incidence increases to  

+ . The reflected ray now makes an angle of 2( + ) with the incident ray. The 

reflected ray has been rotated through an angle of 2. If the mirror is rotated so the angle 

of incidence is decreased by , then the reflected ray makes an angle of 2( – ) with the 

incident ray. Again it has been rotated through 2. The diagrams below show the 

situation for  = 45°. The ray from the object to the mirror is the same in both cases and 

the reflected rays are 90° apart. 

 

126. The fact that it is inverted implies m < 0. Therefore, with m = –1/2, we have i = p/2, 

which we substitute into Eq. 34-4: 

 

1 1 1 1 2 1

p i f p p f
      

or 

3 1

30.0 cm f
 . 

 

Consequently, we find f = (30.0 cm)/3 = 10.0 cm. The fact that f > 0 implies the mirror is 

concave. 

 

127. (a) The mirror has focal length f = 12.0 cm. With m = +3, we have i = –3p. We 

substitute this into Eq. 34-4: 

 

1 1 1 1 1 1

3 12 cmp i f p p
    


 

or 
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2 1

3 12 cmp
 . 

 

Consequently, we find p = 2(12 cm)/3 = 8.0 cm. 

 

(b) With m = –3, we have i = +3p, which we substitute into Eq. 34-4: 

 

1 1 1 1 1 1

3 12p i f p p
      

or 

4 1

3 12 cmp
 . 

 

Consequently, we find p = 4(12 cm)/3 = 16 cm. 

 

(c) With m = –1/3, we have i = p/3. Thus, Eq. 34-4 leads to 

 

1 1 1 1 3 1

12 cmp i f p p
      

or 

4 1

12 cmp
 . 

 

Consequently, we find p = 4(12 cm) = 48 cm. 

 

128. Since 0 < m < 1, we conclude the lens is of the diverging type (so f = –40 cm). Thus, 

substituting i = –3p/10 into Eq. 34-9 produces 

 

1 10

3

7

3

1

p p p f
    .  

 

Therefore, we find p = 93.3 cm and i = –28.0 cm, or | i | = 28.0 cm. 

 

129. (a) We show the  = 0.500 rad, r =12 cm, p =  20 cm calculation in detail.  The 

understood length unit is the centimeter: 

 

The distance from the object to point x:    

 

         d  =  p – r + x  =  8 + x 

y  = d tan  = 4.3704 + 0.54630x 

    

From the solution of  x
2
 + y

2
 = r

2
  we get  x  =  8.1398.   

 

 = tan
1

(y/x) = 0.8253 rad 
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 =  2  =  1.151 rad 

      

From the solution of tan()= y/(x + i  r)  we get i =  7.799 . The other results are shown 

without the intermediate steps: 

 

For  = 0.100 rad, we get i = 8.544 cm; for  = 0.0100 rad, we get i =  8.571 cm. Eq. 34-

3 and Eq. 34-4 (the mirror equation) yield  i =  8.571 cm. 

 

(b) Here the results are: ( = 0.500 rad, i =  13.56 cm), ( = 0.100 rad, i =  12.05 cm), 

( = 0.0100 rad, i =  12.00 cm).  The mirror equation gives i =  12.00 cm. 

 

130. (a) Since m = +0.250, we have i = – 0.25p which indicates that the image is virtual 

(as well as being diminished in size). We conclude from this that the mirror is convex and 

that f < 0; in fact, f = – 2.00 cm. Substituting i = – p/4 into Eq. 34-4 produces 

 

1 4 3 1

p p p f
     

 

Therefore, we find p = 6.00 cm and i = – 1.50 cm, or | | 1.50 cmi  . 

 

(b) The focal length is negative. 

 

(c) As shown in (a), the image is virtual. 

 

131. First, we note that — relative to the water — the index of refraction of the carbon 

tetrachloride should be thought of as n = 1.46/1.33 = 1.1 (this notation is chosen to be 

consistent with Problem 34-122). Now, if the observer were in the water, directly above 

the 40 mm deep carbon tetrachloride layer, then the apparent depth of the penny as 

measured below the surface of the carbon tetrachloride is da = 40 mm/1.1 = 36.4 mm. 

This “apparent penny” serves as an “object” for the rays propagating upward through the 

20 mm layer of water, where this “object” should be thought of as being 20 mm + 36.4 

mm = 56.4 mm from the top surface. Using the result of Problem 34-122 again, we find 

the perceived location of the penny, for a person at the normal viewing position above the 

water, to be 56.4 mm/1.33 = 42 mm below the water surface. 

 

132. The sphere (of radius 0.35 m) is a convex mirror with focal length f = –0.175 m. We 

adopt the approximation that the rays are close enough to the central axis for Eq. 34-4 to 

be applicable.  

 

(a) With p = 1.0 m, the equation 1/p + 1/i = 1/f yields i = –0.15 m, which means the 

image is 0.15 m from the front surface, appearing to be inside the sphere. 

 

(b) The lateral magnification is m = –i/p which yields m = 0.15. Therefore, the image 

distance is (0.15)(2.0 m) = 0.30 m. 

 

(c) Since 0m  , the image is upright, or not inverted (NI). 
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133. (a) In this case i < 0 so i =|i|, and Eq. 34-9 becomes 1/f = 1/p – 1/|i|.  

We differentiate this with respect to time (t) to obtain 

 

d|i|

dt
  =  







|i|

 p

2

 
dp

dt
   . 

 

As the object is moved toward the lens, p is decreasing, so dp/dt < 0.  Consequently, the 

above expression shows that  d|i|/dt < 0; that is, the image moves in from infinity. The 

angular magnification m  = ' / also increases as the following graph shows (“read” the 

graph from left to right since we are considering decreasing p from near the focal length 

to near 0).  To obtain this graph of m, we chose f = 30 cm and h = 2 cm.  

 

 
 

(b) When the image appears to be at the near point (that is, |i| = Pn), m is at its maximum 

usable value.  Since one generally takes Pn to be equal to 25 cm (this value, too, was used 

in making the above graph). 

 

(c) In this case,  

| |

| |

n

n

P fif i f
p

i f i f P f
  

  
 . 

 

If we use the small angle approximation, we have ' h'/|i| and   h/Pn (note: this 

approximation was not used in obtaining the graph, above). We therefore find  

 

m (h'/|i|)/(h/Pn) 

 

which (using Eq. 34-7 relating the ratio of heights to the ratio of distances) becomes 

 
| |

| | | | /( )

n n n n n

n n

P P P P P fh i
m

h i p i p P f P f f


 
      


 

 

which readily simplifies to the desired result. 
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(d) The linear magnification (Eq. 34-7) is given by (h'/h)  m( |i|/ Pn)  (see the first in the 

chain of equalities, above).  Once we set  |i| = Pn  (see part (b)) then this shows the 

equality in the magnifications. 

 

134. (a) The discussion in the textbook of the refracting telescope applies to the 

Newtonian arrangement if we replace the objective lens of Fig. 34-21 with an objective 

mirror (with the light incident on it from the right). This might suggest that the incident 

light would be blocked by the person’s head in Fig. 34-21, which is why Newton added 

the mirror M' in his design (to move the head and eyepiece out of the way of the 

incoming light). The beauty of the idea of characterizing both lenses and mirrors by focal 

lengths is that it is easy, in a case like this, to simply carry over the results of the 

objective-lens telescope to the objective-mirror telescope, so long as we replace a positive 

f device with another positive f device. Thus, the converging lens serving as the objective 

of Fig. 34-21 must be replaced (as Newton has done in Fig. 34-58) with a concave mirror. 

With this change of language, the discussion in the textbook leading up to Eq. 34-15 

applies equally as well to the Newtonian telescope: m = – fob/fey. 

 

(b) A meter stick (held perpendicular to the line of sight) at a distance of 2000 m subtends 

an angle of  

 stick

m

2000 m
rad. 

1
0 0005.  

 

multiplying this by the mirror focal length gives (16.8 m) (0.0005) = 8.4 mm for the size 

of the image. 

 

(c) With r = 10 m, Eq. 34-3 gives fob = 5 m. Plugging this into (the absolute value of) Eq. 

34-15 leads to fey = 5/200 = 2.5 cm. 

 

135. (a) If we let p   in Eq. 34-8, we get i =  n2 r /(n2 – n1).  If we set n1 = 1 (for air) 

and restrict n2  so that  1 < n2  < 2, then this suggests that i > 2r  (so this image does form 

before the rays strike the opposite side of the sphere).  We can still consider this as a sort 

of “virtual” object for the second imaging event, where this “virtual” object distance is 

 

2r – i = (n – 2) r /(n – 1), 

 

where we have simplified the notation by writing  n2 = n.  Putting this in for p in Eq. 34-8 

and being careful with the sign convention for r in that equation, we arrive at the final 

image location:  i  = (0.5)(2 – n)r/(n – 1). 

 

(b) The image is to the right of the right side of the sphere. 

 

136. We set up an xyz coordinate system where the individual planes (xy, yz, xz) serve as 

the mirror surfaces.  Suppose an incident ray of light A first strikes the mirror in the xy 

plane.  If the unit vector denoting the direction of A is given by   

 

cos()i
^
 + cos()j

^
  + cos()k

^
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where are the angles A makes with the axes, then after reflection off the xy plane 

the unit vector becomes cos()i
^
 + cos()j

^
  – cos()k

^
 (one way to rationalize this is to 

think of the reflection as causing the angle  to become ).  Next suppose it strikes 

the mirror in the xz plane.  The unit vector of the reflected ray is now cos()i
^
 – cos()j

^
  – 

cos()k
^
 .  Finally as it reflects off the mirror in the yz plane  becomes , so the unit 

vector in the direction of the reflected ray is given by  – cos()i
^
 – cos()j

^
  – cos()k

^
 ,  

exactly reversed from A’s original direction.  A further observation may be made: this 

argument would fail if the ray could strike any given surface twice and some 

consideration (perhaps an illustration) should convince the student that such an 

occurrence is not possible. 

 

137. Since m = –2 and p = 4.00 cm, then i = 8.00 cm (and is real). Eq. 34-9 is 

 

1 1 1

p i f
   

 

and leads to f = 2.67 cm (which is positive, as it must be for a converging lens). 

 

138. (a) Since m = +0.200, we have i = –0.2p which indicates that the image is virtual (as 

well as being diminished in size). We conclude from this that the mirror is convex (and 

that f = –40.0 cm). 

 

(b) Substituting i = –p/5 into Eq. 34-4 produces 

 

1 5 4 1

p p p f
    .  

 

Therefore, we find 4 4( 40.0 cm) 160 cmp f      . 

 

139. (a) Our first step is to form the image from the first lens. With p1 = 3.00 cm and f1 = 

+4.00 cm, Eq. 34-9 leads to 

 

1 1
1

1 1 1 1 1

1 1 1 (4.00 cm)(3.00 cm)
12.0cm.

3.00 cm 4.00 cm

f p
i

p i f p f
      

 
 

 

The corresponding magnification is m1 = –i1/p1 = 4. This image serves the role of 

“object” for the second lens, with p2 = 8.00 + 12.0 = 20.0 cm, and f2 = – 4.00 cm. Now, 

Eq. 34-9 leads to 

2 2
2

2 2 2 2 2

1 1 1 ( 4.00 cm)(20.0 cm)
3.33 cm

20.0 cm ( 4.00 cm)

f p
i

p i f p f


      

  
, 

 

or 2| | 3.33 cmi  . 

 



CHAPTER 34 1514 

(b) The fact that i2 is negative means that the final image is virtual (and therefore to the 

left of the second lens). 

 

(c) The image is virtual.  

 

(d) With m2 = –i2/p2 = 1/6, the net magnification is m = m1m2 = 2/3 > 0. The fact that m is 

positive means that the orientation of the final image is the same as the (original) object. 

Therefore, the image is not inverted. 

 

140. The far point of the person is 50 cm = 0.50 m from the eye. The object distance is 

taken to be at infinity, and the corrected lens will allow the image to be formed at the near 

point. Thus,  

1 1 1 1 1

0.50 mf p i
   

 
 

 

and we find the focal length of the lens to 0.50 m.f    

 

(b) Since f < 0, the lens is diverging. 

 

(c) The power of the lens is 
1 1

2.0 diopters
0.50 m

P
f

   


. 

 

141. (a) Without the magnifier,  = h/Pn. With the magnifier, letting p = pn and i = – |i| 

= – Pn, we obtain 

1 1 1 1 1 1 1

p f i f i f Pn

      .  

Consequently, 

m
h p

h P

f P

P

P

f fn

n

n

n








 


   

/

/

/ /

/
.

1 1

1
1 1

25 cm
 

 

(b) Now i i p i p f     , / / / /so1 1 1 1  and 

 

/ 1/ 25 cm
.

/ 1/

n

n n

Ph p f
m

h P P f f







      

 

(c) For f = 10 cm, we find the magnifications to be 
25 cm

1 3.5
10 cm

m     for cases (a), and  

25 cm
2.5

10 cm
m   for case (b).  
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Chapter 35 
 

 

1. The fact that wave W2 reflects two additional times has no substantive effect on the 

calculations, since two reflections amount to a 2(/2) =  phase difference, which is 

effectively not a phase difference at all. The substantive difference between W2 and W1 is 

the extra distance 2L traveled by W2. 

 

(a) For wave W2 to be a half-wavelength “behind” wave W1, we require 2L = /2, or L = 

/4 = (620 nm)/4 =155 nm using the wavelength value given in the problem. 

 

(b) Destructive interference will again appear if W2 is 3
2
  “behind” the other wave. In 

this case, 2 3 2 L  , and the difference is 

 

3 620 nm
310nm .

4 4 2 2
L L

  
       

 

2. We consider waves W2 and W1 with an initial effective phase difference (in 

wavelengths) equal to 1
2

, and seek positions of the sliver that cause the wave to 

constructively interfere (which corresponds to an integer-valued phase difference in 

wavelengths). Thus, the extra distance 2L traveled by W2 must amount to 31
2 2

,  , and so 

on. We may write this requirement succinctly as 

2 1
where 0,1, 2, .

4

m
L m


    

 

(a) Thus, the smallest value of /L   that results in the final waves being exactly in phase 

is when m = 0, which gives / 1/ 4 0.25L    . 

 

(b) The second smallest value of /L  that results in the final waves being exactly in 

phase is when m = 1, which gives / 3/ 4 0.75L    . 

 

(c) The third smallest value of /L  that results in the final waves being exactly in phase 

is when m = 2, which gives / 5/ 4 1.25L    . 

 

3. THINK The wavelength of light in a medium depends on the index of refraction of the 

medium. The nature of the interference, whether constructive or destructive, depends on 

the phase difference of the two waves. 

 

EXPRESS We take the phases of both waves to be zero at the front surfaces of the layers. 

The phase of the first wave at the back surface of the glass is given by 1 = k1L – t, 

where k1 (= 2/1) is the angular wave number and 1 is the wavelength in glass. 

Similarly, the phase of the second wave at the back surface of the plastic is given by 2 = 
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k2L – t, where k2 (= 2/2) is the angular wave number and 2 is the wavelength in 

plastic. The angular frequencies are the same since the waves have the same wavelength 

in air and the frequency of a wave does not change when the wave enters another medium. 

The phase difference is 

 1 2 1 2

1
2 .

 
k k L L 

 
     

 1 2

1
p 

l l
 

Now, 1 = air/n1, where air is the wavelength in air and n1 is the index of refraction of 

the glass. Similarly, 2 = air/n2, where n2 is the index of refraction of the plastic. This 

means that the phase difference is  

 1 2 1 2

air

2
.n n L


 


    

 

ANALYZE (a) The value of L that makes this 5.65 rad is 

 

L
n n








 




 1 2

1 2

9

6

2

565 400 10

2
360 10

b g
b g

c h
b g


   

air
m

m.
.

.  

 

(b) A phase difference of 5.65 rad is less than 2 rad = 6.28 rad, the phase difference for 

completely constructive interference, but greater than  rad (= 3.14 rad), the phase 

difference for completely destructive interference. The interference is, therefore, 

intermediate, neither completely constructive nor completely destructive. It is, however, 

closer to completely constructive than to completely destructive. 

 

LEARN The phase difference of two light waves can change when they travel through 

different materials having different indices of refraction. 

 

4. Note that Snell’s law (the law of refraction) leads to 1 = 2 when n1 = n2.  The graph 

indicates that 2 = 30° (which is what the problem gives as the value of 1) occurs at n2 = 

1.5.  Thus, n1 = 1.5, and the speed with which light propagates in that medium is 

 
8

8

1

2.998 10 m s
2.0 10 m s.

1.5

c
v

n


     

 

5. Comparing the light speeds in sapphire and diamond, we obtain 

 

 8 71 1 1 1
2.998 10 m s 4.55 10 m s.

1.77 2.42
s d

s d

v v v c
n n

   
            

  
 

 

6. (a) The frequency of yellow sodium light is 

 
8

14

9

2.998 10 m s
5.09 10 Hz.

589 10 m

c
f

 


   


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(b) When traveling through the glass, its wavelength is 

 

589nm
388 nm.

1.52
n

n


     

 

(c) The light speed when traveling through the glass is 

 

  14 9 85.09 10 Hz 388 10 m 1.97 10 m s.nv f      l  

 

7. The index of refraction is found from Eq. 35-3: 

 

n
c

v
 






2 998 10

192 10
156

8

8

.

.
. .

m s

m s
 

 

8. (a) The time t2 it takes for pulse 2 to travel through the plastic is 

 

t
L

c

L

c

L

c

L

c

L

c
2

155 170 160 145

6 30
    

. . . .

.
.  

 

Similarly for pulse 1: 

t
L

c

L

c

L

c

L

c
1

2

159 165 150

6 33
   

. . .

.
.  

 

Thus, pulse 2 travels through the plastic in less time. 

 

(b) The time difference (as a multiple of L/c) is 

 

t t t
L

c

L

c

L

c
    2 1

6 33 6 30 0 03. . .
. 

 

Thus, the multiple is 0.03. 

 

9. (a) We wish to set Eq. 35-11 equal to 1/ 2,  since a half-wavelength phase difference is 

equivalent to a  radians difference. Thus, 

 

L
n n

min
.

.





 


 2 1

620

145
1550 155b g b g

nm

2 1.65
nm  m.  

 

(b) Since a phase difference of 
3

2
 (wavelengths) is effectively the same as what we 

required in part (a), then 
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L
n n

L


  
3

3 3 155 4 65
2 1


b g b gmin . . m m. 

 

10. (a) The exiting angle is 50º, the same as the incident angle, due to what one might call 

the “transitive” nature of Snell’s law:  n1 sin 1 = n2 sin 2 = n3 sin 3 = … 

  

(b) Due to the fact that the speed (in a certain medium) is c/n (where n is that medium’s 

index of refraction) and that speed is distance divided by time (while it’s constant), we 

find  

t = nL/c = (1.45)(25 × 10
19 

m)/(3.0 × 10
8
 m/s) = 1.4 × 10

13 
s = 0.14 ps. 

 

11. (a) Equation 35-11 (in absolute value) yields 

 

L
n n

 2 1

6

9

850 10

500 10
160 150 170 




 





.
. . . .

m

m

c h b g  

 

(b) Similarly, 

L
n n

 2 1

6

9

850 10

500 10
172 162 170 




 





.
. . . .

m

m

c h b g  

 

(c) In this case, we obtain 

 

L
n n

 2 1

6

9

325 10

500 10
179 159 130 




 





.
. . . .

m

m

c h b g  

 

(d) Since their phase differences were identical, the brightness should be the same for (a) 

and (b). Now, the phase difference in (c) differs from an integer by 0.30, which is also 

true for (a) and (b). Thus, their effective phase differences are equal, and the brightness in 

case (c) should be the same as that in (a) and (b). 

 

12. (a) We note that ray 1 travels an extra distance 4L more than ray 2.  To get the least 

possible L that will result in destructive interference, we set this extra distance equal to 

half of a wavelength: 

 
420.0 nm

4 52.50 nm
2 8 8

L L
 

     . 

 

(b) The next case occurs when that extra distance is set equal to 
3

2
 .  The result is 

 

3 3(420.0 nm)
157.5 nm

8 8
L


   . 

 

13. (a) We choose a horizontal x axis with its origin at the left edge of the plastic. 

Between x = 0 and x = L2 the phase difference is that given by Eq. 35-11 (with L in that 
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equation replaced with L2). Between x = L2 and x = L1 the phase difference is given by an 

expression similar to Eq. 35-11 but with L replaced with L1 – L2 and n2 replaced with 1 

(since the top ray in Fig. 35-36 is now traveling through air, which has index of refraction 

approximately equal to 1). Thus, combining these phase differences with  = 0.600 m, 

we have 

 

       2 1 2
2 1 1

3.50 m 4.00 m 3.50 m
1 1.60 1.40 1 1.40

0.600 m 0.600 m

0.833.

L L L
n n n

  

   

 
      



 

 

(b) Since the answer in part (a) is closer to an integer than to a half-integer, the 

interference is more nearly constructive than destructive. 

 

14. (a) For the maximum adjacent to the central one, we set m = 1 in Eq. 35-14 and obtain 

 

  1 1

1

1

1
sin sin 0.010rad.

100m

m

d
  



  
    

   

ll

l
 

 

(b) Since y1 = D tan 1 (see Fig. 35-10(a)), we obtain  

 

y1 = (500 mm) tan (0.010 rad) = 5.0 mm. 

 

The separation is y = y1 – y0 = y1 – 0 = 5.0 mm. 

 

15. THINK The interference at a point depends on the path-length difference of the light 

rays reaching that point from the two slits.  

 

EXPRESS The angular positions of the maxima of a two-slit interference pattern are 

given by sinL d m    , where L is the path-length difference, d is the slit separation, 

 is the wavelength, and m is an integer. If  is small, sin  may be approximated by  in 

radians. Then,  = m/d to good approximation. The angular separation of two adjacent 

maxima is  = /d.  

 

ANALYZE Let ' be the wavelength for which the angular separation is greater by10.0%. 

Then, 1.10/d = '/d. or 

' = 1.10 = 1.10(589 nm) = 648 nm. 

 

LEARN The angular separation   is proportional to the wavelength of the light. For 

small  , we have 

 


 


 
   

 
. 
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16. The distance between adjacent maxima is given by y = D/d (see Eqs. 35-17 and 

35-18). Dividing both sides by D, this becomes  = /d with  in radians. In the steps 

that follow, however, we will end up with an expression where degrees may be directly 

used. Thus, in the present case, 

0.20
0.15 .

1.33

n
n

d nd n

  


 
        

 

17. THINK Interference maxima occur at angles  such that d sin  = m, where m is an 

integer.  

 

EXPRESS Since d = 2.0 m and  = 0.50 m, this means that sin = 0.25m. We want all 

values of m (positive and negative) for which |0.25m|  1. These are –4, –3, –2, –1, 0, +1, 

+2, +3, and +4.  

 

ANALYZE For each of these except –4 and +4, there are two different values for . A 

single value of  (–90°) is associated with m = –4 and a single value (+90°) is associated 

with m = +4. There are sixteen different angles in all and, therefore, sixteen maxima. 

 

LEARN The angles at which the maxima occur are given by 

 

  1 1sin sin 0.25
m

m
d


   
  

 
 

 

Similarly, the condition for interference minima (destructive interference) is  

 

 
1

sin , 0,1,2,...
2

d m m 
 

   
 

 

 

18. (a) The phase difference (in wavelengths) is 

 

d sin/ = (4.24 µm)sin(20°)/(0.500 µm) = 2.90 . 

 

(b) Multiplying this by 2 gives = 18.2 rad. 

 

(c) The result from part (a) is greater than 
5

2
  (which would indicate the third minimum) 

and is less than 3 (which would correspond to the third side maximum). 

 

19. THINK The condition for a maximum in the two-slit interference pattern is d sin  = 

m, where d is the slit separation,  is the wavelength, m is an integer, and  is the angle 

made by the interfering rays with the forward direction.  

 

EXPRESS If  is small, sin  may be approximated by  in radians. Then,  = m/d, and 

the angular separation of adjacent maxima, one associated with the integer m and the 
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other associated with the integer m + 1, is given by  = /d. The separation on a screen a 

distance D away is given by  

y = D  = D/d. 

 

ANALYZE Thus, 

y 



 






500 10 540

120 10
2 25 10

9

3

3
m m

m
m = 2.25 mm.

c hb g.

.
.  

 

LEARN For small , the spacing is nearly uniform. However, away from the center of 

the pattern,  increases and the spacing gets larger. 

 

20. (a) We use Eq. 35-14 with m = 3: 

 

 
F
HG
I
KJ 





L
N
MM

O
Q
PP 

 




sin sin

.
.1 1

9

6

2 550 10

7 70 10
0 216

m

d

 m

m
rad.

c h
 

 

(b)  = (0.216) (180°/) = 12.4°. 

 

21. The maxima of a two-slit interference pattern are at angles  given by d sin  = m, 

where d is the slit separation,  is the wavelength, and m is an integer. If  is small, sin  

may be replaced by  in radians. Then, d = m. The angular separation of two maxima 

associated with different wavelengths but the same value of m is  

 

 = (m/d)(2 – 1), 

 

and their separation on a screen a distance D away is  

 

  y D D
mD

d
  

L
NM
O
QP 




L
NM

O
QP

    


  

tan

.
.

    b g
b g c h3 10

600 10 480 10 7 2 10
3

9 9 5
m

5.0 10 m
m m m.

 

 

The small angle approximation tan    (in radians) is made. 

 

22. Imagine a y axis midway between the two sources in the figure. Thirty points of 

destructive interference (to be considered in the xy plane of the figure) implies there are 

7 1 7 15    on each side of the y axis.  There is no point of destructive interference on 

the y axis itself since the sources are in phase and any point on the y axis must therefore 

correspond to a zero phase difference (and corresponds to  = 0 in Eq. 35-14).  In other 

words, there are 7 “dark” points in the first quadrant, one along the +x axis, and 7 in the 

fourth quadrant, constituting the 15 dark points on the right-hand side of the y axis.  Since 

the y axis corresponds to a minimum phase difference, we can count (say, in the first 

quadrant) the m values for the destructive interference (in the sense of Eq. 35-16) 
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beginning with the one closest to the y axis and going clockwise until we reach the x axis 

(at any point beyond S2).  This leads us to assign m = 7 (in the sense of Eq. 35-16) to the 

point on the x axis itself (where the path difference for waves coming from the sources is 

simply equal to the separation of the sources, d); this would correspond to  = 90° in Eq. 

35-16.  Thus,  

d = ( 7 + 
1

2
  ) =  7.5     7.5

d


  . 

 

23. Initially, source A leads source B by 90°, which is equivalent to 1 4  wavelength. 

However, source A also lags behind source B since rA is longer than rB by 100 m, which 

is100 1 4m 400m  wavelength. So the net phase difference between A and B at the 

detector is zero. 

 

24. (a) We note that, just as in the usual discussion of the double slit pattern, the x = 0 

point on the screen (where that vertical line of length D in the picture intersects the screen) 

is a bright spot with phase difference equal to zero (it would be the middle fringe in the 

usual double slit pattern).  We are not considering x < 0 values here, so that negative 

phase differences are not relevant (and if we did wish to consider x < 0 values, we could 

limit our discussion to absolute values of the phase difference, so that, again, negative 

phase differences do not enter it). Thus, the x = 0 point is the one with the minimum 

phase difference. 

 

(b) As noted in part (a), the phase difference  = 0 at x = 0. 

 

(c) The path length difference is greatest at the rightmost “edge” of the screen (which is 

assumed to go on forever), so  is maximum at x = . 

 

(d) In considering x = , we can treat the rays from the sources as if they are essentially 

horizontal.  In this way, we see that the difference between the path lengths is simply the 

distance (2d) between the sources.  The problem specifies 2d = 6.00 , or 2d/ = 6.00. 

 

(e) Using the Pythagorean theorem, we have 

 
2 2 2 2( ) ( )

1.71
D x d D x d


 

   
    

 

where we have plugged in D = 20d = 3 and x = 6. Thus, the phase difference at that 

point is 1.71 wavelengths. 

 

(f) We note that the answer to part (e) is closer to 
3

2
  (destructive interference) than to 2 

(constructive interference), so that the point is “intermediate” but closer to a minimum than 

to a maximum. 
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25. Let the distance in question be x. The path difference (between rays originating from 

S1 and S2 and arriving at points on the x > 0 axis) is 

 

d x x m2 2 1

2
   

F
HG
I
KJ   

 

where we are requiring destructive interference (half-integer wavelength phase 

differences) and  0,1, 2, .m   After some algebraic steps, we solve for the distance in 

terms of m: 

x
d

m

m





2

2 1

2 1

4b g
b g




. 

 

To obtain the largest value of x, we set m = 0: 

 

 
22

3

0

3.00
8.75 8.75(900 nm) 7.88 10  nm 7.88 m

d
x

 
 

 


         

 
 

 

26. (a) We use Eq. 35-14 to find d: 

 

d sin = m            d = (4)(450 nm)/sin(90°) = 1800 nm . 

 

For the third-order spectrum, the wavelength that corresponds to  = 90° is 

 

 = d sin(90°)/3 = 600 nm . 

 

Any wavelength greater than this will not be seen.  Thus, 600 nm <    700 nm are 

absent. 

 

(b) The slit separation d needs to be decreased.  

 

(c) In this case, the 400 nm wavelength in the m = 4 diffraction is to occur at 90°.  Thus 

 

dnew sin = m             dnew = (4)(400 nm)/sin(90°)  =  1600 nm . 

 

This represents a change of   

 

|d| = d – dnew = 200 nm = 0.20 µm. 

 

27. Consider the two waves, one from each slit, that produce the seventh bright fringe in 

the absence of the mica. They are in phase at the slits and travel different distances to the 

seventh bright fringe, where they have a phase difference of 2m = 14. Now a piece of 

mica with thickness x is placed in front of one of the slits, and an additional phase 

difference between the waves develops. Specifically, their phases at the slits differ by 
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2 2 2
1










x x x
n

m

  b g  
 

where m is the wavelength in the mica and n is the index of refraction of the mica. The 

relationship m = /n is used to substitute for m. Since the waves are now in phase at the 

screen, 

2
1 14




x
n b g  

or 

x
n








 



7

1

7 550 10

158 1
6 64 10

9

6 m
m.

c h
.

.  

 

28. The problem asks for “the greatest value of x… exactly out of phase,” which is to be 

interpreted as the value of x where the curve shown in the figure passes through a phase 

value of  radians.  This happens as some point P on the x axis, which is, of course, a 

distance x from the top source and (using Pythagoras’ theorem) a distance d
2
 + x

2 
  from 

the bottom source.  The difference (in normal length units) is therefore d
2
 + x

2 
  – x, or 

(expressed in radians) is   
2


 ( d

2
 + x

2 
  – x) . 

 

We note (looking at the leftmost point in the graph) that at x = 0, this latter quantity 

equals 6, which means d = 3. Using this value for d, we now must solve the condition  

 

  2 22
d x x





   . 

 

Straightforward algebra then leads to x = (35/4), and using  = 400 nm we find x = 3500 

nm, or 3.5 m. 

 

29. THINK The intensity is proportional to the square of the resultant field amplitude.  

 

EXPRESS Let the electric field components of the two waves be written as 

 

 
1 10

2 20

sin

sin( ),

E E t

E E t



 



 
 

 

where E10 = 1.00, E20 = 2.00, and  = 60°. The resultant field is 1 2E E E  . We use 

phasor diagram to calculate the amplitude of E. 

 

ANALYZE The phasor diagram is shown next.  
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The resultant amplitude Em is given by the trigonometric 

law of cosines: 

 

 2 2 2

10 20 10 202 cos 180 .mE E E E E      

 

Thus, 

 

Em     100 2 00 2 100 2 00 120 2 65
2 2

. . . . cos . .b g b g b gb g  

 

 
 

LEARN Summing over the horizontal components of the two fields gives 

 

10 20cos0 cos60 1.00 (2.00)cos60 2.00hE E E        

 

Similarly, the sum over the vertical components is 

 

10 20sin0 sin60 1.00sin0 (2.00)sin60 1.732vE E E       . 

 

The resultant amplitude is  

 2 2(2.00) (1.732) 2.65mE    , 

 

which agrees with what we found above. The phase angle relative to the phasor 

representing E1 is  

1 1.732
tan 40.9

2.00
   
   

 
 

 

Thus, the resultant field can be written as (2.65)sin( 40.9 ).E t    

 

30. In adding these with the phasor method (as opposed to, say, trig identities), we may 

set t = 0 and add them as vectors: 

 

y

y

h

v

  

  

10 0 8 0 30 16 9

10 0 8 0 30 4 0

cos . cos .

sin . sin .
 

 

so that 

y y y

y

y

R h v

v

h

  


F
HG
I
KJ  

2 2

1

17 4

133

.

tan . .
 

Thus, 

y y y y t tR      1 2 17 4 133sin . sin .  b g b g . 
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Quoting the answer to two significant figures, we have  17sin 13y t   . 

 

31. In adding these with the phasor method (as opposed to, say, trig identities), we may 

set t = 0 and add them as vectors: 

 

y

y

h

v

     

     

10 0 15 30 50 45 265

10 0 15 30 50 45 4 0

cos cos . cos .

sin sin . sin .

b g
b g  

 

so that 
2 2

1

26.8 27

tan 8.5 .

R h v

v

h

y y y

y

y
 

   

 
   

 

 

 

Thus,    1 2 3 sin 27sin 8.5Ry y y y y t t          . 

   

32. (a) We can use phasor techniques or use trig identities.  Here we show the latter 

approach.  Since  

sin a + sin(a + b) = 2cos(b/2)sin(a + b/2), 

 

we find 

 1 2 02 cos( / 2)sin( / 2)E E E t      

 

where E0 = 2.00 µV/m, = 1.26 × 10
15 

rad/s, and 39.6 rad.  This shows that the 

electric field amplitude of the resultant wave is  

 

02 cos( / 2) 2(2.00 V/m)cos(19.2 rad) 2.33 V/mE E      . 

 

(b) Equation 35-22 leads to 
2

0 04 cos ( / 2) 1.35I I I   

 

at point P, and 
2

center 0 04 cos (0) 4I I I   

 

at the center. Thus, center/ 1.35/ 4 0.338I I   .   

 

(c) The phase difference (in wavelengths) is gotten from  in radians by dividing by 2  

Thus,  wavelengths.  Thus, point P is between the sixth side maximum 

(at which  wavelengths) and the seventh minimum (at which 
1

2
  wavelengths). 

 

(d) The rate is given by = 1.26 × 10
15 

rad/s. 
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(e) The angle between the phasors is 39.6 rad = 2270° (which would look like about 

110° when drawn in the usual way). 

 

33. With phasor techniques, this amounts to a vector addition problem 
   
R A B C    

where (in magnitude-angle notation) 
  
A B C        10 0 5 45 5 45b g b g b g, , ,and  

where the magnitudes are understood to be in V/m. We obtain the resultant (especially 

efficient on a vector-capable calculator in polar mode): 

 
R            10 0 5 45 5 45 171 0b g b g b g b g.  

 

which leads to 

E tR  171. sin V mb g b g  
 

where  = 2.0  10
14

 rad/s. 

 

34. (a) Referring to Figure 35-10(a) makes clear that  

 

 = tan
1

(y/D) = tan
1

(0.205/4) = 2.93°. 

 

Thus, the phase difference at point P is  = dsin = 0.397 wavelengths, which means it 

is between the central maximum (zero wavelength difference) and the first minimum ( 
1

2
  

wavelength difference).  Note that the above computation could have been simplified 

somewhat by avoiding the explicit use of the tangent and sine functions and making use 

of the small-angle approximation (tan  sin). 

 

(b) From Eq. 35-22, we get (with  = (0.397)(2) = 2.495 rad) 

 
2

0 04 cos ( / 2) 0.404I I I        

at point P and 
2

center 0 04 cos (0) 4I I I   

 

at the center. Thus, center/ 0.404/ 4 0.101I I   .   

 

35. THINK For complete destructive interference, we want the waves reflected from the 

front and back of the coating to differ in phase by an odd multiple of  rad.  

 

EXPRESS Each wave is incident on a medium of higher index of refraction from a 

medium of lower index, so both suffer phase changes of  rad on reflection. If L is the 

thickness of the coating, the wave reflected from the back surface travels a distance 2L 

farther than the wave reflected from the front. The phase difference is 2L(2/c), where 

c is the wavelength in the coating. If n is the index of refraction of the coating, c = /n, 

where  is the wavelength in vacuum, and the phase difference is 2nL(2/). We solve 
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2
2

2 1nL m



F
HG
I
KJ  b g  

 

for L. Here m is an integer. The result is L
m

n


2 1

4

b g
.  

 

ANALYZE To find the least thickness for which destructive interference occurs, we take 

m = 0. Then, 

 

9
7600 10 m

1.20 10 m.
4 1.25

L
n




   
l

4
 

 

LEARN A light ray reflected by a material changes phase by  rad (or 180°) if the 

refractive index of the material is greater than that of the medium in which the light is 

traveling.  

 

36. (a) On both sides of the soap is a medium with lower index (air) and we are 

examining the reflected light, so the condition for strong reflection is Eq. 35-36.  With 

lengths in nm, 

  =  
2n2L

m + 
1

2

   = 








  

3360    for m = 0

1120    for m = 1

672     for m = 2

480     for m = 3

373     for m = 4

305     for m = 5

 

 

from which we see the latter four values are in the given range. 

 

(b) We now turn to Eq. 35-37 and obtain 

 

  =  
2n2L

m
   =  








  

1680    for m = 1

840     for m = 2

560     for m = 3

420     for m = 4

336     for m = 5

 

 

from which we see the latter three values are in the given range. 

 

37. Light reflected from the front surface of the coating suffers a phase change of  rad 

while light reflected from the back surface does not change phase. If L is the thickness of 

the coating, light reflected from the back surface travels a distance 2L farther than light 

reflected from the front surface. The difference in phase of the two waves is 2L(2/c) – 

, where c is the wavelength in the coating. If  is the wavelength in vacuum, then c = 

/n, where n is the index of refraction of the coating. Thus, the phase difference is 
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2nL(2/) – . For fully constructive interference, this should be a multiple of 2. We 

solve 

2
2

2nL m


 


F
HG
I
KJ    

 

for L. Here m is an integer. The solution is 

L
m

n


2 1

4

b g
.  

 

To find the smallest coating thickness, we take m = 0. Then, 

 

L
n

 


 




4

560 10

4 2 00
7 00 10

9
8m

m
.

. .b g  

 

38. (a)  We are dealing with a thin film (material 2) in a situation where n1 > n2 > n3, 

looking for strong reflections; the appropriate condition is the one expressed by Eq. 35-

37.  Therefore, with lengths in nm and L = 500 and n2 = 1.7, we have 

 

  =  
2n2L

m
  =   








 

1700    for m = 1

850     for m = 2

567     for m = 3

425     for m = 4

 

 

from which we see the latter two values are in the given range. The longer wavelength 

(m=3) is 567 nm.   

 

(b) The shorter wavelength (m = 4) is 425 nm.   

 

(c) We assume the temperature dependence of the refraction index is negligible.  From 

the proportionality evident in the part (a) equation, longer L means longer . 

 

39. For constructive interference, we use Eq. 35-36:  

 

2 1 22n L m b g . 

 

For the smallest value of L, let m = 0: 

 

 
 

0

2

624nm
117nm 0.117 m.

2 4 1.33
L

n


 
     

 

(b) For the second smallest value, we set m = 1 and obtain 
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 
 1 0

2 2

1 1 2 3
3 3 0.1173 m 0.352 m.

2 2
L L

n n

 
 


      

 

40. The incident light is in a low index medium, the thin film of acetone has somewhat 

higher n = n2, and the last layer (the glass plate) has the highest refractive index. To see 

very little or no reflection, the condition 

 

 1
2

2

2 where 0,1, 2,L m m
n

  l  

 

must hold. This is the same as Eq. 35-36, which was developed for the opposite situation 

(constructive interference) regarding a thin film surrounded on both sides by air (a very 

different context from the one in this problem). By analogy, we expect Eq. 35-37 to apply 

in this problem to reflection maxima. Thus, using Eq. 35-37 with n2 = 1.25 and  = 700 

nm yields 

 

0, 280nm, 560nm, 840nm,1120nm,L   

 

for the first several m values. And the equation shown above (equivalent to Eq. 35-36) 

gives, with  = 600 nm, 

 
L 120nm,360nm,600nm,840nm,1080nm, 

 

for the first several m values. The lowest number these lists have in common is 

840 nm.L  

 

41. In this setup, we have 2 1n n and 2 3n n , and the condition for destructive 

interference is  

2 2

1 1
2      ,     0,1, 2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 342 nm

1 161 nm
2 2(1.59)

L
 

   
 

. 

 

42. In this setup, we have 2 1n n and 2 3n n , and the condition for constructive 

interference is  

2

2

41
2     ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

Thus, we get 
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2

2

4 4(285 nm)(1.60) 1824 nm  ( 0)

4 / 3 4(285 nm)(1.60) / 3 608 nm  ( 1)

Ln m

Ln m


  
 

  
. 

 

For the wavelength to be in the visible range, we choose m = 1 with 608 nm.    

 

43. When a thin film of thickness L and index of refraction n2 is placed between materials 

1 and 3 such that 1 2n n and 3 2n n  where n1 and n3 are the indexes of refraction of the 

materials, the general condition for destructive interference for a thin film is 

 

 2

2

2
2         ,      0,1,2,...

Ln
L m m

n m


     

 

where  is the wavelength of light as measured in air. Thus, we have, for 1m   

 

 22 2(200 nm)(1.40) 560 nmLn    . 

 

44. In this setup, we have 2 1n n and 2 3n n , and the condition for constructive 

interference is  

 

2 2

1 1
2      ,     0,1, 2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 587 nm

1 329 nm
2 2(1.34)

L
 

   
 

. 

 

45. In this setup, we have 2 1n n and 2 3n n , and the condition for constructive 

interference is  

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The third least thickness is (m = 2)  

 

 
1 612 nm

2 478 nm
2 2(1.60)

L
 

   
 

. 

 

46. In this setup, we have 2 1n n and 2 3n n , and the condition for destructive 

interference is  
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2

2

41
2     ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

Therefore,  

 

 

2

2

2

4 4(415 nm)(1.59) 2639 nm  ( 0)

4 / 3 4(415 nm)(1.59) / 3 880 nm  ( 1)

4 / 5 4(415 nm)(1.59) / 5 528 nm  ( 2)

Ln m

Ln m

Ln m



  


   
   

. 

 

For the wavelength to be in the visible range, we choose m = 3 with 528 nm.    

 

47. THINK For a complete destructive interference, we want the waves reflected from 

the front and back of material 2 of refractive index n2 to differ in phase by an odd 

multiple of  rad.  

 

EXPRESS In this setup, we have 2 1,n n  so there is no phase change from the first 

surface. On the other hand 2 3n n , so there is a phase change of  rad from the second 

surface. Since the second wave travels an extra distance of 2L, the phase difference is 

 

 
2

2
(2 )L


 


   

 

where 2 2/ n is the wavelength in medium 2. The condition for destructive 

interference is 

2

2
(2 ) (2 1) ,L m


 


    

or 

2

2

2
2     ,     0,1, 2,...

Ln
L m m

n m


     

 

ANALYZE Thus, we have  

 

 
2

2

2 2(380 nm)(1.34) 1018 nm  ( 1)

(380 nm)(1.34) 509 nm  ( 2)

Ln m

Ln m


  
 

  
 

 

For the wavelength to be in the visible range, we choose m = 2 with 509 nm.    

 

LEARN In this setup, the condition for constructive interference is  

 

2

2
(2 ) 2 ,L m


 


   

or 
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2

1
2 ,  0,1, 2,...

2
L m m

n

 
   
 

 

 

48. In this setup, we have 2 1n n and 2 3n n , and the condition for constructive 

interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 632 nm

1 339 nm
2 2(1.40)

L
 

   
 

. 

 

49. In this setup, we have 2 1n n and 2 3n n , and the condition for constructive 

interference is  

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The third least thickness is (m = 2)  

 

 
1 382 nm

2 273 nm
2 2(1.75)

L
 

   
 

. 

 

50. In this setup, we have 2 1n n and 2 3n n , and the condition for destructive 

interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 482 nm

1 248 nm
2 2(1.46)

L
 

   
 

. 

 

51. THINK For a complete destructive interference, we want the waves reflected from 

the front and back of material 2 of refractive index n2 to differ in phase by an odd 

multiple of  rad.  

 

EXPRESS In this setup, we have 1 2n n and 2 3n n , which means that both waves are 

incident on a medium of higher refractive index from a medium of lower refractive index. 
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Thus, in both cases, there is a phase change of  rad from both surfaces. Since the second 

wave travels an additional distance of 2L, the phase difference is 

 

 
2

2
(2 )L





  

 

where 2 2/ n is the wavelength in medium 2. The condition for destructive 

interference is 

2

2
(2 ) (2 1) ,L m





   

or 

2

2

41
2     ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

 

ANALYZE Thus,   

 
2

2

4 4(210 nm)(1.46) 1226 nm  ( 0)

4 / 3 4(210 nm)(1.46) / 3 409 nm  ( 1)

Ln m

Ln m


  
 

  
 

 

For the wavelength to be in the visible range, we choose m = 1 with 409 nm.    

 

LEARN In this setup, the condition for constructive interference is 

 

2

2
(2 ) 2 ,L m





  

or 

2

2 ,  0,1, 2,...L m m
n


   

 

52. In this setup, we have 2 1n n and 2 3n n , and the condition for constructive 

interference is  

2

2

41
2     ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

Thus, we have  

 

 

2

2

2

4 4(325 nm)(1.75) 2275 nm  ( 0)

4 / 3 4(325 nm)(1.75) / 3 758 nm  ( 1)

4 / 5 4(325 nm)(1.75) / 5 455 nm  ( 2)

Ln m

Ln m

Ln m



  


   
   

. 

 

For the wavelength to be in the visible range, we choose m = 2 with 455 nm.    

 

53. We solve Eq. 35-36 with n2 = 1.33 and  = 600 nm for m = 1, 2, 3,…: 
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113 nm, 338nm, 564nm, 789nm,L   

 

And, we similarly solve Eq. 35-37 with the same n2 and  = 450 nm: 

 

0,169nm, 338nm, 508nm, 677nm,L   

 

The lowest number these lists have in common is L = 338 nm. 

 

54. The situation is analogous to that treated in Sample Problem — “Thin-film 

interference of a coating on a glass lens,” in the sense that the incident light is in a low 

index medium, the thin film of oil has somewhat higher n = n2, and the last layer (the 

glass plate) has the highest refractive index. To see very little or no reflection, according 

to the Sample Problem, the condition 

2

1
2 where 0,1, 2,

2
L m m

n

 
   
 

l
 

 

must hold. With  = 500 nm and n2 = 1.30, the possible answers for L are 

 

96nm, 288nm, 481nm, 673nm, 865nm,...L   

 

And, with  = 700 nm and the same value of n2, the possible answers for L are 

 

135nm, 404nm, 673nm, 942nm,...L   

 

The lowest number these lists have in common is L = 673 nm. 

 

55. THINK The index of refraction of oil is greater than that of the air, but smaller than 

that of the water. 

 

EXPRESS Let the indices of refraction of the air, oil and water be n1, n2, and n3, 

respectively. Since 1 2n n and 2 3n n , there is a phase change of  rad from both 

surfaces. Since the second wave travels an additional distance of 2L, the phase difference 

is 

 
2

2
(2 )L





  

 

where 2 2/ n is the wavelength in the oil. The condition for constructive interference 

is 

2

2
(2 ) 2 ,L m





  

or 
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2

2 ,  0,1, 2,...L m m
n


   

 

ANALYZE (a) For 1, 2,...,m   maximum reflection occurs for wavelengths 

 

  
2

2 1.20 460nm2
1104nm , 552nm, 368nm...

n L

m m
  l  

 

We note that only the 552 nm wavelength falls within the visible light range. 

 

(b) Maximum transmission into the water occurs for wavelengths for which reflection is a 

minimum. The condition for such destructive interference is given by 

 

2
1

2

4

2 12

2L m
n

n L

m
 
F
HG
I
KJ  



   

 

which yields  = 2208 nm, 736 nm, 442 nm … for the different values of m. We note that 

only the 442 nm wavelength (blue) is in the visible range, though we might expect some 

red contribution since the 736 nm is very close to the visible range. 

 

LEARN A light ray reflected by a material changes phase by  rad (or 180°) if the 

refractive index of the material is greater than that of the medium in which the light is 

traveling. Otherwise, there is no phase change. Note that refraction at an interface does 

not cause a phase shift. 

 

56. For constructive interference (which is obtained for = 600 nm) in this circumstance, 

we require 

 2
2 2

n

k k
L

n


   

 

where k = some positive odd integer  and n is the index of refraction of the thin film.  

Rearranging and plugging in L = 272.7 nm and the wavelength value, this gives 

 

(600 nm)
0.55

4 4(272.7 nm) 1.818

k k k
n k

L


    . 

 

Since we expect n > 1, then k = 1 is ruled out.  However, k = 3 seems reasonable, since it 

leads to n = 1.65, which is close to the “typical” values found in Table 34-1.  Taking this 

to be the correct index of refraction for the thin film, we now consider the destructive 

interference part of the question.  Now we have 2L = (integer)dest /n.  Thus,  

 

dest = (900 nm)/(integer). 
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We note that setting the integer equal to 1 yields a dest value outside the range of the 

visible spectrum.  A similar remark holds for setting the integer equal to 3.  Thus, we set 

it equal to 2 and obtain dest  = 450 nm. 

 

57. In this setup, we have 2 1n n and 2 3n n , and the condition for minimum 

transmission (maximum reflection) or destructive interference is  

 

2

2

41
2      ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

 

Therefore,  

 

 
2

2

4 4(285 nm)(1.60) 1824 nm  ( 0)

4 / 3 4(415 nm)(1.59) / 3 608 nm  ( 1)

Ln m

Ln m


  
 

  
 

 

For the wavelength to be in the visible range, we choose m = 1 with 608 nm.    

 

58. In this setup, we have 2 1n n and 2 3n n , and the condition for minimum 

transmission (maximum reflection) or destructive interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The third least thickness is (m = 2)  

 

 
1 382 nm

2 273 nm
2 2(1.75)

L
 

   
 

. 

 

59. THINK Maximum transmission means constructive interference. 

 

EXPRESS As shown in Fig. 35-43, one wave travels a distance of 2L further than the 

other. This wave is reflected twice, once from the back surface (between materials 2 and 

3), and once from the front surface (between materials 1 and 2). Since 2 3n n , there is no 

phase change at the back-surface reflection. On the other hand, since 2 1n n , there is a 

phase change of  rad due to the front-surface reflection. The phase difference of the two 

waves as they leave material 2 is 

 
2

2
(2 )L


 


   

 

where 2 2/ n is the wavelength in material 2. The condition for constructive 

interference is 
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2

2
(2 ) 2 ,L m


 


   

or 

2

2

41
2     ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

 

ANALYZE Thus, we have  

 

 

2

2

2

4 4(415 nm)(1.59) 2639 nm  ( 0)

4 / 3 4(415 nm)(1.59) / 3 880 nm  ( 1)

4 / 5 4(415 nm)(1.59) / 5 528 nm  ( 2)

Ln m

Ln m

Ln m



  


   
   

. 

 

For the wavelength to be in the visible range, we choose m = 2 with 528 nm.    

 

LEARN similarly, the condition for destructive interference is  

 

2

2
(2 ) (2 1) ,L m


 


    

or 

2

2

2
2     ,     0,1, 2,...

Ln
L m m

n m


     

 

60. In this setup, we have 2 1n n and 2 3n n , and the condition for maximum 

transmission (minimum reflection) or constructive interference is  

 

2

2

2
2     ,     0,1,2,...

Ln
L m m

n m


     

Thus, we obtain  

 
2

2

2 2(380 nm)(1.34) 1018 nm  ( 1)

(380 nm)(1.34) 509 nm  ( 2)

Ln m

Ln m


  
 

  
. 

  

For the wavelength to be in the visible range, we choose m = 2 with 509 nm.    

 

61. In this setup, we have 2 1n n and 2 3n n , and the condition for minimum 

transmission (maximum reflection) or destructive interference is  

 

2

2

41
2      ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

Therefore, 
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2

2

2

4 4(325 nm)(1.75) 2275 nm  ( 0)

4 / 3 4(415 nm)(1.59) / 3 758 nm  ( 1)

4 / 5 4(415 nm)(1.59) / 5 455 nm  ( 2)

Ln m

Ln m

Ln m



  


   
   

 

 

For the wavelength to be in the visible range, we choose m = 2 with 455 nm.    

 

62. In this setup, we have 2 1n n and 2 3n n , and the condition for maximum 

transmission (minimum reflection) or constructive interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 342 nm

1 161 nm
2 2(1.59)

L
 

   
 

. 

 

63. In this setup, we have 2 1n n and 2 3n n , and the condition for maximum 

transmission (minimum reflection) or constructive interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 482 nm

1 248 nm
2 2(1.46)

L
 

   
 

. 

 

64. In this setup, we have 2 1n n and 2 3n n , and the condition for maximum 

transmission (minimum reflection) or constructive interference is  

 

2

2

41
2     ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

Thus, we have 

 

 
2

2

4 4(210 nm)(1.46) 1226 nm  ( 0)

4 / 3 4(210 nm)(1.46) / 3 409 nm  ( 1)

Ln m

Ln m


  
 

  
 

 

For the wavelength to be in the visible range, we choose m = 1 with 409 nm.    
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65. In this setup, we have 
2 1n n and 

2 3n n , and the condition for minimum 

transmission (maximum reflection) or destructive interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 632 nm

1 339 nm
2 2(1.40)

L
 

   
 

. 

 

66. In this setup, we have 
2 1n n and 

2 3n n , and the condition for maximum 

transmission (minimum reflection) or constructive interference is  

 

2

2

2
2     ,     0,1,2,...

Ln
L m m

n m


     

Thus, we have (with m =1)  

 

 22 2(200 nm)(1.40) 560 nmLn    . 

 

67. In this setup, we have 2 1n n and 2 3n n , and the condition for minimum 

transmission (maximum reflection) or destructive interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 587 nm

1 329 nm
2 2(1.34)

L
 

   
 

. 

 

68. In this setup, we have 2 1n n and 2 3n n , and the condition for minimum 

transmission (maximum reflection) or destructive interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The third least thickness is (m = 2)  

 

 
1 612 nm

2 478 nm
2 2(1.60)

L
 

   
 

. 
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69. Assume the wedge-shaped film is in air, so the wave reflected from one surface 

undergoes a phase change of  rad while the wave reflected from the other surface does 

not. At a place where the film thickness is L, the condition for fully constructive 

interference is 2 1
2

nL m b g  where n is the index of refraction of the film,  is the 

wavelength in vacuum, and m is an integer. The ends of the film are bright. Suppose the 

end where the film is narrow has thickness L1 and the bright fringe there corresponds to m 

= m1. Suppose the end where the film is thick has thickness L2 and the bright fringe there 

corresponds to m = m2. Since there are ten bright fringes, m2 = m1 + 9. Subtract 

2 1 1
1
2

nL m b g  from 2 92 1
1
2

nL m  b g  to obtain 2n L = 9, where L = L2 – L1 is 

the change in the film thickness over its length. Thus, 

 

L
n

 


 



9 9 630 10

2 150
189 10

9

6


m
m.

c h
b g.

.  

 

70. (a) The third sentence of the problem implies mo = 9.5 in 2 do = mo initially.  Then, 

t = 15 s later, we have m = 9.0 in 2d = m.  This means  

 

|d| = do  d =  
1

2
 ( mo m)  = 155 nm . 

 

Thus, |d| divided by t gives 10.3 nm/s. 

 

(b) In this case, mf = 6 so that  

 

do  df =  
1

2
 (mo mf )  = 

7

4
  = 1085 nm = 1.09 µm. 

 

71. The (vertical) change between the center of one dark band and the next is 

 

4500 nm
250 nm 2.50 10 mm.

2 2
y

        

 

Thus, with the (horizontal) separation of dark bands given by x = 1.2 mm, we have 

 

     tan .




y

x
2 08 10 4 rad. 

 

Converting this angle into degrees, we arrive at  = 0.012°. 

 

72. We apply Eq. 35-27 to both scenarios: m = 4001 and n2 = nair, and m = 4000 and n2 = 

nvacuum = 1.00000: 

2 4001 4000L
n

L b g b g 
air

and 2 .  



CHAPTER 35 1542 

 

Since the 2L factor is the same in both cases, we set the right-hand sides of these 

expressions equal to each other and cancel the wavelength. Finally, we obtain 

 

nair  100000
4001

4000
100025. . .b g  

 

We remark that this same result can be obtained starting with Eq. 35-43 (which is 

developed in the textbook for a somewhat different situation) and using Eq. 35-42 to 

eliminate the 2L/ term. 

 

73. THINK A light ray reflected by a material changes phase by  rad (or 180°) if the 

refractive index of the material is greater than that of the medium in which the light is 

traveling.  

 

EXPRESS Consider the interference of waves reflected from the top and bottom surfaces 

of the air film. The wave reflected from the upper surface does not change phase on 

reflection but the wave reflected from the bottom surface changes phase by  rad. At a 

place where the thickness of the air film is L, the condition for fully constructive 

interference is 2 1
2

L m b g  where  (= 683 nm) is the wavelength and m is an integer. 

 

ANALYZE For L = 48 m, we find the value of m to be 

 
5

9

2 1 2(4.80 10 m) 1
140.

2 683 10 m 2

L
m








    


 

 

At the thin end of the air film, there is a bright fringe. It is associated with m = 0. There 

are, therefore, 140 bright fringes in all. 

 

LEARN The number of bright fringes increases with L, but decreases with . 

 

74. By the condition m = 2y where y is the thickness of the air film between the plates 

directly underneath the middle of a dark band), the edges of the plates (the edges where 

they are not touching) are y = 8/2 = 2400 nm apart (where we have assumed that the 

middle of the ninth dark band is at the edge).  Increasing that to y' = 3000 nm would 

correspond to m' = 2y'/ = 10 (counted as the eleventh dark band, since the first one 

corresponds to m = 0).  There are thus 11 dark fringes along the top plate. 

 

75. THINK The formation of Newton’s rings is due to the interference between the rays 

reflected from the flat glass plate and the curved lens surface.  

 

EXPRESS Consider the interference pattern formed by waves reflected from the upper 

and lower surfaces of the air wedge. The wave reflected from the lower surface 

undergoes a  rad phase change while the wave reflected from the upper surface does not. 
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At a place where the thickness of the wedge is d, the condition for a maximum in 

intensity is 2 1
2

d m b g  where  is the wavelength in air and m is an integer. Therefore,  

 

d = (2m + 1)/4. 

 

ANALYZE As the geometry of Fig. 35-46 shows, d R R r  2 2 ,  where R is the 

radius of curvature of the lens and r is the radius of a Newton’s ring. Thus, 

2 1 2 2m R R r   b g  .  First, we rearrange the terms so the equation becomes 

 

 2 2
2 1

.
4

m
R r R


  

l
 

 

Next, we square both sides, rearrange to solve for r
2
, then take the square root. We get 

 

r
m R m





2 1

2

2 1

16

2b g b g 

.  

 

If R is much larger than a wavelength, the first term dominates the second and 

 

r
m R


2 1

2

b g 
.  

 

LEARN Similarly, the radii of the dark fringes are given by 

 

.r mR  

 

76. (a) We find m from the last formula obtained in Problem 35-75: 

 

m
r

R
  










2 3
2

9

1

2

10 10

50 589 10

1

2
m

m m

c h
b gc h.

 

 

which (rounding down) yields m = 33. Since the first bright fringe corresponds to m = 0, 

m = 33 corresponds to the thirty-fourth bright fringe. 

 

(b) We now replace  by n = /nw. Thus, 

 

  
  

2
322

9

1.33 10 10 m1 1 1
45.

2 2 25.0m 589 10 m

w
n

n

n rr
m

R R






      

l l
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This corresponds to the forty-sixth bright fringe (see the remark at the end of our solution 

in part (a)). 

 

77. We solve for m using the formula r m R 2 1b g    obtained in Problem 35-75 and 

find m = r
2
/R – 1/2. Now, when m is changed to m + 20, r becomes r', so  

 

m + 20 = r' 
2
/R – 1/2. 

 

Taking the difference between the two equations above, we eliminate m and find 

 

R
r r


 









2 2 2 2

720

0 368 0162

20 546 10
100


. .cm cm

cm
cm.

b g b g
c h  

 

78. The time to change from one minimum to the next is t = 12 s. This involves a 

change in thickness L = /2n2 (see Eq. 35-37), and thus a change of volume  

 

V = r²L =
2

²

2

r

n

 
           

2

²

2

dV r

dt n t

 



 = 
(0.0180)² (550 x 10

-9
)

2(1.40) (12)
  

 

using SI units.  Thus, the rate of change of volume is 1.67 × 10
11 

m
3
/s. 

 

79. A shift of one fringe corresponds to a change in the optical path length of one 

wavelength. When the mirror moves a distance d, the path length changes by 2d since the 

light traverses the mirror arm twice. Let N be the number of fringes shifted. Then, 2d = 

N and 

  


  



2 2 0 233 10

792
588 10 588

3

7d

N

.
.

m
m nm .

c h
 

 

80. According to Eq. 35-43, the number of fringes shifted (N) due to the insertion of the 

film of thickness L is N = (2L / ) (n – 1). Therefore, 

 

L
N

n










2 1

589 7 0

2 140 1
52b g

b gb g
b g

nm
m

.

.
. .  

 

81. THINK The wavelength in air is different from the wavelength in vacuum. 

 

EXPRESS Let 1 be the phase difference of the waves in the two arms when the tube has 

air in it, and let 2 be the phase difference when the tube is evacuated. If  is the 

wavelength in vacuum, then the wavelength in air is /n, where n is the index of 

refraction of air. This means 

 1 2 2
2 2 4 1

  
L
NM

O
QP 


L

n n L











b g
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where L is the length of the tube. The factor 2 arises because the light traverses the tube 

twice, once on the way to a mirror and once after reflection from the mirror. Each shift by 

one fringe corresponds to a change in phase of 2 rad, so if the interference pattern shifts 

by N fringes as the tube is evacuated, then 

 

4 1
2






n L
N




b g
. 

 

ANALYZE Solving for n, we obtain 

 

n
N

L
   









1

2
1

60 500 10

2 50 10
100030

9

2

 m

m

c h
c h.

. .  

 

LEARN The interferometer provides an accurate way to measure the refractive index of 

the air (and other gases as well).  

 

82. We apply Eq. 35-42 to both wavelengths and take the difference: 

 

1 2

2 2 1 1
2 .

L L
N N L

   

 
     

    
 

 

We now require N1 – N2 = 1 and solve for L: 

 
1 1

51 1 1 1 1 1
2.91 10 nm 291 m.

2 2 588.9950 nm 589.5924 nm
L 

 

 

   
         

    
 

 

83. (a) The path length difference between rays 1 and 2 is 7d – 2d = 5d. For this to 

correspond to a half-wavelength requires 5d = /2, so that d = 50.0 nm. 

 

(b) The above requirement becomes 5d = /2n in the presence of the solution, with n = 

1.38. Therefore, d = 36.2 nm. 

 

84. (a) The minimum path length difference occurs when both rays are nearly vertical.  

This would correspond to a point as far up in the picture as possible.  Treating the screen 

as if it extended forever, then the point is at y = . 

 

(b) When both rays are nearly vertical, there is no path length difference between them.  

Thus at y = , the phase difference is  = 0. 

 

(c) At y = 0 (where the screen crosses the x axis) both rays are horizontal, with the ray 

from S1 being longer than the one from S2 by distance d.   
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(d) Since the problem specifies d = 6.00, then the phase difference here is  = 6.00 

wavelengths and is at its maximum value. 

 

(e) With D = 20use of the Pythagorean theorem leads to 

 

 =   
L1  L2


   = 

d² + (d + D)²  d² + D²


   = 5.80 

 

which means the rays reaching the point  y = d have a phase difference of roughly 5.8  

wavelengths. 

 

(f) The result of the previous part is “intermediate” — closer to 6 (constructive 

interference) than to 5 
1

2
  (destructive interference). 

 

85. THINK The angle between adjacent fringes depends the wavelength of the light and 

the distance between the slits. 

 

EXPRESS The angular positions of the maxima of a two-slit interference pattern are 

given by sinL d m    , where L is the path-length difference, d is the slit separation, 

 is the wavelength, and m is an integer. If  is small, sin  may be approximated by  in 

radians. Then,  = m/d to good approximation. The angular separation of two adjacent 

maxima is  = /d. When the arrangement is immersed in water, the wavelength 

changes to ' = /n, and the equation above becomes 

 

d





  . 

 

ANALYZE Dividing the equation by  = /d,  we obtain 

 



















n

.  

 

Therefore, with n = 1.33 and  = 0.30°, we find ' = 0.23°. 

 

LEARN The angular separation decreases with increasing index of refraction; the greater 

the value of n, the smaller the value of . 

 

86. (a) The graph shows part of a periodic pattern of half-cycle “length” n = 0.4.  Thus 

if we set n = 1.0 + 2n  = 1.8 then the maximum at n = 1.0 should repeat itself there.  

 

(b) Continuing the reasoning of part (a), adding another half-cycle “length” we get 

1.8 2.2n   for the answer. 
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(c) Since n = 0.4 represents a half-cycle, then n/2 represents a quarter-cycle.  To 

accumulate a total change of 2.0 – 1.0 = 1.0 (see problem statement), then we need 2n + 

n/2 = 5/4
th

 of a cycle, which corresponds to 1.25 wavelengths. 

 

87. THINK For a completely destructive interference, the intensity produced by the two 

waves is zero.  

 

EXPRESS When the interference between two waves is completely destructive, their 

phase difference is given by 

 

 (2 1) , 0,1, 2,...m m     

 

The equivalent condition is that their path-length difference is an odd multiple of / 2,  

where  is the wavelength of the light.    

 

ANALYZE (a) Looking at Fig. 35-52, we see that half of the periodic pattern is of length 

L = 750 nm (judging from the maximum at x = 0 to the minimum at x = 750 nm);  this 

suggests that L = /2, and the wavelength (the full length of the periodic pattern) is = 

2L = 1500 nm.  Thus, a maximum should be reached again at x = 1500 nm (and at x = 

3000nm, x = 4500 nm, …). 

  

(b) From our discussion in part (a), we expect a minimum to be reached at odd multiple 

of /2, or x = 750 nm + n(1500 nm), where n = 1, 2, 3 … .   For instance, for n = 1 we 

would find the minimum at x = 2250 nm. 

 

(c) With = 1500 nm (found in part (a)), we can express x = 1200 nm as x = 1200/1500 = 

0.80 wavelength. 

 

LEARN For a completely destructive interference, the phase difference between two 

light sources is an odd multiple of ; however, for a completely constructive interference, 

the phase difference is a multiple of 2 

 

88. (a) The difference in wavelengths, with and without the n = 1.4 material, is found 

using Eq. 35-9: 

 ( 1) 1.143
L

N n


    . 

 

The result is equal to a phase shift of (1.143)(360) = 411.4, or  

 

(b) more meaningfully, a shift of 411.4  360 = 51.4. 

 

89. THINK Since the index of refraction of water is greater than that of air, the wave that 

is reflected from the water surface suffers a phase change of  rad on reflection. 
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EXPRESS Suppose the wave that goes directly to the receiver travels a distance L1 and 

the reflected wave travels a distance L2. The last wave suffers a phase change on 

reflection of half a wavelength since water has higher refractive index than air. To obtain 

constructive interference at the receiver, the difference L2 – L1 must be an odd multiple of 

a half wavelength.  

 

ANALYZE Consider the diagram below.  

 
 

The right triangle on the left, formed by the vertical line from the water to the transmitter 

T, the ray incident on the water, and the water line, gives Da = a/ tan . The right triangle 

on the right, formed by the vertical line from the water to the receiver R, the reflected ray, 

and the water line leads to / tanbD x  . Since Da + Db = D, 

 

tan . 
a x

D
 

 

We use the identity sin
2
  = tan

2  / (1 + tan
2
 ) to show that  

 
2 2sin ( ) / ( )a x D a x     . 

This means 

L
a a D a x

a x
a2

2 2

 
 

sin

b g
 

and 

 
22

2 .
sin

b

x D a xx
L

a x

 
 


 

Therefore, 

L L L
a x D a x

a x
D a xa b2 2 2

2 2

2 2
  

  


  

b g b g b g .  

 

Using the binomial theorem, with D
2
 large and a

2
 + x

2
 small, we approximate this 

expression:  
2

2 / 2 .L D a x D    The distance traveled by the direct wave is 
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L D a x1

2 2
  b g . Using the binomial theorem, we approximate this expression: 

 
2

1 / 2 .L D a x D    Thus, 

 

L L D
a ax x

D
D

a ax x

D

ax

D
2 1

2 2 2 22

2

2

2

2
  

 
 

 
 .  

 

Setting this equal to m 1
2b g , where m is zero or a positive integer, we find 

  1
2

2x m D a  . 

 

LEARN Similarly, the condition for destructive interference is 

 

2 1

2
,

ax
L L m

D
    

or 

, 0,1, 2,...
2

D
x m m

a


   

 

90. (a) Since P1 is equidistant from S1  and S2 we conclude the sources are not in phase 

with each other.  Their phase difference is source = 0.60  rad, which may be expressed 

in terms of “wavelengths” (thinking of the   2 correspondence in discussing a full 

cycle) as  

source = (0.60 ) = 0.3  

 

(with S2 “leading” as the problem states).  Now S1  is closer to P2 than S2 is.  Source S1 is 

80 nm ( 80/400  = 0.2  ) from P2 while source S2 is 1360 nm ( 1360/400  = 3.4  ) 

from P2.  Here we find a difference of  path = 3.2  (with S1 “leading” since it is closer).  

Thus, the net difference is  

 

net = path –  source =  2.90 , 

or 2.90 wavelengths. 

 

(b) A whole number (like 3 wavelengths) would mean fully constructive, so our result is 

of the following nature: intermediate, but close to fully constructive. 

 

91. (a) Applying the law of refraction, we obtain sin 2 / sin 1 = sin 2 / sin 30° = vs/vd. 

Consequently, 

 

 1 1

2

3.0m s sin30sin30
sin sin 22 .

4.0m s

s

d

v

v
  

  
      

   
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(b) The angle of incidence is gradually reduced due to refraction, such as shown in the 

calculation above (from 30° to 22°). Eventually after several refractions, 2 will be 

virtually zero. This is why most waves come in normal to a shore. 

 

92. When the depth of the liquid (Lliq ) is zero, the phase difference  is 60 wavelengths; 

this must equal the difference between the number of wavelengths in length L = 40 µm 

(since the liquid initially fills the hole) of the plastic (for ray r1) and the number in that 

same length of the air (for ray r2).  That is, 

 

plastic air 60
Ln Ln

 
  . 

 

(a) Since = 400 × 10
9 

m and nair = 1 (to good approximation), we find nplastic = 1.6. 

 

(b) The slope of the graph can be used to determine nliq , but we show an approach more 

closely based on the above equation: 

 

 
plastic liq

20
Ln Ln

 
   

 

which makes use of the leftmost point of the graph.  This readily yields nliq = 1.4. 

 

93. THINK Knowing the slit separation and the distance between interference fringes 

allows us to calculate the wavelength of the light used.  

 

EXPRESS The condition for a minimum in the two-slit interference pattern is d sin  = 

(m + ½), where d is the slit separation,  is the wavelength, m is an integer, and  is the 

angle made by the interfering rays with the forward direction. If  is small, sin  may be 

approximated by  in radians. Then,  = (m + ½)/d, and the distance from the minimum 

to the central fringe is 

 
1

tan sin
2

D
y D D D m

d


  

 
     

 
, 

 

where D is the distance from the slits to the screen. For the first minimum m = 0 and for 

the tenth one, m = 9. The separation is 

 

1 1 9
9

2 2

D D D
y

d d d

   
     

 
. 

 

ANALYZE We solve for the wavelength: 

 

  
 


  

 



d y

D



9

015 10 18 10

9 50 10
6 0 10 600

3 3

2

7
.

.
m m

m
m  nm.

c hc h
c h  
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LEARN The distance between two adjacent dark fringes, one associated with the integer 

m and the other associated with the integer m + 1, is  

 

y = D = D/d. 

 

94. A light ray traveling directly along the central axis reaches the end in time 

 

t
L

v

n L

c
direct  

1

1 .  

 

For the ray taking the critical zig-zag path, only its velocity component along the core 

axis direction contributes to reaching the other end of the fiber. That component is  

v1 cos ', so the time of travel for this ray is 

 

 

1
zig zag

2
1

1
cos 1 sin /

n LL
t

v c n 
 

 

 

 

using results from the previous solution. Plugging in sin  n n1

2

2

2  and simplifying, 

we obtain 

t
n L

c n n

n L

n c
zig zag  1

2 1

1

2

2/
.b g  

 

The difference is  
2

1 1 1 1
zig zag direct

2 2

1
n L n L n L n

t t t
n c c c n

 
       

 
 . 

  

With n1 = 1.58, n2 = 1.53, and L = 300 m, we obtain  

 

81 1

8

2

(1.58)(300 m) 1.58
1 1 5.16 10 s 51.6 ns

3.0 10 m/s 1.53

n L n
t

c n

   
          

   
. 

 

95. THINK The dark band corresponds to a completely destructive interference. 

 

EXPRESS When the interference between two waves is completely destructive, their 

phase difference is given by 

 

 (2 1) , 0,1, 2,...m m     

 

The equivalent condition is that their path-length difference is an odd multiple of / 2,  

where  is the wavelength of the light.    
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ANALYZE (a) A path length difference of /2 produces the first dark band, of 3/2 

produces the second dark band, and so on. Therefore, the fourth dark band corresponds to 

a path length difference of 7/2 = 1750 nm = 1.75 m. 

 

(b) In the small angle approximation (which we assume holds here), the fringes are 

equally spaced, so that if y denotes the distance from one maximum to the next, then the 

distance from the middle of the pattern to the fourth dark band must be 16.8 mm = 3.5 y. 

Therefore, we obtain y = (16.8 mm)/3.5 = 4.8 mm. 

 

LEARN The distance from the mth maximum to the central fringe is 

 

 
bright tan sin

D
y D D D m

d


      . 

 

Similarly, the distance from the mth minimum to the central fringe is  

 

dark

1

2

D
y m

d

 
  
 

. 

 

96. We use the formula obtained in Sample Problem — “Thin-film interference of a 

coating on a glass lens:” 

 
min

min

2

0.200     0.200.
4 4 1.25

L
L

n 

 
       

 

97. THINK The intensity of the light observed in the interferometer depends on the 

phase difference between the two waves.  

 

EXPRESS Let the position of the mirror measured from the point at which d1 = d2 be x. 

We assume the beam-splitting mechanism is such that the two waves interfere 

constructively for x = 0 (with some beam-splitters, this would not be the case). We can 

adapt Eq. 35-23 to this situation by incorporating a factor of 2 (since the interferometer 

utilizes directly reflected light in contrast to the double-slit experiment) and eliminating 

the sin factor. Thus, the path difference is 2x, and the phase difference between the two 

light paths is  = 2(2x/) = 4x/.  

 

ANALYZE From Eq. 35-22, we see that the intensity is proportional to 2cos ( / 2).  

Thus, writing 4I0 as Im, we find 

 

I I I
x

m m
F
HG
I
KJ 

F
HG
I
KJcos cos .2 2

2

2 


 

 

LEARN The intensity / mI I  as a function of /x   is plotted below. 
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From the figure, we see that the intensity is at a maximum when  

 

, 0,1, 2,...
2

m
x m   

 

Similarly, the condition for minima is  

 

 
1

2 1 , 0,1, 2,...
4

x m m    

 

98. We note that ray 1 travels an extra distance 4L more than ray 2.  For constructive 

interference (which is obtained for = 620 nm) we require 

 

4L  = m where m = some positive integer. 

 

For destructive interference (which is obtained for = 4196 nm) we require 

 

4L  = 
k

2
  where k = some positive odd integer. 

 

Equating these two equations (since their left-hand sides are equal) and rearranging, we 

obtain 

k = 2 m 



  = 2 m 

620

496
  = 2.5 m . 

 

We note that this condition is satisfied for k = 5 and m = 2.  It is satisfied for some larger 

values, too, but recalling that we want the least possible value for L, we choose the 

solution set (k, m) = (5, 2).  Plugging back into either of the equations above, we obtain 

the distance L:  

4L  = 2            L = 


2
  = 310.0 nm . 

 

99. (a) Straightforward application of Eq. 35-3 /n c v and v = x/t yields the result: 

pistol 1 with a time equal to t = nx/c = 42.0  10
–12

 s = 42.0 ps. 
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(b) For pistol 2, the travel time is equal to 42.3  10
–12

 s. 

 

(c) For pistol 3, the travel time is equal to 43.2  10
–12

 s. 

