Chapter 31

1. (@) All the energy in the circuit resides in the capacitor when it has its maximum
charge. The current is then zero. If Q is the maximum charge on the capacitor, then the
total energy is
2 (290x10°C)’
e ) 11710
2C  2(360x10°°F)

(b) When the capacitor is fully discharged, the current is a maximum and all the energy
resides in the inductor. If I is the maximum current, then U = LI%/2 leads to

2(1168 %107
| = /£=\/ ( - ) _ssgr10°A.
L 75x10°H

2. (a) We recall the fact that the period is the reciprocal of the frequency. It is helpful to
refer also to Fig. 31-1. The values of t when plate A will again have maximum positive
charge are multiples of the period:

n n
t,=nT=—=——— =n(5005),
A f 200x10°Hz (5.00.5)

wheren=1, 2, 3,4, .... The earliest time is (n = 1) t, =5.00s.

(b) We note that it takes t=2T for the charge on the other plate to reach its maximum

positive value for the first time (compare steps a and e in Fig. 31-1). This is when plate A
acquires its most negative charge. From that time onward, this situation will repeat once
every period. Consequently,

1 P ~(2n-1)  (2n-1) ~
t_2T+(n 1)T_2(2n )T = T —2(2X103HZ)—(2n 1)(2.50us),

wheren=1,2, 3,4, .... The earliest time is (n = 1) t=2.50s.
(c) At t=;T, the current and the magnetic field in the inductor reach maximum values

for the first time (compare steps a and c¢ in Fig. 31-1). Later this will repeat every half-
period (compare steps ¢ and g in Fig. 31-1). Therefore,
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_T, (=T T

t, 2 :(Zn—l)Z:(Zn—l)(l.ZS,us),

wheren=1,2, 3,4, .... The earliest time is (n = 1) t=1.25us.
3. (a) The period is T = 4(1.50 1) = 6.00 zs.

=L=167x105 Hz.

(b) The frequency is the reciprocal of the period: f = 1
T 6.00us

(c) The magnetic energy does not depend on the direction of the current (since Ug o i),
so this will occur after one-half of a period, or 3.00 zs.

4. We find the capacitance from U =1Q°/C:

-6 2
:Q_ZZM:914X10*9 F.
2U  2(140x10°J)

5. According to U =1 LI* =1Q?/C, the current amplitude is

Q 300x10°C

-9 _ —452x107A.
JIC  [(L10x10°H)(400x10°F)

6. (2) The angular frequency is

a)=\/E:\/F/X: 80N =89rad/s.
m V¥V m (20x10"m)050kg)

(b) The period is 1/f and f = @w/2 . Therefore, T = am__2m 7.0x107s.
@ 89rad/s
(c) From @ = (LC) Y2, we obtain
c- L _ ! —25x10°F.

®’L  (89rad/s)’(50H)

7. THINK This problem explores the analogy between an oscillating LC system and an
oscillating mass—spring system.

EXPRESS Table 31-1 provides a comparison of energies in the two systems. From the
table, we see the following correspondences:
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X <> q, k<—>£, me« L, v—% d_q:1
C d dt
2
ki o q_, 1mv2<—>lL|2
2 2C 2

ANALYZE (a) The mass m corresponds to the inductance, so m = 1.25 kg.

(b) The spring constant k corresponds to the reciprocal of the capacitance, 1/C. Since the
total energy is given by U = Q%/2C, where Q is the maximum charge on the capacitor and
C is the capacitance, we have
2
2 (175%x10°C
=Q—=g=2.69><10‘3 F

2U  2(570x10°J)

and
1

k= - =372 N/m.
269x10°m/N

(c) The maximum displacement corresponds to the maximum charge, so
X . =1.75x107 m.

(d) The maximum speed Vmax corresponds to the maximum current. The maximum
current is

Q 175x10°C

0=—= ~302x10°A.
JIC (125 H)(269x10°°F)

1=Q

Consequently, Vmax = 3.02 x 10°° m/s.

LEARN The correspondences suggest that an oscillating LC system is mathematically
equivalent to an oscillating mass—spring system. The electrical mechanical analogy can
also be seen by comparing their angular frequencies of oscillation:

K , 1 -
® = ,|— (mass-spring system), @ =——= (LC circuit
JE (mass-sping system) = )

8. We apply the loop rule to the entire circuit:

di q . di q .
Eia =61, FE, FEx =D |6, +6e +Ep |2 L —+—=+iR, | =L—+—+iR
total L G R j(L] C; RJ) J( Jdt (:J J] dt C
with

1 1
L:ZLJ., E:ZC_’ R=>R,

i i i i
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and we require &oa = 0. This is equivalent to the simple LRC circuit shown in Fig. 31-
27(b).

9. The time required is t = T/4, where the period is given by T=27/w=27+/LC.
Consequently,

e 27,/(0.050H)(4.0x10°F
t:I:2”4LC: 2 j( )=7.0><10‘4s.

10. We find the inductance from f =a/ 27 =(27v/LC )fl.

1 1

=——= > =3.8x10° H.
47°1°C  gp? (10x10° Hz)" (6.7x10° F)

11. THINK The frequency of oscillation f in an LC circuit is related to the inductance L
and capacitance C by f =1/2n/LC.

EXPRESS Since f ~1/+/C, the smaller value of C gives the larger value of f, while the
larger value of C gives the smaller value of f. Consequently, f__ :1/2m/LC

fon =1/ ZTE,/LCmax .

ANALYZE (a) The ratio of the maximum frequency to the minimum frequency is

and

Free _ N _ \/365pF _

6.0.
fon  Con  1OPF

(b) An additional capacitance C is chosen so the desired ratio of the frequencies is

e 160 MHz 206
0.54 MHz

Since the additional capacitor is in parallel with the tuning capacitor, its capacitance adds
to that of the tuning capacitor. If C is in picofarads (pF), then

JC+365pF
JC+10pF T

The solution for C is
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o _ (365pF) - (2.?6)2 (10pF) _ ¢ oF.
(296)° -1

(c) We solve f =1/2n+/LC for L. For the minimum frequency, C = 365 pF + 36 pF =
401 pF and f = 0.54 MHz. Thus, the inductance is

Lo+ 1 __22x10*H.

(2m)°Ct?  (27)(401x 10 F)(054 x 10° Hz)

LEARN One could also use the maximum frequency condition to solve for the
inductance of the coil in (d). The capacitance is C = 10 pF + 36 pF = 46 pF and f = 1.60
MHz, so

Lo ! _=22x10*H.

(27)°Cf?  (2x) (46x107 F)(1.60x10° Hz)

12. (a) Since the percentage of energy stored in the electric field of the capacitor is
(1-75.0%) = 25.0%, then

2
Ye _972C _ 5004
Uu Q°/2C
which leads to q/Q =4/0.250 =0.500.
(b) From
i2
Yo _ 172 _ 7500,
U LI“/2

we find i/1=+/0.750 =0.866.

13. (a) The charge (as a function of time) is given by q=Qsinwt, where Q is the

maximum charge on the capacitor and @ is the angular frequency of oscillation. A sine
function was chosen so that q = 0 at time t = 0. The current (as a function of time) is

. dg
|l =—= cosait,
ot Q) COS w

andatt=0,itis | = «Q. Since ®=1/,/LC,

Q=1/LC =(200A),/(300x10° H)(2.70x10°° F) =180x 10 C.

(b) The energy stored in the capacitor is given by
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q®> Q%sin*at
UE =
2C 2C

and its rate of change is

dU. Q’w sinatcosat
dt C

We use the trigonometric identity cosatsineat = 4sin(2at) to write this as

2
Ve _Q gn2ut),
dt 2C

The greatest rate of change occurs when sin(2at) =1 or 2wt = /2 rad. This means

t:-:% LC =%\/(3.oox10*3 H)(2.70x10° F) =7.07x10"s.

c) Substituting @ = 24T and sin(2et) = 1 into dUg/dt = («Q?/2C) sin(2 i), we obtain
(c) Substituti AT and sin(2et) = 1 into dUg/dt = (wQ%2C) sin(2«t), we obtai

(dUEj _272Q*  #Q?
d ), 2T1C TC

Now T =27+/LC =2m,/(300x 10" H)(2.70 x 10 F) =5655x 105, 50

du.\  =(18ox10*C) e
(ijax_(5.655x10-4s)(2.70><10-6F)_ B

We note that this is a positive result, indicating that the energy in the capacitor is indeed
increasing at t = T/8.

14. The capacitors C; and C, can be used in four different ways: (1) C; only; (2) C, only;
(3) Cy and C; in parallel; and (4) C; and C; in series.

(a) The smallest oscillation frequency is

1 1

f— _

" 20 JL(C+C,)  27,[[L0x107 H)(20x10° F+5.0x10° F)
=6.0x10° Hz

(b) The second smallest oscillation frequency is
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1 L ~7.1x10°Hz.
27\LC, 27,[(1.0x107H)(5.0x10°F)
(c) The second largest oscillation frequency is
2= L 1 =1.1x10°Hz .
27\LC;  27,(10x107H)(2.0x10°F)
(d) The largest oscillation frequency is
-6 —6
- 1 =i 22.0><10 F+5.§)><10 F : _13x10°Hz .
27 JLCC,/(C,+C,) 27\(1.0x102H)(2.0x10°F)(5.0x10°F)

15. (a) The maximum charge is
Q=CVmx=(1.0x10°F)(3.0V)=3.0x10°C.

(b) From U =1 L1? =1Q*/C we get

-9
1= _ 30x10 € —17x10° A

JIC  [(30x10°H)(L0x10°F)

(c) When the current is at a maximum, the magnetic energy is at a maximum also:

1 1

Up =5 LI ? =§(3.0><1o-3 H)(L7x10° A)’ =45x10°J.

B, max

16. The linear relationship between & (the knob angle in degrees) and frequency f is

f=f, (1+ij:>9=1800 I
180° f,

where fo = 2 x 10° Hz. Since f = af27z=1/2x +/LC , we are able to solve for C in terms of
o:
1 81

T 4nLEZ(1+6/180°) 40000077 (180°+ 6)’

with SI units understood. After multiplying by 10 (to convert to picofarads), this is
plotted next:
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C (pF)

600
400

200 1

T — - 6
0 20 40 60 80 100 120 110 120 180

17. (a) After the switch is thrown to position b the circuit is an LC circuit. The angular
frequency of oscillation is @ =1/+/LC . Consequently,

w 1 1

o _ _ =275 Hz.
2z 2zJLC zn\/(54.0><10_3H)(6.20><10_6F) ‘

(b) When the switch is thrown, the capacitor is charged to V = 34.0 V and the current is
zero. Thus, the maximum charge on the capacitor is

Q=VC=(34.0V)(6.20x10°F) =211 x 10 C.

The current amplitude is

| =Q=27 Q=27 (275 Hz)(2.11x10* C) =0.365A.

18. (a) From V = 1Xc we find @ = I/CV. The period isthen T = 24/ w = 22CV/l = 46.1 ps.
(b) The maximum energy stored in the capacitor is

Ue =%CV2 =%(2.20><10-7 F)(0.250 V)* =6.88x107° J.

(c) The maximum energy stored in the inductor is also U, = LI?/2=6.88 nJ .

(d) We apply Eq. 30-35 as V = L(di/dt)na . We can substitute L = CV%/I1? (combining
what we found in part (a) with Eq. 31-4) into Eq. 30-35 (as written above) and solve for
(di/dt)max . Our result is

. 2 -3 2
(ﬂj Vo VL GSOAOCAT g 07 A
Ot ) L CVZ/IZ CV  (220x107 F)(0.250V)
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(e) The derivative of Ug = % Li® leads to

U _ LI?wsin et cos wt = 1 LI?wsin 2t .
dt 2
Therefore, [d;B ) _ % LI20 = % IV = % (7.50x10°° A)(0.250 V) = 0.938 m\W.

19. The loop rule, for just two devices in the loop, reduces to the statement that the
magnitude of the voltage across one of them must equal the magnitude of the voltage
across the other. Consider that the capacitor has charge g and a voltage (which we’ll
consider positive in this discussion) V = g/C. Consider at this moment that the current in
the inductor at this moment is directed in such a way that the capacitor charge is
increasing (so i = +dg/dt). Equation 30-35 then produces a positive result equal to the V
across the capacitor: V = —L(di/dt), and we interpret the fact that —di/dt > 0 in this
discussion to mean that d(dg/dt)/dt = d’g/dt? < O represents a “deceleration” of the
charge-buildup process on the capacitor (since it is approaching its maximum value of
charge). In this way we can “check” the signs in Eq. 31-11 (which states g/C = — L
d?g/dt?) to make sure we have implemented the loop rule correctly.

20. (@) Weuse U =1 LI1? =1Q?/C to solve for L:

2 2 2 2
|_=l(9j ~ L[S | o Yo | _(4.00x10°F) [ 222V | _360x10°H.
cl1) el | 50.0x10°A

(b) Since f = wf2 7, the frequency is

1 1

fo _ ~1.33x10°Hz.
27JLC 27r\/(3.60x10‘3H)(4.00><10‘6F) e

(c) Referring to Fig. 31-1, we see that the required time is one-fourth of a period (where
the period is the reciprocal of the frequency). Consequently,

t:%T:i— 1 _188x10° s.

41 _4(133x103 Hz)

21. (a) We compare this expression for the current with i = I sin(at+¢). Setting (wt+¢) =
2500t + 0.680 = /2, we obtain t = 3.56 x 10 s.

(b) Since o= 2500 rad/s = (LC) ™,
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Lo L 1 —250x10° H.

®’C  (2500rad/s) (64.0x10°F)

(c) The energy is

U= % LIZ = %(2.50 x10° H)(L60A)" =320x107J.

22. For the first circuit @ = (L1Cy1) >, and for the second one @ = (L,C,) . When the
two circuits are connected in series, the new frequency is

1 1 _ 1
(()_\/Leqceq JL+L)CC,/(C+C,) (LG, +LC,C,)/(C,+C,)
1 1
JLc (e, +c,)i(c.+C,) -

where we use @' =,/L,C, =,/L,C,.

23. (a) The total energy U is the sum of the energies in the inductor and capacitor:

%L _(ss0x10°cy X (9:2010°A)"(25.0x10°°H) ~1.98x10°J.

q2
U=U_+U. =— 1
£ B 2(7.8ox10*6F) 2

2C

(b) We solve U = Q?/2C for the maximum charge:

Q=+2CU = \/ 2(780x107° F)(198x10°J) =556 %10 C.

(c) From U = I°L/2, we find the maximum current:

2(198 %1076
| = 1/2—U = (—3) —126x102A.
L 250x10°H

(d) If go is the charge on the capacitor at time t = 0, then go = Q cos ¢and

—6
p=cos| L |=cos™ w = 146.9°.
Q 556x10°C

For ¢ = +46.9° the charge on the capacitor is decreasing, for ¢ = —46.9° it is increasing.
To check this, we calculate the derivative of g with respect to time, evaluated for t = 0.
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We obtain —@Q sin ¢, which we wish to be positive. Since sin(+46.9°) is positive and
sin(—46.9°) is negative, the correct value for increasing charge is ¢ = —46.9°.

(e) Now we want the derivative to be negative and sin ¢ to be positive. Thus, we take
¢ =+46.9°.

24. The charge g after N cycles is obtained by substituting t = NT = 22N/« into Eq.
31-25:

0 =Qe ™" cos(w't+¢)=Qe™"* cos| ' (27N / ')+ ¢ |
- QefRN(z”ﬁ)/2L cos(2zN +¢)
= Qe MRVt ¢os g,

We note that the initial charge (setting N = 0 in the above expression) is go = Q c0s ¢,
where qo = 6.2 x4C is given (with 3 significant figures understood). Consequently, we

write the above result as g, =q, exp(—NﬂR»\/C/ L).

(@ ForN=5, q, =(6.2yC)eXp(—57[(7.2(2)\/0.0000032 F/12H)=5.85,uC.

(b) For N = 10, g, =(6.2,uC)exp(—107[(7.29)\/0.0000032 F/12H):5.52 4C.

(c) For N = 100, ey =(6.2 yC)exp(—1007z(7.2§2)\j0.0000032 F/12H):1.93,uC.

25. Since @ ~ @', we may write T = 2r/w as the period and @ =1/+/LC as the angular
frequency. The time required for 50 cycles (with 3 significant figures understood) is

t =50T =50 (%’j :50(2;z\/E) =50 (ZE\/(220x10‘3H)(12.0><10‘6 F))

=0.5104s.
The maximum charge on the capacitor decays according toq, . = Qe ®/*" (this is called

the exponentially decaying amplitude in Section 31-5), where Q is the charge at time t =0
(if we take ¢ = 0 in Eqg. 31-25). Dividing by Q and taking the natural logarithm of both

sides, we obtain
In qﬂ — _&
Q 2L

which leads to
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2(220x10° H
R:—& In| 9mec | _ ( ) In(0.99)=8.66x10" Q.
0.5104s

26. The assumption stated at the end of the problem is equivalent to setting ¢ = 0 in Eq.
31-25. Since the maximum energy in the capacitor (each cycle) is given by g2, /2C,

where gmax 1S the maximum charge (during a given cycle), then we seek the time for
which

G 1Q° o _Q
2C 22C me 20

Now (max (referred to as the exponentially decaying amplitude in Section 31-5) is related
to Q (and the other parameters of the circuit) by

Rt

— 0eR2L s |n Oinex __nt
oo {2

Setting g, =Q/~/2, we solve for t:

oL (q oL (1) L
t=——-1 X |=————In| —=[=—=1In2.
R ”( Qj R ”(ﬁ) R

The identities In(l/\/E)z—In\/_z—%an were used to obtain the final form of the
result.

27. THINK With the presence of a resistor in the RLC circuit, oscillation is damped, and
the total electromagnetic energy of the system is no longer conserved, as some energy is
transferred to thermal energy in the resistor.

EXPRESS Let t be a time at which the capacitor is fully charged in some cycle and let
Omax 1 b€ the charge on the capacitor then. The energy in the capacitor at that time is

§ (t) — qrznaxl — Q_Zeth/L
2C 2C
where

q _ Qe—Rt/ZL
max1l —

(see the discussion of the exponentially decaying amplitude in Section 31-5). One period
later the charge on the fully charged capacitor is

q _ Qe—R(t+T)2/L
max 2
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where T :2—7? , and the energy is
w

U (t +T) — qriaxz — Q_Ze—R(t+T)/L.
2C 2C

ANALYZE The fractional loss in energy is

|AU| U@)-U(@t+T) e f/t—egREDIL

_RT/
U u(t) o RUL =l-e

Assuming that RT/L is very small compared to 1 (which would be the case if the
resistance is small), we expand the exponential (see Appendix E). The first few terms are:

o RTIL zl_ﬂ+ R*T? N
L 212

If we approximate o~ @', then we can write T as 27t/ w. As a result, we obtain

|AU | zl—(l—ﬂ+---j RT _27R
U L

LEARN The ratio | AU | /U can be rewritten as

where Q=wL/R (not to confuse Q with charge) is called the “quality factor” of the
oscillating circuit. A high-Q circuit has low resistance and hence, low fractional energy

loss.
28. (a) We use | = &X. = axCe:
| =w,C¢, =27 f,Ce,, =27(1.00x10°Hz)(1.50x10°F)(30.0 V) = 0.283 A .

(b) 1 = 2(8.00 x 10% Hz)(1.50 x 10°® F)(30.0 V) = 2.26 A.

29. (a) The current amplitude I is given by | = V| /X, where X = ayL = 2af4L. Since the
circuit contains only the inductor and a sinusoidal generator, V| = &,. Therefore,

VG 00V _go955A-955mA
X, 27f,L  27(1.00x10'Hz)(50.010 *H)
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(b) The frequency is now eight times larger than in part (a), so the inductive reactance X._
is eight times larger and the current is one-eighth as much. The current is now

| =(0.0955 A)/8 =0.0119 A =11.9 mA.
30. (a) The current through the resistor is

¢n _ 300V _ 600 A.

| =
R 5000

(b) Regardless of the frequency of the generator, the current is the same, 1 =0.600 A .

31. (a) The inductive reactance for angular frequency ay is given by X, =a,L, and the
capacitive reactance is given by Xc = 1/a4C. The two reactances are equal if ayl = 1/a4C,
or w, =1/+/LC . The frequency is

Wy 1 1

_ % _ = =6.5x10% Hz.
2z 2zJLC  27,/(6.0x10°H)(10x10 °F)

d

(b) The inductive reactance is
X, = ayl = 27f4L = 22(650 Hz)(6.0 x 10° H) = 24 Q.

The capacitive reactance has the same value at this frequency.

(c) The natural frequency for free LC oscillations is f =/ 27=1/27+/LC , the same as
we found in part (a).

32. (a) The circuit consists of one generator across one inductor; therefore, &, = V.. The
current amplitude is

| =fm _ %m 0V _522x10° A.

X, oL (377 radis)(12.7 H)

(b) When the current is at a maximum, its derivative is zero. Thus, Eq. 30-35 gives g =0
at that instant. Stated another way, since &(t) and i(t) have a 90° phase difference, then &(t)
must be zero when i(t) = I. The fact that ¢ = 90° = /2 rad is used in part (c).

(c) Consider Eq. 31-28 with e =—¢,/2. In order to satisfy this equation, we require

sin(ayt) = —1/2. Now we note that the problem states that ¢ is increasing in magnitude,
which (since it is already negative) means that it is becoming more negative. Thus,
differentiating Eqg. 31-28 with respect to time (and demanding the result be negative) we



1347

must also require cos(myt) < 0. These conditions imply that ot must equal (2nz — 57/6) [n
= integer]. Consequently, Eq. 31-29 yields (for all values of n)

i=1 sin(Znn - %n - gj =(5.22 x 10%)[?) =451x107° A..

33. THINK Our circuit consists of an ac generator that produces an alternating current,
as well as a load that could be purely resistive, capacitive, or inductive. The nature of the
load can be determined by the phase angle between the current and the emf.
EXPRESS The generator emf and the current are given by
e=¢g,SIN(w, —/4), i(t)=1sin(ew,—37/4).

The expressions show that the emf is maximum when sin(ayt — 7/4) = 1 or

gt — 4 = (A2) £ 2nz  [n = integer].
Similarly, the current is maximum when sin(ayt — 3n/4) = 1, or

wgt — 344 = (42) £ 2nz [n = integer].

ANALYZE (a) The first time the emf reaches its maximum after t = 0 is when at — /4
= 2 (that is, n = 0). Therefore,

3t 3n
4, 4(350 rad/s)

=6.73x10°s.

(b) The first time the current reaches its maximum after t = 0 is when ayt — 3n/4 = /2, as
in part (a) with n = 0. Therefore,

5n 5r

- =1.12x107 s.
4, 4(350 rad/s)

(c) The current lags the emf by +7/2 rad, so the circuit element must be an inductor.

(d) The current amplitude 1 is related to the voltage amplitude V_ by V_ = IX,, where X is
the inductive reactance, given by X, = ayL. Furthermore, since there is only one element
in the circuit, the amplitude of the potential difference across the element must be the
same as the amplitude of the generator emf: V| = &,. Thus, &, = layL and

L=Cm 300V 0.138 H.

“lw, (620x10°A)(350 rad/s)
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LEARN The current in the circuit can be rewritten as

0= 15in{ 0, |- 15in{ 0,2 ]

where ¢ =+x/2. In a purely inductive circuit, the current lags the voltage by 90°.

34. (a) The circuit consists of one generator across one capacitor; therefore, &, = V.
Consequently, the current amplitude is

| = % = wCe, = (377 rad /5)(4.15x 10 °F)(25.0 V) = 3.91x 10?A .

C

(b) When the current is at a maximum, the charge on the capacitor is changing at its
largest rate. This happens not when it is fully charged (£Qmax), but rather as it passes
through the (momentary) states of being uncharged (q = 0). Since g = CV, then the
voltage across the capacitor (and at the generator, by the loop rule) is zero when the
current is at a maximum. Stated more precisely, the time-dependent emf &(t) and current
i(t) have a ¢ = —90° phase relation, implying &(t) = 0 when i(t) = I. The fact that ¢ = —90°
=—z2 rad is used in part (c).

(c) Consider Eq. 32-28 with e=—3¢,,. In order to satisfy this equation, we require

sin(agt) = —1/2. Now we note that the problem states that ¢ is increasing in magnitude,
which (since it is already negative) means that it is becoming more negative. Thus,
differentiating Eqg. 32-28 with respect to time (and demanding the result be negative) we
must also require cos(agt) < 0. These conditions imply that ot must equal (2nz — 57/6) [n
= integer]. Consequently, Eq. 31-29 yields (for all values of n)

i—1sin[ 20z -7 4+ =(3.91x10°A) —ﬁ =-3.38x107° A,
6 2 2
or |i|=3.38x1072A.

35. The resistance of the coil is related to the reactances and the phase constant by Eq.
31-65. Thus,

X =Xe  w,L-1/0,C

=tang,
R R
which we solve for R:
:i w,L— L = L (2n)(930Hz(8.8x10‘2H)— 1 —
tan ¢ ®,C ) tan75° (2m)(930Hz)(0.94x10°F

=89Q2.



1349

36. (a) The circuit has a resistor and a capacitor (but no inductor). Since the capacitive
reactance decreases with frequency, then the asymptotic value of Z must be the resistance:
R =500 Q.

(b) We describe three methods here (each using information from different points on the
graph):

method 1: At ey = 50 rad/s, we have Z ~ 700 Q, which gives C = (wn/Z2 - R?) ' = 41 4F.
method 2: At @y = 50 rad/s, we have Xc ~ 500 Q, which gives C = (g Xc) ™ = 40 4F.
method 3: At ay = 250 rad/s, we have Xc ~ 100 Q, which gives C = (ay Xc) ™ = 40 4F.
37. The rms current in the motor is

|y =108 = s 120V =7.61A.

™z [Rex? 4500y +(3200)

38. (@) The graph shows that the resonance angular frequency is 25000 rad/s, which
means (using Eq. 31-4)

C = (&’L) ™ = [(25000)? x200 x 10°°] ™ = 8.0 4F.
(b) The graph also shows that the current amplitude at resonance is 4.0 A, but at

resonance the impedance Z becomes purely resistive (Z = R) so that we can divide the
emf amplitude by the current amplitude at resonance to find R: 8.0/4.0 = 2.0 Q.

39. (@) Now X_ = 0, while R = 200 Q and X¢ = 1/244C = 177 Q. Therefore, the
impedance is

Z = \[R*+ X2 =/(2000)* + (177 Q)? = 267Q2.

(b) The phase angle is

¢ =tan™ X, = X¢ _tan 0-177Q _ 4150
R 200Q2

(c) The current amplitude is
&, 36.0V

=2 =0.135A.
267Q

(d) We first find the voltage amplitudes across the circuit elements:
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V, = IR =(0.135A)(2009) ~ 27.0V
V, =IX, =(0.135A)(177Q) ~ 23.9V

The circuit is capacitive, so | leads ¢,,. The phasor diagram is drawn to scale next.

40. A phasor diagram very much like Fig. 31-14(d) leads to the condition:
VL — V¢ = (6.00 V)sin(30°) = 3.00 V.
With the magnitude of the capacitor voltage at 5.00 V, this gives a inductor voltage

magnitude equal to 8.00 V. Since the capacitor and inductor voltage phasors are 180° out
of phase, the potential difference across the inductor is —8.00 V.

41. THINK We have a series RLC circuit. Since R, L, and C are in series, the same
current is driven in all three of them.

EXPRESS The capacitive and the inductive reactances can be written as

1 1
o,C 2nf,C’

X X =o,L=27f,L.

The impedance of the circuit is Z =\/’R2 +(X_ —X¢)?, and the current amplitude is given
by I =¢,,/Z.

ANALYZE (a) Substituting the values given, we find the capacitive reactance to be

1 1

X, = = =379 Q.
2nf,C 2n(60.0 Hz)(70.0x10°°F)

Similarly, the inductive reactance is

X, =2nf, L = 2n(60.0 Hz)(230x10*H) =86.7 Q.
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Thus, the impedance is

Z=\[R?+ (X, —Xc)? =4/(200 Q)? +(37.9 Q-86.7 Q)? =206 Q.

(b) The phase angle is

¢:tan‘1£M _tan 1| 807 Q319 Q1400
R 200 Q

(c) The current amplitude is

I =g_m:M:o_175A,
Z 2060

(d) We first find the voltage amplitudes across the circuit elements:

V, = IR =(0.175 A)(200 Q) =35.0 V
V, =IX,_ =(0.175 A)(86.7 Q) =15.2 VV
V, = IX, =(0.175 A)(37.9 Q) =6.62V

Note that X, > X, so that ¢, leads I. The phasor diagram is drawn to scale below.
8)71

Vi -7 :

VL*V(' dl ¢

Ve

LEARN The circuit in this problem is more inductive since X, > X.. The phase angle is
positive, so the current lags behind the applied emf.

42. (a) Since Z = \/R2 +X.2 and X, = ay L, thenas ey —> O0we find Z > R =40 Q.
(b)L = X /oy =slope =60 mH.
43. (@) Now Xc =0, while R =200 Q2 and

XL = oL =2af4L =86.7 Q
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both remain unchanged. Therefore, the impedance is

Z =\R*+ X7 =/(200 Q)* +(86.7 ©2)* =218 Q2.

(b) The phase angle is, from Eq. 31-65,

$=tan™ (%) =tan™ (MJ =23.4°.

200 Q
(c) The current amplitude is now found to be | = En _ 360V =0.165 A..
Z 218Q

(d) We first find the voltage amplitudes across the circuit elements:

V, = IR =(0.165 A)(200Q) ~33V
V, =1X, =(0.165A)(86.7Q) ~14.3V.

This is an inductive circuit, so &y leads I. The phasor diagram is drawn to scale next.

44. (a) The capacitive reactance is

w o1 1 B
¢ 27fC  27(400 Hz)(24.0x10°°F)

166 Q.

(b) The impedance is

Z = R2+(X, — Xc)? =R®+ (27 fL- X, )’

=\/(220g2)2 +[27(400 Hz)(150x10°° H)-16.6 Q]° =422 Q.

(c) The current amplitude is
| =020V 4551 A
Z 4220
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(d) Now X, oc C. Thus, Xc increases as Ceq decreases.

(e) Now Ceq = C/2, and the new impedance is

Z= \/(220 Q)* +[2m(400 Hz)(150x107° H)-2(16.6 Q)] =408 Q<422 Q.
Therefore, the impedance decreases.

(f) Since 1 oc Z™*, it increases.

45. (a) Yes, the voltage amplitude across the inductor can be much larger than the
amplitude of the generator emf.

(b) The amplitude of the voltage across the inductor in an RLC series circuit is given by
V, =IX, =lw,L. At resonance, the driving angular frequency equals the natural angular

frequency: w, =@ =1/~ LC . For the given circuit

_ L _ 10H
JLC /(1.0 H)(1.0x10°F)

=1000 Q.

L

At resonance the capacitive reactance has this same value, and the impedance reduces
simply: Z = R. Consequently,

| =%m _én 10V _19A.
R 10 Q

resonance

The voltage amplitude across the inductor is therefore
V, =1X_ =(1.0A)(1000 Q) =1.0x10° V
which is much larger than the amplitude of the generator emf.

46. (a) A sketch of the phasor diagram is shown to the right.

(b) We have | R=| Xc, or A
IR=1Xc — R= L g \

VR /’/ \
(O] C \
which yields \

_ Wy 1 1 \ Ve

f=—t= = ———159 Hz.
27 27RC 27(50.0 Q)(2.00x10° F) ¢

(c) ¢=tan *(-Vc /VR) = — 45°.
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(d) @y = 1/RC =1.00 x10° rad/s.

(€) 1 = (12 V)AJRT+ X&Z = 6/(25\2) ~170 mA.

47. THINK In a driven RLC circuit, the current amplitude is maximum at resonance,
where the driven angular frequency is equal to the natural angular frequency.

EXPRESS For a given amplitude &, of the generator emf, the current amplitude is given
by

Em

Z R+ (0,L-1w,C)

&

To explicitly show that | is maximum when a, =w=1/JLC, we differentiate | with
respect to wy and set the derivative to zero:

J’_':_(E)m[R2+(a)d|_—1/wdC)2]S’Z[wdl_— 1C](|_+ ! J

2
@, @, w;C

The only factor that can equal zero is when o, L—(1/®,C),0or o, =1/JLC =w.

ANALYZE (a) For this circuit, the driving angular frequency is

1 1
- JLC /(100 H)(20.0 x10°F)

=224 rad/s.

@Dy

(b) When @, =, the impedance is Z = R, and the current amplitude is

| =n 300V _s00A,
R 5.00

@

(c) We want to find the (positive) values of @, for which 1 =¢, /2R:

&, &

m m

JR+(0,L-1/m,CY 2R’

2
(a)dL— L j = 3R%.
®,C

This may be rearranged to give
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Taking the square root of both sides (acknowledging the two + roots) and multiplying by
®,C , we obtain

@2 (LC) o, (J§CR)—1=0.
Using the quadratic formula, we find the smallest positive solution

" —J3CR+[3C°R?+4LC  —/3(20.0x10° F)(5.00 )

? 2LC 2(1.00 H)(20.0x10° F)

N \3(20.0x10° F)?(5.00 Q)% +4(L.00 H)(20.0x10° F)
2(1.00 H)(20.0x10°° F)

=219 rad/s.

(d) The largest positive solution

Y +V3CR+3C?R? +4LC  +4/3(20.0x10°° F)(5.000)

. 2LC 2(1.00 H)(20.0x10°° F)

+\/3(20.0><10*6 F)?(5.00 Q) +4(1.00 H)(20.0x10°F)
2(1.00 H)(20.0x10°° F)

=228 rad/s.
(e) The fractional width is

o, —o, 228 rad/s—219 rad/s
@ 224 radls

=0.040.

LEARN The current amplitude as a function of @, is plotted below.
1(A) 1(A)

5

N

AN f :

= B  (rad/s)

i

200 220 240 260 280 300 220 225 230 (l)d(rad/s)

We see that | is a maximum at @, = @ =224 rad/s, and is at half maximum (3 A) at 219
rad/s and 228 rad/s.

48. (a) With both switches closed (which effectively removes the resistor from the
circuit), the impedance is just equal to the (net) reactance and is equal to
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Xnet = (12 V)/(0.447 A) = 26.85 Q.

With switch 1 closed but switch 2 open, we have the same (net) reactance as just
discussed, but now the resistor is part of the circuit; using Eq. 31-65 we find

_ X _2685Q 00

tang  tanl15°

(b) For the first situation described in the problem (both switches open) we can reverse
our reasoning of part (a) and find

Xnetfirst = Rtan ¢’ = (100 Q) tan(-30.9°) = -59.96 Q.
We observe that the effect of switch 1 implies
Xc = Xnet — Xnet first = 26.85 Q — (~59.96 Q) = 86.81 Q.
Then Eq. 31-39 leads to C = 1/wXc = 30.6 uF.
(c) Since Xpet = X — Xc , then we find L = X /w =301 mH .

49. (a) Since Leg = L1 + Ly and Ceq = Cy1 + C; + C3 for the circuit, the resonant frequency
IS

e 1 _ 1
27 LCo  27\(L,+L,)(C,+C,+C;)
_ 1
Zﬂ\/(1.70><10_3 H+2.30x107° H)(4.00><1o-6 F+2.50x10° F+3.50x10°° F)

=796 Hz.

(b) The resonant frequency does not depend on R so it will not change as R increases.

(c) Since w o (L1 + Ly) ™2, it will decrease as L; increases.

50. (a) A sketch of the phasor diagram is shown to the right.

(b) We have Vg = V| which implies

d) Since @ o« C;¥? and C, decreases as Cs is removed, o will 8
eq q
\
increase. / \
\\
¢

IR=IX. — R =ayl VN
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which yields f= ay/27=R/27L = 318 Hz.

(c) ¢=tan (VL /VR) = +45°.

(d) ey = R/IL = 2.00x10° rad/s.

(€) I = (6 V)ARZ+ X2 = 3/(40\[2) ~ 53.0 mA.

51. THINK In a driven RLC circuit, the current amplitude is maximum at resonance,
where the driven angular frequency is equal to the natural angular frequency. It then falls

off rapidly away from resonance.

EXPRESS We use the expressions found in Problem 31-47:

o = +J3CR++/3C?R2 +4LC Y —J3CR++/3C?R? +4LC

2LC 2 2LC

The resonance angular frequency is @ =1/+/LC.

ANALYZE Thus, the fractional half width is

Awg _ o~w, _2J3CRJLC _, [3C

10 w 2LC L

LEARN Note that the value of Aw, /@ increases linearly with R; that is, the larger the
resistance, the broader the peak. As an example, the data of Problem 31-47 gives

3(20.0x10°F
Aw, =(5.00 Q)J (200~ )=3.87x10‘2.
@ 1.00H

This is in agreement with the result of Problem 31-47. The method used there, however,
gives only one significant figure since two numbers close in value are subtracted (o —
a»). Here the subtraction is done algebraically, and three significant figures are obtained.

52. Since the impedance of the voltmeter is large, it will not affect the impedance of the
circuit when connected in parallel with the circuit. So the reading will be 100 V in all
three cases.

53. THINK Energy is supplied by the 120 V rms ac line to keep the air conditioner
running.

EXPRESS The impedance of the circuit is Z =\,”R2 +(X_ —X.)?, and the average rate of
energy delivery is
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2 2
2 Erms _ grmsR
PavgzlrmsR:(?j _?'

ANALYZE (a) Substituting the values given, the impedance is

Z =\(120Q) +(1.30Q-0)’ =121Q
(b) The average rate at which energy has been supplied is

2 2
= SR (120v) (12'3 2) _118610° W ~1.19x10° W.
Z (12.07 Q)

LEARN In a steady-state operation, the total energy stored in the capacitor and the
inductor stays constant. Thus, the net energy transfer is from the generator to the resistor,
where electromagnetic energy is dissipated in the form of thermal energy.

54. The amplitude (peak) value is
Vo = V2V, = V2(100V) =141V,

55. The average power dissipated in resistance R when the current is alternating is given
by P, = 12 R, where Iy is the root-mean-square current. Since 1. =1/~/2, where | is
the current amplitude, this can be written Payg = I?R/2. The power dissipated in the same
resistor when the current iq is direct is given by P =iR. Setting the two powers equal to

each other and solving, we obtain

. _ 1 _260A
V2 V2

56. (a) The power consumed by the light bulb is P = IR/2. So we must let PpadPrmin =
(M lmin)® =5, or
2

) [l 2o ) [ e ) AR O |
Imin - gm/Zmax - Zmin - R o

We solve for Lyax:

=184A.

2
L= 2_R _ 2(120V) /1000W 764x102H.
10} 2n(60.0 HZ)

(b) Yes, one could use a variable resistor.
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(c) Now we must let
2
( Rmax + Rbulb j — 5’
I:\>bulb

120V)*
Roae = (V5 —1)Ryyy =(+5 —1)W ~178 Q.

or

(d) This is not done because the resistors would consume, rather than temporarily store,
electromagnetic energy.

57. We shall use
gR &:R

77 2| R*+(o,L-1 ) |

where Z = \/Rz +(@yL—1/@,C)" is the impedance.

(@) Considered as a function of C, Paq has its largest value when the factor
R?+(w,L—1/ ,C)” has the smallest possible value. This occurs for a,L =1/@,C, or

c- L - - —117x10° F.
wgL  (2m)"(60.0Hz)"(60.0x107° H)

The circuit is then at resonance.

(b) In this case, we want Z> to be as large as possible. The impedance becomes large
without bound as C becomes very small. Thus, the smallest average power occurs for C =
0 (which is not very different from a simple open switch).

(c) When ayl = 1/ayC, the expression for the average power becomes

2
P, =n

avg 2 R

so the maximum average power is in the resonant case and is equal to

2
S S Y
2(5.000)

(d) At maximum power, the reactances are equal: X, = Xc. The phase angle ¢ in this case
may be found from
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X X
tang=—-—5=0,
¢ R
which implies ¢ = 0°.
(e) At maximum power, the power factor is cos ¢ = cos 0° = 1.

(f) The minimum average power is Payq = 0 (as it would be for an open switch).

(9) On the other hand, at minimum power Xc o« 1/C is infinite, which leads us to set
tan ¢ = —o . In this case, we conclude that ¢=-90°.

(h) At minimum power, the power factor is cos ¢ = cos(-90°) = 0.

58. This circuit contains no reactances, S0 &ms = lmsRiota. Using Eq. 31-71, we find the
average dissipated power in resistor R is

2
PR:Ifmst( e ) R.
r+R

In order to maximize Pr we set the derivative equal to zero:

ap, | (+R’=2(r+R)R| 2(r_R)

= : = 2=0 = R=r
dR (r+R) (r+R)
59. (a) The rms current is
— Erms — Erms
Tz R+(2xfL-12xfC)
_ 75.0V
\/(15.09)2 +{27z(550Hz)(25.0mH)—1/[27:(550Hz)(4.70uF)]}2
=2.59A.

(b) The rms voltage across R is V,, =1 ;R =(2.59A)(15.0Q)=38.8V .

(c) The rms voltage across C is

= Mme _ 2.50A
¢ 27fC  2x(550Hz)(4.70uF)

V, =1 =159V .

rms

(d) The rms voltage across L is



Vyy =1, X, =27l fL=2r(2.59A)(550 Hz)(25.0mH) =224 V.

(e) The rms voltage across C and L together is
Vg = |\/bc -V, | = |159.5V— 223.7V| =64.2V.

(f) The rms voltage across R, C, and L together is

Vi = V2 +V3 =/(388V) +(64.2V) = 75.0V.

2 (38.8V)
(g) For the resistor R, the power dissipated is P, = Vay = ( ) =100W.
R 15.0Q
(h) No energy dissipation in C.
(1) No energy dissipation in L.
60. The current in the circuit satisfies i(t) = | sin(wgt — ¢), where
‘c"m gm
I = —= >
Z R +(0,L-10,C)
3 450V
\/(16.0 Q)" +{(3000rad/s)(9.20mH)~1/[ (3000 rad/s) (31.2 uF) ]}
=1.93A
and
¢ _ tanil (XL - XC j _ tanfl (a)d L—l/a)de
R R
T (3000rad/s)(9.20mH) 1
- 16.0 Q (3000rad/s)(16.0 2)(31.2 uF)
=46.5°

(@) The power supplied by the generator is

P, =i(t)e(t) = Isin (o4t —¢) &, sinw,t

1361

=(1.93A)(45.0V)sin[ (3000rad/s)(0.442 ms) | sin[ (3000rad/s)(0.442 ms)—46.5°]

=41.4W.

(b) With
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v, (t) =V, sin(a,t —gp— /1 2) =-V,_ cos(aw,t — @)

where V_ =1/ @,C, the rate at which the energy in the capacitor changes is

2
p-d ) ;9 5
dtl2c) C

==Isin(w,t—¢) [a)dC jCOS(a)dt ~¢)=- 20, sin [Z(a)dt —¢):|
L (L93A) _ ) O
= 2(3000radis) 3L 2X1()6F)sun[2(3ooo rad/s)(0.442ms)—2(46.5°) |

=-17.0 W.

(c) The rate at which the energy in the inductor changes is

d (1., di . . d- 1,
LZE(ELI jzle—::Llsm(a)dt—¢)a[lsm(wdt—gzﬁ)]:za)du sin[ 2(o,t—¢) ]

= %(3000 rad/s)(l.93A)2 (9.20mH)sin [2(3000 rad/s)(0.442ms) - 2(46.50)]
=44.1W.

(d) The rate at which energy is being dissipated by the resistor is

P, =i’R = I’Rsin’ (a,t - ¢) =(1.93A)" (16.0 Q)sin? [ (3000rad/s) (0.442ms) — 46.5°]
=14.4W.

(e) Equal. B + P, +P, =441W-17.0 W +14.4W=415W=P,.

61. THINK We have an ac generator connected to a “black box,” whose load is of the
form of an RLC circuit. Given the functional forms of the emf and the current in the
circuit, we can deduce the nature of the load.

EXPRESS In general, the driving emf and the current can be written as

e(t)=¢,sinot, i(t)=Isin(w,t—7¢).

Thus, we havee, =75V, | = 1.20 A, and ¢ =—-42° for this circuit. The power factor of
the circuit is simply given by cos¢.