 

(d) For pistol 4, the travel time is equal to 41.8  10
–12

 s.  

 

(e) We see that the blast from pistol 4 arrives first. 

 

100. We use Eq. 35-36 for constructive interference: 2n2L = (m + 1/2), or 

 

 








2

1 2

2 150 410

1 2

1230

1 2

2n L

m m m

.
,

b gb gnm  nm
 

 

where m = 0, 1, 2, …. The only value of m which, when substituted into the equation 

above, would yield a wavelength that falls within the visible light range is m = 1. 

Therefore, 

 



1230

1 1 2
492

nm
 nm .  

 

101. In the case of a distant screen the angle  is close to zero so sin   . Thus from Eq. 

35-14, 

sin ,
m

m
d d d

  
 

 
      

 
 

 

or d  / = 589  10
–9

 m/0.018 rad = 3.3  10
–5

 m = 33 m. 

 

102. We note that  = 60° = 


3
  rad.  The phasors rotate with constant angular velocity 

 

 15

16

/ 3 rad
4.19 10 rad/s

2.5 10 st

 





   
 

. 

 

Since we are working with light waves traveling in a medium (presumably air) where the 

wave speed is approximately c, then kc =  (where k = 2), which leads to 

 

= 
c




 = 450 nm. 

 

103. (a) Each wave is incident on a medium of higher index of refraction from a medium 

of lower index (air to oil, and oil to water), so both suffer phase changes of  rad on 

reflection. If L is the thickness of the oil, the wave reflected from the back surface travels 

a distance 2L farther than the wave reflected from the front. The phase difference is 

2L(2/o), where o is the wavelength in oil. If n is the index of refraction of the oil, o = 
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/n, where  is the wavelength in vacuum, and the phase difference is 2nL(2/). The 

conditions for constructive and destructive interferences are 

 

   1
2

2
constructive : 2 2 2 , 0,1,2,

2
destructive : 2 2 1 2 , 0,1,2,

nL m nL m m

nL m nL m m


 




 



 
    

 

 
      

 

 

 

Near the rim of the drop, / 4 ,L n  so only the condition for constructive interference 

with m = 0 can be met. So the outer (thinnest) region is bright.  

 

(b) The third band from the rim corresponds to 2 3 / 2.nL   Thus, the film thickness 

there is 

 
3 3(475 nm)

594 nm.
2 2(1.20)

L
n


    

 

(c) The primary reason why colors gradually fade and then disappear as the oil thickness 

increases is because the colored bands begin to overlap too much to be distinguished. 

Also, the two reflecting surfaces would be too separated for the light reflecting from them 

to be coherent.  

 

104. (a) The combination of the direct ray and the reflected ray from the mirror will 

produce an interference pattern on the screen, like the double-slit experiment. However, 

in this case, the reflected ray has a phase change of , causing the locations of the dark 

and bright fringes to be interchanged. Thus, a zero path difference would correspond to a 

dark fringe. 

 

(b) The condition for constructive interferences is 

 
1
2

2 sin ( ) , 0,1,2,h m m     

 

(c) Similarly, the condition for destructive interference is  

 

2 sin , 0,1,2,h m m    

 

105. The Hint essentially answers the question, but we put in some algebraic details and 

arrive at the familiar analytic-geometry expression for a hyperbola. The distance d/2 is 

denoted a and the constant value for the path length difference is denoted : 

 

r1 – r2 = 

 

 (a+x) ² + y² - (a-x)² + y²   =  

 

Rearranging and squaring, we have 
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                    ( )(a+x) ² + y² ² = ( )(a-x)² + y² +  ²   

 

                            a²  2ax + x² + y²  =  a²  2ax + x² + y² + ² + 2 (a-x)² + y²   

 

Many terms on both sides are identical and may be eliminated.  This leaves us with 

 

2 (a-x)² + y²   = ²  4ax 

 

at which point we square both sides again: 

 

4²a² 8²ax + 4²x² +4²y²  = 
4
8²ax +16a²x² 

 

We eliminate the 8²ax term from both sides and plug in a = 2d to get back to the 

original notation used in the problem statement: 

 

²d² + 4² x²  + 4² y²  =  
4
 + 4 d² x² 

 

Then a simple rearrangement puts it in the familiar analytic format for a hyperbola: 

 

                              ²d²  
4  

=  4(d² ²)x²  4² y² 

 

which can be further simplified by dividing through by ²d²  
4
: 

 

 2 2

2 2 2

4 4
1 x y

d 

   
    

   
. 
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Chapter 36 
 

 

1. (a) We use Eq. 36-3 to calculate the separation between the first (m1 = 1) and fifth 

2( 5)m  minima: 

 2 1sin .
m D D

y D D m m m
a a a

  


 
         

 
 

 

Solving for the slit width, we obtain 

 

a
D m m

y





 



 2 1

6400 550 10 5 1

0 35
2 5

b g b gc hb g


mm mm

mm
mm

.
. .  

(b) For m = 1, 

sin
.

. .  


 



m

a

 1 550 10

2 5
2 2 10

6

4
b gc hmm

mm
 

 

The angle is  = sin
–1

 (2.2  10
–4

) = 2.2  10
–4

 rad. 

 

2. From Eq. 36-3, 

a m


 




sin sin .
. .



1

450
141  

 

3. (a) A plane wave is incident on the lens so it is brought to focus in the focal plane of 

the lens, a distance of 70 cm from the lens. 

 

(b) Waves leaving the lens at an angle  to the forward direction interfere to produce an 

intensity minimum if a sin  = m, where a is the slit width,  is the wavelength, and m is 

an integer. The distance on the screen from the center of the pattern to the minimum is 

given by y = D tan , where D is the distance from the lens to the screen. For the 

conditions of this problem, 

sin
.

. .  



 





m

a

 1 590 10

0 40 10
1475 10

9

3

3
b gc hm

m
 

 

This means  = 1.475  10
–3

 rad and  

 

y = (0.70 m) tan(1.475  10
–3

 rad) = 1.0  10
–3

 m. 

 

4. (a) Equations 36-3 and 36-12 imply smaller angles for diffraction for smaller 

wavelengths. This suggests that diffraction effects in general would decrease. 
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(b) Using Eq. 36-3 with m = 1 and solving for 2 (the angular width of the central 

diffraction maximum), we find 

 

2 2 2
050

50
111 1 

F
HG
I
KJ 

F
HG
I
KJ   sin sin

.

.
.


a

m

m
 

 

(c) A similar calculation yields 0.23° for  = 0.010 m. 

 

5. (a) The condition for a minimum in a single-slit diffraction pattern is given by  

 

a sin  = m, 

 

where a is the slit width,  is the wavelength, and m is an integer. For  = a and m = 1, 

the angle  is the same as for  = b and m = 2. Thus,  



a = 2b = 2(350 nm) = 700 nm. 

 

(b) Let ma be the integer associated with a minimum in the pattern produced by light with 

wavelength a, and let mb be the integer associated with a minimum in the pattern 

produced by light with wavelength b. A minimum in one pattern coincides with a 

minimum in the other if they occur at the same angle. This means maa = mbb. Since a 

= 2b, the minima coincide if 2ma = mb. Consequently, every other minimum of the b 

pattern coincides with a minimum of the a pattern. With ma =2, we have mb = 4. 

 

(c) With ma =3, we have mb = 6. 

 

6. (a)  = sin
–1

 (1.50 cm/2.00 m) = 0.430°. 

 

(b) For the mth diffraction minimum, a sin  = m. We solve for the slit width: 

 

a
m

 





sin sin .
. .



2 441

0 430
0118

nm
mm

b g
 

 

7. The condition for a minimum of a single-slit diffraction pattern is 

 

sina m   

 

where a is the slit width,  is the wavelength, and m is an integer. The angle  is 

measured from the forward direction, so for the situation described in the problem, it is 

0.60° for m = 1. Thus, 
9

5633 10 m
6.04 10 m .

sin sin 0.60

m
a








   


 

 



 

  

1559 

8. Let the first minimum be a distance y from the central axis that is perpendicular to the 

speaker. Then  

sin    y D y m a a2 2
1 2c h    (for m = 1). 

Therefore, 

 

        
2 2 2

100m
41.2m .

1 1 0.300m 3000Hz 343m s 1s

D D
y

a af v

   

      

 

 

9. THINK The condition for a minimum of intensity in a single-slit diffraction pattern is 

given by a sin   = m, where a is the slit width,  is the wavelength, and m is an integer.  

 

EXPRESS To find the angular position of the first minimum to one side of the central 

maximum, we set m = 1: 

 

1

1 1
9

3

4589 10

100 10
589 10

F
HG
I
KJ 





F
HG

I
KJ   





sin sin
.

. .


a

m

m
rad  

 

If D is the distance from the slit to the screen, the distance on the screen from the center 

of the pattern to the minimum is 

 

y D1 1

4 3300 589 10 1767 10     tan . tan . . . m rad mb g c h  

 

To find the second minimum, we set m = 2: 

 

 2

1

9

3

3
2 589 10

100 10
1178 10





F
HG

I
KJ
 





sin
.

. .
m

m
rad

c h
 

 

ANALYZE The distance from the center of the pattern to this second minimum is  

 

y2 = D tan 2 = (3.00 m) tan (1.178  10
–3

 rad) = 3.534  10
–3

 m. 

 

The separation of the two minima is  

 

y = y2 – y1 = 3.534 mm – 1.767 mm = 1.77 mm. 

 

LEARN The angles 1 and 2 found above are quite small. In the small-angle 

approximation, sin tan ,     and the separation between two adjacent diffraction 

minima can be approximated as 

 

 1 1(tan tan ) ( )m m m m

D
y D D

a


          . 
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10. From y = mL/a we get 

 

(632.8nm)(2.60)
[10 ( 10)] 24.0mm .

1.37mm

m L L
y m

a a

  
         

 
 

 

11. We note that 1 nm = 1 10
–9

 m = 1 10
–6

 mm. From Eq. 36-4, 

 

  
F
HG
I
KJ 



F
HG

I
KJ
F
HG

I
KJ 



2 2

589 10

010

2
30 266 7

6






x sin

.
sin . .b g

mm

mm
rad  

 

This is equivalent to 266.7 rad – 84 = 2.8 rad = 160°. 

 

12. (a) The slope of the plotted line is 12, and we see from Eq. 36-6 that this slope should 

correspond to 

 

12 12(610 nm)
12 2330 nm 2.33 m

a
a

 


  
       

 

(b) Consider Eq. 36-3 with “continuously variable” m (of course, m should be an integer 

for diffraction minima, but for the moment we will solve for it as if it could be any real 

number): 

 max max

2330 nm
sin 3.82

610 nm

a a
m 

 
     

                                          

which suggests that, on each side of the central maximum (centr = 0), there are three 

minima; considering both sides then implies there are six minima in the pattern.  

 

(c) Setting m = 1 in Eq. 36-3 and solving for  yields 15.2°. 

 

(d) Setting m = 3 in Eq. 36-3 and solving for  yields 51.8°. 

 

13. (a)  = sin
–1

 (0.011 m/3.5 m) = 0.18°. 

 

(b) We use Eq. 36-6: 

 

 
6

0.025mm sin 0.18
sin 0.46rad .

538 10 mm

a 
 

 

 
   

 
 

 

(c) Making sure our calculator is in radian mode, Eq. 36-5 yields 

 

I

Im

 



b g

F
HG
I
KJ 

sin
. .

2

0 93  
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14. We will make use of arctangents and sines in our solution, even though they can be 

“shortcut” somewhat since the angles are small enough to justify the use of the small 

angle approximation. 

 

(a) Given y/D = 15/300 (both expressed here in centimeters), then tan
1

(y/D) = 2.86°.  

Use of Eq. 36-6 (with a = 6000 nm and = 500 nm) leads to 

 

 6000nm sin 2.86sin
1.883rad.

500nm

a  





    

Thus,  
2

sin
0.256 .

p

m

I

I





 
  
 

 

 

(b) Consider Eq. 36-3 with “continuously variable” m (of course, m should be an integer 

for diffraction minima, but for the moment we will solve for it as if it could be any real 

number): 

 
sin (6000 nm)sin 2.86

0.60
500 nm

a
m






   , 

 

which suggests that the angle takes us to a point between the central maximum (centr = 0) 

and the first minimum (which corresponds to m = 1 in Eq. 36-3). 

 

15. THINK The relative intensity in a single-slit diffraction depends on the ratio a/, 

where a is the slit width and  is the wavelength. 

 

EXPRESS The intensity for a single-slit diffraction pattern is given by 

 

I Im
sin2

2




 

 

where Im is the maximum intensity and  = (a/) sin . The angle  is measured from 

the forward direction.  

 

ANALYZE (a) We require I = Im/2, so 

 

sin .2 21

2
   

 

(b) We evaluate sin
2
  and  2 2  for  = 1.39 rad and compare the results. To be sure 

that 1.39 rad is closer to the correct value for  than any other value with three significant 

digits, we could also try 1.385 rad and 1.395 rad. 
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(c) Since  = (a/) sin , 





F
HG
I
KJ

sin .1 

a
 

 

Now / = 1.39/ = 0.442, so 

 
F
HG

I
KJ

sin
.

.1 0 442

a
 

 

The angular separation of the two points of half intensity, one on either side of the center 

of the diffraction pattern, is 

  
F
HG

I
KJ

2 2
0 4421sin
.

.


a
 

(d) For a/ = 1.0, 

 12sin 0.442 1.0 0.916rad 52.5      . 

 

(e) For a/ = 5.0,  

 12sin 0.442 5.0 0.177rad 10.1      . 

 

(f) For a/ = 10,  

    2 0442 10 00884 5061sin . . . .b g rad  

 

LEARN As shown in Fig. 36-8, the wider the slit is (relative to the wavelength), the 

narrower is the central diffraction maximum. 

 

16. Consider Huygens’ explanation of diffraction phenomena. When A is in place only 

the Huygens’ wavelets that pass through the hole get to point P. Suppose they produce a 

resultant electric field EA. When B is in place, the light that was blocked by A gets to P 

and the light that passed through the hole in A is blocked. Suppose the electric field at P 

is now

EB . The sum 

 
E EA B  is the resultant of all waves that get to P when neither A nor 

B are present. Since P is in the geometric shadow, this is zero. Thus 
 
E EA B  , and since 

the intensity is proportional to the square of the electric field, the intensity at P is the 

same when A is present as when B is present. 

 

17. (a) The intensity for a single-slit diffraction pattern is given by 

 

I Im
sin2

2




 

 

where  is described in the text (see Eq. 36-6). To locate the extrema, we set the 

derivative of I with respect to  equal to zero and solve for . The derivative is 
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dI

d
Im






   2

3

sin
cos sin .b g  

 

The derivative vanishes if 0   but sin  = 0. This 

yields  = m, where m is a nonzero integer. These 

are the intensity minima: I = 0 for  = m. The 

derivative also vanishes for  cos  – sin  = 0. This 

condition can be written tan  = . These implicitly 

locate the maxima. 

 

(b) The values of  that satisfy tan  =  can be 

found by trial and error on a pocket calculator or 

computer. Each of them is slightly less than one of 

the values  1
2

radm  , so we start with these 

values. They can also be found graphically. As in the 

diagram that follows, we plot y = tan  and y =  on the same graph. The intersections of 

the line with the tan  curves are the solutions. The smallest  is 0  . 

 

(c) We write   m 1
2b g  for the maxima. For the central maximum,  = 0 and 

1/ 2 0.500m     . 

 

(d) The next one can be found to be  = 4.493 rad. 

 

(e) For  = 4.4934, m = 0.930. 

 

(f) The next one can be found to be  = 7.725 rad. 

 

(g) For  = 7.7252, m = 1.96. 

 

18. Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of 

your eye,” the maximum distance is 

 

  
 

3 3

9
R

5.0 10 m 4.0 10 m
30m .

1.22 1.22 550 10 m

D D
L

d

 



 
   

 
 

 

19. (a) Using the notation of Sample Problem — “Pointillistic paintings use the 

diffraction of your eye,” 

L
D

d


 122

2 50 10

122 650 10
019

6 3

9.

(

. (
.

 




 



m)(1.5 10 m)

m)
m .  

 

(b) The wavelength of the blue light is shorter so Lmax  
–1

 will be larger. 
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20. Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of 

your eye,” the minimum separation is 

 

 
  2

3

R

1.22 1.6 10 m1.22
6.2 10 m 53m .

2.3m
D L L

d


 
     

 
 

 

21. THINK We apply the Rayleigh criterion to estimate the linear separation between the 

two objects.  

 

EXPRESS If L is the distance from the observer to the objects, then the smallest 

separation D they can have and still be resolvable is D = LR, where R is measured in 

radians.  

 

ANALYZE (a) With small angle approximation, R 1.22 / ,d  where  is the 

wavelength and d is the diameter of the aperture. Thus, 

 

D
L

d
 

 


  





122 122 8 0 10 550 10

50 10
11 10

10 9

3

7. . .

.
. .

 m m

m
m = 1.1 10 km4

c hc h
 

 

This distance is greater than the diameter of Mars; therefore, one part of the planet’s 

surface cannot be resolved from another part. 

 

(b) Now d = 5.1 m and
  10 9

4
1.22 8.0 10 m 550 10 m

1.1 10 m 11 km .
5.1m

D

 
     

 

LEARN By the Rayleigh criterion for resolvability, two objects can be resolved only if 

their angular separation at the observer is greater than R 1.22 / .d   

 

22. (a) Using the notation of Sample Problem — “Pointillistic paintings use the 

diffraction of your eye,” the minimum separation is 

 

D L L
d

 
F
HG
I
KJ 

 




 R

m m

m
 m.

122 400 10 122 550 10

0 005
50

3 9
. .

.

 c hb gc h
b g  

 

(b) The Rayleigh criterion suggests that the astronaut will not be able to discern the Great 

Wall (see the result of part (a)). 

 

(c) The signs of intelligent life would probably be, at most, ambiguous on the sunlit half 

of the planet. However, while passing over the half of the planet on the opposite side 

from the Sun, the astronaut would be able to notice the effects of artificial lighting. 
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23. THINK We apply the Rayleigh criterion to determine the conditions that allow the 

headlights to be resolved.  

 

EXPRESS By the Rayleigh criteria, two point sources can be resolved if the central 

diffraction maximum of one source is centered on the first minimum of the diffraction 

pattern of the other. Thus, the angular separation (in radians) of the sources must be at 

least R = 1.22/d, where  is the wavelength and d is the diameter of the aperture.  

 

ANALYZE (a) For the headlights of this problem, 

 

 9

4

R 3

1.22 550 10 m
1.34 10 rad,

5.0 10 m









  


 

 

or 41.3 10 rad , in two significant figures. 

 

(b) If L is the distance from the headlights to the eye when the headlights are just 

resolvable and D is the separation of the headlights, then D = LR, where the small angle 

approximation is made. This is valid for R in radians. Thus, 

 

4

4

R

1.4m
1.0 10 m 10km .

1.34 10 rad

D
L

 
    


 

 

LEARN A distance of 10 km far exceeds what human eyes can resolve. In reality, our 

visual resolvability depends on other factors such as the relative brightness of the source 

and their surroundings, turbulence in the air between the lights and the eyes, the health of 

one’s vision.  

 

24. We use Eq. 36-12 with  = 2.5°/2 = 1.25°. Thus, 

 

d  



122 122 550

125
31

.

sin

.

sin .
.






nm
m

b g
 

 

25. Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of 

your eye,” the minimum separation is 

 

 
  9

8

R

1.22 550 10 m
1.22 3.82 10 m 50m .

5.1m
D L L

d


 
     

 
 

 

26. Using the same notation found in Sample Problem — “Pointillistic paintings use the 

diffraction of your eye,” 

D

L d
  R 122.


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where we will assume a “typical” wavelength for visible light:   550  10
–9

 m. 

 

(a) With L = 400  10
3
 m and D = 0.85 m, the above relation leads to d = 0.32 m. 

 

(b) Now with D = 0.10 m, the above relation leads to d = 2.7 m. 

 

(c) The military satellites do not use Hubble Telescope-sized apertures. A great deal of 

very sophisticated optical filtering and digital signal processing techniques go into the 

final product, for which there is not space for us to describe here. 

 

27. Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of 

your eye,” 
2 3

6 3

9

R

(5.0 10 m)(4.0 10 m)
1.6 10 m 1.6 10 km .

1.22 / 1.22(0.10 10 m)

D D
L

d

 



 
      

 
 

 

28. Eq. 36-14 gives R = 1.22/d, where in our case R  D/L, with D = 60 m being the 

size of the object your eyes must resolve, and L being the maximum viewing distance in 

question. If d = 3.00 mm = 3000 m is the diameter of your pupil, then 

 

  

 
5

60 m 3000 m
2.7 10 m 27cm.

1.22 1.22 0.55 m

Dd
L

 



    


 

 

29. (a) Using Eq. 36-14, the angular separation is 

 

  9

7

R

1.22 550 10 m1.22
8.8 10 rad .

0.76md







     

 

(b) Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of 

your eye,” the distance between the stars is 

 

   

  

12

7

R

10ly 9.46 10 km ly 0.18
8.4 10 km .

3600 180
D L

 
     

 

(c) The diameter of the first dark ring is 

 

   

  
5

R

2 0.18 14m
2 2.5 10 m 0.025mm .

3600 180
d L 


      

 

30. From Fig. 36-42(a), we find the diameter D  on the retina to be 

 

2.00 cm
(2.00 mm) 0.0889 mm

45.0 cm

L
D D

L


    . 
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Next, using Fig. 36-42(b), the angle from the axis is  

 

 1 1/ 2 0.0889 mm / 2
tan tan 0.424

6.00 mm

D

x
     
      

   
. 

 

Since the angle corresponds to the first minimum in the diffraction pattern, we have 

sin 1.22 / d  , where  is the wavelength and d is the diameter of the defect. With 

550 nm,   we obtain 

 

 51.22 1.22(550 nm)
9.06 10  m 91 m

sin sin(0.424 )
d






    


. 

 

31. THINK We apply the Rayleigh criterion to calculate the angular width of the central 

maxima. 

 

EXPRESS The first minimum in the diffraction pattern is at an angular position , 

measured from the center of the pattern, such that sin  = 1.22/d, where  is the 

wavelength and d is the diameter of the antenna. If f is the frequency, then the wavelength 

is 

 
c

f





  300 10

220 10
136 10

8

9

3.
. .

m s

Hz
m  

 

ANALYZE (a) Thus, we have 

 

 
F
HG
I
KJ 





F
HG

I
KJ
  





sin
.

sin
. .

.
. .1 1

3

2

3122 122 136 10

550 10
302 10



d

m

m
rad

c h
 

 

The angular width of the central maximum is twice this, or 6.04  10
–3

 rad (0.346°). 

 

(b) Now  = 1.6 cm and d = 2.3 m, so 

 

 
F

HG
I
KJ
 



sin
. .

.
. .1

2

3
122 16 10

2 3
85 10

m

m
rad

c h
 

 

The angular width of the central maximum is 1.7  10
–2

 rad (or 0.97°). 

 

LEARN Using small angle approximation, we can write the angular width as 

 

 
1.22 2.44

2 2
d d


  

  
 

. 
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32. (a) We use Eq. 36-12: 

 

    

  
1 1 1

3

1.22 1.22 1450m s1.22
sin sin sin 6.8 .

25 10 Hz 0.60m

sv f

d d


   

   
       

      

 

 

(b) Now f = 1.0  10
3
 Hz so 

 

122 122 1450

0 60
2 9 1

. .

.
. .


d




 
b gb g
c hb g

m s

1.0 10 Hz m3
 

 

Since sin  cannot exceed 1 there is no minimum. 

 

33. Equation 36-14 gives the Rayleigh angle (in radians):  

 

1.22
R

D

d L


    

 

where the rationale behind the second equality is given in Sample Problem — 

“Pointillistic paintings use the diffraction of your eye.” 

 

(a) We are asked to solve for D and are given  = 1.40 × 10
9 

m, d = 0.200 × 10
3 

m, and 
32000 10  mL  .  Consequently, we obtain D = 17.1 m. 

 

(b) Intensity is power over area (with the area assumed spherical in this case, which 

means it is proportional to radius-squared), so the ratio of intensities is given by the 

square of a ratio of distances:   (d/D)
2
 = 1.37 × 10

10
. 

 

34. (a) Since  = 1.22/d, the larger the wavelength the larger the radius of the first 

minimum (and second maximum, etc). Therefore, the white pattern is outlined by red 

lights (with longer wavelength than blue lights). 

 

(b) The diameter of a water drop is 

 

 
  

7

4
1.22 7 10 m1.22

1.3 10 m .
1.5 0.50 2

d









   
 

 

 

35. Bright interference fringes occur at angles  given by d sin  = m, where m is an 

integer. For the slits of this problem, we have d = 11a/2, so  

 

a sin  = 2m/11 . 

 

The first minimum of the diffraction pattern occurs at the angle 1 given by a sin 1 = , 

and the second occurs at the angle 2 given by a sin 2 = 2, where a is the slit width. We 
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should count the values of m for which 1 <  < 2, or, equivalently, the values of m for 

which sin 1 < sin  < sin 2. This means 1 < (2m/11) < 2. The values are m = 6, 7, 8, 9, 

and 10. There are five bright fringes in all. 

 

36. Following the method of Sample Problem — “Double-slit experiment with diffraction 

of each slit included,” we find 
3

6

0.30 10 m
6.52

46 10 m

d

a






 


 

 

which we interpret to mean that the first diffraction minimum occurs slightly farther 

“out” than the m = 6 interference maximum.  This implies that the central diffraction 

envelope includes the central (m = 0) interference maximum as well as six interference 

maxima on each side of it.  Therefore, there are 6 + 1 + 6 = 13 bright fringes (interference 

maxima) in the central diffraction envelope. 

 

37. In a manner similar to that discussed in Sample Problem — “Double-slit experiment 

with diffraction of each slit included,” we find the number is 2(d/a) – 1 = 2(2a/a) – 1 = 3. 

 

38. We note that the central diffraction envelope contains the central bright interference 

fringe (corresponding to m = 0 in Eq. 36-25) plus ten on either side of it.  Since the 

eleventh order bright interference fringe is not seen in the central envelope, then we 

conclude the first diffraction minimum (satisfying sin = /a) coincides with the m = 11 

instantiation of Eq. 36-25: 

d = 
m

sin 
  =  

11 

 /a
  = 11 a . 

 

Thus, the ratio d/a is equal to 11. 

 

39. (a) The first minimum of the diffraction pattern is at 5.00°, so 

 

a  





sin

.

sin .
. .






0 440

500
505

m
m  

 

(b) Since the fourth bright fringe is missing, d = 4a = 4(5.05 m) = 20.2 m. 

 

(c) For the m = 1 bright fringe, 

 

 5.05 m sin1.25sin
0.787 rad .

0.440 m

a   


 


    

 

Consequently, the intensity of the m = 1 fringe is 

 

I Im
F
HG
I
KJ 

F
HG

I
KJ 

sin
.

sin .

.
. ,





2

2

2

2
7 0

0 787

0 787
57mW cm

rad
mW cmd i  
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which agrees with Fig. 36-45. Similarly for m = 2, the intensity is I = 2.9 mW/cm
2
, also 

in agreement with Fig. 36-45. 

 

40. (a) We note that the slope of the graph is 80, and that Eq. 36-20 implies that the slope 

should correspond to 

 

80 80(435 nm)
80 11077 nm 11.1 m

d
d

 


  
      . 

 

(b) Consider Eq. 36-25 with “continuously variable” m (of course, m should be an integer 

for interference maxima, but for the moment we will solve for it as if it could be any real 

number): 

 max max

11077 nm
sin 25.5

435 nm

d d
m 

 
     

 

which indicates (on one side of the interference pattern) there are 25 bright fringes.  Thus 

on the other side there are also 25 bright fringes.  Including the one in the middle, then, 

means there are a total of 51 maxima in the interference pattern (assuming, as the 

problem remarks, that none of the interference maxima have been eliminated by 

diffraction minima). 

 

(c) Clearly, the maximum closest to the axis is the middle fringe at  = 0°. 

 

(d) If we set m = 25 in Eq. 36-25, we find 

 

 1 1 (25)(435 nm)
sin sin sin 79.0

11077 nm

m
m d

d


       
        

   
 

   

41. We will make use of arctangents and sines in our solution, even though they can be 

“shortcut” somewhat since the angles are [almost] small enough to justify the use of the 

small angle approximation. 

 

(a) Given y/D = (0.700 m)/(4.00 m), then  



 1 1 0.700 m
tan tan 9.93 0.173 rad

4.00 m

y

D
     
       

   
. 

 

Equation 36-20 then gives 

 

 24.0 m sin9.93sin
21.66rad.

0.600 m

d   


 


    

                                

Thus, use of Eq. 36-21 (with a = 12 µm and = 0.60 µm) leads to 
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 12.0 m sin9.93sin
10.83 rad .

0.600 m

a   


 


    

Thus,  

 
2 2

22sin sin10.83rad
(cos ) cos 21.66 rad 0.00743

10.83m

I

I






   
     
   

 . 

          

(b) Consider Eq. 36-25 with “continuously variable” m (of course, m should be an integer 

for interference maxima, but for the moment we will solve for it as if it could be any real 

number): 

 24.0 m sin9.93sin
6.9

0.600 m

d
m






  


 

 

which suggests that the angle takes us to a point between the sixth minimum (which 

would have m = 6.5) and the seventh maximum (which corresponds to m = 7). 

 

(c) Similarly, consider Eq. 36-3 with “continuously variable” m (of course, m should be 

an integer for diffraction minima, but for the moment we will solve for it as if it could be 

any real number): 

 12.0 m sin9.93sin
3.4

0.600 m

a
m






  


 


which suggests that the angle takes us to a point between the third diffraction minimum 

(m = 3) and the fourth one (m = 4).  The maxima (in the smaller peaks of the diffraction 

pattern) are not exactly midway between the minima; their location would make use of 

mathematics not covered in the prerequisites of the usual sophomore-level physics course. 

 

42. (a) In a manner similar to that discussed in Sample Problem — “Double-slit 

experiment with diffraction of each slit included,”  we find the ratio should be d/a = 4. 

Our reasoning is, briefly, as follows: we let the location of the fourth bright fringe 

coincide with the first minimum of diffraction pattern, and then set sin  = 4/d = /a (so 

d = 4a). 

 

(b) Any bright fringe that happens to be at the same location with a diffraction minimum 

will vanish. Thus, if we let  

 1 2 1sin
4

m m m

d a a

  
     , 

 

or m1 = 4m2 where 2 1,2,3,m  . The fringes missing are the 4th, 8th, 12th, and so on. 

Hence, every fourth fringe is missing. 
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43. THINK For relatively wide slits, the interference of light from two slits produces 

bright fringes that do not all have the same intensity; instead, the intensities are modified 

by diffraction of light passing through each slit.  

 

EXPRESS The angular positions  of the bright interference fringes are given by d sin  

= m, where d is the slit separation,  is the wavelength, and m is an integer. The first 

diffraction minimum occurs at the angle 1 given by a sin 1 = , where a is the slit width. 

The diffraction peak extends from –1 to +1, so we should count the number of values of 

m for which –1 <  < +1, or, equivalently, the number of values of m for which  

 

– sin 1 < sin   < + sin 1. 

 

The intensity at the screen is given by 

I Im
F
HG
I
KJcos

sin2

2





c h  

 

where  = (a/) sin ,  = (d/) sin , and Im is the intensity at the center of the pattern. 

 

ANALYZE (a) The condition above means – 1/a < m/d < 1/a, or –d/a < m < +d/a. Now  

 

d/a = (0.150  10
–3

 m)/(30.0  10
–6

 m) = 5.00, 

 

so the values of m are m = –4, –3, –2, –1, 0, +1, +2, +3, and +4. There are 9 fringes. 

 

(b) For the third bright interference fringe, d sin  = 3, so  = 3 rad and cos
2
  = 1. 

Similarly,  = 3a/d = 3/5.00 = 0.600 rad and 

 

sin sin .

.
. .





F
HG
I
KJ 
F
HG

I
KJ 

2 2
0 600

0 600
0 255




 

 

The intensity ratio is I/Im = 0.255.  

 

LEARN The expression for intensity contains two factors: (1) the interference factor 
2cos   due to the interference between two slits 

with separation d, and (2) the diffraction factor 
2[(sin ) / ]   which arises due to diffraction by a 

single slit of width a. In the limit 0,a   

(sin ) / 1,    and we recover Eq. 35-22 for the 

interference between two slits of vanishingly 

narrow slits separated by d. Similarly, setting d = 0 

or equivalently,  = 0, we recover Eq. 36-5 for the 

diffraction of a single slit of width a. A plot of the 

relative intensity is shown to the right. 
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44. We use Eq. 36-25 for diffraction maxima: d sin  = m. In our case, since the angle 

between the m = 1 and m = –1 maxima is 26°, the angle  corresponding to m = 1 is  = 

26°/2 = 13°. We solve for the grating spacing: 

 

  1 550nm
2.4 m 2 m.

sin sin13

m
d  




   


 

 

45. The distance between adjacent rulings is  

 

d = 20.0 mm/6000 = 0.00333 mm = 3.33 m. 

 

(a) Let  sin 0, 1, 2,d m m      . Since |m|/d > 1 for |m|  6, the largest value of  

corresponds to | m | = 5, which yields  

 

 1 1 5(0.589 m)
sin | | / sin 62.1

3.33 m
m d






   
     

 
. 

 

(b) The second largest value of  corresponds to |m| = 4, which yields  

 

 1 1 4(0.589 m)
sin | | / sin 45.0

3.33 m
m d






   
     

 
. 

 

(c) The third largest value of  corresponds to | m | = 3, which yields  

 

 1 1 3(0.589 m)
sin | | / sin 32.0

3.33 m
m d






   
     

 
. 

 

46. The angular location of the mth order diffraction maximum is given by m = d sin . 

To be able to observe the fifth-order maximum, we must let sin |m=5 = 5/d < 1, or 

 

   
d

5

100

5
635

.
.

nm / 315
nm  

 

Therefore, the longest wavelength that can be used is = 635 nm.  

 

47. THINK Diffraction lines occur at angles  such that d sin  = m, where d is the 

grating spacing,  is the wavelength and m is an integer. 

 

EXPRESS The ruling separation is  

 

d = 1/(400 mm
–1

) = 2.5  10
–3

 mm. 
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Notice that for a given order, the line associated with a long wavelength is produced at a 

greater angle than the line associated with a shorter wavelength. We take  to be the 

longest wavelength in the visible spectrum (700 nm) and find the greatest integer value of 

m such that  is less than 90°. That is, find the greatest integer value of m for which m < 

d.  

 

ANALYZE Since  
6

9

2.5 10 m
3.57

700 10 m

d 




 

 
, 

 

that value is m = 3. There are three complete orders on each side of the m = 0 order. The 

second and third orders overlap. 

 

LEARN From 1sin ( / ),m d   the condition for maxima or lines, we see that for a 

given diffraction grating, the angle from the central axis to any line depends on the 

wavelength of the light being used.   

 

48. (a) For the maximum with the greatest value of m = M we have M = a sin  < d, so 

M < d/ = 900 nm/600 nm = 1.5, or M = 1. Thus three maxima can be seen, with m = 0, 

±1. 

 

(b) From Eq. 36-28, we obtain 

 










 
hw

nm

900nm

   
F
HG
I
KJ

L
NM

O
QP


F
HG

I
KJ

L
NM

O
QP
 





N d

d

N d N N dcos

sin

cos

tan
tan sin

tan sin . .

1

1

1000

600
0 051

1

1

 

 

49. THINK Maxima of a diffraction grating pattern occur at angles  given by d sin  = 

m, where d is the slit separation,  is the wavelength, and m is an integer.  

 

EXPRESS If two lines are adjacent, then their order numbers differ by unity. Let m be 

the order number for the line with sin  = 0.2 and m + 1 be the order number for the line 

with sin  = 0.3. Then,  

0.2d = m,    0.3d = (m + 1). 

 

ANALYZE (a) We subtract the first equation from the second to obtain 0.1d = , or 

  

d = /0.1 = (600  10
–9

m)/0.1 = 6.0  10
–6

 m. 

 

(b) Minima of the single-slit diffraction pattern occur at angles  given by a sin  = m, 

where a is the slit width. Since the fourth-order interference maximum is missing, it must 
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fall at one of these angles. If a is the smallest slit width for which this order is missing, 

the angle must be given by a sin   = . It is also given by d sin   = 4, so  

 

a = d/4 = (6.0  10
–6

 m)/4 = 1.5  10
–6

 m. 

 

(c) First, we set   = 90° and find the largest value of m for which m < d sin. This is the 

highest order that is diffracted toward the screen. The condition is the same as m < d/ 

and since  

d/ = (6.0  10
–6

 m)/(600  10
–9

 m) = 10.0, 

 

the highest order seen is the m = 9 order. The fourth and eighth orders are missing, so the 

observable orders are m = 0, 1, 2, 3, 5, 6, 7, and 9. Thus, the largest value of the order 

number is m = 9. 

 

(d) Using the result obtained in (c), the second largest value of the order number is m = 7. 

 

(e) Similarly, the third largest value of the order number is m = 6. 

 

LEARN Interference maxima occur when d sin  = m, while the condition for 

diffraction minima is a sin  = .m   Thus, a particular interference maximum with order 

m may coincide with the diffraction minimum of order .m  The value of m is given by 

 

 
sin

.
sin

d m d
m m

a m a

 

 

 
      

 

 

Since m = 4 when 1,m  we conclude that d/a = 4. Thus, m = 8 would correspond to the 

second diffraction minimum ( 2m  ). 

   

50. We use Eq. 36-25. For m = ±1 

 

sin (1.73 m) sin( 17.6 )
523 nm,

1

d

m

 


 
  


 

 

and for m = ±2, 





 




( .173

2
524

m)sin( 37.3 )
nm.  

 

Similarly, we may compute the values of  corresponding to the angles for m = ±3. The 

average value of these ’s is 523 nm. 

 

51. (a) Since d = (1.00 mm)/180 = 0.0056 mm, we write Eq. 36-25 as 

 

1 1sin sin (180)(2)
m

d
   
   

 
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where    4 10 4 mm and    5 10 4 mm. Thus,     2 1 21. . 

 

(b) Use of Eq. 36-25 for each wavelength leads to the condition 

 

m m1 1 2 2   

 

for which the smallest possible choices are m1 = 5 and m2 = 4. Returning to Eq. 36-25, 

then, we find 

 
4

1 1 11 1 10  mm)
sin sin sin 0.36 21 .

0.0056 mm

m

d



     

      
   

 

 

(c) There are no refraction angles greater than 90°, so we can solve for “mmax” (realizing 

it might not be an integer): 

 

max 4

2 2

sin90 0.0056 mm
11

10  mm

d d
m




   

  
 

 

where we have rounded down. There are no values of m (for light of wavelength 2) 

greater than m = 11. 

 

52. We are given the “number of lines per millimeter” (which is a common way to 

express 1/d for diffraction gratings); thus, 

 
1

d
  =  160

 
lines/mm        d = 6.25 × 10

6 
m . 

 

(a) We solve Eq. 36-25 for  with various values of m and We show here the m = 2 

and = 460 nm calculation: 

 

 
9

1 1 1

6

10  m)
sin sin sin 0.1472 8.46 .

6.25 10  m

m

d





  



  
      

   
 

  

Similarly, we get 11.81° for m = 2 and = 640 nm, 12.75° for m = 3 and = 460 nm, 

and 17.89° for m = 3 and = 640 nm.  The first indication of overlap occurs when we 

compute the angle for m = 4 and = 460 nm; the result is 17.12° which clearly shows 

overlap with the large-wavelength portion of the m = 3 spectrum. 

 

(b) We solve Eq. 36-25 for m with  and = 640 nm.  In this case, we obtain m = 

9.8 which means that the largest order in which the full range (which must include that 

largest wavelength) is seen is ninth order. 

 

(c) Now with m = 9, Eq. 36-25 gives  41.5° for  = 460 nm. 
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(d) It similarly gives  67.2° for  = 640 nm. 

 

(e) We solve Eq. 36-25 for m with  and = 460 nm.  In this case, we obtain m = 

13.6 which means that the largest order in which the wavelength is seen is the thirteenth 

order. Now with m = 13, Eq. 36-25 gives  73.1° for  = 460 nm. 

 

53. At the point on the screen where we find the inner edge of the hole, we have tan  = 

5.0 cm/30 cm, which gives  = 9.46°. We note that d for the grating is equal to  

1.0 mm/350 = 1.0  10
6
 nm/350.  

 

(a) From m = d sin , we find 

 

  61.0 10 nm/350 0.1644sin 470nm
.

d
m

 
  

  
 

 

Since for white light  > 400 nm, the only integer m allowed here is m = 1. Thus, at  

one edge of the hole,  = 470 nm. This is the shortest wavelength of the light that passes 

through the hole. 

 

(b) At the other edge, we have tan ' = 6.0 cm/30 cm, which gives ' = 11.31°. This 

leads to 
61.0 10 nm

sin sin(11.31 ) 560 nm.
350

d 
 

     
 

 

 

This corresponds to the longest wavelength of the light that passes through the hole. 

 

54. Since the slit width is much less than the wavelength of the light, the central peak of 

the single-slit diffraction pattern is spread across the screen and the diffraction envelope 

can be ignored. Consider three waves, one from each slit. Since the slits are evenly 

spaced, the phase difference for waves from the first and second slits is the same as the 

phase difference for waves from the second and third slits. The electric fields of the 

waves at the screen can be written as 

 

1 0

2 0

3 0

sin( )

sin( )

sin( 2 )

E E t

E E t

E E t



 

 



 

 

 

  

where  = (2d/) sin . Here d is the separation of 

adjacent slits and  is the wavelength. The phasor 

diagram is shown on the right. It yields 

 

E E E E   0 0 0 1 2cos cos cos .  b g  
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for the amplitude of the resultant wave. Since the intensity of a wave is proportional to 

the square of the electric field, we may write I AE 0

2 2
1 2cosb g , where A is a constant 

of proportionality. If Im is the intensity at the center of the pattern, for which  = 0, then  

I AEm  9 0

2 . We take A to be I Em / 9 0

2  and obtain 

 

I
I Im m    
9

1 2
9

1 4 4
2 2cos cos cos .  b g c h  

 

55. THINK If a grating just resolves two wavelengths whose average is avg and whose 

separation is , then its resolving power is defined by R = avg/.  

 

EXPRESS As shown in Eq. 36-32, the resolving power can also be written as Nm, where 

N is the number of rulings in the grating and m is the order of the lines.  

 

ANALYZE Thus avg/ = Nm and 

 

  
avg 3656.3nm

3.65 10 rulings.
1 0.18nm

N
m


   


 

 

LEARN A large N (more rulings) means greater resolving power. 

 

56. (a) From R Nm    we find 

 

 

 

415.496 nm 415.487 nm 2
23100.

2 415.96 nm 415.487 nm
N

m






  

 
 

 

(b) We note that d = (4.0  10
7
 nm)/23100 = 1732 nm. The maxima are found at 

 

 
F
HG
I
KJ 

L
NM

O
QP
  sin sin

.
. .1 1

2 4155

1732
28 7

m

d

 b gb gnm

nm
 

 

57. (a) We note that d = (76  10
6
 nm)/40000 = 1900 nm. For the first order maxima  = 

d sin , which leads to 

 
F
HG
I
KJ 

F
HG

I
KJ   sin sin .1 1 589

1900
18



d

nm

nm
 

 

Now, substituting m = d sin / into Eq. 36-30 leads to  

 

D = tan / = tan 18°/589 nm = 5.5  10
–4

 rad/nm = 0.032°/nm. 

 

(b) For m = 1, the resolving power is R = Nm = 40000 m = 40000 = 4.0 × 10
4
. 
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(c) For m = 2 we have  = 38°, and the corresponding value of dispersion is 0.076°/nm. 

 

(d) For m = 2, the resolving power is R = Nm = 40000 m = (40000)2 = 8.0 × 10
4
. 

 

(e) Similarly for m = 3, we have  = 68°, and the corresponding value of dispersion is 

0.24°/nm. 

 

(f) For m = 3, the resolving power is R = Nm = 40000 m = (40000)3 = 1.2 × 10
5
. 

 

58. (a) We find  from R = / = Nm: 

 

   


Nm

500

50 3
0 056

nm

600 / mm mm
nm = 56pm.b gb gb g.

.  

 

(b) Since sin  = mmax/d < 1, 

 

m
d

max
/

. . 





1

600 500 10
33

6mm mmb gc h  

 

Therefore, mmax = 3. No higher orders of maxima can be seen. 

 

59. Assuming all N = 2000 lines are uniformly illuminated, we have 

 



av


 Nm  

 

from Eq. 36-31 and Eq. 36-32. With av = 600 nm and m = 2, we find  = 0.15 nm. 

 

60. Letting R = / = Nm, we solve for N: 

 

 

 

589.6nm 589.0nm / 2
491.

2 589.6nm 589.0nm
N

m






  

 
 

 

61. (a) From d sin  = m we find 

 

d
m

 


 
avg

sin

nm
nm = 10 m.




3 589 3

10
10 104

.

sin
.

b g
 

 

(b) The total width of the ruling is 

 

L Nd
R

m
d

d

m
 
F
HG
I
KJ  


 

avg nm m

nm nm
m = 3.3 mm.



589 3 10

3 589 59 589 00
33 103

.

. .
.

b gb g
b g


  
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62. (a) From the expression for the half-width hw (given by Eq. 36-28) and that for the 

resolving power R (given by Eq. 36-32), we find the product of hw and R to be 

 


 




hw R

N d
Nm

m

d

d

d

F
HG

I
KJ   

 

cos cos

sin

cos
tan ,  

 

where we used m = d sin  (see Eq. 36-25). 

 

(b) For first order m = 1, so the corresponding angle 1 satisfies d sin 1 = m = . Thus 

the product in question is given by 

 

   

 

1 1
1

2 2 2
1 1 1

2

sin sin 1 1
tan

cos 1 sin 1/ sin 1 / 1

1
0.89.

900nm/600nm 1

d

 


  
   

   

 


 

 

63. The angular positions of the first-order diffraction lines are given by d sin  = . Let 

1 be the shorter wavelength (430 nm) and  be the angular position of the line associated 

with it. Let 2 be the longer wavelength (680 nm), and let  +  be the angular position 

of the line associated with it. Here  = 20°. Then,  

 

 1 2sin , sin( )d d       . 

We write  

sin ( + ) as sin  cos  + cos  sin , 

 

then use the equation for the first line to replace sin  with 1/d, and cos  with 

1 1

2 2 d .  After multiplying by d, we obtain 

 

    1

2

1

2

2cos sin .   d  

 

Solving for d, we find 

 

d 
 


   



   

    



2 1

2

1

2

2

2 2

2

4

680 430 20 430 20

20

914 914 10

cos sin

sin

cos sin

sin

.

 



b g b g

b g b g b g nm  nm  nm

 nm  mm.

 

 

There are 1/d = 1/(9.14  10
–4

 mm) = 1.09 × 10
3
 rulings per mm. 
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64. We use Eq. 36-34. For smallest value of , we let m = 1. Thus, 

 

min sin
pm

pm

F
HG
I
KJ  

L
N
MM

O
Q
PP   1 1

3

1 30

2 0 30 10
2 9

m

d




sin
.

. .
b gb g
c h  

 

65. (a) For the first beam 2d sin 1 = A and for the second one 2d sin 2 = 3B. The 

values of d and A can then be determined: 

 

d B 

 

3

2

3 97

2 60
17 10

2

2
sin sin

.


pm
pm.

b g
 

 

(b)   2 2

12 sin 2 1.7 10 pm sin 23 1.3 10 pm.A d        

 

66. The x-ray wavelength is  = 2d sin  = 2(39.8 pm) sin 30.0° = 39.8 pm. 

 

67. We use Eq. 36-34.  

 

(a) From the peak on the left at angle 0.75° (estimated from Fig. 36-46), we have 

 

   1 12 sin 2 0.94 nm sin 0.75 0.025nm 25 pm.d       

 

This is the shorter wavelength of the beam. Notice that the estimation should be viewed 

as reliable to within ±2 pm.  

 

(b) We now consider the next peak: 

 

    2 2 094 115 0038 382d sin . sin . .  nm nm pm.b g  

 

This is the longer wavelength of the beam. One can check that the third peak from the left 

is the second-order one for 1. 

 

68. For x-ray (“Bragg”) scattering, we have 2d sin m = m .  This leads to 

 

2d sin 2

 2d sin 1
   = 

2 

1 
            sin 2 = 2 sin 1 . 

 

Thus, with 1= 3.4°, this yields 2 = 6.8°.  The fact that 2 is very nearly twice the value 

of 1 is due to the small angles involved (when angles are small, sin 2 / sin 1  = 2/1). 

 

69. Bragg’s law gives the condition for diffraction maximum: 

 

2d msin    
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where d is the spacing of the crystal planes and  is the wavelength. The angle  is 

measured from the surfaces of the planes. For a second-order reflection m = 2, so 

 

 9

10
2 0.12 10 m

2.56 10 m 0.26nm.
2sin 2sin 28

m
d










    


 

 

70. The angle of incidence on the reflection planes is  = 63.8° – 45.0° = 18.8°, and the 

plane-plane separation is d a 0 2 .  Thus, using 2d sin  = , we get 

 

a d0 2
2 0 260

2 188
0570  





sin

.

sin .
.



nm
nm.  

 

71. THINK The criterion for diffraction maxima is given by the Bragg’s law. 

 

EXPRESS We want the reflections to obey the Bragg condition: 2d sin  = m, where  

is the angle between the incoming rays and the reflecting planes,  is the wavelength, and 

m is an integer. We solve for : 

 

 
F
HG
I
KJ 





F
HG

I
KJ
 




sin sin

.

.
. .1 1

9

9

0125 10

2 0 252 10
0 2480

m

d

m
m




m

m

c h
c h  

 

ANALYZE (a) For m = 2 the above equation gives  = 29.7°. The crystal should be 

turned 45 29.7 15.3       clockwise.  

 

(b) For m = 1 the above equation gives  = 14.4°. The crystal should be turned 

45 14.4 30.6       clockwise.  

 

(c) For m = 3 the above equation gives  = 48.1°. The crystal should be turned 

48.1 45 3.1      counterclockwise.  

 

(d) For m = 4 the above equation gives  = 82.8°. The crystal should be turned 

82.8 45 37.8       counterclockwise.  

 

LEARN Note that there are no intensity maxima for m > 4 as one can verify by noting 

that m/2d is greater than 1 for m greater than 4. 

 

72. The wavelengths satisfy  

 

m = 2d sin  = 2(275 pm)(sin 45°) = 389 pm. 

 

In the range of wavelengths given, the allowed values of m are m = 3, 4. 
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(a) The longest wavelength is 389 pm/3 = 130 pm. 

 

(b) The associated order number is m = 3. 

 

(c) The shortest wavelength is 389 pm/4 = 97.2 pm. 

 

(d) The associated order number is m = 4. 

 

73. The sets of planes with the next five smaller interplanar spacings (after a0) are shown 

in the diagram that follows. 

 

 
 

(a) In terms of a0, the second largest interplanar spacing is 0 02 0.7071a a . 

 

(b) The third largest interplanar spacing is 0 05 0.4472a a . 

 

(c) The fourth largest interplanar spacing is 0 010 0.3162a a . 

 

(d) The fifth largest interplanar spacing is 0 013 0.2774a a . 

 

(e) The sixth largest interplanar spacing is 0 017 0.2425a a . 

 

(f) Since a crystal plane passes through lattice points, its slope can be written as the ratio 

of two integers. Consider a set of planes with slope m/n, as shown in the diagram that 

follows. The first and last planes shown pass through adjacent lattice points along a 

horizontal line and there are m – 1 planes between. If h is the separation of the first and 

last planes, then the interplanar spacing is d = h/m. If the planes make the angle  with 

the horizontal, then the normal to the planes (shown dashed) makes the angle  = 90° – . 

The distance h is given by h = a0 cos  and the interplanar spacing is d = h/m = (a0/m) 

cos . Since tan  = m/n, tan  = n/m and   
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cos tan .    1 1 2 2 2m n m  

Thus, 

d
h

m

a

m

a

n m
  



0 0

2 2

cos
.


 

 

 
 

74. (a) We use Eq. 36-14: 

  6

4

R

1.22 540 10 mm
1.22 1.3 10 rad .

5.0mmd







     

 

(b) The linear separation is D = LR = (160  10
3
 m) (1.3  10

–4
 rad) = 21 m. 

 

75. THINK Maxima of a diffraction grating pattern occur at angles  given by d sin  = 

m, where d is the slit separation,  is the wavelength, and m is an integer.  

 

EXPRESS The ruling separation is given by 

 

 3 6

1

1
5.00 10  mm 5.00 10  m 5000 nm

200 mm
d  


      . 

 

 Letting d sin  = m, we solve for : 

 

sin (5000 nm)(sin30 ) 2500nmd

m m m

 
     

 

where 1, 2, 3 .m   In the visible light range m can assume the following values: m1 = 4, 

m2 = 5 and m3 = 6.  

 

(a) The longest wavelength corresponds to m1 = 4 with 1 = 2500 nm/4 = 625 nm. 

 

(b) The second longest wavelength corresponds to m2 = 5 with 2 = 2500 nm/5 = 500 nm. 
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(c) The third longest wavelength corresponds to m3 = 6 with 3 = 2500 nm/6 = 416 nm. 

 

LEARN As shown above, only three values of m give wavelengths that are in the visible 

spectrum. Note that if the light incident on the diffraction grating is not monochromatic, a 

spectrum would be observed since the grating spreads out light into its component 

wavelength,  

 

76. We combine Eq. 36-31 (R = avg /) with Eq. 36-32 (R = Nm) and solve for N: 

 

N = 
avg

m 
  =  

590.2 nm

2 (0.061 nm)
  = 4.84 × 10

3 
. 

 

77. THINK The condition for a minimum of intensity in a single-slit diffraction pattern 

is given by a sin   = m, where a is the slit width,  is the wavelength, and m is an 

integer.  

 

EXPRESS As a slit is narrowed, the pattern spreads outward, so the question about 

“minimum width” suggests that we are looking at the lowest possible values of m (the 

label for the minimum produced by light  = 600 nm) and m' (the label for the minimum 

produced by light ' = 500 nm). Since the angles are the same, then Eq. 36-3 leads to 

 

m m  ' '  

 

which leads to the choices m = 5 and m' = 6.  

 

ANALYZE We find the slit width from Eq. 36-3: 

 
9

3

9

5(600 10 m)
3.00 10  m

sin sin(1.00 10 rad)

m
a








 
   


. 

 

LEARN The intensities of the diffraction are shown next (solid line for orange light, and 

dashed line for blue-green light). The angle  = 0.001 rad corresponds to m = 5 for the 

orange light, but 6m   for the blue-green light. 
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78. The central diffraction envelope spans the range –1 <  < + 1 where 
1

1 sin ( / ).a   The maxima in the double-slit pattern are located at 

 

m

m

d
 sin ,1 

 

so that our range specification becomes 

 

  1 1 1sin sin sin ,
m

a d a

         
        

     
 

 

which we change (since sine is a monotonically increasing function in the fourth and first 

quadrants, where all these angles lie) to 

 

   
  
a

m

d a
.  

 

Rewriting this as –d/a < m < +d/a, we find –6 < m < +6, or, since m is an integer, –5  m 

 +5. Thus, we find eleven values of m that satisfy this requirement. 

 

79. THINK We relate the resolving power of a diffraction grating to the frequency range.   

 

EXPRESS Since the resolving power of a grating is given by R = / and by Nm, the 

range of wavelengths that can just be resolved in order m is  = /Nm. Here N is the 

number of rulings in the grating and  is the average wavelength. The frequency f is 

related to the wavelength by f  = c, where c is the speed of light. This means f  + f 

= 0, so 

     
 

f
f

c
f

2

 

 

where f = c/ is used. The negative sign means that an increase in frequency corresponds 

to a decrease in wavelength.  

 

ANALYZE (a) Equating the two expressions for , we have 

   

 2

c
f

Nm
   

and 

f
c

Nm



.  

 

(b) The difference in travel time for waves traveling along the two extreme rays is t = 

L/c, where L is the difference in path length. The waves originate at slits that are 
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separated by (N – 1)d, where d is the slit separation and N is the number of slits, so the 

path difference is L = (N – 1)d sin  and the time difference is 

 

t
N d

c


1b g sin
.


 

 

If N is large, this may be approximated by t = (Nd/c) sin . The lens does not affect the 

travel time. 

 

(c) Substituting the expressions we derived for t and f, we obtain 

 

 f t
c

Nm

N d

c

d

m

F
HG
I
KJ
F
HG

I
KJ  

 

sin sin
.

 
1  

 

The condition d sin  = m for a diffraction line is used to obtain the last result. 

 

LEARN We take f to be positive and interpret it as the range of frequencies that can be 

resolved.  

 

80. Eq. 36-14 gives the Rayleigh angle (in radians):  

 

1.22
R

D

d L


    

 

where the rationale behind the second equality is given in Sample Problem — 

“Pointillistic paintings use the diffraction of your eye.”  We are asked to solve for D and 

are given  = 500 × 10
9 

m, d = 5.00 × 10
3 

m, and L = 0.250 m.  Consequently, D = 3.05 

×10
5 

m. 

 

81. Consider two of the rays shown in Fig. 36-49, one just above the other. The extra 

distance traveled by the lower one may be found by drawing perpendiculars from where 

the top ray changes direction (point P) to the incident and diffracted paths of the lower 

one. Where these perpendiculars intersect the lower ray’s paths are here referred to as 

points A and C. Where the bottom ray changes direction is point B. We note that angle 

APB is the same as , and angle BPC is the same as  (see Fig. 36-49). The difference 

in path lengths between the two adjacent light rays is  

 

x = |AB| + |BC| = d sin  + d sin . 

 

The condition for bright fringes to occur is therefore 

 

x d m  (sin sin )    

 

where m = 0, 1, 2, …. If we set  = 0 then this reduces to Eq. 36-25. 
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82. The angular deviation of a diffracted ray (the angle between the forward extrapolation 

of the incident ray and its diffracted ray) is '    . For m = 1, this becomes 

 

1' sin sin
d

      
     

 
 

 

where the ratio /d = 0.40 using the values given in the problem statement. The graph of 

this is shown next (with radians used along both axes). 

 

 
 

83. THINK For relatively wide slits, we consider both the interference of light from two 

slits, as well as the diffraction of light passing through each slit.  

 

EXPRESS The central diffraction envelope spans the range –1 <  < +1 where 
1

1 sin ( / )a   is the angle that corresponds to the first diffraction minimum. The 

maxima in the double-slit pattern are at 

 

m

m

d
 sin ,1 

 

so that our range specification becomes 

 

1 1 1sin sin sin ,
m

a d a

         
        

     
 

 

which we change (since sine is a monotonically increasing function in the fourth and first 

quadrants, where all these angles lie) to 

 

.
m

a d a

  
     

 

The equation above sets the range of allowable values of m.   

 

ANALYZE (a) Rewriting the equation as -d/a < m < +d/a, noting that d/a = (14 m)/(2.0 

m) = 7, we arrive at the result –7 < m < +7, or (since m must be an integer) –6 < m < +6, 
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which amounts to 13 distinct values for m.  Thus, thirteen maxima are within the central 

envelope. 

 

(b) The range (within one of the first-order envelopes) is now 

 

1 1 1sin sin sin ,
m

a d a

         
        

     
 

 

which leads to d/a < m < 2d/a or 7 < m < 14.  Since m is an integer, this means 8 < m < 

13 which includes 6 distinct values for m in that one envelope.  If we were to include the 

total from both first-order envelopes, the result would be twelve, but the wording of the 

problem implies six should be the answer (just one envelope). 

 

LEARN The intensity of the double-slit interference experiment is plotted below. The 

central diffraction envelope contains 13 maxima, and the first-order envelope has 6 on 

each side.  

  

 

84. The central diffraction envelope spans the range      1 1  where 
1

1 sin ( / ).a   The maxima in the double-slit pattern are at 

 

m

m

d
 sin ,1 

 

so that our range specification becomes 

 

1 1 1sin sin sin ,
m

a d a

         
        

     
 

 

which we change (since sine is a monotonically increasing function in the fourth and first 

quadrants, where all these angles lie) to 

 

.
m

a d a

  
    
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Rewriting this as    d a m d a/ /  we arrive at the result m d a mmax max/  1. Due to 

the symmetry of the pattern, the multiplicity of the m values is 2mmax + 1 = 17 so that 

mmax = 8, and the result becomes 

8 9 
d

a
 

 

where these numbers are as accurate as the experiment allows (that is, “9” means “9.000” 

if our measurements are that good). 

 

85. We see that the total number of lines on the grating is (1.8 cm)(1400/cm) = 2520 = N.  

Combining Eq. 36-31 and Eq. 36-32, we find 

 

 = 
avg

Nm
  = 

450 nm

(2520)(3)
 = 0.0595 nm = 59.5 pm. 

 

86. Use of Eq. 36-21 leads to D = 
1.22L

d
  =  6.1 mm. 

 

87. Following the method of Sample Problem — “Pointillistic paintings use the 

diffraction of your eye,” we have 



d
  =  

D

L
  

 

where  = 550 × 10
9 

m, D = 0.60 m, and d = 0.0055 m.  Thus we get L = 4.9 × 10
3 
m. 

 

88. We use Eq. 36-3 for m  = 2:  
2

sin 3.3
sin sin37

a m
m a 

 
    


 . 

 

89. We solve Eq. 36-25 for d: 

 
9

6 42(600 10  m)
2.203 10  m 2.203 10  cm

sin sin33

m
d






 

     


 

   

which is typically expressed in reciprocal form as the “number of lines per centimeter” 

(or per millimeter, or per inch): 
1

d
  = 4539

 
lines/cm . 

 

The full width is 3.00 cm, so the number of lines is (4539
 
/cm)(3.00 cm) = 1.36 × 10

4
. 

 

90. Although the angles in this problem are not particularly big (so that the small angle 

approximation could be used with little error), we show the solution appropriate for large 

as well as small angles (that is, we do not use the small angle approximation here).  

Equation 36-3 gives 
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      m =  a sin       = sin
–1

(m/a) = sin
–1

[2(0.42 µm)/(5.1 µm)] = 9.48°. 

 

The geometry of Figure 35-10(a) is a useful reference (even though it shows a double slit 

instead of the single slit that we are concerned with here).  We see in that figure the 

relation between y, D, and : 

 

y = D tan = (3.2 m) tan(9.48°) = 0.534 m . 

 

91. The problem specifies d = 12/8900 using the mm unit, and we note there are no 

refraction angles greater than 90.  We convert  = 500 nm to 5  10
4

 mm and solve Eq. 

36-25 for "mmax" (realizing it might not be an integer): 

 

mmax =  
d sin 90


 = 

4

12

(8900)(5 10 )
    2 

 

where we have rounded down.  There are no values of m (for light of wavelength ) 

greater than m = 2. 

 

92. We denote the Earth-Moon separation as L. The energy of the beam of light that is 

projected onto the Moon is concentrated in a circular spot of diameter d1, where d1/L = 

2R = 2(1.22/d0), with d0 the diameter of the mirror on Earth. The fraction of energy 

picked up by the reflector of diameter d2 on the Moon is then ' = (d2/d1)
2
. This reflected 

light, upon reaching the Earth, has a circular cross section of diameter d3 satisfying  

 

d3/L = 2R = 2(1.22/d2). 

 

The fraction of the reflected energy that is picked up by the telescope is then '' = (d0/d3)
2
. 

Consequently, the fraction of the original energy picked up by the detector is 

 

  

  

  

22 42

0 0 2 0 22

3 1 0 2

4

13

6 8

2.44 2.44 2.44

2.6m 0.10m
4 10 .

2.44 0.69 10 m 3.82 10 m

em em em

d d d d dd

d d d d d d d
  





     
         

       

 
   

   

 

 

93. Since we are considering the diameter of the central diffraction maximum, then we 

are working with twice the Rayleigh angle. Using notation similar to that in Sample 

Problem — “Pointillistic paintings use the diffraction of your eye,” we have 2(1.22/d) = 

D/L. Therefore, 

d
L

D
 

 




2
122

2
122 500 10 354 10

91
0 047

9 5
. . .

.
. .

 b gc hc hm m

m
m  

 

94. Letting d sin  = (L/N) sin  = m, we get 
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 
L N

m

/ ) sin ( .

( )( )




 


10 10

1 10000
500

7 nm)(sin 30 )
nm .  

 

95. THINK We use phasors to explore how doubling slit width changes the intensity of 

the central maximum of diffraction and the energy passing through the slit. 

 

EXPRESS We imagine dividing the original slit into N strips and represent the light from 

each strip, when it reaches the screen, by a phasor. Then, at the central maximum in the 

diffraction pattern, we would add the N phasors, all in the same direction and each with 

the same amplitude. We would find that the intensity there is proportional to N
2
.  

 

ANALYZE If we double the slit width, we need 2N phasors if they are each to have the 

amplitude of the phasors we used for the narrow slit. The intensity at the central 

maximum is proportional to (2N)
2
 and is, therefore, four times the intensity for the 

narrow slit. The energy reaching the screen per unit time, however, is only twice the 

energy reaching it per unit time when the narrow slit is in place. The energy is simply 

redistributed. For example, the central peak is now half as wide and the integral of the 

intensity over the peak is only twice the analogous integral for the narrow slit. 

 

LEARN From the discussion above, we see that the intensity of the central maximum 

increases as N
2
. The dependence arises from the following two considerations: (1) The 

total power reaching the screen is proportional to N, and (2) the width of each maximum 

(distance between two adjacent minima) is proportional to 1/N.   

 

96. The condition for a minimum in a single-slit diffraction pattern is given by Eq. 36-3, 

which we solve for the wavelength: 

 

4sin (0.022mm)sin 1.8
6.91 10 mm 691 nm .

1

a

m

 
       

 

97. Equation 36-14 gives the Rayleigh angle (in radians):  

 

 R

1.22 D

d L


    

 

where the rationale behind the second equality is given in Sample Problem — 

“Pointillistic paintings use the diffraction of your eye.”  We are asked to solve for d and 

are given  = 550 × 10
9 

m, D = 30 × 10
2 

m, and L = 160 × 10
3 

m. Consequently, we 

obtain d = 0.358 m 36 cm . 

 

98. Following Sample Problem — “Pointillistic paintings use the diffraction of your eye,” 

we use Eq. 36-17 and obtain L
Dd

 
122

164
. 

m .  
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99. (a) Use of Eq. 36-25 for the limit-wavelengths (1 = 700 nm and 2 = 550 nm) leads 

to the condition 

m m1 2    

 

for m1 + 1 = m2 (the low end of a high-order spectrum is what is overlapping with the 

high end of the next-lower-order spectrum). Assuming equality in the above equation, we 

can solve for “m1” (realizing it might not be an integer) and obtain m1  4 where we have 

rounded up. It is the fourth-order spectrum that is the lowest-order spectrum to overlap 

with the next higher spectrum. 

 

(b) The problem specifies d = (1/200) mm, and we note there are no refraction angles 

greater than 90°. We concentrate on the largest wavelength  = 700 nm = 7  10
–4

 mm 

and solve Eq. 36-25 for “mmax” (realizing it might not be an integer): 

 

max 4

sin90 (1/ 200) mm
7

7 10  mm

d
m

 


  


 

 

where we have rounded down. There are no values of m (for the appearance of the full 

spectrum) greater than m = 7. 

 

100. (a) Maxima of a diffraction grating pattern occur at angles  given by d sin  = m, 

where d is the slit separation,  is the wavelength, and m is an integer. With 30 ,    and 
6(1 mm) / 200 5.0 10 m,d     the wavelengths for the mth order maxima are given by 

 

 
6 6sin (5.0 10 m)sin30 2.5 10 m 2500 nmd

m m m m




   
     

 

For the light to be in the visible spectrum (400 – 750 nm), the values of m are m = 4, 5, 

and 6. The wavelengths are: 4 (2500 nm) / 4 625 nm,   5 (2500 nm) /5 500 nm,    

and 6 (2500 nm) / 6 417 nm.    

 

(c) The three wavelengths correspond to orange, blue-green, and violet, respectively. 

 

101. The dispersion of a grating is given by D = d/d, where  is the angular position of 

a line associated with wavelength . The angular position and wavelength are related by 

d sin  = m, where d is the slit separation (which we made boldfaced in order not to 

confuse it with the d used in the derivative, below) and m is an integer. We differentiate 

this expression with respect to  to obtain 

 

d

d
m





dcos ,  

or 
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D
d

d

m
 



 dcos
.  

 

Now m = (d/) sin , so D  
d

d

sin tan
.







 cos
 

 

102. (a) Employing Eq. 36-3 with the small angle approximation (sin   tan  = y/D 

where y locates the minimum relative to the middle of the pattern), we find (with m = 1) 

 

4

(0.90 mm)(0.40 mm)
800 mm 80 cm

4.50 10  mm

ya
D

m 
   

 
 

 

which places the screen 80 cm away from the slit. 

 

(b) The above equation gives for the value of y (for m = 3) 

 
4(3) (3)(4.50 10  mm)(800 mm)

2.7mm .
(0.40 mm)

D
y

a

 
    

 

Subtracting this from the first minimum position y = 0.9 mm, we find the result 

1.8 mmy  . 

 

103. (a) We require that sin  = m1,2/d  sin 30°, where m = 1, 2 and 1 = 500 nm. This 

gives 

2 2(600nm)
2400nm 2.4 m.

sin30 sin30

sd 


   
 

 

 

For a grating of given total width L we have N L d d  / 1 , so we need to minimize d 

to maximize R mN d  1 . Thus we choose d = 2400 nm = 2.4 m. 

 

(b) Let the third-order maximum for 2 = 600 nm be the first minimum for the single-slit 

diffraction profile. This requires that d sin  = 32 = a sin , or  

 

a = d/3 = 2400 nm/3 = 800 nm = 0.80 m. 

 

(c) Letting sin  = mmax2/d  1, we obtain 

 

m
d

max .  
2

2400

800
3

nm

nm
 

 

Since the third order is missing the only maxima present are the ones with m = 0, 1 and 2. 

Thus, the largest order of maxima produced by the grating is m = 2. 
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104. For  = 0.10 nm, we have scattering for order m, and for ' = 0.075 nm, we have 

scattering for order m'. From Eq. 36-34, we see that we must require m m  ' ' , which 

suggests (looking for the smallest integer solutions) that m = 3 and m' = 4. Returning with 

this result and with d = 0.25 nm to Eq. 36-34, we obtain 

 

   sin .1 37
m

d




 

 

Studying Figure 36-30, we conclude that the angle between incident and scattered beams 

is 180° – 2 = 106°. 

 

105. The key trigonometric identity used in this proof is sin(2) = 2sin cos.  Now, we 

wish to show that Eq. 36-19 becomes (when d = a) the pattern for a single slit of width 2a 

(see Eq. 36-5 and Eq. 36-6): 

    I() = Im 






sin(2asin/)

 2asin/

2

 . 

 

We note from Eq. 36-20 and Eq. 36-21, that the parameters  and  are identical in this 

case (when d = a), so that Eq. 36-19 becomes  

 

I() = Im 






cos(asin/)sin(asin/)

 asin/

2

 . 

 

Multiplying numerator and denominator by 2 and using the trig identity mentioned above, 

we obtain 

I() = Im 






2cos(asin/)sin(asin/)

 2asin/

2

 = Im 






sin(2asin/)

 2asin/

2

  

 

which is what we set out to show. 

 

106. Employing Eq. 36-3, we find (with m = 3 and all lengths in m) 

 

   sin sin
( )( . )1 1 3 05

2

m

a


 

 

which yields  = 48.6°. Now, we use the experimental geometry (tan = y/D where y 

locates the minimum relative to the middle of the pattern) to find 

 

y D tan . 2 27 m.  

 

107. (a)  The central diffraction envelope spans the range – 1 <  < +1 where 

 

1

1 sin ,
a


   
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which could be further simplified if the small-angle approximation were justified (which 

it is not, since a is so small).  The maxima in the double-slit pattern are at 

 

m

m

d
 sin ,1 

 

so that our range specification becomes 

 

1 1 1sin sin sin ,
m

a d a

         
        

     
 

 

which we change (since sine is a monotonically increasing function in the fourth and first 

quadrants, where all these angles lie) to 

   
  
a

m

d a
.  

 

Rewriting this as -d/a < m < +d/a we arrive at the result mmax < d/a < mmax + 1.  Due to 

the symmetry of the pattern, the multiplicity of the m values is 2mmax + 1 = 17 so that 

mmax = 8, and the result becomes 

8 < 
d

a
 < 9 

 

where these numbers are as accurate as the experiment allows (that is, "9" means "9.000" 

if our measurements are that good). 

 

108. We refer (somewhat sloppily) to the 400 nm wavelength as “blue” and the 700 nm 

wavelength as “red.”  Consider Eq. 36-25 (m= d sin, for the 3
rd

 order blue, and also 

for the 2
nd

 order red: 

                                    (3) blue= 1200 nm =  d sin(blue

      

(2) red= 1400 nm =  d sin(red

 

Since sine is an increasing function of angle (in the first quadrant) then the above set of 

values make clear that  red (second order) > blue (third order)  which shows that the spectrums 

overlap (regardless of the value of d).

 

109. One strategy is to divide Eq. 36-25 by Eq. 36-3, assuming the same angle (a point 

we’ll come back to, later) and the same light wavelength for both: 

 

 
sin

' ' sin

m m d d

m m a a

 

 
   . 

 

We recall that d is measured from middle of transparent strip to the middle of the next 

transparent strip, which in this particular setup means d = 2a.  Thus, m/m = 2, or m  = 

2m . 
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Now we interpret our result.  First, the division of the equations is not valid when m = 0 

(which corresponds to  = 0), so our remarks do not apply to the m = 0 maximum.  

Second, Eq. 36-25 gives the “bright” interference results, and Eq. 36-3 gives the “dark” 

diffraction results (where the latter overrules the former in places where they coincide – 

see Figure 36-17 in the textbook).  For m = any nonzero integer, the relation m  = 2m 
implies that m = any nonzero even integer.  As mentioned above, these are occurring at 

the same angle, so the even integer interference maxima are eliminated by the diffraction 

minima. 

 

110. The derivation is similar to that used to obtain Eq. 36-27. At the first minimum 

beyond the mth principal maximum, two waves from adjacent slits have a phase 

difference of  = 2m + (2/N), where N is the number of slits. This implies a 

difference in path length of  

L = (/2) = m + (/N). 

 

If m is the angular position of the mth maximum, then the difference in path length is 

also given by L = d sin(m + ). Thus  

 

d sin (m + ) = m + (/N). 

 

We use the trigonometric identity  

 

sin(m + ) = sin m cos  + cos m sin . 

 

Since  is small, we may approximate sin  by  in radians and cos  by unity. 

Thus,  

d sin m + d  cos m = m + (/N). 

 

We use the condition d sin m = m to obtain d  cos m = /N and 

 







N d mcos
.  

 

111. There are two unknowns, the x-ray wavelength  and the plane separation d, so data 

for scattering at two angles from the same planes should suffice. The observations obey 

Bragg’s law, so 

2 1 1d msin   , 2 2 2d msin    
 

However, these cannot be solved for the unknowns. For example, we can use the first 

equation to eliminate  from the second. We obtain 

 

m m2 1 1 2sin sin ,   

 

an equation that does not contain either of the unknowns. 
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112. The problem specifies d = (1 mm)/500 = 2.00 m unit, and we note there are no 

refraction angles greater than 90.  We concentrate on the largest wavelength  = 700 nm 

= 0.700 m and solve Eq. 36-25 for "mmax" (realizing it might not be an integer): 

 

max

sin90 2.00 m
2

0.700 m

d d
m



  


     

 

where we have rounded down.  There are no values of m (for appearance of the full 

spectrum) greater than m = 2. 

 

113. When the speaker phase difference is  rad (180°), we expect to see the “reverse” of 

Fig. 36-15 [translated into the acoustic context, so that “bright” becomes “loud” and 

“dark” becomes “quiet”].  That is, with 180° phase difference, all the peaks in Fig. 36-15 

become valleys and all the valleys become peaks.  As the phase changes from zero to 

180° (and similarly for the change from 180° back to 360° = original pattern), the peaks 

should shift (and change height) in a continuous fashion – with the most dramatic feature 

being a large “dip” in the center diffraction envelope which deepens until it seems to split 

the central maximum into smaller diffraction maxima which (once the phase difference 

reaches  rad) will be located at angles given by  a sin = ± .  How many interference 

fringes would actually “be inside” each of these smaller diffraction maxima would, of 

course, depend on the particular values of  a,  and d. 

 

114. From d sin  = m, where d is the slit separation,  is the wavelength, and m is an 

integer, we write  

 sin( ) ( )d m       

 

Subtracting the first equation from the second gives 

 

 sin( ) sin ( )d m m m             . 

Noting that   

0

sin( ) sin( )
lim cos


   


 

  



, 

 

the above expression simplifies to 

cos
m

d










. 