ANALYZE (a) With ¢ =—42.0°, we obtain cos ¢ = cos(—42.0°) = 0.743.
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(b) Since the phase constant is negative, ¢ < 0, at — ¢ > «t. The current leads the emf.

(c) The phase constant is related to the reactance difference by tan ¢ = (X_ — Xc)/R. We
have
tan ¢ = tan(—42.0°) =-0.900,

a negative number. Therefore, X, — Xc is negative, which implies that Xc > X.. The
circuit in the box is predominantly capacitive.

(d) If the circuit were in resonance, X, would be the same as Xc, then tan ¢ would be zero,
and ¢ would be zero as well. Since ¢ is not zero, we conclude the circuit is not in
resonance.

(e) Since tan ¢ is negative and finite, neither the capacitive reactance nor the resistance is
zero. This means the box must contain a capacitor and a resistor.

(f) The inductive reactance may be zero, so there need not be an inductor.
(9) Yes, there is a resistor.

(h) The average power is

P = %gml COS¢ = %(75.0 V)(L20A)(0.743) = 334 W.

av(

(i) The answers above depend on the frequency only through the phase constant ¢, which
is given. If values were given for R, L, and C, then the value of the frequency would also
be needed to compute the power factor.

LEARN The phase constant ¢ allows us to calculate the power factor and deduce the
nature of the load in the circuit. In (f) we stated that the inductance may be set to zero. If
there is an inductor, then its reactance must be smaller than the capacitive reactance, X, <
Xc.

62. We use Eq. 31-79 to find

V=V, N, |- (100V) (5—0()) =100x10° V.
N, 50
63. THINK The transformer in this problem is a step-down transformer.

EXPRESS If Np is the number of primary turns, and Ns is the number of secondary turns,
then the step-down voltage in the secondary circuit is
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By Ohm’s law, the current in the secondary circuit is given by |, =V, /R..

ANALYZE (a) The step-down voltage is

V.=V, N, =(120V) (ﬂj =24V.
N 500

p

(b) The current in the secondary is |, = Vo = 24V =016A.
R, 150

S

We find the primary current from Eq. 31-80:

I, =1, N, =(0.16A)(£)=3.2x10‘3A.
N 500

p

(c) As shown above, the current in the secondary is I, =0.16A.

LEARN In a transformer, the voltages and currents in the secondary circuit are related to
that in the primary circuit by

N
v, :VP(NSJ, |S:|p(—p}
N, N,

64. For step-up transformer:

(2) The smallest value of the ratio V, /V is achieved by using T,T3 as primary and T;Ts as
secondary coil: V13/V,3 = (800 + 200)/800 = 1.25.

(b) The second smallest value of the ratio V /V  is achieved by using T1T, as primary and
T, T3 as secondary coil: V,3/V13 = 800/200 = 4.00.

(c) The largest value of the ratio V, /V is achieved by using T1T, as primary and T T3 as
secondary coil: V13/V12 = (800 + 200)/200 = 5.00.

For the step-down transformer, we simply exchange the primary and secondary coils in
each of the three cases above.

(d) The smallest value of the ratio V, /V/ is 1/5.00 = 0.200.
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(e) The second smallest value of the ratio V, /V is 1/4.00 = 0.250.

(f) The largest value of the ratio V, /V is 1/1.25 = 0.800.

65. (a) The rms current in the cable is 1, = P/V, =250x10°W/(80x10° V) =3125A.
Therefore, the rms voltage drop is AV =1, R =(3125A)(2)(0.30Q) =19 V.

(b) The rate of energy dissipation is P, =17 R =(3125A)(2)(0.60Q2) =59 W.

(c) Now I, =250x10°W/(8.0x10° V) =3125A , s0 AV =(31.25A)(0.60Q2)=19V.
(d) P, = (3125A)"(0.6002) =59 x 10? W,

(&) I = 250x10° W/(0.80x10° V) =3125 A, 50 AV =(312.5A)(0.60Q) =1.9x10° V.

(f) P, =(312.5A)° (0.60 Q) =5.9x10"W.

66. (a) The amplifier is connected across the primary windings of a transformer and the
resistor R is connected across the secondary windings.

(b) If Is is the rms current in the secondary coil then the average power delivered to R is
P, = IZR . Using I, = (N,/N,)I,, we obtain

avg
2
I N
SR

Next, we find the current in the primary circuit. This is effectively a circuit consisting of
a generator and two resistors in series. One resistance is that of the amplifier (r), and the
other is the equivalent resistance Req Of the secondary circuit. Therefore,

& &

rms

Cr+R, :r+(Np/Ns)2R

rms

p

where Eq. 31-82 is used for Req. Consequently,

SN, INR
M (N IN)RT
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Now, we wish to find the value of Ny/Ns such that P, is @ maximum. For brevity, let x =
(No/Ns)>. Then
&°RX

P = 21
(r+xR)

avg

and the derivative with respect to x is

dP,,  &*R(r—xR)

dx (r+ xR)3

This is zero for
X=r/R= (10009)/(109) =100.

We note that for small x, P4 increases linearly with x, and for large x it decreases in
proportion to 1/x. Thus x = r/R is indeed a maximum, not a minimum. Recalling x =
(No/Ns)?, we conclude that the maximum power is achieved for

N, /N, =+/x=10.

The diagram that follows is a schematic of a transformer with a ten to one turns ratio. An
actual transformer would have many more turns in both the primary and secondary coils.

to amplifier

to load resistance R

AUV,

67. (a) Let at—m/4=m/2 toobtain t=37/4w=37/[4(350rad/s) |=6.73x10"s.

(b) Let at+7/4=7/2 to obtain t=r/4w=71[4(350rad/s)]|=2.24x10"s.

(c) Since i leads ¢in phase by 772, the element must be a capacitor.
(d) We solve C from X, =(aC) " =, /1:

-3
cot - 620x10°A 45 105
eqn@ (30.0V)(350rad/s)

m
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68. (a) We observe that oy = 12566 rad/s. Consequently, X_ = 754 Q and X¢c = 199 Q.

Hence, Eq. 31-65 gives
¢= tan‘l(%j =122 rad .

(b) We find the current amplitude from Eq. 31-60:

| = Em —0288A .

\/R2 +(X|_ - Xc)2

69. (a) Using o= 2f , X_ = al, Xc = 1/wC and tan(¢) = (XL —Xc)/R, we find
¢ = tan 1[(16.022 — 33.157)/40.0] = —0.40473 ~ —0.405 rad.

(b) Equation 31-63 gives | = 120/A/407 + (16-33)7 =2.7576 ~ 2.76 A.

(c) Xc > X_ = capacitive.

70. (a) We find L from X, = ol = 2xfL:

X, 1.30x10°Q

=Lt = ——=4.60x10°Hz.
27L 2;:(45.0><10- H)

(b) The capacitance is found from Xc = («C)™* = (2nfC) ™:

1 1

- = — -8
27X 27(460x10°Hz)(1.30x10°Q) =2.66>10°°F.

(c) Noting that X, o« f and Xc o« f !, we conclude that when f is doubled, X, doubles and

Xc reduces by half. Thus,
XL =2(1.30 x 10° Q) =2.60 x 10° Q..
(d) Xc = 1.30 x 10° Q/2 = 6.50 x 10° Q.
71. (a) The impedance is Z = (80.0 V)/(1.25 A) = 64.0 Q.
(b) We can write cos ¢ = R/Z. Therefore,

R = (64.0 Q)cos(0.650 rad) = 50.9 Q.

(c) Since the current leads the emf, the circuit is capacitive.
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72. (a) From Eqg. 31-65, we have

4 tan_l(vL Ve J _ tan_l[vL -V, /150)]
V, (v, /2.00)

which becomes tan (2/3 ) = 33.7° or 0.588 rad.
(b) Since ¢> 0, it is inductive (X_ > Xc).

(c) We have Vg = IR =9.98 V, so that V| = 2.00Vg =20.0 V and V¢ =V /1.50 = 13.3 V.
Therefore, from Eq. 31-60, we have

£n =V +(V, —Vo)? =4/(9.98 V)? +(20.0V -13.3V)* =12.0 V.

73. (a) From Eq. 31-4, we have L = («*C) ™" = ((24f)°C) ™" = 2.41 uH.

(b) The total energy is the maximum energy on either device (see Fig. 31-4). Thus, we
have Upax =3 LIZ = 21.4 pJ.

(c) Of several methods available to do this part, probably the one most “in the spirit” of
this problem (considering the energy that was calculated in part (b)) is to appeal to Umax =

%QZ/C (from Chapter 26) to find the maximum charge: Q =/2CU.x =82.2 nC.

74. (a) Equation 31-4 directly gives 1A\/LC = 5.77x10° rad/s.
(b) Equation 16-5 then yields T = 2t/ = 1.09 ms.

(c) Although we do not show the graph here, we describe it: it is a cosine curve with
amplitude 200 4C and period given in part (b).

75. () The impedance is Z = n _ 125V, =39.1Q.
I  3.20A

(b) From V; = IR = ¢, cos¢, we get

_&ycos¢  (125V)cos(0.982rad)

R= =217Q.
I 320A

(c) Since X, — X ocsing=sin(-0.982rad), we conclude that X_ < Xc. The circuit is
predominantly capacitive.

76. (a) Equation 31-39 gives f = @/27 = (2nCXc) ™ = 8.84 kHz.
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(b) Because of its inverse relationship with frequency, the reactance will go down by a
factor of 2 when f increases by a factor of 2. The answer is X¢ = 6.00 Q.

77. THINK The three-phase generator has three ac voltages that are 120° out of phase
with each other.

EXPRESS To calculate the potential difference between any two wires, we use the
following trigonometric identity:

sing —sin B =2sin[ (a— B)/2 Jcos[ (a+ B)/2],
where o and £ are any two angles.

ANALYZE (a) We consider the following combinations: AV, = Vi — Vs, AVi3 = Vi — V3,
and AV23 =V, - V3. For AV,

AV,, = Asin(w4t) — Asin (w,t —120°) = 2Asin(1220 jcos(zwdtz_lzo j: \/§Acos(a)dt —60°)

where sin 60°=+/3/2. Similarly,

AV, = Asin(w,t) — Asin (w,t —240°) = 2Asin [ 2420 jcos (Mj

= \/§Acos(a)dt -120°)
and

AV,, = Asin(ayt —120°) — Asin (w,t —240°) = 2Asin (1220 )cos(zw"t ;360 j
= /3Acos(w,t ~180°).
All three expressions are sinusoidal functions of t with angular frequency .

(b) We note that each of the above expressions has an amplitude of J3A

LEARN A three-phase generator provides a smoother flow of power than a single-phase
generator.

78. (a) The effective resistance Ref satisfies 17 R = P.crnicar » OF
. 0.100hp)(746W/h
Reﬁ _ Pmechanlcal — ( p)( p) _ 177 Q

| (0.650A)°
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(b) This is not the same as the resistance R of its coils, but just the effective resistance for
power transfer from electrical to mechanical form. In fact 12 _R would not give Pmechanical
but rather the rate of energy loss due to thermal dissipation.

79. THINK The total energy in the LC circuit is the sum of electrical energy stored in the
capacitor, and the magnetic energy stored in the inductor. Energy is conserved.

EXPRESS Let Ug be the electrical energy in the capacitor and Ug be the magnetic
energy in the inductor. The total energy is U = Ug + Ug. When Ug = 0.500Up (at time t),

then Ug = 2.00Ug and U = Ug + Up = 3.00Ue. Now, Uk is given byq?/2C, where q is
the charge on the capacitor at time t. The total energy U is given by Q*/2C, where Q is
the maximum charge on the capacitor.

ANALYZE (a) Thus,
Q?  3.00q7

Q o=
2C 2C J3.00

(b) If the capacitor is fully charged at time t = 0, then the time-dependent charge on the
capacitor is given by q=Qcosat . This implies that the condition q = 0.577Q is satisfied
when cosat = 0.557, or ot = 0.955 rad. Since w=2n/T (where T is the period of
oscillation), t=0.955T /2n=0.152T, ort/T =0.152.

=0.577Q.

LEARN The fraction of total energy that is of electrical nature at a given time t is given
by

2 2
Ve _Q@ /22C)cos D _ cos? ot = cos? 2mt .
u Q?/2C

A plot of U /U as a function of t/T is given below.

UglU

— 1T
From the plot, we see that U_. /U =1/3 att/T =0.152.

80. (a) The reactances are as follows:
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X, =2xf,L =27(400 Hz)(0.0242 H) = 60.82 Q
X =7 f,C)™" =[27(400 Hz)(1.21x10° F)]* =32.88 Q

Z = R*+ (X~ X.)* =4/(20.0Q)* +(60.82 2 -32.88Q2)* =34.36 Q2.

With £=90.0V, we have
_E_00V s on oy o | _262A
Z 3436Q NZEEEND)

Therefore, the rms potential difference across the resistor is Vg ims = Ims R = 37.0 V.

=1.85A.

(b) Across the capacitor, the rms potential difference is V¢ ms = lyms Xc = 60.9 V.
(c) Similarly, across the inductor, the rms potential difference is Vi yms = lims XL = 113 V.
(d) The average rate of energy dissipation is Payg = (Iims)°R = 68.6 W.

81. THINK Since the current lags the generator emf, the phase angle is positive and the
circuit is more inductive than capacitive.

EXPRESS Let V| be the maximum potential difference across the inductor, V¢ be the
maximum potential difference across the capacitor, and Vg be the maximum potential
difference across the resistor. The phase constant is given by

$=tan™ [VL Ve j
VR

The maximum emf is related to the current amplitude by &, =1Z, where Z is the
impedance.

ANALYZE (a) With V., =V, /2.00 and V, =V, /2.00, we find the phase constant to be

g=tan" Vi -V, /2.00 =tan*(1.00) = 45.0°.
V, /2.00

(b) The resistance is related to the impedance by R =Z cos¢. Thus,

R_ EnCOSP _ (30.0V)(cos45°)

=70.7Q.
I 300x10° A

LEARN With R and I known, the inductive and capacitive reactances are, respectively,
X, =2.00R=141Q, and X, =R=70.7 Q. Similarly, the impedance of the circuit is
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Z= ‘i—m = (30.0 V) /(300x10° A) =100 Q.

82. From Upax = 5 LI” we get 1 = 0.115 A,

83. From Eq. 31-4 we get f=1/2m\/LC = 1.84 kHz.

84. (a) With a phase constant of 45° the (net) reactance must equal the resistance in the
circuit, which means the circuit impedance becomes

Z=R\2 = R=Zh[2 =707 Q.

(b) Since f = 8000 Hz, then @y = 22(8000) rad/s. The net reactance (which, as observed,
must equal the resistance) is therefore

XL = Xc = eyl — (aC) ™ = 707 Q.
We are also told that the resonance frequency is 6000 Hz, which (by Eq. 31-4) means

1 1 1 1
C= 2 21 a1 2f21 a2 2, "
oL (2zf)L 4r°f°L 4r°(6000 Hz) L

Substituting this for C in our previous expression (for the net reactance) we obtain an
equation that can be solved for the self-inductance. Our result is L = 32.2 mH.

(c) C = ((22(6000))°L)™* = 21.9 nF.

85. THINK The current and the charge undergo sinusoidal oscillations in the LC circuit.
Energy is conserved.

EXPRESS The angular frequency oscillation is related to the capacitance C and

inductance L by @ =1/+LC. The electrical energy and magnetic energy in the circuit as
a function of time are given by

qZ QZ

=——=—_cos’(ewt +
EToc T 2C (ot +¢)
1., 1 . Q? .
U, =3 Li? =5 Lo*Q? sin®(awt + ¢) :Esmz(a)twﬁ).

The maximum value of Ug is Q*/2C, which is the total energy in the circuit, U.
Similarly, the maximum value of Ug is also Q®/2C, which can also be written as L1°/2

using | = Q.
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ANALYZE (a) Using the fact that w = 2xf, the inductance is

1 1 1

=~ == = y =6.89x107H.
@C 47" 1°C 47°(10.4x10° Hz) (340x10°F)

L

(b) The total energy may be calculated from the inductor (when the current is at
maximum):

U= % LIZ = %(6.89 x107 H)(7.20x10° A) =179 x10 3.

(c) We solve for Q from U =1Q*/C:

Q=+2CU =,[2(340x10°° F)(L79x10J) =110x10” C.

LEARN Figure 31-4 of the textbook illustrates the oscillations of electrical and magnetic
energies. The total energy U =U.+U,=Q?/2C remains constant. When Ug is
maximum, Ug is zero, and vice versa.

86. From Eqg. 31-60, we have (220 V/3.00 A)* =R*+ X? = X, =69.3Q.

87. When the switch is open, we have a series LRC circuit involving just the one
capacitor near the upper right corner. Equation 31-65 leads to

1

wyL—
decz tan ¢, =tan(-20°) =—tan 20°.

Now, when the switch is in position 1, the equivalent capacitance in the circuit is 2C. In
this case, we have

oL 1
20,C

= =tan ¢, =tan10.0°.

Finally, with the switch in position 2, the circuit is simply an LC circuit with current
amplitude
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where we use the fact that (w,C)™ >m,L in simplifying the square root (this fact is

evident from the description of the first situation, when the switch was open). We solve
for L, R and C from the three equations above, and the results are as follows:

&y ~120V ~
I,tang, (2.00A)tan(-20.0°)

(b) L= n [1_» tan ¢, _ 120V 1-2 tan10.0 _0313H.
ayl, tang, )] 2m(60.0 Hz)(2.00 A) tan (—20.0°)

@ R 1650,

(c) and
c_ , - 2.00 A
20,6, (1-tang, /tang,)  2(27)(60.0 Hz)(120 V)(1-tan10.0°/tan(—20.0°))

=1.49x107° F.

88. (a) Eqgs. 31-4 and 31-14 lead to

Q:lz IJLC =1.27x10°°C.
w
(b) We choose the phase constant in Eq. 31-12 to be ¢=-n/2, so that ip = I in Eq.
31-15). Thus, the energy in the capacitor is
q° _ Q"
=——=——(sinat)” .
= =3¢ =2

Differentiating and using the fact that 2 sin &cos 8 = sin 26, we obtain

2
du, :Q—a)sinzcot )
dt

We find the maximum value occurs whenever sin 2ot =1, which leads (with n = odd
integer) to
=t TN TE _831x10"s, 2.49x10°s, ...
20 2 4o 4

The earliest time is t =8.31x10°s.

(c) Returning to the above expression for dU. /dt with the requirement that sin2at =1,
we obtain
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2
2 IJ/LC 2
(dUEj :Q—a):( ) 1 =I—\/E=5.44><10_3J/S.
dt )., 2C 2c JLc 2\c

89. THINK In this problem, we demonstrate that in a driven RLC circuit, the energies
stored in the capacitor and the inductor stay constant; however, energy is transferred from
the driving emf device to the resistor.

EXPRESS The energy stored in the capacitor is given by U, =q*/2C. Similarly, the
energy stored in the inductor is U, =4 Li?. The rate of energy supply by the driving emf
device is P. =ig, where i=1sin(a, —¢) and ¢ =g, sinw,t. The rate with which energy
dissipates in the resistor is P, =i°R.

ANALYZE (a) Since the charge q is a periodic function of t with period T, so must be Ug.
Consequently, Ug will not be changed over one complete cycle. Actually, Ug has period
T/2, which does not alter our conclusion.

(b) Since the current i is a periodic function of t with period T, so must be Ug.

(c) The energy supplied by the emf device over one cycle is

U, = J'OT P.dt= Igmj.;sin(a)dt—@sin(a)dt)dt = IngOT [sin w,t cos ¢ —cos w,t sin g]sin(w,t)dt

T
=—lg, cos g,
5 16 COSP

where we have used

T ., T T .
IO sin(w,t)dt =5 IO sin(a,t) cos(aw,t)dt = 0.

(d) Over one cycle, the energy dissipated in the resistor is

T T . T
Up = |, Pedt = I°R] sin® (o, - g)dt =§I2R.

(e) Since &,lcosp=¢,1(Vy/&,)=¢c,1(IR/&,)=1°R, the two quantities are indeed the
same.

LEARN In solving for (c) and (d), we could have used Eqgs. 31-74 and 31-71: By doing
so, we find the energy supplied by the generator to be

1
PuoT = (1€ rms COSP)T = (E T)gml cos ¢
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where we substitute 1, =1/+2and ¢, =&, /+/2. Similarly, the energy dissipated by
the resistor is

P

avg,resistor

T = (1,Va)T = L (1R)T =(1T) IR,

The same results are obtained without any integration.
90. From Eq. 31-4, we have C = (L) = ((27£)°L) ™ = 1.59 uF.
91. Resonance occurs when the inductive reactance equals the capacitive reactance.

Reactances of a certain type add (in series) just like resistances. Thus, since the resonance
w values are the same for both circuits, we have for each circuit:

and adding these equations we find
1(1 1
+L)=—] —+—|.
o(rt)-2( 3+ 2]
Since L, =L, +L, and C;; =(C*+C;"),

1 . . -
oleg = —— = resonance in the combined circuit.
oC,

92. When switch S; is closed and the others are open, the inductor is essentially out of the
circuit and what remains is an RC circuit. The time constant is 7z = RC. When switch S,
is closed and the others are open, the capacitor is essentially out of the circuit. In this case,
what we have is an LR circuit with time constant 7z = L/R. Finally, when switch S; is
closed and the others are open, the resistor is essentially out of the circuit and what
remains is an LC circuit that oscillates with period T =2zJLC. Substituting L = R7_and

C = /R, we obtain T =27, /rCrL :

93. (a) We note that we obtain the maximum value in Eq. 31-28 when we set

= ® -t 1 400417
20, 4f 4(60)

or4.17 ms. Theresult is ¢, sin(n/2)=¢,sin(90°) =360 V.

(b) Att =4.17 ms, the current is
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I=1sin (ot —¢) =1sin (90°—(-24.3°)) = (0.164 A) cos(24.3°)
=0.1495A ~ 0.150 A.

Ohm’s law directly gives
vy =IR=(0.1495A)(200€2) =29.9V.

(c) The capacitor voltage phasor is 90° less than that of the current. Thus, at t = 4.17 ms,
we obtain

Ve =1 5in(90° — (~24.3°) —90°) X . = IX, sin(24.3°) = (0.164 A)(177€))sin(24.3°)
=11.9V.