Thus,  

2 2 2 2 2 2
.

cos 1 sin 1 ( / ) ( ) ( / )

m m m m

d d d m d d m d m

    


    

    
     

   
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Chapter 37 
 

 

1. From the time dilation equation t = t0 (where t0 is the proper time interval, 

  1 1 2/ ,  and  = v/c), we obtain 

 

  
F
HG
I
KJ1 0

2




t

t
.  

 

The proper time interval is measured by a clock at rest relative to the muon. Specifically, 

t0 = 2.2000 s. We are also told that Earth observers (measuring the decays of moving 

muons) find t = 16.000 s. Therefore, 

 

2

2.2000 s
1 0.99050.

16.000 s






 
   

 
 

 

2. (a) We find from   1 1 2/ :  

 

 
22

1 1
1 1 0.14037076.

1.0100000



      

 

(b) Similarly,  
2

1 10.000000 0.99498744.


    

 

(c) In this case,   
2

1 100.00000 0.99995000.


    

 

(d) The result is  
2

1 1000.0000 0.99999950.


     

 

3. (a) The round-trip (discounting the time needed to “turn around”) should be one year 

according to the clock you are carrying (this is your proper time interval t0) and 1000 

years according to the clocks on Earth, which measure t. We solve Eq. 37-7 for : 

 

22

0 1y
1 1 0.99999950.

1000y

t

t


  
      

   
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(b) The equations do not show a dependence on acceleration (or on the direction of the 

velocity vector), which suggests that a circular journey (with its constant magnitude 

centripetal acceleration) would give the same result (if the speed is the same) as the one 

described in the problem. A more careful argument can be given to support this, but it 

should be admitted that this is a fairly subtle question that has occasionally precipitated 

debates among professional physicists. 

 

4. Due to the time-dilation effect, the time between initial and final ages for the daughter 

is longer than the four years experienced by her father: 

 

tf daughter – ti daughter  =   (4.000 y) 

 

where  is the Lorentz factor (Eq. 37-8).  Letting T denote the age of the father, then the 

conditions of the problem require 

 

Ti  =  ti daughter +  20.00 y ,  Tf  =  tf daughter – 20.00 y  . 

 

Since Tf   Ti  = 4.000 y, then these three equations combine to give a single condition 

from which can be determined (and consequently v): 

 

44 = 4           = 11           = 
2 30

11
 = 0.9959. 

 

5. In the laboratory, it travels a distance d = 0.00105 m = vt, where v = 0.992c and t is the 

time measured on the laboratory clocks. We can use Eq. 37-7 to relate t to the proper 

lifetime of the particle t0: 

 

 

2

20
0

2
    1 1 0.992

0.9921 /

t v d
t t t

c cv c

 
      

 

 

 

which yields t0 = 4.46  10
–13

 s = 0.446 ps. 

 

6. From the value of t in the graph when  = 0, we infer than to in Eq. 37-9 is 8.0 s.  

Thus, that equation (which describes the curve in Fig. 37-22) becomes 

 

0

2 2

8.0 s

1 ( / ) 1

t
t

v c 


  

 
. 

 

If we set  = 0.98 in this expression, we obtain approximately 40 s for t. 

 

7. We solve the time dilation equation for the time elapsed (as measured by Earth 

observers): 




t
t




0

21 0 9990( . )
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where t0 = 120 y. This yields t = 2684 y 32.68 10  y.   

 

8. The contracted length of the tube would be 

 

 2 2

0 1 3.00m 1 (0.999987) 0.0153m.L L       

 

9. THINK The length of the moving spaceship is measured to be shorter by a stationary 

observer  

 

EXPRESS Let the rest length of the spaceship be L0. The length measured by the timing 

station is  

2

0 1 ( / ) .L L v c   

 

ANALYZE (a) The rest length is L0 = 130 m. With v = 0.740c, we obtain  

 

   
22

0 1 ( / ) 130m 1 0.740 87.4m.L L v c      

 

(b) The time interval for the passage of the spaceship is 

 

t
L

v
 


  87 4

300 10
394 10

8

7.

.
.

m

0.740 m / s
s.b gc h  

 

LEARN The length of the spaceship appears to be contracted by a factor of  

 

2 2

1 1
1.487.

1 ( / ) 1 (0.740)v c
   

 
 

 

10. Only the “component” of the length in the x direction contracts, so its y component 

stays 

sin30 (1.0 m)(0.50) 0.50my y
       

 

while its x component becomes 

 
2 21 (1.0 m)(cos30 ) 1 (0.90) 0.38m.x x         

 

Therefore, using the Pythagorean theorem, the length measured from S' is 

 

   
22 2 2(0.38 m) (0.50 m) 0.63m.x y

        
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11. The length L of the rod, as measured in a frame in which it is moving with speed v 

parallel to its length, is related to its rest length L0 by L = L0/, where   1 1 2/  and 

 = v/c. Since  must be greater than 1, L is less than L0. For this problem, L0 = 1.70 m 

and  = 0.630, so  

   
22

0 1 1.70m 1 0.630 1.32m.L L       

 

12. (a) We solve Eq. 37-13 for v and then plug in: 

 
2 2

0

1
1 1 0.866.

2

L

L


   
       

  
 

 

 (b) The Lorentz factor in this case is 

 
2

1
2.00

1 /v c

  



. 

 

13. (a) The speed of the traveler is v = 0.99c, which may be equivalently expressed as 

0.99 ly/y. Let d be the distance traveled. Then, the time for the trip as measured in the 

frame of Earth is  

t = d/v = (26 ly)/(0.99 ly/y) = 26.26 y. 

 

(b) The signal, presumed to be a radio wave, travels with speed c and so takes 26.0 y to 

reach Earth. The total time elapsed, in the frame of Earth, is  

 

26.26 y + 26.0 y = 52.26 y . 

 

(c) The proper time interval is measured by a clock in the spaceship, so t0 = t/. Now  

 

2 2

1 1
7.09.

1 1 (0.99)



  

 
 

 

Thus, t0 = (26.26 y)/(7.09) = 3.705 y. 

 

14. From the value of L in the graph when  = 0, we infer that L0 in Eq. 37-13 is 0.80 m.  

Thus, that equation (which describes the curve in Fig. 37-23) with SI units understood 

becomes 

  2 2

0 1 ( / ) 0.80m 1L L v c     . 

 

If we set  = 0.95 in this expression, we obtain approximately 0.25 m for L. 

 

15. (a) Let d = 23000 ly = 23000 c y, which would give the distance in meters if we 

included a conversion factor for years   seconds. With t0 = 30 y and t = d/v (see Eq. 

37-10), we wish to solve for v from Eq. 37-7. Our first step is as follows: 
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0

2 2

23000 y 30 y
    ,

1 1

td
t

v  


    

 
 

 

at which point we can cancel the unit year and manipulate the equation to solve for the 

speed parameter . This yields 

 

 
2

1
0.99999915.

1 30 / 23000
  



 

 

(b) The Lorentz factor is 21/ 1 766.6680752    . Thus, the length of the galaxy 

measured in the traveler’s frame is  

 

0 23000 ly
29.99999 ly 30 ly.

766.6680752

L
L


     

 

16. The “coincidence” of x = x' = 0 at t = t' = 0 is important for Eq. 37-21 to apply 

without additional terms. In part (a), we apply these equations directly with  

 

v = +0.400c = 1.199  10
8
 m/s, 

 

and in part (c) we simply change v v  and recalculate the primed values. 

 

(a) The position coordinate measured in the S' frame is 

 

 
  

 

8 8

5

2 2

3.00 10 m 1.199 10 m/s 2.50s
2.7 10 m 0,

1 1 0.400

x vt
x x vt



  
      

 

 

 

where we conclude that the numerical result (2.7  10
5
 m or 2.3  10

5
 m depending on 

how precise a value of v is used) is not meaningful (in the significant figures sense) and 

should be set equal to zero (that is, it is “consistent with zero” in view of the statistical 

uncertainties involved).  

 

(b) The time coordinate measured in the S' frame is 

 

  

 

8 8

2 2 2

2.50s 0.400 3.00 10 m / 2.998 10 m/s/
2.29s.

1 1 0.400

vx t x c
t t

c






   
      

   

 

 

(c) Now, we obtain 
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  

 

8 8

8

2 2

3.00 10 m 1.199 10 m/s 2.50 s
6.54 10 m.

1 1 0.400

x vt
x



  
    

 

 

 

(d) Similarly,  

 

  

 

8 8

2 2

2.50s 0.400 3.00 10 m / 2.998 10 m/s
3.16s.

1 0.400

vx
t t

c


   
     

  

 

 

17. THINK We apply Lorentz transformation to calculate x  and t  according to an 

observer in .S  

 

EXPRESS The proper time is not measured by clocks in either frame S or frame S' since 

a single clock at rest in either frame cannot be present at the origin and at the event. The 

full Lorentz transformation must be used: 

 

' ( ),  ' ( / )x x vt t t x c       

 

where  = v/c = 0.950 and 

 

     1 1 1 1 0 950 3202562 2/ ( . ) . . 

 

ANALYZE (a) Thus, the spatial coordinate in S   is 

 

 3 8 6

5

( ) (3.20256) 100 10 m (0.950)(2.998 10 m/s)(200 10 s)

1.38 10 m 138 km.

x x vt        

  
 

 

(b) The temporal coordinate in S   is  

 
3

6

8

4

(0.950)(100 10 m)
( / ) (3.20256) 200 10 s

2.998 10 m/s

3.74 10 s 374 s .

t t x c 







 
      

 

    

 

 

LEARN The time and the location of the collision recorded by an observer S  are 

different than that by another observer in S. 

 

18. The “coincidence” of x = x' = 0 at t = t' = 0 is important for Eq. 37-21 to apply 

without additional terms. We label the event coordinates with subscripts: (x1, t1) = (0, 0) 

and (x2, t2) = (3000 m, 4.0  10
–6

 s).   

 

(a) We expect (x'1, t'1) = (0, 0), and this may be verified using Eq. 37-21.  
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(b) We now compute (x'2, t'2), assuming v = +0.60c = +1.799  10
8
 m/s (the sign of v is 

not made clear in the problem statement, but the figure referred to, Fig. 37-9, shows the 

motion in the positive x direction). 

 
8 6

3

2
2 2

6 8
6

2
2 2

3000 m (1.799 10 m/s)(4.0 10 s)
2.85 10  m

1 1 (0.60)

4.0 10 s (0.60)(3000 m) /(2.998 10 m/s)
2.5 10 s

1 1 (0.60)

x vt
x

t x c
t












   
    

 

   
     

 

 

 

(c) The two events in frame S occur in the order: first 1, then 2. However, in frame S' 

where 2 0t  , they occur in the reverse order: first 2, then 1. So the two observers see the 

two events in the reverse sequence. 

 

We note that the distances x2 – x1 and 2 1x x   are larger than how far light can travel 

during the respective times 2 1 2 1( ( ) 1.2 km and | | 750m)c t t c t t     , so that no 

inconsistencies arise as a result of the order reversal (that is, no signal from event 1 could 

arrive at event 2 or vice versa). 

 

19. (a) We take the flashbulbs to be at rest in frame S, and let frame S' be the rest frame of 

the second observer. Clocks in neither frame measure the proper time interval between 

the flashes, so the full Lorentz transformation (Eq. 37-21) must be used. Let ts be the time 

and xs be the coordinate of the small flash, as measured in frame S. Then, the time of the 

small flash, as measured in frame S', is 

 

s
s s

x
t t

c

 
    

 
 

where  = v/c = 0.250 and  

 

     1 1 1 1 0 250 103282 2/ / ( . ) . . 

 

Similarly, let tb be the time and xb be the coordinate of the big flash, as measured in frame 

S. Then, the time of the big flash, as measured in frame S', is 

 

.b
b b

x
t t

c

 
    

 
 

 

Subtracting the second Lorentz transformation equation from the first and recognizing 

that ts = tb (since the flashes are simultaneous in S), we find 
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3
5

8

( ) (1.0328)(0.250)(30 10 m)
' 2.58 10 s

3.00 10 m/s

s bx x
t

c

  
    


 

where ' ' 'b st t t   . 

 

(b) Since t' is negative, tb' is greater than ts' . The small flash occurs first in S'. 

 

20. From Eq. 2 in Table 37-2, we have  

 

t = v x/c² + t. 

 

The coefficient of x is the slope (4.0 µs/400 m) of the graph, and the last term 

involvingt is the “y-intercept” of the graph.  From the first observation, we can solve 

for  = v/c = 0.949 and consequently . Then, from the second observation, we 

find 
6

72.00 10 s
' 6.3 10 s .

3.16

t
t




 

     

 

21. (a)  Using Eq. 2 of Table 37-2, we have 

 

6

2 8

(400m)
1.00 10 s

2.998 10 m/s

v x x
t t t

c c

 
        

             
     

 





where the Lorentz factor is itself a function of  (see Eq. 37-8).  

 

(b) A plot of t  as a function of   in the range 0 0.01   is shown below: 

 

 
 

Note the limits of the vertical axis are +2 s and  –2 s.  We note how “flat” the curve is 

in this graph; the reason is that for low values of , Bullwinkle’s measure of the temporal 
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separation between the two events is approximately our measure, namely +1.0 s.  There 

are no nonintuitive relativistic effects in this case. 

 

(c) A plot of t  as a function of   in the range 0.1 1   is shown below: 

 

 
 

(d) Setting 

6

8

(400m)
' 1.00 10 s 0

2.998 10 m/s

x
t t

c

   
           

   


leads to  
8 6(2.998 10 m/s)(1.00 10 s)

0.7495 0.750
400m

c t

x


  
   


. 

 

(e) For the graph shown in part (c), as we increase the speed, the temporal separation 

according to Bullwinkle is positive for the lower values and then goes to zero and finally 

(as the speed approaches that of light) becomes progressively more negative.  For the 

lower speeds with  

t  > 0  tA  <  tB     0 0.750  , 

 

according to Bullwinkle event A occurs before event B just as we observe.  

 

(f) For the higher speeds with  

 

t  < 0      tA  >  tB   0.750 1  , 

 

according to Bullwinkle event B occurs before event A (the opposite of what we observe).   

 

(g) No, event A cannot cause event B or vice versa. We note that  

 

x/t = (400 m)/(1.00 s) = 4.00 ×10
8 

m/s > c. 
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A signal cannot travel from event A to event B without exceeding c, so causal influences 

cannot originate at A and thus affect what happens at B, or vice versa. 

 

22. (a) From Table 37-2, we find 

 

   
2

400 m (299.8 m)
[400 m (1.00 s)]

1
x x v t x c t c


     




           


 

 

(b) A plot of 'x  as a function of   with 0 0.01   is shown below: 

 
 

(c) A plot of 'x  as a function of   with 0.1 1   is shown below: 

 

 
 

(d) To find the minimum, we can take a derivative of x with respect to , simplify, and 

then set equal to zero: 

 

2 3/ 22
0

(1 )1

d x d x c t x c t

d d

 

  

       
   
   

 

This yields 
8 6(2.998 10 m/s)(1.00 10 s)

0.7495 0.750
400 m

c t

x


  
   


 

 

(e) Substituting this value of into the part (a) expression yields x = 264.8 m 

265 m for its minimum value. 
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23. (a) The Lorentz factor is 

 

 






1

1

1

1 0 600
125

2 2 ( . )
. .  

 

(b) In the unprimed frame, the time for the clock to travel from the origin to x = 180 m is 

 

t
x

v
 


  180

100 10 6m

(0.600)(3.00 10 m / s)
s .

8
.  

 

The proper time interval between the two events (at the origin and at x = 180 m) is 

measured by the clock itself. The reading on the clock at the beginning of the interval is 

zero, so the reading at the end is 

 
6

71.00 10 s
8.00 10 s .

1.25

t
t






     

 

24. The time-dilation information in the problem (particularly, the 15 s on “his 

wristwatch… which takes 30.0 s according to you”) reveals that the Lorentz factor is = 

2.00 (see Eq. 37-9), which implies his speed is v = 0.866c. 

 

(a) With  = 2.00, Eq. 37-13 implies the contracted length is 0.500 m. 

 

(b) There is no contraction along the direction perpendicular to the direction of motion 

(or “boost” direction), so meter stick 2 still measures 1.00 m long. 

 

(c) As in part (b), the answer is 1.00 m. 

 

(d) Equation 1 in Table 37-2 gives 

 

  8 9

2 1 (2.00) 20.0 m (0.866)(2.998 10 m/s)(40.0 10 s)

19.2 m

x x x x v t                


 

 

(e) Equation 2 in Table 37-2 gives 

 

   2

2 1

9 8

/ /

(2.00) 40.0 10 s (0.866)(20.0 m) /(2.998 10 m/s)

35.5 ns .

t t t t v x c t x c  



            

     

 

 

 

In absolute value, the two events are separated by 35.5 ns. 

 

(f) The negative sign obtained in part (e) implies event 2 occurred before event 1. 
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25. (a) In frame S, our coordinates are such that x1 = +1200 m for the big flash, and x2 = 

1200 – 720 = 480 m for the small flash (which occurred later). Thus,  

 

x = x2 – x1 = –720 m. 

 

If we set x' = 0 in Eq. 37-25, we find 

 

0 720 500 10 6       ( ) ( . x v t vm s)c h  
 

which yields v = –1.44  10
8
 m/s, or / 0.480v c   . 

 

(b) The negative sign in part (a) implies that frame S' must be moving in the –x direction.  

 

(c) Equation 37-28 leads to 

 
8

6

2 8 2

( 1.44 10 m/s)( 720m)
5.00 10 s

(2.998 10 m/s)

v x
t t

c
       

        
   

, 

 

which turns out to be positive (regardless of the specific value of ). Thus, the order of 

the flashes is the same in the S' frame as it is in the S frame (where t is also positive). 

Thus, the big flash occurs first, and the small flash occurs later. 

 

(d) Finishing the computation begun in part (c), we obtain 

 
6 8 8 2

6

2

5.00 10 s ( 1.44 10 m/s)( 720m)/(2.998 10 m/s)
4.39 10 s .

1 0.480
t


     

   


 

 

26. We wish to adjust t so that 

 

 0 ( 720m )x x v t v t            

 

in the limiting case of | |v c . Thus, 

 

6

8

720m
2.40 10 s .

2.998 10 m/s

x x
t

v c

 
     


 

 

27. THINK We apply relativistic velocity transformation to calculate the velocity of the 

particle with respect to frame S. 

 

EXPRESS We assume S' is moving in the +x direction. Let u' be the velocity of the 

particle as measured in S' and v be the velocity of S' relative to S, the velocity of the 

particle as measured in S is given by Eq. 37-29: 
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2

'
.

1 ' /

u v
u

u v c





 

 

ANALYZE With u' = +0.40c and v = +0.60c, we obtain 

 

u
u v

u v c

c c

c c c
c








 


'

' /

. .

( . )( . ) /
. .

1

0 40 0 60

1 0 40 0 60
081

2 2
 

 

LEARN The classical Galilean transformation would have given   

 

u = u' + v = 0.40c + 0.60c = 1.0c. 

 

28. (a) We use Eq. 37-29: 

 

2

0.47 0.62
0.84 ,

1 / 1 (0.47)(0.62)

v u c c
v c

uv c

 
  

 
 

 

in the direction of increasing x (since v > 0). In unit-vector notation, we have 
ˆ(0.84 )iv c . 

 

(b) The classical theory predicts that v = 0.47c + 0.62c = 1.1c, or ˆ(1.1 )iv c . 

 

(c) Now v' = –0.47c î  so 

 

2

0.47 0.62
0.21 ,

1 / 1 ( 0.47)(0.62)

v u c c
v c

uv c

  
  

  
 

or ˆ(0.21 )iv c  

 

(d) By contrast, the classical prediction is v = 0.62c – 0.47c = 0.15c, or ˆ(0.15 )iv c . 

 

29. (a) One thing Einstein’s relativity has in common with the more familiar (Galilean) 

relativity is the reciprocity of relative velocity. If Joe sees Fred moving at 20 m/s 

eastward away from him (Joe), then Fred should see Joe moving at 20 m/s westward 

away from him (Fred). Similarly, if we see Galaxy A moving away from us at 0.35c then 

an observer in Galaxy A should see our galaxy move away from him at 0.35c, or 0.35 in 

multiple of c.  

 

(b) We take the positive axis to be in the direction of motion of Galaxy A, as seen by us. 

Using the notation of Eq. 37-29, the problem indicates v = +0.35c (velocity of Galaxy A 

relative to Earth) and u = –0.35c (velocity of Galaxy B relative to Earth). We solve for 

the velocity of B relative to A: 
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2

/ / ( 0.35) 0.35
0.62

1 / 1 ( 0.35)(0.35)

u u c v c

c uv c

   
   

  
, 

or | '/ | 0.62.u c   

 

30. Using the notation of Eq. 37-29 and taking “away” (from us) as the positive direction, 

the problem indicates v = +0.4c and u = +0.8c (with 3 significant figures understood). We 

solve for the velocity of Q2 relative to Q1 (in multiple of c): 

 

2

/ / 0.8 0.4
0.588

1 / 1 (0.8)(0.4)

u u c v c

c uv c

  
  

 
 

 

in a direction away from Earth. 

 

31. THINK Both the spaceship and the micrometeorite are moving relativistically, and 

we apply relativistic speed transformation to calculate the velocity of the micrometeorite 

relative to the spaceship. 

   

EXPRESS Let S be the reference frame of the micrometeorite, and S' be the reference 

frame of the spaceship. We assume S to be moving in the +x direction. Let u be the 

velocity of the micrometeorite as measured in S and v be the velocity of S' relative to S, 

the velocity of the micrometeorite as measured in S' can be solved by using Eq. 37-29: 

 

2 2
.

1 / 1 /

u v u v
u u

u v c uv c

  
  

 
 

 

ANALYZE The problem indicates that v = –0.82c (spaceship velocity) and u = +0.82c 

(micrometeorite velocity). We solve for the velocity of the micrometeorite relative to the 

spaceship: 

u
u v

uv c

c c
c'

/

. ( . )

( . )( . )
.






 

 


1

082 082

1 082 082
0 98

2
 

 

or 2.94  10
8
 m/s. Using Eq. 37-10, we conclude that observers on the ship measure a 

transit time for the micrometeorite (as it passes along the length of the ship) equal to 

 

t
d

u
 


  

' .
.

350

2 94 10
12 10

8

6m

m / s
s .  

 

LEARN The classical Galilean transformation would have given   

 

u' = u –v = 0.82c –(– 0.82c) = 1.64c, 

 

which exceeds c and therefore, is physically impossible.  

 



 

  

1613 

32. The figure shows that u = 0.80c when v = 0.  We therefore infer (using the notation 

of Eq. 37-29) that u = 0.80c.  Now, u is a fixed value and v is variable, so u as a function 

of v is given by 

2

0.80

1 / 1 (0.80) /

u v c v
u

uv c v c

 
  

 
 

                                                 

which is Eq. 37-29 rearranged so that u is isolated on the left-hand side.  We use this 

expression to answer parts (a) and (b). 

 

(a) Substituting v = 0.90c in the expression above leads to u = 0.357c   0.36c. 

 

(b) Substituting v = c in the expression above leads to u = c (regardless of the value of 

u). 

 

33. (a) In the messenger’s rest system (called Sm), the velocity of the armada is 

 

2 2

0.80 0.95
0.625 .

1 / 1 (0.80 )(0.95 ) /

m

m

v v c c
v c

vv c c c c

 
    

 
 

 

The length of the armada as measured in Sm is 

 

20
1 (1.0ly) 1 ( 0.625) 0.781 ly .

L
L

v
    


 

 

Thus, the length of the trip is 

0.781ly
1.25 y .

| | 0.625c

L
t

v


   


 

 

(b) In the armada’s rest frame (called Sa), the velocity of the messenger is 

 

2 2

0.95 0.80
0.625 .

1 / 1 (0.95 )(0.80 ) /

a

a

v v c c
v c

vv c c c c

 
   

 
 

 

Now, the length of the trip is 

 

0 1.0ly
1.60 y .

0.625

L
t

v c
   


 

 

(c) Measured in system S, the length of the armada is 

 

L
L

   0 210 1 080 0 60


. ( . ) . ,ly ly  

so the length of the trip is 
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0.60ly
4.00 y .

0.95 0.80m a

L
t

v v c c
  

 
 

 

34. We use the transverse Doppler shift formula, Eq. 37-37: f f 0

21  , or 

 

21 1
1 .

 
   

We solve for 0 : 

0 0
2 2

1 1
1 (589.00mm) 1 2.97 nm .

1 1 (0.100)
  



  
       
       

 

 

35. THINK This problem deals with the Doppler effect of light. The source is the 

spaceship that is moving away from the Earth, where the detector is located.  

 

EXPRESS With the source and the detector separating, the frequency received is given 

directly by Eq. 37-31: 

0

1

1
f f









 

 

where f0 is the frequency in the frames of the spaceship,  = v/c, and v is the speed of the 

spaceship relative to the Earth. 

 

ANALYZE With  = 0.90 and f0 = 100 MHz, we obtain 

 

f f








0

1

1
100

0 9000

1 0 9000
22 9




(

.

.
.MHz)

1
MHz .  

 

LEARN Since the source is moving away from the detector, 0.f f  Note that in the low 

speed limit, 1,  Eq. 37-31 can be approximated as 

 

2

0

1
1

2
f f  

 
   

 
. 

 

36. (a) Equation 37-36 leads to a speed of 

 

8 6 6(0.004)(3.0 10 m/s) 1.2 10 m/s 1 10 m/s.v c





        

 

(b) The galaxy is receding. 

 

37. We obtain 
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620 nm 540 nm
0.13 .

620 nm
v c c c





  
   

 
 

 

38. (a) Equation 37-36 leads to 

 

8 612.00nm
(2.998 10 m/s) 7.000 10 m/s.

513.0nm
v c






      

 

(b) The line is shifted to a larger wavelength, which means shorter frequency. Recalling 

Eq. 37-31 and the discussion that follows it, this means galaxy NGC is moving away 

from Earth. 

 

39. THINK This problem deals with the Doppler effect of light. The source is the 

spaceship that is moving away from the Earth, where the detector is located.  

 

EXPRESS With the source and the detector separating, the frequency received is given 

directly by Eq. 37-31: 

0

1

1
f f









 

 

where f0 is the frequency in the frames of the spaceship,  = v/c, and v is the speed of the 

spaceship relative to the Earth. The frequency and the wavelength are related by 

.f c  Thus, if 0 is the wavelength of the light as seen on the spaceship, using 

0 0 ,c f f    then the wavelength detected on Earth would be 

 

0
0 0

1

1

f

f


  



  
  

 
. 

 

ANALYZE  (a) With 0 = 450 nm and  = 0.20, we obtain 

 

1+0.20
nm) 550 nm.

1 0.20
   


 

 

(b) This is in the green-yellow portion of the visible spectrum. 

 

LEARN Since 0 = 450 nm, the color of the light as seen on the spaceship is violet-blue. 

With 0 ,  this Doppler shift is red shift.   

 

40. (a) The work-kinetic energy theorem applies as well to relativistic physics as to 

Newtonian; the only difference is the specific formula for kinetic energy. Thus, we use 

Eq. 37-52  

W = K = mec
2
( – 1) 
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and mec
2
 = 511 keV = 0.511 MeV (Table 37-3), and obtain 

 

2

2 2

1 1
1 (511keV) 1 79.1 keV .

1 1 (0.500)
eW m c



  
      
       

 

 

(b) W 



F
HG

I
KJ
0511

1

1 0 990
1 311

2
.

.
.MeV MeV.b g

b g
 

 

(c) W 



F
HG

I
KJ
0511

1

1 0 990
1 10 9

2
.

.
.MeV MeV.b g

b g
 

 

41. THINK The electron is moving at a relativistic speed since its kinetic energy greatly 

exceeds its rest energy. 

 

EXPRESS The kinetic energy of the electron is given by Eq. 37-52: 

 

 2 2 2 2( 1)K E mc mc mc mc       . 

Thus,  = (K/mc
2
) + 1. Similarly, by inverting the Lorentz factor 21/ 1 ,    we 

obtain   1 1
2

/ .b g  

 

ANALYZE (a) Table 37-3 gives mc
2
 = 511 keV = 0.511 MeV for the electron rest 

energy, so the Lorentz factor is 

 

2

100MeV
1 1 196.695.

0.511MeV

K

mc
       

 

(b) The speed parameter is 

 
2

1
1 0.999987.

196.695
     

 

Thus, the speed of the electron is 0.999987c, or 99.9987% of the speed of light.  

 

LEARN The classical expression 2 / 2,K mv  for kinetic energy, is adequate only when 

the speed of the object is well below the speed of light. 

     

42. From Eq. 28-37, we have 

 

 2 23(4.00151u) 11.99671u (0.00782u)(931.5MeV/u)

7.28Mev.

Q Mc c      

 
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Thus, it takes a minimum of 7.28 MeV supplied to the system to cause this reaction. We 

note that the masses given in this problem are strictly for the nuclei involved; they are not 

the “atomic” masses that are quoted in several of the other problems in this chapter. 

 

43. (a) The work-kinetic energy theorem applies as well to relativistic physics as to 

Newtonian; the only difference is the specific formula for kinetic energy. Thus, we use W 

= K where K = mec
2
( – 1) (Eq. 37-52), and mec

2
 = 511 keV = 0.511 MeV (Table 37-3). 

Noting that  

K = mec
2
(f – i), 

we obtain 

 

 
   

2

2 2 2 2

1 1 1 1
511keV

1 1 1 0.19 1 0.18

0.996  keV 1.0 keV.

e

f i

W K m c
 

   
        

         

 

 

 

(b) Similarly, 

 
   

2 2

1 1
511keV 1055keV 1.1 MeV.

1 0.99 1 0.98

W
 

    
   

 

 

We see the dramatic increase in difficulty in trying to accelerate a particle when its initial 

speed is very close to the speed of light. 

 

44. The mass change is 

 

M    4 002603 1007825 0008712. . .u +15.994915u u +18.998405u u.b g b g  

 

Using Eq. 37-50 and Eq. 37-46, this leads to 

 

Q M c      2 0008712 9315 812. . .u MeV / u MeV.b gb g  

 

45. The distance traveled by the pion in the frame of Earth is (using Eq. 37-12) d = vt. 

The proper lifetime t0 is related to t by the time-dilation formula: t = t0. To use this 

equation, we must first find the Lorentz factor  (using Eq. 37-48). Since the total energy 

of the pion is given by E = 1.35  10
5
 MeV and its mc

2
 value is 139.6 MeV, then 

 

  



E

mc2

5135 10

139 6
967 05

.

.
. .

MeV

MeV
 

 

Therefore, the lifetime of the moving pion as measured by Earth observers is 

 

 t t      0

9 59671 350 10 3385 10. . .b gc hs s,  
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and the distance it travels is 

 

d c t      2 998 10 3385 10 1015 108 5 4. . .m / s s m =10.15kmc hc h  

 

where we have approximated its speed as c (note: its speed can be found by solving Eq. 

37-8, which gives v = 0.9999995c; this more precise value for v would not significantly 

alter our final result). Thus, the altitude at which the pion decays is 120 km – 10.15 km = 

110 km. 

 

46. (a) Squaring Eq. 37-47 gives 

 

E mc mc K K2 2
2

2 22  c h  

 

which we set equal to Eq. 37-55. Thus, 

 

     
 

2 2
2 222 2 2 2

2
2 .

2

pc K
mc mc K K pc mc m

Kc


       

 

(b) At low speeds, the pre-Einsteinian expressions p = mv and K mv 1
2

2  apply. We note 

that pc K  at low speeds since c v  in this regime. Thus, 

 

m
mvc mv

mv c

mvc

mv c
m


 

b g c h
c h

b g
c h

2 1
2

2
2

1
2

2 2

2

1
2

2 22 2
.  

 

(c) Here, pc = 121 MeV, so 

m
c





121 55

2 55
1056

2 2

2b g . .MeV / c2  

 

Now, the mass of the electron (see Table 37-3) is me = 0.511 MeV/c
2
, so our result is 

roughly 207 times bigger than an electron mass, i.e., / 207em m  . The particle is a muon. 

 

47. THINK As a consequence of the theory of relativity, mass can be considered as 

another form of energy. 

 

 EXPRESS The mass of an object and its equivalent energy is given by  

 

 2

0 .E mc  

 

ANALYZE The energy equivalent of one tablet is 
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E0 = mc
2
 = (320  10

–6
 kg) (3.00  10

8
 m/s)

2
 = 2.88  10

13
 J. 

 

This provides the same energy as  

 

(2.88  10
13

 J)/(3.65  10
7
 J/L) = 7.89  10

5
 L 

 

of gasoline. The distance the car can go is  

 

d = (7.89  10
5
 L) (12.75 km/L) = 1.01  10

7
 km. 

 

LEARN The distance is roughly 250 times larger than the circumference of Earth (see 

Appendix C). However, this is possible only if the mass-energy conversion were perfect.  

 

48. (a) The proper lifetime t0 is 2.20 s, and the lifetime measured by clocks in the 

laboratory (through which the muon is moving at high speed) is t = 6.90 s. We use Eq. 

37-7 to solve for the speed parameter: 

 

22

0 2.20 s
1 1 0.948

6.90 s

t

t






  
      

   
. 

 

 

(b) From the answer to part (a), we find  = 3.136. Thus, with (see Table 37-3) 

 

mc
2
 = 207mec

2
 = 105.8 MeV, 

Eq. 37-52 yields 

 

 2 1 (105.8MeV)(3.136 1) 226MeV.K m c       

 

(c) We write mc = 105.8 MeV/c and apply Eq. 37-41: 

 

p m v m c c c       3136 1058 0 9478 314. . .b gb gb gMeV / MeV /  

 

which can also be expressed in SI units (p = 1.7  10
–19

 kg·m/s). 

 

49. (a) The strategy is to find the  factor from E = 14.24  10
–9

 J and mpc
2
 = 1.5033  

10
–10

 J and from that find the contracted length. From the energy relation (Eq. 37-48), we 

obtain 
9

2 10

14.24 10  J
94.73.

1.5033 10  Jp

E

m c







  


 

 

Consequently, Eq. 37-13 yields 
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30 21 cm
0.222 cm 2.22 10  m.

94.73

L
L



      

 

(b) From the  factor, we find the speed: 

 

v c c 
F
HG
I
KJ 1

1
0 99994

2


. . 

 

Therefore, in our reference frame the time elapsed is 

 

 100

8

0.21 m
7.01 10 s

(0.99994)(2.998 10 m/s)

L
t

v

    


. 

  

(c) The time dilation formula (Eq. 37-7) leads to 

 
10

0 7.01 10 st t       

 

Therefore, according to the proton, the trip took  

 

t0 = 2.22  10
–3

/0.99994c = 7.40  10
–12

 s. 

 

50. From Eq. 37-52,  = (K/mc
2
) + 1, and from Eq. 37-8, the speed parameter is 

  1 1
2

/ .b g  

 

(a) Table 37-3 gives mec
2
 = 511 keV = 0.511 MeV, so the Lorentz factor is 

 

10.00MeV
1 20.57,

0.5110MeV
     

 

(b) and the speed parameter is 

 

 
 

2

2

1
1 1/ 1 0.9988.

20.57
       

 

(c) Using mpc
2
 = 938.272 MeV, the Lorentz factor is  



 = 1 + 10.00 MeV/938.272 MeV = 1.01065 1.011 . 

 

(d) The speed parameter is 

 
21 0.144844 0.1448.       
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(e) With mc
2
 = 3727.40 MeV, we obtain  = 10.00/3727.4 + 1 = 1.00268 1.003 .  

 

(f) The speed parameter is  

 

21 0.0731037 0.07310      . 

 

51. We set Eq. 37-55 equal to (3.00mc
2
)
2
, as required by the problem, and solve for the 

speed. Thus, 

     
2 22 2 29.00pc mc mc   

 

leads to 8 2.83 .p mc mc   

 

52. (a) The binomial theorem tells us that, for x small, 

 

(1 + x)

     1  +   x +  ½ x² 

 

if we ignore terms involving x
3
 and higher powers (this is reasonable since if x is small, 

say x = 0.1, then x
3
 is much smaller: x

3
 = 0.001).  The relativistic kinetic energy formula, 

when the speed v is much smaller than c, has a term that we can apply the binomial 

theorem to; identifying –² as x and –1/2 as , we have   

 
2 1/ 2(1 )       1  +  (–½)(–²)  +  ½ (–½)(–½)(–²)2

. 

 

Substituting this into Eq. 37-52 leads to 

 

K  = mc²( – 1)   mc²[(–½)(–²)  +  ½ (–½)(–½)(–²)2] 

 
which simplifies to  

   K    
1

2
 mc² 

2   + 
3

8
 mc² 4 =  

1

2
 mv² + 

3

8
 mv

4
/c² . 

 

(b) If we use the mc² value for the electron found in Table 37-3, then for  = 1/20, the 

classical expression for kinetic energy gives 

 

 Kclassical  =  
1

2
 mv²  = 

1

2
 mc² 2  = 

1

2
 (8.19  10

14 
J) 

2
  = 1.0  10

16 
J . 

 

(c) The first-order correction becomes 

 

 Kfirst-order  =  
3

8
 mv

4
/c²  = 

3

8
 mc² 4  = 

3

8
 (8.19  10

14 
J) 

4
  = 1.9  10

19 
J 

       

which we note is much smaller than the classical result. 
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(d) In this case,  = 0.80 = 4/5, and the classical expression yields 

 

 Kclassical  =  
1

2
 mv²  = 

1

2
 mc² 2 = 

1

2
 (8.19   10

14 
J) 

2
  = 2.6  10

14 
J . 

 

(e) And the first-order correction is 

 

 Kfirst-order  =  
3

8
 mv

4
/c²  = 

3

8
 mc² 4  = 

3

8
 (8.19   10

14 
J) 

4
  = 1.3  10

14 
J 

 

which is comparable to the classical result.  This is a signal that ignoring the higher order 

terms in the binomial expansion becomes less reliable the closer the speed gets to c. 

 

(f) We set the first-order term equal to one-tenth of the classical term and solve for : 

 

            
3

8
 mc² 4  

 = 
1

10
 ( 

1

2
 mc² 2  

) 

 

and obtain 2/15 0.37   .   

 

53. Using the classical orbital radius formula 0 / | |r mv q B , the period is 

 

0 02 / 2 / | | .T r v m q B    

 

In the relativistic limit, we must use 

 

0
| | | |

p mv
r r

q B q B


    

which yields   

0

2 2

| |

r m
T T

v q B

 
     

 

(b) The period T is not independent of v.  

 

(c) We interpret the given 10.0 MeV to be the kinetic energy of the electron. In order to 

make use of the mc
2
 value for the electron given in Table 37-3  

(511 keV = 0.511 MeV) we write the classical kinetic energy formula as 

 

K mv mc
v

c
mcclassical  

F
HG
I
KJ 

1

2

1

2

1

2

2 2
2

2

2 2c h c h .  

 

If Kclassical = 10.0 MeV, then 
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   
2 2 10 0

0511
6 256

2

K

mc

classical
MeV

MeV

.

.
. ,

b g
 

 

which, of course, is impossible since it exceeds 1. If we use this value anyway, then the 

classical orbital radius formula yields 

 

     
   

31 8

3

19

9.11 10 kg 6.256 2.998 10 m/s
4.85 10 m.

| | 1.6 10 C 2.20T

mv m c
r

q B eB








 
    


 

 

(d) Before using the relativistically correct orbital radius formula, we must compute  in 

a relativistically correct way: 

 

2 10.0 MeV
( 1) 1 20.57

0.511 MeV
K mc         

 

which implies (from Eq. 37-8) 

 

2 2

1 1
1 1 0.99882.

(20.57)



      

Therefore, 

 
31 8

19

2

(20.57) (9.11 10 kg)(0.99882)(2.998 10 m/s)

| | (1.6 10 C)(2.20T)

1.59 10 m.

mv m c
r

q B eB

   





 
  



 

 

 

(e) The classical period is 

 
3

11

8

2 2 (4.85 10 m)
1.63 10 s.

(6.256)(2.998 10 m/s)

r
T

c

 






   


 

 

(f) The period obtained with relativistic correction is 

 

10

8

2 2 (0.0159 m)
3.34 10 s.

(0.99882)(2.998 10 m/s)

r
T

c

 



   


 

 

54. (a) We set Eq. 37-52 equal to 2mc
2
, as required by the problem, and solve for the 

speed. Thus, 

2 2

2

1
1 2

1
mc mc



 
  
  

 

leads to 2 2 / 3 0.943.    
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(b) We now set Eq. 37-48 equal to 2mc
2
 and solve for the speed. In this case, 

 
2

2

2
2

1

mc
mc





 

leads to 3 / 2 0.866.    

 

55. (a) We set Eq. 37-41 equal to mc, as required by the problem, and solve for the speed. 

Thus, 

mv

v c
mc

1 2 2


/
 

leads to 1/ 2 0.707.    

 

(b) Substituting 1/ 2   into the definition of , we obtain 

 

 2 2

1 1
2 1.41.

1 1/ 21 /v c
    


 

(c) The kinetic energy is 

 

   2 2 2

01 2 1 0.414 0.414 .K mc mc mc E       

 

which implies 0/ 0.414K E  . 

 

56. (a) From the information in the problem, we see that each kilogram of TNT releases  

(3.40  10
6
 J/mol)/(0.227 kg/mol) = 1.50  10

7
 J.  Thus,  

 

(1.80  10
14

 J)/(1.50  10
7
 J/kg) = 1.20  10

7
 kg 

 

of TNT are needed.  This is equivalent to a weight of 1.2  10
8 

N.  

 

(b) This is certainly more than can be carried in a backpack.  Presumably, a train would 

be required. 

 

(c) We have 0.00080mc
2
 = 1.80  10

14
 J, and find m = 2.50 kg of fissionable material is 

needed.  This is equivalent to a weight of about 25 N, or 5.5 pounds. 

 

(d) This can be carried in a backpack. 

 

57. Since the rest energy E0 and the mass m of the quasar are related by E0 = mc
2
, the rate 

P of energy radiation and the rate of mass loss are related by  

 

P = dE0/dt = (dm/dt)c
2
. 
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Thus, 

dm

dt

P

c
 




 

2

41

8
2

241 10

2 998 10
111 10

W

m / s
kg / s.

.
.

c h
 

 

Since a solar mass is 2.0  10
30

 kg and a year is 3.156  10
7
 s, 

 

dm

dt
 





F
HG

I
KJ 111 10

3156 10

2 0 10
1824

7

30
.

.

.
kg / s

s / y

kg / smu
smu / y.c h  

 

58. (a) Using K = mec
2
 ( – 1) (Eq. 37-52) and  

 

mec
2
 = 510.9989 keV = 0.5109989 MeV, 

 

we obtain 

2

1.0000000keV
1 1 1.00195695 1.0019570.

510.9989keVe

K

m c
        

 

(b) Therefore, the speed parameter is 

 

2 2

1 1
1 1 0.062469542.

(1.0019570)



      

 

(c) For 1.0000000 MeVK  , we have 

 

2

1.0000000MeV
1 1 2.956951375 2.9569514.

0.5109989MeVe

K

m c
        

 

(d) The corresponding speed parameter is  

 
21 0.941079236 0.94107924.       

 

(e) For K = 1.0000000 GeV, we have 

 

2

1000.0000MeV
1 1 1957.951375 1957.9514.

0.5109989MeVe

K

m c
        

 

(f) The corresponding speed parameter is  

 
21 0.99999987     . 
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59. (a) Before looking at our solution to part (a) (which uses momentum conservation), it 

might be advisable to look at our solution (and accompanying remarks) for part (b) 

(where a very different approach is used). Since momentum is a vector, its conservation 

involves two equations (along the original direction of alpha particle motion, the x 

direction, as well as along the final proton direction of motion, the y direction). The 

problem states that all speeds are much less than the speed of light, which allows us to 

use the classical formulas for kinetic energy and momentum ( K mv 1
2

2  and 
 
p mv ,  

respectively). Along the x and y axes, momentum conservation gives (for the components 

of 

voxy ): 

oxy oxy, oxy,

oxy

oxy oxy, oxy,

oxy

4

17

1
0 .

17

x x

p

y p p y p p

m
m v m v v v v

m

m
m v m v v v v

m


      

      

 

 

To complete these determinations, we need values (inferred from the kinetic energies 

given in the problem) for the initial speed of the alpha particle (v) and the final speed of 

the proton (vp). One way to do this is to rewrite the classical kinetic energy expression as 

K mc 1
2

2 2( )  and solve for  (using Table 37-3 and/or Eq. 37-46). Thus, for the proton, 

we obtain 

 p

p

p

K

m c
  

2 2 4 44

938
0 0973

2

( .
. .

MeV)

MeV
 

 

This is almost 10% the speed of light, so one might worry that the relativistic expression 

(Eq. 37-52) should be used. If one does so, one finds p = 0.969, which is reasonably 

close to our previous result based on the classical formula. For the alpha particle, we 

write  

mc
2
 = (4.0026 u)(931.5 MeV/u) = 3728 MeV 

 

(which is actually an overestimate due to the use of the “atomic mass” value in our 

calculation, but this does not cause significant error in our result), and obtain 

 






  
2 2 7 70

3728
0 064

2

K

m c

( .
. .

MeV)

MeV
 

 

Returning to our oxygen nucleus velocity components, we are now able to conclude: 

 

v v

v v

x x

y p y p

oxy, oxy,

oxy, oxy,

    

    

4

17

4

17

4

17
0 064 0 015

1

17

1

17

1

17
0 097 0 0057

  

 

( . ) .

| | ( . ) .

 

 

Consequently, with  
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moxyc
2
  (17 u)(931.5 MeV/u) = 1.58  10

4
 MeV, 

we obtain 

 

2 2 2 4 2 2

oxy oxy oxy, oxy,

1 1
( ) ( ) (1.58 10 MeV)(0.015 0.0057 )

2 2

2.08 MeV.

x yK m c      



 

 

(b) Using Eq. 37-50 and Eq. 37-46, 

 
2(1.007825u 16.99914u 4.00260u 14.00307u)

(0.001295u)(931.5MeV/u)

Q c    

 
 

 

which yields Q = –1.206 MeV 1.21 MeV  . Incidentally, this provides an alternate way 

to obtain the answer (and a more accurate one at that!) to part (a). Equation 37-49 leads to 

 

oxy 7.70MeV 1206MeV 4.44MeV 2.05MeV.pK K Q K        

 

This approach to finding Koxy avoids the many computational steps and approximations 

made in part (a). 

 

60. (a) Equation 2 of Table 37-2 becomes 

 

t = t  x/c= 1.00 s  (240 m)/(2.998 × 10
2
 m/s )

 (1.00 0.800 ) s    



where the Lorentz factor is itself a function of  (see Eq. 37-8).  

 

(b) A plot of t is shown for the range 0 0.01  : 

 

 
 

(c) A plot of t is shown for the range 0.1 1  : 
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(d) The minimum for the t curve can be found by taking the derivative and simplifying 

and then setting equal to zero: 

 

d t

d

 
=  t – x/c = 0 . 

 

Thus, the value of  for which the curve is minimum is  = x/ct = 240/299.8, or 

0.801  . 

 

(e) Substituting the value of  from part (d) into the part (a) expression yields the 

minimum value t = 0.599 µs. 

 

(f) Yes. We note that x/t = 2.4 ×10
8 

m/s < c.  A signal can indeed travel from event A 

to event B without exceeding c, so causal influences can originate at A and thus affect 

what happens at B.  Such events are often described as being “time-like separated” – and 

we see in this problem that it is (always) possible in such a situation for us to find a frame 

of reference (here with 0.801) where the two events will seem to be at the same 

location (though at different times). 

 

61. (a) Equation 1 of Table 37-2 becomes  

 

x = x  ct= 240 m)  (299.8 m)



(b) A plot of x for 0 0.01   is shown below: 
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(c) A plot of x for 0.1 1   is shown below: 

 

 
 

We see that x decreases from its = 0 value (where it is equal to x = 240 m) to its 

zero value (at 0.8), and continues (without bound) downward in the graph (where it is 

negative, implying event B has a smaller value of x than event A!).  

 

(d) The zero value for x is easily seen (from the expression in part (b)) to come from 

the condition  x  ct= 0.  Thus = 0.801 provides the zero value of x. 

 

62. By examining the value of u when v = 0 on the graph, we infer u = 0.20c. Solving 

Eq. 37-29 for u and inserting this value for u, we obtain 

 

u = 
u  v

 1  uv/c²
  = 

c  v

 1 + v/c
  

 

for the equation of the curve shown in the figure. 

 

(a) With v = 0.80c, the above expression yields u = 0.86c. 

 

(b) As expected, setting v = c in this expression leads to u = c. 

 

63. (a) The spatial separation between the two bursts is vt. We project this length onto the 

direction perpendicular to the light rays headed to Earth and obtain Dapp = vt sin . 

 

(b) Burst 1 is emitted a time t ahead of burst 2. Also, burst 1 has to travel an extra 

distance L more than burst 2 before reaching the Earth, where L = vt cos  (see Fig. 37-

29); this requires an additional time t' = L/c. Thus, the apparent time is given by 

 

T t t t
vt

c
t

v

c
app

cos
cos      

F
HG
I
KJ

L
NM

O
QP


1 .  

(c) We obtain 
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V
D

T

v c

v c
c c capp

app

app

sin

cos

sin30.0

cos30.0
 



L
NM

O
QP 



 

L
NM

O
QP 

( / )

( / )

( . )

( . )
. .



1

0 980

1 0 980
324  

 

64. The line in the graph is described by Eq. 1 in Table 37-2: 

 

x = vt + x =  (“slope”)t   +  “y-intercept” 

 

where the “slope” is 7.0 × 10
8
 m/s. Setting this value equal to vleads to v = 2.8 ×10

8
 m/s 

and  = 2.54.  Since the “y-intercept” is 2.0 m, we see that dividing this by  leads to x 

= 0.79 m. 

 

65. Interpreting vAB  as the x-component of the velocity of A relative to B, and defining the 

corresponding speed parameter AB = vAB /c, then the result of part (a) is a straightforward 

rewriting of Eq. 37-29 (after dividing both sides by c).  To make the correspondence with 

Fig. 37-11 clear, the particle in that picture can be labeled A, frame S (or an observer at 

rest in that frame) can be labeled B, and frame S (or an observer at rest in it) can be 

labeled C.  The result of part (b) is less obvious, and we show here some of the algebra 

steps: 

 
1 11

1 1 1

AC BCAB
AC AB BC

AC AB BC

M M M
 

  

 
    

  
 

   

We multiply both sides by factors to get rid of the denominators 

 

(1 )(1 )(1 ) (1 )(1 )(1 )AC AB BC AB BC AC             

and expand: 

1 – AC +AB +BC – ACAB – ACBC + ABBC – AB BCAC = 

    1 + AC  –AB –BC – ACAB – ACBC + ABBC  + AB BCAC 

 

We note that several terms are identical on both sides of the equals sign, and thus cancel, 

which leaves us with 

 

–AC +AB +BC   – AB BCAC =  AC –AB –BC  + AB BCAC 

 

which can be rearranged to produce 

 

2 2 2 2AB BC AC AB BC AC         . 

 

The left-hand side can be written as 2AC (1 + AB BC in which case it becomes clear 

how to obtain the result from part (a) [just divide both sides by 2 + AB BC]. 

 

66. We note, because it is a pretty symmetry and because it makes the part (b) 

computation move along more quickly, that  
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1 1

1 1

M
M

M






 
  

 
. 

 

Here, with AB  given as 1/2  (see the problem statement), then MAB is seen to be  1/3 

(which is (1 – 1/2)  divided by  (1 + 1/2) ). Similarly for BC  .   

 

(a) Thus,  

1 1 1

3 3 9
AC AB BCM M M      . 

(b) Consequently,  

AC  = 
1 MAC

1 + MAC
  = 

1 1/ 9

1 1/ 9




 =  

8

10
 =  

4

5
 = 0.80. 

 

(c) By the definition of the speed parameter, we finally obtain vAC   = 0.80c. 

 

67. We note, for use later in the problem, that  

 

1 1

1 1

M
M

M






 
  

 
 

 

Now, with AB  given as 1/5 (see problem statement), then MAB is seen to be 2/3 (which is 

(1 – 1/5)  divided by  (1 + 1/5) ).  With BC  =  2/5, we similarly find MBC =  7/3,  and for 

CD  = 3/5  we get MCD =  1/4 . Thus,  

   

MAD  = MAB MBC MCD  =  
2

3
 · 

7

3
  · 

1

4
 =  

7

18
   . 

Consequently,  

 AD  = 
1 MAD

1 + MAD
  = 

1 7 /18

1 7 /18




 =  

11

25
 = 0.44. 

   

By the definition of the speed parameter, we obtain vAD   = 0.44c. 

 

68. (a) According to the ship observers, the duration of proton flight is t' = (760 

m)/0.980c = 2.59 s (assuming it travels the entire length of the ship). 

 

(b) To transform to our point of view, we use Eq. 2 in Table 37-2. Thus, with x' =  

–750 m, we have 

 2(0.950 ) 0.572 s.t t c x c         

 

(c) For the ship observers, firing the proton from back to front makes no difference, and 

t' = 2.59 s as before.  

 

(d) For us, the fact that now x' = +750 m is a significant change. 
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 2(0.950 ) 16.0 s.t t c x c          

 

69. (a) From the length contraction equation, the length Lc  of the car according to 

Garageman is 

      L
L

Lc
c

c


1 305 0 9980 1932 2( . ( . ) .m) 1 m.  

 

(b) Since the xg axis is fixed to the garage, xg2 = Lg = 6.00 m.  

 

(c) As for tg2, note from Fig. 37-32(b) that at tg = tg1 = 0 the coordinate of the front 

bumper of the limo in the xg frame is Lc ,  meaning that the front of the limo is still a 

distance L Lg c   from the back door of the garage. Since the limo travels at a speed v, the 

time it takes for the front of the limo to reach the back door of the garage is given by 

 

t t t
L L

v
g g g

g c
  

 





  

2 1 8

86 00 193

0 9980 2 998 10
136 10

. .

. ( .
.

m m

m / s)
s.  

 

Thus tg2 = tg1 + tg = 0 + 1.36  10
–8

 s = 1.36  10
–8

 s. 

 

(d) The limo is inside the garage between times tg1 and tg2, so the time duration is tg2 – tg1 

= 1.36  10
–8

 s. 

 

(e) Again from Eq. 37-13, the length Lg  of the garage according to Carman is 

 

      L
L

Lg

g

g


1 6 00 0 9980 0 3792 2( . ( . ) .m) 1 m.  

 

(f) Again, since the xc axis is fixed to the limo, xc2 = Lc = 30.5 m.  

 

(g) Now, from the two diagrams described in part (h) below, we know that at tc = tc2 

(when event 2 takes place), the distance between the rear bumper of the limo and the back 

door of the garage is given by L Lc g
  . Since the garage travels at a speed v, the front 

door of the garage will reach the rear bumper of the limo a time tc later, where tc 

satisfies 

t t t
L L

v
c c c

c g
  

 





  

1 2 8

7305 0 379

0 9980 2 998 10
101 10

. .

. ( .
.

m m

m / s)
s.  

 

Thus tc2 = tc1 – tc = 0 – 1.01  10
–7

 s = –1.01  10
–7

 s. 

 

(h) From Carman’s point of view, the answer is clearly no. 
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(i) Event 2 occurs first according to Carman, since tc2 < tc1. 

 

(j) We describe the essential features of the two pictures. For event 2, the front of the 

limo coincides with the back door, and the garage itself seems very short (perhaps failing 

to reach as far as the front window of the limo). For event 1, the rear of the car coincides 

with the front door and the front of the limo has traveled a significant distance beyond the 

back door. In this picture, as in the other, the garage seems very short compared to the 

limo. 

 

(k) No, the limo cannot be in the garage with both doors shut.  

 

(l) Both Carman and Garageman are correct in their respective reference frames. But, in a 

sense, Carman should lose the bet since he dropped his physics course before reaching 

the Theory of Special Relativity! 

 

70. (a) The relative contraction is 

 
21

2 2 20

8

0 0

12

(1 )| | 1 1 1 630m/s
1 1 1 1

2 2 2 3.00 10 m/s

2.21 10 .

LL

L L


  





   
           

   

 

 

 

(b) Letting | | ( ) .  t t t    0 0 1 100  s , we solve for t0 : 

 
6

0 2 1/ 2 2 2 8 21
2

2 2(1.00 10 s)(1d/86400s)

1 (1 ) 1 1 1 [(630m/s)/(2.998 10 m/s)]

5.25 d .

t
   

   






     

     



 

 

71. THINK We calculate the relative speed of the satellites using both the Galilean 

transformation and the relativistic speed transformation.  

 

EXPRESS Let v be the speed of the satellites relative to Earth. As they pass each other in 

opposite directions, their relative speed is given by rel, 2cv v  according to the classical 

Galilean transformation. On the other hand, applying relativistic velocity transformation 

gives 

 rel 2 2

2

1

v
v

v c



. 

 

ANALYZE (a) With v = 27000 km/h, we obtain  

 

rel, 2cv v = 2(27000 km/h) = 5.4  10
4 

 km/h. 

 

(b) We can express c in these units by multiplying by 3.6: c = 1.08  10
9
 km/h. The 

fractional error is 
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rel, rel 10

2 2 9 2

rel,

1 1
1 1 6.3 10 .

1 1 [(27000 km/h) /(1.08 10 km/h)]

c

c

v v

v v c




     
  

 

 

 

LEARN Since the speeds of the satellites are well below the speed of light, calculating 

their relative speed using the classical Galilean transformation is adequate. 

 

72. Using Eq. 37-10, we obtain
/ 6.0 y

0.75.
2.0 y 6.0 y

v d c

c t
    


 

 

73. THINK The work done to the proton is equal to the change in kinetic energy. 

 

EXPRESS The kinetic energy of the electron is given by Eq. 37-52: 

 

 2 2 2 2( 1)K E mc mc mc mc        

 

where 21/ 1    is the Lorentz factor.  

 

Let v1 be the initial speed and v2 be the final speed of the proton. The work required is 

 
2 2 2 2

2 1 2 1( 1) ( 1) ( )W K mc mc mc mc              . 

 

ANALYZE When  = 0.9860, we have  = 5.9972, and when  = 0.9850, we have  = 

5.7953. Thus,  = 0.202 and the change in kinetic energy (equal to the work) becomes 

(using Eq. 37-52) 
2( ) (938 MeV)(5.9972 5.7953) 189 MeVW K mc         

 

where mc
2
 = 938 MeV has been used (see Table 37-3). 

 

LEARN Using the classical expression 2 / 2cK mv  for kinetic energy, one would have 

obtain 

 

2 2 2 2 2 2 2

2 1 2 1

1 1 1
( ) ( ) (938 MeV) (0.9860) (0.9850)

2 2 2

0.924 MeV

c cW K m v v mc            



 

 

which is substantially lowered than that using relativistic formulation. 

 

74. The mean lifetime of a pion measured by observers on the Earth is  t t  0 , so the 

distance it can travel (using Eq. 37-12) is 
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d v t v t  
 






  0

8

2

0 99 2 998 10

1 0 99
55

( . )( .

( . )

m / s)(26 10 s)
m .

9

 

 

75. THINK The electron is moving toward the Earth at a relativistic speed since 
2E mc , where mc

2
 is the rest energy of the electron. 

 

EXPRESS The energy of the electron is given by  

 
2

2

21 ( / )

mc
E mc

v c
 


. 

 

With E = 1533 MeV and mc
2
 = 0.511 MeV (see Table 37-3), we obtain 

 

2 22 0.511 MeV
1 1 0.99999994

1533 MeV

mc
v c c c c

E

   
        

  
. 

 

Thus, in the rest frame of Earth, it took the electron 26 y to reach us. In order to transform 

to its own “clock” it’s useful to compute  directly from Eq. 37-48: 

 

2

1533 MeV
3000

0.511 MeV

E

mc
     

 

though if one is careful one can also get this result from   1 1 2/ ( / )v c .  

 

ANALYZE Then, Eq. 37-7 leads to 

 

0

26 y
0.0087 y

3000

t
t




     

 

so that the electron “concludes” the distance he traveled is only 0.0087 light-years. 

 

LEARN In the rest frame of the electron, the Earth appears to be rushing toward the 

electron with a speed 0.99999994c .  Thus, the electron starts its journey from a distance 

of 0.0087 light-years away. 

 

76. We are asked to solve Eq. 37-48 for the speed v.  Algebraically, we find 

 

2
2

1
mc

E


 
  

 
. 
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Using E = 10.611×10
9 

J and the very accurate values for c and m (in SI units) found in 

Appendix B, we obtain  = 0.99990. 

 

77. The speed of the spaceship after the first increment is v1 = 0.5c. After the second one, 

it becomes 

1
2 2 2 2

1

0.50 0.50
0.80 ,

1 ' 1 (0.50 )

v v c c
v c

v v c c c

  
  

 
 

 

and after the third one, the speed is 

 

v
v v

v v c

c c

c c c
c3

2

2

2 21

050 050

1 050 080
0 929











'

'

. .

( . ) ( . )
. .  

 

Continuing with this process, we get v4 = 0.976c, v5 = 0.992c, v6 = 0.997c, and v7 = 

0.999c. Thus, seven increments are needed. 

 

78. (a) Equation 37-37 yields 
2

0 0

2

0

1 ( / )1
     

1 1 ( / )

  


   


  

 
. 

 

With 0 / 434/ 462   , we obtain 0.062439  , or v = 1.87  10
7
 m/s. 

 

(b) Since it is shifted “toward the red” (toward longer wavelengths) then the galaxy is 

moving away from us (receding). 

 

79. THINK The electron is moving at a relativistic speed since its total energy E is much 

great than mc
2
, the rest energy of the electron. 

 

EXPRESS To calculate the momentum of the electron, we use Eq. 37-54: 

 
2 2 2( ) 2pc K Kmc  . 

 

ANALYZE With K = 2.00 MeV and mc
2
 = 0.511 MeV (see Table 37-3), we have 

 
2 2 22 (2.00 MeV) 2(2.00 MeV)(0.511 MeV)pc K Kmc     

 

This readily yields p = 2.46 MeV/c. 

 

LEARN Classically, the electron momentum is 

 

 
2 2(2.00 MeV)(0.511 MeV)2

2 1.43 MeV/c

Kmc
p Km c

c c
    
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which is smaller than that obtained using relativistic formulation. 

 

80. Using Appendix C, we find that the contraction is 

 

| |

( . )
.

.

.

L L L L L   
F
HG
I
KJ   

   




F
HG

I
KJ

F
H
GG

I
K
JJ



0 0 0

2

6
4

8

2

1
1

1 1

2 6 370 10 1 1
30 10

2 998 10

0 064


e j

 m
m s

m s

 m.

 

 

81. We refer to the particle in the first sentence of the problem statement as particle 2. 

Since the total momentum of the two particles is zero in S', it must be that the velocities 

of these two particles are equal in magnitude and opposite in direction in S'. Letting the 

velocity of the S' frame be v relative to S, then the particle that is at rest in S must have a 

velocity of  u v'1    as measured in S', while the velocity of the other particle is given by 

solving Eq. 37-29 for u': 

2
2 2 2

2

( / 2)
.

1 / 1 ( / 2)( / )

u v c v
u

u v c c v c

 
  

 
 

 

Letting 2 1u u v    , we obtain 

 

2

( / 2)
    (2 3) 0.27

1 ( / 2)( / )

c v
v v c c

c v c


    


 

 

where the  quadratic formula has been used (with the smaller of the two roots chosen so 

that v  c). 

 

82. (a) Our lab-based measurement of its lifetime is figured simply from  

 

t = L/v = 7.99  10
–13

 s. 

 

Use of the time-dilation relation (Eq. 37-7) leads to 

 

t0

13 2 137 99 10 1 0 960 2 24 10     ( . ) ( . ) . s  s.  

 

(b) The length contraction formula can be used, or we can use the simple speed-distance 

relation (from the point of view of the particle, who watches the lab and all its meter 

sticks rushing past him at 0.960c until he expires): L = vt0 = 6.44  10
–5

 m. 

 

83. (a) For a proton (using Table 37-3), we have 
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2

2

938MeV
6.65GeV

1 (0.990)
pE m c  


 

 

which gives 2 6.65GeV 938MeV 5.71GeVpK E m c     . 

 

(b) From part (a), 6.65GeVE  . 

 

(c) Similarly, we have 2

2

(938MeV)(0.990)/
( ) / 6.58GeV/

1 (0.990)
p p

c
p m v m c c c     


. 

 

(d) For an electron, we have 

2

2

0.511MeV
3.62MeV

1 (0.990)
eE m c  


 

 

which yields 2 3.625MeV 0.511MeV 3.11MeVeK E m c     . 

 

(e) From part (d), 3.62MeVE  . 

 

(f) 2

2

(0.511MeV)(0.990)/
( ) / 3.59MeV/

1 (0.990)
e e

c
p m v m c c c     


. 

 

84. (a) Using Eq. 37-7, we expect the dilated time intervals to be 

 

 


 


0
0

21 ( / )
.

v c
 

 

(b) We rewrite Eq. 37-31 using the fact that the period is the reciprocal of frequency 

( f R R  1  and f0 0

1  ): 










R

Rf
f

c v

c v
 





F
HG

I
KJ 












1 1

1

1

1
0

1

0 0 . 

 

(c) The Doppler shift combines two physical effects: the time dilation of the moving 

source and the travel-time differences involved in periodic emission (like a sine wave or 

a series of pulses) from a traveling source to a “stationary” receiver). To isolate the 

purely time-dilation effect, it’s useful to consider “local” measurements (say, comparing 

the readings on a moving clock to those of two of your clocks, spaced some distance 

apart, such that the moving clock and each of your clocks can make a close comparison 

of readings at the moment of passage). 

 

85. Let the reference frame be S in which the particle (approaching the South Pole) is at 

rest, and let the frame that is fixed on Earth be S'. Then v = 0.60c and u' = 0.80c (calling 
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“downward” [in the sense of Fig. 37-34] positive). The relative speed is now the speed of 

the other particle as measured in S: 

 

2 2

0.80 0.60
0.95 .

1 / 1 (0.80 )(0.60 ) /

u v c c
u c

u v c c c c

  
  

 
 

 

86. (a) E = mc
2
 = (3.0 kg)(0.0010)(2.998  10

8
 m/s)

2
 = 2.7  10

14
 J. 

 

(b) The mass of TNT is 

 

mTNT

 J  kg mol

 J
 kg.




 

2 7 10 0 227

3 10
18 10

14

6

7
. .

.4
.

c ha f
 

 

(c) The fraction of mass converted in the TNT case is 

 
m

m

TNT

TNT

 kg)(0.0010)

 kg



  ( .

.
. ,

3 0

18 10
16 10

7

9  

 

Therefore, the fraction is 0.0010/1.6  10
–9

 = 6.0  10
6
. 

 

87. (a) We assume the electron starts from rest. The classical formula for kinetic energy is 

Eq. 37-51, so if v = c then this (for an electron) would be 21 1
2 2

(511 ke V)mc    

255.5 ke V  (using Table 37-3). Setting this equal to the potential energy loss (which is 

responsible for its acceleration), we find (using Eq. 25-7) 

 

255.5 keV 255 keV
255.5 kV 256 kV.

| |
V

q e
     

 

(b) Setting this amount of potential energy loss (|U| = 255.5 keV) equal to the correct 

relativistic kinetic energy, we obtain (using Eq. 37-52) 

 

 

2

2

22

1 1
1 | | 1

11
mc U v c

U mcv c

 
            

 

 

which yields v = 0.745c = 2.23  10
8
 m/s. 

 

88. We use the relative velocity formula (Eq. 37-29) with the primed measurements being 

those of the scout ship. We note that v = –0.900c since the velocity of the scout ship 

relative to the cruiser is opposite to that of the cruiser relative to the scout ship. 

 

2

0.980 0.900
0.678 .

1 / 1 (0.980)(0.900)

u v c c
u c

u v c

 
  

 
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89. (a) Since both spaceships A and C are approaching B at the same speed (relative to B), 

with ,A B Cv v v   using relativistic velocity addition  formula, we have ,A cv v    or  

 

 
2 21 / 1 / 1 1

B C B CA B A B

A B B C A B B C

v vv v

v v c v v c

  

   

  
  

   
 

 

We multiply both sides by factors to get rid of the denominators: 

 

( )(1 ) ( )(1 )A B B C B C A B             

 

Expanding and simplifying gives 

 
2( ) 2(1 ) ( ) 0A C B A C B A C              

 

Solving the quadratic equation with 0.90A   and 0.80C   leads to 0.858,B   or 

0.858 .Bv c  

 

(b) The relative speed (say, A relative to B) is 

 

2

0.90 0.858
0.185

1 / 1 (0.90)(0.858)

A B
A

A B

v v c c
v c

v v c

 
   

 
. 

  

90. In the rest frame of Cruiser A, Cruiser B is moving at a speed of 0.900c, and has a 

length of 200 m. The proper length of Cruiser B, according to its pilot, is 

 

 0
2

200 m
458.8 m,

1 (0.900)
B BL L  


 

and the length of Cruiser A is 2

0 / 1 (0.900) (200 m) 87.2 m.A AL L      Therefore, 

according to pilot in Cruiser B, the time elapsed for the tails to align is 

 

 60

8

458.8 m 87.2 m
1.38 10 s

(0.90)(3.0 10 m/s)

B A

A

L L
t

v

 
    


. 

 

91. Let the speed of B relative to the station be Bv . We require the speed of A relative to 

B to be the same as Bv : 

21 /

A B
A B

A B

v v
v v

v v c


  


. 
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The above expression can be rewritten as 2 2 2(2 / ) 0B A Bv c v v c   . Solving the quadratic 

equation for vB, with 0.80Av c , we obtain 0.50Bv c . 

 

92. (a) From the train view, the tunnel appears to be contracted by a factor of  

 

2 2

1 1
2.29.

1 1 (0.900)



  

 
 

Thus, the length is tunnel tunnel,0 / (200 m) / 2.29 87.2 mL L    . 

 

(b) From the train view, since the tunnel appears to be shorter than the train, event FF will 

occur first.  

 

(c) According to an observer on the train, the time between the two events is 

 

train,0 tunnel

8

200 m 87.2 m
0.418 s

(0.900)(3.0 10 m/s)

L L
t

v


 
   


. 

 

(d) Since event FF occurs first, the paint will explode.  

 

(e) From the tunnel view, the train appears to be contracted by a factor of  

 

2 2

1 1
2.29.

1 1 (0.900)



  

 
 

Thus, the length is train train,0 / (200 m) / 2.29 87.2 mL L    . 

 

(f) From the tunnel view, since the train appears to be shorter than the tunnel, event RN 

will occur first.  

 

(g) According to an observer in the rest frame of the tunnel, the time between the two 

events is 

tunnel,0 train

8

200 m 87.2 m
0.418 s

(0.900)(3.0 10 m/s)

L L
t

v


 
   


. 

 

(h) The bomb will explode also. The reason is that one must take into consideration the 

time is takes for the deactivation signal to propagate from the rear of the train to the front, 

which is 
train,0

signal 8

200 m
0.741 s

(0.900)(3.0 10 m/s)

L
t

v
   


. This is longer than the time 

elapsed between the two events. So the bomb does explode. 
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93. (a) The condition for energy conservation is .A B CE E E   Similarly, momentum 

conservation requires 
B Cp p  (same magnitude but opposite directions). Using 

2E mc  gives 2 2 2 ,A B B C Cm c m c m c    or 

200 100 50 4 2B C B C         

 

Now using ,p mv  we have  

B B B C C C B B B C C Cm v m v m m         

 

Noting that 2 21 1/ 1,        the above expression can be rewritten as 

 
2 2

22

1 50 MeV/ 1

100 MeV/ 21

B C

BC

m c

m c






  


 

 

which implies 2 24 3B C   . Solving the two simultaneous equations gives 19/16B   

and 13/8.C   The total energy of B is 

 

2 19
(100 MeV) 119 MeV.

16
B B BE m c

 
   

 
 

(b) Using 
2

2 1 ,
mc

p mv
c

    we find the momentum of B to be 

 

 
2

22 1 19 /16 1 (100 MeV/ ) 64.0 MeV/ .B
B B

m c
p c c

c
      

 

(c) The total energy of C is 2 13
(50 MeV) 81.3 MeV.

8
C C CE m c

 
   

 
 

 

(d) The magnitude of momentum of C is the same as B: 64.0 MeV/ .Cp c  

 

94. (a) The travel time for trip 1 measured by an Earth observer is 1 2 / .t D c   

 

(b) For trip 2, we have 2 4 / ,t D c   

 

(c) and 3 6 / ,t D c  for trip 3. 

 

(d) In the rest frame of the starship, the distance appears to be shortened by the Lorentz 

factor . Thus, 1

1

2 2
.

5

D D D
t

c c c


     
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(e) Similarly, for trip 2, we have 
2

2

4 4 4
.

(24) 6

D D D D
t

c c c c


      

 

(f) For trip 3, the time is 
3

3

6 6 6
.

(30) 5

D D D D
t

c c c c


      

 

95. The radius r of the path is r = mvqB. Thus, 

 

19 22

27

8

2(1.60 10 C)(1.00 T)(6.28 m) 1 (0.710)1
6.64 10 kg.

(0.710)(3.00 10 m/s)

qBr
m

v

 

 
   


 

 

Since 1.00 u = 1.66  10
–27

 kg, the mass is m = 4.00 u. The nuclear particle contains four 

nucleons. Since there must be two protons to provide the charge 2e, the nuclear particle is 

a helium nucleus (usually referred to as an alpha particle) with two protons and two 

neutrons. 

 

96. We interpret the given 2.50 MeV = 2500 keV to be the kinetic energy of the electron. 

Using Table 37-3, we find 

     
K

m ce

2
1

2500

511
1 5892

keV

keV
. ,  

and 




  1
1

0 9855
2

. .  

 

Therefore, using the equation r = mvqB (with “q” interpreted as | |q ), we obtain 

 
31 8

19

(5.892) (9.11 10 kg)(0.9855) (2.998 10 m/s)

| | (1.6 10 C)(0.030 m)

0.33 T.

e em v m c
B

q r er

   



 
  





 

 

97. (a) Using Table 37-3 and Eq. 37-58, we find 

 

   


 
K

m cp

2

3

1
500 10

938 3
1 53388

MeV

MeV.
. .  

 

(b) From Eq. 37-8, we obtain 




  1
1

0 99999825
2

. .  

 

(c) To make use of the precise mpc
2
 value given here, we rewrite the expression 

introduced in problem 46 (as applied to the proton) as follows: 
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r
mv

qB

mc

eB

mc

ecB

v

c
  
   ( ) ( )

.

2 2
2d i

 

 

Therefore, the magnitude of the magnetic field is 

 
2 6( ) (533.88)(938.3 MeV)(0.99999825) 667.92 10 V/m

(750 m)

mc
B

ecr ec c

  
    

 

where we note the cancellation of the “e” in MeV with the e in the denominator. After 

substituting c = 2.998  10
8
 m/s, we obtain B = 2.23 T. 

 

98. (a) The pulse rate as measured by an observer at the station is 

 

 20

0

(150 / min) 1 (0.900) 65.4 / min.
RN N

R
t t 

 
     
 

 

 

(b) According to the observer at the station, the stride length appears to be shortened, and 

the clock runs slower in the spaceship, the speed observed is 

 

0 0

2

0

/L vL
v

t t



 


  
 

, 

 

and the distance the astronaut walked is measured to be 

 

 20 0 0
02

1 (0.900) (1.0 m/s)(3600 s) 1570 m.
v v t

d v t t
 


         

  

99. The frequency received is given by 

0

1 1

1 1

c c
f f

 

 

 
  

   
 

which implies 

1 1 0.42
nm) 415 nm .

1 1 0.42







 
    

 
 

 

This is in the blue portion of the visible spectrum. 

 

100. (a) Using the classical Doppler equation ,
s

v
f f

v v
 


 we have 
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3
1 1 1 2 .s

f
v v v c c c

f

 

 

     
            

     
 

(b) Using 
0

1
,

1
f f









 we solve for  and obtain  

 
2 2

0

2 2

0

1 ( / ) 1 (1/ 3) 8 / 9
0.80

1 ( / ) 1 (1/ 3) 10 / 9

f f

f f


 
   

 
 

or 0.80 .v c  

 

101. Using E = mc
2
, we find the required mass to be 

 

 
12 12

2 8 2

(2.2 10  kWh)(3.6 10  J/kWh)
88 kg

(3 10 m/s)

E
m

c

 
  


. 

 

(b) No, the energy consumed is still about 122.2 10  kWh  regardless of how it’s 

generated (oil-burning, nuclear, or hydroelectric….). 

 

102. (a) The time an electron with a horizontal component of velocity v takes to travel a 

horizontal distance L is 

 

t
L

v
 




 


20 10

0 992 2 998 10
6 72 10

2

8

10m

m / s
s.

. .
.b gc h  

 

(b) During this time, it falls a vertical distance 

 

y gt     1

2

1

2
9 8 6 72 10 2 2 102 10

2
18. . .m / s s m.2c hc h  

 

This distance is much less than the radius of a proton.  

 

(c) We can conclude that for particles traveling near the speed of light in a laboratory, 

Earth may be considered an approximately inertial frame. 

 

103. (a) The speed parameter  is v/c. Thus, 

 

 



  

3 0 01 1

30 10
3 10

8

18
cm / y m / cm y / 3.15 10 s

m / s

7b gb gc h.

.
.  

 

(b) For the highway speed limit, we find 

 



1646                                                                                                           CHAPTER 37 

 


  
90 1000 1

30 10
8 3 10

8

8
km / h m / km h / 3600s

m / s

b gb gb g
.

. .  

 

(c) Mach 2.5 corresponds to 

 

 


  
1200 1000 1

30 10
11 10

8

6
km / h m / km h / 3600s

m / s

b gb gb g
.

. .  

(d) We refer to Table 14-2: 

 

 


  
112 1000

30 10
37 10

8

5
.

.
. .

km / s m / km

m / s

b gb g
 

 

(e) For the quasar recession speed, we obtain 

 

 





30 10 1000

30 10
010

4

8

.

.
. .

km / s m / km

m / s

c hb g
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Chapter 38 
 

 

1. (a) With E = hc/min = 1240 eV·nm/min = 0.6 eV, we obtain  = 2.1  10
3
 nm = 2.1 

m.  

 

(b) It is in the infrared region. 

 

2. Let 

1

2

2m v E
hc

e  photon


 

and solve for v: 

 

 

 
 

  

2

2 2

8 5

3

2 2 2

2 1240eV nm
2.998 10 m/s 8.6 10 m/s.

590nm 511 10 eV

e e e

hc hc hc
v c c

m m c m c  
  


   



 

 

Since v c ,  the nonrelativistic formula K mv 1
2

2  may be used. The mec
2
 value of 

Table 37-3 and 1240eV nmhc   are used in our calculation. 

 

3. Let R be the rate of photon emission (number of photons emitted per unit time) of the 

Sun and let E be the energy of a single photon. Then the power output of the Sun is given 

by P = RE. Now  

E = hf = hc/, 

 

where h = 6.626  10
–34

 J·s is the Planck constant, f is the frequency of the light emitted, 

and  is the wavelength. Thus P = Rhc/ and 

 

  
  

26

45

34 8

550nm 3.9 10 W
1.0 10 photons/s.

6.63 10 J s 2.998 10 m/s

P
R

hc





   

  
 

 

4. We denote the diameter of the laser beam as d. The cross-sectional area of the beam is 

A = d 
2
/4. From the formula obtained in Problem 38-3, the rate is given by 

 

 
  

   

3

22 34 8 3

21 2

4 633nm 5.0 10 W

/ 4 6.63 10 J s 2.998 10 m/s 3.5 10 m

1.7 10 photons/m s .

R P

A hc d



 



 


 

   

  

 



CHAPTER 38 1648 

 

5. The energy of a photon is given by E = hf, where h is the Planck constant and f is the 

frequency. The wavelength  is related to the frequency by f = c, so E = hc/. Since h = 

6.626  10
–34

 J·s and c = 2.998  10
8
 m/s, 

 

hc 
  


 



 

6 626 10 2 998 10

1602 10 10
1240

34 8

19 9

. .

.

J s m / s

J / eV m / nm
eV nm.

c hc h
c hc h  

Thus, 

E 
1240eV nm


.  

With  

 = (1, 650, 763.73)
–1

 m = 6.0578021  10
–7

 m = 605.78021 nm, 

 

we find the energy to be 

E
hc

 





1240

60578021
2 047

eV nm

nm
eV.

.
.  

 

6. The energy of a photon is given by E = hf, where h is the Planck constant and f is the 

frequency. The wavelength  is related to the frequency by f = c, so E = hc/. Since h = 

6.626  10
–34

 J·s and c = 2.998  10
8
 m/s, 

 

hc 
  


 



 

6 626 10 2 998 10

1602 10 10
1240

34 8

19 9

. .

.

J s m / s

J / eV m / nm
eV nm.

c hc h
c hc h  

Thus, 

E 
1240eV nm


.  

With 589 nm  , we obtain 

1240eV nm
2.11eV.

589nm

hc
E




    

 

7. The rate at which photons are absorbed by the detector is related to the rate of photon 

emission by the light source via 

abs
abs emit2

(0.80) .
4

A
R R

r
  

 

Given that 6 2

abs 2.00 10  mA    and 3.00 m,r   with abs 4.000 photons/s,R   we find the 

rate at which photons are emitted to be 

 

 
2 2

8

emit abs 6 2

abs

4 4 (3.00 m)
4.000 photons/s 2.83 10 photons/s

(0.80) (0.80)(2.00 10  m )

r
R R

A

 


   


. 
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Since the energy of each emitted photon is  

 

ph

1240 eV nm
2.48 eV

500nm

hc
E




   , 

 

the power output of source is 

 

 8 8 10

emit emit ph 2.83 10 photons/s (2.48 eV) 7.0 10 eV/s 1.1 10 W.P R E         

 

8. The rate at which photons are emitted from the argon laser source is given by R = 

P/Eph, where P = 1.5 W is the power of the laser beam and Eph = hc/ is the energy of 

each photon of wavelength . Since  = 84% of the energy of the laser beam falls within 

the central disk, the rate of photon absorption of the central disk is 

 

   
   

 

 
R R

P

hc




/

. .

. . /

.



084 15

6 63 10 2 998 10 515 10

33 10

34 8 9

18

b gb g
c hc h c h

W

J s m / s m

photons / s.

 

 

9. (a) We assume all the power results in photon production at the wavelength 

589 nm  . Let R be the rate of photon production and E be the energy of a single 

photon. Then,  

P = RE = Rhc/, 

 

where E = hf and f = c/ are used. Here h is the Planck constant, f is the frequency of the 

emitted light, and  is its wavelength. Thus, 

 

  

  

9

20

34 8

589 10 m 100W
2.96 10 photon/s.

6.63 10 J s 3.00 10 m/s

P
R

hc







   

  
 

 

(b) Let I be the photon flux a distance r from the source. Since photons are emitted 

uniformly in all directions, R = 4r
2
I and 

 

 

20
7

4 2

2.96 10 photon/s
4.86 10 m.

4 4 1.00 10 photon/m s

R
r

I 


   

 
 

 

(c) The photon flux is 

 

 

20
18

22 2

2.96 10 photon/s photon
5.89 10 .

4 m s4 2.00m

R
I

r 


   


 

 

10. (a) The rate at which solar energy strikes the panel is 
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P  139 2 60 361. . .kW / m m kW.2 2c hc h  

 

(b) The rate at which solar photons are absorbed by the panel is 

 

    

3

34 8 9
ph

22

3.61 10 W

6.63 10 J s 2.998 10 m/s / 550 10 m

1.00 10  photons/s.

P
R

E  


 

   

 

 

 

(c) The time in question is given by 

 

t
N

R

A 





6 02 10

100 10
60 2

23

22

.

. /
.

s
s.  

 

11. THINK The rate of photon emission is the number of photons emitted per unit time. 

 

EXPRESS Let R be the photon emission rate and E be the energy of a single photon. The 

power output of a lamp is given by P = RE, where we assume that all the power goes into 

photon production. Now, E = hf = hc/, where h is the Planck constant, f is the frequency 

of the light emitted, and  is the wavelength. Thus  

 

 
Rhc P

P R
hc


    . 

 

ANALYZE (a) The fact that R   means that the lamp that emits light with the longer 

wavelength (the 700 nm infrared lamp) emits more photons per unit time. The energy of 

each photon is less, so it must emit photons at a greater rate. 

 

(b) Let R be the rate of photon production for the 700 nm lamp. Then, 

 

  

  
21

19

700nm 400J/s
1.41 10 photon/s.

1.60 10 J/eV 1240 eV nm

P
R

hc 


   

 
 

 

LEARN With / ,P Rhc   we readily see that when the rate of photon emission is held 

constant, the shorter the wavelength, the greater the power, or rate of energy emission. 

 

12. Following Sample Problem — “Emission and absorption of light as photons,” we 

have 

   34 8

17

9

100 / s 6.63 10 J s 2.998 10 m/s
3.6 10 W.

550 10 m

Rhc
P









  
   


 

 

13. The total energy emitted by the bulb is E = 0.93Pt, where P = 60 W and  
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t = 730 h = (730 h)(3600 s/h) = 2.628  10
6 

s. 

 

The energy of each photon emitted is Eph = hc/. Therefore, the number of photons 

emitted is 

 

N
E

E

Pt

hc
  



   
 

 
ph

W s

J s m / s m

0 93 0 93 60 2 628 10

6 63 10 2 998 10 630 10
4 7 10

6

34 8 9

26.

/

. .

. . /
. .



b gb gc h
c hc h c h  

 

14. The average power output of the source is 

 

9 10

emit

7.2 nJ
3.6 nJ/s 3.6 10  J/s 2.25 10 eV/s

2 s

E
P

t


      


. 

 

Since the energy of each photon emitted is  

 

ph

1240 eV nm
2.07 eV

600nm

hc
E




   , 

 

the rate at which photons are emitted by the source is 

 
10

10emit
emit

ph

2.25 10 eV/s
1.09 10 photons/s.

2.07 eV

P
R

E


     

 

Given that the source is isotropic, and the detector (located 12.0 m away) has an 

absorbing area of 6 2

abs 2.00 10  mA    and absorbs 50% of the incident light, the rate of 

photon absorption is  

 

 
6 2

10abs
abs emit2 2

2.00 10  m
(0.50) (0.50) 1.09 10 photons/s 6.0 photons/s.

4 4 (12.0 m)

A
R R

r 


     

 

15. THINK The energy of an incident photon is E = hf, where h is the Planck constant, 

and f is the frequency of the electromagnetic radiation. 

 

EXPRESS The kinetic energy of the most energetic electron emitted is  

 

Km = E –  = (hc/) – , 

 

where  is the work function for sodium, and f = c/where  is the wavelength of the 

photon. 

 

 

The stopping potential Vstop is related to the maximum kinetic energy by eVstop = Km, so  
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eVstop = (hc/) –  

and 

stop

1240eV nm
170nm.

5.0eV 2.2eV

hc

eV


   

 
 

 

Here eVstop = 5.0 eV and hc = 1240 eV∙nm are used. 

 

LEARN The cutoff frequency for this problem is  

 

 
19

14

0 34

(2.2 eV)(1.6 10  J/eV)
5.3 10 Hz

J s
f

h





 
   

 
. 

 

16. We use Eq. 38-5 to find the maximum kinetic energy of the ejected electrons: 

 

K hfmax . . .       414 10 30 10 2 315 15eV s Hz eV = 10eV.c hc h  

 

17. The speed v of the electron satisfies  

 

K m v m c v c Ee emax / .   1
2

2 1
2

2 2c hb g photon   

 

Using Table 37-3, we find 

 

v c
E

m ce




 



 

2
2 998 10

2 580 4 50

511 10
6 76 10

2

8

3

5photon
m / s

eV eV

eV
m / s.

d i c h b g
.

. .
.  

 

18. The energy of the most energetic photon in the visible light range (with wavelength of 

about 400 nm) is about E = (1240 eV·nm/400 nm) = 3.1 eV (using the value hc = 1240 

eV·nm). Consequently, barium and lithium can be used, since their work functions are 

both lower than 3.1 eV. 

 

19. (a) We use Eq. 38-6: 

 

 
stop

1240eV nm/400nm 1.8eV/
1.3V.

hf hc
V

e e e

   
     

 

(b) The speed v of the electron satisfies  

 

K m v m c v c Ee emax / .   1
2

2 1
2

2 2c hb g photon   

 

Using Table 37-3, we find 
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 
 

 photon stop stop 8

2 3

5

2 2 2 2 1.3V
2.998 10 m/s

511 10 eV

6.8 10 m/s.

e e e

E eV eV e
v c

m m m c


    



 

 

 

20. Using the value hc = 1240 eV·nm, the number of photons emitted from the laser per 

unit time is 

 

R
P

E
 



 
 





ph

W

eV nm / 600 nm)(1.60 10 J / eV)
s,

2 00 10

1240
6 05 10

3

19

15.

(
. /  

 

of which (1.0  10
–16

)(6.05  10
15

/s) = 0.605/s actually cause photoelectric emissions. 

Thus the current is  

 

i = (0.605/s)(1.60  10
–19

 C) = 9.68  10
–20

 A. 

 

21. (a) From r = mev/eB,  the speed of the electron is v = rBe/me. Thus, 

 
2

2 2 4 2 19 2
2

max 31 19

1 1 ( ) (1.88 10 T m) (1.60 10 C)

2 2 2 2(9.11 10 kg)(1.60 10 J/eV)

3.1 keV.

e e

e e

rBe rB e
K m v m

m m

 

 

    
    

  



 

 

(b) Using the value hc = 1240 eV·nm, the work done is 

 

W E K  



 

photon

eV nm

nm
keV keV.max .

1240

71 10
310 14

3
 

 

22. We use Eq. 38-6 and the value hc = 1240 eV·nm: 

 

K E
hc hc

max

max

.    





photon

eV nm

nm

eV nm

nm
eV.

 

1240

254

1240

325
107  

 

23. THINK The kinetic energy Km of the fastest electron emitted is given by  

 

Km = hf – , 

 

where  is the work function of aluminum, and f is the frequency of the incident 

radiation. 

 

EXPRESS Since f = c/where  is the wavelength of the photon, the above expression 

can be rewritten as  

Km = (hc/) – . 
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ANALYZE (a) Thus, the kinetic energy of the fastest electron is 

 

Km 



1240

200
4 20

eV nm

nm
eV = 2.00 eV. , 

 

where we have used hc = 1240 eV·nm.  

 

(b) The slowest electron just breaks free of the surface and so has zero kinetic energy. 

 

(c) The stopping potential Vstop is given by Km = eVstop, so  

 

Vstop = Km/e = (2.00 eV)/e = 2.00 V. 

 

(d) The value of the cutoff wavelength is such that Km = 0. Thus, hc/ =  or  

 

 = hc/ = (1240 eV·nm)/(4.2 eV) = 295 nm. 

 

LEARN If the wavelength is longer than , the photon energy is less than  and a 

photon does not have sufficient energy to knock even the most energetic electron out of 

the aluminum sample. 

 

24. (a) For the first and second case (labeled 1 and 2) we have  

 

eV01 = hc/1 –  ,     eV02 = hc/2 – , 

 

from which h and  can be determined. Thus, 

 

 

       

1 2 15

1 11 1 17
1 2

1.85eV 0.820eV
4.12 10 eV s.

3.00 10 nm/s 300nm 400nm

e V V
h

c  



  

 
    

   
 

 

 

(b) The work function is 

 

2 2 1 1

1 2

3( ) (0.820 eV)(400 nm) (1.85 eV)(300 nm)
2.27 eV.

300 nm 400 nm

V V 

 

 
  

 
 

 

(c) Let  = hc/max to obtain 

max
.

 



hc



1240

2 27
545

eV nm

eV
nm.  

 

25. (a) We use the photoelectric effect equation (Eq. 38-5) in the form hc/ =  + Km. 

The work function depends only on the material and the condition of the surface, and not 

on the wavelength of the incident light. Let 1 be the first wavelength described and 2 be 

the second. Let Km1 = 0.710 eV be the maximum kinetic energy of electrons ejected by 



 

  

1655 

light with the first wavelength, and Km2 = 1.43 eV be the maximum kinetic energy of 

electrons ejected by light with the second wavelength. Then, 

 

1 2

1 2

, .m m

hc hc
K K

 
    

 

The first equation yields  = (hc/1) – Km1. When this is used to substitute for  in the 

second equation, the result is  

 

(hc/2) = (hc/1) – Km1 + Km2. 

 

The solution for 2 is 

 

1
2

1 2 1

(1240V nm)(491nm)

( ) 1240eV nm (491nm)(1.43eV 0.710eV)

382nm.

m m

hc

hc K K

 
  

    



 

 

Here hc = 1240 eV·nm has been used.  

 

(b) The first equation displayed above yields 

 

   


 
hc

Km
1

1

1240

491
0 710 182

eV nm

nm
eV eV.. .  

 

26. To find the longest possible wavelength max (corresponding to the lowest possible 

energy) of a photon that can produce a photoelectric effect in platinum, we set Kmax = 0 in 

Eq. 38-5 and use hf = hc/. Thus hc/max = . We solve for max: 

 

max
.

 



hc



1240

532
233

eV nm

nm
nm.  

 

27. THINK The scattering between a photon and an electron initially at rest results in a 

change or photon’s wavelength, or Compton shift. 

 

EXPRESS When a photon scatters off from an electron initially at rest, the change in 

wavelength is given by  

 = (h/mc)(1 – cos ), 

 

where m is the mass of an electron and  is the scattering angle.  

 

ANALYZE (a) The Compton wavelength of the electron is h/mc = 2.43  10
–12

 m = 2.43 

pm. Therefore, we find the shift to be  

 

 = (h/mc)(1 – cos ) = (2.43 pm)(1 – cos 30°) = 0.326 pm. 
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The final wavelength is  

 

' =  +  = 2.4 pm + 0.326 pm = 2.73 pm. 

 

(b) With  = 120°,  = (2.43 pm)(1 – cos 120°) = 3.645 pm and  

 

' = 2.4 pm + 3.645 pm = 6.05 pm. 

 

LEARN The wavelength shift is greatest when  = 180°, where cos180° = –1. At this 

angle, the photon is scattered back along its initial direction of travel, and  = 2h/mc. 

 

28. (a) The rest energy of an electron is given by E = mec
2
. Thus the momentum of the 

photon in question is given by 

 
2

31 8 22(9.11 10 kg)(2.998 10 m/s) 2.73 10 kg m/s

0.511 MeV / .

e
e

m cE
p m c

c c

c

         



 

 

(b) From Eq. 38-7, 
34

12

22

6.63 10 J s
2.43 10 m=2.43 pm.

2.73 10 kg m/s

h

p







 
   

 
 

 

(c) Using Eq. 38-1, 
8

20

12

2.998 10 m/s
1.24 10 Hz.

2.43 10 m

c
f

 


   


 

 

29. (a) The x-ray frequency is 

 
8

18

12

2.998 10 m/s
8.57 10 Hz.

35.0 10 m

c
f

 


   


 

 

(b) The x-ray photon energy is 

 

E hf      ( . .414 10 355 1015 4eV s)(8.57 10 Hz) eV.18  

 

(c) From Eq. 38-7, 

 
34

23

12

6.63 10 J s
1.89 10 kg m/s 35.4 keV / .

35.0 10 m

h
p c






 
     
 

 

 

30. The (1 – cos ) factor in Eq. 38-11 is largest when  = 180°. Thus, using Table 37-3, 

we obtain 
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max 2

1240MeV fm
(1 cos180 ) (1 ( 1)) 2.64 fm

938MeVp

hc

m c


         

 

where we have used the value hc = 1240 eV·nm =1240 MeV·fm. 

 

31. If E is the original energy of the photon and E' is the energy after scattering, then the 

fractional energy loss is 

E E E

E E



 

  
 


 

 

using the result from Sample Problem – “Compton scattering of light by electrons.” Thus 

 

/ 0.75
3 300 %.

1 / 1 0.75

E E

E E





 
   

 
 

 

A 300% increase in the wavelength leads to a 75% decrease in the energy of the photon. 

 

32. (a) Equation 38-11 yields 

 

 
h

m ce

( ( . .1 2 43 4 86     cos ) pm)(1 cos180 ) pm.  

 

(b) Using the value hc = 1240 eV·nm, the change in photon energy is 

 

1 1.(1240 eV nm) 40.6 keV.
0.01 nm 4.86 pm 0.01 nm

hc hc
E

 
       

   
 

 

(c) From conservation of energy, K = – E = 40.6 keV. 

 

(d) The electron will move straight ahead after the collision, since it has acquired some of 

the forward linear momentum from the photon. Thus, the angle between +x and the 

direction of the electron’s motion is zero. 

 

33. (a) The fractional change is 

 

1

( / 1
1 1

/

1 1
.

( )(1 cos ) 1C

E hc

E hc

  
 

      

     

       
           

      

   
    

 

 

If  = 3.0 cm = 3.0  10
10

 pm and  = 90°, the result is 
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11 9

10 1

1
8.1 10 8.1 10  %.

(3.0 10 pm/2.43pm)(1 cos90 ) 1

E

E

 




    

   
 

 

(b) Now  = 500 nm = 5.00  10
5
 pm and  = 90°, so 

 

6 4

5 1

1
4.9 10 4.9 10  %.

(5.00 10 pm/2.43pm)(1 cos90 ) 1

E

E

 




    

   
 

 

(c) With  = 25 pm and  = 90°, we find 

 

2

1

1
8.9 10 8.9 %.

(25pm/2.43pm)(1 cos90 ) 1

E

E






   

  
 

(d) In this case,  

 

 = hc/E = 1240 nm·eV/1.0 MeV = 1.24  10
–3

 nm = 1.24 pm, 

so 

1

1
0.66 66 %.

(1.24pm/2.43pm)(1 cos90 ) 1

E

E 


  

  
 

 

(e) From the calculation above, we see that the shorter the wavelength the greater the 

fractional energy change for the photon as a result of the Compton scattering. Since E/E 

is virtually zero for microwave and visible light, the Compton effect is significant only in 

the x-ray to gamma ray range of the electromagnetic spectrum. 

 

34. The initial energy of the photon is (using hc = 1240 eV·nm) 

 

51240eV nm
4.13 10 eV

0.00300 nm

hc
E




    . 

 

Using Eq. 38-11 (applied to an electron), the Compton shift is given by 

 

   
2 3

1240eV nm
1 cos 1 cos90.0 2.43 pm

511 10 eVe e e

h h hc

m c m c m c



        


 

 

Therefore, the new photon wavelength is  

 

' = 3.00 pm + 2.43 pm = 5.43 pm. 

 

Consequently, the new photon energy is 

 

51240eV nm
2.28 10 eV

0.00543nm

hc
E


    


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By energy conservation, then, the kinetic energy of the electron must be equal to  

 

 5 5 5 144.13 10 2.28 10 eV 1.85 10 eV 3.0 10  JeK E E E             . 

 

35. (a) Since the mass of an electron is m = 9.109  10
–31

 kg, its Compton wavelength is 

 
34

12

31 8

6.626 10 J s
2.426 10 m 2.43 pm.

(9.109 10 kg)(2.998 10 m/s)
C

h

mc







 
    

 
 

 

(b) Since the mass of a proton is m = 1.673  10
–27

 kg, its Compton wavelength is 

 
34

15

27 8

6.626 10 J s
1.321 10 m 1.32 fm.

(1.673 10 kg)(2.998 10 m/s)
C






 
   

 
 

 

(c) We note that hc = 1240 eV·nm, which gives E = (1240 eV·nm)/, where E is the 

energy and  is the wavelength. Thus for the electron,  

 

E = (1240 eV·nm)/(2.426  10
–3

 nm) = 5.11  10
5
 eV = 0.511 MeV. 

 

(d) For the proton,  

 

E = (1240 eV·nm)/(1.321  10
–6

 nm) = 9.39  10
8
 eV = 939 MeV. 

 

36. (a) Using the value hc = 1240 eV·nm, we find 

 

 
hc

E



  1240

0511
2 43 10 2 433nm eV

MeV
nm pm.

.
. .  

 

(b) Now, Eq. 38-11 leads to 

 

(1 cos ) 2.43pm (2.43pm)(1 cos90.0 )

4.86pm.

e

h

m c
              



 

 

(c) The scattered photons have energy equal to 

 

2.43 pm
(0.511 MeV) 0.255 MeV.

4.86 pm
E E





  
     

   
 

 

37. (a) From Eq. 38-11,  

(1 cos )
e

h

m c
   . 
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In this case  = 180° (so cos  = –1), and the change in wavelength for the photon is 

given by  = 2h/mec. The energy E' of the scattered photon (with initial energy E = hc/) 

is then 

21 / 1 (2 / )( / ) 1 2 /

50.0keV
41.8keV .

1 2(50.0keV)/0.511MeV

e e

hc E E E
E

h m c E hc E m c   
   

   

 


 

 

(b) From conservation of energy the kinetic energy K of the electron is given by  

 

K = E – E' = 50.0 keV – 41.8 keV = 8.2 keV. 

 

38. Referring to Sample Problem — “Compton scattering of light by electrons,” we see 

that the fractional change in photon energy is 

 

n ( / )(1 cos )
.

( / ) ( / )(1 cos )

E E h mc

E hc E h mc





  
 
  

 

 

Energy conservation demands that E – E' = K, the kinetic energy of the electron. In the 

maximal case,  = 180°, and we find 

 

( / )(1 cos180 ) 2 /
.

( / ) ( / )(1 cos180 ) ( / ) (2 / )

K h mc h mc

E hc E h mc hc E h mc

 
 

   
 

 

Multiplying both sides by E and simplifying the fraction on the right-hand side leads to 

 

K E
mc

c E mc

E

mc E




F
HG

I
KJ  

2

2 2

2

2

/

/ / /
.  

 

39. The magnitude of the fractional energy change for the photon is given by 

 

ph

ph

( / 1

/

E hc

E hc

 
  

      

        
         

    
 

 

where  = 0.10. Thus  = /(1 – ). We substitute this expression for  in Eq. 38-11 

and solve for cos : 
2

ph

( )
cos 1 1

(1 ) (1 )

(0.10)(511 keV)
1 0.716 .

(1 0.10)(200keV)

mc mc mc

h h E

 
 

 
     

 

  

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This leads to an angle of  = 44°. 

 

40. The initial wavelength of the photon is (using hc = 1240 eV·nm) 

 

1240eV nm
0.07086 nm

17500eV

hc

E



    

 

or 70.86 pm. The maximum Compton shift occurs for  = 180°, in which case Eq. 38-11 

(applied to an electron) yields 

 

2 3

1240eV nm
(1 cos180 ) (1 ( 1)) 0.00485 nm

511 10 eVe

hc

m c


   
          

  
 

 

where Table 37-3 is used. Therefore, the new photon wavelength is  

 

' = 0.07086 nm + 0.00485 nm = 0.0757 nm. 

 

Consequently, the new photon energy is 

 

41240eV nm
1.64 10 eV 16.4 keV .

0.0757nm

hc
E




     


 

 

By energy conservation, then, the kinetic energy of the electron must equal  

 

E' – E = 17.5 keV – 16.4 keV = 1.1 keV. 

 

41. (a) From Eq. 38-11 

(1 cos ) (2.43pm)(1 cos90 ) 2.43pm .
e

h

m c
         

 

(b) The fractional shift should be interpreted as  divided by the original wavelength: 

 

62.425pm
4.11 10 .

590nm






    

 

(c) The change in energy for a photon with  = 590 nm is given by 

 
15 8

ph 2 2

6

(4.14 10 eV s)(2.998 10 m/s)(2.43pm)

(590nm)

8.67 10 eV .

hc hc
E



 





    
       

 

  

 

 

(d) For an x-ray photon of energy Eph = 50 keV,  remains the same (2.43 pm), since it 

is independent of Eph.  
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(e) The fractional change in wavelength is now 

 
3

2

15 8

ph

(50 10 eV)(2.43pm)
9.78 10 .

/ (4.14 10 eV s)(2.998 10 m/s)hc E

 







  
   

  
 

 

(f) The change in photon energy is now 

 

ph ph

1 1

1

hc
E hc E

 

      

     
         

       
 

 

where  = /. With Eph = 50 keV and  = 9.78  10
–2

 , we obtain Eph =  –4.45 keV. 

(Note that in this case   0.1 is not close enough to zero so the approximation Eph  

hc/2
 is not as accurate as in the first case, in which  = 4.12  10

–6
. In fact if one were 

to use this approximation here, one would get Eph  –4.89 keV, which does not amount 

to a satisfactory approximation.) 

 

42. (a) Using Wien’s law, max 2898 m K,T    we obtain 

 

max

2898 m K 2898 m K
0.50 m 500 nm

5800 KT

 
 

 
    . 

 

(b) The electromagnetic wave is in the visible spectrum.  

 

(c) If max 1.06 mm 1060 m,    then 
max

2898 m K 2898 m K
2.73 K

1060 m
T

 

 

 
   . 

 

43. (a) Using Wien’s law, the wavelength that corresponds to thermal radiation maximum 

is 

4 10

max 7

2898 m K 2898 m K
2.9 10 m 2.9 10 m

1.0 10 KT

 
   

     


. 

 

(b) The wave is in the x-ray region of the electromagnetic spectrum. 

 

(c) Using Wien’s law, the wavelength that corresponds to thermal radiation maximum is 

 

2 8

max 5

2898 m K 2898 m K
2.9 10 m 2.9 10 m

1.0 10 KT

 
   

     


 

 

(d) The wave is in the ultraviolet region of the electromagnetic spectrum. 

 

44. (a) The intensity per unit length according to the classical radiation law shown in Eq. 

38-13 is 
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4

2
C

ckT
I




  

 

On the other hand, Planck’s radiation law (Eq. 38-14) gives 

 
2

5 /

2 1

1
P hc kT

c h
I

e 







. 

 

The ratio of the two expressions can be written as 

 

   / 1
1 1hc kT xC

P

I kT
e e

I hc x


     

 

where / .x hc kT  For T = 200 K, and 400 nm,   

 
34 8

9 23

(6.626 10 J s)(2.998 10 m/s)
17.98,

(400 10 m)(1.38 10 J/K)(2000 K)

hc
x

kT



 

  
  

 
 

 

and the ratio of the intensities is  17.98 61
1 3.6 10

17.98

C

P

I
e

I
    . 

 

(b) For 200 m,   we have  

 
34 8

6 23

(6.626 10 J s)(2.998 10 m/s)
0.03596,

(200 10 m)(1.38 10 J/K)(2000 K)

hc
x

kT



 

  
  

 
 

 

and the ratio of the intensities is  

 

 0.035961
1 1.02

0.03596

C

P

I
e

I
   . 

 

(c) The agreement is better at longer wavelength, with / 1.C PI I   

 

45. (a) With 98.6 F 37 C 310 K,T      we use Wien’s law and find the wavelength that 

corresponds to spectral radiancy maximum to be 

 

max

2898 m K 2898 m K
9.35 m

310 KT

 
 

 
   . 

 

(b) With 9.35 m,   and T = 310 K, the spectral radiancy is 
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2

5 /

1
8 2 34 34 8

6 5 6 23

7 3

2 1
( )

1

2 (2.998 10 m/s) (6.626 10 J s) (6.626 10 J s)(2.998 10 m/s)
exp

(9.35 10 m) (9.35 10 m)(1.38 10 J/K)(310 K)

3.688 10 W/m

hc kT

c h
S

e 









 

  




       
   

    

 

 

For small range of wavelength, the radiated power may be approximated as 

 
7 3 4 2 9 5( ) (3.688 10 W/m )(4 10 m )(10 m) 1.475 10 W.P S A            

 

(c) The energy carried by each photon is 

 
34 8

20

6

(6.626 10 J s)(2.998 10 m/s)
2.1246 10 J

9.35 10 m

hc
hf








  
    


 

 

Writing ( / ) ,P dN dt   we find the rate to be 

 
5

14

20

1.475 10 W
6.94 10 photons/s

2.1246 10 J

dN P

dt 






   


. 

 

(d) If 500 nm,   and T = 310 K, the spectral radiancy is 

 
2

5 /

1
8 2 34 34 8

9 5 9 23

25 3

2 1
( )

1

2 (2.998 10 m/s) (6.626 10 J s) (6.626 10 J s)(2.998 10 m/s)
exp

(500 10 m) (500 10 m)(1.38 10 J/K)(310 K)

5.95 10 W/m

hc kT

c h
S

e 









 

  






       
   

    

 

 

For small range of wavelength, the radiated power may be approximated as 

 
25 3 4 2 9 37( ) (5.95 10 W/m )(4 10 m )(10 m) 2.38 10 W.P S A             

 

(e) The energy carried by each photon is 

 
34 8

19

9

(6.626 10 J s)(2.998 10 m/s)
3.97 10 J

500 10 m

hc
hf








  
    


 

 

The corresponding photon emission rate is 
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5
19

19

2.38 10 W
5.9 10 photons/s

3.97 10 J

dN P

dt 







   


 

 

46. (a) Using Table 37-3 and the value hc = 1240 eV·nm, we obtain 

 

2

1240eV nm
0.0388nm.

2 2(511000eV)(1000eV)2e e

h h hc

p m K m c K


       

 

(b) A photon’s de Broglie wavelength is equal to its familiar wave-relationship value. 

Using the value hc = 1240 eV·nm, 

 

1240eV nm
1.24nm .

1.00keV

hc

E



    

 

(c) The neutron mass may be found in Appendix B. Using the conversion from electron-

volts to Joules, we obtain 

 
34

13

27 16

6.63 10 J s
9.06 10 m.

2 2(1.675 10 kg)(1.6 10 J)n

h

m K





 

 
   

 
 

 

47. THINK The de Broglie wavelength of the electron is given by  = h/p, where p is the 

momentum of the electron. 

 

EXPRESS The momentum of the electron can be written as  

 

 2 2 ,e e ep m v m K m eV    

 

where V is the accelerating potential and e is the fundamental charge. Thus, 

 

.
2 e

h h

p m eV
    

 

ANALYZE With V = 25.0 kV, we obtain 

 
34

31 19 3

12

J s

2 2(9.109 10 kg)(1.602 10 C)(25.0 10 V)

7.75 10 m 7.75pm.

e

h

m eV



 



 
  

  

  

 

 

LEARN The wavelength is of the same order as the Compton wavelength of the electron. 

Increasing the potential difference V would make the wavelength even smaller. 
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48. The same resolution requires the same wavelength, and since the wavelength and 

particle momentum are related by p = h/, we see that the same particle momentum is 

required. The momentum of a 100 keV photon is  

 

p = E/c = (100  10
3
 eV)(1.60  10

–19
 J/eV)/(3.00  10

8
 m/s) = 5.33  10

–23
 kg·m/s. 

 

This is also the magnitude of the momentum of the electron. The kinetic energy of the 

electron is 

K
p

m
 

 


 






2 23

2

31

15

2

533 10

2 911 10
156 10

.

.
.

kg m / s

kg
J.

c h
c h  

 

The accelerating potential is 

 

V
K

e
 




 





156 10

160 10
9 76 10

15

19

3.

.
.

J

C
V.  

 

49. THINK The de Broglie wavelength of the sodium ion is given by  = h/p, where p is 

the momentum of the ion. 

 

EXPRESS The kinetic energy acquired is K = qV, where q is the charge on an ion and V 

is the accelerating potential. Thus, the momentum of an ion is 2 ,p mK and the 

corresponding de Broglie wavelength is .
2

h h

p mK
    

 

ANALYZE (a) The kinetic energy of the ion is  

 

K = qV = (1.60  10
–19

 C)(300 V) = 4.80  10
–17

 J. 

 

The mass of a single sodium atom is, from Appendix F,  

 

m = (22.9898 g/mol)/(6.02  10
23

 atom/mol) = 3.819  10
–23

 g = 3.819  10
–26

 kg. 

 

Thus, the momentum of a sodium ion is 

 

p mK        2 2 3819 10 4 80 10 191 1026 17 21. . .kg J kg m / s.c hc h  

 

(b) The de Broglie wavelength is 

 
34

13

21

6.63 10 J s
3.46 10 m.

1.91 10 kg m/s

h

p






 
    

 
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LEARN The greater the potential difference, the greater the kinetic energy and 

momentum, and hence, the smaller the de Broglie wavelength.  

 

50. (a) We need to use the relativistic formula  

 

 
2 2 2/ / /ep E c m c E c K c     

 2since .eE m c  So 

 

8

9

1240eV nm
2.5 10 nm 0.025 fm.

50 10 eV

h hc

p K
 
     


 

 

(b) With 5.0 fmR , we obtain 2/ 2.0 10R    .  

 

51. THINK The de Broglie wavelength of a particle is given by  = h/p, where p is the 

momentum of the particle. 

 

EXPRESS Let K be the kinetic energy of the electron, in units of electron volts (eV). 

Since 2 / 2 ,K p m  the electron momentum is 2 .p mK  Thus, the de Broglie 

wavelength is 

 
34 9 1/2

31 19

1/2

J s 1.226 10 m eV

2 2(9.109 10 kg)(1.602 10 J/eV)

1.226 nm eV
.

h h

p mK KK

K

 

 

   
    

 




 

 

ANALYZE With  = 590 nm, the above equation can be inverted to give  

 

K 
F

HG
I
KJ 

F
HG

I
KJ   1226 1226

590
4 32 10

2 2

6. .
.

nm eV nm eV

nm
eV.

1/2 1/2


 

 

LEARN The analytical expression shows that the kinetic energy is proportional to 1/
2
. 

This is so because 2 ,K p  while 1/ .p   

 

52. Using Eq. 37-8, we find the Lorentz factor to be  

 

 
2 2

1 1
7.0888

1 ( / ) 1 (0.9900)v c
   

 
. 

 

With p mv  (Eq. 37-41), the de Broglie wavelength of the protons is 
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34

16

27 8

6.63 10  J s
1.89 10  m

(7.0888)(1.67 10 kg)(0.99 3.00 10 m/s)

h h

p mv









 
    

  
. 

 

The vertical distance between the second interference minimum and the center point is  

 

 
2

1 3
1

2 2

L L
y

d d

  
   
 

 

 

where L is the perpendicular distance between the slits and the screen. Therefore, the 

angle between the center of the pattern and the second minimum is given by 

 

 2 3
tan

2

y

L d


   . 

Since d , tan  , and we obtain 

 

 
16

8 6

9

3 3(1.89 10  m)
7.07 10 rad (4.0 10 )

2 2(4.00 10  m)d





 




      


. 

 

53. (a) The momentum of the photon is given by p = E/c, where E is its energy. Its 

wavelength is 

1240eV nm
1240 nm.

1.00eV

h hc

p E



     

 

(b) The momentum of the electron is given by p mK 2 ,  where K is its kinetic energy 

and m is its mass. Its wavelength is 

  
h

p

h

mK2
.  

 

If K is given in electron volts, then 

 
34 9 1/2 1/2

31 19

J s 1.226 10 m eV 1.226nm eV
.

2(9.109 10 kg)(1.602 10 J/eV) K KK


 

 

    
  

 
 

 

For 1.00 eVK  , we have 
1/21.226nm eV

1.23 nm.
1.00eV




   

(c) For the photon, 

6

9

1240eV nm
1.24 10 nm 1.24 fm.

1.00 10 eV

hc

E
 
    


 

 



 

  

1669 

(d) Relativity theory must be used to calculate the wavelength for the electron. According 

to Eq. 38-51, the momentum p and kinetic energy K are related by  

 

(pc)
2
 = K

2
 + 2Kmc

2
. 

Thus, 

    
2

2 2 9 9 6

9

2 1.00 10 eV 2 1.00 10 eV 0.511 10 eV

1.00 10 eV.

pc K Kmc      

 

 

 

The wavelength is 

6

9

1240eV nm
1.24 10 nm 1.24 fm.

1.00 10 eV

h hc

p pc
 
     


 

 

54. (a) The momentum of the electron is  

 
34

24

9

6.63 10 J s
3.3 10 kg m/s.

0.20 10 m

h
p








 
    


 

 

(b) The momentum of the photon is the same as that of the electron: 
243.3 10 kg m/s.p     

 

(c) The kinetic energy of the electron is 

 

 
 

2
242

18

31

3.3 10 kg m/s
6.0 10 J 38 eV.

2 2 9.11 10 kg
e

e

p
K

m







 
    


 

 

(d) The kinetic energy of the photon is 

 

  24 8 16

ph 3.3 10 kg m/s 2.998 10 m/s 9.9 10 J 6.2 keV.K pc           

 

55. (a) Setting    h p h E c m ce/ / / ,b g2 2 2  we solve for K = E – mec
2
:  

 

 
22

22 4 2

3

1240eV nm
0.511MeV 0.511MeV

10 10 nm

0.015 MeV 15 keV.

e e

hc
K m c m c



  
       

    

 

 

 

(b) Using the value 1240eV nmhc   

 

5

3

1240eV nm
1.2 10 eV 120 keV.

10 10 nm

hc
E

 


    


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(c) The electron microscope is more suitable, as the required energy of the electrons is 

much less than that of the photons. 

 

56. (a) Since K m c 7 5 4 9322. ,MeV << MeV b g  we may use the nonrelativistic 

formula p m K 2  .  Using Eq. 38-43 (and noting that 1240 eV·nm = 1240 MeV·fm), 

we obtain 

 

   2

1240MeV fm
5.2fm.

2 4u 931.5MeV/u 7.5MeV2

h hc

p m c K




     

 

(b) Since   52. fm << 30fm,  to a fairly good approximation, the wave nature of the  

particle does not need to be taken into consideration. 

 

57. The wavelength associated with the unknown particle is  

 

,p

p p p

h h

p m v
    

 

where pp is its momentum, mp is its mass, and vp is its speed. The classical relationship pp 

= mpvp was used. Similarly, the wavelength associated with the electron is e = h/(meve), 

where me is its mass and ve is its speed. The ratio of the wavelengths is  

 

p/e = (meve)/(mpvp), 

so 

 

31
27

4

9.109 10 kg
1.675 10 kg.

3 1.813 10

e e
p e

p p

v
m m

v











   


 

 

According to Appendix B, this is the mass of a neutron. 

 

58. (a) We use the value 1240nm eVhc  : 

 

photon

1240nm eV
1.24keV

1.00nm

hc
E




   . 

 

(b) For the electron, we have 

 

   

 

22 2
2

2

/ / 1 1240eV nm
1.50 eV.

2 2 2 2 0.511MeV 1.00nme e e

h hcp
K

m m m c

   
     

 
 

 

(c) In this case, we find 
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9

photon 6

1240nm eV
1.24 10 eV 1.24 GeV.

1.00 10 nm
E




   


 

 

(d) For the electron (recognizing that 1240 eV·nm = 1240 MeV·fm) 

 

K p c m c m c hc m c m ce e e e     


F

HG
I
KJ  



2 2 2
2

2 2 2
2

2

2

21240

100
0511 0511

c h b g c h

b g

/

.
. .



MeV fm

fm
MeV MeV

= 1.24 10 MeV = 1.24GeV.3

 

 

We note that at short  (large K) the kinetic energy of the electron, calculated with the 

relativistic formula, is about the same as that of the photon. This is expected since now K 

 E  pc for the electron, which is the same as E = pc for the photon. 

 

59. (a) We solve v from  = h/p = h/(mpv): 

 

  

34
6

27 12

6.626 10 J s
3.96 10 m/s.

1.6705 10 kg 0.100 10 mp

h
v

m



 

 
   

  
 

 

(b) We set eV K m vp  1
2

2  and solve for the voltage: 

 

  
 

2
27 62

4

19

1.6705 10 kg 3.96 10 m/s
8.18 10 V 81.8 kV.

2 2 1.60 10 C

pm v
V

e





 
    


 

 

60. The wave function is now given by 

 

( , ) .( )x t e i kx t   
0  

 

This function describes a plane matter wave traveling in the negative x direction. An 

example of the actual particles that fit this description is a free electron with linear 

momentum 

p hk ( / )2 i  and kinetic energy  

 
2 2 2

22 8e e

p h k
K

m m
 


 . 

 

61. THINK In this problem we solve a special case of the Schrödinger’s equation where 

the potential energy is 0( ) constant.U x U     

 

EXPRESS For U = U0, Schrödinger’s equation becomes 
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2 2

02 2

8
[ ] 0.

d m
E U

dx h





    

We substitute   0e
ikx .   

 

ANALYZE The second derivative is 
2

2 2

02
.ikxd

k e k
dx


      The result is 

 
2

2

02

8
[ ] 0.

m
k E U

h
 


     

Solving for k, we obtain 

 
2

0 02

8 2
[ ] 2 [ ].

m
k E U m E U

h h

 
     

 

LEARN Another way to realize this is to note that with a constant potential energy 

0( ) ,U x U  we can simply redefine the total energy as 0 ,E E U    and the 

Schrödinger’s equation looks just like the free-particle case: 

 
2 2

2 2

8
0.

d mE

dx h

 



   

 

The solution is 0 exp( ),ik x    where  

 
2

2

02

8 2 2
2 2 ( ) .

mE
k k mE m E U

h h h

  
       

 

62. We plug Eq. 38-17 into Eq. 38-16, and note that 

 

d

dx

d

dx
Ae Be ikAe ikBeikx ikx ikx ikx

    c h .  

 

Also, 

d

dx

d

dx
ikAe ikBe k Ae k Beikx ikx ikx ikx

2

2

2 2
    c h .  

Thus, 

d

dx
k k Ae k Be k Ae Beikx ikx ikx ikx

2

2

2 2 2 2 0


      c h .  

 

63. (a) Using Euler’s formula e
i

 = cos  + i sin we rewrite (x) as 
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       0 0 0 0cos sin cos sin ,ikxx e kx i kx kx i kx a ib            

 

where a =0 cos kx and b = 0 sin kx are both real quantities. 

 

(b) The time-dependent wave function is 

 

   

   

  ( , ) ( )

[ )] [ sin )]

( )x t x e e e e

kx t i kx t

i t ikx i t i kx t  

   

  

0 0

0 0cos( ( .
 

 

64. THINK The angular wave number k is related to the wavelength  by k = 2/



EXPRESS The wavelength is related to the particle momentum p by  = h/p, so k = 

2p/h. Now, the kinetic energy K and the momentum are related by K = p
2
/2m, where m 

is the mass of the particle.  

 

ANALYZE Thus, we have p mK 2  and 

 

2 2 2
.

p mK
k

h h

  




    

 

LEARN The expression obtained above applies to the case of a free particle only. In the 

presence of interaction, the potential energy is nonzero, and the functional form of k will 

change. For example, as shown in Problem 38-57, when 0( ) ,U x U the angular wave 

number becomes 

0

2
2 ( ) .k m E U

h


   

 

65. (a) The product *nn can be rewritten as 

 

nn a ib a ib a ib a i b a ib a ib

a iba iab ib ib a b

            

      

b gb g b gc h b gb g
b gb g2 2 2 ,

 

 

which is always real since both a and b are real. 

 

(b) Straightforward manipulation gives 

 

   

2

2 2 2 2 2 2 2 2 2 2

| ( )( ) | | ( ) | | ( ) ( ) |

.

nm a ib c id ac iad ibc i bd ac bd i ad bc

ac bd ad bc a c b d a d b c

           

       
 

 

However, since  
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n m a ib c id a b c d

a c b d a d b c

     

   

2 2 2 2

2 2 2 2 2 2 2 2 ,

 

 

we conclude that |nm| = |n| |m|. 

 

66. (a) The wave function is now given by 

 

( , ) ( ).( ) ( )x t e e e e ei kx t i kx t i t ikx ikx          
0 0  

Thus, 
2 2 2 2

2 2

0 0 0

2 2 2 2

0 0

2

0

| ( , ) | ( )

              | (cos sin ) (cos sin ) | 4 (cos )

              2 (1 cos2 ).

i t ikx ikx i t ikx ikx ikx ikxx t e e e e e e e e

kx i kx kx i kx kx

kx

   

 



          

    

 

 

 

(b) Consider two plane matter waves, each with the same amplitude  0 2/  and 

traveling in opposite directions along the x axis. The combined wave  is a standing 

wave: 

 
( ) ( )

0 0 0 0( , ) ( ) (2 cos ) .i kx t i kx t ikx ikx i t i tx t e e e e e kx e                  

 

Thus, the squared amplitude of the matter wave is 

 

| ( , )| ( cos ) ( ), x t kx e kxi t2

0

2
2

0

22 2 1    cos2  

 

which is shown to the right. 

 

(c) We set  x t kx, cosb g b g2

0

22 1 2 0    to  

obtain cos(2kx) = –1. This gives 

 

   
2

2 2 2 1 0,1, 2, 3,kx n n





 
     

 
 

 

We solve for x: 

x n 
1

4
2 1b g .  

 

(d) The most probable positions for finding the particle are where    , 1 cos2x t kx    

reaches its maximum. Thus cos 2kx = 1, or 

 



 

  

1675 

 
2

2 2 2 , 0,1, 2, 3,kx n n





 
   

 
 

We solve for x and find x n
1

2
   

 

67. If the momentum is measured at the same time as the position, then 

 




p
x

 
 

  


 6 63 10

2 50
21 10

34
24.

. .
J s

pm
kg m s

b g  

 

68. (a) Using the value 1240nm eVhc  , we have 

 

3

1240nm eV
124keV .

10.0 10 nm

hc
E

 


  


 

 

(b) The kinetic energy gained by the electron is equal to the energy decrease of the 

photon: 

 

    
10.0pm

1 cos 2.43pm 1 cos180

1 1

1

124keV

1 1

40.5keV.

C

hc hc E
E hc

E




   

      
           

           

 
 



 

 

(c) It is impossible to “view” an atomic electron with such a high-energy photon, because 

with the energy imparted to the electron the photon would have knocked the electron out 

of its orbit. 

 

69. We use the uncertainty relationship  x p   . Letting x = , the de Broglie 

wavelength, we solve for the minimum uncertainty in p: 

 

2 2

h p
p

x  
   


 

 

where the de Broglie relationship p = h/ is used. We use 1/2 = 0.080 to obtain p = 

0.080p. We would expect the measured value of the momentum to lie between 0.92p and 

1.08p. Measured values of zero, 0.5p, and 2p would all be surprising. 

 

70. (a) The potential energy of the electron is ( )( 200 V) 200 eV,bU qV e      so its 

kinetic energy is 

 500 eV 200 eV 300 eV.bK E U      



CHAPTER 38 1676 

 

(b) Using non-relativistic regime approximation, 2 21
2

/ 2 ,K mv p m   we find the 

momentum of the electron to be 

 

 31 19 242 2(9.11 10 kg)(300 eV)(1.6 10 J/eV) 9.35 10 kg m/sp mK           

 

(c) The speed of the electron is 

 
19

7

31

2 2(300 eV)(1.6 10 J/eV)
1.03 10 m/s

9.11 10 kg

K
v

m






   


. 

 

(d) The corresponding de Broglie wavelength is 

 
34

11

24

J s
7.08 10 m

9.35 10 kg m/s

h

p







 
   

 
. 

 

(e) The angular wave number is 

 

10 1

11

2 2
8.87 10 m

7.08 10 m
k

 






   


. 

  
71. (a) The angular wave number in region 1 is 

 

31 19

34

11 1

2 2
2 2(9.11 10 kg)(800 eV)(1.6 10 J/eV)

6.626 10 J s

1.45 10  m

k mE
h

   





   
 

 

 

 

(b) The angular wave number in region 2 is 

 

31 19

34

10 1

2 2
2 ( ) 2(9.11 10 kg)(800 eV 200 eV)(1.6 10 J/eV)

6.626 10 J s

7.24 10  m
2

b bk m E U
h

k

   





     
 

  

 

(c) The wave functions in the two regions can be written as 

 

 1 2( ) , ( ) bik xikx ikxx Ae Be x Ce     

 

Matching the boundary conditions leads to 

 

b

A B C

Ak Bk Ck

 

 
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Since / 2,bk k the above equations can be solved to give ( / ) 1/3B A   and 

( / ) 4 /3.C A   The reflection coefficient is 

 

 
2

2

| | 1
0.111

| | 9

B
R

A
   . 

 

(d) With 5

0 5.00 10N    electrons in the incident beam, the number reflected is 

 

5 4

0

1
(5.00 10 ) 5.56 10

9
RN RN

 
     

 
. 

 

72. (a)  The angular wave number in region 1 is given by 

 
31 7

11 1

34

2 2 2 2 2 (9.11 10 kg)(1.60 10 m/s)
1.38 10 m

( / ) J s

p mv
k

h p h h

    








 
      

 
 

 

(b) The energy of the electron in region 1 is 

 

 2 31 7 2 161 1
(9.11 10 kg)(1.60 10 m/s) 1.17 10 J 728.8 eV.

2 2
E K mv           

 

 In region 2 where V = 500 V, the kinetic energy of the electron is  

 

728.8 eV 500 eV 228.8 eV.b bK E U      

 

and the corresponding angular wave number is 

 

31 19

34

10 1

2 2 2
2 ( ) 2 2(9.11 10 kg)(228.8 eV)(1.6 10 J/eV)

6.626 10 J s

7.74 10  m

b b bk m E U mK
h h

    





     
 

 
 

(c) The wave functions in the two regions can be written as 

 

 1 2( ) , ( ) bik xikx ikxx Ae Be x Ce     

 

Matching the boundary conditions leads to 

 

b

A B C

Ak Bk Ck

 

 
 

 

Solving for B and C in terms of A gives 
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1 / 2

,
1 / 1 /

b

b b

k kB C

A k k A k k


 

 
. 

 

With 10 1 11 1/ (7.74 10  m ) /(1.38 10  m ) 0.56,bk k      we find the reflection coefficient to 

be  
2 22

2

1 /| | 1 0.56
0.0794

| | 1 / 1 0.56

b

b

k kB
R

A k k

   
      

   
 

 

(d) With 9

0 3.00 10N    electrons in the incident beam, the number reflected is 

 

  9 8

0 0.0794 (3.00 10 ) 2.38 10RN RN     . 

 

73. The energy of the electron in region 1 is 

 

 2 31 2 251 1
(9.11 10 kg)(900m/s) 3.69 10 J 2.306 eV.

2 2
E K mv          

 

The angular wave number in region 1 is  

 
31

6 1

34

2 2 2 2 2 (9.11 10 kg)(900m/s)
7.77 10 m

( / ) J s

p mv
k

h p h h

    









      

 
 

 

 In region 2 where V = 1.25 V, the kinetic energy of the electron is  

 

2.306 eV 1.25 eV 1.056 eV.b bK E U         

 

and the corresponding angular wave number is 

 

31 25

34

6 1

2 2 2
2 ( ) 2 2(9.11 10 kg)(1.056 eV)(1.6 10 J/ eV)

6.626 10 J s

5.258 10  m

b b bk m E U mK
h h

  
  





     
 

 
 

The ratio of the two wave numbers is 6 1 6 1/ (5.258 10  m ) /(7.77 10  m ) 0.6767.bk k       

The reflection coefficient is 

 
2 22

2

1 /| | 1 0.6767
0.0372

| | 1 / 1 0.6767

b

b

k kB
R

A k k

   
      

   
, 

 

which leads to the following transmission coefficient:  

 

1 1 0.0372 0.9628T R     . 
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Thus, we find the current on the other side of the step boundary to be  

 

 0 0.9628 (5.00 mA) 4.81 mAtI TI   . 

74. With 

 2

2

2

8
exp 2 ,

bbL
m U E

T e L
h


  
   
 
 

 

we have 

 

  

 

22
1240eV nm ln 0.0011 ln 1

6.0eV
2 4 2 0.511MeV 4 0.70nm

5.1eV.

b

h T
E U

m L 

  
      

   



 

 

75. (a) The transmission coefficient T for a particle of mass m and energy E that is 

incident on a barrier of height Ub and width L is given by 

 
2 ,bLT e  

where 

 2

2

8
.

bm U E
b

h

 
  

For the proton, we have 

 

   

 

2 27 13

2
34

14 1

8 1.6726 10 kg 10MeV 3.0MeV 1.6022 10 J MeV

6.6261 10 J s

5.8082 10 m .

b

 





   


 

 

 

 

This gives   14 1 155.8082 10 m 10 10 m 5.8082,bL      and 

 
2(5.8082) 69.02 10 .T e     

 

The value of b was computed to a greater number of significant digits than usual because 

an exponential is quite sensitive to the value of the exponent.  

 

(b) Mechanical energy is conserved. Before the proton reaches the barrier, it has a kinetic 

energy of 3.0 MeV and a potential energy of zero. After passing through the barrier, the 

proton again has a potential energy of zero, thus a kinetic energy of 3.0 MeV. 

 

(c) Energy is also conserved for the reflection process. After reflection, the proton has a 

potential energy of zero, and thus a kinetic energy of 3.0 MeV. 

 

(d) The mass of a deuteron is 2.0141 u = 3.3454  10
–27

 kg, so 
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   

 

2 27 13

2
34

14 1

8 3.3454 10 kg 10MeV 3.0MeV 1.6022 10 J MeV

6.6261 10 J s

8.2143 10 m .

b

 





   


 

 

 

 

This gives   14 1 158.2143 10 m 10 10 m 8.2143,bL      and 2(8.2143) 87.33 10 .T e     

 

(e) As in the case of a proton, mechanical energy is conserved. Before the deuteron 

reaches the barrier, it has a kinetic energy of 3.0 MeV and a potential energy of zero. 

After passing through the barrier, the deuteron again has a potential energy of zero, thus a 

kinetic energy of 3.0 MeV. 

 

(f) Energy is also conserved for the reflection process. After reflection, the deuteron has a 

potential energy of zero, and thus a kinetic energy of 3.0 MeV. 

 

76. (a) The rate at which incident protons arrive at the barrier is  

 
19 211.0kA 1.60 10 C 6.25 10 sn     . 

 

Letting nTt = 1, we find the waiting time t: 

 

 
 

 
  

2
1

2

21

111 104

81
exp 2

2 0.70nm1
exp 8 938MeV 6.0eV 5.0eV

6.25 10 s 1240eV nm

3.37 10 s 10 y,

p bm U E
t nT L

n h


  
  
 
 

  
   

    

  

 

 

which is much longer than the age of the universe. 

 

(b) Replacing the mass of the proton with that of the electron, we obtain the 

corresponding waiting time for an electron: 

 

 
 

 
  

1

2

21

19

81
exp 2

2 0.70nm1
exp 8 0.511MeV 6.0eV 5.0eV

6.25 10 s 1240eV nm

2.1 10 s.

e bm U E
t nT L

n h






  
  
  

  
   

    

 

 

 



 

  

1681 

The enormous difference between the two waiting times is the result of the difference 

between the masses of the two kinds of particles. 

 

77. THINK Even though ,bE U  barrier tunneling can still take place quantum 

mechanically with finite probability. 

 

EXPRESS If m is the mass of the particle and E is its energy, then the transmission 

coefficient for a barrier of height Ub and width L is given by 2 ,bLT e  where 

 

 2

2

8
.

bm U E
b

h

 
  

 

If the change Ub in Ub is small (as it is), the change in the transmission coefficient is 

given by 

2 .b b

b b

dT db
T U LT U

dU dU
       

Now, 

 

 

 

22

2 2

81 8 1
.

2 22

b

b b bb

m U Edb m b

dU h U E h U EU E

 
  

 
 

Thus, 

.b

b

U
T LTb

U E


  


 

ANALYZE (a) With 

 

   

 

2 31 19

9 1

2
34

8 9.11 10 kg 6.8 eV 5.1 eV 1.6022 10 J eV
6.67 10 m ,

6.6261 10 J s
b

 





   
  

 
 

 

we have 9 1 12 1(6.67 10 m )(750 10 m ) 5.0,bL        and 

 

 
  0.010 6.8eV

5.0 0.20 .
6.8eV 5.1eV

b

b

UT
bL

T U E


     

 
 

 

There is a 20% decrease in the transmission coefficient. 

 

(b) The change in the transmission coefficient is given by 

 

22 2bLdT
T L be L bT L

dL

          

and 
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   9 1 122 2 6.67 10 m 0.010 750 10 m 0.10 .
T

b L
T

 
          

 

There is a 10% decrease in the transmission coefficient. 

 

(c) The change in the transmission coefficient is given by 

 

22 2 .bLdT db db
T E Le E LT E

dE dE dE

          

 

Now,  2b bdb dE db dU b U E     , so 

 

 
  0.010 5.1eV

5.0 0.15 .
6.8eV 5.1eVb

T E
bL

T U E

 
  

 
 

 

There is a 15% increase in the transmission coefficient. 

 

LEARN Increasing the barrier height or the barrier thickness reduces the probability of 

transmission, while increasing the kinetic energy of the electron increases the probability.  

 

78. The energy of the electron in region 1 is 

 

 2 31 2 251 1
(9.11 10 kg)(1200 m/s) 6.56 10 J 4.0995 eV.

2 2
E K mv          

 

The angular wave number in region 1 is  

 
31

7 1

34

2 2 2 2 2 (9.11 10 kg)(1200 m/s)
1.036 10 m

( / ) J s

p mv
k

h p h h

    









      

 
 

 

The transmission coefficient for a barrier of height Ub and width L is given by 

 
2 ,bLT e  

where 

     

 

2 31 252

22 34

6 1

8 9.11 10 kg 4.719 eV 4.0995 eV 1.6022 10 J eV8

6.6261 10 J s

4.0298 10 m .

bm U E
b

h

   





    
 

 

 

 

Thus,  
6 1 9 1 1.612exp( 2 ) exp 2(4.0298 10 m )(200 10 m ) 0.1995,T bL e              

and the current transmitted is 



 

  

1683 

 

 0 0.1995 (9.00 mA) 1.795 mAtI TI   . 

 

79. (a) Since p p p px y x y   0 0,   . Thus from Eq. 38-20 both x and y are 

infinite. It is therefore impossible to assign a y or z coordinate to the position of an 

electron. 

 

(b) Since it is independent of y and z the wave function (x) should describe a plane 

wave that extends infinitely in both the y and z directions. Also from Fig. 38-12 we see 

that |(x)|
2
 extends infinitely along the x axis. Thus the matter wave described by (x) 

extends throughout the entire three-dimensional space. 

 

80. Using the value 1240eV nmhc  , we obtain 

 

6

7

1240eV nm
5.9 10 eV 5.9 eV.

21 10 nm

hc
E 




    


 

 

81. We substitute the classical relationship between momentum p and velocity v, v = p/m 

into the classical definition of kinetic energy, K mv 1
2

2  to obtain K = p
2
/2m. Here m is 

the mass of an electron. Thus p mK 2 . The relationship between the momentum and 

the de Broglie wavelength  is  = h/p, where h is the Planck constant. Thus, 

 

.
2

h

mK
   

If K is given in electron volts, then 

 
34 9 1/2

31 19

1/2

J s 1.226 10 m eV

2(9.109 10 kg)(1.602 10 J/eV)

1.226nm eV
.

KK

K


 

 

   
 

 




 

 

82. We rewrite Eq. 38-9 as 

 

h

m

h

m

v

v c 
 

'
cos

( / )
cos , 

1 2
 

and Eq. 38-10 as 

2
sin sin .

1 ( / )

h v

m v c
 




 
 

 

We square both equations and add up the two sides: 
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2 2 2 2

2

1 1 1
cos sin ,

1 ( / )

h v

m v c
 

  

      
        

         

 

 

where we use sin
2
  + cos

2
  = 1 to eliminate . Now the right-hand side can be written as 

 

v

v c
c

v c

2

2

2

21
1

1

1
  



L
NM

O
QP( / ) ( / )

,  

so 
2 2 2

2

1 1 1 1
cos sin 1 .

1 ( / )

h

v c mc
 

  

      
         

         

 

 

Now we rewrite Eq. 38-8 as 

2

1 1 1
1 .

1 ( / )

h

mc v c 

 
   

  
 

 

If we square this, then it can be directly compared with the previous equation we obtained 

for [1 – (v/c)
2
]

–1
. This yields 

 
2 2 2 2

1 1 1 1 1
1 cos sin 1 .

h h

mc mc
 

    

         
                           

 

 

We have so far eliminated  and v. Working out the squares on both sides and noting that 

sin
2
 + cos

2
  = 1, we get 

(1 cos ) .
h

mc
        

 

83. (a) The average kinetic energy is 

 

  23 21 23 3
1.38 10  J/K 300K 6.21 10 J 3.88 10 eV.

2 2
K kT           

 

(b) The de Broglie wavelength is 

 

  

34
10

27 21

6.63 10 J s
1.46 10 m.

2 2 1.675 10 kg 6.21 10 Jn

h

m K





 

 
   

 
 

 

84. (a) The average de Broglie wavelength is 

 



 

  

1685 

avg

avg avg

eV nm

3 4 MeV eV / K K

m = 73pm.

   






 





h

p

h

mK

h

m kT

hc

mc kT2 2 3 2 2

1240

938 8 62 10 300

7 3 10

2

5

11

/

.

.

b g c h

b gb gc hb g
 

 

(b) The average separation is 

  23

3
avg 53 3

1.38 10 J/K 300K1 1
3.4nm.

1.01 10 Pa/
d

n p kT


   


 

 

(c) Yes, since avg avg.d   

 

85. (a) We calculate frequencies from the wavelengths (expressed in SI units) using Eq. 

38-1. Our plot of the points and the line that gives the least squares fit to the data is 

shown below. The vertical axis is in volts and the horizontal axis, when multiplied by 

10
14

, gives the frequencies in Hertz. 

 

From our least squares fit procedure, we determine the slope to be 4.14  10
–15

 V·s, 

which, upon multiplying by e, gives 4.14  10
–15

 eV·s. The result is in very good 

agreement with the value given in Eq. 38-3. 

 

 
 

(b) Our least squares fit procedure can also determine the y-intercept for that line. The y-

intercept is the negative of the photoelectric work function. In this way, we find  =  

2.31 eV. 

 

86. We note that  

| | ( ) ( ) .e e e e eikx ikx ikx ikx ikx2 1     

 

Referring to Eq. 38-14, we see therefore that | | | | . 2 2   
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87. From Sample Problem — “Compton scattering of light by electrons,” we have 

 

2

( / )(1 cos )
(1 cos )

E h mc hf

E mc

 


  

  
   

 
 

 

where we use the fact that  +  = ' = c/f '. 

 

88. The de Broglie wavelength for the bullet is 

 
34

35

3

6.63 10 J.s
1.7 10 m .

(40 10 kg)(1000m/s)

h h

p mv








    


 

89. (a) Since  

Eph = h/ = 1240 eV·nm/680 nm = 1.82 eV <  = 2.28 eV, 

 

there is no photoelectric emission.  

 

(b) The cutoff wavelength is the longest wavelength of photons that will cause 

photoelectric emission. In sodium, this is given by Eph = hc/max = , or  

 

max = hc/ = (1240 eV·nm)/2.28 eV = 544 nm. 

 

(c) This corresponds to the color green. 

 

90. THINK We apply Heisenberg’s uncertainty principle to calculate the uncertainty in 

position.  

 

EXPRESS The uncertainty principle states that  x p   , where x and p represent the 

intrinsic uncertainties in measuring the position and momentum, respectively. The 

uncertainty in the momentum is  

 

p = m v = (0.50 kg)(1.0 m/s) = 0.50 kg m/s,  

 

where v is the uncertainty in the velocity.  

 

ANALYZE Solving the uncertainty relationship  x p    for the minimum uncertainty 

in the coordinate x, we obtain 

 

 
0.60J s

0.19m.
2 0.50kg m s

x
p


   

  
 

 

LEARN Heisenberg’s uncertainty principle implies that it is impossible to 

simultaneously measure a particle’s position and momentum with infinite accuracy.  
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Chapter 39 
 

 

1. According to Eq. 39-4, En  L
– 2

. As a consequence, the new energy level E'n satisfies 

 




F
HG
I
KJ 



F
HG
I
KJ 


E

E

L

L

L

L

n

n

2 2
1

2
,  

 

which gives  L L2 .  Thus, the ratio is / 2 1.41.L L    

 

2. (a) The ground-state energy is 

 

 

 
 

2
342

22 18

1 22
31 12

6.63 10 J s
1 1.51 10 J

8 8(9.11 10 kg) 200 10 m

9.42eV.

e

h
E n

m L





 

         
   
 



 

 

(b) With mp = 1.67  10
– 27 

kg, we obtain 

 

 

 
 

2
342

22 22

1 22
27 12

3

6.63 10 J s
1 8.225 10 J

8 8(1.67 10 kg) 200 10 m

5.13 10 eV.

p

h
E n

m L





 



   
            

 

 

 

3. Since En  L
– 2

 in Eq. 39-4, we see that if L is doubled, then E1 becomes (2.6 eV)(2)
– 2

 

= 0.65 eV. 

 

4. We first note that since h = 6.626  10
–34

 J·s and c = 2.998  10
8
 m/s,  

 

hc 
  


 



 

6 626 10 2 998 10

1602 10 10
1240

34 8

19 9

. .

.

J s m / s

J / eV m / nm
eV nm.

c hc h
c hc h  

 

Using the mc
2
 value for an electron from Table 37-3 (511  10

3
 eV), Eq. 39-4 can be 

rewritten as 

E
n h

mL

n hc

mc L
n  

2 2

2

2 2

2 28 8

b g
c h .  

The energy to be absorbed is therefore 
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   

 
 

   

2 22 2 2

4 1 22 2 2 3

4 1 15 15 1240eV nm
90.3eV.

8 8 8 511 10 eV 0.250nme e

h hc
E E E

m L m c L

 
      


 

 

5. We can use the mc
2
 value for an electron from Table 37-3 (511  10

3
 eV) and hc = 

1240 eV · nm by writing Eq. 39-4 as 

 

E
n h

mL

n hc

mc L
n  

2 2

2

2 2

2 28 8

b g
c h .  

 

For n = 3, we set this expression equal to 4.7 eV and solve for L: 

 

L
n hc

mc En

 





b g
c h

b g
c hb g8

3 1240

8 511 10 4 7
085

2 3

eV nm

eV eV
nm.

.
.  

 

6. With m = mp = 1.67  10
– 27

 kg, we obtain 

 

 

 
 

2
342

22 21

1 22 27 12

6.63 10 J.s
1 3.29 10 J  0.0206eV.

8 8(1.67 10 kg) 100 10 m

h
E n

mL







         
    
 

 

 

Alternatively, we can use the mc
2
 value for a proton from Table 37-3 (938  10

6
 eV) and 

hc = 1240 eV · nm by writing Eq. 39-4 as 

 

E
n h

mL

n hc

m c L
n

p

 
2 2

2

2 2

2 28 8

b g
d i . 

 

This alternative approach is perhaps easier to plug into, but it is recommended that both 

approaches be tried to find which is most convenient. 

 

7. To estimate the energy, we use Eq. 39-4, with n = 1, L equal to the atomic diameter, 

and m equal to the mass of an electron: 

 

   

  

22 342
2 10

22
31 14

1 6.63 10 J s
3.07 10 J=1920MeV 1.9 GeV.

8 8 9.11 10 kg 1.4 10 m

h
E n

mL





 

 
    

 
 

 

8. The frequency of the light that will excite the electron from the state with quantum 

number ni to the state with quantum number nf is  

 

 2 2

28
f i

E h
f n n

h mL


    
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and the wavelength of the light is 

  


c

f

mL c

h n nf i

8 2

2 2d i .  

The width of the well is  

 

2 2

2

( )

8

f ihc n n
L

mc

 
 . 

 

The longest wavelength shown in Figure 39-27 is 80.78 nm,  which corresponds to a 

jump from 2in   to 3fn  . Thus, the width of the well is  

 

 

2 2 2 2

2 3

( ) (80.78 nm)(1240eV nm)(3 2 )
0.350nm 350 pm.

8 8(511 10 eV)

f ihc n n
L

mc

   
   


 

 

9. We can use the mc
2
 value for an electron from Table 37-3 (511  10

3
 eV) and hc = 

1240 eV · nm by rewriting Eq. 39-4 as 

E
n h

mL

n hc

mc L
n  

2 2

2

2 2

2 28 8

b g
c h .  

 

(a) The first excited state is characterized by n = 2, and the third by n' = 4. Thus, 

 

 

 
 

 

   
     

2 2

2 2 2 2

22 2 3

1240eV nm
4 2 6.02eV 16 4

8 8 511 10 eV 0.250nm

72.2eV .

hc
E n n

mc L


      





 

 

Now that the electron is in the n' = 4 level, it can “drop” to a lower level (n'') in a variety 

of ways. Each of these drops is presumed to cause a photon to be emitted of wavelength 

 

 
 

2 2

2 2

8
.

n n

mc Lhc

E E hc n n


 

 
  

 

 

For example, for the transition n' = 4 to n'' = 3, the photon emitted would have 

wavelength 

  

  

23

2 2

8 511 10 eV 0.250nm
29.4nm,

1240eV nm 4 3



 

 
 

 

and once it is then in level n'' = 3 it might fall to level n''' = 2 emitting another photon. 

Calculating in this way all the possible photons emitted during the de-excitation of this 

system, we obtain the following results: 
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(b) The shortest wavelength that can be emitted is 4 1 13.7nm. l  

 

(c) The second shortest wavelength that can be emitted is 4 2 17.2nm. l  

 

(d) The longest wavelength that can be emitted is 2 1 68.7nm. l  

 

(e) The second longest wavelength that can be emitted is 3 2 41.2nm. l  

 

(f) The possible transitions are shown next. The energy levels are not drawn to scale. 

 

 
 

(g) A wavelength of 29.4 nm corresponds to 4 3  transition. Thus, it could make either 

the 3 1  transition or the pair of transitions: 3 2  and 2 1 . The longest wavelength 

that can be emitted is 2 1 68.7nm. l  

 

(h) The shortest wavelength that can next be emitted is 3 1 25.8nm. l  

 

10. Let the quantum numbers of the pair in question be n and n + 1, respectively. Then 

 

En+1 – En = E1 (n + 1)
2
 – E1n

2
 = (2n + 1)E1. 

Letting 

 

E E n E E E E E En n        1 1 4 3

2

1

2

1 12 1 3 3 4 3 21b g b g c h ,  

 

we get 2n + 1 = 21, or n = 10. Thus, 

 

(a) the higher quantum number is n + 1 = 10 + 1 = 11, and 

 

(b) the lower quantum number is n = 10. 

 

(c) Now letting 

 

E E n E E E E E En n        1 1 4 3

2

1

2

1 12 1 2 2 4 3 14b g b g c h ,  
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we get 2n + 1 = 14, which does not have an integer-valued solution. So it is impossible to 

find the pair of energy levels that fits the requirement. 

 

11. Let the quantum numbers of the pair in question be n and n + 1, respectively. We note 

that  

E E
n h

mL

n h

mL

n h

mL
n n  


 


1

2 2

2

2 2

2

2

2

1

8 8

2 1

8

b g b g
 

 

Therefore, En+1 – En = (2n + 1)E1. Now 

 

E E E E E n En n      1 5

2

1 1 15 25 2 1b g ,  

 

which leads to 2n + 1 = 25, or n = 12. Thus, 

 

(a) The higher quantum number is n + 1 = 12 + 1 = 13. 

 

(b) The lower quantum number is n = 12.  

 

(c) Now let 

E E E E E n En n      1 6

2

1 1 16 36 2 1b g ,  

 

which gives 2n + 1 = 36, or n = 17.5. This is not an integer, so it is impossible to find the 

pair that fits the requirement. 

 

12. The energy levels are given by En = n
2
h

2
/8mL

2
, where h is the Planck constant, m is 

the mass of an electron, and L is the width of the well. The frequency of the light that will 

excite the electron from the state with quantum number ni to the state with quantum 

number nf is  

 2 2

28
f i

E h
f n n

h mL


    

and the wavelength of the light is 

 

2

2 2

8
.

f i

c mL c

f h n n
  


 

 

We evaluate this expression for ni = 1 and nf = 2, 3, 4, and 5, in turn. We use h = 6.626  

10
– 34

 J · s, m = 9.109  10
– 31

kg, and L = 250  10
– 12

 m, and obtain the following results: 

 

(a) 6.87  10
– 8

 m for nf = 2, (the longest wavelength).  

 

(b) 2.58  10
– 8

 m for nf = 3, (the second longest wavelength).  

 

(c) 1.37  10
– 8

 m for nf = 4, (the third longest wavelength).  
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13. The position of maximum probability density corresponds to the center of the well:  

/ 2 (200 pm) / 2 100 pm.x L    

 

(a) The probability of detection at x is given by Eq. 39-11: 

 

 

2

2 22 2
( ) ( ) sin sinn

n n
p x x dx x dx x dx

L L L L

 


    
      

    
 

 

For 3,n  200 pm,L   and 2.00 pmdx  (width of the probe), the probability of 

detection at / 2 100 pmx L   is 

 

 2 22 3 2 3 2 2
( / 2) sin sin 2.00 pm 0.020

2 2 200 pm

L
p x L dx dx dx

L L L L

    
         

   
. 

 

(b) With 1000N   independent insertions, the number of times we expect the electron to 

be detected is (1000)(0.020) 20n Np   . 

 

14. From Eq. 39-11, the condition of zero probability density is given by 

 

 sin 0
n n

x x m
L L

 


 
   

 
 

 

where m is an integer. The fact that 0.300x L  and 0.400x L  have zero probability 

density implies 

   sin 0.300 sin 0.400 0n n    

 

which can be satisfied for 10n m , where 1,2,...m   However, since the probability 

density is nonzero between 0.300x L  and 0.400x L , we conclude that the electron is 

in the 10n   state. The change of energy after making a transition to 9n   is then equal 

to 

 
 

   
 

2
342

2 2 2 2 17

22
31 10

6.63 10  J s
| | 10 9 2.86 10  J

8 8 9.11 10 kg 2.00 10 m

h
E n n

mL





 

 
      

 
. 