(d) The inductor voltage phasor is 90° more than that of the current. Therefore, at t =
4.17 ms, we find

v, = 15in(90° — (—24.3°) +90°) X, =—IX_ sin(24.3°) = —(0.164 A)(86.7C2) sin(24.3°)
= -5.85V.

(e) Our results for parts (b), (c) and (d) add to give 36.0 V, the same as the answer for
part (a).



Chapter 32

1. Weuse >°_ @, =0 to obtain
Dye =—> Py, =—(-1Wh+2Wb—-3Whb+4Wb-5Wb)=+3Wh .

2. (a) The flux through the top is +(0.30 T)zr?> where r = 0.020 m. The flux through the
bottom is +0.70 mWhb as given in the problem statement. Since the net flux must be zero
then the flux through the sides must be negative and exactly cancel the total of the
previously mentioned fluxes. Thus (in magnitude) the flux though the sides is 1.1 mWh.

(b) The fact that it is negative means it is inward.

3. THINK Gauss’ law for magnetism states that the net magnetic flux through any closed
surface is zero.

EXPRESS Mathematically, Gauss’ law for magnetism is expressed as @ B-dA=0. Now,

our Gaussian surface has the shape of a right circular cylinder with two end caps and a
curved surface. Thus,

¢ B-dA=, +@, +Dq,
where @1 is the magnetic flux through the first end cap, @, is the magnetic flux through
the second end cap, and @ is the magnetic flux through the curved surface. Over the first
end the magnetic field is inward, so the flux is ®; = -25.0 £Whb. Over the second end the

magnetic field is uniform, normal to the surface, and outward, so the flux is ®, = AB =
nr’B, where A is the area of the end and r is the radius of the cylinder.

ANALYZE (a) Substituting the values given, the flux through the second end is
®,=7(0.120m)’ (1.60x10° T)=+7.24x10° Wh=+72.4 1/\Wb.

Since the three fluxes must sum to zero,
O, =—D, -D, =25.0 yWb—-72.4 Wb =—47.4 i/\ND.

Thus, the magnitude is | |=47.4 1 Wh.

1378
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(b) The minus sign in @, indicates that the flux is inward through the curved surface.

LEARN Gauss’ law for magnetism implies that magnetic monopoles do not exist; the
simplest magnetic structure is a magnetic dipole (having a north pole and a south pole).

4. From Gauss’ law for magnetism, the flux through S; is equal to that through S,, the
portion of the xz plane that lies within the cylinder. Here the normal direction of S; is +y.
Therefore,

g(8) =D, (S,) = [ BOOL dx=2[" B (L dx=2 rrg_:rerl—X de:'uOTILInB.

5. THINK Changing electric flux induces a magnetic field.

EXPRESS Consider a circle of radius r between the plates, with its center on the axis of
the capacitor. Since there is no current between the capacitor plates, the Ampere-
Maxwell’s law reduces to

@g.dz\:ﬂogo%,

where B is the magnetic field at points on the circle, and ®_ is the electric flux through

the circle. Since the B field on the circle is in the tangential direction, and
®, = AE = 7R’E, where R is the radius of the capacitor, we have

dE
27rB = e 7R?> —
Hy&y dt

or
2
B = %R” dE (r=R).
2r dt
ANALYZE Solving for dE/dt, we obtain
dE 2Br 2(2.0x107 T)(6.0x10° m) YN
dt  fp&R’ (4mx107T-m/A)(8.85x10** C*/N- mz)(3.0><10’3m)2 m-s

LEARN Outside the capacitor, the induced magnetic field decreases with increased
radial distance r, from a maximum value at the plate edge r = R.

6. The integral of the field along the indicated path is, by Eq. 32-18 and Eq. 32-19, equal
to
) (4.0 cm)(2.0 cm)

m2

=52nT-m.

) (enclosed area
0'd

=u (0.75 A
total area j o
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7. (a) Inside we have (by Eg. 32-16) B= i1, /27R* , where r,=0.0200 m,
R =0.0300 m, and the displacement current is given by Eq. 32-38 (in Sl units):

i, =&, A0, _ (8.85x107 C*/N-m?*)(3.00x10™° V/m-s) = 2.66x10™ A.
dt

Thus, we find

. -7 —14
B ,uoldl’; _ (47 10" T-m/A)(2.66x10 2 A)(0.0200 m) _118x10°° T
27R 27(0.0300 m)

(b) Outside we have (by Eq. 32-17) B = i, / 2zr, where r, = 0.0500 cm. Here we
obtain
B Holg _ (47x107T-m/A)(2.66x10 ™ A)
27, 27(0.0500 m)

=1.06x10"° T

8. (a) Application of Eqg. 32-3 along the circle referred to in the second sentence of the
problem statement (and taking the derivative of the flux expression given in that sentence)
leads to

B(271) = £o4, (0.60 V- m/s)% .

Using r = 0.0200 m (which, in any case, cancels out) and R = 0.0300 m, we obtain

_ &lpy(0.60V-m/s)  (8.85x107? C*/N-m?)(4nx10"' T-m/A)(0.60 V- m/s)
27R 2(0.0300 m)
=354x107Y T.

B

(b) For a value of r larger than R, we must note that the flux enclosed has already reached
its full amount (when r = R in the given flux expression). Referring to the equation we
wrote in our solution of part (a), this means that the final fraction (r/R) should be
replaced with unity. On the left hand side of that equation, we set r = 0.0500 m and solve.
We now find

_ &l4,(0.60V-m/s)  (8.85x107? C*/N-m?)(4nx10"' T-m/A)(0.60 V- m/s)
27r 27(0.0500 m)
=2.13x10" T,

B

9. (a) Application of Eq. 32-7 with A = ar® (and taking the derivative of the field
expression given in the problem) leads to

B(2xr) = g,uynt’ (0.00450 V/m ~S).
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For r =0.0200 m, this gives

B= %80 14,7 (0.00450 VV/m-s)

= % (8.85x107" C*/N-m?)(47x107" T-m/A)(0.0200 m)(0.00450 V/m-s)

=5.01x10%# T.
(b) With r > R, the expression above must replaced by
B(271) = £,14,7R? (0.00450 V/m-s).

Substituting r = 0.050 m and R = 0.030 m, we obtain B = 4.51 x 10%*T.

10. (a) Here, the enclosed electric flux is found by integrating

' r r 1 rs
(DE = J.O E 27rdr :t(0500 V/mS)(Zﬂ)J‘O (]_—Ej rdr :tﬂ.[z I,2 _3_Rj

with SI units understood. Then (after taking the derivative with respect to time) Eq. 32-3
leads to

B(27zr) =g u, 7 1rz—r—3
ok 5 3R |

For r = 0.0200 m and R = 0.0300 m, this gives B = 3.09 x 107%°T.

(b) The integral shown above will no longer (since now r > R) have r as the upper limit;
the upper limit is now R. Thus,

3
O, =tr LY
2 3R) 6

Consequently, Eq. 32-3 becomes
B(27zr) = %80,%7sz
which for r = 0.0500 m, yields

5 _ EoloR’ _ (8:85x10™ )(47x107)(0.030)°
12r 12(0.0500)

=1.67x10° T.

11. (a) Noting that the magnitude of the electric field (assumed uniform) is given by E =
VIid (where d = 5.0 mm), we use the result of part (a) in Sample Problem 32.01 —
“Magnetic field induced by changing electric field:”
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B:ﬂogord_E:ﬂogord_V (I’SR).
2 dt 2d dt

We also use the fact that the time derivative of sin («t) (Where o = 2nf = 2n(60) ~ 377/s
in this problem) is @ cos(at). Thus, we find the magnetic field as a function of r (for r <
R; note that this neglects “fringing” and related effects at the edges):

— IUO 80 erax w

B:ﬂo—g"rvmaxa)cos(a)t) = B,
2d 2d

where Vmax = 150 V. This grows with r until reaching its highest value at r = R = 30 mm:

 ERV, 0 (4mx107 H/m)(8.85x10°* F/m)(30x10°m)(150V)(377/s)
woad 2(5.0x10°m)
=1.9x107"T.

B

max|

(b) For r <0.03 m, we use the expression
Bmax = /JOSOeraxa)/Zd

found in part (a) (note the B oc r dependence), and for r > 0.03 m we perform a similar
calculation starting with the result of part (b) in Sample Problem 32.01 — “Magnetic
field induced by changing electric field:”

2 2 2
Bmax:(‘uogOR d_EJ :(‘UOSOR d_vj :(—‘uOEOR Vmaxa)COS(ﬁ)t)j

2r dt 2rd dt 2rd .
=—'u°g°R2Vmaxw (for r>R)
2rd
(note the B o« r! dependence — see also Egs. 32-16 and B
32-17). The plot, with SI units understood, is shown to .,
the right. L6X10°72

141072
1.2x107"2

12. From Sample Problem 32.01 — “Magnetic field .-
induced by changing electric field,” we know that B oc 1 #x10"
for r <R and B oc r* for r > R. So the maximum value of .
B occurs at r = R, and there are two possible values of r = 2.0

at which the magnetic field is 75% of Bnax. We denote o 0 oo oo oo
these two values as r; and rp, where ry <R and r, > R.

(@) Inside the capacitor, 0.75 Bmax/Bmax = /R, or ry =0.75 R = 0.75 (40 mm) =30 mm.

(b) Outside the capacitor, 0.75 Bax/Bmax = (r2/R) ™, or
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r, = RI0.75 = 4R/3 = (4/3)(40 mm) = 53 mm.

(c) From Egs. 32-15 and 32-17,

wis i (47x107 T-m/A)(6.0A)

=t Ml ~3.0x10°T.
27R " 2zR 27(0.040m)

13. Let the area plate be A and the plate separation be d. We use Eq. 32-10:

. do d d(v gA(dV
=g =g == ()

or
N _Ld L DA g5 0.
dt eA C 20x10°F

Therefore, we need to change the voltage difference across the capacitor at the rate of
7.5x10° VJs.

14. Consider an area A, normal to a uniform electric field E . The displacement current
density is uniform and normal to the area. Its magnitude is given by Jq = ig/A. For this
situation , i, = g,A(dE/dt), so
1 E E
=—¢ Ad— = god—.
A dt dt

15. THINK The displacement current is related to the changing electric flux by
iy =&, (dd /dt).

EXPRESS Let A be the area of a plate and E be the magnitude of the electric field
between the plates. The field between the plates is uniform, so E = V/d, where V is the
potential difference across the plates and d is the plate separation.

ANALYZE Thus, the displacement current is

Ao, _ d(EA)_,dE _gAdV

i - _ daE .
A

Now, gA/d is the capacitance C of a parallel-plate capacitor (not filled with a dielectric),
SO
i, =c2V.
dt

LEARN The real current charging the capacitor is
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i—99_9 cvy-cd
dt dt dt

Thus, we see that i =1, .

16. We use Eq. 32-14: i, = ¢,A(dE/dt). Note that, in this situation, A is the area over
which a changing electric field is present. In this case r > R, so A = zR% Thus,
dE i, Iy 2.0A

Vv
dt g,A enR? 12 (~2 2 7 =7.2x10" —.
A &7R* 7(8.85x10™ C*/N-m*)(0.10m) m-s

17. () Using Eq. 27-10, we find E pi_(162x107Q- m)(100A)
. (&) UsIn . 2(-10, we TIn = ==
o= P 500x10°m?

=0324V/m.

(b) The displacement current is

i, =&, doe _ gOAd—E = goAi[ﬂ'J = 8Op% = (8.85x10 *F/m)(1.62x10°Q) (2000 A/s)

dt dt datl A
=2.87x107 A,
B(duetoi i i 16
(c) The ratio of fields is ( o) _tio/2nt Iy _281X10A ) o0 1n

B(duetoi)  pgi/2zr i 100A

18. From Eq. 28-11, we have i = (¢/R) e~ ¥" since we are ignoring the self-inductance of
the capacitor. Equation 32-16 gives

B — /“loidl; .
27R

Furthermore, Eq. 25-9 yields the capacitance

co £,7(0.05 m)?

=2.318x10F,
0.003 m

so that the capacitive time constant is
r=(20.0 x 10°Q2)(2.318 x 107 F) = 4.636 x 10™*s.

Att =250 x 10°%s, the current is

120V

eVt _ -7
=500x 10°Q © =350 x107°A.
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Since i = ig (see Eqg. 32-15) and r = 0.0300 m, then (with plate radius R = 0.0500 m) we
find
B Loigt  (4nx107" T-m/A)(3.50x10™" A)(0.030 m)

7 = . =8.40x10° T.
27R 27(0.050 m)

19. (a) Equation 32-16 (with Eq. 26-5) gives, with A = 7R,

B— HolgT _ podg AT Hod g (ZR?)r 21

= = == HoJs

~ 27R?  27R? 27R? 2
- % (4nx107 T -m/A)(6.00 A/m?)(0.0200 m) = 75.4 nT.

_ Hody 7R

(b) Similarly, Eq. 32-17 gives B = 2ot
2zr 2rr

=67.9nT.

20. (a) Equation 32-16 gives B = ;O—Iszrz =222 uT.
T

(b) Equation 32-17 gives B = Holy _ 2.00 uT.
5 H
zr

21. (a) Equation 32-11 applies (though the last term is zero) but we must be careful with
igenc. It is the enclosed portion of the displacement current, and if we related this to the
displacement current density Jq, then

r r 1 r3
:J'O J, 271 dr =(4.00 A/mz)(27r)J'0 (1-r/R)rdr :87{5 r’ ——j

i
denc 3R
with Sl units understood. Now, we apply Eq. 32-17 (with iq replaced with iqenc) Or start

/uold enc
r

from scratch with Eq. 32-11, to get B = =27.9nT.

(b) The integral shown above will no longer (since now r > R) have r as the upper limit;
the upper limit is now R. Thus,

3
lgenc =g :87{% R? —;\)—RJ:gﬂRz.

Now Eg. 32-17 gives B = Holy =15.1nT.
2xr

22. (a) Eqg. 32-11 applies (though the last term is zero) but we must be careful with igenc.
It is the enclosed portion of the displacement current. Thus Eqg. 32-17 (which derives
from Eq. 32-11) becomes, with iq replaced with iq enc,
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B Holy enc _ Mo (3.00 A)(r/R)
2xr 27r

which yields (after canceling r, and setting R = 0.0300 m) B = 20.0 4T.

erelg = o. , ana we get =——=1/7. .
(b) Here ig = 3.00 A, and B ’é‘O'd 12.0 4T
wr

23. THINK The electric field between the plates in a parallel-plate capacitor is changing,
so there is a nonzero displacement current i, =¢,(d®. / dt) between the plates.

EXPRESS Let A be the area of a plate and E be the magnitude of the electric field
between the plates. The field between the plates is uniform, so E = V/d, where V is the
potential difference across the plates and d is the plate separation. The current into the
positive plate of the capacitor is

00 d )o@V _GAdEY) 0B do,
dt dt dt d dt dt dt

which is the same as the displacement current.

ANALYZE (a) Thus, at any instant the displacement current iy in the gap between the
plates equals the conduction current i in the wires: ig =i=2.0 A.

(b) The rate of change of the electric field is

4 _ 1 (godCDEj: b _ 20A =23x10%
dt  g,A dt &A  (885x107% F/m)(10m) m-s

(c) The displacement current through the indicated path is

2 2
i; =i, [dL—Z]:(z.o A) {%) ~050 A,

(d) The integral of the field around the indicated path is
§ B-dS = iy = (126 x107° H/m)(050A) =63x107" T-m.

LEARN the displacement through the dashed path is proportional to the area encircled by
the path since the displacement current is uniformly distributed over the full plate area.

24. (a) From Eq. 32-10,
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i, = &, diE = gOA‘jj—'tEgoA%[@.oxlos)—(6.ox104t)] = —£,A(6.0x10° V/m-s)
=—(8.85x10** C*/N-m*)(4.0x10°m*)(6.0x10* V/m.s)
=-2.1x10°A.

Thus, the magnitude of the displacement current is |i, | =2.1x10°A.,
(b) The negative sign in i, implies that the direction is downward.
(c) If one draws a counterclockwise circular loop s around the plates, then according to
Eq. 32-18,
§ B-ds =4, <O,

which means that B-ds <0. Thus B must be clockwise.

25. (a) We use 3( B-dS = 115l 0 1O find

2
Ho (JchI’ ):%ﬂojdr:%(l.26x10_e H/m)(ZOA/mZ)(SOX]'O_sm)

B — :uolenclosed —
2rr 2rr

=6.3x107T.
(b) From i, =J 1% =¢, %:goﬂrz (jj—ltz we get

2
e _Js _ ZOA/_TQ _23x10% .
dt & 885x10“F/m m-s

26. (a) Since i = ig (EQ. 32-15) then the portion of displacement current enclosed is

z(RI3) |
iy g =1 ——— =~ =1.33A.,
7R 9

(b) We see from Sample Problem 32.01 — “Magnetic field induced by changing electric
field” that the maximum field is at r = R and that (in the interior) the field is simply
proportional to r. Therefore,

B 300mT r

B 120mT R

max

which yields r = R/4 = (1.20 cm)/4 = 0.300 cm.
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(c) We now look for a solution in the exterior region, where the field is inversely
proportional to r (by Eq. 32-17):
B _300mT _R
12.0mT r

B

max

which yields r = 4R = 4(1.20 cm) = 4.80 cm.

27. (a) In region a of the graph,

5 _ 5
iy = &, 22| = 4, A|2E ~ (8:85x10 2 F/m)(L6m?) 45x10" N/C—6.0x10 N/C|_ 71
dt dt 4.0x10°°s |
(b) ig o« dE/dt = 0.
(c) In region c of the graph,
li, =& A€ =(8.85x10* F/m)(1.6m?) “40A0N/C|_, o0
T de N ' 2.0x10°%s T

28. (a) Figure 32-35 indicates that i = 4.0 A when t =20 ms. Thus,
Bi = uoi/272r =0.089 mT.

(b) Figure 32-35 indicates that i = 8.0 A when t = 40 ms. Thus, Bj~ 0.18 mT.
(c) Figure 32-35 indicates that i = 10 A when t > 50 ms. Thus, Bj ~0.220 mT.
(d) Equation 32-4 gives the displacement current in terms of the time-derivative of the
electric field: iy = gA(dE/dt), but using Eqg. 26-5 and Eqg. 26-10 we have E = pi/A (in
terms of the real current); therefore, iq = &p(di/dt). For 0 <t <50 ms, Fig. 32-35 indicates
that di/dt = 200 A/s. Thus,

Big = moig /272 = 6.4 x 10722 T.
(e) Asin (d), Big= sia/22r = 6.4 x 1072 T.
(f) Here di/dt = 0, so (by the reasoning in the previous step) B = 0.

(g) By the right-hand rule, the direction of B,att= 20 s is out of the page.

(h) By the right-hand rule, the direction of B, at t = 20 s is out of the page.

29. (a) At any instant the displacement current iq in the gap between the plates equals the
conduction current i in the wires. Thus imax = Igmax = 7.60 £A.
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(b) Since ig = & (ddg/dt), we have

(d%) Cgmc  760x10°A

_ amex _ ———— =859x10°V-m/s.
dt g, 885x102F/m

(c) Let the area plate be A and the plate separation be d. The displacement current is

i —c, dd, :501(AE):50AE(\L):%_A(CL_\:}

dt dt dt\d d

Now the potential difference across the capacitor is the same in magnitude as the emf of
the generator, so V = &y sin ot and dV/dt = wsy cos at. Thus, i, = (s,Awe,, / d)coswt

and iy ., = &Awe,, /d. This means

d max

_ gAws, _(885x10° F/m)n(0.180 m)’ (130rad/s)(220 V)

d —6
i 7.60x10° A

=3.39x10° m,

d max

where A = zR? was used.

(d) We use the Ampere-Maxwell law in the form §§~d§=yold , Where the path of

integration is a circle of radius r between the plates and parallel to them. Iy is the
displacement current through the area bounded by the path of integration. Since the
displacement current density is uniform between the plates, 4 = (r’/R?)ig, where iq is the
total displacement current between the plates and R is the plate radius. The field lines are

circles centered on the axis of the plates, so B is parallel to ds. The field has constant
magnitude around the circular path, so § B-ds =2nrB. Thus,

re ). i, r
ZﬁrB:ﬂo[?j'd = B:%.

The maximum magnetic field is given by

i 47x107 T-m/A)(7.6x10° A)(0.110
max:uoldma;r:(”x vy )( . _ )( m):5.16x10’12T.
27R 27(0.180m)

30. (a) The flux through Arizona is

® = —B, A=—(43x10"° T)(295,000km? )(10° m/km) = ~13x 10" Wh ,
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inward. By Gauss’ law this is equal to the negative value of the flux ®' through the rest of
the surface of the Earth. So @' = 1.3 x 10" Wh.

(b) The direction is outward.

31. The horizontal component of the Earth’s magnetic field is given by B, = Bcosg,,
where B is the magnitude of the field and ¢, is the inclination angle. Thus

go_tn 04T o5 it

 cosg, COST3

32. (a) The potential energy of the atom in association with the presence of an external
magnetic field I§ext is given by Egs. 32-31 and 32-32:

U= —Hopp * Bext = _:uorb,z Bext = _m(luB Bext .

For level E; there is no change in energy as a result of the introduction of I§ext , S0 U ocm,
=0, meaning that m,= 0 for this level.

(b) For level E;, the single level splits into a triplet (i.e., three separate ones) in the
presence of B, meaning that there are three different values of m,. The middle one in

the triplet is unshifted from the original value of E, so its m, must be equal to 0. The
other two in the triplet then correspond to m, = -1 and m, = +1, respectively.

(c) For any pair of adjacent levels in the triplet, |JAm,| = 1. Thus, the spacing is given by
AU =| A(-m, 1£;B) |=| Am, | 1£5B = 1£,B = (9.27x107* J/T)(0.50T) = 4.64x107** J.

33. THINK An electron in an atom has both orbital angular momentum and spin angular
momentum; the z components of the angular momenta are quantized.

EXPRESS The z component of the orbital angular momentum is give by

Lorb 1= m_fh
T 2n

where h is the Planck constant and m, is the orbital magnetic quantum number. The
corresponding z component of the orbital magnetic dipole moment is

How,, = —M, ity
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where g, =eh/4zm is the Bohr magneton. When placed in an external field §ext, the
energy associated with the orientation of z_, is given by

—

U =iy, Byy.

ANALYZE (a) Since m, =0, Lo, = m,h/27=0.

(b) Since m, =0, o, =-—m, g = 0.

(c) Since m, =0, then from Eq. 32-32, U = — 1151 ;Bext = —M, 18Bext = 0.

(d) Regardless of the value of m,, we find for the spin part
U=—p,,B=+u,B==%(927x10%J/T)(36mT)=+32x10]J .

(e) Now m, =-3, s0

. _mh_ (-3) (6.63x10°J-s)

orb,z —
2

=-3.16x10J.s~-3.2x10*J-s

V4 2r

(fand u,,, =—mu, =—(-3) (9.27x107 J/T)=2.78x10"" J/T~2.8x10 = J/T.

(9) The potential energy associated with the electron’s orbital magnetic moment is now
U =—ty,,B,, =—(2.78x10* J/T)(35x10°T)=-9.7x10*J.

(h) On the other hand, the potential energy associated with the electron spin, being
independent of m,, remains the same: +3.2 x 10 J.

LEARN Spin is an intrinsic angular momentum that is not associated with the motion of
the electron. Its z component is quantized, and can be written as

where m, ==£1/2 is the spin magnetic quantum number.

34. We use Eq. 32-27 to obtain

AU = —A(ﬂsyzB) = _BA,US,Z;
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where p,, =+eh/4nm, =+ u, (see Egs. 32-24 and 32-25). Thus,
AU =-B g5 —(—p15) =2u3B=2(9.27x107J/T)(0.25T) =46x107J .
35. We use Eq. 32-31: g o,z =—M, 4.
(@) For m, =1, sz = —(1) (9.3 x 102 J/T) =-9.3 x 10 % J/T.
(b) For m, = =2, sz = —(-2) (9.3 x 102*J/T) = 1.9 x 10 2 J/T.
36. Combining Eq. 32-27 with Eqgs. 32-22 and 32-23, we see that the energy difference is
AU =24,B

where 1 is the Bohr magneton (given in Eq. 32-25). With AU = 6.00 x 1072 J, we obtain
B=32.3mT.

37. (a) A sketch of the field lines (due to the presence of the bar magnet) in the vicinity of
the loop is shown below:

A
&y

south pole

(b) The primary conclusion of Section 32-9 is two-fold: G is opposite to B, and the
effect of F is to move the material toward regions of smaller | B| values. The direction

of the magnetic moment vector (of our loop) is toward the right in our sketch, or in the +x
direction.

(c) The direction of the current is clockwise (from the perspective of the bar magnet).

(d) Since the size of | B| relates to the “crowdedness” of the field lines, we see that F is
toward the right in our sketch, or in the +x direction.

38. An electric field with circular field lines is induced as the magnetic field is turned on.

Suppose the magnetic field increases linearly from zero to B in time t. According to Eq.
31-27, the magnitude of the electric field at the orbit is given by

(3-8
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where r is the radius of the orbit. The induced electric field is tangent to the orbit and
changes the speed of the electron, the change in speed being given by

av—at=Eio| & (5](5)t=ﬂ.
m, m, J\2 )\t 2m,

The average current associated with the circulating electron is i = ev/2zr and the dipole

moment is
; ev 1
=Ai=(zr?)| =— |=Zevr.
= hi=(rr) )3

The change in the dipole moment is

2,2
A,uzlerAv=1er erB _&r B.
2 2 \2m, 4m

e

39. For the measurements carried out, the largest ratio of the magnetic field to the
temperature is (0.50 T)/(10 K) = 0.050 T/K. Look at Fig. 32-14 to see if this is in the
region where the magnetization is a linear function of the ratio. It is quite close to the
origin, so we conclude that the magnetization obeys Curie’s law.
40. (a) From Fig. 32-14 we estimate a slope of B/T = 0.50 T/K when M/Max = 50%. So

B =0.50 T = (0.50 T/K)(300 K) = 1.5x10° T.
(b) Similarly, now B/T ~ 2 so B = (2)(300) = 6.0x10° T.

(c) Except for very short times and in very small volumes, these values are not attainable
in the lab.

41. THINK As defined in Eg. 32-38, magnetization is the dipole moment per unit
volume.

EXPRESS Let M be the magnetization and V' be the volume of the cylinder (V = nr®L,
where r is the radius of the cylinder and L is its length). The dipole moment is given by u
=MW

ANALYZE Substituting the values given, we obtain

p1= Mrr?L = (5:30x10° A/m)(0.500 x 10> m)’ (500 10% m) = 2.08x 102 J/T .

LEARN In a sample with N atoms, the magnetization reaches maximum, or saturation,
when all the dipoles are completely aligned, leadingtoM ,, = Nu/V.
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42. Let

which leads to
4B 4(10x107J/T)(050T)

=048K .
3k 3(138x10*J/K)

43. (a) A charge e traveling with uniform speed v around a circular path of radius r takes
time T = 2zr/v to complete one orbit, so the average current is

ev

i===——.
2rr

£
T
The magnitude of the dipole moment is this multiplied by the area of the orbit:

ev ., evr
H=——F" =—.
2rr 2

Since the magnetic force with magnitude evB is centripetal, Newton’s law yields evB =
mev?/r, so r=m,v/eB. Thus,

b))

The magnetic force —evV x B must point toward the center of the circular path. If the
magnetic field is directed out of the page (defined to be +z direction), the electron will
travel counterclockwise around the circle. Since the electron is negative, the current is in
the opposite direction, clockwise and, by the right-hand rule for dipole moments, the
dipole moment is into the page, or in the —z direction. That is, the dipole moment is
directed opposite to the magnetic field vector.

(b) We note that the charge canceled in the derivation of = K¢/B. Thus, the relation x =
Ki/B holds for a positive ion.

(c) The direction of the dipole moment is —z, opposite to the magnetic field.

(d) The magnetization is given by M = ne + z4n;, where z is the dipole moment of an
electron, ne is the electron concentration, 4 is the dipole moment of an ion, and n; is the
ion concentration. Since ne = n;, we may write n for both concentrations. We substitute
= K¢/B and z; = K;i/B to obtain

_ 5.3x10%m™®

. +K;) (6.2x10™3+7.6x107) =3.1x10° A/m.
12T
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44, Section 32-10 explains the terms used in this problem and the connection between M
and . The graph in Fig. 32-39 gives a slope of

M/M,_, 015

= =0.75 K/T .
B,./T 020T/K
Thus we can write
A 075km 28T 30,
y7 . 2.00 K

45. THINK According to statistical mechanics, the probability of a magnetic dipole
moment placed in an external magnetic field having energy U is P=e™'*", where k is
the Boltzmann’s constant.

EXPRESS The orientation energy of a dipole in a magnetic field is given by U =—z- B.
So if a dipole is parallel with B, then U =—uB; however, U =+uB if the alignment is
anti-parallel. We use the notation P(x)=e*®’*" for the probability of a dipole that is

parallel to B, and P(—u)=e*“®'¥" for the probability of a dipole that is anti-parallel to

the field. The magnetization may be thought of as a “weighted average” in terms of these
probabilities.

ANALYZE (a) With N atoms per unit volume, we find the magnetization to be

V- NP ()= NpP(-p) _ Npu(e —e o) = Nytanh(ﬂ—Bj
P(u)+P(—u) e e/ T e BT |

(b) For B < KT (thatis, 1B /KT < 1) we have e*®*T ~ 1 + /B/KT, s0

. tanh(ﬂ_BJN Nut (1+4B/KT) (1 1B/KT)  N2B
T KT )T T @ BT s (- BIKT) KT

(c) For 4B > KT we have tanh(xB/kT) 1,50 M = Nytanh(i—EJz N .

(d) One can easily plot the tanh function using, for instance, a graphical calculator. One
can then note the resemblance between such a plot and Fig. 32-14. By adjusting the
parameters used in one’s plot, the curve in Fig. 32-14 can reliably be fit with a tanh
function.

LEARN As can be seen from Fig. 32-14, the magnetization M is linear in B/KT in the
regime B/T < 1. On the other hand, when B >T, M approaches a constant.
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46. From Eq. 29-37 (see also Eq. 29-36) we write the torque as ¢ = —uBy sind where the
minus indicates that the torque opposes the angular displacement 6 (which we will
assume is small and in radians). The small angle approximation leads to
r~-uB,@ ,which is an indicator for simple harmonic motion (see section 16-5,

especially Eqg. 16-22). Comparing with Eq. 16-23, we then find the period of oscillation
IS

I
1B,

T=2n

where 1 is the rotational inertial that we asked to solve for. Since the frequency is given as
0.312 Hz, then the period is T = 1/f = 1/(0.312 Hz) = 3.21 s. Similarly, By, = 18.0 x 10°T
and 1 = 6.80 x 10* J/T. The above relation then yields | = 3.19 x 10~ kg-m?.

47. THINK In this problem, we model the Earth’s magnetic dipole moment with a
magnetized iron sphere.

EXPRESS If the magnetization of the sphere is saturated, the total dipole moment is zsotal
= Ny, where N is the number of iron atoms in the sphere and  is the dipole moment of an
iron atom. We wish to find the radius of an iron sphere with N iron atoms. The mass of
such a sphere is Nm, where m is the mass of an iron atom. It is also given by 4npR*/3,
where p is the density of iron and R is the radius of the sphere. Thus Nm = 47pR*/3 and

N = AmpR® |
3m

We substitute this into zaoa = Ny to obtain

3 m Y3
g = 2PRH g [ SMhgn |
3m Amtpu

ANALYZE (a) The mass of an iron atom is
m=56u=(56u)(166x10 kg/u)=9.30x10"°kg.

Therefore, the radius of the iron sphere is

[ 3(9:30x10 kg)(80x1023/T) |°

R= =18x10°m.
47(14x10° kg/m?)(21x107J/T) it




1397

4 3:4_7'5(

(b) The volume of the sphere is V, =3 R 182 x10° m)3 =253x10"°m® and the

volume of the Earth is

Ve = 4_3“ R: = 4—;(6.37x106m)3 =1.08x10"m’,

so the fraction of the Earth’s volume that is occupied by the sphere is

V., 253x10°m’ )
V. " Logx10m - 20"

LEARN The finding that V, <V, makes it unlikely that our simple model of a
magnetized iron sphere could explain the origin of Earth’s magnetization.

48. (a) The number of iron atoms in the iron bar is

(7.9g9/cm®)(50cm)(10cm?)

= =43x10%.
(55847 g/mol) /(6.022 x 10**/mol ) g

Thus the dipole moment of the iron bar is

p=(21x107J/T)(43x10%) =89A .

(b) 7= Bsin90°=(8.9A - m)(1.57 T)=13N - m.

49. THINK Exchange coupling is a quantum phenomenon in which electron spins of one
atom interact with those of neighboring atoms.

EXPRESS The field of a dipole along its axis is given by Eq. 30-29:

B=fo £

21 2

where u is the dipole moment and z is the distance from the dipole. The energy of a
magnetic dipole 7 in a magnetic field B is given by

U=—-z-B=—uBcosgy,
where ¢ is the angle between the dipole moment and the field.

ANALYZE (a) Thus, the magnitude of the magnitude field at a distance 10 nm away
from the atom is
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. (4nx107 T-m/A)(15x10% JT)

_ -6
21(10x10” m) =300,

(b) The energy required to turn it end-for-end (from ¢=0°to ¢ = 180°) is
AU =248 = 2(15x 10 J/T)(30x10°T) =9.0x10 I =5.6x10 V.

(c) The mean kinetic energy of translation at room temperature is about 0.04 eV. Thus, if
dipole-dipole interactions were responsible for aligning dipoles, collisions would easily
randomize the directions of the moments and they would not remain aligned.

LEARN The persistent alignment of magnetic dipole moments despite the randomizing
tendency due to thermal agitation is what gives the ferromagnetic materials their
permanent magnetism.
50. (a) Equation 29-36 gives

T = g B Sin@= (2700 A/m)(0.06 m)z(0.003 m)?(0.035 T)sin(68°) = 1.49 x 10™* N-m.

We have used the fact that the volume of a cylinder is its length times its (circular) cross
sectional area.

(b) Using Eq. 29-38, we have
AU = — 104 B(COS & — c0s &)

—(2700 A/m)(0.06 m)7(0.003m)?(0.035T)[cos(34°) — cos(68°)]
= —72.9 1.

51. The saturation magnetization corresponds to complete alignment of all atomic dipoles
and is given by Mgy = un, where n is the number of atoms per unit volume and g is the
magnetic dipole moment of an atom. The number of nickel atoms per unit volume is n =
olm, where pis the density of nickel. The mass of a single nickel atom is calculated using
m = M/Na, where M is the atomic mass of nickel and Na is Avogadro’s constant. Thus,

8.90g/cm®)(6.02x10* atoms/mol
n=PNa_ ( 9/ )< / ) =9.126x10% atoms/cm’
M 58.71g/mol

=9.126x10% atoms/m°.

The dipole moment of a single atom of nickel is

My 470x10°A/m

= B 10P =515x10"A-m’.

/’l:
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52. The Curie temperature for iron is 770°C. If x is the depth at which the temperature
has this value, then 10°C + (30°C/km)x = 770°C. Therefore,

wo 1°C-10°C oy
30°C/km

53. (a) The magnitude of the toroidal field is given by Bo = zonip, where n is the number
of turns per unit length of toroid and i, is the current required to produce the field (in the
absence of the ferromagnetic material). We use the average radius (rag = 5.5 cm) to
calculate n:

N 400 turns

2mr. 27(5.5x1072m)

avg

=1.16x10° turns/m .

Thus,
i _ B 020x10° T

== _ —_—014A.
Un  (Arx107°'T-m/A)(1.16x10° / m)

(b) If @ is the magnetic flux through the secondary coil, then the magnitude of the emf
induced in that coil is e = N(d®/dt) and the current in the secondary is is = &R, where R is
the resistance of the coil. Thus,

()

* (R dt’

The charge that passes through the secondary when the primary current is turned on is

S Nedd N N®
a=[i, dt:EIEdt:EL@ do ="

The magnetic field through the secondary coil has magnitude B = By + By = 801B,,
where By is the field of the magnetic dipoles in the magnetic material. The total field is
perpendicular to the plane of the secondary coil, so the magnetic flux is ® = AB, where A

is the area of the Rowland ring (the field is inside the ring, not in the region between the
ring and coil). If r is the radius of the ring’s cross section, then A = ar?. Thus,

® =801nr’B, .
The radius r is (6.0 cm — 5.0 cm)/2 = 0.50 cm and

®=8017(0.50x102 m)?(0.20x10°T)=1.26x10"° Wb .

50(L.26x10° Wh)
8.0Q

Consequently, q = =7.9x10" C.
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54. (a) At a distance r from the center of the Earth, the magnitude of the magnetic field is

given by
B:foﬂ3 JL+3sin? 4, ,

r

where y is the Earth’s dipole moment and A, is the magnetic latitude. The ratio of the
field magnitudes for two different distances at the same latitude is

3
BZ r-1

B n

With B; being the value at the surface and B, being half of By, we set r; equal to the
radius R of the Earth and r, equal to R. + h, where h is altitude at which B is half its
value at the surface. Thus,

Taking the cube root of both sides and solving for h, we get
h=(2"*-1)R, =(2"*-1)(6370km)=1.66x10°km.

(b) For maximum B, we set sin Ay, = 1.00. Also, r = 6370 km — 2900 km = 3470 km. Thus,

_ Mol —— (47107 T-m/A) (8.00x10” A-m*) a
Bmax—#a/l+3sm A, = PRy 1+3(1.00)

=3.83x10T.

(c) The angle between the magnetic axis and the rotational axis of the Earth is 11.5°, so
m = 90.0° — 11.5° = 78.5° at Earth’s geographic north pole. Also r = R, = 6370 km. Thus,

47x107" T-m/A) (8.0x10% J/T \/1+3sin278.5°
B=—0 [1+3sin’ 2, _ A / 3)
Az Re 47r(6.37><106m)
=6.11x107°T.

(d) ¢, =tan*(2tan785°) =84.2° .

(e) A plausible explanation to the discrepancy between the calculated and measured
values of the Earth’s magnetic field is that the formulas we used are based on dipole
approximation, which does not accurately represent the Earth’s actual magnetic field
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distribution on or near its surface. (Incidentally, the dipole approximation becomes more
reliable when we calculate the Earth’s magnetic field far from its center.)

55. (a) From 2 =iA=izR’ we get

22
jo M BOAOIT _oa ip0a .
R m(6.37x10° m)

(b) Yes, because far away from the Earth the fields of both the Earth itself and the current
loop are dipole fields. If these two dipoles cancel each other out, then the net field will be
zero.

(c) No, because the field of the current loop is not that of a magnetic dipole in the region
close to the loop.

56. (a) The period of rotation is T = 27/ w, and in this time all the charge passes any fixed
point near the ring. The average current is i = g/T = qa/2x and the magnitude of the
magnetic dipole moment is
. Qo , 1 )
pElR=T T =30

(b) We curl the fingers of our right hand in the direction of rotation. Since the charge is
positive, the thumb points in the direction of the dipole moment. It is the same as the
direction of the angular momentum vector of the ring.

57. The interacting potential energy between the magnetic dipole of the compass and the
Earth’s magnetic field is

U =—7B, =—uB, cosb,
where @is the angle between z and B, . For small angle 6,

2
U(6)=—uB, cos ~ —yBe[l—%J = %Kez — 1B,

where x = 1B,. Conservation of energy for the compass then gives

2
1 I a9 +1K’02 = const.
2 \dt 2

This is to be compared with the following expression for the mechanical energy of a

spring-mass system:
2
1m(d—xj +1kx2 = const.
2 \dt 2
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which yields @ = ,/k/m. So by analogy, in our case

Y JE _ \/uBe _ [,
| | ml?/12
which leads to

2,2 (0.050kg)(4.0x102 m)’(45rad/s)’
_mi%? _ (0050kg)(40107 m) (45rad)s) —84x107J/T .
12B, 12(16x10° T)

58. (a) Equation 30-22 gives B = 2%" =222 uT .
v/

R2
(b) Equation 30-19 (or Eg. 30-6) gives B = éu—;'r =167 uT .

(c) As in part (b), we obtain a field of B = Zﬂ_;lr =227 uT.

d) Equation 32-16 (with Eq. 32-15) gives B =£2%' _1 95 ,;T.
(d) Eq q g > R iz
7w

(e) As in part (d), we get B = ;"i =3.75 uT.
T

R?
(f) Equation 32-17 yields B = 22.7 uT.

(g) Because the displacement current in the gap is spread over a larger cross-sectional
area, values of B within that area are relatively small. Outside that cross-sectional area,
the two values of B are identical.

59. (a) We use the result of part (a) in Sample Problem 32.01 — “Magnetic field induced
by changing electric field:”
B=’u°Tg°rd—E (forr<R),

where r =0.80R , and

dE_d(V) 1d
d

E_gV)_1dyer)=_Yogur
dt  dt ddt'® d

Here Vo = 100 V. Thus,
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B(t) = (ﬂo;'orj(_\;_?e—t/z __ ﬂozgzo;/or ol

(4nx107 T-m/A)(885x10** 1S)(100V)(0.80)(16 mm)

o 2(12 107 5)(50mm) °

=—(12x107T)e ™2™,

-t/12ms

The magnitude is|B(t)|:(1.2><10‘13T)e“/12m5.

(b) At time t = 37, B(t) = —(1.2 x 10 2 T)e 37" = 5.9 x 10 ® T, with a magnitude |B(t)|=
59x 10 T.

60. (a) From Eq. 32-1, we have
(@), =(Ps),, =0.0070Wh+(0.40T)(mr* ) =9.2x10° Wh.

Thus, the magnetic of the magnetic flux is 9.2 mWhb.
(b) The flux is inward.

61. THINK The Earth’s magnetic field at a given latitude has both horizontal and vertical
components.

EXPRESS Let B, and B, be the horizontal and vertical components of the Earth’s
magnetic field, respectively. Since By and B, are perpendicular to each other, the

Pythagorean theorem leads to B = JBE +B? . The tangent of the inclination angle is given
by tang =B, /B,.

ANALYZE (a) Substituting the expression given in the problem statement, we have

2 2
B=.B+B’ :\/(fo/é coskm) +(§°/é sinxmj :f‘)‘: \/coszxm+4sin2km
r

r mr
= ot </1+33in27»
4rmr? m’

where cos? Am + sin’ Am =1 was used.

2nr®)sin &
(b) The inclination ¢ is related to An, by tang = B _ (ﬂoﬂ/ ) m

B, (ou/4mr®)cosh,

=2tan,,.
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LEARN At the magnetic equator (A, = 0), & = 0°, and the field is

upu (4mx107 T-m/A) (8.00x10% A-m?)

B - - =3.10x10"T.
4mr 47(6.37x10°m)
62. (a) At the magnetic equator (An = 0), the field is
47107 T-m/A) (8.00x10% A-m?
B =X :( A ):3.1O><10’5T.

3

4z 47(6.37x10°m)

(b) 4 =tan* (2 tan A;) = tan* (0) = 0°.

() At A = 60.0°, we find

B=—92[1+3sin? 4, =(3.10x10°)y/1+3sin?60.0° =5.59x10° T.

Arr
(d)¢ = tan* (2 tan 60.0°) = 73.9°.

(e) At the north magnetic pole (A, = 90.0°), we obtain

B=%,/1+3sin2 A, =(3.10x10°°) /1+3(1.00)" =6.20x10°°T.

(f) ¢ =tan* (2 tan 90.0°) = 90.0°.

63. Let R be the radius of a capacitor plate and r be the distance from axis of the capacitor.
For points with r <R, the magnitude of the magnetic field is given by

B — /uogor d_E
2 dt’
and forr >R, itis
B — /uO‘C"OR2 d_E
2r dt

The maximum magnetic field occurs at points for which r = R, and its value is given by
either of the formulas above:
_ Mo RAE
e 2 dt’

There are two values of r for which B = Bpax/2: 0ne less than R and one greater.
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(@) To find the one that is less than R, we solve

Mol dE _ p48,R dE
2 dt 4 dt

for r. The result is r = R/2 = (55.0 mm)/2 = 27.5 mm.