 

15. THINK The probability that the electron is found in any interval is given by 

P dx z  2
,  where the integral is over the interval.  

 

EXPRESS If the interval width x is small, the probability can be approximated by P = 

||
2
 x, where the wave function is evaluated for the center of the interval, say. For an 

electron trapped in an infinite well of width L, the ground state probability density is 
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
2 22


F
HG
I
KJL

x

L
sin ,


 

so 

P
x

L

x

L

F
HG
I
KJ
F
HG
I
KJ

2 2
sin .


 

 

ANALYZE (a) We take L = 100 pm, x = 25 pm, and x = 5.0 pm. Then, 

 

P 
L
NM

O
QP
L
NM

O
QP


2 50

100

25

100
0 0502

.
sin . .

pm

pm

pm

pm

b g b g
 

 

(b) We take L = 100 pm, x = 50 pm, and x = 5.0 pm. Then, 

 

P 
L
NM

O
QP
L
NM

O
QP


2 50

100

50

100
0102

.
sin . .

pm

pm

pm

pm

b g b g
 

 

(c) We take L = 100 pm, x = 90 pm, and x = 5.0 pm. Then, 

 

P 
L
NM

O
QP
L
NM

O
QP


2 50

100

90

100
0 00952

.
sin . .

pm

pm

pm

pm

b g b g
 

 

LEARN The probability as a function of x is plotted next. As expected, the probability of 

detecting the electron is highest near the center of the well at x = L/2 = 50 pm. 

 

 
 

16. We follow Sample Problem — “Detection potential in a 1D infinite potential well” in 

the presentation of this solution. The integration result quoted below is discussed in a 

little more detail in that Sample Problem. We note that the arguments of the sine 

functions used below are in radians. 

 

(a) The probability of detecting the particle in the region 0 / 4x L   is 
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/ 4
/ 4

2

0
0

2 2 sin 2
sin 0.091.

2 4

L y y
y dy

L




 

    
      

    
  

 

(b) As expected from symmetry, 

 

2

/ 4
/ 4

2 2 sin 2
sin 0.091.

2 4

L y y
y dy

L







 

    
      

    
  

 

(c) For the region / 4 3 / 4L x L  , we obtain 

 
3 / 4

3 / 4
2

/ 4
/ 4

2 2 sin 2
sin 0.82

2 4

L y y
y dy

L







 

    
      

    
  

 

which we could also have gotten by subtracting the results of part (a) and (b) from 1; that 

is, 1 – 2(0.091) = 0.82. 

 

17. According to Fig. 39-9, the electron’s initial energy is 106 eV. After the additional 

energy is absorbed, the total energy of the electron is 106 eV + 400 eV = 506 eV. Since it 

is in the region x > L, its potential energy is 450 eV, so its kinetic energy must be 506 

eV – 450 eV = 56 eV. 

 

18. From Fig. 39-9, we see that the sum of the kinetic and potential energies in that 

particular finite well is 233 eV. The potential energy is zero in the region 0 < x < L. If the 

kinetic energy of the electron is detected while it is in that region (which is the only 

region where this is likely to happen), we should find K = 233 eV. 

 

19. Using / (1240eV nm)/E hc     , the energies associated with a , b  and c  are  

 

 

1240eV nm
85.00 eV

14.588 nm

1240eV nm
256.0 eV

4.8437 nm

1240eV nm
426.0 eV.

2.9108 nm

a

a

b

b

c

c

hc
E

hc
E

hc
E








  


  


  

 

The ground-state energy is  

 

 1 4 450.0 eV 426.0 eV 24.0 eVcE E E     . 

 

Since 2 1aE E E  , the energy of the first excited state is 

 

 2 1 24.0 eV 85.0 eV 109 eVaE E E     . 



 

  

1695 

 

20. The smallest energy a photon can have corresponds to a transition from the non-

quantized region to 3.E Since the energy difference between 3E  and 4E  is 

 

4 3 9.0 eV 4.0 eV 5.0 eVE E E      , 

 

the energy of the photon is photon 2.00 eV 5.00 eV 7.00 eVE K E     . 

 

21. Schrödinger’s equation for the region x > L is 

 

d

dx

m

h
E U

2

2

2

2 0

8
0


  


. 

 

If  = De
2kx

, then d 
2/dx

2
 = 4k

2
De

2kx
 = 4k

2 and 

 

d

dx

m

h
E U k

m

h
E U

2

2

2

2 0

2
2

2 0

8
4

8
      

 
.  

 

This is zero provided 

k
h

m U E 


2 0b g.  
 

The proposed function satisfies Schrödinger’s equation provided k has this value. Since 

U0 is greater than E in the region x > L, the quantity under the radical is positive. This 

means k is real. If k is positive, however, the proposed function is physically unrealistic. 

It increases exponentially with x and becomes large without bound. The integral of the 

probability density over the entire x-axis must be unity. This is impossible if  is the 

proposed function. 

 

22. We can use the mc
2
 value for an electron from Table 37-3 (511  10

3
 eV) and hc = 

1240 eV · nm by writing Eq. 39-20 as 

 

E
h

m

n

L

n

L

hc

mc

n

L

n

L
nx ny

x

x

y

y

x

x

y

y

, . 
F
HG

I
KJ  

F
HG

I
KJ

2

8 8

2 2

2

2

2

2

2

2

2

2

2

b g
c h  

For nx = ny = 1, we obtain 

 

 

     

2

1,1 2 23

1240eV nm 1 1
0.734 eV.

8 511 10 eV 0.800nm 1.600nm
E

 
   
   

 

 

23. We can use the mc
2
 value for an electron from Table 37-3 (511  10

3
 eV) and hc = 

1240 eV · nm by writing Eq. 39-21 as 
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E
h

m

n

L

n

L

n

L

hc

mc

n

L

n

L

n

L
nx ny nz

x

x

y

y

z

z

x

x

y

y

z

z

, , .  
F
HG

I
KJ   

F
HG

I
KJ

2

8 8

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

b g
c h  

 

For nx = ny = nz = 1, we obtain 

 

 

       

2

1,1 2 2 23

1240eV nm 1 1 1
3.21 eV.

8 511 10 eV 0.800nm 1.600nm 0.390nm
E

 
    
   

 

 

24. The statement that there are three probability density maxima along / 2xx L  implies 

that 3yn   (see for example, Figure 39-6). Since the maxima are separated by 2.00 nm, 

the width of 
yL is (2.00 nm) 6.00 nm.y yL n  Similarly, from the information given 

along / 2yy L , we find 5xn   and (3.00 nm) 15.0 nm.x xL n   Thus, using Eq. 39-20, 

the energy of the electron is 

 
222 34 2

, 2 2 31 9 2 9 2

20

(6.63 10  J s) 1 1

8 8(9.11 10 kg) (3.00 10  m) (2.00 10  m)

2.2 10  J .

x y

yx
n n

x y

nnh
E

m L L



  



    
            

 

 

 

25. The discussion on the probability of detection for the one-dimensional case can be 

readily extended to two dimensions. In analogy to Eq. 39-10, the normalized wave 

function in two dimensions can be written as  

 

 

,

2 2
( , ) ( ) ( ) sin sin

4
sin sin .

x y x y

yx
n n n n

x x y y

yx

x y x y

nn
x y x y x y

L L L L

nn
x y

L L L L


  



  
       

   

  
     

   

 

 

The probability of detection by a probe of dimension x y   placed at ( , )x y  is 

 

2
2 2

,

4( )
( , ) ( , ) sin sin .

x y

yx
n n

x y x y

nnx y
p x y x y x y x y

L L L L




   
        

   

 

 

With 150 pmx yL L L   and 5.00 pmx y    , the probability of detecting an 

electron in ( , ) (1,3)x yn n   state by placing a probe at (0.200 , 0.800 )L L  is 
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   

2
2 2 2 2

2

2

2 2 3

4( ) 4(5.00 pm) 3
sin sin sin 0.200 sin 0.800

(150 pm)

5.00 pm
4 sin 0.200 sin 2.40 1.4 10 .

150 pm

yx

x y x y

nnx y
p x y L L

L L L L L L

  

  

       
                

 
   

 

 

 

26. We are looking for the values of the ratio 

 

E

h mL
L

n

L

n

L
n n

nx ny x

x

y

y

x y

,

2 2

2
2

2

2

2

2 2

8

1

4
 
F
HG

I
KJ  
F
HG

I
KJ  

 

and the corresponding differences. 

 

(a) For nx = ny = 1, the ratio becomes 1 1251
4

  . .  

 

(b) For nx = 1 and ny = 2, the ratio becomes 1 4 2 001
4

 b g . .  One can check (by computing 

other (nx, ny) values) that this is the next to lowest energy in the system. 

 

(c) The lowest set of states that are degenerate are (nx, ny) = (1, 4) and (2, 2). Both of 

these states have that ratio equal to 1 16 5001
4

 b g . .  

 

(d) For nx = 1 and ny = 3, the ratio becomes 1 9 3251
4

 b g . .  One can check (by computing 

other (nx, ny) values) that this is the lowest energy greater than that computed in part (b). 

The next higher energy comes from (nx, ny) = (2, 1) for which the ratio is 4 1 4 251
4

 b g . .  

The difference between these two values is 4.25 – 3.25 = 1.00. 

 

27. THINK The energy levels of an electron trapped in a regular corral with widths Lx 

and Ly are given by Eq. 39-20: 
222

, 2 28x y

yx
n n

x y

nnh
E

m L L

 
  

  

. 

 

EXPRESS With Lx = L and Ly = 2L, we have   

 

E
h

m

n

L

n

L

h

mL
n

n
n n

x

x

y

y

x

y

x y,  
L
NMM

O
QPP
 
L
NMM

O
QPP

2 2

2

2

2

2

2

2

2

8 8 4
. 

 

Thus, in units of h
2
/8mL

2
, the energy levels are given by 

2 2 / 4.x yn n  The lowest five 

levels are E1,1 = 1.25, E1,2 = 2.00, E1,3 = 3.25, E2,1 = 4.25, and E2,2 = E1,4 = 5.00. It is clear 

that there are no other possible values for the energy less than 5.  
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The frequency of the light emitted or absorbed when the electron goes from an initial 

state i to a final state f is f = (Ef – Ei)/h, and in units of h/8mL
2
 is simply the difference in 

the values of 2 2 / 4x yn n  for the two states. The possible frequencies are as follows:  

 

     0.75 1,2 1,1 ,2.00 1,3 1,1 ,3.00 2,1 1,1 ,    

         3.75 2,2 1,1 ,1.25 1,3 1,2 ,2.25 2,1 1,2 ,3.00 2,2 1,2 ,1.00 2,1 1,3 ,    

   1.75 2,2 1,3 ,0.75 2,2 2,1 ,    

 

all in units of h/8mL
2
. 

 

ANALYZE (a) From the above, we see that there are 8 different frequencies. 

 

(b) The lowest frequency is, in units of h/8mL
2
, 0.75 (2, 22,1). 

 

(c) The second lowest frequency is, in units of h/8mL
2
, 1.00 (2, 11,3). 

 

(d) The third lowest frequency is, in units of h/8mL
2
, 1.25 (1, 31,2). 

 

(e) The highest frequency is, in units of h/8mL
2
, 3.75 (2, 21,1). 

 

(f) The second highest frequency is, in units of h/8mL
2
, 3.00 (2, 21,2) or (2, 11,1). 

 

(g) The third highest frequency is, in units of h/8mL
2
, 2.25 (2, 11,2). 

 

LEARN In general, when the electron makes a transition from (nx, ny) to a higher level 

( , ),x yn n   the frequency of photon it emits or absorbs is given by   

 

   

2 2
, , 2 2

2 2

2 2 2 2

2

8 4 8 4

1
.

8 4

x y x yn n n n y y

x x

x x y y

E E n nE h h
f n n

h h mL mL

h
n n n n

mL

      
           

   

 
     

 

 

 

28. We are looking for the values of the ratio 

 

E

h mL
L

n

L

n

L

n

L
n n n

n n n x

x

y

y

z

z

x y z

x y z, ,

2 2

2
2

2

2

2

2

2

2 2 2

8
  
F
HG

I
KJ   d i  

 

and the corresponding differences. 

 

(a) For nx = ny = nz = 1, the ratio becomes 1 + 1 + 1 = 3.00. 
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(b) For nx = ny = 2 and nz = 1, the ratio becomes 4 + 4 + 1 = 9.00. One can check (by 

computing other (nx, ny, nz) values) that this is the third lowest energy in the system. One 

can also check that this same ratio is obtained for (nx, ny, nz) = (2, 1, 2) and (1, 2, 2). 

 

(c) For nx = ny = 1 and nz = 3, the ratio becomes 1 + 1 + 9 = 11.00. One can check (by 

computing other (nx, ny, nz) values) that this is three “steps” up from the lowest energy in 

the system. One can also check that this same ratio is obtained for (nx, ny, nz) = (1, 3, 1) 

and (3, 1, 1). If we take the difference between this and the result of part (b), we obtain 

11.0 – 9.00 = 2.00. 

 

(d) For nx = ny = 1 and nz = 2, the ratio becomes 1 + 1 + 4 = 6.00. One can check (by 

computing other (nx, ny, nz) values) that this is the next to the lowest energy in the system. 

One can also check that this same ratio is obtained for (nx, ny, nz) = (2, 1, 1) and (1, 2, 1). 

Thus, three states (three arrangements of (nx, ny, nz) values) have this energy. 

 

(e) For nx = 1, ny = 2 and nz = 3, the ratio becomes 1 + 4 + 9 = 14.0. One can check (by 

computing other (nx, ny, nz) values) that this is five “steps” up from the lowest energy in 

the system. One can also check that this same ratio is obtained for (nx, ny, nz) = (1, 3, 2), 

(2, 3, 1), (2, 1, 3), (3, 1, 2) and (3, 2, 1). Thus, six states (six arrangements of (nx, ny, nz) 

values) have this energy. 

 

29. The ratios computed in Problem 39-28 can be related to the frequencies emitted using 

f = E/h, where each level E is equal to one of those ratios multiplied by h
2
/8mL

2
. This 

effectively involves no more than a cancellation of one of the factors of h. Thus, for a 

transition from the second excited state (see part (b) of Problem 39-28) to the ground 

state (treated in part (a) of that problem), we find 

 

f
h

mL

h

mL
 

F
HG
I
KJ 

F
HG
I
KJ9 00 300

8
6 00

82 2
. . . .b g b g  

 

In the following, we omit the h/8mL
2
 factors. For a transition between the fourth excited 

state and the ground state, we have f = 12.00 – 3.00 = 9.00. For a transition between the 

third excited state and the ground state, we have f = 11.00 – 3.00 = 8.00. For a transition 

between the third excited state and the first excited state, we have f = 11.00 – 6.00 = 5.00. 

For a transition between the fourth excited state and the third excited state, we have f = 

12.00 – 11.00 = 1.00. For a transition between the third excited state and the second 

excited state, we have f = 11.00 – 9.00 = 2.00. For a transition between the second excited 

state and the first excited state, we have f = 9.00 – 6.00 = 3.00, which also results from 

some other transitions. 

 

(a) From the above, we see that there are 7 frequencies. 

 

(b) The lowest frequency is, in units of h/8mL
2
, 1.00. 

 

(c) The second lowest frequency is, in units of h/8mL
2
, 2.00. 
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(d) The third lowest frequency is, in units of h/8mL
2
, 3.00. 

 

(e) The highest frequency is, in units of h/8mL
2
, 9.00. 

 

(f) The second highest frequency is, in units of h/8mL
2
, 8.00. 

 

(g) The third highest frequency is, in units of h/8mL
2
, 6.00. 

 

30. In analogy to Eq. 39-10, the normalized wave function in two dimensions can be 

written as  

 

,

2 2
( , ) ( ) ( ) sin sin

4
sin sin .

x y x y

yx
n n n n

x x y y

yx

x y x y

nn
x y x y x y

L L L L

nn
x y

L L L L


  



  
       

   

  
     

   

 

 

The probability of detection by a probe of dimension x y   placed at ( , )x y  is 

 

2
2 2

,

4( )
( , ) ( , ) sin sin .

x y

yx
n n

x y x y

nnx y
p x y x y x y x y

L L L L




   
        

   

 

 

A detection probability of 0.0450 of a ground-state electron ( 1x yn n  ) by a probe of 

area 2400 pmx y   placed at ( , ) ( /8, /8)x y L L  implies 

 
22

2 2 4

2

4(400 pm ) 20 pm
0.0450 sin sin 4 sin

8 8 8

L L

L L L L

         
          

       
. 

 

Solving for L, we get 27.6 pmL  . 

 

31. THINK The Lyman series is associated with transitions to or from the n = 1 level of 

the hydrogen atom, while the Balmer series is for transitions to or from the n = 2 level. 

 

EXPRESS The energy E of the photon emitted when a hydrogen atom jumps from a state 

with principal quantum number n  to a state with principal quantum number n n  is 

given by 

2 2

1 1
E A

n n

 
  

 
 

 

where A = 13.6 eV. The frequency f of the electromagnetic wave is given by f = E/h and 

the wavelength is given by  = c/f. Thus, 
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2 2

1 1 1
.

f E A

c hc hc n n

 
    

  
 

 

ANALYZE The shortest wavelength occurs at the series limit, for which n = . For the 

Balmer series, 2n   and the shortest wavelength is B = 4hc/A. For the Lyman series, 

1n   and the shortest wavelength is L = hc/A. The ratio is B/L = 4.0. 

 

LEARN The energy of the photon emitted associated with the transition of an electron 

from 2n n     (to become bound) is 

 

2 2

13.6 eV
3.4 eV

2
E   . 

 

Similarly, the energy associated with the transition of an electron from 1n n     (to 

become bound) is 

1 2

13.6 eV
13.6 eV

1
E    . 

 

32. The difference between the energy absorbed and the energy emitted is 

 

E E
hc hc

photon absorbed photon emitted

absorbed emitted

  
 

.  

 

Thus, using hc = 1240 eV · nm, the net energy absorbed is 

 

 
1 1 1

1240eV nm 1.17eV .
375nm 580nm

hc


  
      
   

 

 

33. (a) Since energy is conserved, the energy E of the photon is given by E = Ei – Ef, 

where Ei is the initial energy of the hydrogen atom and Ef is the final energy. The electron 

energy is given by (– 13.6 eV)/n
2
, where n is the principal quantum number. Thus, 

 

   
3 1 2 2

13.6eV 13.6eV
12.1eV .

3 1
E E E

 
      

(b) The photon momentum is given by 

 

p
E

c
 




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
121 160 10

300 10
6 45 10
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(c) Using hc = 1240 eV · nm, the wavelength is 
1240eV nm

102nm.
12.1eV

hc

E



    
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34. (a) We use Eq. 39-44. At r = 0, P(r)  r
2
 = 0. 

 

(b) At r = a,  
2 2

2 2 1

3 2

4 4 4
10.2nm .

5.29 10 nm

a a e e
P r a e

a a

 
 


   


 

 

(c) At r = 2a,    
4 4

2 4 1

3 2

4 16 16
2 5.54nm .

5.29 10 nm

a a e e
P r a e

a a

 
 


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
 

 

35. (a) We use Eq. 39-39. At r = a, 

 

 
 

2

2 2 2 3

333 2 2

1 1 1
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a ar e e e
aa
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

 
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(b) We use Eq. 39-44. At r = a, 

 

 
2 2

2 2 1

3 2

4 4 4
10.2nm .

5.29 10 nm

a a e e
P r a e

a a

 
 


   


 

 

36. (a) The energy level corresponding to the probability density distribution shown in 

Fig. 39-21 is the n = 2 level. Its energy is given by 

 

2 2

13.6eV
3.4eV.

2
E      

 

(b) As the electron is removed from the hydrogen atom the final energy of the proton-

electron system is zero. Therefore, one needs to supply at least 3.4 eV of energy to the 

system in order to bring its energy up from E2 = – 3.4 eV to zero. (If more energy is 

supplied, then the electron will retain some kinetic energy after it is removed from the 

atom.) 

 

37. THINK The energy of the hydrogen atom is quantized. 

 

EXPRESS If kinetic energy is not conserved, some of the neutron’s initial kinetic energy 

could be used to excite the hydrogen atom. The least energy that the hydrogen atom can 

accept is the difference between the first excited state (n = 2) and the ground state (n = 1). 

Since the energy of a state with principal quantum number n is –(13.6 eV)/n
2
, the smallest 

excitation energy is  

   
2 1 2 2

13.6eV 13.6eV
10.2eV .

2 1
E E E

 
       

 

ANALYZE The neutron, with a kinetic energy of 6.0 eV, does not have sufficient kinetic 

energy to excite the hydrogen atom, so the hydrogen atom is left in its ground state and 
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all the initial kinetic energy of the neutron ends up as the final kinetic energies of the 

neutron and atom. The collision must be elastic. 

 

LEARN The minimum kinetic energy the neutron must have in order to excite the 

hydrogen atom is 10.2 eV.  

 

38. From Eq. 39-6, E hf     414 10 6 2 10 2 615 14. . . .eV s Hz eVc hc h  

 

39. THINK The radial probability function for the ground state of hydrogen is  

 

P(r) = (4r
2
/a

3
)e

– 2r/a
, 

where a is the Bohr radius.  

 

EXPRESS We want to evaluate the integral 
0

z P r dr( ) .  Equation 15 in the integral table 

of Appendix E is an integral of this form: 

 

10

!n ax

n

n
x e dx

a





 . 

 

ANALYZE We set n = 2 and replace a in the given formula with 2/a and x with r. Then 

 

0 3 0

2 2

3 3

4 4 2

2
1

 
z z  P r dr

a
r e dr

a a

r a( )
( )

./  

 

LEARN The integral over the radial probability function P(r) must be equal to 1. This 

means that in a hydrogen atom, the electron must be somewhere in the space surrounding 

the nucleus. 

 

40. (a) The calculation is shown in Sample Problem — “Light emission from a hydrogen 

atom.” The difference in the values obtained in parts (a) and (b) of that Sample Problem 

is 122 nm – 91.4 nm  31 nm. 

 

(b) We use Eq. 39-1. For the Lyman series, 

 

f 








 

 

2 998 10

914 10

2 998 10

122 10
8 2 10

8

9

8

9

14.

.

.
.

m s

m

m s

m
Hz . 

 

(c) Figure 39-18 shows that the width of the Balmer series is 656.3 nm – 364.6 nm   

292 nm 0.29 m .  

 

(d) The series limit can be obtained from the  2  transition: 
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8 8
14 14

9 9

2.998 10 m s 2.998 10 m s
3.65 10 Hz 3.7 10 Hz.

364.6 10 m 656.3 10 m
f

 

 
      

 
 

 

41. Since r is small, we may calculate the probability using p = P(r) r, where P(r) is 

the radial probability density. The radial probability density for the ground state of 

hydrogen is given by Eq. 39-44: 

P r
r

a
e r a( ) /

F
HG
I
KJ

4 2

3

2  

where a is the Bohr radius. 

 

(a) Here, r = 0.500a and r = 0.010a. Then, 

 
2

2 / 2 1 3 3

3

4
4(0.500) (0.010) 3.68 10 3.7 10 .r ar r

P e e
a

    
      
 

 

 

(b) We set r = 1.00a and r = 0.010a. Then, 

 
2

2 / 2 2 3 3

3

4
4(1.00) (0.010) 5.41 10 5.4 10 .r ar r

P e e
a

    
      
 

 

 

42. Conservation of linear momentum of the atom-photon system requires that 

 

recoil photon recoilp

hf
p p m v

c
    

 

where we use Eq. 39-7 for the photon and use the classical momentum formula for the 

atom (since we expect its speed to be much less than c). Thus, from Eq. 39-6 and Table 

37-3, 

 
  

   

2 2

4 1
recoil 2 6 8

13.6eV 4 1
4.1 m s .

938 10 eV 2.998 10 m sp p

E EE
v

m c m c c

  
   

 
 

 

43. (a) and (b) Letting a = 5.292  10
– 11

 m be the Bohr radius, the potential energy 

becomes 

U
e

a
=  

  


    






2 9 2 19

2

11

18

4

8 99 10 1602 10

5292 10
4 36 10 27 2



. .

.
. . .

N m C C

m
J eV

2c hc h
 

 

The kinetic energy is K = E – U = (– 13.6 eV) – (– 27.2 eV) = 13.6 eV. 

 

44. (a) Since E2 = – 0.85 eV and E1 = – 13.6 eV + 10.2 eV = – 3.4 eV, the photon energy 

is   

Ephoton = E2 – E1 = – 0.85 eV – (– 3.4 eV) = 2.6 eV. 
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(b) From 

E E
n n

2 1

2

2

1

2
136

1 1
2 6   

F
HG

I
KJ ( . ) .eV  eV  

we obtain 

1 1 2 6

136

3

16

1

4

1

22

2

1

2 2 2n n
     

.

.
.

 eV

eV
 

 

Thus, n2 = 4 and n1 = 2. So the transition is from the n = 4 state to the n = 2 state. One can 

easily verify this by inspecting the energy level diagram of Fig. 39-18. Thus, the higher 

quantum number is n2 = 4. 

 

(c) The lower quantum number is n1 = 2. 

 

45. THINK The probability density is given by 2| ( , ) | ,n m r   where ( , )n m r  is the 

wave function.  

 

EXPRESS To calculate 2| | * ,n m n m n m    we multiply the wave function by its 

complex conjugate. If the function is real, then * .n m n m   Note that ie  and ie  are 

complex conjugates of each other, and e
i

 e
– i

 = e
0
 = 1. 

 

ANALYZE (a) 210 is real. Squaring it gives the probability density: 

 
2

2 / 2

210 5
| | cos .

32

r ar
e

a
 


 

 

(b) Similarly, 

| | sin/ 21 1

2
2

5

2

64



r

a
e r a


 

and 
2

2 / 2

21 1 5
| | sin .

64

r ar
e

a
 

 


 

 

The last two functions lead to the same probability density. 

 

(c) For 0,m   the probability density 2

210| |  decreases with radial distance from the 

nucleus. With the 2cos   factor, 2

210| |  is greatest along the z axis where  = 0. This is 

consistent with the dot plot of Fig. 39-23(a). 
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Similarly, for 1,m    the probability density 2

21 1| | 
 decreases with radial distance 

from the nucleus. With the 2sin   factor, 2

21 1| | 
 is greatest in the xy-plane where  = 

90°. This is consistent with the dot plot of Fig. 39-23(b). 

 

(d) The total probability density for the three states is the sum: 

 
2 2

2 2 2 / 2 2 2 /

210 21 1 21 1 5 5

1 1
| | | | | | cos sin sin .

2 2

r a r ar r
e e

a a
     

 

 

 

 
        

 

 

The trigonometric identity cos
2
  + sin

2
  = 1 is used. We note that the total probability 

density does not depend on  or ; it is spherically symmetric. 

 

LEARN The wave functions discussed above are for the hydrogen states with n = 2 and 

1.  Since the angular momentum is nonzero, the probability densities are not 

spherically symmetric, but depend on both r and .  

 

46. From Sample Problem — “ Probability of detection of the electron in a hydrogen 

atom,” we know that the probability of finding the electron in the ground state of the 

hydrogen atom inside a sphere of radius r is given by 

 

p r e x xx( )    1 1 2 22 2c h  
 

where x = r/a. Thus the probability of finding the electron between the two shells 

indicated in this problem is given by 

 

   2 2 2 2

2 1
( 2 ) (2 ) ( ) 1 1 2 2 1 1 2 2

                     0.439.

x x

x x
p a r a p a p a e x x e x x 

 

              
   



 

 

47. As illustrated in Fig. 39-24, the quantum number n in question satisfies r = n
2
a. 

Letting r = 1.0 mm, we solve for n: 

n
r

a
 




 





10 10

529 10
4 3 10

3

11

3.

.
. .

m

m
 

 

48. Using Eq. 39-6 and hc = 1240 eV · nm, we find 

 

E E
hc

  


photon

eV nm

nm
eV



1240

1216
10 2

.
. .  

 

Therefore, nlow = 1, but what precisely is nhigh? 

 

lowhigh 2 2

13.6eV 13.6eV
     10.2eV

1
E E E

n
        
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which yields n = 2 (this is confirmed by the calculation found from Sample Problem — 

“Light emission from a hydrogen atom). Thus, the transition is from the n = 2 to the n = 1 

state. 

 

(a) The higher quantum number is n = 2. 

 

(b) The lower quantum number is n = 1. 

 

(c) Referring to Fig. 39-18, we see that this must be one of the Lyman series transitions. 

 

49. (a) We take the electrostatic potential energy to be zero when the electron and proton 

are far removed from each other. Then, the final energy of the atom is zero and the work 

done in pulling it apart is W = – Ei, where Ei is the energy of the initial state. The energy 

of the initial state is given by Ei = (–13.6 eV)/n
2
, where n is the principal quantum 

number of the state. For the ground state, n = 1 and W = 13.6 eV. 

 

(b) For the state with n = 2, W = (13.6 eV)/(2)
2
 = 3.40 eV. 

 

50. Using Eq. 39-6 and hc = 1240 eV · nm, we find 

 

photon

1240 eV nm
12.09 eV.

106.6 nm

hc
E E




      

 

Therefore, nlow = 1, but what precisely is nhigh? 

 

high low 2 2

13.6 eV 13.6 eV
     12.09 eV

1
E E E

n
        

 

which yields n = 3. Thus, the transition is from the n = 3 to the n = 1 state. 

 

(a) The higher quantum number is n = 3. 

 

(b) The lower quantum number is n = 1. 

 

(c) Referring to Fig. 39-18, we see that this must be one of the Lyman series transitions. 

 

51. According to Sample Problem — “ Probability of detection of the electron in a 

hydrogen atom,” the probability the electron in the ground state of a hydrogen atom can 

be found inside a sphere of radius r is given by 

 

p r e x xx( )    1 1 2 22 2c h  
 

where x = r/a and a is the Bohr radius. We want r = a, so x = 1 and 
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p a e e( ) ( ) . .       1 1 2 2 1 5 03232 2  

 

The probability that the electron can be found outside this sphere is 1 – 0.323 = 0.677. It 

can be found outside about 68% of the time. 

 

52. (a) E = – (13.6 eV)(4
– 2

 – 1
– 2

) = 12.8 eV. 

 

(b) There are 6 possible energies associated with the transitions 4   3, 4   2, 4   1, 3 

  2, 3   1 and 2 1.  

 

(c) The greatest energy is 
4 1 12.8 eV.E    

 

(d) The second greatest energy is   2 2

3 1 13.6eV 3 1 12.1 eVE  

     . 

 

(e) The third greatest energy is   2 2

2 1 13.6eV 2 1 10.2 eVE  

     . 

 

(f) The smallest energy is   2 2

4 3 13.6eV 4 3 0.661 eVE  

     . 

 

(g) The second smallest energy is   2 2

3 2 13.6eV 3 2 1.89 eVE  

     . 

 

(h) The third smallest energy is   2 2

4 2 13.6eV 4 2 2.55 eV.E  

      

 

53. THINK The ground state of the hydrogen atom corresponds to n = 1, 0,  and 

0.m    

 

EXPRESS The proposed wave function is 

  1
3 2a

e r a  

 

where a is the Bohr radius. Substituting this into the right side of Schrödinger’s equation, 

our goal is to show that the result is zero.  

 

ANALYZE The derivative is 

d

dr a
e r a

  1
5 2

 

so 

r
d

dr

r

a
e r a2

2

5 2


  


 

and 

1 1 2 1 1 2 1
2

2

5 2r

d

dr
r

d

dr a r a
e

a r a

r a


F
HG
I
KJ   

L
NM

O
QP   

L
NM

O
QP




.  
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The energy of the ground state is given by E me h  4

0

2 28  and the Bohr radius is given 

by a h me E e a  2

0

2 2 8  , . so  The potential energy is given by  

 

U e r  2 4 , 

so 

8 8

8 4

8

8

1 2

1 2 1 1 2

2 2

2 2

2

2

2

2

 

 









 

 







m

h
E U

m

h

e

a

e

r

m

h

e

a r

me

h a r a a r

   
L
NM

O
QP   

L
NM

O
QP

  
L
NM

O
QP   

L
NM

O
QP

  

  .

 

 

The two terms in Schrödinger’s equation cancel, and the proposed function  satisfies 

that equation. 

 

LEARN The radial probability density of the ground state of hydrogen atom is given by 

Eq. 39-44: 

2 2 2 2 2 2

3 3

1 4
( ) | | (4 ) (4 )r a r aP r r e r r e

a a
  



    . 

 

A plot of P(r) is shown in Fig. 39-20. 

 

54. (a) The plot shown below for |200(r)|
2
 is to be compared with the dot plot of Fig.  

39-21. We note that the horizontal axis of our graph is labeled “r,” but it is actually r/a 

(that is, it is in units of the parameter a). Now, in the plot below there is a high central 

peak between r = 0 and r  2a, corresponding to the densely dotted region around the 

center of the dot plot of Fig. 39-21. Outside this peak is a region of near-zero values 

centered at r = 2a, where 200 = 0. This is represented in the dot plot by the empty ring 

surrounding the central peak. Further outside is a broader, flatter, low peak that reaches 

its maximum value at r = 4a. This corresponds to the outer ring with near-uniform dot 

density, which is lower than that of the central peak. 
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(b) The extrema of 2
(r) for 0 < r <  may be found by squaring the given function, 

differentiating with respect to r, and setting the result equal to zero: 

 


 

1

32

2 4
0

6

( ) ( ) /r a r a

a
e r a


 

 

which has roots at r = 2a and r = 4a. We can verify directly from the plot above that r = 

4a is indeed a local maximum of  200

2 ( ).r  As discussed in part (a), the other root (r = 2a) 

is a local minimum. 

 

(c) Using Eq. 39-43 and Eq. 39-41, the radial probability is 

 

P r r r
r

a

r

a
e r a

200

2

200

2
2

3

2

4
8

2( ) ( ) ./  
F
HG
I
KJ

   

(d) Let x = r/a. Then 

 
22

/ 2 2 4 3 2

200 30 0 0 0

1
( ) 2 (2 ) ( 4 4 )

8 8

1
[4! 4(3!) 4(2!)] 1

8

r a x xr r
P r dr e dr x x e dx x x x e dx

a a

   
   

       
 

   

   
 

 

where we have used the integral formula 
0


z x e dx nn x ! . 

 

55. The radial probability function for the ground state of hydrogen is  

 

P(r) = (4r
2
/a

3
)e

– 2r/a
, 

 

where a is the Bohr radius. (See Eq. 39-44.) The integral table of Appendix E may be 

used to evaluate the integral r rP r dravg 
z0 ( ) .  Setting n = 3 and replacing a in the given 

formula with 2/a (and x with r), we obtain 

 

 
3 2 /

avg 43 30 0

4 4 6
( ) 1.5 .

2

r ar rP r dr r e dr a
a a a

 
      

 

56. (a) The allowed energy values are given by En = n
2
h

2
/8mL

2
. The difference in energy 

between the state n and the state n + 1 is 

 

E E E n n
h

mL

n h

mL
n nadj      


1

2 2
2

2

2

2
1

8

2 1

8
b g b g

 

and 
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E

E

n h

mL

mL

n h

n

n

adj


L
NM

O
QP
F
HG
I
KJ 

2 1

8

8 2 1
2

2

2

2 2 2

b g
.  

 

As n becomes large, 2 1 2n n   and 2 1 2 22 2n n n n n  b g . 

 

(b) No. As adj,n E   and E do not approach 0, but Eadj/E does. 

 

(c) No. See part (b). 

 

(d) Yes. See part (b). 

 

(e) Eadj/E is a better measure than either Eadj or E alone of the extent to which the 

quantum result is approximated by the classical result. 

 

57. From Eq. 39-4, 

E E
h

mL
n

h

mL
n

h

mL
nn n  

F
HG
I
KJ  

F
HG
I
KJ 
F
HG
I
KJ 2

2

2

2
2

2

2
2

28
2

8 2
1b g b g.  

 

58. (a) and (b) In the region 0 < x < L, U0 = 0, so Schrödinger’s equation for the region is 

 

d

dx

m

h
E

2

2

2

2

8
0


 


 

 

where E > 0. If 2
 (x) = B sin

2
 kx, then  (x) = B' sin kx, where B' is another constant 

satisfying B' 
2
 = B. Thus, 

2
2 2

2
sin ( )

d
k B kx k x

dx


     

 and  

d

dx

m

h
E k

m

h
E

2

2

2

2

2
2

2

8 8
     

 
.  

 

This is zero provided that k
mE

h

2
2

2

8



.  The quantity on the right-hand side is positive, 

so k is real and the proposed function satisfies Schrödinger’s equation. In this case, there 

exists no physical restriction as to the sign of k. It can assume either positive or negative 

values. Thus, k
h

mE 
2

2


.  

 

59. THINK For a finite well, the electron matter wave can penetrate the walls of the well. 

Thus, the wave function outside the well is not zero, but decreases exponentially with 

distance.  

 



CHAPTER 39 1712 

EXPRESS Schrödinger’s equation for the region x > L is 

 

d

dx

m

h
E U

2

2

2

2 0

8
0


  


,  

 

where E – U0 < 0. If 2
 (x) = Ce

– 2kx
, then (x) = C e

– kx
. 

 

ANALYZE (a) and (b) Thus, 
2

2 2

2
4 4kxd

k Ce k
dx


   

 and 

d

dx

m

h
E U k

m

h
E U

2

2

2

2 0

2
2

2 0

8 8
      

 
.  

 

This is zero provided that k
m

h
U E2

2

2 0

8
 


.  Choosing the positive root, we have 

  

 0

2
2 .k m U E

h


   

 

LEARN Note that the quantity 0U E  is positive, so k is real and the proposed function 

satisfies Schrödinger’s equation. If k is negative, however, the proposed function would 

be physically unrealistic. It would increase exponentially with x. Since the integral of the 

probability density over the entire x axis must be finite,  diverging as x  would be 

unacceptable.  

 

60. We can use the mc
2
 value for an electron from Table 37-3 (511  10

3
 eV) and hc = 

1240 eV · nm by writing Eq. 39-4 as 

E
n h

mL

n hc

mc L
n  

2 2

2

2 2

2 28 8

b g
c h .  

 

(a) With L = 3.0  10
9
 nm, the energy difference is 

 

E E2 1

2

3 9
2

2 2 191240

8 511 10 30 10
2 1 13 10 

 
   

c hc h c h
.

. eV.  

 

(b) Since (n + 1)
2
 – n

2
 = 2n + 1, we have 

 

E E E
h

mL
n

hc

mc L
nn n     1

2

2

2

2 28
2 1

8
2 1b g b gc h b g.  
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Setting this equal to 1.0 eV, we solve for n: 

 

 
 

     

 

2
2 2 3 9

19

2 2

4 4 511 10 eV 3.0 10 nm 1.0eV1 1
1.2 10 .

2 21240eV nm

mc L E
n

hc

  
     


 

 

(c) At this value of n, the energy is 

 

En 
 

  
1240

8 511 10 30 10
6 10 6 10

2

3 9
2

18
2

18

c hc h c h
.

eV.  

Thus, 
18

13

2 3

6 10 eV
1.2 10 .

511 10 eV

nE

mc


  


 

 

(d) Since 2/ 1nE mc , the energy is indeed in the relativistic range. 

 

61. (a) We recall that a derivative with respect to a dimensional quantity carries the 

(reciprocal) units of that quantity. Thus, the first term in Eq. 39-18 has dimensions of  

multiplied by dimensions of x
– 2

. The second term contains no derivatives, does contain , 

and involves several other factors that turn out to have dimensions of x
– 2

: 

 

 
 

 
2

22

8 kg
J

J s

m
E U x

h


   


 

 

assuming SI units. Recalling from Eq. 7-9 that J = kg·m
2
/s

2
, then we see the above is 

indeed in units of m
– 2

 (which means dimensions of x
– 2

). 

 

(b) In one-dimensional quantum physics, the wave function has units of m
– ½

, as shown in 

Eq. 39-17. Thus, since each term in Eq. 39-18 has units of  multiplied by units of x
– 2

, 

then those units are m
– 1/2

· m
– 2

 = m
– 2.5

. 

 

62. (a) The “home-base” energy level for the Balmer series is n = 2. Thus the transition 

with the least energetic photon is the one from the n = 3 level to the n = 2 level. The 

energy difference for this transition is 

 

E E E    
F
HG

I
KJ 3 2 2 2

136
1

3

1

2
1889. . .eV eVb g  

 

Using hc = 1240 eV · nm, the corresponding wavelength is 

 

1240eV nm
658nm .

1.889eV

hc

E



  

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(b) For the series limit, the energy difference is 

 

E E E   



F
HG

I
KJ  2 2 2

136
1 1

2
340. . .eV eVb g  

 

The corresponding wavelength is then 
1240eV nm

366nm .
3.40eV

hc

E



  


 

 

63. (a) The allowed values of  for a given n are 0, 1, 2, ..., n – 1. Thus there are n 

different values of . 

 

(b) The allowed values of m  for a given  are – , –  + 1, ..., . Thus there are 2  + 1 

different values of m . 

 

(c) According to part (a) above, for a given n there are n different values of . Also, each 

of these ’s can have 2  + 1 different values of m  [see part (b) above]. Thus, the total 

number of m ’s is 

1
2

0

(2 1) .
n

n




   

64. For n = 1 

  

     

4
31 194

1 2 22 2 12 34 19
0

9.11 10 kg 1.6 10 C
13.6eV .

8 8 8.85 10 F m 6.63 10 J s 1.60 10 J eV

em e
E

h

 

  

 
     

   
 

 

65. (a) The angular momentum of the diatomic gas is 

 

 2 21
2 ( / 2)

2
L I m d md      . 

 

If its angular momentum is quantized, i.e., restricted to ,L n  n = 1, 2, … then 

 

2

2

1

2 2

nh nh
md n

md
 

 
     

 

(b) The quantized rotational energies are 

 

 

22 2 2
2

2 2 2

1 1

2 2 2 4
n

md nh n h
E I

md md


 

  
    

  
 

 

66. The expression for the probability of detecting an electron in the ground state of 

hydrogen atom inside a sphere of radius r is given in Sample Problem 39.07:  
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 2 2( ) 1 (1 2 2 )xp x e x x     

 

where 0/ ,x r a  with 11

0 5.292 10 m.a    Given that 151.1 10 m,r     

 
15 11 5(1.1 10 m)/(5.292 10 m) 2.079 10x        . 

 

For small x, p(x) can be simplified as  

 

   

 

2 2 2 3 2 3

3
5 14

4 4
( ) 1 1 2 2 1 1 2 2 1 2 2

3 3

4
2.079 10 1.2 10 .

3

xp x e x x x x x x x x

 

 
             

 

   

 

 

67. (a) For a particle of mass m trapped inside a container of length L, he allowed energy 

values are given by En = n
2
h

2
/8mL

2
. With an argon atom and L = 0.20 m, the energy 

difference between the lowest two levels is 

 

 
2 2 34 2

2 2

2 1 2 2 23 2

41 22

3 3( J s)
2 1

8 8 8(0.0399 kg/6.02 10 )(0.20 m)

6.21 10 J 3.88 10 eV.

h h
E E E

mL mL



 

 
      



   

 

 

(b) The thermal energy at T = 300 K is its average kinetic energy: 

 

 23 21 23
(1.38 10 J/K)(300 K) 6.21 10 J 3.88 10 eV

2
K kT          . 

 

Thus, the ratio is  
2

20

22

3.88 10 eV
10 .

3.9 10 eV

K

E






 

 
 

 

(c) The temperature at which 3
2

K kT E    is 

 
41

18

23

2( ) 2(6.21 10 J)
3.0 10 K

3 3(1.38 10 J/K)

E
T

k






 
   


. 

 

68. The muon orbits the He
+
 nucleus at a speed given by ( 01/ 4k  ) 

 
2 2 2

2

mv Zke Zke
v

r r mr
    

 

With quantization condition ,L mvr n   the allowed values of the radius is 
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2 2

2n

n
r

Zke m
  

Its total energy is  
2 2

21

2 2

Zke Zke
E K U mv

r r
       

 

The energy of the muon ground state is given by  

 
2 2 2

2 2 2

0

( ) 1

2 8
n

n

Zke m Ze
E

r h n
     

Evaluating the constants gives 

 
2 2 31 2 19 4

2 2 2 12 2 2 2 34 2 2

0

15

2 2

( ) 1 (207 9.11 10 kg)(2) (1.6 10 C) 1

8 8(8.85 10 C /N m ) ( J s)

1.8 10 J 11.3 keV
.

n

m Ze
E

h n n

n n



 

 



  
   

   


   

 

  

69. The Ritz combination principle can be readily understood by noting that the transition 

from in n  to f in n n   can be done in two steps, with an intermediate state n : 

 

2 2 2 2 2 2

1 1 1 1 1 1
( 13.6eV) ( 13.6eV) ( 13.6eV)

f in n

f i f i

E E E
n n n n n n

     
                        

 

 

The transition 3 1i fn n   associated with the second Lyman-series line can be 

thought of as 3 2in n    (first Balmer) followed by 2 1fn n     (first Lyman).  

Another example would be 4 2i fn n   (second Balmer), which can be thought of as 

4 3in n    (first Paschen) followed by 3 2fn n     (first Balmer).   

 

70. (a) We use e0 to denote the electric charge. The constant A can be calculated by 

integrating the charge density distribution: 

 

02 / 2 3 2 2 3

0 0 0
0 0

( ) ( )4 4
r a xe r dV Ae r dr Aa x e dx Aa   

 
         

 

which gives 3

0 0/ .A e a   

 

(b) We apply Gauss’s to calculate the electric field at a distance r from the center of the 

atom. The charge enclosed by a Gaussian sphere of radius 0r a , including the proton 

charge +e0 at the center, is   
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0
0

1
2 / 2 3 2 2

enc 0 0 0 0
0 0

3 2

0 0 0 0 02 2

( ) ( )4 4

5 5
1 ( ) 1 (5 )

a
r a xq e r dV e Ae r dr e Aa x e dx

e Aa e e e e
e e

  



 



     

   
          

   

  
 

 

Using Gauss’s law, 
enc 0/ ,E da q    we obtain 

 

 
2 2

2 0 0
0 2

0 0 0

(5 ) (5 )
(4 )

4

e e e e
E a E

a


 

 

    

 

(c) The net charge enclosed is positive, so the direction is radially outward. 

 

71. (a) The charge enclosed by a sphere of radius r due to the uniform positive charge 

distribution is proportional to the volume: 3

enc 0( / ) .q e r a  Using Gauss’s law, 

enc 0/ ,E da q    the electric field at a radial distance r from the center of the atom is 

 
3

2

3

0 0 0 0

(4 )
4

e r e
E r E r

a a


 

 
   

 
 

and the force on the electron is 
2

3

0 04

e
F eE r

a


   . The negative sign means that the 

force points toward the center.  

 

(b) Since 2 2/ ,F ma md r dt   
2 2 2

2

2 3 2

0 0

0
4

d r e d r
m r r

dt a dt





     

 

and the angular frequency is 
2

3 3
0 0 0 0

4 4

e e

ma ma


 
  . 

 

72. (a) The electric potential is  

 

 
9 2 2

11

0

8.99 10 N m / C
27.22 V

5.29 10 m

kq ke
V

r a 

 
   


 

 

(b) The electric potential energy of the atom is  

 

(27.22 V) 27.22 eVU qV eV e        

 

(c) The electron moves in a circular orbit with  
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2 2 2

2

mv ke ke
v

r r mr
    

 

Its kinetic energy at 
0r a is  

2
2

0

1 1
(27.22 eV) 13.6 eV

2 2 2

ke
K mv

a
    . 

 

(d) The total energy of the system is  

 
2 2

2

0 0

1
13.6 eV

2 2

ke ke
E K U mv

a a
        . 

 

Therefore, the energy required to ionize the atom is +13.6 eV. 

 

73. The energy is, after evaluating the constants, 

 

   

 

1 2 3

2 34 2
2 2 2 2 2 2

, , 1 2 3 1 2 32 31 6 2

2 2 2

1 2 3

( J s)

8 8(9.11 10 kg)(0.25 10 m)

(6.024 eV)

n n n

h
E n n n n n n

mL

n n n



 

 
     

 

  

 

 

The lowest five states correspond to 1 2 3( , , )n n n  (1, 1, 1), (1, 2, 1), (1, 2, 2), (1, 3, 1) and 

(2, 2, 2),  and the energies are  

 

 

 

 

 

 

2
2 2 2

111 2

2
2 2 2

121 2

2
2 2 2

122 2

2
2 2 2

131 2

2
2 2 2

222 2

1 1 1 3(6.024 eV) 18.1 eV
8

1 2 1 6(6.024 eV) 36.2 eV
8

1 2 2 9(6.024 eV) 54.3 eV
8

1 3 1 11(6.024 eV) 66.3 eV
8

2 2 2 12(6.024 eV) 7
8

h
E

mL

h
E

mL

h
E

mL

h
E

mL

h
E

mL

 

 

 

 



    

    

    

    

     2.4 eV
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Chapter 40 
 

 

1. The magnitude L of the orbital angular momentum L  is given by Eq. 40-2: 

( 1)L   . On the other hand, the components zL are zL m , where ,...m    . 

Thus, the semi-classical angle is cos /zL L  . The angle is the smallest when m  , or 

 

 1cos     cos
( 1) ( 1)

  
 

       

. 

  

With 5 , we have 1cos (5/ 30) 24.1 .     

 

2. For a given quantum number n there are n possible values of  , ranging from 0 to 1n . 

For each   the number of possible electron states is N = 2(2   + 1). Thus the total 

number of possible electron states for a given n is 

 

 
1 1

2

0 0

2 2 1 2 .
n n

nN N n
 

 

      

 

Thus, in this problem, the total number of electron states is Nn = 2n
2
 = 2(5)

2
 = 50. 

 

3. (a) We use Eq. 40-2: 

 

     34 341 3 3 1 1.055 10 J s 3.65 10 J s.L            

 

(b) We use Eq. 40-7: zL m . For the maximum value of Lz set m  =  . Thus 

 

   34 34

max
3 1.055 10 J s 3.16 10 J s.zL          

 

4. For a given quantum number n there are n possible values of  , ranging from 0 to  

n – 1. For each   the number of possible electron states is N  = 2(2   + 1). Thus, the 

total number of possible electron states for a given n is 

 

 
1 1

2

0 0

2 2 1 2 .
n n

n

l l

N N n
 

 

      

 

(a) In this case n = 4, which implies Nn = 2(4
2
) = 32. 
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(b) Now n = 1, so Nn = 2(1
2
) = 2. 

 

(c) Here n = 3, and we obtain Nn = 2(3
2
) = 18. 

 

(d) Finally, n Nn   2 2 2 82c h . 

 

5. (a) For a given value of the principal quantum number n, the orbital quantum number 

  ranges from 0 to n –  1. For n = 3, there are three possible values: 0, 1, and 2. 

 

(b) For a given value of  , the magnetic quantum number m  ranges from  to  . For 

  1, there are three possible values: – 1, 0, and +1. 

 

6. For a given quantum number  there are (2  + 1) different values of m . For each 

given m  the electron can also have two different spin orientations. Thus, the total 

number of electron states for a given   is given by N = 2(2  + 1). 

 

(a) Now   = 3, so N  = 2(2  3 + 1) = 14. 

 

(b) In this case,  = 1, which means N  = 2(2  1 + 1) = 6. 

 

(c) Here   = 1, so N  = 2(2  1 + 1) = 6. 

 

(d) Now  = 0, so N  = 2(2  0 + 1) = 2. 

 

7. (a) Using Table 40-1, we find   = [ m ]max = 4. 

 

(b) The smallest possible value of n is n =  max +1    + 1 = 5.  

 

(c) As usual, ms  
1
2

, so two possible values. 

 

8. (a) For 3 , the greatest value of m  is 3m  . 

 

(b) Two states ( ms  
1
2

) are available for 3m  . 

 

(c) Since there are 7 possible values for m  :  +3, +2, +1, 0, – 1, – 2, – 3, and two possible 

values for sm , the total number of state available in the subshell 3  is 14.  

 

9. THINK Knowing the value of , the orbital quantum number, allows us to determine 

the magnitudes of the angular momentum and the magnetic dipole moment.  

 

EXPRESS The magnitude of the orbital angular momentum is  
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 1L   . 

Similarly, with 
orb ,

2

e
L

m
    the magnitude of 

orb  is 

 orb B1
2

e

m
    , 

 

where B / 2e m   is the Bohr magneton. 

 

ANALYZE (a) For 3,  we have  

 

 1L      3 3 1 12  . 

 

So the multiple is 12 3.46.  

 

(b) The magnitude of the orbital dipole moment is  

 

  orb     1 12b g B B . 

So the multiple is 12 3.46.  

  

(c) The largest possible value of m  is 3m   . 

 

(d) We use L mz    to calculate the z component of the orbital angular momentum. The 

multiple is 3m  . 

 

(e) We use  z Bm    to calculate the z component of the orbital magnetic dipole 

moment. The multiple is 3m   . 

 

(f) We use cos  m   1b g  to calculate the angle between the orbital angular 

momentum vector and the z axis. For   3  and 3m  , we have cos 3/ 12 3 / 2   , 

or 30.0   . 

 

(g) For   3  and 2m  , we have cos 2/ 12 1/ 3   , or 54.7   . 

 

(h) For   3  and 3m   , cos 3/ 12 3 / 2     , or 150   . 

 

LEARN Neither L  nor orb  can be measured in any way. We can, however, measure 

their z components. 
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10. (a) For n = 3 there are 3 possible values of  : 0, 1, and 2. 

 

(b) We interpret this as asking for the number of distinct values for m  (this ignores the 

multiplicity of any particular value). For each   there are 2   + 1 possible values of m . 

Thus the number of possible 'sm  for   = 2 is (2   + 1) = 5. Examining the   = 1 and 

0  cases cannot lead to any new (distinct) values for m , so the answer is 5. 

 

(c) Regardless of the values of n,  and m , for an electron there are always two possible 

values of ms:
1
2

. 

 

(d) The population in the n = 3 shell is equal to the number of electron states in the shell, 

or 2n
2
 = 2(3

2
) = 18. 

 

(e) Each subshell has its own value of  . Since there are three different values of   for n 

= 3, there are three subshells in the n = 3 shell. 

 

11. THINK We can only measure one component of L , say ,zL but not all three 

components. 

 

EXPRESS Since L L L L L L L Lx y z x y z

2 2 2 2 2 2 2 2     , . Replacing L
2
 with   1 2b g  

and Lz with m , we obtain 

L L mx y

2 2 21      b g .  

 

ANALYZE For a given value of  , the greatest that m  can be is  , so the smallest that 

L Lx y

2 2  can be is        1 2b g . The smallest possible magnitude of m  is zero, 

so the largest L Lx y

2 2  can be is   1b g . Thus, 

 

       L Lx y

2 2 1b g .  

 

LEARN Once we have chosen to measure L  along the z axis, the x- and y-components 

cannot be measured with infinite certainty. 

 

12. The angular momentum of the rotating sphere, sphereL , is equal in magnitude but in 

opposite direction to atomL , the angular momentum due to the aligned atoms. The number 

of atoms in the sphere is AN m
N

M
 , where 236.02 10 / molAN    is Avogadro’s number 

and 0.0558 kg/molM   is the molar mass of iron. The angular momentum due to the 

aligned atoms is 
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atom 0.12 ( ) 0.12

2

A
s

N m
L N m

M
  . 

 

On the other hand, the angular momentum of the rotating sphere is (see Table 10-2 for I) 

 

2

sphere

2

5
L I mR 

 
   

 
. 

 

Equating the two expressions, the mass m cancels out and the angular velocity is 

 
23 34

2 3 2

5

5 5(6.02 10 / mol)(6.63 10  J s/2 )
0.12 0.12

4 4(0.0558 kg/mol)(2.00 10  m)

4.27 10 rad/s

AN

MR










  
 



 

. 

  
13. THINK A gradient magnetic field gives rise to a magnetic force on the silver atom. 

 

EXPRESS The force on the silver atom is given by 

 

  z z z

dU d dB
F B

dz dz dz
        

 

where z  is the z component of the magnetic dipole moment of the silver atom, and B is 

the magnetic field. The acceleration is 

 

( / )
,z zF dB dz

a
M M


   

where M is the mass of a silver atom.  

 

ANALYZE Using the data given in Sample Problem —“Beam separation in a Stern-

Gerlach experiment,” we obtain 

 

  24 3

24

25

9.27 10 J T 1.4 10 T m
7.2 10 m s .

1.8 10 kg
a





 
  


 

 

LEARN The deflection of the silver atom is due to the interaction between the magnetic 

dipole moment of the atom and the magnetic field. However, if the field is uniform, then 

/ 0,dB dz   and the silver atom will pass the poles undeflected. 

 

14. (a) From Eq. 40-19, 

 

F
dB

dz
B       9 27 10 16 10 15 1024 2 21. . . .J T T m Nc hc h  
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(b) The vertical displacement is 

 
22 21

2 5

27 5

1 1 1 1.5 10 N 0.80m
2.0 10 m.

2 2 2 1.67 10 kg 1.2 10 m s

F l
x at

m v






     
          

      
 

 

15. The magnitude of the spin angular momentum is  

 

S s s  1 3 2b g d i  , 

 

where s  1
2

 is used. The z component is either Sz   2  or  2 .  

 

(a) If Sz   2  the angle  between the spin angular momentum vector and the positive 

z axis is 

 
F
HG
I
KJ 

F
HG
I
KJ   cos cos . .1 1 1

3
54 7

S

S

z  

 

(b) If Sz   2 , the angle is  = 180° – 54.7° = 125.3° 125 .   

 

16. (a) From Fig. 40-10 and Eq. 40-18, 

 

E BB 








2

2 9 27 10 050

160 10
58

24

19
 

. .

.
.

J T T

J eV
eV

c hb g
 

(b) From E = hf we get 

 
24

10

34

9.27 10 J
1.4 10 Hz 14 GHz .

6.63 10 J s

E
f

h





 
    

 
 

(c) The wavelength is 
8

10

2.998 10 m s
2.1 cm.

1.4 10 Hz

c

f



  


 

 

(d) The wave is in the short radio wave region. 

 

17. The total magnetic field, B = Blocal + Bext, satisfies E = hf = 2B (see Eq. 40-22). 

Thus, 

  
 

34 6

local ext 26

6.63 10 J s 34 10 Hz
0.78 T 19 mT .

2 2 1.41 10 J T

hf
B B







  
    


 

 

18. We let E = 2BBeff (based on Fig. 40-10 and Eq. 40-18) and solve for Beff: 
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  eff 7 5

1240nm eV
51 mT .

2 2 2 21 10 nm 5.788 10 eV TB B

E hc
B

   

 
   

  
 

 

19. The energy of a magnetic dipole in an external magnetic field 

B  is 

U B Bz    
 
  , where 


  is the magnetic dipole moment and z is its component 

along the field. The energy required to change the moment direction from parallel to 

antiparallel is E = U = 2zB. Since the z component of the spin magnetic moment of 

an electron is the Bohr magneton ,B  

 

  242 2 9.274 10 J T 0.200TBE B       243.71 10 J  . 

 

The photon wavelength is 

 

  34 8

2

24

6.626 10 J s 2.998 10 m s
5.35 10 m .

3.71 10 J

c hc

f E








  
    

 
 

 

20. Using Eq. 39-20 we find that the lowest four levels of the rectangular corral (with this 

specific “aspect ratio”) are nondegenerate, with energies E1,1 = 1.25, E1,2 = 2.00, E1,3 = 

3.25, and E2,1 = 4.25 (all of these understood to be in “units” of h
2
/8mL

2
). Therefore, 

obeying the Pauli principle, we have 

 

E E E E Eground        2 2 2 2 125 2 2 00 2 325 4 251 1 1 2 1 3 2 1, , , , . . . .b g b g b g  

 

which means (putting the “unit” factor back in) that the lowest possible energy of the 

system is Eground = 17.25(h
2
/8mL

2
). Thus, the multiple of 2 2/8h mL  is 17.25.  

 

21. Because of the Pauli principle (and the requirement that we construct a state of lowest 

possible total energy), two electrons fill the n = 1, 2, 3 levels and one electron occupies 

the n = 4 level. Thus, using Eq. 39-4, 

 

       

 

ground 1 2 3 4

2 2 2 2
2 2 2 2

2 2 2 2

2 2

2 2

2 2 2

2 1 2 2 2 3 4
8 8 8 8

2 8 18 16 44 .
8 8

E E E E E

h h h h

mL mL mL mL

h h

mL mL

   

       
          

       

   
       

   

 

 

Thus, the multiple of 2 2/8h mL  is 44.  

 

22. Due to spin degeneracy ( 1/ 2sm   ), each state can accommodate two electrons. 

Thus, in the energy-level diagram shown, two electrons can be placed in the ground state 

with energy 2 2

1 4( /8 )E h mL , six can occupy the “triple state” with 2 2

2 6( /8 )E h mL , 
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and so forth. With 11 electrons, the lowest energy configuration consists of two electrons 

with 2 2

1 4( /8 ),E h mL  six electrons with 2 2

2 6( /8 ),E h mL  and three electrons with 

2 2

3 7( /8 )E h mL . Thus, we find the ground-state energy of the 11-electron system to be 

 

 

2 2 2

ground 1 2 3 2 2 2

2 2

2 2

4 6 7
2 6 3 2 6 3

8 8 8

(2)(4) (6)(6) (3)(7) 65 .
8 8

h h h
E E E E

mL mL mL

h h

mL mL

     
          

     

   
      

   

 

 

The first excited state of the 11-electron system consists of two electrons with 
2 2

1 4( /8 ),E h mL  five electrons with 2 2

2 6( /8 ),E h mL  and four electrons with 

2 2

3 7( /8 )E h mL . Thus, its energy is 

 

 

2 2 2

1st excited 1 2 3 2 2 2

2 2

2 2

4 6 7
2 5 4 2 5 4

8 8 8

(2)(4) (5)(6) (4)(7) 66 .
8 8

h h h
E E E E

mL mL mL

h h

mL mL

     
          

     

   
      

   

 

 

Thus, the multiple of 2 2/8h mL  is 66.  

 

23. THINK With eight electrons, the ground-state energy of the system is the sum of the 

energies of the individual electrons in the system’s ground-state configuration.   

 

EXPRESS In terms of the quantum numbers nx, ny, and nz, the single-particle energy 

levels are given by 

E
h

mL
n n nn n n x y zx y z, , .  

2

2

2 2 2

8
d i  

 

The lowest single-particle level corresponds to nx = 1, ny = 1, and nz = 1 and is E1,1,1 = 

3(h
2
/8mL

2
). There are two electrons with this energy, one with spin up and one with spin 

down. The next lowest single-particle level is three-fold degenerate in the three integer 

quantum numbers. The energy is  

 

E1,1,2 = E1,2,1 = E2,1,1 = 6(h
2
/8mL

2
). 

 

Each of these states can be occupied by a spin up and a spin down electron, so six 

electrons in all can occupy the states. This completes the assignment of the eight 

electrons to single-particle states.  

 

ANALYZE The ground state energy of the system is  

 

Egr = (2)(3)(h
2
/8mL

2
) + (6)(6)(h

2
/8mL

2
) = 42(h

2
/8mL

2
). 
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Thus, the multiple of 2 2/8h mL  is 42. 

 

LEARN We summarize the ground-state configuration and the energies (in multiples 

of 2 2/8h mL ) in the chart below: 

 

nx ny nz ms energy 

1 1 1 –1/2, + 1/2 3 + 3 

1 1 2 –1/2, + 1/2 6 + 6 

1 2 1 –1/2, + 1/2 6 + 6 

2 1 1 –1/2, + 1/2 6 + 6 

   total 42 

  

24. (a) Using Eq. 39-20 we find that the lowest five levels of the rectangular corral (with 

this specific “aspect ratio”) have energies  

 

E1,1 = 1.25, E1,2 = 2.00, E1,3 = 3.25, E2,1 = 4.25, E2,2 = 5.00 

 

(all of these understood to be in “units” of h
2
/8mL

2
). It should be noted that the energy 

level we denote E2,2 actually corresponds to two energy levels (E2,2 and E1,4; they are 

degenerate), but that will not affect our calculations in this problem. The configuration 

that provides the lowest system energy higher than that of the ground state has the first 

three levels filled, the fourth one empty, and the fifth one half-filled: 

 

     first excited 1,1 1,2 1,3 2,22 2 2 2 1.25 2 2.00 2 3.25 5.00E E E E E         

 

which means (putting the “unit” factor back in) the energy of the first excited state is  

Efirst excited = 18.00(h
2
/8mL

2
). Thus, the multiple of 2 2/8h mL  is 18.00.  

 

(b) The configuration that provides the next higher system energy has the first two levels 

filled, the third one half-filled, and the fourth one filled: 

 

     second excited 1,1 1,2 1,3 2,12 2 2 2 1.25 2 2.00 3.25 2 4.25E E E E E         

 

which means (putting the “unit” factor back in) the energy of the second excited state is 

 

Esecond excited = 18.25(h
2
/8mL

2
). 

 

Thus, the multiple of 2 2/8h mL  is 18.25.  

 

(c) Now, the configuration that provides the next higher system energy has the first two 

levels filled, with the next three levels half-filled: 
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   third excited 1,1 1,2 1,3 2,1 2,22 2 2 1.25 2 2.00 3.25 4.25 5.00E E E E E E           

 

which means (putting the “unit” factor back in) the energy of the third excited state is 

Ethird excited = 19.00(h
2
/8mL

2
). Thus, the multiple of 2 2/8h mL  is 19.00.  

 

(d) The energy states of this problem and Problem 40-22 are suggested below: 

 

__________________ third excited 19.00(h
2
/8mL

2
) 

 

 

 

__________________ second excited 18.25(h
2
/8mL

2
) 

 

__________________ first excited 18.00(h
2
/8mL

2
) 

 

 

 

__________________ ground state 17.25(h
2
/8mL

2
) 

 

25. (a) Promoting one of the electrons (described in Problem 40-21) to a not-fully 

occupied higher level, we find that the configuration with the least total energy greater 

than that of the ground state has the n = 1 and 2 levels still filled, but now has only one 

electron in the n = 3 level; the remaining two electrons are in the n = 4 level. Thus, 

 

E E E E E

h

mL

h

mL

h

mL

h

mL

h

mL

h

mL

first excited    


F
HG
I
KJ 

F
HG
I
KJ 
F
HG
I
KJ 

F
HG
I
KJ

   
F
HG
I
KJ 
F
HG
I
KJ

2 2 2

2
8

1 2
8

2
8

3 2
8

4

2 8 9 32
8

51
8

1 2 3 4

2

2

2
2

2

2
2

2

2
2

2

2

2

2

2

2

b g b g b g b g

b g .

 

 

Thus, the multiple of 2 2/8h mL  is 51.  

 

(b) Now, the configuration which provides the next higher total energy, above that found 

in part (a), has the bottom three levels filled (just as in the ground state configuration) and 

has the seventh electron occupying the n = 5 level: 

 

E E E E E

h

mL

h

mL

h

mL

h

mL

h

mL

h

mL

second excited    


F
HG
I
KJ 

F
HG
I
KJ 

F
HG
I
KJ 
F
HG
I
KJ

   
F
HG
I
KJ 
F
HG
I
KJ

2 2 2

2
8

1 2
8

2 2
8

3
8

5

2 8 18 25
8

53
8

1 2 3 5

2

2

2
2

2

2
2

2

2
2

2

2

2

2

2

2

b g b g b g b g

b g .

 

Thus, the multiple of 2 2/8h mL  is 53.  
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(c) The third excited state has the n = 1, 3, 4 levels filled, and the n = 2 level half-filled: 

 

E E E E E

h

mL

h

mL

h

mL

h

mL

h

mL

h

mL

third excited    


F
HG
I
KJ 
F
HG
I
KJ 

F
HG
I
KJ 

F
HG
I
KJ

   
F
HG
I
KJ 
F
HG
I
KJ

2 2 2

2
8

1
8

2 2
8

3 2
8

4

2 4 18 32
8

56
8

1 2 3 4

2

2

2
2

2

2
2

2

2
2

2

2

2

2

2

2

b g b g b g b g

b g .

 

 

Thus, the multiple of 2 2/8h mL  is 56.  

 

(d) The energy states of this problem and Problem 40-21 are suggested below: 

 

 

_______________________ third excited 56(h
2
/8mL

2
) 

 

_______________________ second excited 53(h
2
/8mL

2
) 

 

_______________________ first excited 51(h
2
/8mL

2
) 

 

 

_______________________ ground state 44(h
2
/8mL

2
) 

 

26. The energy levels are given by 

 
22 22 2

2 2 2

, , 2 2 2 28 8x y z

yx z
n n n x y z

x y z

nn nh h
E n n n

m L L L mL

 
       

 

. 

 

The Pauli principle requires that no more than two electrons be in the lowest energy level 

(at E1,1,1 = 3(h
2
/8mL

2
) with nx = ny = nz = 1), but — due to their degeneracies — as many 

as six electrons can be in the next three levels,  

 

E' = E1,1,2 = E1,2,1 = E2,1,1 = 6(h
2
/8mL

2
) 

 

E'' = E1,2,2 = E2,2,1 = E2,1,2 = 9(h
2
/8mL

2
) 

  

E''' = E1,1,3 = E1,3,1 = E3,1,1 = 11(h
2
/8mL

2
).  

 

Using Eq. 39-21, the level above those can only hold two electrons:  

 

E2,2,2 = (2
2
 + 2

2
 + 2

2
)(h

2
/8mL

2
) = 12(h

2
/8mL

2
). 

 

And the next higher level can hold as much as twelve electrons and has energy  

 

E'''' = 14(h
2
/8mL

2
). 
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(a) The configuration that provides the lowest system energy higher than that of the 

ground state has the first level filled, the second one with one vacancy, and the third one 

with one occupant: 

   first excited 1,1,12 5 2 3 5 6 9E E E E        

 

which means (putting the “unit” factor back in) the energy of the first excited state is 

 

Efirst excited = 45(h
2
/8mL

2
). 

 

Thus, the multiple of 2 2/8h mL  is 45. 

 

(b) The configuration that provides the next higher system energy has the first level filled, 

the second one with one vacancy, the third one empty, and the fourth one with one 

occupant: 

   second excited 1,1,12 5 2 3 5 6 11E E E E        

 

which means (putting the “unit” factor back in) the energy of the second excited state is 

Esecond excited = 47(h
2
/8mL

2
). Thus, the multiple of 2 2/8h mL  is 47. 

 

(c) Now, there are a couple of configurations that provide the next higher system energy. 

One has the first level filled, the second one with one vacancy, the third and fourth ones 

empty, and the fifth one with one occupant: 

 

   third excited 1,1,12 5 2 3 5 6 12E E E E        

 

which means (putting the “unit” factor back in) the energy of the third excited state is 

Ethird excited = 48(h
2
/8mL

2
). Thus, the multiple of 2 2/8h mL  is 48. The other configuration 

with this same total energy has the first level filled, the second one with two vacancies, 

and the third one with one occupant. 

 

(d) The energy states of this problem and Problem 40-25 are suggested below: 

 

__________________ third excited 48(h
2
/8mL

2
) 

 

__________________ second excited 47(h
2
/8mL

2
) 

 

 

 

__________________ first excited 45(h
2
/8mL

2
) 

 

 

 

__________________ ground state 42(h
2
/8mL

2
) 
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27. THINK The four quantum numbers ( , , , sn m m ) identify the quantum states of 

individual electrons in a multi-electron atom. 

 

EXPRESS A lithium atom has three electrons. The first two electrons have quantum 

numbers (1, 0, 0, 1/ 2 ). All states with principal quantum number n = 1 are filled. The 

next lowest states have n = 2.  

 

The orbital quantum number can have the values   0  or 1 and of these, the   0  states 

have the lowest energy. The magnetic quantum number must be m  0  since this is the 

only possibility if   0 . The spin quantum number can have either of the values 

ms  
1
2

 or  1
2

. Since there is no external magnetic field, the energies of these two states 

are the same.  

 

ANALYZE (a) Therefore, in the ground state, the quantum numbers of the third electron 

are either 1
2

2, 0, 0, sn m m     or 1
2

2, 0, 0, .sn m m      That is, 

( , , , )sn m m = (2,0,0, +1/2) and (2,0,0,1/2). 

 

(b) The next lowest state in energy is an n = 2,   1 state. All n = 3 states are higher in 

energy. The magnetic quantum number can be m   1 0 1, , ;or  the spin quantum 

number can be ms   1
2

1
2

or . Thus, ( , , , )sn m m = (2,1,1, +1/2), (2,1,1,1/2), 

(2,1,0, 1/ 2) , (2,1,0, 1/ 2) , (2,1, 1, 1/ 2)   and (2,1, 1, 1/ 2)  .  

 

LEARN No two electrons can have the same set of quantum numbers, as required by the 

Pauli exclusion principle. 

 

28. For a given value of the principal quantum number n, there are n possible values of 

the orbital quantum number  , ranging from 0 to n – 1. For any value of  , there are 

2 1  possible values of the magnetic quantum number m , ranging from  to   . 

Finally, for each set of values of   and m , there are two states, one corresponding to the 

spin quantum number ms  
1
2

 and the other corresponding to ms  
1
2

. Hence, the total 

number of states with principal quantum number n is 

 
1

0

2 (2 1).
n

N




   

Now 
1 1

0 0

2 2 2 ( 1) ( 1),
2

n n n
n n n

 

 

       

 

since there are n terms in the sum and the average term is (n –  1)/2. Furthermore, 

 
1

0

1 .
n

n




  
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Thus, N n n n n   2 1 2 2b g . 

 

29. The total number of possible electron states for a given quantum number n is 

 

 
1 1

2

0 0

2 2 1 2 .
n n

nN N n
 

 

      

 

Thus, if we ignore any electron-electron interaction, then with 110 electrons, we would 

have two electrons in the 1n   shell, eight in the 2n   shell, 18 in the 3n   shell, 32 in 

the 4n   shell, and the remaining 50 ( 110 2 8 18 32     ) in the 5n   shell. The 50 

electrons would be placed in the subshells in the order , , , , , ,...s p d f g h  and the resulting 

configuration is 2 6 10 14 185 5 5 5 5s p d f g . Therefore, the spectroscopic notation for the 

quantum number  of the last electron would be g.  

 

Note, however, when the electron-electron interaction is considered, the ground-state 

electronic configuration of darmstadtium actually is 14 9 1[Rn]5 6 7f d s , where 

 

  2 2 6 2 6 10 2 6 10 14 2 6 10 2 6Rn :1 2 2 3 3 3 4 4 4 4 5 5 5 6 6s s p s p d s p d f s p d s p  

 

represents the inner-shell electrons. 

 

30. When a helium atom is in its ground state, both of its electrons are in the 1s state. 

Thus, for each of the electrons, n = 1,  = 0, and m  = 0. One of the electrons is spin up 

ms  
1
2b g  while the other is spin down ms  

1
2b g . Thus,  

 

(a) the quantum numbers ( , , , )sn m m  for the spin-up electron are (1,0,0,+1/2), and  

 

(b) the quantum numbers ( , , , )sn m m  for the spin-down electron are (1,0,0,1/2). 

 

31. The first three shells (n = 1 through 3), which can accommodate a total of 2 + 8 + 18 

= 28 electrons, are completely filled. For selenium (Z = 34) there are still 34 –  28 = 6 

electrons left. Two of them go to the 4s subshell, leaving the remaining four in the 

highest occupied subshell, the 4p subshell.  

 

(a) The highest occupied subshell is 4p. 

 

(b) There are four electrons in the 4p subshell. 

 

For bromine (Z = 35) the highest occupied subshell is also the 4p subshell, which 

contains five electrons.  

 

(c) The highest occupied subshell is 4p. 
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(d) There are five electrons in the 4p subshell. 

 

For krypton (Z = 36) the highest occupied subshell is also the 4p subshell, which now 

accommodates six electrons.  

 

(e) The highest occupied subshell is 4p. 

 

(f) There are six electrons in the 4p subshell. 

 

32. (a) The number of different 's is 2 1 3,m    ( 1,0, 1m   ) and the number of 

different 'ssm  is 2, which we denote as +1/2 and . The allowed states are 

1 1 2 2( , , , )s sm m m m = (1, +1/2, 1, 1/2), (1, +1/2, 0, +1/2), (1, +1/2, 0, 1/2), (1, +1/2,1, 

+1/2), (1, +1/2,1,1/2), (1,1/2, 0, +1/2), (1,1/2, 0,1/2), (1,1/2,1, +1/2), 

(1,1/2,1,1/2), (0, +1/2, 0,1/2), (0, +1/2,1, +1/2), (0, +1/2,1,1/2), (0,1/2,1, 

+ 1/2), (0,1/2,1,1/2), (1, +1/2,1,1/2). So, there are 15 states. 

 

(b) There are six states disallowed by the exclusion principle, in which both electrons 

share the quantum numbers: 1 1 2 2( , , , )s sm m m m =(1, +1/2, 1, 1/2), (1, 1/2, 1,1/2), (0, 

+1/2, 0, 1/2), (0,1/2,,1/2), (1, +1/2,1,1/2), (1,1/2,1,1/2). So, if the 

Pauli exclusion principle is not applied, then there would be 15 + 6 = 21 allowed states. 

 

33. The kinetic energy gained by the electron is eV, where V is the accelerating potential 

difference. A photon with the minimum wavelength (which, because of E = hc/, 

corresponds to maximum photon energy) is produced when all of the electron’s kinetic 

energy goes to a single photon in an event of the kind depicted in Fig. 40-15. Thus, with 

1240eV nm,hc     

eV
hc

 


 
min .

. .
1240

010
124 104eV nm

nm
eV  

 

Therefore, the accelerating potential difference is V = 1.24  10
4
 V = 12.4 kV. 

 

34. With hc = 1240 eV·nm = 1240 keV·pm, for the K line from iron, the energy 

difference is 

1240keV pm
6.42 keV.

193pm

hc
E




     

 

We remark that for the hydrogen atom the corresponding energy difference is 

E12 2 1
136

1

2

1

1
10  

F
HG

I
KJ . .eV eVb g  

 

That this difference is much greater in iron is due to the fact that its atomic nucleus 

contains 26 protons, exerting a much greater force on the K- and L-shell electrons than 

that provided by the single proton in hydrogen. 
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35. THINK X-rays are produced when a solid target (silver in this case) is bombarded 

with electrons whose kinetic energies are in the keV range. 

  

EXPRESS The wavelength is min 0/ ,hc K   where K0 is the initial kinetic energy of the 

incident electron. 

 

ANALYZE (a) With hc = 1240 eV nm , we obtain 

 

2

min 3

0

1240eV nm
3.54 10 nm 35.4pm .

35 10 eV

hc

K


     


 

 

(b) A K photon results when an electron in a target atom jumps from the L-shell to the 

K-shell. The energy of this photon is  

 

E = 25.51 keV – 3.56 keV = 21.95 keV 

and its wavelength is  



K = /hc E  = (1240 eV nm )/(21.95  10
3
 eV) = 5.65  10

– 2
 nm = 56.5 pm. 

 

(c) A K photon results when an electron in a target atom jumps from the M-shell to the 

K-shell. The energy of this photon is 25.51 keV – 0.53 keV = 24.98 keV and its 

wavelength is  



K = (1240 eV nm )/(24.98  10
3
 eV) = 4.96  10

– 2
 nm = 49.6 pm. 

 

LEARN Note that the cut-off wavelength min is characteristic of the incident electrons, 

not of the target material. 

 

36. (a) We use mineV hc   (see Eq. 40-23 and Eq. 38-4). With hc = 1240 eV·nm = 1240 

keV·pm, the mean value of min  is 

min

1240keV pm
24.8pm .

50.0keV

hc

eV



    

 

(b) The values of  for the K and K lines do not depend on the external potential and are 

therefore unchanged. 

 

37. Suppose an electron with total energy E and momentum p spontaneously changes into 

a photon. If energy is conserved, the energy of the photon is E and its momentum has 

magnitude E/c. Now the energy and momentum of the electron are related by 

 

     
2 222 2 2 2E pc mc pc E mc     . 
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Since the electron has nonzero mass, E/c and p cannot have the same value. Hence, 

momentum cannot be conserved. A third particle must participate in the interaction, 

primarily to conserve momentum. It does, however, carry off some energy. 

 

38. From the data given in the problem, we calculate frequencies (using Eq. 38-1), take 

their square roots, look up the atomic numbers (see Appendix F), and do a least-squares 

fit to find the slope: the result is 5.02  10
7
 with the odd-sounding unit of a square root of 

a hertz. We remark that the least squares procedure also returns a value for the y-intercept 

of this statistically determined “best-fit” line; that result is negative and would appear on 

a graph like Fig. 40-17 to be at about – 0.06 on the vertical axis. Also, we can estimate 

the slope of the Moseley line shown in Fig. 40-17: 

 

( . . )
. ./195 050 10

40 11
50 10

9
7 1 2


 

Hz
Hz

1/2

 

 

39. THINK The frequency of an x-ray emission is proportional to (Z – 1)
2
, where Z is the 

atomic number of the target atom. 

 

EXPRESS The ratio of the wavelength Nb for the K line of niobium to the wavelength 

Ga for the K line of gallium is given by 

 

 Nb Ga Ga Nb  Z Z1 1
2 2b g b g , 

 

where ZNb is the atomic number of niobium (41) and ZGa is the atomic number of gallium 

(31). Thus,    
2 2

Nb Ga 30 40 9 16 0.563     . 

 

LEARN The frequency of the K line is given by Eq. 40-26: 

 

 15 2(2.46 10  Hz)( 1)f Z   . 

 

40. (a) According to Eq. 40-26, f Z ( ) ,1 2  so the ratio of energies is (using Eq. 38-2) 

 
2

1
.

1

f Z

f Z

 
  
   

 

  

(b) We refer to Appendix F. Applying the formula from part (a) to Z = 92 and Z' = 13, we 

obtain 
2 2

1 92 1
57.5 .

1 13 1

E f Z

E f Z

    
      
       

 

 

(c) Applying this to Z = 92 and Z' = 3, we obtain 
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2

392 1
2.07 10 .

3 1

E

E

 
     

 

 

41. We use Eq. 36-31, Eq. 39-6, and hc = 1240 eV·nm = 1240 keV·pm. Letting 

2d m mhc Esin /    , where  = 74.1°, we solve for d: 

 

(1)(1240 keV nm)
80.3 pm .

2 sin 2(8.979 keV 0.951 keV)(sin 74.1 )

mhc
d

E 


  

  
 

 

42. Using hc = 1240 eV·nm = 1240 keV·pm, the energy difference EL – EM for the x-ray 

atomic energy levels of molybdenum is 

 

1240 keV pm 1240 keV pm
2.2 keV .

63.0 pm 71.0 pm
L M

L M

hc hc
E E E

 
       

 
 

 

43. (a) An electron must be removed from the K-shell, so that an electron from a higher 

energy shell can drop. This requires an energy of 69.5 keV. The accelerating potential 

must be at least 69.5 kV. 

 

(b) After it is accelerated, the kinetic energy of the bombarding electron is 69.5 keV. The 

energy of a photon associated with the minimum wavelength is 69.5 keV, so its 

wavelength is 

2

min 3

1240 eV nm
1.78 10 nm 17.8 pm .

69.5 10 eV
 

   


 

 

(c) The energy of a photon associated with the K line is 69.5 keV – 11.3 keV = 58.2 keV 

and its wavelength is  



K = (1240 eV·nm)/(58.2  10
3
 eV) = 2.13  10

– 2
 nm = 21.3 pm. 

 

(d) The energy of a photon associated with the K line is  

 

E = 69.5 keV –  2.30 keV = 67.2 keV 

 

and its wavelength is, using hc = 1240 eV·nm, 

 

K = hc/E = (1240 eV·nm)/(67.2  10
3
 eV) = 1.85  10

– 2
 nm = 18.5 pm. 

 

44. (a) and (b) Let the wavelength of the two photons be 1 and 2    . Then, 

 

1 1

   
hc hc

eV
  

  


 
   

2

1

2 4
.

2

   




      



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Here,  = 130 pm and  

 

0 = hc/eV = 1240 keV·pm/20 keV = 62 pm, 

 

where we have used hc = 1240 eV·nm = 1240 keV·pm. We choose the plus sign in the 

expression for 1 (since 1 > 0) and obtain 

 

   
2

1

130pm 62pm 2 130pm 62pm 4
87 pm

2 62 pm


   
  . 

 

The energy of the electron after its first deceleration is 

 

1

1240 keV pm
20 keV 5.7 keV .

87 pm
i

hc
K K


    


 

 

(c) The energy of the first photon is 
1

1240 keV pm
14 keV

87 pm

hc
E




   . 

 

(d) The wavelength associated with the second photon is 

 
2

2 pm pm 2.2 10 pm .         

 

(e) The energy of the second photon is 
2 2

2

1240 keV pm
5.7 keV.

2.2 10 pm

hc
E




  


 

 

45. The initial kinetic energy of the electron is K0 = 50.0 keV. After the first collision, the 

kinetic energy is K1 = 25 keV; after the second, it is K2 = 12.5 keV; and after the third, it 

is zero.  

 

(a) The energy of the photon produced in the first collision is 50.0 keV – 25.0 keV =  

25.0 keV. The wavelength associated with this photon is 

 

2

3

1240eV nm
4.96 10 nm 49.6 pm

25.0 10 eV

hc

E
 
    


 

 

where we have used hc = 1240 eV·nm. 

 

(b) The energies of the photons produced in the second and third collisions are each 

12.5 keV  and their wavelengths are 

 

2

3

1240eV nm
9.92 10 nm 99.2pm .

12.5 10 eV
 
   


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46. The transition is from n = 2 to n = 1, so Eq. 40-26 combined with Eq. 40-24 yields 

 

f
m e

h
Ze

F
HG
I
KJ 
F
HG

I
KJ 

4

0

2 3 2 2

2

8

1

1

1

2
1


( )  

 

so that the constant in Eq. 40-27 is 

 

C
m e

h

e  
3

32
4 9673 10

4

0

2 3

7 1 2


. /Hz  

 

using the values in the next-to-last column in the table in Appendix B (but note that the 

power of ten is given in the middle column). 

 

We are asked to compare the results of Eq. 40-27 (squared, then multiplied by the 

accurate values of h/e found in Appendix B to convert to x-ray energies) with those in the 

table of K energies (in eV) given at the end of the problem. We look up the 

corresponding atomic numbers in Appendix F.  

 

(a) For Li, with Z = 3, we have  

 

 
34

2
2 2 7 1/2 2

theory 19

6.6260688 10 J s
( 1) 4.9673 10 Hz (3 1) 40.817eV.

1.6021765 10 J/eV

h
E C Z

e





 
     


 

 

The percentage deviation is 

 

 
theory exp

exp

40.817 54.3
percentage deviation 100 100 24.8% 25%.

54.3

E E

E

   
            

 

 

In subsequent calculations, we use the steps outlined above. 

 

(b) For Be, with Z = 4, the percentage deviation is –15%. 

 

(c) For B, with Z = 5, the percentage deviation is –11%. 

 

(d) For C, with Z = 6, the percentage deviation is –7.9%. 

 

(e) For N, with Z = 7, the percentage deviation is –6.4%. 

 

(f) For O, with Z = 8, the percentage deviation is –4.7%. 

 

(g) For F, with Z = 9, the percentage deviation is –3.5%. 

 

(h) For Ne, with Z = 10, the percentage deviation is –2.6%. 



 

 

1739 

 

(i) For Na, with Z = 11, the percentage deviation is –2.0%. 

 

(j) For Mg, with Z = 12, the percentage deviation is –1.5%. 

 

Note that the trend is clear from the list given above: the agreement between theory and 

experiment becomes better as Z increases. One might argue that the most questionable 

step in Section 40-10 is the replacement e Z e4 2 41 b g  and ask why this could not 

equally well be e Z e4 2 49 .b g  or  
24 4.8 .e Z e   For large Z, these subtleties would 

not matter so much as they do for small Z, since Z –   Z for Z >> . 

 

47. Let the power of the laser beam be P and the energy of each photon emitted be E. 

Then, the rate of photon emission is 

 

   
   

3 6

16 1

34 8

5.0 10 W 0.80 10 m
2.0 10 s .

6.63 10 J s 2.998 10 m s

P P P
R

E hc hc





 





 
     

  
 

 

48. The Moon is a distance R = 3.82  10
8
 m from Earth (see Appendix C). We note that 

the “cone” of light has apex angle equal to 2. If we make the small angle approximation 

(equivalent to using Eq. 36-14), then the diameter D of the spot on the Moon is 

 

     8 9

3
2 3.82 10 m 1.22 600 10 m1.22

2 2 4.7 10 m 4.7km.
0.12m

D R R
d




  
      

 
 

 

49. Let the range of frequency of the microwave be f. Then the number of channels that 

could be accommodated is 

 

N
f

 
 

 

 



10

2 998 10 450 650

10
21 10

8 1 1

7

MHz

m s nm nm

MHz

.
. .

c h b g b g
 

 

The higher frequencies of visible light would allow many more channels to be carried 

compared with using the microwave. 

 

50. From Eq. 40-29, N2/N1 = 
 2 1E E kT

e
 

. We solve for T: 

 

     
42 1

23 15 13
1 2

3.2eV
1.0 10 K.

ln 1.38 10 J K ln 2.5 10 6.1 10

E E
T

k N N 


   

  
 

 

51. THINK The number of atoms in a state with energy E is proportional to e
– E/kT

, where 

T is the temperature on the Kelvin scale and k is the Boltzmann constant.  
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EXPRESS Thus, the ratio of the number of atoms in the thirteenth excited state to the 

number in the eleventh excited state is  

 
13

13 11

11

/
( )13

/

11

,
E kT

E E kT E kT

E kT

n e
e e

n e


  


    

 

where E= E13 – E11 is the difference in the energies:  

 

E = E13 –  E11 = 2(1.2 eV) = 2.4 eV. 

 

ANALYZE For the given temperature, kT = (8.62  10
– 2

 eV/K)(2000 K) = 0.1724 eV. 

Hence, 

n

n
e13

11

2 4 0 1724 79 0 10   . . . .  

 

LEARN The 13th excited state has higher energy than the 11th excited state. Therefore, 

we expect fewer atoms to be in the 13th excited state. 

 

52. The energy of the laser pulse is  

 

 6 6(2.80 10  J/s)(0.500 10  s) 1.400 JpE P t       . 

 

Since the energy carried by each photon is  

 

 
34 8

19

9

(6.63 10  J s)(2.998 10 m/s)
4.69 10 J

424 10 m

hc
E








  
   


, 

 

the number of photons emitted in each pulse is 

 

18

19 

1.400J
3.0 10 photons.

4.69 10 J

pE
N

E 
   


 

 

With each atom undergoing stimulated emission only once, the number of atoms 

contributed to the pulse is also 183.0 10 . 

 

53. Let the power of the laser beam be P and the energy of each photon emitted be E. 

Then, the rate of photon emission is 

 

   
   

3 9

15 1

34 8

2.3 10 W 632.8 10 m
7.3 10 s .

6.63 10 J s 2.998 10 m s

P P P
R

E hc hc

 





 
     

   
 

 



 

 

1741 

54. According to Sample Problem — “Population inversion in a laser,” the population 

ratio at room temperature is Nx/N0 = 1.3  10
– 38

. Let the number of moles of the lasing 

material needed be n; then N0 = nNA, where NA is the Avogadro constant. Also Nx = 10. 

We solve for n: 

n
N

N

x

A





 

 
 13 10

10

13 10 6 02 10
13 10

38 38 23

15

. . .
. .c h c hc h mol  

 

55. (a) If t is the time interval over which the pulse is emitted, the length of the pulse is  

 

L = ct = (3.00  10
8
 m/s)(1.20  10

– 11
 s) = 3.60  10

– 3
 m. 

 

(b) If Ep is the energy of the pulse, E is the energy of a single photon in the pulse, and N 

is the number of photons in the pulse, then Ep = NE. The energy of the pulse is  

 

Ep = (0.150 J)/(1.602  10
– 19

 J/eV) = 9.36  10
17

 eV 

 

and the energy of a single photon is E = (1240 eV·nm)/(694.4 nm) = 1.786 eV. Hence, 

 

N
E

E

p
 


 

9 36 10

1786
524 10

17
17.

.
. .

eV

eV
photons  

 

56. Consider two levels, labeled 1 and 2, with E2 > E1. Since T = – |T | < 0, 

 

N

N
e e e

E E kT E E k T E E k T2

1

2 1 2 1 2 1 1   
     b g c h

.  

 

Thus, N2 > N1; this is population inversion. We solve for T: 

 

T T
E E

k N N
   


 

 
  



2 1

2 1
5

52 26

1 0100
2 75 10

ln

.

ln .
.b g c h b g

eV

8.62 10 eV K
K.  

 

57. (a) We denote the upper level as level 1 and the lower one as level 2. From N1/N2 =  
 2 1E E kT

e
 

 we get (using hc = 1240 eV·nm) 

 

   1 2 20

1 2 2 5

16

1240eV nm
4.0 10 exp

(580nm)(8.62 10 eV/K)(300K)

5.0 10 1,

E E kT hc kTN N e N e
   





 
     

 

  

 

  

so practically no electron occupies the upper level. 

 

(b) With N1 = 3.0  10
20

 atoms emitting photons and N2 = 1.0  10
20

 atoms absorbing 

photons, then the net energy output is 
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     
   34 8

20

1 2 photon 1 2 9

6.63 10 J s 2.998 10 m s
2.0 10

580 10 m

68J.

hc
E N N E N N





  
     

 



 

 

58. For the nth harmonic of the standing wave of wavelength  in the cavity of width L 

we have n = 2L, so n + n = 0. Let n = ±1 and use  = 2L/n to obtain 

 

 

 

2

12

7

533 nm
1.8 10 m 1.8 pm.

2 2 8.0 10 nm

n

n n L

  
  

  
        

 
 

 

59. For stimulated emission to take place, we need a long-lived state above a short-lived 

state in both atoms. In addition, for the light emitted by A to cause stimulated emission of 

B, an energy match for the transitions is required. The above conditions are fulfilled for 

the transition from the 6.9 eV state (lifetime 3 ms) to 3.9 eV state (lifetime 3 s) in A, and 

the transition from 10.8 eV (lifetime 3 ms) to 7.8 eV (lifetime 3 s) in B. Thus, the 

energy per photon of the stimulated emission of B is 10.8 eV 7.8 eV 3.0 eV  . 

 

60. (a) The radius of the central disk is 

 

1.22 (1.22)(3.50 cm)(515 nm)
7.33 m.

3.00 mm

f
R

d



    

 

(b) The average power flux density in the incident beam is 

 

5 2

2 2

4(5.00W)
7.07 10 W/m .

/ 4 (3.00mm)

P

d
  

 
 

 

(c) The average power flux density in the central disk is 

 

10 2

2 2

(0.84) (0.84)(5.00W)
2.49 10 W/m .

m)

P

R 
  

 
 

 

61. (a) If both mirrors are perfectly reflecting, there is a node at each end of the crystal. 

With one end partially silvered, there is a node very close to that end. We assume nodes 

at both ends, so there are an integer number of half-wavelengths in the length of the 

crystal. The wavelength in the crystal is c = /n, where  is the wavelength in a vacuum 

and n is the index of refraction of ruby. Thus N(/2n) = L, where N is the number of 

standing wave nodes, so 

   5

9

2 1.75 0.0600 m2
3.03 10 .

694 10 m

nL
N

 
   


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(b) Since  = c/f, where f is the frequency, N = 2nLf/c and N = (2nL/c)f. Hence, 

 




f
c N

nL
 


 

2

2 998 10 1

2 175 0 0600
143 10

8

9
.

. .
.

m s

m
Hz.

c hb g
b gb g  

 

(c) The speed of light in the crystal is c/n and the round-trip distance is 2L, so the round-

trip travel time is 2nL/c. This is the same as the reciprocal of the change in frequency. 

 

(d) The frequency is  

 

f = c/ = (2.998  10
8
 m/s)/(694  10

– 9
 m) = 4.32  10

14
 Hz 

 

and the fractional change in the frequency is  

 

f/f = (1.43  10
9
 Hz)/(4.32  10

14
 Hz) = 3.31  10

– 6
. 

 

62. The energy carried by each photon is  

 

 
34 8

19

9

(6.63 10  J s)(2.998 10 m/s)
2.87 10 J

694 10 m

hc
E








  
   


. 

 

Now, the photons emitted by the Cr ions in the excited state can be absorbed by the ions 

in the ground state. Thus, the average power emitted during the pulse is  

 

 
19 19

61 0

6

( ) (0.600 0.400)(4.00 10 )(2.87 10  J)
1.1 10  J/s

2.00 10  s

N N E
P

t





   
   

 
 

 

or 61.1 10  W . 

 

63. Due to spin degeneracy ( 1/ 2sm   ), each state can accommodate two electrons. 

Thus, in the energy-level diagram shown, two electrons can be placed in the ground state 

with energy 2 2

1 3( /8 )E h mL , six can occupy the “triple state” with 2 2

2 6( /8 )E h mL , 

and so forth. With 22 electrons in the system, the lowest energy configuration consists of 

two electrons with 2 2

1 3( /8 )E h mL , six electrons with 2 2

2 6( /8 ),E h mL  six electrons 

with 2 2

3 9( /8 ),E h mL  six electrons with 2 2

4 11( /8 ),E h mL  and two electrons with 
2 2

5 12( /8 )E h mL . Thus, we find the ground-state energy of the 22-electron system to be 
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 

ground 1 2 3 4 5

2 2 2 2 2

2 2 2 2 2

2

2

2

2

2 6 6 6 2

3 6 9 11 12
2 6 6 6 2

8 8 8 8 8

(2)(3) (6)(6) (6)(9) (6)(11) (2)(12)
8

186 .
8

E E E E E E

h h h h h

mL mL mL mL mL

h

mL

h

mL

    

         
             

         

 
      

 

 
  

 

 

 

Thus, the multiple of 2 2/8h mL  is 186.  

 

64. (a) In the lasing action the molecules are excited from energy level E0 to energy level 

E2. Thus the wavelength  of the sunlight that causes this excitation satisfies 

 

E E E
hc

  2 0


,  

 

which gives (using hc = 1240 eV·nm) 

 

 
hc

E E2 0

31240

0 289 0
4 29 10







 

eV nm

eV
nm = 4.29 m.

.
.   

 

(b) Lasing occurs as electrons jump down from the higher energy level E2 to the lower 

level E1. Thus the lasing wavelength ' satisfies 

 

    


E E E
hc

2 1


,  

which gives 

4

2 1

1240 eV nm
1.00 10 nm 10.0 m.

0.289 eV 0.165 eV

hc

E E
 


     

 
 

 

(c) Both  and ' belong to the infrared region of the electromagnetic spectrum. 

 

65. (a) Using hc = 1240 eV·nm,  

 

 
1 2

1 1 1 1
1240eV nm 2.13meV .

588.995nm 589.592nm
E hc

 

   
         

  
 

 

(b) From E = 2BB (see Fig. 40-10 and Eq. 40-18), we get 

 

B
E

B

 











2

213 10

2 5788 10
18

3

5

.

.
.

eV

eV T
Tc h  
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66. (a) The energy difference between the two states 1 and 2 was equal to the energy of 

the photon emitted. Since the photon frequency was f = 1666 MHz, its energy was given 

by  

hf = (4.14  10
– 15

 eV·s)(1666 MHz) = 6.90  10
– 6

 eV. 

Thus, 
6

2 1 6.90 10 eV 6.90 eV.E E hf       

 

(b) The emission was in the radio region of the electromagnetic spectrum. 

 

67. Letting eV = hc/min (see Eq. 40-23 and Eq. 38-4), we get 

 

min

1240nm eV 1240pm keV 1240pmhc

eV eV eV V


 
     

 

where V is measured in kV. 

 

68. (a) The distance from the Earth to the Moon is dem = 3.82  10
8
 m (see Appendix C). 

Thus, the time required is given by 

 

t
d

c

em 





2 2 382 10

2 998 10
2 55

8

8

.

.
. .

m

m s
s

c h
 

 

(b) We denote the uncertainty in time measurement as t and let 2des = 15 cm. Then, 

since dem  t, t/t = dem/dem. We solve for t: 

 




t
t d

d

em

em

 


  
2 55 015

2 382 10
50 10

8

10
. .

.
. .

s m

m
s

b gb g
c h  

 

(c) The angular divergence of the beam is 

 

 
3 3

1 1 4

8

1.5 10 1.5 10
2 tan 2 tan (4.5 10 )

3.82 10emd
       
       

  
. 

 

69. THINK The intensity at the target is given by I = P/A, where P is the power output 

of the source and A is the area of the beam at the target. We want to compute I and 

compare the result with 10
8
 W/m

2
.  

 

EXPRESS The laser beam spreads because diffraction occurs at the aperture of the laser. 

Consider the part of the beam that is within the central diffraction maximum. The angular 

position of the edge is given by sin  = 1.22/d, where  is the wavelength and d is the 

diameter of the aperture. At the target, a distance D away, the radius of the beam is 
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tan .r D   Since  is small, we may approximate both sin and tan by , in radians. 

Then,  

r = D = 1.22D/d. 

 

ANALYZE (a) Thus, we find the intensity to be  

 

 

   

   

262
25

2 22
3 6

5.0 10 W 4.0m
2.1 10 W m ,

1.22 1.22 3000 10 m 3.0 10 m

P Pd
I

r D 


    
      

 

 

 

not great enough to destroy the missile. 

 

(b) We solve for the wavelength in terms of the intensity and substitute I = 1.010
8
 W/m

2
: 

 
6

7

3 8 2

4.0m 5.0 10 W
1.40 10 m 140nm.

1.22 1.22(3000 10 m) (1.0 10 W/m )

d P

D I


     

   
 

 

LEARN The wavelength corresponds to the x-rays on the electromagnetic spectrum. 

 

70. (a) From Fig. 40-14 we estimate the wavelengths corresponding to the K line to be 

 = 63.0 pm. Using hc = 1240 eV·nm = 1240 keV·pm, we have 

 

E = (1240 keV·pm)/(63.0 pm) = 19.7 keV 20 keV . 

 

(b) For Kwith  = 70.0 pm, 
1240keV pm

17.7keV 18 keV
70.0pm

hc
E




    . 

 

(c) Both Zr and Nb can be used, since E < 18.00 eV < E and E < 18.99 eV < E. 

According to the hint given in the problem statement, Zr is the best choice. 

 

(d) Nb is the second best choice. 

 

71. The principal quantum number n must be greater than 3. The magnetic quantum 

number m  can have any of the values – 3, – 2, – 1, 0, +1, +2, or +3. The spin quantum 

number can have either of the values  1
2

or  1
2

. 

 

72. For a given shell with quantum number n the total number of available electron states 

is 2n
2
. Thus, for the first four shells (n = 1 through 4) the numbers of available states are 

2, 8, 18, and 32 (see Appendix G). Since 2 + 8 + 18 + 32 = 60 < 63, according to the 

“logical” sequence the first four shells would be completely filled in an europium atom, 

leaving 63 – 60 = 3 electrons to partially occupy the n = 5 shell. Two of these three 

electrons would fill up the 5s subshell, leaving only one remaining electron in the only 

partially filled subshell (the 5p subshell). In chemical reactions this electron would have 

the tendency to be transferred to another element, leaving the remaining 62 electrons in 
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chemically stable, completely filled subshells. This situation is very similar to the case of 

sodium, which also has only one electron in a partially filled shell (the 3s shell). 

 

73. THINK One femtosecond (fs) is equal to 1510 s.  

 

EXPRESS The length of the pulse’s wave train is given by L = ct, where t is the 

duration of the laser. Thus, the number of wavelengths contained in the pulse is 

 

.
L c t

N



 


 

 

ANALYZE (a) With = 500 nm and t = 1510 10 s, we have 

 
8 15

9

(3.0 10 m/s)(10 10 s)
6.0.

500 10 m

L
N





 
  
 

 

 

(b) We solve for X from 10 fm/1 m = 1 s/X: 

 

X 



 

 
 

1 1

10 10

1

10 10 315 10
32 10

15 15 7

6
s m

m

s

s y
y

b gb g
c hc h.

. .  

 

LEARN Femtosecond lasers have important applications in areas such as micro-

machining and optical data storage.  

 

74. One way to think of the units of h is that, because of the equation E = hf and the fact 

that f is in cycles/second, then the “explicit” units for h should be J·s/cycle. Then, since 

2 rad/cycle is a conversion factor for cycles radians ,   h 2  can be thought of as 

the Planck constant expressed in terms of radians instead of cycles. Using the precise 

values stated in Appendix B, 

 
34 34

34

19

16

6.62606876 10 J s 1.05457 10 J s
1.05457 10 J s

2 2 1.6021765 10 J eV

6.582 10 eV s.

h  






   
     

  

  

 

 

75. Without the spin degree of freedom the number of available electron states for each 

shell would be reduced by half. So the values of Z for the noble gas elements would 

become half of what they are now: Z = 1, 5, 9, 18, 27, and 43. Of this set of numbers, the 

only one that coincides with one of the familiar noble gas atomic numbers (Z = 2, 10, 18, 

36, 54, and 86) is 18. Thus, argon would be the only one that would remain “noble.” 

 

76. (a) The value of  satisfies   21 L    , so  743 10L   . 
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(b) The number is 2 + 1  2(3  10
74

) = 6  10
74

. 

 

(c) Since 

     
max

min 74

1 1 1
cos 1 1

2 2 3 101 1

m
      

 
 

 

or cos ~
min min     1 2 1 10 62 74 , we have  

 

min
~    10 3 6 174 38 rad . 

 

The correspondence principle requires that all the quantum effects vanish as  0 . In 

this case  L  is extremely small so the quantization effects are barely existent, with 

min
~ ~ 10 038 rad . 

 

77. We use eV = hc/min (see Eq. 40-23 and Eq. 38-4): 

 

   19 3 12

34min

8

1.60 10 C 40.0 10 eV 31.1 10 m
6.63 10 J s .

2.998 10 m s

eV
h

c


 


  

    


 

 

78. Using hc = 1240 eV·nm, we find the energy difference to be 

 

 
1 1 1 1

1240eV nm 0.049eV .
500nm 510nmA B

E hc
 

   
         

  
 

 

79. (a) Using / ,E V r    we find the electric field to be 

 

 
2

3 2 3

0 0

1 3 1

4 2 2 4

V Ze r Ze r
E

r r r R R r R 

     
           

     
 

 

(b) The electric field at r R  vanishes: 
2 3

0

1
( ) 0.

4

Ze R
E r R

R R

 
    

 
 Since V = 0 

outside the sphere, we conclude that the electric field is zero in the region .r R  

 

(c) At r R , the electric potential is  
2

3

0

1 3
( ) 0

4 2 2

Ze R
V r R

R R R

 
     

 
 

 

The electric potential outside the sphere is also zero.  
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Chapter 41 
 

 

1. According to Eq. 41-9, the Fermi energy is given by 

 

E
h

m
nF 

F
HG

I
KJ

3

16 2

2 3 2
2 3



/

/  

 

where n is the number of conduction electrons per unit volume, m is the mass of an 

electron, and h is the Planck constant. This can be written EF = An
2/3

, where 

 
2/3 2/32 34 2

38 2 2

31

3 3 (6.626 10 J s)
5.842 10 J s / kg .

9.109 10 kg16 2 16 2

h
A

m 






    
       

   
 

 

Since 2 21 J 1 kg m /s ,   the units of A can be taken to be m
2
·J. Dividing by 

191.602 10 J/eV,  we obtain 19 23.65 10 m eV.A     

 

2. Equation 41-5 gives 

 
3/ 2

1/ 2

3

8 2
( )

m
N E E

h


  

 

for the density of states associated with the conduction electrons of a metal. This can be 

written 
1/ 2( )N E CE  

where 

 

3/ 2 31 3/2
56 3/2 3 3

3 34 3

27 3 2/3

8 2 8 2 (9.109 10 kg)
1.062 10 kg / J s

(6.626 10 J s)

6.81 10 m (eV) .

m
C

h

  



 


    

 

  

 

Thus, 
1/ 2 27 3 2/3 1/2 28 3 1( ) 6.81 10 m (eV) (8.0eV) 1.9 10 m eV .N E CE              

 

This is consistent with that shown in Fig. 41-6. 

 

3. The number of atoms per unit volume is given by n d M / , where d is the mass 

density of copper and M is the mass of a single copper atom. Since each atom contributes 

one conduction electron, n is also the number of conduction electrons per unit volume. 

Since the molar mass of copper is 63.54g / mol,A   

 
23 1 22/ (63.54g / mol)/(6.022 10 mol ) 1.055 10 gAM A N       . 
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Thus, 

n 


   


 8 96

1055 10
8 49 10 8 49 10

22

22 3 28.

.
. . .

g / cm

g
cm m

3
3  

 

4. Let E1 = 63 meV + EF and E2 = – 63 meV + EF. Then according to Eq. 41-6, 

 

P
e eE E kT xF

1

1

1

1

11





( )/
 

 

where x E E kTF ( ) /1 . We solve for e
x
: 

 

e
P

x     
1

1
1

0 090
1

91

91 .
. 

Thus, 

2 1
2 ( ) / ( ) / 1

1 1 1 1
0.91,

1 1 1 (91/ 9) 1F FE E kT E E kT x
P

e e e
    

    
   

 

 

where we use E2 –  EF = – 63 meV = EF –  E1 = – (E1 –  EF). 

 

5. (a) Equation 41-5 gives 

 
3/ 2

1/ 2

3

8 2
( )

m
N E E

h


  

 

for the density of states associated with the conduction electrons of a metal. This can be 

written 
1/ 2( )N E CE  

where 

 
3/ 2 31 3/2

56 3/2 3 3

3 34 3

8 2 8 2 (9.109 10 kg)
1.062 10 kg / J s .

(6.626 10 J s)

m
C

h

  




    

 
 

 

(b) Now, 2 21J 1kg m /s   (think of the equation for kinetic energy K mv 1
2

2 ), so 1 kg =  

1 J·s
2
·m

– 2
. Thus, the units of C can be written as 

 

( ) ( )/ /J s m J s J m2 2 3 3/2         3 2 3 2 3 3 . 

This means 

 

C           ( . )( . . ./1062 10 1602 10 681 1056 3 19 27 3 3 2J m J / eV) m eV3/2 3/2  

 

(c) If E = 5.00 eV, then 

 
27 3 3/2 1/ 2 28 1 3( ) (6.81 10 m eV )(5.00eV) 1.52 10 eV m .N E           
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6. We note that n = 8.43  10
28

 m
– 3

 = 84.3 nm
– 3

. From Eq. 41-9, 

 

E
hc

m c
nF

e

 



0121 0121 1240

511 10
84 3 7 0

2

2

2 3

3

3 2 3. ( ) . (
( . ) ./ /eV nm)

eV
nm eV

2

 

 

where we have used 1240eV nm.hc    

 

7. THINK This problem deals with occupancy probability P(E), the probability that an 

energy level will be occupied by an electron.  

 

EXPRESS A plot of P(E) as a function of E is shown in Fig. 41-7. From the figure, we 

see that at T = 0 K, P(E) is unity for ,FE E  where EF is the Fermi energy, and zero 

for .FE E  On the other hand, the probability that a state with energy E is occupied at 

temperature T is given by 

P E
e E E kTF

( )
( )/




1

1
 

 

where k is the Boltzmann constant and EF is the Fermi energy. 

 

ANALYZE (a) At absolute temperature T = 0, the probability is zero that any state with 

energy above the Fermi energy is occupied. 

 

(b) Now, E –  EF = 0.0620 eV, and 

  
5( ) / (0.0620eV) /(8.62 10 eV/ K)(320 K) 2.248FE E kT     . 

 

We find P(E) to be 

2.248

1
( ) 0.0955.

1
P E

e
 


 

 

See Appendix B for the value of k. 

 

LEARN When ,FE E  the occupancy probability is ( ) 0.5.FP E   Thus, one may think 

of the Fermi energy as the energy of a quantum state that has a probability 0.5 of being 

occupied by an electron. 

 

8. We note that there is one conduction electron per atom and that the molar mass of gold 

is 197g mol/ . Therefore, combining Eqs. 41-2, 41-3, and 41-4 leads to 

 

n 


 


( . / )( / )

( / )
. .

19 3 10

197
590 10

3 6 3 3
28g cm cm m

g mol) / (6.02 10 mol
m

23 1

3  
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9. THINK According to Appendix F the molar mass of silver is M = 107.870 g/mol and 

the density is  = 10.49 g/cm
3
. Silver is monovalent. 

 

EXPRESS The mass of a silver atom is, dividing the molar mass by Avogadro’s number:  

 
3

25

0 23 1

107.870 10 kg/mol
1.791 10 kg .

6.022 10 molA

M
M

N







   


 

 

Since silver is monovalent, there is one valence electron per atom (see Eq.  

41-2).  

 

ANALYZE (a) The number density is 

 
3 3

28 3

25

0

10.49 10 kg/m
5.86 10 m .

1.791 10 kg
n

M

 





   


 

 

This is the same as the number density of conduction electrons. 

 

(b) The Fermi energy is 

 

 

2 34 2
2/3 28 3 2/3

31

19

0.121 (0.121)(6.626 10 J s)
(5.86 10 m )

9.109 10 kg

8.80 10 J 5.49eV.

F

h
E n

m








 
   



  

 

 

(c) Since E mvF F 1
2

2 , 

v
E

m
F

F 



 





2 2 880 10

9109 10
139 10

19

31

6( .

.
.

J)

kg
m / s .  

 

(d) The de Broglie wavelength is 

 

 
34

10

31 6

6.626 10 J s
5.22 10 m.

(9.109 10 kg)(1.39 10 m/s)F

h

mv






 
    

 
 

 

LEARN Once the number density of conduction electrons is known, the Fermi energy 

for a particular metal can be calculated using Eq. 41-9.  

 

10. The probability Ph that a state is occupied by a hole is the same as the probability the 

state is unoccupied by an electron. Since the total probability that a state is either 

occupied or unoccupied is 1, we have Ph + P = 1. Thus, 

 

P
e

e

e e
h E E kT

E E kT

E E kT E E kTF

F

F F
 











  
1

1

1 1

1

1( )/

( )/

( )/ ( )/
.  
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11. We use  
1

( ) /1/ 2

O( ) ( ) ( ) 1FE E kT
N E N E P E CE e


     , 

where  
3/ 2 31 3/2

56 3/2 3 3

3 34 3

27 3 3/ 2

8 2 8 2 (9.109 10 kg)
1.062 10 kg / J s

(6.626 10 J s)

6.81 10 m (eV) .

m
C

h

  



 


    

 

  

 

 

(a) At E = 4.00 eV, 

 

 
 

27 3 3/ 2 1/ 2

28 3 1

O 5

6.81 10 m (eV) (4.00eV)
1.36 10 m eV .

exp (4.00eV 7.00eV) /[(8.62 10 eV / K)(1000K)] 1
N

 

 



 
   

  
 

 

(b) At E = 6.75 eV, 

 

 
 

27 3 3/ 2 1/ 2

28 3 1

O 5

6.81 10 m (eV) (6.75eV)
1.68 10 m eV .

exp (6.75eV 7.00eV) /[(8.62 10 eV / K)(1000K)] 1
N

 

 



 
   

  
 

 

(c) Similarly, at E = 7.00 eV, the value of No(E) is 9.01  10
27

 m
– 3

· eV
– 1

. 

 

(d) At E = 7.25 eV, the value of No(E) is 9.56  10
26

 m
– 3

· eV
– 1

. 

 

(e) At E = 9.00 eV, the value of No(E) is 1.71  10
18

 m
– 3

· eV
– 1

. 

 

12. The molar mass of carbon is m = 12.01115 g/mol and the mass of the Earth is Me = 

5.98  10
24

 kg. Thus, the number of carbon atoms in a diamond as massive as the Earth is 

N = (Me/m)NA, where NA is the Avogadro constant. From the result of Sample Problem – 

“Probability of electron excitation in an insulator,” the probability in question is given by 

 
24

/ / 23 93

A

43 42

5.98 10 kg
(6.02 10 / mol)(3 10 )

12.01115g / mol

9 10 10 .

g gE kT E kTe
e

M
P N N e

m

  

 

  
      

   

  

 

 

13. (a) Equation 41-6 leads to 

 

1 5 1
ln ( 1) 7.00eV (8.62 10 eV / K)(1000K)ln 1 6.81eV.

0.900
FE E kT P   

        
 

 

 

(b)  1/ 2 27 3 3/ 2 1/2 28 3 1( ) 6.81 10 m eV (6.81eV) 1.77 10 m eV .N E CE            
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(c) 28 3 1 28 3 1

O( ) ( ) ( ) (0.900)(1.77 10 m eV ) 1.59 10 m eV .N E P E N E            

 

14. (a) The volume per cubic meter of sodium occupied by the sodium ions is 

 
23 12 3

3

Na

(971kg)(6.022 10 / mol)(4 / 3)(98.0 10 m)
0.100m ,

(23.0g / mol)
V

  
   

 

so the fraction available for conduction electrons is 1 100 1 0100 0 900   ( / . ) . .VNa

3m , 

or 90.0%. 

 

(b) For copper, we have 

 
23 12 3

3

Cu

(8960kg)(6.022 10 / mol)(4 / 3)(135 10 m)
0.1876m .

(63.5g / mol)
V


  

   

 

Thus, the fraction is 1 100 1 0876 0124   ( / . ) . .VCu

3m , or 12.4%. 

 

(c) Sodium, because the electrons occupy a greater portion of the space available. 

 

15. THINK The Fermi-Dirac occupation probability is given by P e E kT

FD  1 1/ /c h , and 

the Boltzmann occupation probability is given by /

B

E kTP e .  

 

EXPRESS Let f be the fractional difference. Then 

 

f
P P

P

e

e

E kT

e

E kT

E kT











B FD

B







/

/

/

.
1

1  

Using a common denominator and a little algebra yields f
e

e

E kT

E kT












/

/
.

1
 The solution for 

e
– E/kT

 is 

e
f

f

E kT 


 / .
1

 

 

We take the natural logarithm of both sides and solve for T. The result is 

 

T
E

k
f

f





F
HG
I
KJ



ln

.

1

 

 

ANALYZE (a) Letting f equal 0.01, we evaluate the expression for T: 
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19
3

23

(1.00eV)(1.60 10 J/eV)
2.50 10 K.

0.010
(1.38 10 J/K)ln

1 0.010

T





  

 
  

 

 

 

(b) We set f equal to 0.10 and evaluate the expression for T: 

 
19

3

23

(1.00eV)(1.60 10 J/eV)
5.30 10 K.

0.10
(1.38 10 J/K)ln

1 0.10

T





  

 
  

 

 

 

LEARN The fractional difference as a function of T is plotted below: 

 

 
 

With a given E, the difference increases with T. 

 

16. (a) The ideal gas law in the form of Eq. 20-9 leads to p = NkT/V = n0kT. Thus, we 

solve for the molecules per cubic meter: 

 
5

25 3

0 23

(1.0atm)(1.0 10 Pa/atm)
2.7 10 m .

(1.38 10 J/K)(273K)

p
n

kT






   


 

 

(b) Combining Eqs. 41-2, 41-3, and 41-4 leads to the conduction electrons per cubic 

meter in copper: 
3 3

28 3

27

8.96 10 kg/m
8.43 10 m .

(63.54)(1.67 10 kg)
n 




  


 

 

(c) The ratio is 0/n n  (8.43  10
28

 m
– 3

)/(2.7  10
25

 m
– 3

) = 3.1  10
3
. 

 

(d) We use davg = n
– 1/3

. For case (a), davg, 0 = (2.7  10
25

 m
– 3

)
– 1/3

 = 3.3 nm. 

 

(e) For case (b), davg = (8.43  10
28

 m
– 3

)
– 1/3

 = 0.23 nm. 
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17. Let N be the number of atoms per unit volume and n be the number of free electrons 

per unit volume. Then, the number of free electrons per atom is n/N. We use the result of 

Problem 41-1 to find n: EF = An
2/3

, where A = 3.65  10
–19

 m
2
 · eV. Thus, 

 
3/ 2 3/ 2

29 3

19 2

11.6eV
1.79 10 m .

3.65 10 m eV

FE
n

A





   
      

    
 

 

If M is the mass of a single aluminum atom and d is the mass density of aluminum, then 

N = d/M. Now,  

 

M = (27.0 g/mol)/(6.022  10
23

 mol
–1

) = 4.48  10
–23

 g, 

 

so  

N = (2.70 g/cm
3
)/(4.48  10

– 23
 g) = 6.03  10

22
 cm

– 3
 = 6.03  10

28
 m

– 3
. 

 

Thus, the number of free electrons per atom is 

 
29 3

28 3

1.79 10 m
2.97 3.

6.03 10 m

n

N






  


 

 

18. The mass of the sample is  

 

 3 3(9.0 g/cm )(40.0 cm ) 360 gm V   , 

which is equivalent to  

360 g
6.0 mol

60 g/mol

m
n

M
   . 

 

Since the atoms are bivalent (each contributing two electrons), there are 12.0 moles of 

conduction electrons, or  

 
23 24

A (12.0 mol)(6.02 10 / mol) 7.2 10N nN     . 

 

19. (a) We evaluate P(E) =   
1/( 1)FE E kT

e


  for the given value of E, using 

 

kT 









( .

.
. .

1381 10

1602 10
0 02353

23

19

J / K)(273K)

J / eV
eV  

 

For E = 4.4 eV, (E –  EF)/kT = (4.4 eV –  5.5 eV)/(0.02353 eV) = – 46.25 and 

 

46.25

1
( ) 1.0.

1
P E

e
 


 

 

(b) Similarly, for E = 5.4 eV, P(E) = 0.986 0.99 . 
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(c) For E = 5.5 eV, P(E) = 0.50. 

 

(d) For E = 5.6 eV, P(E) = 0.014. 

 

(e) For E = 6.4 eV, P(E) = 2.447  10
– 17

2.4  10
– 17

. 

 

(f) Solving P = 1/(e
E/kT

 + 1) for e
E/kT

, we get 

 

e
P

E kT / . 
1

1  

 

Now, we take the natural logarithm of both sides and solve for T. The result is 

 

   

19
2

231 1
0.16

(5.6eV 5.5eV)(1.602 10 J/eV)
699K 7.0 10 K.

ln 1 (1.381 10 J/K)ln 1
P

E
T

k





  
    

  
 

 

20. The probability that a state with energy E is occupied at temperature T is given by 

 

P E
e E E kTF

( )
( )/




1

1
 

 

where k is the Boltzmann constant and EF is the Fermi energy. Now,  

 

6.10 eV 5.00 eV 1.10 eVFE E     

and  

5

1.10eV
8.51

(8.62 10 eV / K)(1500K)

FE E

kT 


 


, 

so 

4

8.51

1
( ) 2.01 10 .

1
P E

e

  


 

 

From Fig. 41-6, we find the density of states at 6.0 eV to be about 
28 3( ) 1.7 10 / m eV.N E     Thus, using Eq. 41-7, the density of occupied states is 

 

 28 3 4 24 3

O( ) ( ) ( ) (1.7 10 / m eV)(2.01 10 ) 3.42 10 / m eV.N E N E P E          

 

Within energy range of 0.0300 eVE   and a volume 8 35.00 10  m ,V    the number of 

occupied states is 

 

24 3 8 3

O

15

number
( ) (3.42 10 / m eV)(5.00 10  m )(0.0300 eV)

states

5.1 10 .

N E V E  
      

 

 
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21. (a) At T = 300 K, f
kT

EF

 


 


3

2

3 8 62 10

2 7 0
55 10

5
3( . /

( .
. .

eV K)(300K)

eV)
 

 

(b) At T = 1000 K, f
kT

EF

 


 


3

2

3 8 62 10

2 7 0
18 10

5
2( . /

( .
. .

eV K)(1000K)

eV)
 

 

(c) Many calculators and most math software packages (here we use MAPLE) have built-

in numerical integration routines. Setting up ratios of integrals of Eq. 41-7 and canceling 

common factors, we obtain 

frac
E e dE

E e dE

E E kT

E

E E kT

F

F

F












z
z

/ ( )

/ ( )

( )/

( )/

1

1
0

 

 

where k = 8.62  10
– 5

 eV/K. We use the Fermi energy value for copper (EF = 7.0 eV) and 

evaluate this for T = 300 K and T = 1000 K; we find frac = 0.00385 and frac = 0.0129, 

respectively. 

 

22. The fraction f of electrons with energies greater than the Fermi energy is 

(approximately) given in Problem 41-21: 

 

f
kT

EF


3 2/

 

 

where T is the temperature on the Kelvin scale, k is the Boltzmann constant, and EF is the 

Fermi energy. We solve for T: 

 

5

2 2(0.013)(4.70eV)
472 K.

3 3(8.62 10 eV / K)

FfE
T

k 
  


 

 

23. The average energy of the conduction electrons is given by 

 

E
n

EN E P E dEavg 
z1 0

( ) ( )  

 

where n is the number of free electrons per unit volume, N(E) is the density of states, and 

P(E) is the occupation probability. The density of states is proportional to E
1/2

, so we may 

write N(E) = CE
1/2

, where C is a constant of proportionality. The occupation probability 

is one for energies below the Fermi energy and zero for energies above. Thus, 

 

E
C

n
E dE

C

n
EF

EF

avg  z 3 2 5 2

0

2

5

/ / .  

Now 
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 1/ 2 3/ 2

0 0

2
( ) ( ) .

3

FE

F

C
n N E P E dE C E dE E



     

 

We substitute this expression into the formula for the average energy and obtain 

 

E
C

E
CE

EF

F

Favg 
F
HG
I
KJ
F
HG

I
KJ 

2

5

3

2

3

5

5 2

3 2

/

/
.  

 

24. From Eq. 41-9, we find the number of conduction electrons per unit volume to be 

 
3/ 2 3/ 23/ 2 2 6

2 2 2

3 28 3

4 3

( )16 2 16 2 16 2 (0.511 10 eV)(5.0 eV)

3 3 ( ) 3 (1240 eV  nm)

50.9 / nm 5.09 10 /m

8.4 10  mol/m .

e F e Fm E m c E
n

h hc

      
      

    

  

 

 

 

Since the atom is bivalent, the number density of the atom is 

 
4 3

atom / 2 4.2 10  mol/m .n n    

 

Thus, the mass density of the atom is 

 
4 3 5 3 3

atom (4.2 10  mol/m )(20.0 g/mol) 8.4 10 g/m 0.84 g/cm .n M        

 

25. (a) Using Eq. 41-4, the energy released would be 

 

19

avg 23

4

(3.1g) 3
(7.0eV)(1.6 10 J/eV)

(63.54g / mol)/(6.02 10 / mol) 5

1.97 10 J.

E NE  
   

  

 

 

 

(b) Keeping in mind that a watt is a joule per second, we have 

 
41.97 10 J

197s.
100J/s

E
t

P


    

 

26. Let the energy of the state in question be an amount E above the Fermi energy EF. 

Then, Eq. 41-6 gives the occupancy probability of the state as 

 

F F( ) / /

1 1
.

1 1
E E E kT E kT

P
e e  

 
 

 

We solve for E to obtain 
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E kT
P

 
F
HG
I
KJ   

F
HG

I
KJ   ln ( . .

1
1 138 10 1 91 1023 21J / K)(300K) ln

1

0.10
J ,  

 

which is equivalent to 5.7  10
– 2

 eV = 57 meV. 

 

27. (a) Combining Eqs. 41-2, 41-3, and 41-4 leads to the conduction electrons per cubic 

meter in zinc: 

 

n 


    2 7133

6537 10
131 10 131 10

23

23 29 3( . )

( .
. .

g / cm

g / mol) / (6.02 mol)
cm m .

3
3  

 

(b) From Eq. 41-9, 

 

 
2 34 2 29 3 2/3

2/3

31 19

0.121 0.121(6.63 10 J s) (1.31 10 m )
9.43eV.

(9.11 10 kg)(1.60 10 J / eV)
F

e

h
E n

m

 

 

  
  

 
 

 

(c) Equating the Fermi energy to 1
2

2m ve F  we find (using the mec
2
 value in Table 37-3) 

 

v
E c

m c
F

F

e

 



 

2 2 9 43 2 998 10

511 10
182 10

2

2

8

3

6( . )( . /
. /

eV m s)

eV
m s .

2

 

 

(d) The de Broglie wavelength is 

 

  
 

 






h

m ve F

6 63 10

911 10
0 40

34

31

.

( .
.

J s

kg)(1.82 10 m / s)
nm .

6
 

 

28. Combining Eqs. 41-2, 41-3, and 41-4, the number density of conduction electrons in 

gold is 

 

n 


   ( . / )( . / )

( / )
. . .

19 3 6 02 10

197
590 10 59 0

3 23
22 3 3g cm mol

g mol
cm nm  

 

Now, using 1240eV nm,hc    Eq. 41-9 leads to 

 
2 2

2/3 3 2/3

2 3

0.121( ) 0.121(1240eV nm)
(59.0nm ) 5.52eV .

( ) 511 10 eV
F

e

hc
E n

m c


  


 

 

29. Let the volume be v = 1.00  10
– 6

 m
3
. Then, 
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28 3 6 3 19

total avg avg

4

3
(8.43 10 m )(1.00 10 m ) (7.00eV)(1.60 10 J/eV)

5

5.71 10 J 57.1 kJ.

K NE n E    
      

 

  

 

 

30. The probability that a state with energy E is occupied at temperature T is given by 

 

P E
e E E kTF

( )
( )/




1

1
 

 

where k is the Boltzmann constant and  

 
2 34 2

2/3 28 3 2/3 19

31

0.121 0.121(6.626 10 J s)
(1.70 10 m ) 3.855 10 J

9.11 10 kg
F

e

h
E n

m


 



 
    


 

 

is the Fermi energy. Now,  

 
19 19 204.00 10  J 3.855 10  J 1.45 10  JFE E           

and  
20

23

1.45 10  J
5.2536

(1.38 10 J / K)(200K)

FE E

kT





 
 


, 

so 

3

5.2536

1
( ) 5.20 10 .

1
P E

e

  


 

 

Next, for the density of states associated with the conduction electrons of a metal, Eq. 41-

5 gives 

 

 

  

3/ 2 31 3/2
1/ 2

1/ 2 19

3 34 3

1/ 2
56 3/2 3 3 19

46 3

8 2 8 2 (9.109 10 kg)
( ) 4.00 10 J

(6.626 10 J s)

1.062 10 kg / J s 4.00 10 J

6.717 10 / m J

m
N E E

h

  







  

 

   

  

 

 

where we have used 1 kg =1 J·s
2
·m

– 2
 for unit conversion. Thus, using Eq. 41-7, the 

density of occupied states is 

 

 46 3 3 44 3

O( ) ( ) ( ) (6.717 10 / m J)(5.20 10 ) 3.49 10 / m J.N E N E P E          

 

Within energy range of 203.20 10  JE     and a volume 6 36.00 10  m ,V    the number 

of occupied states is 
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44 3 6 3 20

O

19

number
( ) (3.49 10 / m  J)(6.00 10  m )(3.20 10  J)

states

6.7 10 .

N E V E   
       

 

 

 

 

31. THINK The valence band and the conduction band are separated by an energy gap. 

 

EXPRESS Since the electron jumps from the conduction band to the valence band, the 

energy of the photon equals the energy gap between those two bands. The photon energy 

is given by hf = hc/, where f is the frequency of the electromagnetic wave and  is its 

wavelength.  

 

ANALYZE (a) Thus, Eg = hc/ and 

 

  
  


  





hc

Eg

( . / )

( .
.

6 63 10

55
2 26 10

34
7J s)(2.998 10 m s

eV)(1.60 10 J / eV)
m 226nm .

8

19
 

 

(b) These photons are in the ultraviolet portion of the electromagnetic spectrum. 

 

LEARN Note that photons from other transitions have a greater energy, so their waves 

have shorter wavelengths. 

 

32. Each arsenic atom is connected (by covalent bonding) to four gallium atoms, and 

each gallium atom is similarly connected to four arsenic atoms. The “depth” of their very 

nontrivial lattice structure is, of course, not evident in a flattened-out representation such 

as shown for silicon in Fig. 41-10.  

 

 
 

Still we try to convey some sense of this (in the [1, 0, 0] view shown — for those who 

might be familiar with Miller indices) by using letters to indicate the depth: A for the 

closest atoms (to the observer), b for the next layer deep, C for further into the page, d for 

the last layer seen, and E (not shown) for the atoms that are at the deepest layer (and are 

behind the A’s) needed for our description of the structure. The capital letters are used for 

the gallium atoms, and the small letters for the arsenic.  
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Consider the arsenic atom (with the letter b) near the upper left; it has covalent bonds 

with the two A’s and the two C’s near it. Now consider the arsenic atom (with the letter d) 

near the upper right; it has covalent bonds with the two C’s, which are near it, and with 

the two E’s (which are behind the A’s which are near :+). 

 

(a) The 3p, 3d, and 4s subshells of both arsenic and gallium are filled. They both have 

partially filled 4p subshells. An isolated, neutral arsenic atom has three electrons in the 4p 

subshell, and an isolated, neutral gallium atom has one electron in the 4p subshell. To 

supply the total of eight shared electrons (for the four bonds connected to each ion in the 

lattice), not only the electrons from 4p must be shared but also the electrons from 4s. The 

core of the gallium ion has charge q = +3e (due to the “loss” of its single 4p and two 4s 

electrons). 

 

(b) The core of the arsenic ion has charge q = +5e (due to the “loss” of the three 4p and 

two 4s electrons). 

 

(c) As remarked in part (a), there are two electrons shared in each of the covalent bonds. 

This is the same situation that one finds for silicon (see Fig. 41-10). 

 

33. (a) At the bottom of the conduction band E = 0.67 eV. Also EF = 0.67 eV/2 =  

0.335 eV. So the probability that the bottom of the conduction band is occupied is 

 

  6

F

5

1 1
1.5 10 .

0.67eV 0.335eV
exp 1 exp 1

(8.62 10 eV K)(290K)

P E
E E

kT





   
   

    
   

 

 

(b) At the top of the valence band E = 0, so the probability that the state is unoccupied is 

given by 

          5
F F 0 0.335eV 8.62 10 eV K 290K

6

1 1 1
1 1

1 1 1

1.5 10 .

E E kT E E kT
P E

e e e
      

 



    
  

 

 

 

34. (a) The number of electrons in the valence band is 

 

N N P E
N

e
v v

v

E E kTv
ev

F

 



b g b g 1

.  

 

Since there are a total of Nv states in the valence band, the number of holes in the valence 

band is 

   F F
hv ev

1
1 .

1 1v v

v
v v E E kT E E kT

N
N N N N

e e
  

 
     

  
 

 

Now, the number of electrons in the conduction band is 
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N N P E
N

e
c c

c

E E kTc
ec

F

 



b g b g 1

,  

Hence, from Nev = Nhc, we get 

N

e

N

e

v

E E kT

c

E E kTv c  



F Fb g b g1 1

.  

 

(b) In this case, F( )
1cE E kT

e


  and e
E E kTv 


( )F 1. Thus, from the result of part (a), 

 

   
,

E E E Ec F v F

c v

kT kT

N N

e e
  

  

 

or 
 2v c FE E E kT

v ce N N
 

 . We solve for EF: 

 

 
1 1

ln .
2 2c

v
F v

c

N
E E E kT

N

 
    

 
 

 

35. THINK Doping silicon with phosphorus increases the number of electrons in the 

conduction band.     

  

EXPRESS Sample Problem — “Doping silicon with phosphorus” gives the fraction of 

silicon atoms that must be replaced by phosphorus atoms. We find the number the silicon 

atoms in 1.0 g, then the number that must be replaced, and finally the mass of the 

replacement phosphorus atoms. The molar mass of silicon is SiM  28.086 g/mol, so the 

mass of one silicon atom is  

 

0,Si Si / Am M N  (28.086 g/mol)/(6.022  10
23

 mol
– 1

) = 4.66  10
– 23

 g 

 

and the number of atoms in 1.0 g is  

 

Si Si 0,Si/N m m  (1.0 g)/(4.66  10
– 23

 g) = 2.14  10
22

. 

 

According to the Sample Problem, one of every 5  10
6
 silicon atoms is replaced with a 

phosphorus atom. This means there will be  

 

PN  (2.14  10
22

)/(5  10
6
) = 4.29  10

15
 

 

phosphorus atoms in 1.0 g of silicon.  

 

ANALYZE The molar mass of phosphorus is PM  30.9758 g/mol so the mass of a 

phosphorus atom is  
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0,P P / Am M N   (30.9758 g/mol)/(6.022  10
– 23

 mol
– 1

) = 5.14  10
– 23

 g. 

 

The mass of phosphorus that must be added to 1.0 g of silicon is  

 

P P 0,Pm N m  (4.29  10
15

)(5.14  10
– 23

 g) = 2.2  10
– 7

 g. 

 

LEARN The phosphorus atom is a donor atom since it donates an electron to the 

conduction band. Semiconductors doped with donor atoms are called n-type 

semiconductors. 

 

36. (a) The Fermi level is above the top of the silicon valence band. 

 

(b) Measured from the top of the valence band, the energy of the donor state is  

 

E = 1.11 eV – 0.11 eV = 1.0 eV. 

 

We solve EF from Eq. 41-6: 

 

     
1

1 5 5ln 1 1.0eV 8.62 10 eV K 300K ln 5.00 10 1

0.744eV.

FE E kT P


               



 

 

(c) Now E = 1.11 eV, so 

 

        5

7

1.11eV 0.744eV 8.62 10 eV K 300K

1 1
7.13 10 .

1 1
FE E kT

P E
e e





   
 

   
 

 

 

37. (a) The probability that a state with energy E is occupied is given by 

 

P E
e

E E kTF
b g b g




1

1
 

 

where EF is the Fermi energy, T is the temperature on the Kelvin scale, and k is the 

Boltzmann constant. If energies are measured from the top of the valence band, then the 

energy associated with a state at the bottom of the conduction band is E = 1.11 eV. 

Furthermore,  

kT = (8.62  10
– 5

 eV/K)(300 K) = 0.02586 eV. 

 

For pure silicon, EF = 0.555 eV and  

 

(E – EF)/kT = (0.555 eV)/(0.02586 eV) = 21.46. 

Thus, 

P E
e

b g 


  1

1
4 79 10

21 46

10

.
. .  
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(b) For the doped semiconductor,  

 

(E – EF)/kT = (0.11 eV)/(0.02586 eV) = 4.254 

and 

P E
e

b g 


  1

1
140 10

4 254

2

.
. .  

 

(c) The energy of the donor state, relative to the top of the valence band, is 1.11 eV – 0.15 

eV = 0.96 eV. The Fermi energy is 1.11 eV – 0.11 eV = 1.00 eV. Hence,  

 

(E – EF)/kT = (0.96 eV – 1.00 eV)/(0.02586 eV) = – 1.547 

and 

P E
e

b g 





1

1
0824

1 547.
. .  

 

38. (a) The semiconductor is n-type, since each phosphorus atom has one more valence 

electron than a silicon atom. 

 

(b) The added charge carrier density is  

 

nP = 10
– 7

 nSi = 10
– 7

 (5  10
28

 m
– 3

) = 5  10
21

 m
– 3

. 

 

(c) The ratio is  

(5  10
21

 m
– 3

)/[2(5  10
15

 m
– 3

)] = 5  10
5
. 

 

Here the factor of 2 in the denominator reflects the contribution to the charge carrier 

density from both the electrons in the conduction band and the holes in the valence band. 

 

39. THINK The valence band and the conduction band are separated by an energy gap Eg. 

An electron must acquire Eg in order to make the transition to the conduction band.  

 

EXPRESS Since the energy received by each electron is exactly Eg, the difference in 

energy between the bottom of the conduction band and the top of the valence band, the 

number of electrons that can be excited across the gap by a single photon of energy E is 

 

 / .gN E E  

  

ANALYZE With Eg = 1.1 eV and E = 662 keV, we obtain    

 

N = (662  10
3
 eV)/(1.1 eV) = 6.0  10

5
. 

 

Since each electron that jumps the gap leaves a hole behind, this is also the number of 

electron-hole pairs that can be created. 

 

LEARN The wavelength of the photon is  
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 3

3

1240 nm eV
1.87 10  nm 1.87 pm

662 10  eV

hc

E
 
    


. 

 

40. (a) The vertical axis in the graph below is the current in nanoamperes: 

 

 
(b) The ratio is 

 

0 5
0.50V 8

0.50V

0 5

0.50eV
exp 1

(8.62 10 eV K)(300K)
2.5 10 .

0.50eV
exp 1

(8.62 10 eV K)(300K)

v

v

I
I

I
I








  
  

    
  

  
  

 

 

41. The valence band is essentially filled and the conduction band is essentially empty. If 

an electron in the valence band is to absorb a photon, the energy it receives must be 

sufficient to excite it across the band gap. Photons with energies less than the gap width 

are not absorbed and the semiconductor is transparent to this radiation. Photons with 

energies greater than the gap width are absorbed and the semiconductor is opaque to this 

radiation. Thus, the width of the band gap is the same as the energy of a photon 

associated with a wavelength of 295 nm. Noting that 1240eV nm,hc   we obtain 

 

gap

1240eV nm 1240eV nm
4.20eV.

295nm
E



 
    

 

42. Since (using 1240eV nmhc   ) 

 

photon

1240eV nm
8.86eV 7.6eV,

140nm

hc
E




     

 

the light will be absorbed by the KCI crystal. Thus, the crystal is opaque to this light. 
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43. We denote the maximum dimension (side length) of each transistor as max , the size of 

the chip as A, and the number of transistors on the chip as N. Then 2

max .A N  Therefore, 

 

  
2

2

5

max 6

1.0in. 0.875in. 2.54 10 m in.
1.3 10 m 13 m.

3.5 10

A

N





 

    


 

 

44. (a) According to Chapter 25, the capacitance is C = 0A/d. In our case  = 4.5, A = 

(0.50 m)
2
, and d = 0.20 m, so 

 

C
A

d
 


 



 


0

12 2

17
4 5 885 10 050

0 20
50 10

. . .

.
.

b gc hb gF m m

m
F.  

 

(b) Let the number of elementary charges in question be N. Then, the total amount of 

charges that appear in the gate is q = Ne. Thus, q = Ne = CV, which gives 

 

N
CV

e
 




 





50 10 10

16 10
31 10

17

19

2
. .

.
. .

F V

C

c hb g
 

 

45. THINK We differentiate the occupancy probability P(E) with respect to E to explore 

the properties of  P(E). 

 

EXPRESS The probability that a state with energy E is occupied at temperature T is 

given by 

P E
e E E kTF

( )
( )/




1

1
 

 

where k is the Boltzmann constant and EF is the Fermi energy. 

 

ANALYZE (a) The derivative of P(E) is 

 

( ) / ( ) /

( ) / ( ) /2 2

1 1 1
.

[ 1] [ 1]
F F

F F

E E kT E E kT

E E kT E E kT

dP d
e e

dE e dE e kT

 

 

 
 

 
 

 

For E = EF, we readily obtain the desired result: 

 

( ) /

( ) / 2

1 1 1
.

[ 1] 4
F F

E F

F

E E kT

E E kT
E E

dP
e

dE e kT kT







  


 

 

(b) The equation of a line may be written as y = m(x –  x0) where m = – 1/4kT is the slope, 

and x0 is the x-intercept (which is what we are asked to solve for). It is clear that P(EF) = 

1/2, so our equation of the line, evaluated at x = EF, becomes  
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1/2 = (– 1/4kT)(EF –  x0), 

 

which leads to x0 = EF + 2kT. 

 

LEARN The straight line can be rewritten as  

 

 
1 1

2 4
Fy E E

kT
   . 

 

A plot of P(E) (solid line) and y(E) (dashed line) in units of / .FE kT  The straight line 

passes the horizontal axis at E/EF = 3.  

 

 
 

46. (a) For copper, Eq. 41-10 leads to 

 

d

dT


          [ ] ( )( ) /Cu

1m K m K .2 10 4 10 8 108 3 11   

 

(b) For silicon, 

 

d

dT


          [ ] ( )( ) . /Si

1m K m K .3 10 70 10 21 103 3 2   

 

47. The description in the problem statement implies that an atom is at the center point C 

of the regular tetrahedron, since its four neighbors are at the four vertices. The side length 

for the tetrahedron is given as a = 388 pm. Since each face is an equilateral triangle, the 

“altitude” of each of those triangles (which is not to be confused with the altitude of the 

tetrahedron itself) is 1
2

3h a   (this is generally referred to as the “slant height” in the 

solid geometry literature). At a certain location along the line segment representing the 

“slant height” of each face is the center C' of the face. Imagine this line segment starting 

at atom A and ending at the midpoint of one of the sides. Knowing that this line segment 

bisects the 60° angle of the equilateral face, it is easy to see that C' is a distance 

AC a' / 3 . If we draw a line from C' all the way to the farthest point on the 
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tetrahedron (this will land on an atom we label B), then this new line is the altitude h of 

the tetrahedron. Using the Pythagorean theorem, 

 
2

2 2 2 2
( ) .

33

a
h a AC a a

 
     

 
 

 

Now we include coordinates: imagine atom B is on the +y axis at y h ab   2 3/ , and 

atom A is on the +x axis at / 3ax AC a  . Then point C' is the origin. The tetrahedron 

center point C is on the y axis at some value yc, which we find as follows: C must be 

equidistant from A and B, so 
2

2 2 22

3 3
b c a c c c

a
y y x y a y y

 
       

 
 

 

which yields y ac  / 2 6 . 

 

(a) In unit vector notation, using the information found above, we express the vector 

starting at C and going to A as 


r x y

a
ac a c   )  i + ( j =

a

3
i j .

2 6
 

 

Similarly, the vector starting at C and going to B is  

 

r y ybc b c

a  ( ) / j j
2

3 2 . 

Therefore, using Eq. 3-20, 

 
F

HG
I
KJ  

F
HG
I
KJ

 cos cos1 1 1

3

 

 
r r

r r

ac bc

ac bc

 

 

which yields  = 109.5° for the angle between adjacent bonds. 

 

(b) The length of vector 

rbc  (which is, of course, the same as the length of 


rac ) is 

 

3 388pm 3
| | 237.6 pm 238 pm.

2 2 2 2
bc

a
r      

 

We note that in the solid geometry literature, the distance a
2

3
2

 is known as the 

circumradius of the regular tetrahedron. 

 

48. According to Eq. 41-6, 
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P E E
e e e

F E E E kT E kT xF F
( )

( )/ /
 







 


 

1

1

1

1

1

1
 

where x E kT  / . Also, 

 

P E E
e e e

F E E E kT E kT xF F
( ) .

( )/ /
 







   


 

1

1

1

1

1

1
 

Thus, 

P E E P E E
e e

e e

e e
F F x x

x x

x x
( ) ( )

( )( )
.   







  

 







 

1

1

1

1

1 1

1 1
1  

 

A special case of this general result can be found in Problem 41-4, where E = 63 meV 

and  

P(EF + 63 meV) + P(EF –  63 meV) = 0.090 + 0.91 = 1.0. 

 

49. (a) Setting E = EF (see Eq. 41-9), Eq. 41-5 becomes 

 

N E
m m

h

h

m
nF( ) .

/

/
F
HG

I
KJ

8 2 3

16 2
3

1 3

1 3


 

 

Noting that 16 2 2 2 24 1 2 9 2 / /  so that the cube root of this is 2 2 23 2/  , we are able to 

simplify the above expression and obtain 

 

N E
m

h
nF( ) 

4
3

2

23   

 

which is equivalent to the result shown in the problem statement. Since the desired 

numerical answer uses eV units, we multiply numerator and denominator of our result by 

c
2
 and make use of the mc

2
 value for an electron in Table 37-3 as well as the value  

1240eV nmhc   : 

 

N E
mc

hc
n n nF( )

( )

(

(
( . )/ / /

F
HG

I
KJ 





F
HG

I
KJ   4

3
4 511 10

1240
3 411

2

2

23 1 3
3

23 1 3 2 1 1 3 
eV)

eV nm)
nm eV

2
 

 

which is equivalent to the value indicated in the problem statement. 

 

(b) Since there are 10
27

 cubic nanometers in a cubic meter, then the result of Problem 41-

3 may be written as 

n    8 49 10 84 928 3 3. . .m nm  

 

The cube root of this is n
1/3

  4.4/nm. Hence, the expression in part (a) leads to 

 
2 1 1 3 1 28 3 1( ) (4.11nm eV )(4.4nm ) 18nm eV 1.8 10 m eV .FN E               
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If we multiply this by 10
27

 m
3
/nm

3
, we see this compares very well with the curve in Fig. 

41-6 evaluated at 7.0 eV. 

 

50. If we use the approximate formula discussed in Problem 41-21, we obtain 

 

frac 
 


3 8 62 10 273

2 55
0 03

5( . /

( . )
. .

eV K)(961 K)

eV
 

 

The numerical approach is briefly discussed in part (c) of Problem 41-21. Although the 

problem does not ask for it here, we remark that numerical integration leads to a fraction 

closer to 0.02. 

 

51. We equate EF with 1
2

2m ve F  and write our expressions in such a way that we can make 

use of the electron mc
2
 value found in Table 37-3: 

 

v
E

m
c

E

mc
F

F F   


 
2 2

30 10
2 7 0

511 10
16 10

2

5

5

3( . / )
( .

.
. / .km s

eV)

eV
km s  

 

52. The numerical factor  
2/3

3

16 2
 is approximately equal to 0.121.  

 

53. We use the ideal gas law in the form of Eq. 20-9: 

 
28 3 23 8 3(8.43 10 m )(1.38 10 J/K)(300 K) 3.49 10 Pa 3.49 10 atm .p nkT           
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Chapter 42 
 

 

1. Kinetic energy (we use the classical formula since v is much less than c) is converted 

into potential energy (see Eq. 24-43). From Appendix F or G, we find Z = 3 for lithium 

and Z = 90 for thorium; the charges on those nuclei are therefore 3e and 90e, respectively. 

We manipulate the terms so that one of the factors of e cancels the “e” in the kinetic 

energy unit MeV, and the other factor of e is set to be 1.6  10
–19

 C. We note that 

01 4k   can be written as 8.99  10
9
 V·m/C. Thus, from energy conservation, we have 

 

   9 19V m
C1 2

6

8.99 10 3 1.6 10 C 90

3.00 10 eV

ekq q
K U r

K

  
   


 

 

which yields r = 1.3  10
– 13

 m (or about 130 fm). 

 

2. Our calculation is similar to that shown in Sample Problem — “Rutherford scattering 

of an alpha particle by a gold nucleus.” We set 

 

  0 Cu min5.30MeV= 1/ 4 /K U q q r    

 

and solve for the closest separation, rmin: 

 

    19 9

Cu Cu
min 6

0 0

14

2 29 1.60 10 C 8.99 10 V m/C

4 4 5.30 10 eV

1.58 10 m 15.8 fm.

eq q kq q
r

K K

 

 





  
  



  

 

 

We note that the factor of e in q = 2e was not set equal to 1.60  10
– 19

 C, but was 

instead allowed to cancel the “e” in the non-SI energy unit, electron-volt. 

 

3. Kinetic energy (we use the classical formula since v is much less than c) is converted 

into potential energy. From Appendix F or G, we find Z = 3 for lithium and Z = 110 for 

Ds; the charges on those nuclei are therefore 3e and 110e, respectively. From energy 

conservation, we have 

Li Ds

0

1

4

q q
K U

r
   

 

which yields  
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9 2 2 19 19

Li Ds

13

0
14

1 (8.99 10 N m C )(3 1.6 10 C)(110 1.6 10 C)

4 (10.2 MeV)(1.60 10  J/MeV)

4.65 10  m 46.5 fm.

q q
r

K

 





     
 



  

 

 

4. In order for the  particle to penetrate the gold nucleus, the separation between the 

centers of mass of the two particles must be no greater than  

 

r = rCu + r = 6.23 fm + 1.80 fm = 8.03 fm. 

 

Thus, the minimum energy K is given by 

 

    

Au Au

0

9 19

6

15

1

4

8.99 10 V m/C 2 79 1.60 10 C
28.3 10 eV.

8.03 10 m

q q kq q
K U

r r

e

 








  

  
  



 

 

We note that the factor of e in q = 2e was not set equal to 1.60  10
– 19

 C, but was 

instead carried through to become part of the final units. 

 

5. The conservation laws of (classical kinetic) energy and (linear) momentum determine 

the outcome of the collision (see Chapter 9). The final speed of the  particle is 

 

v
m m

m m
vf i










Au

Au

, 

 

and that of the recoiling gold nucleus is 

 

v
m

m m
vf iAu,

Au




2 



 . 

 

(a) Therefore, the kinetic energy of the recoiling nucleus is 

 

 

 
  

 

2

2 2 Au
Au, Au Au, Au 2

Au Au

2

2 41 1

2 2

4 197 u 4.00 u
5.00 MeV

4.00 u 197 u

0.390 MeV.

f f i i

m m m
K m v m v K

m m m m

 
 

 

 
   

  






 

 

(b) The final kinetic energy of the alpha particle is 

 



 

  

1775 

 

2 2

2 2Au Au

Au Au

2

1 1

2 2

4.00 u 197 u
5.00 MeV

4.00 u 197 u

4.61 MeV.

f f i i

m m m m
K m v m v K

m m m m

 
     

 

    
     

    

 
  

 



 

 

We note that K K Kaf f i Au,   is indeed satisfied. 

 

6. (a) The atomic number Z = 39 corresponds to the element yttrium (see Appendix F 

and/or Appendix G). 

 

(b) The atomic number Z = 53 corresponds to iodine. 

 

(c) A detailed listing of stable nuclides (such as the Web site http://nucleardata. 

nuclear.lu.se/nucleardata) shows that the stable isotope of yttrium has 50 neutrons (this 

can also be inferred from the Molar Mass values listed in Appendix F). 