(b) To find the one that is greater than R, we solve

Ho&oR’ dE _ pp6,RdE
2r dt 4 dt

for r. The result is r = 2R = 2(55.0 mm) = 110 mm.

64. (a) Again from Fig. 32-14, for M/Mnyax = 50% we have B/T = 0.50. So T = B/0.50 =
2/0.50 =4 K.

(b) Now B/T =2.0,50 T =2/2.0 = 1 K.

65. Let the area of each circular plate be A and that of the central circular section be a.
Then

A 7R?
a

Thus, from Eqgs. 32-14 and 32-15 the total discharge current is given by i =iy = 4(2.0 A)
=8.0A.

66. Ignoring points where the determination of the slope is problematic, we find the
interval of largest |AI§ |/ At is 6 us <t <7 us. During that time, we have, from Eq. 32-14,

iy = gOA% =(8.85x107 C*/N-m?)(2.0m?)(2.0x10° V/m) =3.5x10° A,

67. (a) Using Eg. 32-13 but noting that the capacitor is being discharged, we have

dEl__ T __ _0A _ = -8.8x10° V/m's .
dt A (88510 C?/N-m?)(0.0080 m)

(b) Assuming a perfectly uniform field, even so near to an edge (which is consistent with
the fact that fringing is neglected in Section 32-4), we follow part (a) of Sample Problem
32.02 — “Treating a changing electric field as a displacement current” and relate the
(absolute value of the) line integral to the portion of displacement current enclosed:
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‘cﬁ I§.d§‘ = Loly enc = Mo (V\Cj ij =5.9x10"" Wh/m.

68. (a) Using Eq. 32-31, we find
Horbz = —34ts = —2.78 x 10 JIT,

That these are acceptable units for magnetic moment is seen from Eq. 32-32 or Eq. 32-27;
they are equivalent to A-m?.

(b) Similarly, for m, = —4we obtain g, = 3.71 x 102 J/T.

69. (a) Since the field lines of a bar magnet point toward its South pole, then the B
arrows in one’s sketch should point generally toward the left and also towards the central
axis.

(b) The sign of B-dA for every dA on the side of the paper cylinder is negative.

(c) No, because Gauss’ law for magnetism applies to an enclosed surface only. In fact, if
we include the top and bottom of the cylinder to form an enclosed surface S then

ff B-dA=0 will be valid, as the flux through the open end of the cylinder near the
magnet is positive.

70. (a) From Eq. 21-3,
160x107"° C)(8.99 x10° N-m?/C?
g-_° 2:( <107 C)(B 99 : / ):5.3><10“N/C.
ane,r (52x10™ m)

oy #,  (47x107 T-myA)(L4x10JT)

~20x107T.
2z 1° 27(5.2x10™" m)3

(b) We use Eq. 29-28: B=

_24
(¢) From Eq. 32-30, Hon _ SVATM, _ ptp _ 927x10 “IT_ g6 10
78 78 p, 14x107°J/T

71. (a) A sketch of the field lines (due to the presence of the bar magnet) in the vicinity of
the loop is shown below:

ooy

south pole
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(b) For paramagnetic materials, the dipole moment 7z is in the same direction as B . From
the above figure, z points in the —x direction.

(c) Form the right-hand rule, since z points in the —x direction, the current flows
counterclockwise, from the perspective of the bar magnet.

(d) The effect of F is to move the material toward regions of larger ‘E‘ values. Since the

size of ‘Ig‘ relates to the “crowdedness” of the field lines, we see that F is toward the left,
or —X.

72. (@) Inside the gap of the capacitor, B; = uolg r1/27zR2 (Eq. 32-16); outside the gap the
magnetic field is B, = wiq /271, (EQ. 32-17). Consequently, B, = Blelrl r,=16.7 nT.

(b) The displacement current is iy = 27zBlR2/,uor1 =5.00 mA.

73. THINK The z component of the orbital angular momentum is give
by L,,, =m,h/2z, where h is the Planck constant and m, is the orbital magnetic

quantum number.

EXPRESS The “limit” for m, is 3. This means that the allowed values of m, are:
0,+1,+£2,and £3.

ANALYZE (a) The number of different m,’s is 2(3) + 1 = 7. Since Lo, «cm,, there are
a total of seven different values of Lo ;.

(b) Similarly, since uom,, «<m,, there are also a total of seven different values of o 2.
(c) The greatest allowed value of Loy is given by |m, |naxh/27 = 3h/27.

(d) Similar to part (c), since om,; = —m, ug, the greatest allowed value of o is given by
| m( |maxﬂB = 3eh/4Tcme.

(e) From Egs. 32-23 and 32-29 the z component of the net angular momentum of the
electron is given by
m,h mh
+—=.
2t 2¢;

I-net,z = I-orb,z + Ls,z =

For the maximum value of Lnet, let m, = [m,]max =3 and m, = 3. Thus

I-netz :(34-})1:@
© max 2)2n  2m
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(f) Since the maximum value of Lyet; is given by [mj]maxh/21 with [m;]max = 3.5 (see the
last part above), the number of allowed values for the z component of Ly iS given by

LEARN As we shall see in Chapter 40, the allowed values of m, range from —¢ to + /¢,
where ( is called the orbital quantum number.

74. The definition of displacement current is Eq. 32-10, and the formula of greatest
convenience here is Eq. 32-17:

 2zrB  27(0.0300m)(2.00x10°T)
' = dy 47x107 T-m/A

=0.300 A..

75. (a) The complete set of values are

{-4,-3,-2,-1,0, +1, +2, +3, +4} = nine values in all.
(b) The maximum value is 4z = 3.71 x 1072 J/T.
(c) Multiplying our result for part (b) by 0.250 T gives U = +9.27 x 107*J.
(d) Similarly, for the lower limit, U = =9.27 x 10724J.

76. (a) The z component of the orbital magnetic dipole moment is
Horw,, =M, Hg
where g, =eh/4zm=9.27x10>*J/T is the Bohr magneton. For m, =3, we have
How, =—M, 115 — (3)(9.27x107 J/T) = -2.78x10 J/T.
(b) Similarly, for m, =—4, the result is

Lo, =—M, 1ty — (—4)(9.27x10* J/T) =3.71x10 2 J/T.
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1. Since AA< A, we find Af is equal to

_cAZ_ (3.0x10° m/s)(0.0100x10°° m)

A(£)~ L s =7.49x10° Hz.
)2 (632.8x10™° m)
2. (a) The frequency of the radiation is
8
_C__ 30xd0mis o g0t

C
X (LOx10°)(64 x10° m)
(b) The period of the radiation is

1l 55— 3min32s

f 47x10°Hz

3. (a) From Fig. 33-2 we find the smaller wavelength in question to be about 515 nm.

(b) Similarly, the larger wavelength is approximately 610 nm.

(c) From Fig. 33-2 the wavelength at which the eye is most sensitive is about 555 nm.

(d) Using the result in (c), we have

¢ _3.00x10°m/s

— =5.41x10"Hz .
A 555 nm

(e) The period is T = 1/f = (5.41 x 10" Hz) ' = 1.85 x 10 s,

4. In air, light travels at roughly ¢ = 3.0 x 10% m/s. Therefore, for t = 1.0 ns, we have a

distance of
d=ct=(30x10° m/s)(1.0x107° s) =0.30 m.

5. THINK The frequency of oscillation of the current in the LC circuit of the generator is
f =1/27+vLC, where C is the capacitance and L is the inductance. This frequency is the

same as the frequency of an electromagnetic wave.

EXPRESS If f is the frequency and A is the wavelength of an electromagnetic wave, then

fA =c. Thus,

1409
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=C.
21+ LC
ANALYZE The solution for L is
A2 (550x10°° m)’

== - =500x10""H.
An°CC”  4n®(17x1072F)(2.998 x 10° m/s)

This is exceedingly small.

LEARN The frequency is

8
_30A0MS g 45 g0 1z

oG
A 550x10°m

The EM wave is in the visible spectrum.

6. The emitted wavelength is

z:%: 277¢/LC = 27(2.99810° m/s)\/(0.253><10‘6 H)(25.0x10 “F) =474 m.

7. The intensity is the average of the Poynting vector:

2 (30x10° m/s)(LOx 107 T)
|=savg=CBm=( <10 m/s)10 : ) 120w
2y 2(126x10°H/ m)

8. The intensity of the signal at Proxima Centauri is

6
1= 10x10°W S =48x10° W/,

4nr® 4 (43ly)(9.46x10° m/ly)

9. If P is the power and At is the time interval of one pulse, then the energy in a pulse is
E = PAt = (100x 10" W)(10x10° s) =10x 10°J.
10. (a) Setting v = ¢ in the wave relation kv = & = 24f, we find f = 1.91 x 10® Hz.

(0) Erms = EnA2 = Bn/cy2 = 18.2 V/m.

(©) 1 = (Exms)*/C1o = 0.878 W/m?.
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11. (a) The amplitude of the magnetic field is

B, =En__ 20VIM 67 10°T~6.7x10°T.
c 2.998x10°m/s

(b) Since the E-wave oscillates in the z direction and travels in the x direction, we have B
=B, =0. So, the oscillation of the magnetic field is parallel to the y axis.

(c) The direction (+x) of the electromagnetic wave propagation is determined by ExB. If
the electric field points in +z, then the magnetic field must point in the —y direction.

With Sl units understood, we may write

B, =B, COS{ﬂ'XlOlS (t—

= (6.7x10°*) cos {10%@ —%ﬂ

12. (a) The amplitude of the magnetic field in the wave is

zﬂ _ 2.0cos [lol%(t _ X/c)]

C 3.0x108

B, = En__S00VIM 67 1007,
c 2998x10°m/s

(b) The intensity is the average of the Poynting vector:

E (500V/m)’

| = m__

Sag = = - : =331x107°W/m?,
21,¢  2(4mx107 T-m/A)(2.998x10° m/s)

13. (@) We use | = EZ /2 uqc to calculate Ep:

E, =21, =[2(4n 107 T-m/ A)(140 x 10° W/ m*)(2.998 x 10° m/s)
=103x10°V/m.

(b) The magnetic field amplitude is therefore

4
g - En_ 103x10 s\”m —343x10°T.
c 2998x10°m/s
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14. From the equation immediately preceding Eq. 33-12, we see that the maximum value
of oB/at is B, . We can relate By, to the intensity:

B _ E. _ NEAg

m k)

C C

and relate the intensity to the power P (and distance r) using Eq. 33-27. Finally, we
relate o to wavelength A using @ = kc = 2zc/A. Putting all this together, we obtain

[@j ﬂ/z"op 27C _ 3 44x10° Ts.
Ot ) ex 4rzc Ar

15. (a) The average rate of energy flow per unit area, or intensity, is related to the electric
field amplitude En by | =EZ/2u,c, S0

E, = V241,01 = [2(47x107 H/m)(2.998 x10° m/s) (10 x 10° W/ m?)
=87x102V/m.

(b) The amplitude of the magnetic field is given by

2
g, = En  87X10°VIM _,q 1007
c 2998x10°m/s

(c) At a distance r from the transmitter, the intensity is | =P/2nrr?, where P is the power
of the transmitter over the hemisphere having a surface area 2zr?. Thus

P=27r"1 =22(10x10°m)" (10x10°W/m?)=6.3x10°W.
16. (a) The power received is

7(300 m)? /4

P, =(1.0x10™ W) -=1.4x102W.
4m(6.37x10°m)
(b) The power of the source would be
-12
P=4z7r2| =47z[(2.2x10“ ly)(9.46x10" m/Iy)T 1010 "W ~ |=1.1x10° W.
47(6.37x10°m)

17. (a) The magnetic field amplitude of the wave is
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=En__20VIM ___gg 007,
cC 2998x10°m/s

(b) The intensity is

2 2
|=En o (20v/m) ~53x10° W/ m?,
2, 2(4nx107 T-m/A)(2.998x10° m/s)

(c) The power of the source is
P =4nr’l,,, =4n(10m)’ (5.3x10° W/m*) =6.7 W.

18. Equation 33-27 suggests that the slope in an intensity versus inverse-square-distance
graph (1 plotted versus r ) is P/4z. We estimate the slope to be about 20 (in SI units),
which means the power is P = 47(30) ~ 2.5 x10° W.

19. THINK The plasma completely reflects all the energy incident on it, so the radiation
pressure is given by p, = 2l/c, where | is the intensity.

EXPRESS The intensity is | = P/A, where P is the power and A is the area intercepted by
the radiation.

ANALYZE Thus, the radiation pressure is

ol 2P 2(1.5x10°W)

pr=—=—=

= 7
c Ac (1.00x10°m?) (2.998><108m/5)_1'0><10 Pa.

LEARN In the case of total absorption, the radiation pressure would be p, =1/c, a
factor of 2 smaller than the case of total reflection.

20. (a) The radiation pressure produces a force equal to

3 2 6,\2
F.=p, @Rj):&) (nRj)=n<1'4X102\;\g;nxl)og6r:ZX1o m) =6.0x10°N.

(b) The gravitational pull of the Sun on the Earth is

GM.M, (6:67x107*N-m*/kg®) (2.0x10*kg) (5.98x10*kg)

F =
o dg (1.5x10m)’

=3.6x10%N,
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which is much greater than F,.

21. Since the surface is perfectly absorbing, the radiation pressure is given by p, = I/c,
where | is the intensity. Since the bulb radiates uniformly in all directions, the intensity a
distance r from it is given by | = P/4zr?, where P is the power of the bulb. Thus

P S00W

p=—p = . =59x107° Pa.
Anrc  4m(1.5 m) (2.998x10°m/s)
22. The radiation pressure is
2
o, =1 = LOW/M 45 10%pa

c  2998x10°m/s

23. (a) The upward force supplied by radiation pressure in this case (Eq. 33-32) must be
equal to the magnitude of the pull of gravity (mg). For a sphere, the “projected” area
(which is a factor in Eq. 33-32) is that of a circle A = zr” (not the entire surface area of
the sphere) and the volume (needed because the mass is given by the density multiplied
by the volume: m = pV) is V = 4r®/3. Finally, the intensity is related to the power P of
the light source and another area factor 4zR? given by Eq. 33-27. In this way, with
p=1.9x10* kg/m?, equating the forces leads to

Arrig

P:47zRZC(p )%:4.68xloﬂw.

r

(b) Any chance disturbance could move the sphere from being directly above the source,
and then the two force vectors would no longer be along the same axis.

24. We require Fgry = Fr Or
mM, 2IA

G -
d2 C

and solve for the area A:

A_ CGMM, _ (667 x10™ N-m?®/kg?)(1500 kg)(1.99 x 10% kg)(2.998x10° m/s)
21d2 2(140x10° W/ m?*)(150x 10" m)®

=95x10°> m* =095 km’.

25. THINK In this problem we relate radiation pressure to energy density in the incident
beam.
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EXPRESS Let f be the fraction of the incident beam intensity that is reflected. The
fraction absorbed is 1 —f. The reflected portion exerts a radiation pressure of

2f1,
r = C
and the absorbed portion exerts a radiation pressure of

1- 1)l
o - =Dy
c
where |y is the incident intensity. The factor 2 enters the first expression because the

momentum of the reflected portion is reversed. The total radiation pressure is the sum of
the two contributions:

Do = P, + P, = 21, +@A- )1, _ @+ )l .

c c
ANALYZE To relate the intensity and energy density, we consider a tube with length 7
and cross-sectional area A, lying with its axis along the propagation direction of an
electromagnetic wave. The electromagnetic energy inside is U =uA/, where u is the
energy density. All this energy passes through the end in time t = ¢/ c, so the intensity is

_U _uAlc _
At Al

Thus u = I/c. The intensity and energy density are positive, regardless of the propagation
direction. For the partially reflected and partially absorbed wave, the intensity just outside
the surface is

I = |0+f|0:(1+f)|0,

where the first term is associated with the incident beam and the second is associated with
the reflected beam. Consequently, the energy density is

| _ @+ )1,

C C

the same as radiation pressure.

LEARN In the case of total reflection, f = 1, and p,,, = p, =2l,/c. On the other hand,
the energy density is u=1/c=2I,/c, which is the same as p,,,. Similarly, for total
absorption, f = 0, p,, =p,=1,/C, and since |1 =1,, we have u=1/c=1,/c, which
again is the same as p,.,-

26. The mass of the cylinder is m= p(zD*/4)H, where D is the diameter of the cylinder.
Since it is in equilibrium
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2 2
Fnetzmg_FranD gp_[ﬂ-D ](£]=0
4 4 C

We solve for H:

21 ( 2P j 1
H: =
gcp (nD?*/4)gcp
2(4.60W)

" [(2.60x10° m)?/4](9.8m/s?)(3.0x10° m/s)(1.20x10°kg/m®)
—4.91x107 m.

27. THINK Electromagnetic waves travel at speed of light, and carry both linear
momentum and energy.

EXPRESS The speed of the electromagnetic wave is ¢ = Af, where A is the wavelength
and f is the frequency of the wave. The angular frequency is o =2=f, and the angular
wave number is k =27/ 4. The magnetic field amplitude is related to the electric field
amplitude by B, = E_ /c. The intensity of the wave is given by Eq. 33-26:

I:iErzms: :

=3
Cthy 2C44,

ANALYZE (a) With A = 3.0 m, the frequency of the wave is

c 2998x10° m/s

= =10x10° Hz.
A 30m

f =

(b) From the value of f obtained in (a), we find the angular frequency to be
o =2nf =21(1.0x10° Hz) =6.3x10° rad/s.
(c) The corresponding angular wave number is

k_Z_Tc_ 27
A 3.0m

=21rad/m.

(d) With En, = 300 V/m, the magnetic field amplitude is

B, =tm—_ 300VIM___, 4 0¢T.
c 2.998x10°m/s



1417

(e) Since E is in the positive y direction, B must be in the positive z direction so that
their cross product E x B points in the positive x direction (the direction of propagation).

(f) The intensity of the wave is

E2 (300V/m)?

= = =119W/m? ~1.2x10°>W/m?Z.
2u,c  2(47 %107 H/m)(2.998x10° m/s)

(9) Since the sheet is perfectly absorbing, the rate per unit area with which momentum is
delivered to it is I/c, so

dp _ 1A _ (119 W/m*)(2.0 m?)

=80x10" N.
dt ¢ 2998x10° m/s 8

(h) The radiation pressure is

_dp/dt 80x107 N

_40x10” Pa,
=" 20 m? 8

LEARN The energy density is given by

2
=t o HOWMT 4 60x107 Jimd
c 2.998x10° m/s

which is the same as the radiation pressure p;.
28. (a) Assuming complete absorption, the radiation pressure is

3 2
1 _14x10 \BN/m — 4.7x10° N/m?.
c 30x10°m/s

(b) We compare values by setting up a ratio:

P, _47x10°N/m’

= =4.7x107",
p, 10x10°N/m?

29. THINK The laser beam carries both energy and momentum. The total momentum of
the spaceship and light is conserved.

EXPRESS If the beam carries energy U away from the spaceship, then it also carries
momentum p = U/c away. By momentum conservation, this is the magnitude of the
momentum acquired by the spaceship. If P is the power of the laser, then the energy
carried away in time tis U = Pt.
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ANALYZE We note that there are 86400 seconds in a day. Thus, p = Pt/c and, if m is
mass of the spaceship, its speed is

3
v=£=ﬂ= (10510 W)(8640085) =19x10° m/s.
m mc (1L5x10° kg)(2.998 x10° m/s)

LEARN As expected, the speed of the spaceship is proportional to the power of the laser
beam.

30. (a) We note that the cross-section area of the beam is zd %4, where d is the diameter
of the spot (d = 2.004). The beam intensity is

P 500x10°W

l=——= — =397 x10° W/ n?.
md* /4 7 (200)(633x10°m) /4

(b) The radiation pressure is

9 2
o 1 _dradtwimt oo

"¢ 2998x10°m/s

(c) In computing the corresponding force, we can use the power and intensity to eliminate
the area (mentioned in part (a)). We obtain

=167x10"" N.

. =[ﬂ2j r:(p) r=(5.oox10-3w)(13.2pa)

|4 n 3.97x10° W/ m?

(d) The acceleration of the sphere is

F F 6(167 x10™ N)

aAa=—= =
m p(rd®/6) 7w(5.00x10° kg/m*)[(2.00)(633x10° m)]*
=314x10° m/s°.

31. We shall assume that the Sun is far enough from the particle to act as an isotropic
point source of light.

(@) The forces that act on the dust particle are the radially outward radiation force Ifr and

the radially inward (toward the Sun) gravitational force Ifg . Using Egs. 33-32 and 33-27,
the radiation force can be written as
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F:ﬂz P, 7z'R2=PSR2
2 ¢ 4r’c

"¢ dar

where R is the radius of the particle, and A= zR? is the cross-sectional area. On the other
hand, the gravitational force on the particle is given by Newton’s law of gravitation (Eq.
13-1):

_ GM,m _GM,p(4zR*/3) 4zGM,pR®

F
r? r? 3r?

g

where m= p(47R*/3) is the mass of the particle. When the two forces balance, the
particle travels in a straight path. The condition that F, = F, implies

PR’  47GM,pR’
4ric 3r?

which can be solved to give

Ao 3R _ 3(3.9x10% W)
167cpGM,  167(3x10° m/s)(3.5x10° kg/m®)(6.67x10™" m*/kg-s*)(1.99x10% kg)
=1.7x107" m.

(b) Since F, varies with R® and F, varies with R?, if the radius R is larger, then F>F,
and the path will be curved toward the Sun (like path 3).

32. After passing through the first polarizer the initial intensity lp reduces by a factor of
1/2. After passing through the second one it is further reduced by a factor of cos® (7 —
6, — &) = cos® (6, + &). Finally, after passing through the third one it is again reduced by
a factor of cos” (z— 6 — 6s) = cos” (6 + 6). Therefore,

|
! =% cos® (6, +6,)cos? (6, +6,) :% cos?®(50°+50°) cos? (50°+50°)

1y
=4.5%x10™.
Thus, 0.045% of the light’s initial intensity is transmitted.

33. THINK Unpolarized light becomes polarized when it is sent through a polarizing
sheet. In this problem, three polarizing sheets are involved, we work through the system
sheet by sheet, applying either the one-half rule or the cosine-squared rule.