 

(d) Similarly, the stable isotope of iodine has 74 neutrons. 

 

(e) The number of neutrons left over is 235 –  127 –  89 = 19. 

 

7. For 
55

Mn the mass density is 

 

      
17 3

3
1/315 23

0.055kg/mol
2.3 10 kg/m

4 / 3 1.2 10 m 55 6.02 10 / mol
m

M

V




   
   
 

. 

 

(b) For 
209

Bi,  

 

m

M

V
 

 
 



0 209

4 3 12 10 209 6 02 10
2 3 10

15 1 3 3
23

17.

/ . . /
. .

/

kg / mol

m mol
kg / m3

a f c ha f c h
 

 

(c) Since V r r A A  3

0

1 3 3/ ,c h  we expect m A V A A  / / const.  for all nuclides. 

 

(d) For 
55

Mn, the charge density is 

 

  

    

19

25 3

3
1/315

25 1.6 10 C
1.0 10 C/m .

4 / 3 1.2 10 m 55
q

Ze

V







   

  
 

 

 

(e) For 
209

Bi, the charge density is 
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q

Ze

V
 




 





83 16 10

4 3 12 10 209
8 8 10

19

15 1 3 3

24
a fc h

a f c ha f
.

/ .
. .

/

C

m
C / m3


 

 

Note that q Z V Z A / /  should gradually decrease since A > 2Z for large nuclides. 

 

8. (a) The mass number A is the number of nucleons in an atomic nucleus. Since m mp n  

the mass of the nucleus is approximately Amp. Also, the mass of the electrons is 

negligible since it is much less than that of the nucleus. So M Amp . 

 

(b) For 
1
H, the approximate formula gives  

 

M  Amp = (1)(1.007276 u) = 1.007276 u. 

 

The actual mass is (see Table 42-1) 1.007825 u. The percentage deviation committed is 

then  

 = (1.007825 u – 1.007276 u)/1.007825 u = 0.054%0.05%. 

 

(c) Similarly, for 
31

P,  = 0.81%. 

 

(d) For 
120

Sn,  = 0.81%. 

 

(e) For 
197

Au,  = 0.74%. 

 

(f) For 
239

Pu,  = 0.71%. 

 

(g) No. In a typical nucleus the binding energy per nucleon is several MeV, which is a bit 

less than 1% of the nucleon mass times c
2
. This is comparable with the percent error 

calculated in parts (b) – (f) , so we need to use a more accurate method to calculate the 

nuclear mass. 

 

9. (a) 6 protons, since Z = 6 for carbon (see Appendix F). 

 

(b) 8 neutrons, since A – Z = 14 – 6 = 8 (see Eq. 42-1). 

 

10. (a) Table 42-1 gives the atomic mass of 
1
H as m = 1.007825 u. Therefore, the mass 

excess for 
1
H is  

 = (1.007825 u –  1.000000 u)= 0.007825 u. 

 

(b) In the unit MeV/c
2
,  

 

 = (1.007825 u – 1.000000 u)(931.5 MeV/c
2
·u) = +7.290 MeV/c

2
. 

 

(c) The mass of the neutron is mn = 1.008665 u. Thus, for the neutron,  
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 = (1.008665 u – 1.000000 u) = 0.008665 u. 

 

(d) In the unit MeV/c
2
,  

 

 = (1.008665 u – 1.000000 u)(931.5 MeV/ c
2
·u) = +8.071 MeV/c

2
. 

 

(e) Appealing again to Table 42-1, we obtain, for 
120

Sn,  

 

 = (119.902199 u – 120.000000 u) = – 0.09780 u. 

 

(f) In the unit MeV/c
2
,  

 

 = (119.902199 u – 120.000000 u) (931.5 MeV/ c
2
·u) = – 91.10 MeV/c

2
. 

 

11. THINK To resolve the detail of a nucleus, the de Broglie wavelength of the probe 

must be smaller than the size of the nucleus.  

 

EXPRESS The de Broglie wavelength is given by  = h/p, where p is the magnitude of 

the momentum. Since the kinetic energy K of the electron is much greater than its rest 

energy, relativistic formulation must be used. The kinetic energy and the momentum are 

related by Eq. 37-54: 

2 22 .pc K Kmc   

 

 ANALYZE (a) With K = 200 MeV and mc
2
 = 0.511 MeV, we obtain 

 

pc K Kmc    2 2 2
2 200 2 200 0 511 200 5MeV MeV MeV MeV.a f a fa f. .  

 

Thus, 

6

6

1240 eV nm
6.18 10 nm 6.2 fm.

200.5 10 eV

hc

pc


     


 

 

(b) The diameter of a copper nucleus, for example, is about 8.6 fm, just a little larger than 

the de Broglie wavelength of a 200-MeV electron. To resolve detail, the wavelength 

should be smaller than the target, ideally a tenth of the diameter or less. 200-MeV 

electrons are perhaps at the lower limit in energy for useful probes. 

 

LEARN The more energetic the incident particle, the finer the details of the target that 

can be probed.  

 

12. (a) Since 0U  , the energy represents a tendency for the sphere to blow apart. 

 

(b) For 
239

Pu, Q = 94e and R = 6.64 fm. Including a conversion factor for J eV  we 

obtain 
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U
Q

r
 

  

 

F
HG

I
KJ

 



 

3

20

3 94 160 10 8 99 10

5 6 64 10

1

115 10

2

0

19
2

9

15 19

9



. .

.

.

C N m / C

m

eV

1.60 10 J

eV = 1.15GeV.

2 2c h c h
c h  

 

(c) Since Z = 94, the electrostatic potential per proton is 1.15 GeV/94 = 12.2 MeV/proton.  

 

(d) Since A = 239, the electrostatic potential per nucleon is 1.15 GeV/239 = 4.81 

MeV/nucleon.  

 

(e) The strong force that binds the nucleus is very strong. 

 

13. We note that the mean density and mean radius for the Sun are given in Appendix C. 

Since  = M/V where V r 3, we get r   1 3/ . Thus, the new radius would be 

 

r Rs
s
F
HG
I
KJ  



F
HG

I
KJ  





1 3

8

17

1 3

46 96 10
1410

2 10
13 10

/ /

. .m
kg / m

kg / m
m.

3

3c h  

 

14. The binding energy is given by  

 

  2

be AmH nE Zm A Z m M c       , 

 

where Z is the atomic number (number of protons), A is the mass number (number of 

nucleons), mH is the mass of a hydrogen atom, mn is the mass of a neutron, and AmM  is 

the mass of a 244

95Am  atom. In principle, nuclear masses should be used, but the mass of 

the Z electrons included in ZMH is canceled by the mass of the Z electrons included in 

AmM , so the result is the same. First, we calculate the mass difference in atomic mass 

units:  

 

m = (95)(1.007825 u) + (244 – 95)(1.008665 u) –  (244.064279 u) = 1.970181 u. 

 

Since 1 u is equivalent to 931.494013 MeV,  

 

Ebe = (1.970181 u)(931.494013 MeV/u) = 1835.212 MeV. 

 

Since there are 244 nucleons, the binding energy per nucleon is  

 

Eben = E/A = (1835.212 MeV)/244 = 7.52 MeV. 

 

15. (a) Since the nuclear force has a short range, any nucleon interacts only with its 

nearest neighbors, not with more distant nucleons in the nucleus. Let N be the number of 

neighbors that interact with any nucleon. It is independent of the number A of nucleons in 

the nucleus. The number of interactions in a nucleus is approximately NA, so the energy 
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associated with the strong nuclear force is proportional to NA and, therefore, proportional 

to A itself. 

 

(b) Each proton in a nucleus interacts electrically with every other proton. The number of 

pairs of protons is Z(Z –  1)/2, where Z is the number of protons. The Coulomb energy is, 

therefore, proportional to Z(Z –  1). 

 

(c) As A increases, Z increases at a slightly slower rate but Z
2
 increases at a faster rate 

than A and the energy associated with Coulomb interactions increases faster than the 

energy associated with strong nuclear interactions. 

 

16. The binding energy is given by  

 

  2

be EuH nE Zm A Z m M c       , 

 

where Z is the atomic number (number of protons), A is the mass number (number of 

nucleons), mH is the mass of a hydrogen atom, mn is the mass of a neutron, and EuM  is 

the mass of a 152

63Eu  atom. In principle, nuclear masses should be used, but the mass of 

the Z electrons included in ZMH is canceled by the mass of the Z electrons included in 

EuM , so the result is the same. First, we calculate the mass difference in atomic mass 

units:  

 

m = (63)(1.007825 u) + (152 –  63)(1.008665 u) –  (151.921742 u) = 1.342418 u. 

 

Since 1 u is equivalent to 931.494013 MeV,  

 

Ebe = (1.342418 u)(931.494013 MeV/u) = 1250.454 MeV. 

 

Since there are 152 nucleons, the binding energy per nucleon is  

 

Eben = E/A = (1250.454 MeV)/152 = 8.23 MeV. 

 

17. It should be noted that when the problem statement says the “masses of the proton 

and the deuteron are ” they are actually referring to the corresponding atomic masses 

(given to very high precision). That is, the given masses include the “orbital” electrons. 

As in many computations in this chapter, this circumstance (of implicitly including 

electron masses in what should be a purely nuclear calculation) does not cause extra 

difficulty in the calculation. Setting the gamma ray energy equal to Ebe, we solve for the 

neutron mass (with each term understood to be in u units): 

 

n d H 2

2.2233
2.013553212 1.007276467

931.502

1.0062769 0.0023868

E
m M m

c


     

 
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which yields mn = 1.0086637 u   1.0087 u. 

 

18. The binding energy is given by  

 

  2

be RfH nE Zm A Z m M c       , 

 

where Z is the atomic number (number of protons), A is the mass number (number of 

nucleons), mH is the mass of a hydrogen atom, mn is the mass of a neutron, and 
RfM  is 

the mass of a 259

104 Rf  atom. In principle, nuclear masses should be used, but the mass of 

the Z electrons included in ZMH is canceled by the mass of the Z electrons included in 

RfM , so the result is the same. First, we calculate the mass difference in atomic mass 

units:  

 

m = (104)(1.007825 u) + (259 –  104)(1.008665 u) –  (259.10563 u) = 2.051245 u. 

 

Since 1 u is equivalent to 931.494013 MeV,  

 

Ebe = (2.051245 u)(931.494013 MeV/u) = 1910.722 MeV. 

 

Since there are 259 nucleons, the binding energy per nucleon is  

 

Eben = E/A = (1910.722 MeV)/259 = 7.38 MeV. 

 

19. Let f24 be the abundance of 
24

Mg, let f25 be the abundance of 
25

Mg, and let f26 be the 

abundance of 
26

Mg. Then, the entry in the periodic table for Mg is  

 

24.312 = 23.98504f24 + 24.98584f25 + 25.98259f26. 

 

Since there are only three isotopes, f f f24 25 26 1   . We solve for f25 and f26. The second 

equation gives f f f26 24 251   . We substitute this expression and f24 = 0.7899 into the 

first equation to obtain  

 

24.312 =(23.98504)(0.7899) + 24.98584f25 + 25.98259–(25.98259)(0.7899) – 25.98259f25.  

 

The solution is f25 = 0.09303. Then,  

 

f26 = 1 –  0.7899 –  0.09303 = 0.1171. 78.99% 

 

of naturally occurring magnesium is 
24

Mg. 

 

(a) Thus, 9.303% is 
25

Mg. 

 

(b) 11.71% is 
26

Mg. 
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20. From Appendix F and/or G, we find Z = 107 for bohrium, so this isotope has N =  

A –  Z = 262 –  107 = 155 neutrons. Thus, 

 

 

       

2

H Bh

ben

107 1.007825u 155 1.008665u 262.1231u 931.5MeV u

262

nZm Nm m c
E

A

 
 

 


 

 

which yields 7.31 MeV per nucleon. 

 

21. THINK Binding energy is the difference in mass energy between a nucleus and its 

individual nucleons. 

 

EXPRESS If a nucleus contains Z protons and N neutrons, its binding energy is given by 

Eq. 42-7: 

 2 2 2

be ( ) ,H nE mc Mc Zm Nm M c       

 

where mH is the mass of a hydrogen atom, mn is the mass of a neutron, and M is the mass 

of the atom containing the nucleus of interest.  

 

ANALYZE (a) If the masses are given in atomic mass units, then mass excesses are 

defined by    2 21 , 1 ,H H n nm c m c      and   2.M A c    This means 

2 2 ,H Hm c c    2 2 ,n nm c c    and 2Mc   2.Ac  Thus,  

 

    2

be ,H n H nE Z N Z N A c Z N               

 

where A = Z + N is used.  

 

(b) For  79

197 Au ,  Z = 79 and N = 197 –  79 = 118. Hence, 

 

Ebe MeV MeV MeV MeV.    79 7 29 118 8 07 312 1560a fa f a fa f a f. . .  

 

This means the binding energy per nucleon is Eben MeV MeV. 1560 197 7 92a f / .  

 

LEARN Using mass excesses ( , ,H n  and ) instead of actual masses provides another 

convenient way of calculating the binding energy of a nucleus.  

 

22. (a) The first step is to add energy to produce 4 3He + H p , which — to make the 

electrons “balance” — may be rewritten as  4 3He H+ H1 . The energy needed is  

 

    3 1 4

2

1 H H He
3.01605u+1.00783u 4.00260u 931.5MeV/u

19.8MeV.

E m m m c     


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(b) The second step is to add energy to produce 3H H. n 2  The energy needed is  

 

    2 3

2

2 H H
2.01410u+1.00867 u 3.01605u 931.5MeV/u

6.26MeV.

nE m m m c     


  

 

(c) The third step: 2 H p n,  which — to make the electrons “balance” — may be 

rewritten as 2 H H+1 n. The work required is  

 

    1 2

2

3 H H
1.00783u 1.00867u 2.01410u 931.5MeV/u

2.23MeV.

nE m m m c      


 

 

(d) The total binding energy is  

 

be 1 2 3E E E E      19.8MeV 6.26MeV 2.23MeV 28.3MeV.    

 

(e) The binding energy per nucleon is  

 
 E E Aben be MeV / 4 = 7.07MeV. / .28 3  

 

(f) No, the answers do not match. 

 

23. THINK The binding energy is given by  

 

E Zm A Z m M cH nbe Pu   a f 2, 

 

where Z is the atomic number (number of protons), A is the mass number (number of 

nucleons), mH is the mass of a hydrogen atom, mn is the mass of a neutron, and MPu is the 

mass of a 94

239 Pu  atom.  

 

EXPRESS In principle, nuclear masses should be used, but the mass of the Z electrons 

included in ZmH is canceled by the mass of the Z electrons included in MPu, so the result 

is the same. First, we calculate the mass difference in atomic mass units:  

 

m = (94)(1.00783 u) + (239 – 94)(1.00867 u) –  (239.05216 u) = 1.94101 u. 

 

Since the mass energy of 1 u is equivalent to 931.5 MeV,  

 

Ebe = (1.94101 u)(931.5 MeV/u) = 1808 MeV. 

 

ANALYZE With 239 nucleons, the binding energy per nucleon is  

 

Eben = E/A = (1808 MeV)/239 = 7.56 MeV. 
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The result is the same as that given in Table 42-1. 

 

LEARN An alternative way to calculate binding energy is to use mass excesses, as 

discussed in Problem 21. The formula is 

 

be 239 ,H nE Z N       

 

where    2 21 , 1 ,H H n nm c m c       and   2

239 Pu 239 u .M c    

 

24. We first “separate” all the nucleons in one copper nucleus (which amounts to simply 

calculating the nuclear binding energy) and then figure the number of nuclei in the penny 

(so that we can multiply the two numbers and obtain the result). To begin, we note that 

(using Eq. 42-1 with Appendix F and/or G) the copper-63 nucleus has 29 protons and 34 

neutrons. Thus, 

 

     be 29 1.007825u 34 1.008665u 62.92960u 931.5MeV/u

551.4MeV.

E   


 

 

To figure the number of nuclei (or, equivalently, the number of atoms), we adapt Eq.  

42-21: 

NCu

g

62.92960g / mol
atoms / mol atoms.

F
HG

I
KJ   

3 0
6 02 10 2 9 1023 22.
. .c h  

 

Therefore, the total energy needed is 

 

N ECu be MeV MeV.    551 2 9 10 16 1022 25.4 . .a fc h  

 

25. The rate of decay is given by R = N, where  is the disintegration constant and N is 

the number of undecayed nuclei. In terms of the half-life T1/2, the disintegration constant 

is  = (ln 2)/T1/2, so 

 

N
R RT

  
 

 





1 2

10 7

22

2

6000 3 7 10 5 27 316 10

2

5 33 10

/

ln

. / . .

ln

.

Ci s Ci y s / y

nuclei.

1a fc ha fc h
 

 

26. By the definition of half-life, the same has reduced to 1
2  its initial amount after 140 d. 

Thus, reducing it to 1
4

1
2

2
 a f  of its initial number requires that two half-lives have passed: 

t = 2T1/2 = 280 d. 

 

27. (a) Since 60 y = 2(30 y) = 2T1/2, the fraction left is 2
– 2

 = 1/4 = 0.250. 
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(b) Since 90 y = 3(30 y) = 3T1/2, the fraction that remains is 2
– 3

 = 1/8 = 0.125. 

 

28. (a) We adapt Eq. 42-21: 

 

 23 18

Pu

0.002g
6.02 10 nuclei/mol 5.04 10 nuclei.

239g/mol
N

 
    
 

 

 

(b) Eq. 42-20 leads to 

R
N

T
 




 

ln ln

.41
.4 /

/

2 5 10 2

2 10
1 10

1 2

18

4

14

y
y 

 

which is equivalent to 4.60  10
6
/s = 4.60  10

6
 Bq (the unit becquerel is defined as 1 

decay/s). 

 

29. THINK Half-life is the time is takes for the number of radioactive nuclei to decrease 

to half of its initial value.   

 

EXPRESS The half-life T1/2 and the disintegration constant  are related by  

 

T1/2 = (ln 2)/. 

 

ANALYZE (a) With = 0.0108 h
– 1

, we obtain 

 

T1/2 = (ln 2)/(0.0108 h
– 1

) = 64.2 h. 

 

(b) At time t, the number of undecayed nuclei remaining is given by 

 

N N e N et t T
  

0 0

2 1 2 ln / / .
a f

 

 

We substitute t = 3T1/2 to obtain 
N

N
e

0

3 2 0125  ln . . 

 

In each half-life, the number of undecayed nuclei is reduced by half. At the end of one 

half-life, N = N0/2, at the end of two half-lives, N = N0/4, and at the end of three half-lives, 

N = N0/8 = 0.125N0. 

 

(c) We use 

N N e t 

0

 . 

 

Since 10.0 d is 240 h, t = (0.0108 h
– 1

) (240 h) = 2.592 and 

 
N

N
e

0

2 592 0 0749  . . .  
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LEARN The fraction of the Hg sample remaining as a function of time (measured in 

days) is plotted below. 

 

 
 

 

30. We note that t = 24 h is four times T1/2 = 6.5 h. Thus, it has reduced by half, four-fold: 

 

 
4

19 191
48 10 3.0 10 .

2

 
   

 
 

 

31. (a) The decay rate is given by R = N, where  is the disintegration constant and N is 

the number of undecayed nuclei. Initially, 0 0 ,R R N   where N0 is the number of 

undecayed nuclei at that time. One must find values for both N0 and . The disintegration 

constant is related to the half-life 1/ 2T  by 

 

      3 1

1/ 2ln2 / ln 2 / 78h 8.89 10 h .T       

 

If M is the mass of the sample and m is the mass of a single atom of gallium, then N0 = 

M/m. Now,  

m = (67 u)(1.661  10
– 24

 g/u) = 1.113  10
– 22

 g 

and  

 

N0 = (3.4 g)/(1.113  10
– 22

 g) = 3.05  10
22

. 

 

Thus, 

R0 = (8.89  10
– 3

 h
– 1

) (3.05  10
22

) = 2.71  10
20

 h
– 1

 = 7.53  10
16

 s
– 1

. 

 

(b) The decay rate at any time t is given by 

 

R R e t 

0

  

 

where R0 is the decay rate at t = 0. At t = 48 h, t = (8.89  10
– 3

 h
– 1

) (48 h) = 0.427 and 
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R e     7 53 10 4 91 1016 1 0 427 16. . ..s s 1c h  

 

32. Using Eq. 42-15 with Eq. 42-18, we find the fraction remaining: 

 

N

N
e et T

0

2 1 2 30 2 29 0 49   ln / / ln / . .  

 

33. We note that 3.82 days is 330048 s, and that a becquerel is a disintegration per second 

(see Section 42-3). From Eq. 34-19, we have 

 

N R T

 
  

F
HG

I
KJ  

1 2 5

3

10

32
155 10

330048

2
7 4 10

ln
.

ln
.

Bq

m

s atoms

m
 

 

where we have divided by volume v. We estimate v (the volume breathed in 48 h =  

2880 min) as follows: 

 

 
3liters 1m breaths

2 40 2880min
breath 1000L min

    
    

    
 

 

which yields v  200 m
3
. Thus, the order of magnitude of N is 

 

   10 3 13

3

atoms
7 10 200m 1 10 atoms.

m

N   
      

   
 

 

34. Combining Eqs. 42-20 and 42-21, we obtain 

 

M N
M

M

RT
sam

K

A

g / mol

mol
 

F
HG
I
KJ 

F
HG

I
KJ

1 2

232

40

6 02 10

/

ln . /
 

 

which gives 0.66 g for the mass of the sample once we plug in 1.7  10
5
/s for the decay 

rate and 1.28  10
9
 y = 4.04  10

16
 s for the half-life. 

 

35. THINK We modify Eq. 42-11 to take into consideration the rate of production of the 

radionuclide. 

 

EXPRESS If N is the number of undecayed nuclei present at time t, then 

 
dN

dt
R N    

 

where R is the rate of production by the cyclotron and  is the disintegration constant. 

The second term gives the rate of decay. Note the sign difference between R and N. 
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ANALYZE (a) Rearrange the equation slightly and integrate: 

 

0 0

N t

N

dN
dt

R N


   

 

where N0 is the number of undecayed nuclei present at time t = 0. This yields 

 







1

0




ln .

R N

R N
t  

We solve for N: 

N
R

N
R

e t  
F
H

I
K 

 



0 . 

 

After many half-lives, the exponential is small and the second term can be neglected. 

Then, N = R/. 

 

(b) The result N = R/holds regardless of the initial value N0, because the dependence on 

N0 shows up only in the second term, which is exponentially suppressed at large t.  

 

LEARN At times that are long compared to the half-life, the rate of production equals the 

rate of decay and N is a constant. The nuclide is in secular equilibrium with its source. 

 

36. We have one alpha particle (helium nucleus) produced for every plutonium nucleus 

that decays. To find the number that have decayed, we use Eq. 42-15, Eq. 42-18, and 

adapt Eq. 42-21: 

 

N N N e N e
t T

A0 0

2 20000 2 241001
12 0

239
11 2    

 ln / ln //
.d i c hg / mol

g / mol
 

 

where NA is the Avogadro constant. This yields 1.32  10
22

 alpha particles produced. In 

terms of the amount of helium gas produced (assuming the  particles slow down and 

capture the appropriate number of electrons), this corresponds to 

 

mHe
mol

g / mol g.




F
HG

I
KJ   132 10

6 02 10
4 0 87 9 10

22

23

3.

. /
. .a f  

 

37. Using Eq. 42-15 and Eq. 42-18 (and the fact that mass is proportional to the number 

of atoms), the amount decayed is 

 

   

       

1/ 21/ 2

1/ 2 1/ 2

ln 2/ln 2/

16.0 h 14.0 h 0 0

ln 2/ 16.0 /12.7 h ln 2 14.0 h/12.7h ln 2ln 2/

0

| | 1 1

       5.50g

       0.265g.

fi

f f

f i

t Tt T

t t

t T ht T

m m m m e m e

m e e e e



 

  

      

    
 


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38. With 4

1/ 2 3.0 h 1.08 10 s,T    the decay constant is (using Eq. 42-18) 

 

 5

4

1/ 2

ln 2 ln 2
6.42 10 / s

1.08 10 sT
    


. 

 

Thus, the number of isotope parents injected is 

 

 
6 10

9

5

(8.60 10 Ci)(3.7 10 Bq/Ci)
4.96 10

6.42 10 / s

R
N







 
   


. 

 

39. (a) The sample is in secular equilibrium with the source, and the decay rate equals the 

production rate. Let R be the rate of production of 
56

Mn and let  be the disintegration 

constant. According to the result of Problem 42-35, R = N after a long time has passed. 

Now, N = 8.88  10
10

 s
– 1

, so R = 8.88  10
10

 s
– 1

. 

 

(b) We use N = R/. If T1/2 is the half-life, then the disintegration constant is  

 

 = (ln 2)/T1/2 = (ln 2)/(2.58 h) = 0.269 h
– 1

 = 7.46  10
– 5

 s
– 1

, 

 

so N = (8.88  10
10

 s
– 1

)/(7.46  10
– 5

 s
– 1

) = 1.19  10
15

. 

 

(c) The mass of a 
56

Mn nucleus is  

 

m = (56 u) (1.661  10
– 24

 g/u) = 9.30  10
– 23

 g 

 

and the total mass of 
56

Mn in the sample at the end of the bombardment is  

 

Nm = (1.19  10
15

)(9.30  10
– 23

 g) = 1.11  10
– 7

 g. 

 

40. We label the two isotopes with subscripts 1 (for 
32

P) and 2 (for 
33

P). Initially, 10% of 

the decays come from 
33

P, which implies that the initial rate R02 = 9R01. Using Eq. 42-17, 

this means 

01 1 01 02 2 02

1 1
.

9 9
R N R N     

 

At time t, we have R R e
t

1 01
1


and R R e

t

2 02
2


. We seek the value of t for which R1 = 

9R2 (which means 90% of the decays arise from 
33

P). We divide equations to obtain 

 

   1 2

01 02/ 9,
t

R R e
  

  

and solve for t: 
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   

   1 2

2

01 0201

1 1
1 2 02 1/ 2 1/ 2

ln 1/ 9ln / 91
ln

9 ln 2 / ln 2 / ln 2 14.3d 25.3d

209d.

R RR
t

R T T   

 
   

   
    

 



 

 

41. The number N of undecayed nuclei present at any time and the rate of decay R at that 

time are related by R = N, where  is the disintegration constant. The disintegration 

constant is related to the half-life T1/2 by  = (ln 2)/T1/2, so R = (N ln 2)/T1/2 and 

  

T1/2 = (N ln 2)/R. 

 

Since 15.0% by mass of the sample is 
147

Sm, the number of 
147

Sm nuclei present in the 

sample is 

N 


 


0150 1 00

147 1661 10
6143 10

24

20. .

.
. .

a fa f
a fc h

g

u g / u
 

Thus, 

T1 2

20

18
6143 10 2

120
3 55 10/

. ln
.


  



c h
s

s =1.12 10 y.
1

11  

 

42. Adapting Eq. 42-21, we have 

 

 
9

14sam 23
Kr

Kr

20 10 g
6.02 10 atoms mol 1.3 10 atoms.

92g molA

M
N N

M

 
 
 
 
 


      

 

Consequently, Eq. 42-20 leads to 

 

R
N

T
 


 

ln . ln

.
.

2 13 10 2

184
4 9 10

1 2

14

13
c h

s
Bq.  

 

43. Using Eq. 42-16 with Eq. 42-18, we find the initial activity: 

 

R Re et T

0

2 1 2 8 24 2 83 61 87 4 10 9 0 10    ln / / ln / .. .Bq Bq.c h  

 

44. The number of atoms present initially at 0t   is 6

0 2.00 10N   . From Fig. 42-19, 

we see that the number is halved at 2.00 s.t   Thus, using Eq. 42-15, we find the decay 

constant to be 

 10 0

0

1 1 1
ln ln ln 2 0.3466 s

2.00 s / 2 2.00 s

N N

t N N
   
     

   
. 

 

At 27.0 st  , the number of atoms remaining is 
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 6 (0.3466/s)(27.0 s)

0 (2.00 10 ) 173tN N e e     . 

 

Using Eq. 42-17, the decay rate is 

 

 (0.3466/ s)(173) 60/ s 60 BqR N    . 

  

45. (a) Equation 42-20 leads to 

 

sam

8 27

1 2 atom

12

ln 2 ln 2 ln 2 0.0010kg

30.2y 9.53 10 s 137 1.661 10 kg

3.2 10 Bq.

M
R N

T m 

   
     

    

 

 

 

(b) Using the conversion factor 101 Ci 3.7 10  Bq,  123.2 10 Bq 86 Ci.R     

 

46. (a) Molybdenum beta decays into technetium: 

 

42

99 Mo Tc + 

43

99 e v  

 

(b) Each decay corresponds to a photon produced when the technetium nucleus de-excites 

(note that the de-excitation half-life is much less than the beta decay half-life). Thus, the 

gamma rate is the same as the decay rate: 8.2  10
7
/s. 

 

(c) Equation 42-20 leads to 

 

N
RT

   
1 2 6

2

38 6 0 3600

2
12 10

ln

.

ln
. .

s h s hb gb gb g
 

 

47. THINK The mass fraction of Ra in RaCl2 is given by 

 

 Ra

Ra Cl2

M

M M
 

 

where MRa is the molar mass of Ra and MCl is the molar mass of Cl. 

 

EXPRESS We assume that the chlorine in the sample had the naturally occurring 

isotopic mixture, so the average molar mass is 35.453 g/mol, as given in Appendix F. 

Then, the mass of 
226

Ra was 

 

m 


  226

226 2 35
010 761 10 3

.453
. .a f a fg g. 

 

ANALYZE (a) The mass of a 
226

Ra nucleus is (226 u)(1.661  10
– 24

 g/u) = 3.75  10
– 22

 

g, so the number of 
226

Ra nuclei present was  
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N = (76.1  10
– 3

 g)/(3.75  10
– 22

 g) = 2.03  10
20

. 

 

(b) The decay rate is given by  

R = N = (N ln 2)/T1/2, 

 

where  is the disintegration constant, T1/2 is the half-life, and N is the number of nuclei. 

The relationship  = (ln 2)/T1/2 is used. Thus, 

 

R 



  

2 03 10 2

1600 3156 10
2 79 10

20

7

9
. ln

.
. .

c h
a fc hy s / y

s 1  

 

LEARN Radium has 33 different known isotopes, four of which naturally occurring. 
226

Ra, with a half-life of 1600 years, is the most stable isotope of radium. 

 

48. (a) The nuclear reaction is written as 238 4U Th + He.234  The energy released is 

 

E m m m c1

2

238 05079 9315

4 25

  

  



U He Th

u 4.00260 u 234.04363u MeV / u

MeV.

b g
a fa f. .

.

 

 

(b) The reaction series consists of 238 237U U n,   followed by 

 
237 236

236 235

235 234

U Pa p

Pa Pa n

Pa Th p

 

 

 

 

 

The net energy released is then 

 

E m m m c m m m c

m m m c m m m c

m m m m c

n p

n p

n p

2

2 2

2 2

22 2

238 05079 2 1 00867 2 1 00783 234 04363 931 5

24 1

     

     

   

   

 

238 237 237 236

236 235 235 234

238 234

U U U Pa

Pa Pa Pa Th

U Th

u u u u MeV / u

MeV.

d i d i
d i d i

d i
a f a f a f. . . . .

.

 

 

(c) This leads us to conclude that the binding energy of the  particle is 

 

2 2 241 28 32m m m cn p     He MeV 4.25MeV MeV.d i . .  
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49. THINK The time for half the original 
238

U nuclei to decay is equal to 4.5  10
9
 y, 

which is the half-life of 
238

U. 

 

EXPRESS The fraction of undecayed nuclei remaining after time t is given by 

 
N

N
e et t T

0

2 1 2   ln / /a f
 

 

where  is the disintegration constant and T1/2 = (ln 2)/ is the half-life.  

 

(a) For 
244

Pu at t = 4.5  10
9
 y, 

 

    9

7

1/ 2

ln 2 4.5 10 yln 2
39

8.0 10 y

t
t

T



  


 

and the fraction remaining is 

39.0 17

0

1.2 10 .
N

e
N

     

 

(b) For 
248

Cm at t = 4.5  10
9
 y, 

 

ln ln .

.4/

2 2 4 5 10

3 10
9170

1 2

9

5

a f a fc ht

T







y

y
 

and the fraction remaining is 
N

N
e

0

9170 39833 31 10   . . 

 

For any reasonably sized sample this is less than one nucleus and may be taken to be zero. 

A standard calculator probably cannot evaluate e
– 9170

 directly. Our recommendation is to 

treat it as (e
– 91.70

)
100

. 

 

LEARN Since 248 244 2381/ 2 1/ 2 1/ 2Cm Pu U
( ) ( ) ( ) ,T T T   with 

  1/ 2ln2 /

0/ ,
t T

N N e


  we have 

 

248 244 2380 0 0Cm Pu U
( / ) ( / ) ( / ) .N N N N N N   

 

50. (a) The disintegration energy for uranium-235 “decaying” into thorium-232 is 

 

    235 232 3

2

3 U Th He
235.0439u 232.0381u 3.0160u 931.5MeV/u

9.50MeV.

Q m m m c     

 
 

 

(b) Similarly, the disintegration energy for uranium-235 decaying into thorium-231 is 
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    235 231 4

2

4 U Th He
235.0439u 231.0363u 4.0026u 931.5MeV/u

4.66MeV.

Q m m m c     


 

 

(c) Finally, the considered transmutation of uranium-235 into thorium-230 has a Q-value 

of  

    235 230 5

2

5 U Th He
235.0439u 230.0331u 5.0122u 931.5MeV/u

1.30MeV.

Q m m m c     

 
 

 

Only the second decay process (the  decay) is spontaneous, as it releases energy. 

 

51. Energy and momentum are conserved. We assume the residual thorium nucleus is in 

its ground state. Let K be the kinetic energy of the alpha particle and KTh be the kinetic 

energy of the thorium nucleus. Then, Q = K + KTh. We assume the uranium nucleus is 

initially at rest. Then, conservation of momentum yields 0 = p + pTh, where p is the 

momentum of the alpha particle and pTh is the momentum of the thorium nucleus.  

Both particles travel slowly enough that the classical relationship between momentum 

and energy can be used. Thus K p mTh Th

2

Th / 2 , where mTh is the mass of the thorium 

nucleus. We substitute pTh = – p and use K p m
   2 2/  to obtain KTh = (m/mTh)K. 

Consequently, 

 

 
Th Th

4.00u
1 1 4.196MeV 4.269MeV.

234u

m m
Q K K K

m m

 
  

   
         

  
 

 

52. (a) For the first reaction 

 

    2

1 Ra Pb C 223.01850u 208.98107u 14.00324u 931.5MeV/u

31.8MeV.

Q m m m c     


 

 

(b) For the second one 

 

 
    2

2 Ra Rn He 223.01850u 219.00948u 4.00260u 931.5MeV/u

5.98MeV.

Q m m m c     


 

 

(c) From U  q1q2/r, we get 

 

U U
q q

q q

e e

e e

C
1 2 30 0

6 0

86 2 0
86

F
HG

I
KJ  Pb

Rn He

MeV
82

MeV..
.

.
b g b gb gb gb g  

 

53. THINK The energy released in the decay is the disintegration energy: 
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 2 2 2 2( ) ,i f i fQ M c M c M M c M c       

 

where f iM M M    is the change in mass due to the decay. 

 

EXPRESS Let MCs be the mass of one atom of 55

137 Cs  and MBa be the mass of one atom of 

56

137 Ba.  The energy released is  

Q = (MCs –  MBa)c
2
 . 

 

ANALYZE With MCs = 136.9071 u and MBa = 136.9058 u, we obtain 

 

      2 2136.9071u 136.9058u 0.0013u 0.0013u 931.5MeV/u

1.21MeV.

Q c c   


 

 

LEARN In calculating Q above, we have used the atomic masses instead of nuclear 

masses. One can readily show that both lead to the same results. To obtain the nuclear 

masses, we subtract the mass of 55 electrons from MCs and the mass of 56 electrons from 

MBa. The energy released is  

 

Q = [(MCs –  55m) –  (MBa –  56m) –  m] c
2
, 

 

where m is the mass of an electron (the last term in the bracket comes from the beta 

decay). Once cancellations have been made, Q = (MCs –  MBa)c
2
, which is the same as  

before. 

 

54. Assuming the neutrino has negligible mass, then 

 

mc m ce

2 2  m mTi Vb g .  

 

Now, since vanadium has 23 electrons (see Appendix F and/or G) and titanium has 22 

electrons, we can add and subtract 22me to the above expression and obtain 

 

mc m m c m m ce e

2 2 222 23     m mTi V Ti Vb g b g .  

 

We note that our final expression for mc
2
 involves the atomic masses, and that this 

assumes (due to the way they are usually tabulated) the atoms are in the ground states 

(which is certainly not the case here, as we discuss below). The question now is: do we 

set Q = – mc
2
 as in Sample Problem —“Q value in a beta decay, suing masses?” The 

answer is “no.” The atom is left in an excited (high energy) state due to the fact that an 

electron was captured from the lowest shell (where the absolute value of the energy, EK, 

is quite large for large Z). To a very good approximation, the energy of the K-shell 

electron in Vanadium is equal to that in Titanium (where there is now a “vacancy” that 

must be filled by a readjustment of the whole electron cloud), and we write 
2

KQ mc E    so that Eq. 42-26 still holds. Thus, 
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Q m m c EK  V Tib g 2

.  

 

55. The decay scheme is n p + e +  .  The electron kinetic energy is a maximum if no 

neutrino is emitted. Then,  

Kmax = (mn –  mp –  me)c
2
, 

 

where mn is the mass of a neutron, mp is the mass of a proton, and me is the mass of an 

electron. Since mp + me = mH, where mH is the mass of a hydrogen atom, this can be 

written Kmax = (mn –  mH)c
2
. Hence,  

 

Kmax = (840  10
– 6

 u)c
2
 = (840  10

– 6
 u)(931.5 MeV/u) = 0.783 MeV. 

 

56. (a) We recall that mc
2
 = 0.511 MeV from Table 37-3, and hc = 1240 MeV·fm. Using 

Eq. 37-54 and Eq. 38-13, we obtain 

 

  






 

h

p

hc

K Kmc2 2

2

2

2

1240

10 2 10 0511
9 0 10

MeV fm

MeV MeV MeV
fm.

. . .
.

b g b gb g
 

 

(b) r = r0A
1/3

 = (1.2 fm)(150)
1/3

 = 6.4 fm.  

 

(c) Since   r  the electron cannot be confined in the nuclide. We recall that at least /2 

was needed in any particular direction, to support a standing wave in an “infinite well.” A 

finite well is able to support slightly less than /2 (as one can infer from the ground state 

wave function in Fig. 39-6), but in the present case /r is far too big to be supported. 

 

(d) A strong case can be made on the basis of the remarks in part (c), above. 

 

57. (a) Since the positron has the same mass as an electron, and the neutrino has 

negligible mass, then  

mc m ce

2 2  m mB Cb g .  

 

Now, since carbon has 6 electrons (see Appendix F and/or G) and boron has 5 electrons, 

we can add and subtract 6me to the above expression and obtain 

 

mc m m c m m m c
e e e

2 2 27 6 2      m mB C B Cd i b g .  

 

We note that our final expression for mc
2
 involves the atomic masses, as well an “extra” 

term corresponding to two electron masses. From Eq. 37-50 and Table 37-3, we obtain 

 

Q m m m c m m ce     C B C B MeV2 2 05112 2b g b g b g. .  
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(b) The disintegration energy for the positron decay of carbon-11 is 

 

   11.011434u 11.009305u 931.5MeV/u 1.022MeV

0.961MeV.

Q   


 

 

58. (a) The rate of heat production is 

 

dE

dt
R Q N Q

T

f

m
Qi i i i

ii

i

i

i

ii

  
F
HG
I
KJ




 





L
N
MM

















 

 1

1 21

3

1

3

1

3

13

7 27

6

9

6

10

6

2 100

100 2 160 10

315 10 1661 10

4 10 517

238 4 47 10

13 10 42 7

232 141 10

4 10 131

40 1

ln .

. ln .

. .

.

.

.

.

.

/

kg

kg J / MeV

s / y kg / u

MeV

u y

MeV

u y

MeV

u

b g

b gb gc h
c hc h

c hb g
b gc h

c hb g
b gc h

c hb g
b g .

.

28 10

10 10

9

9



O
Q
PP

  

y

W.

c h

 

 

(b) The contribution to heating, due to radioactivity, is  

 

P = (2.7  10
22

 kg)(1.0  10
– 9

 W/kg) = 2.7  10
13

 W, 

 

which is very small compared to what is received from the Sun. 

 

59. THINK The beta decay of 
32

P is given by 

 

 32 32P S e    . 

 

However, since the electron has the maximum possible kinetic energy, no (anti)neutrino 

is emitted. 

 

EXPRESS Since momentum is conserved, the momentum of the electron and the 

momentum of the residual sulfur nucleus are equal in magnitude and opposite in direction. 

If pe is the momentum of the electron and pS is the momentum of the sulfur nucleus, then 

pS = – pe. The kinetic energy KS of the sulfur nucleus is  

 
2 2/ 2 / 2S S S e SK p M p M  , 

 

where MS is the mass of the sulfur nucleus. Now, the electron’s kinetic energy Ke is 

related to its momentum by the relativistic equation 2 2 2( ) 2e e ep c K K mc  , where m is 

the mass of an electron.  

 

ANALYZE With Ke = 1.71 MeV, the kinetic energy of the recoiling sulfur nucleus is 
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K
p c

M c

K K mc

M c
S

e

S

e e

S

 





  

b g b g b gb g
b gb g

2

2

2 2

2

2

5

2

2

2

2 171 0511

2 32 9315

7 83 10

1.71MeV MeV MeV

u MeV / u

MeV = 78.3 eV

. .

.

.

 

 

where mc
2
 = 0.511 MeV is used for the electron (see Table 37-3). 

 

LEARN The maximum kinetic energy of the electron is equal to the disintegration 

energy Q: 

 maxQ K . 

 

To show this, we use the following data: MP = 31.97391 u and MS = 31.97207 u. The 

result is 

 

      2 231.97391u 31.97207u 0.00184u 0.00184u 931.5MeV/u

1.71MeV.

Q c c   


 

 

60. We solve for t from R = R0e
– t

: 

 

t
R

R
 

F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ

L
NM

O
QP  

1 5730 153

630

500

100
161 100 3


ln ln

.

.

.

.
.

y

ln 2
y.  

 

61. (a) The mass of a 
238

U atom is (238 u)(1.661  10
– 24

 g/u) = 3.95  10
– 22

 g, so the 

number of uranium atoms in the rock is  

 

NU = (4.20  10
– 3

 g)/(3.95  10
– 22

 g) = 1.06  10
19

. 

 

(b) The mass of a 
206

Pb atom is (206 u)(1.661  10
– 24

 g) = 3.42  10
– 22

 g, so the number 

of lead atoms in the rock is  

 

NPb = (2.135  10
– 3

 g)/(3.42  10
– 22

 g) = 6.24  10
18

. 

 

(c) If no lead was lost, there was originally one uranium atom for each lead atom formed 

by decay, in addition to the uranium atoms that did not yet decay. Thus, the original 

number of uranium atoms was  

 

NU0 = NU + NPb = 1.06  10
19

 + 6.24  10
18

 = 1.68  10
19

. 

 

(d) We use 

U U0

tN N e   
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where  is the disintegration constant for the decay. It is related to the half-life T1 2/  by  

  ln / ./2 1 2b g T  Thus, 

 
9 19

9U 1/ 2 U

19

U0 U0

1 4.47 10 y 1.06 10
ln ln ln 2.97 10 y.

ln 2 ln 2 1.68 10

N T N
t

N N

      
         

    
 

 

62. The original amount of 
238

U the rock contains is given by 

 

m me et

0

2 260 106 4 47 109

370 385  
FH IK FH IK . .

ln / .

mg mg.
y yb g b g  

 

Thus, the amount of lead produced is 

 

  
F
HG
I
KJ  

F
HG
I
KJ m m m

m

m
0

206

238

385 370
206

238
0132b g b g. . .mg mg mg. 

 

63. We can find the age t of the rock from the masses of 
238

U and 
206

Pb. The initial mass 

of 
238

U is 

m m mU U Pb0

238

206
  .  

 

Therefore,  

    1/ 2U U
238

0

ln2 /

U U U Pb
/ 206 .

t Tt
m m e m m e

 
    

We solve for t: 

 

 
U

9
1/ 2 U Pb

U

9

238/ 206 4.47 10 y 238 0.15mg
ln ln 1

ln2 ln 2 206 0.86mg

1.18 10 y.

T m m
t

m

      
       

      

 

 

 

For the  decay of 
40

K, the initial mass of 
40

K is 

 

m m m m mK K Ar K Ar0
40 40   / ,b g  

 

so 

m m e m m et t

K K0

K
K Ar

K    b g .  

 

We solve for mK: 

    

K

9 9
K K

Ar Ar
K ln 2 1.18 10 y / 1.25 10 y

1.6mg
1.7mg.

1 1 1

t

t t

m e m
m

e e e



 



  
   

  
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64. We note that every calcium-40 atom and krypton-40 atom found now in the sample 

was once one of the original numbers of potassium atoms. Thus, using Eq. 42-14 and Eq. 

42-18, we find 

 

K

K Ar Ca 1 2

1 ln 2
ln     ln

1 1 8.54

N
t t

N N N T

   
       

     
 

 

which (with T1/2 = 1.26  10
9
 y) yields t = 4.28  10

9
 y. 

 

65. THINK The activity of a radioactive sample expressed in curie (Ci) can be converted 

to SI units (Bq) as 

 

1 curie = 1 Ci = 3.7  10
10

 Bq = 3.7  10
10 

disintegrations/s. 

 

EXPRESS The decay rate R is related to the number of nuclei N by R = N, where  is 

the disintegration constant. The disintegration constant is related to the half-life 1/ 2T  by 

 

1/ 2

1/ 2

ln 2
 

ln 2

RTR
N

T



     . 

 

Since 1 Ci = 3.7  10
10

 disintegrations/s, 

 

N 
 

 

250 37 10 2 7 8 64 10

2
311 10

10 1 4

18
Ci s Ci d s / db gc hb gc h. / . .

ln
. .  

 

ANALYZE The mass of a 
198

Au atom is  

 

M0 = (198 u)(1.661  10
– 24

 g/u) = 3.29  10
– 22

 g, 

 

so the mass required is  

 

M = N M0 = (3.11  10
18

)(3.29  10
– 22

 g) = 1.02  10
– 3

 g = 1.02 mg. 

 

LEARN The 
198

Au atom undergoes beta decay and emit an electron: 

 
198 198Au Hg e    . 

 

66. The becquerel (Bq) and curie (Ci) are defined in Section 42-3.  

 

(a) R = 8700/60 = 145 Bq. 

 

(b) R 


  145
392 10 9Bq

3.7 10 Bq / Ci
Ci.

10
.  
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67. The absorbed dose is  

 

 
3

4 42.00 10  J
absorbed dose 5.00 10  J/kg 5.00 10  Gy

4.00 kg


 

      

 

where 1 J/kg 1Gy.  With RBE 5 , the dose equivalent is  

 
4 4 3dose equivalent RBE (5.00 10  Gy) 5(5.00 10  Gy) 2.50 10  Sv

2.50 mSv .

        


 

 

68. (a) Using Eq. 42-32, the energy absorbed is 

 

2 4 10 75 184.   Gy kg mJ.c hb g  

 

(b) The dose equivalent is 

 

  4 32.4 10 Gy 12 2.9 10 Sv    . 

 

(c) Using Eq. 42-33, we have 32.9 10 Sv 0.29 rem  . 

 

69. (a) Adapting Eq. 42-21, we find 

 

N0

3 23

18
2 5 10 6 02 10

239
6 3 10

 
 

. . /
. .

g mol

g / mol

c hc h
 

 

(b) From Eq. 42-15 and Eq. 42-18, 

 

      1/ 2
12h ln 2/ 24,100y 8760h/yln 2/ 18 11

0| | 1 6.3 10 1 2.5 10 .
t T

N N e e
             

 

 

(c) The energy absorbed by the body is 

 

         11 130.95 0.95 5.2MeV 2.5 10 1.6 10 J/MeV 0.20 J.E N

      

 

(d) On a per unit mass basis, the previous result becomes (according to Eq. 42-32) 

 

0 20
2 3 10 3.
.

mJ

85kg
J / kg = 2.3mGy.    

 

(e) Using Eq. 42-31, (2.3 mGy)(13) = 30 mSv. 

 



 

  

1801 

70. From Eq. 19-24, we obtain 

 
6

avg 10

5

2 2 5.00 10 eV
3.87 10 K.

3 k 3 8.62 10 eV/K

K
T



   
      

  
 

 

71. (a) Following Sample Problem — “Lifetime of a compound nucleus made by neutron 

capture,” we compute 

E
t

 
 


 







avg

eV fs

s
eV.

414 10 2

10 10
6 6 10

15

22

6
. /

.
.

c h 
 

 

(b) In order to fully distribute the energy in a fairly large nucleus, and create a 

“compound nucleus” equilibrium configuration, about 10
–15

 s is typically required. A 

reaction state that exists no more than about 10
–22

 s does not qualify as a compound 

nucleus. 

 

72. (a) We compare both the proton numbers (atomic numbers, which can be found in 

Appendix F and/or G) and the neutron numbers (see Eq. 42-1) with the magic nucleon 

numbers (special values of either Z or N) listed in Section 42-8. We find that 
18

O, 
60

Ni, 
92

Mo, 
144

Sm, and 
207

Pb each have a filled shell for either the protons or the neutrons (two 

of these, 
18

O and 
92

Mo, are explicitly discussed in that section). 

 

(b) Consider 
40

K, which has Z = 19 protons (which is one less than the magic number 20). 

It has N = 21 neutrons, so it has one neutron outside a closed shell for neutrons, and thus 

qualifies for this list. Others in this list include 
91

Zr, 
121

Sb, and 
143

Nd. 

 

(c) Consider 
13

C, which has Z = 6 and N = 13 – 6 = 7 neutrons. Since 8 is a magic number, 

then 
13

C has a vacancy in an otherwise filled shell for neutrons. Similar arguments lead to 

inclusion of 
40

K, 
49

Ti, 
205

Tl, and 
207

Pb in this list. 

 

73. THINKA generalized formation reaction can be written ,X x Y   where X is the 

target nucleus, x is the incident light particle, and Y is the excited compound nucleus 

(
20

Ne).  

 

EXPRESS We assume X is initially at rest. Then, conservation of energy yields 

 

m c m c K m c K EX x x Y Y Y

2 2 2      

 

where mX, mx, and mY are masses, Kx and KY are kinetic energies, and EY is the excitation 

energy of Y. Conservation of momentum yields p px Y .Now,  

 
22

2 2

x xY
Y x

Y Y Y

p mp
K K

m m m

 
    

 
 

so 
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m c m c K m c m m K EX x x Y x Y x Y

2 2 2    /b g  

and 

K
m

m m
m m m c Ex

Y

Y x

Y X x Y


  b g 2 . 

 

ANALYZE (a) Let x represent the alpha particle and X represent the 
16

O nucleus. Then,  

 

(mY – mX – mx)c
2
 = (19.99244 u –15.99491 u – 4.00260 u)(931.5 MeV/u)  

                                         = – 4.722 MeV 

 

and 

 
19.99244u

4.722MeV+25.0MeV 25.35MeV 25.4 MeV.
19.99244u 4.00260u

K    


 

 

(b) Let x represent the proton and X represent the 
19

F nucleus. Then,  

 

(mY – mX –  mx)c
2
 = (19.99244 u –18.99841 u –1.00783 u)(931.5 MeV/u)  

                                          = – 12.85 MeV 

 

and 

K 


 
19 99244

19 99244 100783
12 85 12 80

.

. .
. .

u

u u
MeV + 25.0MeV MeV.b g  

 

(c) Let x represent the photon and X represent the 
20

Ne nucleus. Since the mass of the 

photon is zero, we must rewrite the conservation of energy equation: if E is the energy of 

the photon, then  

E + mXc
2
 = mYc

2
 + KY + EY. 

 

Since mX = mY, this equation becomes E = KY + EY. Since the momentum and energy of 

a photon are related by p = E/c, the conservation of momentum equation becomes E/c 

= pY. The kinetic energy of the compound nucleus is  

 
22

22 2

Y
Y

Y Y

Ep
K

m m c


  . 

 

We substitute this result into the conservation of energy equation to obtain 

 

E
E

m c
E

Y

Y


 

2

22
.  

This quadratic equation has the solutions 

 

E m c m c m c EY Y Y Y   2 2
2

22c h .  
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If the problem is solved using the relativistic relationship between the energy and 

momentum of the compound nucleus, only one solution would be obtained, the one 

corresponding to the negative sign above. Since  

 

mYc
2
 = (19.99244 u)(931.5 MeV/u) = 1.862  10

4
 MeV, 

we have 

E      



1862 10 1862 10 2 1862 10 250

250

4 4
2

4. . . .

.

MeV MeV MeV MeV

MeV.

c h c h c hb g
 

 

LEARN In part (c), the kinetic energy of the compound nucleus is  

 
2 2

2 4

(25.0 MeV)
0.0168 MeV

2 2(1.862 10 MeV)
Y

Y

E
K

m c


  


 

 

which is very small compared to EY = 25.0 MeV. Essentially all of the photon energy 

goes to excite the nucleus. 

 

74. Using Eq. 42-15, the amount of uranium atoms and lead atoms present in the rock at 

time t is  

 U 0

Pb 0 U 0 0 0 (1 )

t

t t

N N e

N N N N N e N e



 



 



     
 

 

and their ratio is 

 Pb

U

1
1

t
t

t

N e
e

N e











   . 

The age of the rock is 

 

 
9

9Pb 1/ 2 Pb

U U

1 4.47 10 y
ln 1 ln 1 ln 1 0.30 1.69 10 y

ln 2 ln 2

N T N
t

N N

    
          

   
. 

 

75. THINK We represent the unknown nuclide as Z

A X , where A and Z are its mass 

number and atomic number, respectively.  

 

EXPRESS The reaction equation can be written as 

 

Z

A X 0

1

1

0n e +2 He.2

4  

 

Conservation of charge yields Z + 0 = – 1 + 4 or Z = 3. Conservation of mass number 

yields A + 1 = 0 + 8 or A = 7.  
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ANALYZE According to the periodic table in Appendix G (also see Appendix F), 

lithium has atomic number 3, so the nuclide must be 3

7 Li . 

 

LEARN Charge and mass number are conserved in the neutron-capture process. The 

intermediate nuclide is 
8
Li, which is unstable and decays (via  and  modes) into two 

4
He’s and an electron. 

 

76. The dose equivalent is the product of the absorbed dose and the RBE factor, so the 

absorbed dose is  

 

(dose equivalent)/(RBE) = (250  10
– 6

 Sv)/(0.85) = 2.94  10
– 4

 Gy. 

 

But 1 Gy = 1 J/kg, so the absorbed dose is 

 

2 94 10 1 2 94 104 4. .


F
HG

I
KJ   Gy

J

kg Gy
J / kg.c h  

 

To obtain the total energy received, we multiply this by the mass receiving the energy:  

 

E = (2.94  10
– 4

 J/kg)(44 kg) = 1.29  10
– 2

 J 1.3  10
– 2

 J. 

 

77. THINK The decay rate R is proportional to N, the number of radioactive nuclei.  

 

EXPRESS According to Eq. 42-17, ,R N  where  is the decay constant. Since R is 

proportional to N, then N/N0 = R/R0 .te   Since  = (ln 2)/T1/2, the solution for t is  

 

1 2

0 0

1
ln ln .

ln 2

TR R
t

R R

   
      

   
 

 

ANALYZE With T1/2 = 5730 y and R/R0 = 0.020, we obtain 

 

t
T R

R
 

F
HG
I
KJ    

1 2

0

4

2

5730

2
0 020 32 10

ln
ln

ln
ln . . .

y
yb g  

 

LEARN Radiocarbon dating based on the decay of 
14

C is one of the most widely used 

dating method in estimating the age of organic remains.    

 

78. Let AA0N  be the number of element AA at 0t  . At a later time t, due to radioactive 

decay, we have  

AA0 AA BB CCN N N N   . 

 

The decay constant is 
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1/ 2

ln 2 ln 2
0.0866 / d

8.00 dT
    . 

 

Since 
BB CC/ 2N N  , when CC AA/ 1.50N N  , BB AA/ 3.00N N  . Therefore, at time t, 

 

AA0 AA BB CC AA AA AA AA3.00 1.50 5.50N N N N N N N N       . 

 

Since 
AA AA0

tN N e  , combining the two expressions leads to 

 

AA0

AA

5.50tN
e

N

   

which can be solved to give 

ln(5.50) ln(5.50)
19.7 d

0.0866 / d
t


   . 

 

79. THINK The count rate in the area in question is given by R = N, where  is the 

decay constant and N is the number of radioactive nuclei.  

 

EXPRESS Since the spreading is assumed uniform, the count rate R = 74,000/s is given 

by  

R = N = (M/m)(a/A), 

 

where M is the mass of 
90

Sr produced, m is the mass of a single 
90

Sr nucleus, A is the area 

over which fall out occurs, and a is the area in question. Since = (ln 2)/T1/2, the solution 

for a is  

1/ 2

ln 2

AmRTm R
a A

M M

   
    

   
. 

 

ANALYZE The molar mass of 
90

Sr is 90g/mol. With M = 400 g and A = 2000 km
2
, we 

find the area to be 

 

     
   

6 2 7

1/ 2

23

2 2 2

2000 10 m 90g/mol 74,000 / s 29 y 3.15 10 s/y

ln 2 400g 6.02 10 / mol ln 2

7.3 10 m 730cm .

AmRT
a

M

 

 
 



  

 

 

LEARN The Chernobyl nuclear accident in 1986 contaminated a very large area with 
90

Sr. 

 

80. (a) Assuming a “target” area of one square meter, we establish a ratio: 

 



CHAPTER 42 1806 

rate through you

total rate upward

m

km m km



  1

2 6 10 1000
38 10

2

5 2 2

12

.
. .c hb g  

 

The SI unit becquerel is equivalent to a disintegration per second. With half the beta-

decay electrons moving upward, we find 

 

rate through you =
1

2
s s1 10 38 10 19 1016 12 4   c hc h. .  

 

which implies (converting s h ) that the rate of electrons you would intercept is R0 = 7 

 10
7
/h. So in one hour, 7  10

7
 electrons would be intercepted. 

 

(b) Let D indicate the current year (2003, 2004, etc.). Combining Eq. 42-16 and Eq. 42-

18, we find 

R R e e
t T D

  
  

0

2 7 1996 2 30 21 2 7 10
ln ln .

.h
yc h b g b g  

 

81. The lines that lead toward the lower left are alpha decays, involving an atomic 

number change of Z = – 2 and a mass number change of A = – 4. The short 

horizontal lines toward the right are beta decays (involving electrons, not positrons) in 

which case A stays the same but the change in atomic number is Z = +1. Figure 42-20 

shows three alpha decays and two beta decays; thus, 

 

Z Z Z Z A A Af i f i    3 2 3    and .  

 

Referring to Appendix F or G, we find Zi = 93 for neptunium, so  

 

Zf = 93 + 3(– 2) + 2(1) = 89, 

 

which indicates the element actinium. We are given Ai = 237, so Af = 237 + 3(– 4) = 225. 

Therefore, the final isotope is 
225

Ac. 

 

82. We note that 2.42 min = 145.2 s. We are asked to plot (with SI units understood) 

 

ln lnR R e R et t  
  

0 0

 c h  
 

where R0 = 3.1  10
5
, R0' = 4.1  10

6
,  = ln 2/145.2, and ' = ln 2/24.6. Our plot is 

shown below. 



 

  

1807 

 
 

We note that the magnitude of the slope for small t is ' (the disintegration constant for 
110

Ag), and for large t is  (the disintegration constant for 
108

Ag). 

 

83. We note that hc = 1240 MeV·fm, and that the classical kinetic energy 1
2

2mv  can be 

written directly in terms of the classical momentum p = mv (see below). Letting 

 

/ / ,p p h x h r    

we get 

 

 
 

    

2 22

22 2 1/3

1240MeV fm
30MeV.

2 2 2 938MeV 1.2fm 100

hcp
E

m mc r


 

 
 

 

 

84. (a) The rate at which radium-226 is decaying is 

 

R N
T

M

m
 
F
HG
I
KJ
F
H
I
K 




  

ln ln . . /

.
. .

/

2 2 100 6 02 10

1600 315 10 226
3 66 10

1 2

23

7

7
a fa fc h
a fc ha f

mg mol

y s / y g / mol
s 1  

 

The activity is 73.66 10 Bq.  

 

(b) The activity of 
222

Rn is also 73.66 10 Bq.  

 

(c) From RRa = RRn and R = N = (ln 2/T1/2)(M/m), we get 

 

   

   
Rn

Ra

3

1/ 2 9Rn
Rn Ra

1/ 2 Ra

3.82d 1.00 10 g 222u
6.42 10 g.

1600y 365d/y 226u

T m
M M

T m




   

       
  

 

 

85. Although we haven’t drawn the requested lines in the following table, we can indicate 

their slopes: lines of constant A would have – 45° slopes, and those of constant N – Z 

would have 45°. As an example of the latter, the N – Z = 20 line (which is one of 

“eighteen-neutron excess”) would pass through Cd-114 at the lower left corner up 

through Te-122 at the upper right corner. The first column corresponds to N = 66, and the 
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bottom row to Z = 48. The last column corresponds to N = 70, and the top row to Z = 52. 

Much of the information below (regarding values of T1/2 particularly) was obtained from 

the Web sites http://nucleardata.nuclear.lu.se/nucleardata and http://www.nndc.bnl.gov/ 

nndc/ensdf.  

118
Te  

119
Te  

120
Te  

121
Te  

122
Te 

6.0 days 16.0 h 0.1% 19.4 days 2.6% 

117
Sb  

118
Sb  

119
Sb  

120
Sb  

121
Sb 

2.8 h 3.6 min 38.2 s 15.9 min 57.2% 

116
Sn  

117
Sn  

118
Sn  

119
Sn  

120
Sn 

14.5% 7.7% 24.2% 8.6% 32.6% 

115
In  

116
In  

117
In  

118
In  

119
In 

95.7% 14.1 s 43.2 min 5.0 s 2.4 min 

114
Cd  

115
Cd  

116
Cd  

117
Cd  

118
Cd 

28.7% 53.5 h 7.5% 2.5 h 50.3 min 

 

86. Using Eq. 42-3 ( 1/3

0r r A ), we estimate the nuclear radii of the alpha particle and Al 

to be 

 
15 1/3 15

15 1/3 15

Al

(1.2 10  m)(4) 1.90 10  m

(1.2 10  m)(27) 3.60 10  m.

r

r


 

 

   

   
 

  

The distance between the centers of the nuclei when their surfaces touch is 

 
15 15 15

Al 1.90 10  m 3.60 10  m 5.50 10  mr r r

          . 

 

From energy conservation, the amount of energy required is 

 
9 2 2 19 19

Al

15

0
12 6

1 (8.99 10 N m C )(2 1.6 10 C)(13 1.6 10 C)

4 5.50 10 m

1.09 10  J 6.79 10 eV

q q
K

r





 





     
 



   

 

 

87. Equation 24-43 gives the electrostatic potential energy between two uniformly 

charged spherical charges (in this case q1 = 2e and q2 = 90e) with r being the distance 

between their centers. Assuming the “uniformly charged spheres” condition is met in this 

instance, we write the equation in such a way that we can make use of k = 1/40 and the 

electronvolt unit: 
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U k
e e

r

e

r r
  

F
H

I
K





 2 90

8 99 10
3 2 10 90 2 59 109

19 7a fa f c h a f
.

. .V m

C

C
eV  

 

with r understood to be in meters. It is convenient to write this for r in femtometers, in 

which case U = 259/r MeV. This is shown plotted below. 

 

 
 

88. We take the speed to be constant, and apply the classical kinetic energy formula: 

 

    

2

1/315

8

22

2
2

22 /

1.2 10 m 100 2 938MeV

3.0 10 m/s 5MeV

4 10 s.

nmd d r mc
t r

v K c KK m





   






 

 

 

89. We solve for A from Eq. 42-3: 

 

A
r

r

F
HG
I
KJ 
F
HG
I
KJ 

0

3 3

3 6
27

.
.

fm

1.2 fm
 

 

90. The problem with Web-based services is that there are no guarantees of accuracy or 

that the Web page addresses will not change from the time this solution is written to the 

time someone reads this. Still, it is worth mentioning that a very accessible Web site for a 

wide variety of periodic table and isotope-related information is 

http://www.webelements.com. Two sites, http://nucleardata.nuclear.lu.se/nucleardata and 

http://www.nndc.bnl.gov/nndc/ensdf, are aimed more toward the nuclear professional. 

These are the sites where some of the information mentioned below was obtained. 
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(a) According to Appendix F, the atomic number 60 corresponds to the element 

neodymium (Nd). The first Web site mentioned above gives 
142

Nd, 
143

Nd, 
144

Nd, 
145

Nd, 
146

Nd, 
148

Nd, and 
150

Nd in its list of naturally occurring isotopes. Two of these, 
144

Nd and 
150

Nd, are not perfectly stable, but their half-lives are much longer than the age of the 

universe (detailed information on their half-lives, modes of decay, etc. are available at the 

last two Web sites referred to, above). 

 

(b) In this list, we are asked to put the nuclides that contain 60 neutrons and that are 

recognized to exist but not stable nuclei (this is why, for example, 
108

Cd is not included 

here). Although the problem does not ask for it, we include the half-lives of the nuclides 

in our list, though it must be admitted that not all reference sources agree on those values 

(we picked ones we regarded as “most reliable”). Thus, we have 
97

Rb (0.2 s), 
98

Sr (0.7 s), 
99

Y (2 s), 
100

Zr (7 s), 
101

Nb (7 s), 
102

Mo (11 minutes), 
103

Tc (54 s), 
105

Rh (35 hours), 
109

In 

(4 hours), 
110

Sn (4 hours), 
111

Sb (75 s), 
112

Te (2 minutes), 
113

I (7 s), 
114

Xe (10 s), 
115

Cs 

(1.4 s), and 
116

Ba (1.4 s). 

 

(c) We would include in this list: 
60

Zn, 
60

Cu, 
60

Ni, 
60

Co, 
60

Fe, 
60

Mn, 
60

Cr, and 
60

V. 

 

91. (a) In terms of the original value of u, the newly defined u is greater by a factor  

of 1.007825. So the mass of 
1
H would be 1.000000 u, the mass of 

12
C would be 

 

(12.000000/1.007825) u = 11.90683 u. 

 

(b) The mass of 
238

U would be (238.050785/ 1.007825) u = 236.2025 u. 

 

92. (a) The mass number A of a radionuclide changes by 4 in an  decay and is 

unchanged in a  decay. If the mass numbers of two radionuclides are given by 4n + k 

and 4n' + k (where k = 0, 1, 2, 3), then the heavier one can decay into the lighter one by a 

series of  (and ) decays, as their mass numbers differ by only an integer times 4. If A = 

4n + k, then after -decaying for m times, its mass number becomes  

 

A = 4n + k –  4m = 4(n –  m) + k, 

still in the same chain. 

 

(b) For 
235

U, 235 = 58  4 + 3 = 4n + 3. 

 

(c) For 
236

U, 236 = 59  4 = 4n.  

 

(d) For 
238

U, 238 = 59  4 + 2 = 4n + 2.  

 

(e) For 
239

Pu, 239 = 59  4 + 3 = 4n + 3.  

 

(f) For 
240

Pu, 240 = 60  4 = 4n.  

 

(g) For 
245

Cm, 245 = 61  4 + 1 = 4n + 1. 
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(h) For 
246

Cm, 246 = 61  4 + 2 = 4n + 2. 

 

(i) For 
249

Cf, 249 = 62  4 + 1 = 4n + 1. 

 

(j) For 
253

Fm, 253 = 63  4 + 1 = 4n + 1. 

 

93. The disintegration energy is 

 

Q m m c EK  

  

V Ti

u 48.94787 u MeV / u MeV

= 0.600MeV.

b g
b gb g

2

48 94852 9315 0 00547. . .  

 

94. We locate a nuclide from Table 42-1 by finding the coordinate (N, Z) of the 

corresponding point in Fig. 42-4. It is clear that all the nuclides listed in Table 42-1 are 

stable except the last two, 
227

Ac and 
239

Pu. 

 

95. (a) We use R = R0e
– t

 to find t: 

 

t
R

R

T R

R
   

1

2

14 28 3050

170
59 50 1 2 0


ln

ln
ln

.
ln ./ d

ln 2
d. 

 

(b) The required factor is 

 

 1/ 2
3.48d/14.28d ln 2ln 2/0 1.18.

t TtR
e e e

R

     

96. (a) From the decay series, we know that N210, the amount of 
210

Pb nuclei, changes 

because of two decays: the decay from 
226

Ra into 
210

Pb at the rate R226 = 226N226, and the 

decay from 
210

Pb into 
206

Pb at the rate R210 = 210N210. The first of these decays causes 

N210 to increase while the second one causes it to decrease. Thus, 

 

dN

dt
R R N N210

226 210 226 226 210 210     .  

 

(b) We set dN210/dt = R226 –  R210 = 0 to obtain R226/R210 = 1.00. 

 

(c) From R226 = 226N226 = R210 = 210N210, we obtain 

 

N

N

T

T

226

210

210

226

1 2226

1 2210

3160 10

22 6
708  








/

/

.

.
. .

y

y
 

 

(d) Since only 1.00% of the 
226

Ra remains, the ratio R226/R210 is 0.00100 of that of the 

equilibrium state computed in part (b). Thus the ratio is (0.0100)(1) = 0.0100. 
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(e) This is similar to part (d) above. Since only 1.00% of the 
226

Ra remains, the ratio 

N226/N210 is 1.00% of that of the equilibrium state computed in part (c), or (0.0100)(70.8) 

= 0.708. 

 

(f) Since the actual value of N226/N210 is 0.09, which much closer to 0.0100 than to 1, the 

sample of the lead pigment cannot be 300 years old. So Emmaus is not a Vermeer. 

 

97. (a) Replacing differentials with deltas in Eq. 42-12, we use the fact that N = – 12 

during t = 1.0 s to obtain 

 

184.8 10 / s
N

t
N

  
      

 

where N = 2.5  10
18

, mentioned at the second paragraph of Section 42-3, is used. 

 

(b) Equation 42-18 yields T1/2 = ln 2/ = 1.4  10
17

 s, or about 4.6 billion years. 
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Chapter 43 
 

 

1. (a) Using Eq. 42-20 and adapting Eq. 42-21 to this sample, the number of fission-

events per second is 

 

R
N

T

M N

M T

A
fission

sam

U

23

17

fission fission

g)(6.02 10 mol) ln2

g / mol)(3.0 10 y)(365 d / y)
fissions / day.

 







ln ln

( . /

(

/ /

2 2

10

235
16

1 2 1 2
 

 

(b) Since 1/ 21/R T  (see Eq. 42-20), the ratio of rates is 

 

R

R

T


fission 1/2

fission

T

y

y
 




 

1 2
17

8

830 10

7 0 10
4 3 10

/ .

.
. .  

 

2. When a neutron is captured by 
237

Np it gains 5.0 MeV, more than enough to offset the 

4.2 MeV required for 
238

Np to fission. Consequently, 
237

Np is fissionable by thermal 

neutrons. 

 

3. The energy transferred is 

 
2

U238 U239( )

(238.050782 u 1.008664 u 239.054287 u)(931.5 MeV/u)

4.8 MeV.

nQ m m m c  

  



 

 

4. Adapting Eq. 42-21, there are 

 

N
M

M
NAPu

sam

Pu

g

239 g / mol
/ mol) 

F
HG

I
KJ   

1000
6 02 10 2 5 1023 24( . .  

 

plutonium nuclei in the sample. If they all fission (each releasing 180 MeV), then the 

total energy release is 4.54  10
26

 MeV. 

 

5. The yield of one warhead is 2.0 megatons of TNT, or 

 
28 28yield 2(2.6 10  MeV) 5.2 10  MeV    . 

 

Since each fission event releases about 200 MeV of energy, the number of fissions is 

 



CHAPTER 43 1814 

28
265.2 10  MeV

2.6 10
200 MeV

N


   . 

 

However, this only pertains to the 8.0% of Pu that undergoes fission, so the total number 

of Pu is 
26

27 3

0

2.6 10
3.25 10 5.4 10  mol

0.080 0.080

N
N


      . 

 

With 0.239 kg/mol,M   the mass of the warhead is 

 
3 3(5.4 10  mol)(0.239 kg/mol) 1.3 10  kgm     . 

 

6. We note that the sum of superscripts (mass numbers A) must balance, as well as the 

sum of Z values (where reference to Appendix F or G is helpful). A neutron has Z = 0 and 

A = 1. Uranium has Z = 92. 

 

(a) Since xenon has Z = 54, then “Y” must have Z = 92 – 54 = 38, which indicates the 

element strontium. The mass number of “Y” is 235 + 1 – 140 – 1 = 95, so “Y” is 
95

Sr. 

 

(b) Iodine has Z = 53, so “Y” has Z = 92 – 53 = 39, corresponding to the element yttrium 

(the symbol for which, coincidentally, is Y). Since 235 + 1 – 139 – 2 = 95, then the 

unknown isotope is 
95

Y. 

 

(c) The atomic number of zirconium is Z = 40. Thus, 92 – 40 – 2 = 52, which means that 

“X” has Z = 52 (tellurium). The mass number of “X” is 235 + 1 – 100 – 2 = 134, so we 

obtain 
134

Te. 

 

(d) Examining the mass numbers, we find b = 235 + 1 – 141 – 92 = 3. 

 

7. If R is the fission rate, then the power output is P = RQ, where Q is the energy released 

in each fission event. Hence,  

 

R = P/Q = (1.0 W)/(200  10
6
 eV)(1.60  10

– 19
 J/eV) = 3.1  10

10
 fissions/s. 

 

8. (a) We consider the process 98 49Mo Sc Sc.  49  The disintegration energy is  

 

Q = (mMo –  2mSc)c
2
 = [97.90541 u –  2(48.95002 u)](931.5 MeV/u) = +5.00 MeV. 

 

(b) The fact that it is positive does not necessarily mean we should expect to find a great 

deal of molybdenum nuclei spontaneously fissioning; the energy barrier (see Fig. 43-3) is 

presumably higher and/or broader for molybdenum than for uranium. 

 

9. (a) The mass of a single atom of 
235

U is  

 

 0m  (235 u)(1.661  10
– 27

 kg/u) = 3.90  10
– 25

 kg,  
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so the number of atoms in m = 1.0 kg is 

 

N = m/m0 = (1.0 kg)/(3.90  10
– 25

 kg) = 2.56  10
24
2.6  10

24
. 

 

An alternate approach (but essentially the same once the connection between the “u” unit 

and NA is made) would be to adapt Eq. 42-21. 

 

(b) The energy released by N fission events is given by E = NQ, where Q is the energy 

released in each event. For 1.0 kg of 
235

U,  

 

E = (2.56  10
24

)(200  10
6
 eV)(1.60  10

– 19
 J/eV) = 8.19  10

13
 J 8.2  10

13
 J. 

 

(c) If P is the power requirement of the lamp, then  

 

t = E/P = (8.19  10
13

 J)/(100 W) = 8.19  10
11

 s = 2.6  10
4
 y. 

 

The conversion factor 3.156  10
7
 s/y is used to obtain the last result. 

 

10. The energy released is 

 

Q m m m m m cn n    

   



(

( . . . .

U Cs Rb )

u u u u)(931.5 MeV / u)

MeV.

2

23504392 100867 140 91963 92 92157

181

2

 

 

11. If MCr is the mass of a 
52

Cr nucleus and MMg is the mass of a 
26

Mg nucleus, then the 

disintegration energy is  

 

Q = (MCr – 2MMg)c
2
 = [51.94051 u – 2(25.98259 u)](931.5 MeV/u) = – 23.0 MeV. 

 

12. (a) Consider the process 239 99U n Ce Ru Ne.140     We have  

 

Zf –  Zi = ZCe + ZRu –  ZU = 58 + 44 –  92 = 10. 

 

Thus the number of beta-decay events is 10. 

 

(b) Using Table 37-3, the energy released in this fission process is 

 

Q m m m m m cn e    

    



( )

( . . . . ( .

U Ce Ru

u u u u)(931.5 MeV / u) MeV)

MeV.

10

238 05079 100867 139 90543 98 90594 10 0511

226

2

 

13. (a) The electrostatic potential energy is given by 
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U
Z Z e

r r




1

4

2

 
Xe Sr

Xe Sr

 

 

where ZXe is the atomic number of xenon, ZSr is the atomic number of strontium, rXe is 

the radius of a xenon nucleus, and rSr is the radius of a strontium nucleus. Atomic 

numbers can be found either in Appendix F or Appendix G. The radii are given by r = 

(1.2 fm)A
1/3

, where A is the mass number, also found in Appendix F. Thus,  

 

rXe = (1.2 fm)(140)
1/3

 = 6.23 fm = 6.23  10
– 15

 m 

 

and  

rSr = (1.2 fm)(96)
1/3

 = 5.49 fm = 5.49  10
– 15

 m. 

 

Hence, the potential energy is 

 
19 2

9 11

15 15

(54)(38)(1.60 10 C)
(8.99 10 V m/C) 4.08 10 J

6.23 10 m 5.49 10 m

251 MeV.

U




 


    

  



 

 

(b) The energy released in a typical fission event is about 200 MeV, roughly the same as 

the electrostatic potential energy when the fragments are touching. The energy appears as 

kinetic energy of the fragments and neutrons produced by fission. 

 

14. (a) The surface area a of a nucleus is given by  

 

 
2

2 1/3 2/3

04 4 .a R R A A    

 

Thus, the fractional change in surface area is 

 

a

a

a a

ai

f i

i







  
( ) ( )

( )
. .

/ /

/

140 96

236
1 0 25

2 3 2 3

2 3
 

 

(b) Since V  R
3
  (A

1/3
)
3
 = A, we have 

 

V

V

V

V

f

i

  


 1
140 96

236
1 0. 

 

(c) The fractional change in potential energy is 

 
2 2 2 1/3 2 1/3

Xe Xe Sr Sr

2 2 1/3

U U

/ / (54) (140) (38) (96)
1 1 1

/ (92) (236)

0.36.

f

i

U Q R Q RU

U U Q R

 



 
     

 

 



 

  

1817 

 

15. THINK One megaton of TNT releases 2.6  10
28

 MeV of energy. The energy 

released in each fission event is about 200 MeV. 

 

EXPRESS The energy yield of the bomb is  

 

E = (66  10
– 3

 megaton)(2.6  10
28

 MeV/ megaton) = 1.72  10
27

 MeV. 

 

At 200 MeV per fission event, the total number of fission events taking place is  

 

(1.72  10
27

 MeV)/(200 MeV) = 8.58  10
24

. 

 

Now, since only 4.0% of the 
235

U nuclei originally present undergo fission, there must 

have been (8.58  10
24

)/(0.040) = 2.14  10
26

 nuclei originally present.  

 

ANALYZE (a) The mass of 
235

U originally present was  

 

(2.14  10
26

)(235 u)(1.661  10
– 27

 kg/u) = 83.7 kg   84 kg. 

 

(b) Two fragments are produced in each fission event, so the total number of fragments is  

 

2(8.58  10
24

) = 1.72  10
25 
1.7  10

25
. 

 

(c) One neutron produced in a fission event is used to trigger the next fission event, so the 

average number of neutrons released to the environment in each event is 1.5. The total 

number released is  

(8.58  10
24

)(1.5) = 1.29  10
25

 1.3  10
25

. 

 

LEARN When one 
235

U nucleus undergoes fission, the neutrons it produces (an average 

number of 2.5 neutrons per fission) can trigger other 
235

U nuclei to fission, thereby setting 

up a chain reaction that allows an enormous amount of energy to be released.  

 

16. (a) Using the result of Problem 43-4, the TNT equivalent is 

 

( .

.
.

2 50

2 6 10
4 4 10 44

28

4kg)(4.54 10 MeV / kg)

MeV /10 ton
ton kton.

26

6




    

 

(b) Assuming that this is a fairly inefficiently designed bomb, then much of the remaining 

92.5 kg is probably “wasted” and was included perhaps to make sure the bomb did not 

“fizzle.” There is also an argument for having more than just the critical mass based on 

the short assembly time of the material during the implosion, but this so-called “super-

critical mass,” as generally quoted, is much less than 92.5 kg, and does not necessarily 

have to be purely plutonium. 
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17. THINK We represent the unknown fragment as Z

A X , where A and Z are its mass 

number and atomic number, respectively. Charge and mass number are conserved in the 

neutron-capture process. 

 

EXPRESS The reaction can be written as 

 

92

235U n Ge  0

1

32

82

Z

AX . 

 

Conservation of charge yields 92 + 0 = 32 + Z, so Z = 60. Conservation of mass number 

yields 235 + 1 = 83 + A, so A = 153.  

 

ANALYZE (a) Looking in Appendix F or G for nuclides with Z = 60, we find that the 

unknown fragment is 60

153 Nd.  

 

(b) We neglect the small kinetic energy and momentum carried by the neutron that 

triggers the fission event. Then,  

Q = KGe + KNd, 

 

where KGe is the kinetic energy of the germanium nucleus and KNd is the kinetic energy of 

the neodymium nucleus. Conservation of momentum yields 
 
p pGe Nd  0.  Now, we can 

write the classical formula for kinetic energy in terms of the magnitude of the momentum 

vector: 

K mv
p

m
 

1

2 2

2
2

 

which implies that 
2 2 2

Nd Ge Ge Ge Ge
Nd Ge

Nd Nd Nd Ge Nd2 2 2

p p M p M
K K

M M M M M
    . 

 

Thus, the energy equation becomes 

 

Ge Nd Ge
Ge Ge Ge

Nd Nd

M M M
Q K K K

M M


    

and 

K
M

M M
QGe

Nd

Nd Ge

u

153 u u
MeV) MeV.







153

83
170 110(  

(c) Similarly, 

K
M

M M
QNd

Ge

Nd Ge

u

153 u u
MeV) MeV.







83

83
170 60(  

 

(d) The initial speed of the germanium nucleus is 
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6 19
7Ge

Ge 27

Ge

2 2(110 10 eV)(1.60 10 J/eV)
1.60 10 m/s.

(83 u)(1.661 10 kg/u)

K
v

M





 
   


 

 

(e) The initial speed of the neodymium nucleus is 

 

v
K

M
Nd

Nd

ND

eV)(1.60 10 J / eV)

u)(1.661 10 kg / u)
m / s. 

 


 





2 2 60 10

153
8 69 10

6 19

27

6(

(
.  

 

LEARN By momentum conservation, the two fragments fly apart in opposite directions.   

 

18. If P is the power output, then the energy E produced in the time interval t (= 3 y) is 

 

E = P t = (200  10
6
 W)(3 y)(3.156  10

7
 s/y) = 1.89  10

16
 J 

= (1.89  10
16

 J)/(1.60  10
– 19

 J/eV) = 1.18  10
35

 eV  

= 1.18  10
29

 MeV.  

 

At 200 MeV per event, this means (1.18  10
29

)/200 = 5.90  10
26

 fission events occurred. 

This must be half the number of fissionable nuclei originally available. Thus, there were 

2(5.90  10
26

) = 1.18  10
27

 nuclei. The mass of a 
235

U nucleus is  

 

(235 u)(1.661  10
– 27

 kg/u) = 3.90  10
– 25

 kg, 

 

so the total mass of 
235

U originally present was (1.18  10
27

)(3.90  10
– 25

 kg) = 462 kg. 

 

19. After each time interval tgen the number of nuclides in the chain reaction gets 

multiplied by k. The number of such time intervals that has gone by at time t is t/tgen. For 

example, if the multiplication factor is 5 and there were 12 nuclei involved in the reaction 

to start with, then after one interval 60 nuclei are involved. And after another interval 300 

nuclei are involved. Thus, the number of nuclides engaged in the chain reaction at time t 

is N t N k
t t

( ) .
/

 0
gen  Since P  N we have 

 

P t P k
t t

( ) .
/

 0
gen  

 

20. We use the formula from Problem 43-19: 

 
gen/ (5.00 min)(60 s/min)/(0.00300s) 3

0( ) (400MW)(1.0003) 8.03 10 MW.
t t

P t P k     

 

21. If R is the decay rate then the power output is P = RQ, where Q is the energy 

produced by each alpha decay. Now  

 

R = N = N ln 2/T1/2, 
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where  is the disintegration constant and T1/2 is the half-life. The relationship 

1/ 2(ln 2) /T  is used. If M is the total mass of material and m is the mass of a single 
238

Pu nucleus, then 

 

N
M

m
 


 



100
2 53 1024.
. .

kg

(238 u)(1.661 10 kg / u)27
 

Thus, 
24 6 19

7

1/ 2

ln 2 (2.53 10 )(5.50 10 eV)(1.60 10 J/eV)(ln2)
557W.

(87.7y)(3.156 10 s/y)

NQ
P

T

  
  


 

 

22. We recall Eq. 43-6:  

Q  200 MeV = 3.2  10
– 11

 J. 

 

It is important to bear in mind that watts multiplied by seconds give joules. From E = 

Ptgen = NQ we get the number of free neutrons: 

 

N
Pt

Q
 

 


 





gen W s)

J

( )( .

.
. .

500 10 10 10

32 10
16 10

6 3

11

16  

 

23. THINK The neutron generation time tgen in a reactor is the average time needed for a 

fast neutron emitted in a fission event to be slowed to thermal energies by the moderator 

and then initiate another fission event.   

 

EXPRESS Let P0 be the initial power output, P be the final power output, k be the 

multiplication factor, t be the time for the power reduction, and tgen be the neutron 

generation time. Then, according to the result of Problem 43-19, 

 

P P k
t t

 0

/
.gen  

 

ANALYZE We divide by P0, take the natural logarithm of both sides of the equation and 

solve for ln k: 
3

gen

0

1.3 10 s 350 MW
ln ln ln 0.0006161.

2.6 s 1200 MW

t P
k

t P

   
      

  
 

 

Hence, k = e
– 0.0006161

 = 0.99938. 

 

 

LEARN The power output as a function of 

time is shown to the right. Since the 

multiplication factor k is smaller than 1, the 

output decreases with time. 
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24. (a) We solve Qeff from P = RQeff: 

 

Q
P

R

P

N

mPT

M
eff

27u)(1.66 10 kg / u)(0.93 W)(29 y)(3.15 s / y)

kg)(ln 2)(1.60 10 J / MeV)

MeV.

  


 

 





 



1 2

7

3 13

2

90 0 10

100 10

12

/

ln

( .

( .

.

 

 

(b) The amount of 
90

Sr needed is 

 

M  
150

32
W

(0.050)(0.93 W / g)
kg..  

 

25. THINK Momentum is conserved in the collision process. In addition, energy is also 

conserved since the collision is elastic.  

 

EXPRESS Let vni be the initial velocity of the neutron, vnf be its final velocity, and vf be 

the final velocity of the target nucleus. Then, since the target nucleus is initially at rest, 

conservation of momentum yields  

mnvni = mnvnf + mvf 

 

and conservation of energy yields  

2 2 21 1 1
.

2 2 2
n ni n nf fm v m v mv   

 

We solve these two equations simultaneously for vf. This can be done, for example, by 

using the conservation of momentum equation to obtain an expression for vnf in terms of 

vf and substituting the expression into the conservation of energy equation. We solve the 

resulting equation for vf. We obtain vf = 2mnvni/(m + mn).  

 

ANALYZE (a) The energy lost by the neutron is the same as the energy gained by the 

target nucleus, so 

K mv
m m

m m
vf

n

n

ni 


1

2

1

2

42
2

2

2

( )
.  

 

The initial kinetic energy of the neutron is K m vn ni 1
2

2 ,  so 

 

2

4
.

( )

n

n

m mK

K m m





 

 

(b) The mass of a neutron is 1.0 u and the mass of a hydrogen atom is also 1.0 u. (Atomic 

masses can be found in Appendix G.) Thus, 



CHAPTER 43 1822 

 

K

K





4 10

10 10
10

( .

( . .
. .

u)(1.0 u)

u u)2
 

 

(c) Similarly, the mass of a deuterium atom is 2.0 u, so  

 

(K)/K = 4(1.0 u)(2.0 u)/(2.0 u + 1.0 u)
2
 = 0.89. 

 

(d) The mass of a carbon atom is 12 u, so  

 

(K)/K = 4(1.0 u)(12 u)/(12 u + 1.0 u)
2
 = 0.28. 

 

(e) The mass of a lead atom is 207 u, so  

 

(K)/K = 4(1.0 u)(207 u)/(207 u + 1.0 u)
2
 = 0.019. 

 

(f) During each collision, the energy of the neutron is reduced by the factor 1 – 0.89 = 

0.11. If Ei is the initial energy, then the energy after n collisions is given by E = (0.11)
n
Ei. 

We take the natural logarithm of both sides and solve for n. The result is 

 

ln( / ) ln(0.025 eV/1.00 eV)
7.9 8.

ln 0.11 ln 0.11

iE E
n      

 

The energy first falls below 0.025 eV on the eighth collision. 

 

LEARN The fractional kinetic energy loss as a function of the mass of the stationary 

atom (in units of / nm m ) is plotted below. 

 

 
 

From the plot, it is clear that the energy loss is greatest (K/K = 1) when the atom has the 

same as the neutron.   

 

26. The ratio is given by 
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( )5 5

8 8

( ) (0)
,

( ) (0)

tN t N
e

N t N

   
  

or 

 

15 8

10 1

8 8 5

9

( ) (0)1 1
ln ln[(0.0072)(0.15) ]

( ) (0) (1.55 9.85)10 y

3.6 10 y.

N t N
t

N t N 



 



   
    

     

 

 

 

27. (a) Pavg = (15  10
9
 W·y)/(200,000 y) = 7.5  10

4
 W = 75 kW. 

 

(b) Using the result of Eq. 43-6, we obtain 

 
27 9 7

3U total

13

(235u)(1.66 10 kg/u)(15 10 W y)(3.15 10 s/y)
5.8 10 kg

(200MeV)(1.6 10 J/MeV)

m E
M

Q





   
   


. 

 

28. The nuclei of 
238

U can capture neutrons and beta-decay. With a large amount of 

neutrons available due to the fission of 
235

U, the probability for this process is 

substantially increased, resulting in a much higher decay rate for 
238

U and causing the 

depletion of 
238

U (and relative enrichment of 
235

U). 

 

29. THINK With a shorter half-life, 
235

U has a greater decay rate than 
238

U. Thus, if the 

ore contains only 0.72% of 
235

U today, then the concentration must be higher in the far 

distant past.  

 

EXPRESS Let t be the present time and t = 0 be the time when the ratio of 
235

U to 
238

U 

was 3.0%. Let N235 be the number of 
235

U nuclei present in a sample now and N235,0 be 

the number present at t = 0. Let N238 be the number of 
238

U nuclei present in the sample 

now and N238,0 be the number present at t = 0. The law of radioactive decay holds for 

each species, so 
235

235 235,0

t
N N e


  

and 

N N e t

238 238 0 

, .238  

 

Dividing the first equation by the second, we obtain 

 

r r e t  

0

( )    

 

where r = N235/N238 (= 0.0072) and r0 = N235,0/N238,0 (= 0.030). We solve for t: 

 

235 238 0

1
ln .

r
t

r 

 
   

  
 

 

ANALYZE Now we use 235 1 22
235

 (ln ) / /T  and 238 1 22
238

 (ln ) / /T  to obtain 
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235 238

238 235

8 9
1/ 2 1/ 2

9 8

1/ 2 1/ 2 0

9

(7.0 10 y)(4.5 10 y) 0.0072
ln ln

( ) ln 2 (4.5 10 y 7.0 10 y) ln 2 0.030

1.7 10 y.

T T r
t

T T r

     
     

      

 

 

 

LEARN How the ratio r = N235/N238 changes with time is plotted below. In the plot, we 

take the ratio to be 0.03 at t = 0. At t = 91.7 10  y  or 
1/ 2,238/ 0.378,t T  r is reduced to 

0.072. 

 
 

30. We are given the energy release per fusion (Q = 3.27 MeV = 5.24  10
– 13

 J) and that 

a pair of deuterium atoms is consumed in each fusion event. To find how many pairs of 

deuterium atoms are in the sample, we adapt Eq. 42-21: 

 

N
M

M
Nd

d

pairs
sam

A
2

g

2(2.0 g / mol)
mol) 

F
HG

I
KJ   

1000
6 02 10 15 1023 26( . / . .  

 

Multiplying this by Q gives the total energy released: 7.9  10
13

 J. Keeping in mind that a 

watt is a joule per second, we have 

 

t 


   
7 9 10

100
7 9 10 2 5 10

13
11 4.

. .
J

W
s y.  

 

31. THINK Coulomb repulsion acts to prevent two charged particles from coming close 

enough to be within the range of their attractive nuclear force.  

 

EXPRESS We take the height of the Coulomb barrier to be the value of the kinetic 

energy K each deuteron must initially have if they are to come to rest when their surfaces 

touch. If r is the radius of a deuteron, conservation of energy yields 
2

0

1
2 .

4 2

e
K

r



 

ANALYZE With r = 2.1 fm, we have 
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2 19 2

9 14

15

0

1 (1.60 10 C)
(8.99 10 V m/C) 2.74 10 J 170 keV.

4 4 4(2.1 10 m)

e
K

r







      

 
 

 

LEARN The height of the Coulomb barrier depends on the charges and radii of the two 

interacting nuclei. Increasing the charge raises the barrier. 

 

32. (a) Our calculation is identical to that in Sample Problem — “Fusion in a gas of 

protons and required temperature” except that we are now using R appropriate to two 

deuterons coming into “contact,” as opposed to the R = 1.0 fm value used in the Sample 

Problem. If we use R = 2.1 fm for the deuterons, then our K is simply the K calculated in 

the Sample Problem, divided by 2.1: 

 

K
K

d d

p p




  

21

360

21
170

. .

keV
keV.  

 

Consequently, the voltage needed to accelerate each deuteron from rest to that value of K 

is 170 kV. 

 

(b) Not all deuterons that are accelerated toward each other will come into “contact” and 

not all of those that do so will undergo nuclear fusion. Thus, a great many deuterons must 

be repeatedly encountering other deuterons in order to produce a macroscopic energy 

release. An accelerator needs a fairly good vacuum in its beam pipe, and a very large 

number flux is either impractical and/or very expensive. Regarding expense, there are 

other factors that have dissuaded researchers from using accelerators to build a controlled 

fusion “reactor,” but those factors may become less important in the future — making the 

feasibility of accelerator “add-ons” to magnetic and inertial confinement schemes more 

cost-effective. 

 

33. Our calculation is very similar to that in Sample Problem – “Fusion in a gas of 

protons and required temperature” except that we are now using R appropriate to two 

lithium-7 nuclei coming into “contact,” as opposed to the R = 1.0 fm value used in the 

Sample Problem. If we use 

 

R r r A   0

1 3 12 7 2 3/ ( . .fm) fm3  

 

and q = Ze = 3e, then our K is given by (see the Sample Problem) 

 
2 2 2 19 2

12 15

0

3 (1.6 10 C)

16 16 (8.85 10 F/m)(2.3 10 m)

Z e
K

r 






 

 
 

 

which yields 2.25  10
–13

 J = 1.41 MeV. We interpret this as the answer to the problem, 

though the term “Coulomb barrier height” as used here may be open to other 

interpretations. 
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34. From the expression for n(K) given we may write n(K)  K
1/2

e
– K/kT

. Thus, with  

 

k = 8.62  10
– 5

 eV/K = 8.62  10
– 8

 keV/K, 

we have 

 

avg

1/ 2 1/ 2

( ) /

8 7

avg avg

( ) 5.00keV 5.00keV 1.94keV
exp

( ) 1.94keV (8.62 10 keV)(1.50 10 K)

0.151.

K K kTn K K
e

n K K

 



     
              



 

 

35. The kinetic energy of each proton is  

 

 23 7 16(1.38 10  J/K)(1.0 10  K) 1.38 10  JBK k T        . 

 

At the closest separation, rmin, all the kinetic energy is converted to potential energy:  

 
2

tot

0 min

1
2

4

q
K K U

r
    . 

Solving for rmin, we obtain 

 
2 9 2 2 19 2

13

min 16

0

1 (8.99 10 N m C )(1.60 10 C)
8.33 10 m 1 pm.

4 2 2(1.38 10 J)

q
r

K






  
    


 

 

36. The energy released is  

 
2 2

He H2 H1( )

(3.016029 u 2.014102 u 1.007825 u)(931.5 MeV/u)

5.49 MeV.

Q mc m m m c     

   



 

 

37. (a) Let M be the mass of the Sun at time t and E be the energy radiated to that time. 

Then, the power output is  

P = dE/dt = (dM/dt)c
2
, 

 

where E = Mc
2
 is used. At the present time, 

 

26
9

22
8

3.9 10 W
4.3 10 kg s .

2.998 10 m s

dM P

dt c


   


 

 

(b) We assume the rate of mass loss remained constant. Then, the total mass loss is  

 

M = (dM/dt) t = (4.33  10
9
 kg/s) (4.5  10

9
 y) (3.156  10

7
 s/y)  

                         = 6.15  10
26

 kg. 
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The fraction lost is 
26

4

30 26

6.15 10 kg
3.1 10 .

2.0 10 kg 6.15 10 kg

M

M M

 
  

   
 

 

38. In Fig. 43-10, let Q1 = 0.42 MeV, Q2 = 1.02 MeV, Q3 = 5.49 MeV, and Q4 =  

12.86 MeV. For the overall proton-proton cycle 

 

Q Q Q Q Q   

    

2 2 2

2 0 42 102 549 12 86 26 7

1 2 3 4

( . . . . .MeV MeV MeV) MeV MeV.
 

 

39. If MHe is the mass of an atom of helium and MC is the mass of an atom of carbon, then 

the energy released in a single fusion event is  

 

  2

He C3 [3(4.0026 u) (12.0000 u)](931.5 MeV/u) 7.27 MeV.Q M M c      

 

Note that 3MHe contains the mass of six electrons and so does MC. The electron masses 

cancel and the mass difference calculated is the same as the mass difference of the nuclei. 

 

40. (a) We are given the energy release per fusion (Q = 26.7 MeV = 4.28  10
– 12

 J) and 

that four protons are consumed in each fusion event. To find how many sets of four 

protons are in the sample, we adapt Eq. 42-21: 

 

 
 23 26sam

4 A

H

1000g
6.02 10 mol 1.5 10 .

4 4 1.0g mol
p

M
N N

M

 
      

 
 

 

Multiplying this by Q gives the total energy released: 6.4  10
14

 J. It is not required that 

the answer be in SI units; we could have used MeV throughout (in which case the answer 

is 4.0  10
27

 MeV). 

 

(b) The number of 
235

U nuclei is 

 

N235

23 241000

235
6 02 10 2 56 10

F
HG

I
KJ   

g

g mol
mol. . .c h  

 

If all the U-235 nuclei fission, the energy release (using the result of Eq. 43-6) is 

 

N Q235

22 26 132 56 10 200 51 10 8 2 10fission MeV MeV J     . . . .c hb g  

 

We see that the fusion process (with regard to a unit mass of fuel) produces a larger 

amount of energy (despite the fact that the Q value per event is smaller). 

 

41. Since the mass of a helium atom is  
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(4.00 u)(1.661  10
– 27

 kg/u) = 6.64  10
– 27

 kg, 

 

the number of helium nuclei originally in the star is  

 

(4.6  10
32

 kg)/(6.64  10
– 27

 kg) = 6.92  10
58

. 

 

Since each fusion event requires three helium nuclei, the number of fusion events that can 

take place is  

N = 6.92  10
58

/3 = 2.31  10
58

. 

 

If Q is the energy released in each event and t is the conversion time, then the power 

output is P = NQ/t and 

 

   58 6 19

15

30

8

2.31 10 7.27 10 eV 1.60 10 J eV
5.07 10 s

5.3 10 W

1.6 10 y .

NQ
t

P

  
   



 

 

 

42. We assume the neutrino has negligible mass. The photons, of course, are also taken to 

have zero mass. 

 

Q m m m c m m m m m c

Q m m m c m m m c

Q m m m c m m m c

p e e e e

p p

p p

1 2

2

1 2

2

2 2 3

2

2 3

2

3 3 4

2

3 4

2

2 2

2 1007825 2 014102 2 0 0005486 9315

0 42

2 014102 1007825 3016029 9315

549

2 2 2 2

2 3016029 4 002603 2

       

  



     

  



     

  

d i b g b g
b g b g b g

d i d i
b g b g

d i d i
b g

. . . .

.

. . . ) .

.

. .

u u u MeV u

MeV

u u u MeV u

MeV

u u 1007825 9315

12 86

. .

. .

u MeV u

MeV

b g b g


 

 

43. (a) The energy released is 

 

 

     

2 3 4 1

2

H He He H
5 2

5 2.014102u 3.016029u 4.002603u 1.007825u 2 1.008665u 931.5MeV u

24.9MeV.

nQ m m m m m c    

      



 

(b) Assuming 30.0% of the deuterium undergoes fusion, the total energy released is 
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E NQ
M

m
Q 

F
HG

I
KJ

0 300

5

.
.

2 H

 

Thus, the rating is 

 

R
E





 





2 6 10

0 300 500 24 9

5 2 0 166 10 2 6 10

8 65

28

27 28

.

. .

. . .

. .

MeV megatonTNT

kg MeV

u kg u MeV megatonTNT

megatonTNT

b gb gb g
b gc hc h  

 

44. The mass of the hydrogen in the Sun’s core is m MH Sun 0 35 1
8

. b g . The time it takes 

for the hydrogen to be entirely consumed is 

 

t
M

dm dt
 



 
 H

kg

kg s s y
y

0 35 2 0 10

6 2 10 315 10
5 10

1
8

30

11 7

9
. .

. .
.

b gb gc h
c hc h  

 

45. (a) Since two neutrinos are produced per proton-proton cycle (see Eq. 43-10 or Fig. 

43-10), the rate of neutrino production R satisfies 

 

R
P

Q
v  




 



2 2 39 10

26 7 16 10
18 10

26

13

38 1
.

. .
. .

W

MeV J MeV
s

c h
b gc h  

 

(b) Let des be the Earth to Sun distance, and R be the radius of Earth (see Appendix C). 

Earth represents a small cross section in the “sky” as viewed by a fictitious observer on 

the Sun. The rate of neutrinos intercepted by that area (very small, relative to the area of 

the full “sky”) is 

 

R R
R

d
v v

e

es

,

. .

.
. .Earth

s m

m
s

F
HG
I
KJ 

 



F
HG

I
KJ  







2

2

38 1 6

11

2

28 1

4

18 10

4

6 4 10

15 10
8 2 10

c h
 

 

46. (a) The products of the carbon cycle are 2e
+
 + 2 + 

4
He, the same as that of the 

proton-proton cycle (see Eq. 43-10). The difference in the number of photons is not 

significant. 

 

(b) We have 

 
carbon 1 2 6

1.95 1.19 7.55 7.30 1.73 4.97 MeV

24.7 MeV

Q Q Q Q   

     


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which is the same as that for the proton-proton cycle (once we subtract out the electron-

positron annihilations; see Fig. 43-10):  

 

Qp– p = 26.7 MeV –  2(1.02 MeV) = 24.7 MeV. 

 

47. THINK The energy released by burning 1 kg of carbon is 3.3  10
7
 J. 

 

EXPRESS The mass of a carbon atom is (12.0 u)(1.661  10
– 27

 kg/u) = 1.99  10
– 26

 kg, 

so the number of carbon atoms in 1.00 kg of carbon is  

 

(1.00 kg)/(1.99  10
– 26

 kg) = 5.02  10
25

. 

 

ANALYZE (a) The heat of combustion per atom is  

 

(3.3  10
7
 J/kg)/(5.02  10

25
 atom/kg) = 6.58  10

– 19
 J/atom. 

 

This is 4.11 eV/atom. 

 

(b) In each combustion event, two oxygen atoms combine with one carbon atom, so the 

total mass involved is 2(16.0 u) + (12.0 u) = 44 u. This is  

 

(44 u)(1.661  10
– 27

 kg/u) = 7.31  10
– 26

 kg. 

 

Each combustion event produces 6.58  10
– 19

 J so the energy produced per unit mass of 

reactants is (6.58  10
– 19

 J)/(7.31  10
– 26

 kg) = 9.00  10
6
 J/kg. 

 

(c) If the Sun were composed of the appropriate mixture of carbon and oxygen, the 

number of combustion events that could occur before the Sun burns out would be  

 

(2.0  10
30

 kg)/(7.31  10
– 26

 kg) = 2.74  10
55

. 

 

The total energy released would be  

 

E = (2.74  10
55

)(6.58  10
– 19

 J) = 1.80  10
37

 J. 

 

If P is the power output of the Sun, the burn time would be 

 
37

10 3

26

1.80 10 J
4.62 10 s 1.46 10 y,

3.9 10 W

E
t

P


     


 

or 31.5 10 y,  to two significant figures. 

 

LEARN The Sun burns not coal but hydrogen via the proton-proton cycle in which the 

fusion of hydrogen nuclei into helium nuclei take place. The mechanism of 

thermonuclear fusion reactions allows the Sun to radiate energy at a rate of 3.9  10
 26

 W 

for several billion years.  
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48. In Eq. 43-13, 

 

     2 3

2

H He
2 2 2.014102u 3.016049u 1.008665u 931.5MeV u

3.27MeV .

nQ m m m c       


 

 

In Eq. 43-14, 

 

     2 3 1

2

H H H
2 2 2.014102u 3.016049u 1.007825u 931.5MeV u

4.03MeV .

Q m m m c       


 

 

Finally, in Eq. 43-15, 

 

Q m m m m cn   

   



2 3

2

2 014102 3016049 4 002603 1008665 9315

17 59

H H He4

u u u u MeV u

MeV

d i
b g. . . . .

. .

 

 

49. Since 1.00 L of water has a mass of 1.00 kg, the mass of the heavy water in 1.00 L is 

0.0150  10
– 2

 kg = 1.50  10
– 4

 kg. Since a heavy water molecule contains one oxygen 

atom, one hydrogen atom and one deuterium atom, its mass is  

 

(16.0 u + 1.00 u + 2.00 u) = 19.0 u = (19.0 u)(1.661  10
– 27

 kg/u)  

                                                             = 3.16  10
– 26

 kg. 

 

The number of heavy water molecules in a liter of water is  

 

(1.50  10
– 4

 kg)/(3.16  10
– 26

 kg) = 4.75  10
21

. 

 

Since each fusion event requires two deuterium nuclei, the number of fusion events that 

can occur is N = 4.75  10
21

/2 = 2.38  10
21

. Each event releases energy  

 

Q = (3.27  10
6
 eV)(1.60  10

– 19
 J/eV) = 5.23  10

– 13
 J. 

 

Since all events take place in a day, which is 8.64  10
4
 s, the power output is 

 

P
NQ

t
 

 


  

2 38 10 523 10

8 64 10
144 10 14 4

21 13

4

4
. .

.
. . .

c hc hJ
s

W kW  

 

50. (a) From E = NQ = (Msam/4mp)Q we get the energy per kilogram of hydrogen 

consumed: 
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E

M

Q

mpsam

MeV J MeV

kg
J kg 




 



4

26 2 160 10

4 167 10
6 3 10

13

27

14
. .

.
. .

b gc h
c h  

 

(b) Keeping in mind that a watt is a joule per second, the rate is 

 

dm

dt





 

39 10

6 3 10
6 2 10

26

14

11.

.
. .

W

J kg
kg s  

 

This agrees with the computation shown in Sample Problem — “Consumption rate of 

hydrogen in the Sun.” 

 

(c) From the Einstein relation E = Mc
2
 we get P = dE/dt = c

2
dM/dt, or 

 

dM

dt

P

c
 




 

2

26

8
2

939 10

30 10
4 3 10

.

.
. .

W

m s
kg s

c h
 

 

(d) This finding, that / /dm dt dM dt , is in large part due to the fact that, as the protons 

are consumed, their mass is mostly turned into alpha particles (helium), which remain in 

the Sun. 

 

(e) The time to lose 0.10% of its total mass is 

 

t
M

dM dt
 



 
 

0 0010 0 0010 2 0 10

4 3 10 315 10
15 10

30

9 7

10. . .

. .
. .

a fc h
c hc h

kg

kg s s y
y  

 

51. Since plutonium has Z = 94 and uranium has Z = 92, we see that (to conserve charge) 

two electrons must be emitted so that the nucleus can gain a +2e charge. In the beta decay 

processes described in Chapter 42, electrons and neutrinos are emitted. The reaction 

series is as follows: 
238 239 239

239

U n Np U

Np Pu239

    

  

e v

e v
 

 

52. Conservation of energy gives Q = K + Kn, and conservation of linear momentum 

(due to the assumption of negligible initial velocities) gives |p| = |pn|. We can write the 

classical formula for kinetic energy in terms of momentum: 

 

K mv
p

m
 

1

2 2

2
2

 

which implies that Kn = (m/mn)K.  

 

(a) Consequently, conservation of energy and momentum allows us to solve for kinetic 

energy of the alpha particle, which results from the fusion:  
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n

17.59MeV
3.541MeV

1 ( / ) 1 (4.0015u/1.008665u)

Q
K

m m




  
 

 

 

where we have found the mass of the alpha particle by subtracting two electron masses 

from the 
4
He mass (quoted several times in this Chapter 42).  

 

(b) Then, Kn = Q – K yields 14.05 MeV for the neutron kinetic energy.  

 

53. At T = 300 K, the average kinetic energy of the neutrons is (using Eq. 20-24) 

 

K KTavg eV / K)(300 K) 0.04 eV.   3

2

3

2
8 62 10 5( .  

 

54. First, we figure out the mass of U-235 in the sample (assuming “3.0%” refers to the 

proportion by weight as opposed to proportion by number of atoms): 

 

238 235
U 235 sam

238 235 16

(97%) (3.0%)
(3.0%)

(97%) (3.0%) 2

0.97(238) 0.030(235)
(0.030)(1000 g)

0.97(238) 0.030(235) 2(16.0)

26.4 g.

m m
M M

m m m


 
  

  

 
  

  



 

 

Next, the number of 
235

U nuclei is 

 

N235

2226 4

235
6 77 10


 

( . /
. .

g)(6.02 10 mol)

g / mol

23

 

 

If all the U-235 nuclei fission, the energy release (using the result of Eq. 43-6) is 

 

N Q235

22 25 12677 10 200 135 10 217 10fission MeV) MeV J.     ( . ) ( . .  

 

Keeping in mind that a watt is a joule per second, the time that this much energy can keep 

a 100-W lamp burning is found to be 

 

t 


  
217 10

100
217 10 690

12
10.

.
J

W
s y.  

 

If we had instead used the Q = 208 MeV value from Sample Problem — “Q value in a 

fission of uranium-235,” then our result would have been 715 y, which perhaps suggests 

that our result is meaningful to just one significant figure (“roughly 700 years”). 
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55. (a) From H = 0.35 = npmp, we get the proton number density np: 

 

  5 3

31 3

27

0.35 1.5 10 kg m0.35
3.1 10 m .

1.67 10 kg
p

p

n
m

 




   


 

 

(b) From Chapter 19 (see Eq. 19-9), we have  

 

N

V

p

kT
 




 



101 10

138 10 273
2 68 10

5

23

25 3.

.
.

Pa

J K K
mc hb g  

 

for an ideal gas under “standard conditions.” Thus,  

 

n

N V

p

b g 



 





314 10

2 44 10
12 10

31 3

25 3

6.

.
. .

m

m
 

 

56. (a) Rather than use P(v) as it is written in Eq. 19-27, we use the more convenient nK 

expression given in Problem 43-34. The n(K) expression can be derived from Eq. 19-27, 

but we do not show that derivation here. To find the most probable energy, we take the 

derivative of n(K) and set the result equal to zero: 

 

dn K

dK

n

kT K

K

kT
e

K K

K kT

K Kp
p

( ) .

( )
,

/ /

/
/







 
F
HG

I
KJ 

113 1

2
0

3 2 1 2

3 2

 

 

which gives K kTp 
1
2

.  Specifically, for T = 1.5  10
7
 K we find  

 

K kTp      1

2

1

2
8 62 10 65 105 7 2( . .eV / K)(1.5 10 K) eV  

 

or 0.65 keV, in good agreement with Fig. 43-10. 

 

(b) Equation 19-35 gives the most probable speed in terms of the molar mass M, and 

indicates its derivation. Since the mass m of the particle is related to M by the Avogadro 

constant, then using Eq. 19-7, 

 

v
RT

M

RT

mN

kT

m
p

A

  
2 2 2

. 

 

With T = 1.5  10
7
 K and m = 1.67 10

– 27
 kg, this yields vp = 5.0 10

5
 m/s. 

 

(c) The corresponding kinetic energy is  
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K mv m
kT

m
kTv p p,  

F
HG
I
KJ 

1

2

1

2

22

2

 

 

which is twice as large as that found in part (a). Thus, at T = 1.5  10
7
 K we have Kv,p = 

1.3 keV, which is indicated in Fig. 43-10 by a single vertical line. 

 

57. (a) The mass of each DT pellet is 

 

 3 6 3 3 124 4
(20 10 m) (200 kg/m ) 6.7 10 kg

3 3
m r          

 

Since there are equal number of 2 H  and 3 H  present, we have 

 

2 3

2 3

12 23
14

H H

H H

(6.7 10 kg)(6.02 10 )
8.07 10

(0.020 kg) (0.030 kg)

AmN
N N

M M

 
    

 
 

 

Each fusion reaction releases 17.59 MeV of energy, with 10% efficiency, the total energy 

released by the pellet is 

 
14 15(0.10)(8.07 10 )(17.59 MeV) 1.42 10 MeV 227 JE       

 

or about 230 J. 

 

(b) Since 1.0 kg of TNT gives off 4.6 MJ, the TNT equivalent of the pellet is 

 

5

6

227 J
4.93 10  kg

4.6 10  J
m   


. 

(c) The power generated is  

 

 4(100 / s)(227 J) 2.3 10 W
dN

P E
dt

 
    
 

 

 

58. (a) Equation 19-35 gives the most probable speed in terms of the molar mass M: 

2 / .pv RT M  With T = 1  10
8
 K and M = 2.0 10

– 3
 kg/mol, this yields  

 

5

3

2 2(8.314 J/mol K)(108 K)
9.1 10 m/s

2.0 10 kg
p

RT
v

M 


   


. 

 

(b) The distance moved is 
5 12 7(9.1 10 m/s)(1 10 s) 9.1 10 mpr v t         . 
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Chapter 44 
 

 

1. By charge conservation, it is clear that reversing the sign of the pion means we must 

reverse the sign of the muon. In effect, we are replacing the charged particles by their 

antiparticles. Less obvious is the fact that we should now put a “bar” over the neutrino 

(something we should also have done for some of the reactions and decays discussed in 

Chapters 42 and 43, except that we had not yet learned about antiparticles, which are 

usually denoted with a “bar.” The decay of the negative pion is    v. A subscript 

can be added to the antineutrino to clarify what “type” it is. 

 

2. Since the density of water is  = 1000 kg/m
3
 = 1 kg/L, then the total mass of the pool is 

 = 4.32  10
5
 kg, where  is the given volume. Now, the fraction of that mass made up 

by the protons is 10/18 (by counting the protons versus total nucleons in a water 

molecule). Consequently, if we ignore the effects of neutron decay (neutrons can beta 

decay into protons) in the interest of making an order-of-magnitude calculation, then the 

number of particles susceptible to decay via this T1/2 = 10
32

 y half-life is 

 

 5

pool 32

27

(10 /18) 4.32 10  kg(10 /18)
1.44 10 .

1.67 10  kgp

M
N

m 


   


 

 

Using Eq. 42-20, we obtain 

 

R
N

T
 




ln . ln
.

/

2 144 10 2

10
1

1 2

32

32

c h
y

decay y  

 

3. The total rest energy of the electron-positron pair is 

 

 2 2 22 2(0.511 MeV) 1.022 MeVe e eE m c m c m c     . 

 

With two gamma-ray photons produced in the annihilation process, the wavelength of 

each photon is (using 1240 eV nmhc   ) 

 

3

6

1240 eV nm
2.43 10  nm 2.43 pm.

/ 2 0.511 10 eV

hc

E
 
    


 

 

4. Conservation of momentum requires that the gamma ray particles move in opposite 

directions with momenta of the same magnitude. Since the magnitude p of the 

momentum of a gamma ray particle is related to its energy by p = E/c, the particles have 

the same energy E. Conservation of energy yields mc
2
 = 2E, where m is the mass of a 

neutral pion. The rest energy of a neutral pion is mc
2
 = 135.0 MeV, according to Table 
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44-4. Hence, E = (135.0 MeV)/2 = 67.5 MeV. We use 1240 eV nmhc    to obtain the 

wavelength of the gamma rays: 

 

5

6

1240 eV nm
1.84 10  nm 18.4 fm.

67.5 10 eV
 
   


 

 

5. We establish a ratio, using Eq. 22-4 and Eq. 14-1: 

 

  

  

2
11 2 2 312 2 2

gravity

22 2 2
9 2 2 19

electric

43

6.67 10 N m C 9.11 10  kg4

9.0 10 N m C 1.60 10  C

2.4 10 .

e e
F Gm r Gm

F ke r e


 







  
  

  

 

 

 

Since F Fgravity electric,  we can neglect the gravitational force acting between particles in a 

bubble chamber. 

 

6. (a) Conservation of energy gives  

 

Q = K2 + K3 = E1 – E2 – E3 

 

where E refers here to the rest energies (mc
2
) instead of the total energies of the particles. 

Writing this as  

K2 + E2 – E1 = –(K3 + E3) 

 

and squaring both sides yields 

 

K K E K E E E K K E E2

2

2 2 2 1 1 2

2

3

2

3 3 3

22 2 2      b g .  

 

Next, conservation of linear momentum (in a reference frame where particle 1 was at rest) 

gives  |p2| = |p3| (which implies (p2c)
2
 = (p3c)

2
). Therefore, Eq. 37-54 leads to 

 

K K E K K E2

2

2 2 3

2

3 32 2    

  

which we subtract from the above expression to obtain 

 

   2 2 1 1 2

2

3

2K E E E Eb g .  

 

This is now straightforward to solve for K2 and yields the result stated in the problem. 

 

(b) Setting E3 = 0 in 

K
E

E E E2

1

1 2

2

3

21

2
  b g  
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and using the rest energy values given in Table 44-1 readily gives the same result for K 

as computed in Sample Problem – “Momentum and kinetic energy in a pion decay.” 

 

7. Table 44-4 gives the rest energy of each pion as 139.6 MeV. The magnitude of the 

momentum of each pion is p = (358.3 MeV)/c. We use the relativistic relationship 

between energy and momentum (Eq. 37-54) to find the total energy of each pion: 

 

E p c m c      ( ) ( ) ( . ( . .2 2 2 358 3 139 6 384 5 MeV)  Mev)  MeV.2  

 

Conservation of energy yields  

 

mc
2
 = 2E = 2(384.5 MeV) = 769 MeV. 

 

8. (a) In SI units, the kinetic energy of the positive tau particle is 

 

K = (2200 MeV)(1.6  10
–13

 J/MeV) = 3.52  10
–10

 J. 

 

Similarly, mc
2
 = 2.85  10

–10
 J for the positive tau. Equation 37-54 leads to the relativistic 

momentum: 

 

    
2

2 2 10 10 10

8

1 1
2 3.52 10  J 2 3.52 10  J 2.85 10  J

2.998 10 m/s
p K Kmc

c

        


 

which yields p = 1.90  10
–18

 kg·m/s. 

 

(b) The radius should be calculated with the relativistic momentum: 

 

r
mv

q B

p

eB
 


| |
 

 

where we use the fact that the positive tau has charge e = 1.6  10
–19

 C. With B = 1.20 T, 

this yields r = 9.90 m. 

 

9. From Eq. 37-48, the Lorentz factor would be 

 
6

2

1.5 10  eV
75000.

20 eV

E

mc



    

 

Solving Eq. 37-8 for the speed, we find 

 

22

1 1
1

1 ( / )
v c

v c
    


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which implies that the difference between v and c is 

 

2 2

1 1
1 1 1 1

2
c v c c

 

    
            

   
 

 

where we use the binomial expansion (see Appendix E) in the last step. Therefore, 

 

2 2

1 1
(299792458m s) 0.0266m s 2.7cm s

2 2(75000)
c v c



  
      

   
. 

 

10. From Eq. 37-52, the Lorentz factor is 

 

2

80 MeV
1 1 1.59.

135 MeV

K

mc
       

 

Solving Eq. 37-8 for the speed, we find 

 

 
22

1 1
1

1
v c

v c



   



 

 

which yields v = 0.778c or v = 2.33  10
8
 m/s. Now, in the reference frame of the 

laboratory, the lifetime of the pion is not the given  value but is “dilated.” Using Eq.  

37-9, the time in the lab is 

 

t       ( . ) . .159 8 3 10 13 1017 16 s  s.c h  

 

Finally, using Eq. 37-10, we find the distance in the lab to be 

 

   8 16 82.33 10 m s  1.3 10  s 3.1 10  m.x vt         

 

11. THINK The conservation laws we shall examine are associated with energy, 

momentum, angular momentum, charge, baryon number, and the three lepton numbers.  

 

EXPRESS In all particle interactions, the net lepton number for each family (Le for 

electron, L for muon, and L for tau) is separately conserved. Conservation of baryon 

number implies that a process cannot occur if the net baryon number is changed. 

 

ANALYZE (a) For the process ,e     the rest energy of the muon is 105.7 MeV, 

the rest energy of the electron is 0.511 MeV, and the rest energy of the neutrino is zero. 

Thus, the total rest energy before the decay is greater than the total rest energy after. The 

excess energy can be carried away as the kinetic energies of the decay products and 

energy can be conserved. Momentum is conserved if the electron and neutrino move 
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away from the decay in opposite directions with equal magnitudes of momenta. Since the 

orbital angular momentum is zero, we consider only spin angular momentum. All the 

particles have spin  / 2 . The total angular momentum after the decay must be either   

(if the spins are aligned) or zero (if the spins are anti-aligned). Since the spin before the 

decay is  / 2  angular momentum cannot be conserved. The muon has charge –e, the 

electron has charge –e, and the neutrino has charge zero, so the total charge before the 

decay is –e and the total charge after is –e. Charge is conserved. All particles have baryon 

number zero, so baryon number is conserved. The muon lepton number of the muon is +1, 

the muon lepton number of the muon neutrino is +1, and the muon lepton number of the 

electron is 0. Muon lepton number is conserved. The electron lepton numbers of the 

muon and muon neutrino are 0 and the electron lepton number of the electron is +1. 

Electron lepton number is not conserved. The laws of conservation of angular momentum 

and electron lepton number are not obeyed and this decay does not occur. 

 

(b) We analyze the decay ee       in the same way. We find that charge and the 

muon lepton number L are not conserved. 

 

(c) For the process      , we find that energy cannot be conserved because the 

mass of muon is less than the mass of a pion. Also, muon lepton number L  is not 

conserved. 

 

LEARN In all three processes considered, since the initial particle is stationary, the 

question associated with energy conservation amounts to asking whether the initial mass 

energy is sufficient to produce the mass energies and kinetic energies of the decayed 

products.    

 

12. (a) Noting that there are two positive pions created (so, in effect, its decay products 

are doubled), then we count up the electrons, positrons, and neutrinos: 2 5 4e e   v v.  

 

(b) The final products are all leptons, so the baryon number of A2

  is zero. Both the pion 

and rho meson have integer-valued spins, so A2

  is a boson. 

 

(c) A2

  is also a meson. 

 

(d) As stated in (b), the baryon number of A2

  is zero. 

 

13. The formula for Tz as it is usually written to include strange baryons is Tz = q – (S + 

B)/2. Also, we interpret the symbol q in the Tz formula in terms of elementary charge 

units; this is how q is listed in Table 44-3. In terms of charge q as we have used it in 

previous chapters, the formula is  

 
1

( )
2

z

q
T B S

e
   . 
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For instance, Tz  
1
2  for the proton (and the neutral Xi) and Tz  

1
2  for the neutron (and 

the negative Xi). The baryon number B is +1 for all the particles in Fig. 44-4(a). Rather 

than use a sloping axis as in Fig. 44-4 (there it is done for the q values), one reproduces 

(if one uses the “corrected” formula for Tz mentioned above) exactly the same pattern 

using regular rectangular axes (Tz values along the horizontal axis and Y values along the 

vertical) with the neutral lambda and sigma particles situated at the origin. 

 

14. (a) From Eq. 37-50, 

 
2 2( )

1189.4MeV 493.7MeV 139.6MeV 938.3MeV

605MeV.

pK
Q mc m m m m c   
     

   



 

 

(b) Similarly, 

 

Q mc m m m m c
K p     

   

 




2 2
0

1115 6 135 0 493 7 938 3

181

( )

. . . .



MeV MeV MeV MeV

MeV.

 

 

15. (a) The lambda has a rest energy of 1115.6 MeV, the proton has a rest energy of 

938.3 MeV, and the kaon has a rest energy of 493.7 MeV. The rest energy before the 

decay is less than the total rest energy after, so energy cannot be conserved. Momentum 

can be conserved. The lambda and proton each have spin  / 2  and the kaon has spin zero, 

so angular momentum can be conserved. The lambda has charge zero, the proton has 

charge +e, and the kaon has charge –e, so charge is conserved. The lambda and proton 

each have baryon number +1, and the kaon has baryon number zero, so baryon number is 

conserved. The lambda and kaon each have strangeness –1 and the proton has strangeness 

zero, so strangeness is conserved. Only energy cannot be conserved. 

 

(b) The omega has a rest energy of 1680 MeV, the sigma has a rest energy of 1197.3 

MeV, and the pion has a rest energy of 135 MeV. The rest energy before the decay is 

greater than the total rest energy after, so energy can be conserved. Momentum can be 

conserved. The omega and sigma each have spin  / 2  and the pion has spin zero, so 

angular momentum can be conserved. The omega has charge –e, the sigma has charge –e, 

and the pion has charge zero, so charge is conserved. The omega and sigma have baryon 

number +1 and the pion has baryon number 0, so baryon number is conserved. The 

omega has strangeness –3, the sigma has strangeness –1, and the pion has strangeness 

zero, so strangeness is not conserved. 

 

(c) The kaon and proton can bring kinetic energy to the reaction, so energy can be 

conserved even though the total rest energy after the collision is greater than the total rest 

energy before. Momentum can be conserved. The proton and lambda each have spin  2 

and the kaon and pion each have spin zero, so angular momentum can be conserved. The 

kaon has charge –e, the proton has charge +e, the lambda has charge zero, and the pion 
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has charge +e, so charge is not conserved. The proton and lambda each have baryon 

number +1, and the kaon and pion each have baryon number zero; baryon number is 

conserved. The kaon has strangeness –1, the proton and pion each have strangeness zero, 

and the lambda has strangeness –1, so strangeness is conserved. Only charge is not 

conserved. 

 

16. To examine the conservation laws associated with the proposed reaction 
0p p e     , we make use of particle properties found in Tables 44-3 and 44-4.  

 

(a) With (p) 1, (p) 1,q q    0( ) 0,q    ( ) 1,q     and ( ) 1q e   , we have 

1 ( 1) 0 1 ( 1)      . Thus, the process conserves charge. 

 

(b) With (p) 1, (p) 1,B B     0( ) 1,B    ( ) 1,B     and ( ) 0B e  , we have 

1 ( 1) 1 1 0     . Thus, the process does not conserve baryon number. 

 

(c) With (p) (p) 0,e eL L   0( ) ( ) 0,e eL L      and ( ) 1eL e  , we have 

0 0 0 0 1    , so the process does not conserve electron lepton number. 

 

(d) All the particles on either side of the reaction equation are fermions with 1/ 2s  . 

Therefore, (1/ 2) (1/ 2) (1/ 2) (1/ 2) (1/ 2)     and the process does not conserve spin 

angular momentum. 

 

(e) With (p) (p) 0,S S   0( ) 1,S    ( ) 1,S     and ( ) 0S e  , we have 

0 0 1 1 0    , so the process does not conserve strangeness. 

 

(f) The process does conserve muon lepton number since all the particles involved have 

muon lepton number of zero. 

 

17. To examine the conservation laws associated with the proposed decay process 

n K p       , we make use of particle properties found in Tables 44-3 and 44-4.  

 

(a) With ( ) 1q    , ( ) 1, (n) 0, (K ) 1,q q q        and (p) 1,q    we have 

1 1 0 ( 1) 1       . Thus, the process conserves charge. 

 

(b) Since ( ) 1B    , ( ) 0,B     (n) 1, (K ) 0,B B     and (p) 1,B    we have 

1 0 1 0 1 2      . Thus, the process does not conserve baryon number. 

 

(c) ,  n and p are fermions with 1/ 2s  , while and K    are mesons with spin zero. 

Therefore, 1/ 2 0 (1/ 2) 0 (1/ 2)     and the process does not conserve spin angular 

momentum. 
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(d) Since ( ) 2S    , ( ) 0,S     (n) 0, (K ) 1,S S     and (p) 0,S   we have 

2 0 0 ( 1) 0,       so the process does not conserve strangeness. 

 

18. (a) Referring to Tables 44-3 and 44-4, we find that the strangeness of K
0
 is +1, while 

it is zero for both 
+
 and 

–
. Consequently, strangeness is not conserved in this decay; 

K0     does not proceed via the strong interaction. 

 

(b) The strangeness of each side is –1, which implies that the decay is governed by the 

strong interaction. 

 

(c) The strangeness or 
0
 is –1 while that of p + 

–
 is zero, so the decay is not via the 

strong interaction. 

 

(d) The strangeness of each side is –1; it proceeds via the strong interaction. 

 

19. For purposes of deducing the properties of the antineutron, one may cancel a proton 

from each side of the reaction and write the equivalent reaction as p n.    

  

Particle properties can be found in Tables 44-3 and 44-4. The pion and proton each have 

charge +e, so the antineutron must be neutral. The pion has baryon number zero (it is a 

meson) and the proton has baryon number +1, so the baryon number of the antineutron 

must be –1. The pion and the proton each have strangeness zero, so the strangeness of the 

antineutron must also be zero. In summary, for the antineutron, 

 

(a) q = 0,  

 

(b) B = –1,  

 

(c) and S = 0. 

 

20. If we were to use regular rectangular axes, then this would appear as a right triangle. 

Using the sloping q axis as the problem suggests, it is similar to an “upside down” 

equilateral triangle as we show below. 
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The leftmost slanted line is for the –1 charge, and the rightmost slanted line is for the +2 

charge. 

 

21. (a) As far as the conservation laws are concerned, we may cancel a proton from each 

side of the reaction equation and write the reaction as p x 0 . Since the proton and 

the lambda each have a spin angular momentum of  2, the spin angular momentum of x 

must be either zero or  . Since the proton has charge +e and the lambda is neutral, x must 

have charge +e. Since the proton and the lambda each have a baryon number of +1, the 

baryon number of x is zero. Since the strangeness of the proton is zero and the 

strangeness of the lambda is –1, the strangeness of x is +1. We take the unknown particle 

to be a spin zero meson with a charge of +e and a strangeness of +1. Look at Table 44-4 

to identify it as a K
+
 particle. 

 

(b) Similar analysis tells us that x is a spin - 1
2  antibaryon (B = –1) with charge and 

strangeness both zero. Inspection of Table 44-3 reveals that it is an antineutron. 

 

(c) Here x is a spin-0 (or spin-1) meson with charge zero and strangeness +1. According 

to Table 44-4, it could be a 0K  particle. 

 

22. Conservation of energy (see Eq. 37-47) leads to 

 

K mc K m m m c Kf i n i      

   



 


2 2

1197 3 139 6 939 6 220

338

( )

. . .



MeV MeV MeV MeV

MeV.

 

 

23. (a) From Eq. 37-50, 

 

Q mc m m m cp    

   




2 2
0

1115 6 938 3 139 6 37 7

( )

. . . .



MeV MeV MeV MeV.
 

 

(b) We use the formula obtained in Problem 44-6 (where it should be emphasized that E 

is used to mean the rest energy, not the total energy): 

 

K
E

E E Ep p  


 



1

2

1115 6 938 3 139 6

2 1115 6
5 35

2
2

2 2



c h
a f a f

a f



. . .

.
.

MeV MeV MeV

MeV
MeV.

 

 

(c) By conservation of energy, 

 
K Q Kp

    37 7 5 35 32. . .4MeV MeV MeV. 
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24. From  = 1 + K/mc
2
 (see Eq. 37-52) and 1v c c      (see Eq. 37-8), we get 

 

v c
K

mc
  
F
H

I
K


1 1
2

2

. 

 

(a) Therefore, for the 
*0

 particle, 

 

2

8 81000MeV
(2.9979 10 m s) 1 1 2.4406 10 m s.

1385MeV
v



 
      

 
 

 

For 
0
, 

2

8 81000MeV
(2.9979 10 m s) 1 1 2.5157 10 m s.

1192.5MeV
v



 
       

 
 

 

Thus 
0
 moves faster than 

*0
. 

 

(b) The speed difference is 

 
8 6(2.5157 2.4406)(10 m s) 7.51 10 m s.v v v        

 

25. (a) We indicate the antiparticle nature of each quark with a “bar” over it. Thus, u u d  

represents an antiproton. 

 

(b) Similarly, u d d  represents an antineutron. 

 

26. (a) The combination ddu has a total charge of    1
3

1
3

2
3 0b g , and a total strangeness 

of zero. From Table 44-3, we find it to be a neutron (n). 

 

(b) For the combination uus, we have Q     2
3

2
3

1
3 1 and S = 0 + 0 – 1 = –1. This is 

the 
+
 particle. 

 

(c) For the quark composition ssd, we have Q      1
3

1
3

1
3 1 and S = – 1 – 1 + 0 = – 2. 

This is a  . 

 

27. The meson 0K  is made up of a quark and an anti-quark, with net charge zero and 

strangeness 1S   . The quark with 1S    is s . By charge neutrality condition, the anti-

quark must be d . Therefore, the constituents of 0K  are s and d . 

 

28. (a) Using Table 44-3, we find q = 0 and S = –1 for this particle (also, B = 1, since that 

is true for all particles in that table). From Table 44-5, we see it must therefore contain a 

strange quark (which has charge –1/3), so the other two quarks must have charges to add 
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to zero. Assuming the others are among the lighter quarks (none of them being an anti-

quark, since B = 1), then the quark composition is sud . 

 

(b) The reasoning is very similar to that of part (a). The main difference is that this 

particle must have two strange quarks. Its quark combination turns out to be uss . 

 

29. (a) The combination ssu has a total charge of    1
3

1
3

2
3 0b g , and a total strangeness 

of – 2. From Table 44-3, we find it to be the 0  particle. 

 

(b) The combination dds has a total charge of  1 1 1
3 3 3

1     , and a total strangeness 

of –1. From Table 44-3, we find it to be the   particle. 

 

30. THINK A baryon is made up of three quarks.   

 

EXPRESS The quantum numbers of the up, down, and strange quarks are (see Table 44-

5) as follows: 

 

Particle Charge q Strangeness S Baryon number B 

Up (u) +2/3 0 +1/3 

Down (d) 1/3 0 +1/3 

Strange (s) 1/3 1 +1/3 

 

ANALYZE (a) To obtain a strangeness of –2, two of them must be s quarks. Each of 

these has a charge of –e/3, so the sum of their charges is –2e/3. To obtain a total charge 

of e, the charge on the third quark must be 5e/3. There is no quark with this charge, so the 

particle cannot be constructed. In fact, such a particle has never been observed. 

 

(b) Again the particle consists of three quarks (and no antiquarks). To obtain a 

strangeness of zero, none of them may be s quarks. We must find a combination of three 

u and d quarks with a total charge of 2e. The only such combination consists of three u 

quarks. 

 

LEARN The baryon with three u quarks is  . 

 

31. First, we find the speed of the receding galaxy from Eq. 37-31: 

 
2 2

0 0

2 2

0 0

2

2

1 ( ) 1 ( )

1 ( ) 1 ( )

1 (590.0 nm 602.0 nm)
0.02013

1 (590.0 nm 602.0 nm)

f f

f f

 


 

 
 

 


 



 

 

where we use f = c/ and f0 = c/0. Then from Eq. 44-19, 
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  8

8
0.02013 2.998 10 m s

2.77 10  ly .
0.0218 m s ly

v c
r

H H

 
    


 

 

32. Since  

0

1 1
2 2

1 1

 
  

 


 
   

 
, 

 

the speed of the receding galaxy is 3 /5v c c  . Therefore, the distance to the galaxy 

when the light was emitted is 

 
8

9(3/ 5) (0.60)(2.998 10 m/s)
8.3 10  ly .

0.0218 m s ly

v c c
r

H H H

 
     


 

 

33. We apply Eq. 37-36 for the Doppler shift in wavelength: 

 

v

c






  

 

where v is the recessional speed of the galaxy. We use Hubble’s law to find the 

recessional speed: v = Hr, where r is the distance to the galaxy and H is the Hubble 

constant  3 m
s ly

21.8 10 .


   Thus,  

 

   3 8 621.8 10 m/s ly 2.40 10  ly 5.23 10 m/sv        

and 

 
6

8

5.23 10 m s
(656.3 nm) 11.4 nm .

3.00 10 m s

v

c
 

 
    

 
 

 

Since the galaxy is receding, the observed wavelength is longer than the wavelength in 

the rest frame of the galaxy. Its value is  

 

656.3 nm + 11.4 nm = 667.7 nm   668 nm. 

 

34. (a) Using Hubble’s law given in Eq. 44-19, the speed of recession of the object is 

 

  40.0218 m/s ly 1.5 10 ly 327 m/s.v Hr      

 

Therefore, the extra distance of separation one year from now would be 

 
10(327 m/s)(365 d)(86400 s/d) 1.0 10  m.d vt     
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(b) The speed of the object is 2327 m/s 3.3 10 m/s.v     

 

35. Letting v = Hr = c, we obtain 

 

 
8

10 103.0 10 m s
1.376 10  ly 1.4 10  ly .

0.0218m s ly

c
r

H


     


 

 

36. From F GMm r mv rgrav  2 2  we find M v 2 . Thus, the mass of the Sun would be 

 
2 2

Mercury

Pluto

47.9km s
102 .

4.74km s
s s s s

v
M M M M

v

   
      

  
 

 

37. (a) For the universal microwave background, Wien’s law leads to 

 

max

2898 m K 2898mm K
2.6K .

1.1mm
T





 
    

 

(b) At “decoupling” (when the universe became approximately “transparent”), 

 

max

2898 m K 2898 m K
0.976 m 976 nm.

2970KT

 
 

 
     

 

38. (a) We substitute  = (2898 m·K)/T into the expression:  

 

E = /hc   (1240 eV·nm)/. 

First, we convert units:  

 

2898 m·K = 2.898  10
6
 nm·K and 1240 eV·nm = 1.240  10

–3
 MeV·nm. 

 

Thus, 

E
T

T
 

 
 




1240 10

2 898 10
4 28 10

3

6

10
.

.
. .

MeV nm

nm K
MeV K

c h c h  

 

(b) The minimum energy required to create an electron-positron pair is twice the rest 

energy of an electron, or 2(0.511 MeV) = 1.022 MeV. Hence, 

 

T
E







 
 4 28 10

1022

4 28 10
2 39 10

10 10

9

.

.

.
. .

MeV K

MeV

MeV K
K  

 

39. (a) Letting v r Hr v G M re( ) ,   2   we get M r H G3 2 2 . Thus, 
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2

2 3

3 3
.

4 3 4 8

M M H

r r G


  
    

 

(b) The density being expressed in H-atoms/m
3
 is equivalent to expressing it in terms of 

0 = mH/m
3
 = 1.67  10

–27
 kg/m

3
. Thus, 

 

 
 

     
  

22 15 32
3

3 2 27 3
0

3

3 0.0218m s ly 1.00ly 9.460 10  m H atoms m3
H atoms m

8 8 m kg s 1.67 10 kg m

5.7 H atoms m .

H

G


  

 
 

    



 

 

40. (a) From f = c/ and Eq. 37-31, we get 

 

0 0

1 1
( ) .

1 1

 
   

 

 
  

 
 

 

Dividing both sides by 0 leads to 

1
1 (1 )

1
z






 


 

 

where 0/z    . We solve for : 

 
 

 




 

( )

( )
.

1 1

1 1

2

2 2

2

2

2

2

z

z

z z

z z
 

 

(b) Now z = 4.43, so 

 


 


4 43 2 4 43

4 43 2 4 43 2
0 934

2

2

. .

. .
. .

b g b g
b g b g  

 

(c) From Eq. 44-19, 

 
  8

10
0.934 3.0 10 m s

1.28 10 ly .
0.0218m s ly

v c
r

H H

 
    


 

 

41. Using Eq. 39-33, the energy of the emitted photon is 

 

 
3 2 2 2

1 1
(13.6 eV) 1.89 eV

3 2
E E E

 
      

 
 

and its wavelength is 

 7

0

1240 eV  nm
6.56 10  m

1.89 eV

hc

E
 

    . 
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Given that the detected wavelength is 33.00 10  m   , we find  

 
3

3

7

0

3.00 10  m
4.57 10

6.56 10  m










  


. 

 

42. (a) From Eq. 41-29, we know that N N e E kT

2 1 
 . We solve for E: 

 

  51

2

4

1 0.25
ln 8.62 10 eV K 2.7K ln

0.25

2.56 10 eV 0.26 meV.

N
E kT

N





 
     

 

  

 

 

(b) Using 1240eV nm,hc    we get 

 

6

4

1240eV nm
4.84 10 nm 4.8mm.

2.56 10 eV

hc

E 


     

 
 

 

43. THINK The radius of the orbit is still given by 111.50 10 km,  the original Earth-Sun 

distance.  

 

EXPRESS The gravitational force on Earth is only due to the mass M within Earth’s 

orbit. If r is the radius of the orbit, R is the radius of the new Sun, and MS is the mass of 

the Sun, then 

M
r

R
Ms

F
HG
I
KJ 





F
HG

I
KJ   

3 11

12

3

30 25150 10

590 10
199 10 327 10

.

.
. . .

m

m
kg kgc h  

 

The gravitational force on Earth is given by 2 ,GMm r  where m is the mass of Earth and 

G is the universal gravitational constant. Since the centripetal acceleration is given by v
2
/r, 

where v is the speed of Earth, GMm r mv r2 2  and 

 

.
GM

v
r

  

 

ANALYZE (a) Substituting the values given, we obtain 

 

v
GM

r
 

  


 

6 67 10 327 10

150 10
121 10

11 2 25

11

2
. .

.
. .

m s kg kg

m
m s

3c hc h
 

 

(b) The ratio of the speeds is  

 
2

4

0

1.21 10 m s
0.00405.

2.98 10 m s

v

v


 


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(c) The period of revolution is 

 

 11

9

2

2 1.50 10 m2
7.82 10 s 247 y .

1.21 10 m s

r
T

v

 
    


 

 

LEARN An alternative ways to calculate the speed ratio and the periods are as follows. 

Since ,v M the ratio of the speeds can be obtained as 

 
3/ 23/ 2 11

12

0

1.50 10 m
0.00405.

5.90 10 mS

v M r

v M R

  
     

   
 

 

In addition, since 1/ 1/ ,T v M  we have 

 

 

3/ 23/ 2 12

0 0 11

5.90 10 m
(1 y) 247 y.

1.50 10 m

SM R
T T T

M r

  
     

   
 

 

44. (a) The mass of the portion of the galaxy within the radius r from its center is given 

by   M r R Mb g3 . Thus, from GM m r mv r 2 2  (where m is the mass of the star) we 

get 

v
GM

r

GM

r

r

R
r

GM

R





F
HG
I
KJ 

3

3
.  

 

(b) In the case where M' = M, we have 

 

T
r

v
r

r

GM

r

GM
  

2
2

2 3 2



.  

 

45. THINK A meson is made up of a quark and an antiquark.  

 

EXPRESS Only the strange quark has nonzero strangeness; an s quark has strangeness S 

= 1 and charge q = 1/3, while an s  quark has strangeness S = +1 and charge q = + 1/3.   

 

ANALYZE (a) In order to obtain S = –1 we need to combine s with some non-strange 

antiquark (which would have the negative of the quantum numbers listed in Table 44-5). 

The difficulty is that the charge of the strange quark is –1/3, which means that (to obtain 

a total charge of +1) the antiquark would have to have a charge of  4
3 . Clearly, there are 

no such antiquarks in our list. Thus, a meson with S = –1 and q = +1 cannot be formed 

with the quarks/antiquarks of Table 44-5.  
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(b) Similarly, one can show that, since no quark has q   4
3 , there cannot be a meson 

with S = +1 and q = –1. 

 

LEARN Quarks and antiquarks can be combined to form baryons and mesons, but not all 

combinations are allowed because of the constraint from the quantum numbers.   

 

46. Assuming the line passes through the origin, its slope is 0.40c/(5.3  10
9
 ly). Then, 

 

T
H c

  





 
1 1 53 10

0 40

53 10

0 40
13 10

9 9
9

slope

ly y
y

.

.

.

.
.  

 

47. THINK Pair annihilation is a process in which a particle and its antiparticle collide 

and annihilate each other.  

 

EXPRESS The energy released would be twice the rest energy of Earth, or E = 2MEc
2
. 

 

ANALYZE The mass of the Earth is ME = 5.98  10
24

 kg (found in Appendix C). Thus, 

the energy released is  

 

E = 2MEc
2
 = 2(5.98  10

24
 kg)(2.998  10

8
 m/s)

2
 = 1.08  10

42
 J. 

 

LEARN As in the case of annihilation between an electron and a positron, the total 

energy of the Earth and the anti-Earth after the annihilation would appear as 

electromagnetic radiation.  

 

48. We note from track 1, and the quantum numbers of the original particle (A), that 

positively charged particles move in counterclockwise curved paths, and — by 

inference — negatively charged ones move along clockwise arcs. This immediately 

shows that tracks 1, 2, 4, 6, and 7 belong to positively charged particles, and tracks 5, 8 

and 9 belong to negatively charged ones. Looking at the fictitious particles in the table 

(and noting that each appears in the cloud chamber once [or not at all]), we see that this 

observation (about charged particle motion) greatly narrows the possibilities: 

 

tracks 2,4,6,7, particles , , ,

tracks 5,8,9 particles , ,

C F H J

D E G




 

 

This tells us, too, that the particle that does not appear at all is either B or I (since only 

one neutral particle “appears”). By charge conservation, tracks 2, 4 and 6 are made by 

particles with a single unit of positive charge (note that track 5 is made by one with a 

single unit of negative charge), which implies (by elimination) that track 7 is made by 

particle H. This is confirmed by examining charge conservation at the end-point of track 

6. Having exhausted the charge-related information, we turn now to the fictitious 

quantum numbers. Consider the vertex where tracks 2, 3, and 4 meet (the Whimsy 

number is listed here as a subscript): 
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2 0 6

4 6

tracks 2,4 particles , ,

tracks 3 particle or

C F J

B I




 

 

The requirement that the Whimsy quantum number of the particle making track 4 must 

equal the sum of the Whimsy values for the particles making tracks 2 and 3 places a 

powerful constraint (see the subscripts above). A fairly quick trial and error procedure 

leads to the assignments: particle F makes track 4, and particles J and I make tracks 2 and 

3, respectively. Particle B, then, is irrelevant to this set of events. By elimination, the 

particle making track 6 (the only positively charged particle not yet assigned) must be C. 

At the vertex defined by 

A F C   track5b g_ ,  

 

where the charge of that particle is indicated by the subscript, we see that Cuteness 

number conservation requires that the particle making track 5 has Cuteness = –1, so this 

must be particle G. We have only one decision remaining: 

 

tracks 8,9, particles ,D E  

 

Re-reading the problem, one finds that the particle making track 8 must be particle D 

since it is the one with seriousness = 0. Consequently, the particle making track 9 must be 

E. 

 

Thus, we have the following: 

 

(a) Particle A is for track 1. 

 

(b) Particle J is for track 2. 

 

(c) Particle I is for track 3. 

 

(d) Particle F is for track 4. 

 

(e) Particle G is for track 5. 

 

(f) Particle C is for track 6. 

 

(g) Particle H is for track 7. 

 

(h) Particle D is for track 8. 

 

(i) Particle E is for track 9. 

 

49. (a) We use the relativistic relationship between speed and momentum: 
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p mv
mv

v c
 




1
2b g

,  

which we solve for the speed v: 

 

 
2

2

1
1 .

/ 1

v

c pc mc
 


 

 

For an antiproton mc
2
 = 938.3 MeV and pc = 1.19 GeV = 1190 MeV, so 

 

v c c 


1
1

1190 938 3 1
0 785

2
MeV MeV.

. .b g  

 

(b) For the negative pion mc
2
 = 193.6 MeV, and pc is the same. Therefore, 

 

v c c 


1
1

1190 1936 1
0 993

2
MeV MeV.

. .b g  

 

(c) Since the speed of the antiprotons is about 0.78c but not over 0.79c, an antiproton will 

trigger C2. 

 

(d) Since the speed of the negative pions exceeds 0.79c, a negative pion will trigger C1. 

 

(e) We use t = d/v, where d = 12 m. For an antiproton 

 

 
8

8

1
5.1 10 s 51ns.

0.785 2.998 10 m s
t     


 

(f) For a negative pion 

 

t 


  12

0 993 2 998 10
4 0 10 40

8

8m

m s
s ns

. .
. .c h  

 

50. (a) Eq. 44-14 conserves charge since both the proton and the positron have q = +e 

(and the neutrino is uncharged). 

 

(b) Energy conservation is not violated since mpc
2
 > mec

2
 + mvc

2
. 

 

(c) We are free to view the decay from the rest frame of the proton. Both the positron and 

the neutrino are able to carry momentum, and so long as they travel in opposite directions 

with appropriate values of p (so that 

p  0) then linear momentum is conserved. 
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(d) If we examine the spin angular momenta, there does seem to be a violation of angular 

momentum conservation (Eq. 44-14 shows a spin-one-half particle decaying into two 

spin-one-half particles). 

 

51. (a) During the time interval t, the light emitted from galaxy A has traveled a 

distance ct. Meanwhile, the distance between Earth and the galaxy has expanded from r 

to r' = r + r t. Let  c t r r ra t     , which leads to 

 

t
r

c r


 
.  

 

(b) The detected wavelength ' is longer than  by t due to the expansion of the 

universe: ' =  + t. Thus, 

 






 




 
 







t

r

c r
.  

 

(c) We use the binomial expansion formula (see Appendix E): 

 

 
 

 
2

2
1

1 1 1
1! 2!

n n n xnx
x x


       

to obtain 

 

  1 2

2 3

1 21
1 1

1! 2!

.

r r r r r r

c r c c c c c

r r r

c c c

     



  

         
              

         

   
     

   

 

 

(d) When only the first term in the expansion for    is retained we have 

 





r

c
. 

(e) We set 




 

v

c

Hr

c
 

 

and compare with the result of part (d) to obtain  = H. 

 

(f) We use the formula     r c rb g  to solve for r: 

 

 

 

  

  

8

8 8
2.998 10 m s 0.050

6.548 10 ly 6.5 10 ly.
1 0.0218 m s ly 1 0.050

c
r



 
     

   
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(g) From the result of part (a), 

 

  
  

8 15

16

8 8

6.5 10 ly 9.46 10 m ly
2.17 10 s,

2.998 10 m s 0.0218 m s ly 6.5 10 ly

r
t

c r

 
    

    
 

 

which is equivalent to 6.9  10
8
 y.   

 

(h) Letting r = ct, we solve for t: 

 
8

86.5 10 ly
6.5 10 y.

r
t

c c


      

(i) The distance is given by 

 

 8 86.9 10 y 6.9 10 ly.r c t c       

 

(j) From the result of part (f), 

 

 

 

  

  

8

9 9
2.998 10 m s 0.080

1.018 10 ly 1.0 10 ly.
1 0.0218 mm s ly 1 0.080

B

c
r



 
     

   
 

 

(k) From the formula obtained in part (a), 

 

  
  

9 15

16B
B 8 9

B

1.0 10 ly 9.46 10 m ly
3.4 10 s ,

2.998 10 m s 1.0 10 ly 0.0218m s ly

r
t

c r 

 
    

    
 

 

which is equivalent to 1.1  10
9
 y. 

 

(l) At the present time, the separation between the two galaxies A and B is given by 

now B Ar c t c t    . Since rnow = rthen + rthent, we get 

 

8now
then 3.9 10 ly.

1

r
r

t
  

 
 

 

52. Using Table 44-1, the difference in mass between the muon and the pion is 

 

 
 

 

13

2 2

2
8

29

(33.9 MeV) 1.60 10  J MeV
139.6 MeV/ 105.7 MeV/

2.998 10 m s

6.03 10  kg.

m c c






   



 
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53. (a) The quark composition for   is dss. 

 

(b) The quark composition for   is ds s . 

 

54. The speed of the electron is relativistic, so we first calculated the Lorentz factor: 

 

 
2

2.5 MeV
1 1 5.892

0.511MeV

K

mc
       

 

The total energy carried by the electron or the positron is 

 
2 13(5.892)(0.511MeV) 3.011MeV 4.82 10 JE mc       

 

The corresponding frequency of the photons produced is 

 
13

20

34

4.82 10 J
7.3 10 Hz

J s

E
f

h






   

 
. 

 