EXPRESS Let Iy be the intensity of the unpolarized light that is incident on the first
polarizing sheet. The transmitted intensity is, by one-half rule, 1, =3 1,, and the direction

of polarization of the transmitted light is 6, = 40° counterclockwise from the y axis in the
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diagram. For the second sheet (and the third one as well), we apply the cosine-squared
rule:

I, =1 cos’6,

where 6, is the angle between the direction of polarization that is incident on that sheet
and the polarizing direction of the sheet.

ANALYZE The polarizing direction of the second sheet is & = 20° clockwise from the y
axis, so 8, =40° + 20° = 60°. The transmitted intensity is

l, = Ilcosz60°:% I, cos’60°,

and the direction of polarization of the transmitted light is 20° clockwise from the y axis.
The polarizing direction of the third sheet is & = 40° counterclockwise from the y axis.
Consequently, the angle between the direction of polarization of the light incident on that
sheet and the polarizing direction of the sheet is 20° + 40° = 60°. The transmitted
intensity is

I, = I2c05260°=% l,c0s*60°=3.1x1071,.

Thus, 3.1% of the light’s initial intensity is transmitted.

LEARN When two polarizing sheets are crossed (& =90°), no light passes through and
the transmitted intensity is zero.

34. In this case, we replace I cos® 70° by 11, as the intensity of the light after passing
through the first polarizer. Therefore,

I :% I, cos?(90°—70°) = %(43 W/ m?)(cos” 20°) =19 W/ m?.

35. The angle between the direction of polarization of the light incident on the first
polarizing sheet and the polarizing direction of that sheet is ¢, = 70°. If Iy is the intensity
of the incident light, then the intensity of the light transmitted through the first sheet is

I, =1,c0s* 8, = (43 W/ m*) cos’ 70°=503 W/ m?.

The direction of polarization of the transmitted light makes an angle of 70° with the
vertical and an angle of & = 20° with the horizontal. & is the angle it makes with the
polarizing direction of the second polarizing sheet. Consequently, the transmitted
intensity is

|, =1, 008" 0, = (503 W/ m?) cos” 20°= 4.4 W/ m’.
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36. (a) The fraction of light that is transmitted by the glasses is

I E2 E2 E2
—f=—f2= > v 2 = > v 2 =016
|, EZ EZ+E’ EZ+(23E)

(b) Since now the horizontal component of E will pass through the glasses,

I 2 2
I 2Eh _ 2(2.3EV) o
|, E2+E’ EZ+(23E)

37. THINK A polarizing sheet can change the direction of polarization of the incident
beam since it allows only the component that is parallel to its polarization direction to
pass.

EXPRESS The 90° rotation of the polarization direction cannot be done with a single
sheet. If a sheet is placed with its polarizing direction at an angle of 90° to the direction
of polarization of the incident radiation, no radiation is transmitted.

ANALYZE (a) The 90° rotation of the polarization direction can be done with two sheets.
We place the first sheet with its polarizing direction at some angle 6, between 0 and 90°,
to the direction of polarization of the incident radiation. Place the second sheet with its
polarizing direction at 90° to the polarization direction of the incident radiation. The
transmitted radiation is then polarized at 90° to the incident polarization direction. The
intensity is

| =1,cos” &cos®(90°—0) = 1, cos” Fsin® 9,

where | is the incident radiation. If #is not 0 or 90°, the transmitted intensity is not zero.

(b) Consider n sheets, with the polarizing direction of the first sheet making an angle of
= 90°/n relative to the direction of polarization of the incident radiation. The polarizing
direction of each successive sheet is rotated 90°/n in the same sense from the polarizing
direction of the previous sheet. The transmitted radiation is polarized, with its direction of
polarization making an angle of 90° with the direction of polarization of the incident
radiation. The intensity is

| =1,cos™"(90°/n).

We want the smallest integer value of n for which this is greater than 0.601,. We start
with n = 2 and calculate cos®"(90°/n). If the result is greater than 0.60, we have obtained
the solution. If it is less, increase n by 1 and try again. We repeat this process, increasing
n by 1 each time, until we have a value for which cos*"(90°/n) is greater than 0.60. The
first one will be n = 5.

LEARN The intensities associated withn =1 to 5 are:



1422 CHAPTER 33

I, =1,c0s*(90°) =0

|, =1,c0s"(45°) = 1,/4=0.25I,
., =1,c0s®(30°) =0.4221,

., =1,co0s*(22.5°) =0.531l,

I, =1,c0s"(18°) = 0.605I,

38. We note the points at which the curve is zero (6 = 0° and 90°) in Fig. 33-43. We
infer that sheet 2 is perpendicular to one of the other sheets at & = 0°, and that it is
perpendicular to the other of the other sheets when & = 90°. Without loss of generality,
we choose &, = 0°, 65 =90°. Now, when & = 30°, it will be A@= 30° relative to sheet 1
and A@”=60° relative to sheet 3. Therefore,

I
I—f = %cos2 (AO)cos*(A0") =9.4%.

39. (a) Since the incident light is unpolarized, half the intensity is transmitted and half is
absorbed. Thus the transmitted intensity is | = 5.0 mW/m?. The intensity and the electric

field amplitude are related by 1 = EZ /2,¢, so

E,, =+/21,C1 =/2(4nx107 H/m)(3.00x10° m/s)(5.0x10° W/ m?)
=19 V/m.

(b) The radiation pressure is p; = la/c, where 1, is the absorbed intensity. Thus

-3 2
p, = 200 WM™ _ 17 54 pg
300x10° m/s

40. We note the points at which the curve is zero (& = 60° and 140°) in Fig. 33-44. We
infer that sheet 2 is perpendicular to one of the other sheets at & = 60°, and that it is
perpendicular to the other of the other sheets when & = 140°. Without loss of generality,
we choose 6 = 150°, & = 50°. Now, when & = 90°, it will be |A#| = 60° relative to
sheet 1 and |[AO’| = 40° relative to sheet 3. Therefore,

If _1 2 2 n _
T —Ecos (AB)cos“(AO')=T7.3%.

41. As the polarized beam of intensity Iy passes the first polarizer, its intensity is reduced
to 1,cos” 6. After passing through the second polarizer, which makes a 90° angle with
the first filter, the intensity is

I =(l,cos’0)sin*O=1,/10
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which implies sin? @ cos? 8= 1/10, or sin@ cosd = sin26/2 =1/+/10 . This leads to §= 70°
or 20°.

42. We examine the point where the graph reaches zero: 6, = 160°. Since the polarizers
must be “crossed” for the intensity to vanish, then 6 = 160° — 90° = 70° Now we
consider the case 6, = 90° (which is hard to judge from the graph). Since 6, is still equal
to 70° then the angle between the polarizers is now A8 =20° Accounting for the
“automatic” reduction (by a factor of one-half) whenever unpolarized light passes
through any polarizing sheet, then our result is

1
5C0s*(A6) = 0.442 ~ 44%.

43. Let lp be the intensity of the incident beam and f be the fraction that is polarized. Thus,
the intensity of the polarized portion is f lp. After transmission, this portion contributes
flo cos® @ to the intensity of the transmitted beam. Here @ is the angle between the
direction of polarization of the radiation and the polarizing direction of the filter. The
intensity of the unpolarized portion of the incident beam is (1-f )lo and after transmission,
this portion contributes (1 — f)lo/2 to the transmitted intensity. Consequently, the
transmitted intensity is

| = flocoszé’+%(1— f)1,.

As the filter is rotated, cos® @ varies from a minimum of 0 to a maximum of 1, so the
transmitted intensity varies from a minimum of

Imin

1
:E(l_ f)lo
to a maximum of

1 1
Lo = Flo 2 (0= 1)l = = @+ D)l

The ratio of Imay to Imin iS

| f
Imin 1- .

Setting the ratio equal to 5.0 and solving for f, we get f = 0.67.

44. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain

[ :% I, cos® 6, cos®(90°-4,).
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Using trig identities, we rewrite this as II_ = %sinz(zez).
0

(a) Therefore we find 6 = 3sin ™ 1/0.40 = 19.6°.

(b) Since the first expression we wrote is symmetric under the exchange & <> 90° — &,
we see that the angle's complement, 70.4°, is also a solution.

45. Note that the normal to the refracting surface is vertical in the diagram. The angle of
refraction is & = 90° and the angle of incidence is given by tan & = L/D, where D is the
height of the tank and L is its width. Thus

6, =tan™ sztanl L10m | _ 55310
D 0.850 m

The law of refraction yields

Non sind, _ (100) sin90° _126
' %sing, sin52.31° ’

where the index of refraction of air was taken to be unity.

46. (a) For the angles of incidence and refraction to be equal, the graph in Fig. 33-47(b)
would consist of a “y = X” line at 45° in the plot. Instead, the curve for material 1 falls
under such a “y = X” line, which tells us that all refraction angles are less than incident

ones. With & < @, Snell’s law implies n, > n;.

(b) Using the same argument as in (a), the value of n, for material 2 is also greater than that
of water (n,).

(c) It’s easiest to examine the topmost point of each curve. With 6 =90° and 6, = ¥2(90°),
and with n, = 1.33 (Table 33-1), we find n; = 1.9 from Snell’s law.

(d) Similarly, with 8, = 90° and 6, = %(90°), we obtain n, = 1.4.
47. The law of refraction states
n,sin@, =n,sing,.

We take medium 1 to be the vacuum, with n; = 1 and & = 32.0°. Medium 2 is the glass,
with & =21.0°. We solve for ny:
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n, =n, 3% _ (100) (S'_” 320 ) ~148
sind, sin21.0°

48. (a) For the angles of incidence and refraction to be equal, the graph in Fig. 33-48(b)
would consist of a “y = X” line at 45° in the plot. Instead, the curve for material 1 falls
under such a “y = x” line, which tells us that all refraction angles are less than incident
ones. With & < @, Snell’s law implies n, > n;.

(b) Using the same argument as in (a), the value of n, for material 2 is also greater than that
of water (n,).

(c) It’s easiest to examine the right end-point of each curve. With 6, = 90° and &, =
%4(90°), and with n; = 1.33 (Table 33-1) we find, from Snell’s law, n, = 1.4 for material 1.

(d) Similarly, with €, = 90° and 6, = %2(90°), we obtain n, =1.9.

49. The angle of incidence for the light ray on mirror B is 90° — 6. So the outgoing ray r'
makes an angle 90° — (90° — &) = @ with the vertical direction, and is antiparallel to the
incoming one. The angle between i and r' is therefore 180°.

50. (@) From n;siné; = n,sind, and n,siné, = nssiné, we find n;sind; = nssinés. This has
a simple implication: that 8, =6 when n; = n;. Since we are given &, = 40° in Fig. 33-
50(a), then we look for a point in Fig. 33-50(b) where 6 = 40°. This seems to occur at n;
= 1.6, so we infer that n, = 1.6.

(b) Our first step in our solution to part (a) shows that information concerning n;
disappears (cancels) in the manipulation. Thus, we cannot tell; we need more
information.
(c) From 1.6sin70° = 2.4sin&; we obtain 6= 39°.
51. (a) Approximating n = 1 for air, we have

nsing, =@)sing, = 56.9°=6,
and with the more accurate value for n,;, in Table 33-1, we obtain 56.8°.

(b) Equation 33-44 leads to

n,sin@, =n,sind, =n,sin@d, =n,siné,
so that

0, =sin™ (&sin elJ =35.3°,
r-]4
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52. (a) A simple implication of Snell’s law is that & = €, when n; = n,. Since the angle of
incidence is shown in Fig. 33-52(a) to be 30°, we look for a point in Fig. 33-52(b) where
6, = 30°. This seems to occur when n, = 1.7. By inference, then, n, = 1.7.

(b) From 1.7sin(60°) = 2.4sin( &) we get 6 = 38°.

53. THINK The angle with which the light beam emerges from the triangular prism
depends on the index of refraction of the prism.

EXPRESS Consider diagram (a) shown next. The incident angle is & and the angle of
refraction is é. Since 6, +a =90° and ¢+ 2« =180°, we have

1
6, =90°—a=90°—§(180°—¢)=§.

ANALYZE Next, examine diagram (b) and consider the triangle formed by the two
normals and the ray in the interior. One can show that i is given by
w=20-6,).

Upon substituting @#/2 for &, we obtain y =2(0—¢/2) which yields 0= (¢+vy)/2.
Thus, using the law of refraction, we find the index of refraction of the prism to be

ne sind _sin;(¢+y)
sing, sinlg

LEARN The angle wis called the deviation angle. Physically, it represents the total angle
through which the beam has turned while passing through the prism. This angle is
minimum when the beam passes through the prism “symmetrically,” as it does in this
case. Knowing the value of ¢ and y allows us to determine the value of n for the prism
material.

54. (a) Snell’s law gives Ngir SIN(50°) = Nyp SIN Gy, and Nyir SIN(50°) = Ny, Sin G Where we
use subscripts b and r for the blue and red light rays. Using the common approximation
for air’s index (N = 1.0) we find the two angles of refraction to be 30.176° and 30.507°.
Therefore, A@=0.33°.
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(b) Both of the refracted rays emerge from the other side with the same angle (50°) with
which they were incident on the first side (generally speaking, light comes into a block at
the same angle that it emerges with from the opposite parallel side). There is thus no
difference (the difference is 0°) and thus there is no dispersion in this case.

55. THINK Light is refracted at the air—water interface. To calculate the length of the
shadow of the pole, we first calculate the angle of refraction using the Snell’s law.

EXPRESS Consider a ray that grazes the top of the pole, as shown in the diagram below.

0§ —5

air

I
I
I
I
I
water :
I
I
I

6,

shadow v

Here 6, = 90° — 8 = 90° -55° = 35°, 7, =050 m, and ¢, =150 m. The length of the
shadow isd =x + L.

ANALYZE The distance x is given by

X = /¢, tan @, = (050 m) tan35°=0.35 m.

According to the law of refraction, n; sin & = n; sin 6. We take n; = 1 and n, = 1.33
(from Table 33-1). Then,

g, = sin 3% | _gint (S'”?’E"O ]: 25550,
n, 133

L=/,tand, = (150 m)tan25.55°=0.72 m.

L is given by

Thus, the length of the shadow isd =0.35m + 0.72m =1.07 m.

LEARN If the pole were empty with no water, then &, = 6, and the length of the shadow

would be
d'=(,tang +(,tanf, =((,+(,)tan 6,

by simple geometric consideration.
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56. (a) We use subscripts b and r for the blue and red light rays. Snell’s law gives

. 1
Gop = slnl(1 313 sm(70°)) = 44.403°

_ 1.
& = sml(l 331 S|n(70°)) =44.911°

for the refraction angles at the first surface (where the normal axis is vertical). These rays
strike the second surface (where A is) at complementary angles to those just calculated
(since the normal axis is horizontal for the second surface). Taking this into
consideration, we again use Snell’s law to calculate the second refractions (with which
the light re-enters the air):

Gsp = Sin1[1.343sin(90°— &,)] = 73.636°
& = sin"'[1.331sin(90°- &,,)] = 70.497°

which differ by 3.1° (thus giving a rainbow of angular width 3.1°).

(b) Both of the refracted rays emerge from the bottom side with the same angle (70°) with
which they were incident on the topside (the occurrence of an intermediate reflection
[from side 2] does not alter this overall fact: light comes into the block at the same angle
that it emerges with from the opposite parallel side). There is thus no difference (the
difference is 0°) and thus there is no rainbow in this case.

57. Reference to Fig. 33-24 may help in the visualization of why there appears to be a
“circle of light” (consider revolving that picture about a vertical axis). The depth and the
radius of that circle (which is from point a to point f in that figure) is related to the
tangent of the angle of incidence. Thus, the diameter D of the circle in question is

w

D=2htand, =2htan|sin™ ER 2(80.0cm) tan | sin™ (i) =182cm.
n 133
. . (1) . (1
58. The critical angle is 8, =sin (—j =sin (—j =34°.
n 18

59. THINK Total internal reflection happens when the angle of incidence exceeds a
critical angle such that Snell’s law gives sing, >1.

EXPRESS When light reaches the interfaces between two materials with indices of
refraction n; and ny, if n; > ny, and the incident angle exceeds a critical value given by

0, =sin™ (&j
nl
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then total internal reflection will occur.

In our case, the incident light ray is perpendicular to the face ab. Thus, no refraction
occurs at the surface ab, so the angle of incidence at surface ac is & = 90° — ¢, as shown
in the figure below.

ANALYZE (a) For total internal reflection at the second surface, ng sin (90° — ¢) must be
greater than n,. Here ng is the index of refraction for the glass and n, is the index of
refraction for air. Since sin (90° — ¢) = cos ¢, we want the largest value of ¢ for which ng
COS ¢ > n,. Recall that cos ¢ decreases as ¢ increases from zero. When ¢ has the largest
value for which total internal reflection occurs, then ng cos ¢ = n,, or

¢=cos™ (n—J =cos™ (i) —489°.
n, 152

The index of refraction for air is taken to be unity.

(b) We now replace the air with water. If n,, = 1.33 is the index of refraction for water,
then the largest value of ¢ for which total internal reflection occurs is

$=cos™ [n—W] =cos™ (1—3’3) =29.0°.
n, 152

LEARN Total internal reflection cannot occur if the incident light is in the medium with
lower index of refraction. With 6, =sin™(n,/n,), we see that the larger the ratio n,/n,,

the larger the value of ..

60. (a) The condition (in Eq. 33-44) required in the critical angle calculation is & = 90°.
Thus (with & = €., which we don’t compute here),

n,sin@, =n,sin@, =n,sino,
leads to &, = @=sin ! ny/n; = 54.3°.

(b) Yes. Reducing € leads to a reduction of & so that it becomes less than the critical
angle; therefore, there will be some transmission of light into material 3.



1430 CHAPTER 33

(c) We note that the complement of the angle of refraction (in material 2) is the critical
angle. Thus,

2
: n
n,sin@=n,cosé, =n, 1—(—3J = /N> —n’
n2

leading to #=51.1°.

(d) No. Reducing @ leads to an increase of the angle with which the light strikes the
interface between materials 2 and 3, so it becomes greater than the critical angle.
Therefore, there will be no transmission of light into material 3.

61. (a) We note that the complement of the angle of refraction (in material 2) is the

critical angle. Thus,

2
: n
n sin@=n,cosé, =n, 1—(—3j =/nZ —n?
n2

leading to 6= 26.8°.

(b) Increasing € leads to a decrease of the angle with which the light strikes the interface
between materials 2 and 3, so it becomes greater than the critical angle; therefore, there
will be some transmission of light into material 3.

62. (a) Reference to Fig. 33-24 may help in the visualization of why there appears to be a
“circle of light” (consider revolving that picture about a vertical axis). The depth and the
radius of that circle (which is from point a to point f in that figure) is related to the
tangent of the angle of incidence. The diameter of the circle in question is given by d =
2h tan @.. For water n = 1.33, so Eq. 33-47 gives sin 6. = 1/1.33, or &, = 48.75°. Thus,

d =2htan g, =2(2.00 m)(tan 48.75°) =4.56 m.

(b) The diameter d of the circle will increase if the fish descends (increasing h).

63. (a) A ray diagram is shown below.
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Let &, be the angle of incidence and & be the angle of refraction at the first surface. Let
& be the angle of incidence at the second surface. The angle of refraction there is 6, =
90°. The law of refraction, applied to the second surface, yields n sin & =sin 6, = 1. As
shown in the diagram, the normals to the surfaces at P and Q are perpendicular to each
other. The interior angles of the triangle formed by the ray and the two normals must sum
to 180°, so & =90° — & and

sin@, =sin(90°-6, ) = cos @, = ,/1-sin* ,.

According to the law of refraction, applied at Q, ny/1—sin’ @, =1 The law of refraction,
applied to point P, yields sin &, = nsin &, so sin & = (sin &)/n and

P2
0 /1_ sin 261 _1
n
Squaring both sides and solving for n, we get
n=.1+sin’4,.

(b) The greatest possible value of sin® & is 1, so the greatest possible value of n is
N = V2 =141

(c) For a given value of n, if the angle of incidence at the first surface is greater than &,
the angle of refraction there is greater than & and the angle of incidence at the second
face is less than & (= 90° — ). That is, it is less than the critical angle for total internal
reflection, so light leaves the second surface and emerges into the air.

(d) If the angle of incidence at the first surface is less than &, the angle of refraction there
is less than & and the angle of incidence at the second surface is greater than . This is
greater than the critical angle for total internal reflection, so all the light is reflected at Q.

64. (a) We refer to the entry point for the original incident ray as point A (which we take
to be on the left side of the prism, as in Fig. 33-53), the prism vertex as point B, and the
point where the interior ray strikes the right surface of the prism as point C. The angle
between line AB and the interior ray is £ (the complement of the angle of refraction at the
first surface), and the angle between the line BC and the interior ray is « (the complement
of its angle of incidence when it strikes the second surface). When the incident ray is at
the minimum angle for which light is able to exit the prism, the light exits along the
second face. That is, the angle of refraction at the second face is 90°, and the angle of
incidence there for the interior ray is the critical angle for total internal reflection. Let &
be the angle of incidence for the original incident ray and & be the angle of refraction at
the first face, and let & be the angle of incidence at the second face. The law of refraction,
applied to point C, yields n sin & =1, so
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sin &5 =1/n=1/1.60 = 0.625 = 65 = 38.68".
The interior angles of the triangle ABC must sum to 180°, so « + £ = 120°. Now, a =
90° — 6 =51.32°, s0 f=120° — 51.32° = 69.68°. Thus, & =90° — g =21.32°. The law of
refraction, applied to point A, yields

sin &, =nsin 6 =1.60 sin 21.32° = 0.5817.
Thus 6, = 35.6°.
(b) We apply the law of refraction to point C. Since the angle of refraction there is the
same as the angle of incidence at A, n sin & =sin .. Now, a + = 120°, a = 90° — &,
and g =90° — 6, as before. This means & + & = 60°. Thus, the law of refraction leads to

sing, =nsin(60°—6,) = sing, =nsin60°cosd, —ncos60°sin 6,
where the trigonometric identity
sin(A —B) =sin A cos B —cos Asin B

is used. Next, we apply the law of refraction to point A:

sing, =nsing, = siné, =(1/n)sing,

which yields cosé, = /1-sin’ @, = \/1—(1/ n?) sin® @,. Thus,

sing, = nsin60°\/1—(1/n)2 sin? 6, —c0s60°sin 6,

1+ c0s60°)sin @, = sin60°,/n? —sin® 4, .
( )siné, N )

Squaring both sides and solving for sin 6, we obtain

or

§in@, = nsin60 _ 160sin60 _ 080

\/ (1+c0s60°)° +sin? 60° \/(1+ cos 60°)° +sin? 60°

and &, =53.1°.

65. When examining Fig. 33-61, it is important to note that the angle (measured from the
central axis) for the light ray in air, 6, is not the angle for the ray in the glass core, which
we denote @' . The law of refraction leads to
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sin@' = 1sin 0
nl

assuming n,, =1. The angle of incidence for the light ray striking the coating is the
complement of @', which we denote as & comp, and recall that

sing,,, =cosd’ =[1-sin* &',

In the critical case, &comp must equal &; specified by Eq. 33-47. Therefore,

n—Z_smHgomp J1-sin’ @ = f — —sm@

which leads to the result: sin@=./n/ —n>. With n; = 1.58 and n, = 1.53, we obtain
6 =sin"" (1587 ~1537) = 23.2°.

66. (a) We note that the upper-right corner is at an angle (measured from the point where
the light enters, and measured relative to a normal axis established at that point the
normal at that point would be horizontal in Fig. 33-62) is at tan *(2/3) = 33.7°. The angle
of refraction is given by

Nair SiN 40° = 1.56 sin &

which yields 6, = 24.33° if we use the common approximation n,; = 1.0, and yields & =
24.34° if we use the more accurate value for n,, found in Table 33-1. The value is less
than 33.7°, which means that the light goes to side 3.

(b) The ray strikes a point on side 3, which is 0.643 cm below that upper-right corner, and
then (using the fact that the angle is symmetrical upon reflection) strikes the top surface
(side 2) at a point 1.42 cm to the left of that corner. Since 1.42 cm is certainly less than 3
cm we have a self-consistency check to the effect that the ray does indeed strike side 2 as
its second reflection (if we had gotten 3.42 cm instead of 1.42 cm, then the situation
would be quite different).

(c) The normal axes for sides 1 and 3 are both horizontal, so the angle of incidence (in the
plastic) at side 3 is the same as the angle of refraction was at side 1. Thus,

1.56 sin 24.3° = nyi; Sin Gy = G =40°.

(d) It strikes the top surface (side 2) at an angle (measured from the normal axis there,
which in this case would be a vertical axis) of 90° — 6, = 66°, which is much greater than
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the critical angle for total internal reflection (sin~*(n.: /1.56 ) = 39.99). Therefore, no
refraction occurs when the light strikes side 2.

(e) In this case, we have
Nair SIN 70° = 1.56 sin 6,

which yields 6, = 37.04° if we use the common approximation n,; = 1.0, and yields & =
37.05° if we use the more accurate value for n,; found in Table 33-1. This is greater than
the 33.7° mentioned above (regarding the upper-right corner), so the ray strikes side 2
instead of side 3.

(f) After bouncing from side 2 (at a point fairly close to that corner) it goes to side 3.

(9) When it bounced from side 2, its angle of incidence (because the normal axis for side
2 is orthogonal to that for side 1) is 90° — & = 53°, which is much greater than the critical
angle for total internal reflection (which, again, is sin"*(ng; /1.56 ) = 39.9%). Therefore, no
refraction occurs when the light strikes side 2.

(h) For the same reasons implicit in the calculation of part (c), the refracted ray emerges
from side 3 with the same angle (70°) that it entered side 1. We see that the occurrence of
an intermediate reflection (from side 2) does not alter this overall fact: light comes into
the block at the same angle that it emerges with from the opposite parallel side.

67. () In the notation of this problem, Eq. 33-47 becomes

which yields n3 = 1.39 for €, = ¢=60°.

(b) Applying Eq. 33-44 to the interface between material 1 and material 2, we have
n,sin30°=n, sin@

which yields 6= 28.1°.

(c) Decreasing & will increase ¢ and thus cause the ray to strike the interface (between

materials 2 and 3) at an angle larger than .. Therefore, no transmission of light into

material 3 can occur.

68. (a) We use Eq. 33-49: 9, =tan'n, = tan*(L33) =531°.

(b) Yes, since n,, depends on the wavelength of the light.
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69. THINK A reflected wave will be fully polarized if it strikes the boundary at the
Brewster angle.

EXPRESS The angle of incidence for which reflected light is fully polarized is given by
Eq. 33-48:
s = tanl(&j
nl

where n; is the index of refraction for the medium of incidence and n; is the index of
refraction for the second medium. The angle & is called the Brewster angle.

ANALYZE With n; =1.33 and n, = 1.53, we obtain
0, =tan*(n,/n,) =tan™"(1.53/1.33) = 49.0°.

LEARN In general, reflected light is partially polarized, having components both parallel
and perpendicular to the plane of incidence. However, it can be completely polarized
when incident at the Brewster angle.

70. Since the layers are parallel, the angle of refraction regarding the first surface is the
same as the angle of incidence regarding the second surface (as is suggested by the

notation in Fig. 33-64). We recall that as part of the derivation of Eq. 33-49 (Brewster’s
angle), the refracted angle is the complement of the incident angle:

6, =(6,). =90°-6,.

We apply Eq. 33-49 to both refractions, setting up a product:

[&] [”—] = (tan6,, ) (tan 6, ;) = 2= (tan 6)(tan 6))
n 2 n
Now, since & is the complement of &, we have

1
ang,

tang, =tan(6,), = "
Therefore, the product of tangents cancel and we obtain nz/n; = 1. Consequently, the third
medium is air: n3 = 1.0.

71. THINK All electromagnetic waves, including visible light, travel at the same speed ¢
in vacuum.

EXPRESS The time for light to travel a distance d in free space is t = d/c, where c is the
speed of light (3.00 x 10% m/s).
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ANALYZE (a) We take d to be 150 km = 150 x 10° m. Then,

3
tzgzwzwoﬂo—“s,
c 300x10°m/s

(b) At full moon, the Moon and Sun are on opposite sides of Earth, so the distance
traveled by the light is

d= (1.5 x 10® km) + 2 (3.8 x 10° km) = 1.51 x 10°® km = 1.51 x 10** m.

The time taken by light to travel this distance is

11
=4 1SDA0TM 540 g4 min,
c 3.00x10°m/s

(c) We take d to be 2(1.3 x 10° km) = 2.6 x 10* m. Then,

d_ 26x10%m

- :m:8.7x103s:2.4 h.
. X

t=

(d) We take d to be 6500 ly and the speed of light to be 1.00 ly/y. Then,

_d_ 000l _gengy,
c 100ly/y

The explosion took place in the year 1054 — 6500 = —5446 or 5446 B.C.

LEARN Since the speed c is constant, the travel time is proportional to the distance. The
radio signals at 150 km away reach you almost instantly.

72. (a) The expression Ey = Ej, sin(kx — at) fits the requirement “at point P ... [it] is
decreasing with time” if we imagine P is just to the right (x > 0) of the coordinate origin
(but at a value of x less than 72k = A/4 which is where there would be a maximum, at t =
0). Itis important to bear in mind, in this description, that the wave is moving to the right.
Specifically, x, = (1/k)sin"*(1/4) so that E, = (1/4) En, att =0, there. Also, E, =0
with our choice of expression for E, . Therefore, part (a) is answered simply by solving
for xp. Since k = 2zf/c we find

Xp = _° sin (1) =30.1nm.
2r f 4

(b) If we proceed to the right on the x axis (still studying this “snapshot” of the wave at t
= 0) we find another point where E, = 0 at a distance of one-half wavelength from the
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A :%clf and is

previous point where Ey = 0. Thus (since A = c/f ) the next point is at x :%

consequently a distance c/2f —xp =345 nm to the right of P.

73. THINK The electric and magnetic components of the electromagnetic waves are
always in phase, perpendicular to each other, and perpendicular to the direction of
propagation of the wave.

EXPRESS The electric and magnetic fields can be written as sinusoidal functions of

position and time as:
E =E,sin(kx+at), B=DB,sin(kx+at)

where E,, and B, are the amplitudes of the fields, and @ and k, are the angular frequency

and angular wave number of the wave, respectively. The two amplitudes are related by
Eq. 33-4: E,,/B,, =c, where c is the speed of the wave.

ANALYZE (a) From kc = @ where k = 1.00 x 10° m™, we obtain » = 3.00 x 10" rad/s.
The magnetic field amplitude is, from Eq. 33-5,

B = Em/c = (5.00 V/m)/c = 1.67 x 108 T.

From the argument of the sinusoidal fucntion for E, we see that the direction of
propagation is in the —z direction. Since E = Ey], and that B is perpendicular to E and

E x B,, we conclude that the only non-zero component of B is By, so that we have
B, =(1.67x107° T)sin[(1.00x10° / m)z +(3.00x10" /s)t].
(b) The wavelength is A = 2n/k = 6.28 x 10°° m.

(c) The period is T = 2n/@w=2.09 x 10 ™.

(d) The intensity is

2
1=t (S'OOV/mj —~0.0332W/m?.

Cuy\ 2

(e) As noted in part (a), the only nonzero component of B is By. The magnetic field
oscillates along the x axis.

(f) The wavelength found in part (b) places this in the infrared portion of the spectrum.

LEARN Electromagnetic wave is a transverse wave. Knowing the functional form of the
electric field allows us to determine the corresponding magnetic field, and vice versa.
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74. (a) Let r be the radius and p be the density of the particle. Since its volume is (443)r?,
its mass is m = (4743)pr°. Let R be the distance from the Sun to the particle and let M be
the mass of the Sun. Then, the gravitational force of attraction of the Sun on the particle
has magnitude

£ - GMm _ AnGMpr?
¢ R? 3R*

If P is the power output of the Sun, then at the position of the particle, the radiation
intensity is | = P/47R?, and since the particle is perfectly absorbing, the radiation pressure
onitis

p_l_ P
" ¢ 4nR%’

All of the radiation that passes through a circle of radius r and area A=mr?,
perpendicular to the direction of propagation, is absorbed by the particle, so the force of
the radiation on the particle has magnitude

7Pr?  Pr?

=P 47R%c 4R%

The force is radially outward from the Sun. Notice that both the force of gravity and the
force of the radiation are inversely proportional to R2. If one of these forces is larger than
the other at some distance from the Sun, then that force is larger at all distances. The two
forces depend on the particle radius r differently: Fq is proportional to r® and F; is
proportional to r>. We expect a small radius particle to be blown away by the radiation
pressure and a large radius particle with the same density to be pulled inward toward the
Sun. The critical value for the radius is the value for which the two forces are equal.
Equating the expressions for Fq4 and F;, we solve for r:

.__ 3P
16nGMpc”

(b) According to Appendix C, M = 1.99 x 10* kg and P = 3.90 x 10% W. Thus,

‘e 3(390x10% W)
16m(6.67 107" N-m?/kg?)(199 x10% kg)(1.0x10° kg/ m*)(3.00x10° m/s)

=58x10" m.

75. THINK Total internal reflection happens when the angle of incidence exceeds a
critical angle such that Snell’s law gives sing, >1.



1439

EXPRESS When light reaches the interfaces between two materials with indices of
refraction n; and ny, if ny > ny, and the incident angle exceeds a critical value given by

0. =sin™" (&]
nl

then total internal reflection will occur.

Referring to Fig. 33-65, let & = 45° be the angle of incidence at the first surface and &
be the angle of refraction there. Let & be the angle of incidence at the second surface.
The condition for total internal reflection at the second surface is

nsin &> 1.

We want to find the smallest value of the index of refraction n for which this inequality
holds. The law of refraction, applied to the first surface, yields

nsin & =sin 6.

Consideration of the triangle formed by the surface of the slab and the ray in the slab tells
us that &5 = 90° — 6. Thus, the condition for total internal reflection becomes

1<nsin(90° — &) =n cos 6.

Squaring this equation and using sin® & + cos® 6 = 1, we obtain 1 < n? (1 — sin® &).
Substituting sin & = (1/n) sin &, now leads to

A2
1<n’ (1— al 91] =n®—sin*4,.

n2

The smallest value of n for which this equation is true is given by 1 = n? — sin* 6. We
solve for n:

n=/1+sin? 4, = /1+sin? 45° =122,

LEARN With n = 1.22, we have 6, =sin"'[(1/1.22)sin45°]=35°, which gives & =
90° — 35° = 55° as the angle of incidence at the second surface. We can readily verify that
nsin & = (1.22) sin55° = 1, meeting the threshold condition for total internal reflection.

76. Since some of the angles in Fig. 33-66 are measured from vertical axes and some are
measured from horizontal axes, we must be very careful in taking differences. For
instance, the angle difference between the first polarizer struck by the light and the
second is 110° (or 70° depending on how we measure it; it does not matter in the final
result whether we put Aé, = 70° or put Ay = 110°. Similarly, the angle difference
between the second and the third is A& = 40°, and between the third and the fourth is A&
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= 40° also. Accounting for the “automatic” reduction (by a factor of one-half) whenever
unpolarized light passes through any polarizing sheet, then our result is the incident
intensity multiplied by

%cos2 (A6,) cos?(A6,) cos? (AB,) .

Thus, the light that emerges from the system has intensity equal to 0.50 W/m?.

77. (@) The first contribution to the overall deviation is at the first refraction:
00, = 6, —06,. The next contribution to the overall deviation is the reflection. Noting that

the angle between the ray right before reflection and the axis normal to the back surface
of the sphere is equal to &, and recalling the law of reflection, we conclude that the angle
by which the ray turns (comparing the direction of propagation before and after the
reflection) is 06, =180°-26,. The final contribution is the refraction suffered by the ray

upon leaving the sphere: 66, = 6, — 6, again. Therefore,

6,

dev

= 56, + 56, + 56, =180° + 20, — 40)..

(b) We substitute &, =sin™ (tsing,) into the expression derived in part (a), using the two
given values for n. The higher curve is for the blue light.

Odev
180

170
160
150

140

IIII|IIII|IIII|IIII|II01‘
0 20 40 60 80

(c) We can expand the graph and try to estimate the minimum, or search for it with a
more sophisticated numerical procedure. We find that the Gy, minimum for red light is
137.63°~137.6°, and this occurs at & = 59.52°.

(d) For blue light, we find that the G4, minimum is 139.35° ~139.4°, and this occurs at &
=59.52°.

(e) The difference in Gy, in the previous two parts is 1.72°.

78. (a) The first contribution to the overall deviation is at the first refraction:
00, =6, —6,. The next contribution(s) to the overall deviation is (are) the reflection(s).
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Noting that the angle between the ray right before reflection and the axis normal to the
back surface of the sphere is equal to &, and recalling the law of reflection, we conclude
that the angle by which the ray turns (comparing the direction of propagation before and
after [each] reflection) is 66. =180° — 26.. Thus, for k reflections, we have 56, = ké, to
account for these contributions. The final contribution is the refraction suffered by the ray
upon leaving the sphere: 66, = 6, — 6, again. Therefore,

6,

dev

= 50, + 50, + 50, = 2(6, —0,) + k(180° — 20, ) = k(180°) + 20, — 2(k +1)6)..

(b) For k = 2 and n = 1.331 (given in Problem 33-77), we search for the second-order
rainbow angle numerically. We find that the &4, minimum for red light is 230.37°
~ 230.4°, and this occurs at 6 = 71.90°.

(c) Similarly, we find that the second-order G, minimum for blue light (for which n =
1.343) is 233.48° ~ 233.5°, and this occurs at & = 71.52°.

(d) The difference in Gy in the previous two parts is approximately 3.1°.

(e) Setting k = 3, we search for the third-order rainbow angle numerically. We find that
the Gy minimum for red light is 317.5°, and this occurs at & = 76.88°.

(f) Similarly, we find that the third-order s, minimum for blue light is 321.9°, and this
occurs at 4 = 76.62°.

(9) The difference in Gy in the previous two parts is 4.4°.

79. THINK We apply law of refraction to both interfaces to calculate the sideway
displacement.

EXPRESS Let 0 be the angle of incidence and & be the angle of refraction at the left
face of the plate. Let n be the index of refraction of the glass. Then, the law of refraction
yields

sin @ =nsin 6.
The angle of incidence at the right face is also &. If & is the angle of emergence there,

then
nsin & =sin 6.
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ANALYZE (a) Combining the two expressions gives sin & = sin 6, which implies that &
= 6. Thus, the emerging ray is parallel to the incident ray.

(b) We wish to derive an expression for x in terms of 6. If D is the length of the ray in the
glass, then D cos & =t and D =t/cos &. The angle « in the diagram equals 6— & and

X=Dsin a=D sin (- &).
Thus,
o tsin(6-46,)
cos,

If all the angles 6, &, &, and 6— & are small and measured in radians, then sin &~ 6, sin
&~ 6, sin(@— 6&) =~ 0— 6, and cos & ~ 1. Thus x = t(6 — &). The law of refraction
applied to the point of incidence at the left face of the plate is now 8~ né, so & ~ @n

and
. z{g_g): (n—l)tHl
n n

LEARN The thicker the glass, the greater the displacement x. Note in the limitn =1 (no
glass), x=0, as expected.

80. (a) The magnitude of the magnetic field is

g E_ 10VIM 55,0077,
c 30x10°m/s

(b) With E x B= 1,5, where E=EkandS=5(—j), one can verify easily that since
kx (i) =—}, B has to be in the —x direction.
81. (a) The polarization direction is defined by the electric field (which is perpendicular

to the magnetic field in the wave, and also perpendicular to the direction of wave travel).
The given function indicates the magnetic field is along the x axis (by the subscript on B)
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and the wave motion is along —y axis (see the argument of the sine function). Thus, the
electric field direction must be parallel to the z axis.

(b) Since k is given as 1.57 x 10°/m, then A = 277k = 4.0 x 10" m, which means f = ¢/A =
7.5 x 10" Hz.

(c) The magnetic field amplitude is given as By = 4.0 x 10° T. The electric field
amplitude En, is equal to By, divided by the speed of light c. The rms value of the electric
field is then Ep, divided by /2. Equation 33-26 then gives | = 1.9 kW/m?.

82. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain
1 2 2
I =§|Ocos 0/ cos” 0,

where 6/ =90°—-6, =60° and &, =90°—6, =60°. This yields I/, = 0.031.

83. THINK The index of refraction encountered by light generally depends on the
wavelength of the light.

EXPRESS The critical angle for total internal reflection is given by sin & = 1/n. With an
index of refraction n = 1.456 at the red end, the critical angle is 6. = 43.38° for red.
Similarly, with n = 1.470 at the blue end, the critical angle is &, = 42.86° for blue.

ANALYZE (a) An angle of incidence of 6, = 42.00° is less than the critical angles for
both red and blue light, so the refracted light is white.

(b) An angle of incidence of 6, = 43.10° is slightly less than the critical angle for red light
but greater than the critical angle for blue light, so the refracted light is dominated by red
end.

(c) An angle of incidence of &, = 44.00° is greater than the critical angles for both red and
blue light, so there is no refracted light.

LEARN The dependence of the index of refraction of fused quartz on wavelength is
shown in Fig. 33-18. From the figure, we see that the index of refraction is greater for a
shorter wavelength. Such dependence results in the spreading of light as it enters or
leaves quartz, a phenomenon called “chromatic dispersion.”

84. Using Egs. 33-40 and 33-42, we obtain

(15/2)(cos? 45°) (cos® 45°)

final — —

1_012s.
1, I 8
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85. We write m = pV where V = 4nR%/3 is the volume. Plugging this into F = ma and
then into Eq. 33-32 (with A = zR?, assuming the light is in the form of plane waves), we
find
4nR® _ I7R?
a= :
3 c

This simplifies to

which yields a = 1.5 x 10°° m/s%.

86. Accounting for the ‘“automatic” reduction (by a factor of one-half) whenever
unpolarized light passes through any polarizing sheet, then our result is

2 (cos¥(30%))° = 0.21.

87. THINK Since the radar beam is emitted uniformly over a hemisphere, the source
power is also the same everywhere within the hemisphere.

EXPRESS The intensity of the beam is given by

P
A 2xr?

where A = 2nr? is the area of a hemisphere. The power of the aircraft’s reflection is equal
to the product of the intensity at the aircraft’s location and its cross-sectional area:
P =IA. The intensity is related to the amplitude of the electric field by Eq. 33-26:

| =B /cu, =E2/2cu,.

rms

ANALYZE (a) Substituting the values given we get

P 180x10° W

== ——=3.5x10" W/m®.
2zr 27(90x10° m)

(b) The power of the aircraft’s reflection is
P =1A =(3.5x10° W/m?)(0.22 m*) =7.8x107" W.
(c) Back at the radar site, the intensity is

-7
=t o TBAOW 510 wim?,
2zr° 27(90%10° m)
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(d) From 1, =E? / 2cu,, we find the amplitude of the electric field to be

E, =/2C], =+/2(3.0x10° m/s)(4nx107 T-m/A)(L.5x10™" W/m?)
=1.1x107 V/m.

(e) The rms value of the magnetic field is

-7
Epe _ Ep _ 1107 VIM o e

B = = =
™ ¢ J2c  J2(3.0x10° mis)

LEARN The intensity due to a power source decreases with the square of the distance.
Also, as emphasized in Sample Problem — “Light wave: rms values of the electric and
magnetic fields,” one cannot compare the values of the two fields because they are
measured in different units. Both components are on the same basis from the perspective
of wave propagation, and they have the same average energy.

88. The amplitude of the magnetic field in the wave is

4
B - En_ 32010 8\”m=107><1o-12 T.
C 2.998x10°m/s

89. From Fig. 33-19 we find nmax = 1.470 for A =400 nm and Ny, = 1.456 for 4 =700 nm.
(a) The corresponding Brewster’s angles are

b, max = tan ™+ Niax = tan* (1.470) = 55.8°,
(b) and G min = tan* (1.456) = 55.5°.

90. (a) Suppose there are a total of N transparent layers (N = 5 in our case). We label
these layers from left to right with indices 1, 2, ..., N. Let the index of refraction of the air
be no. We denote the initial angle of incidence of the light ray upon the air-layer boundary
as & and the angle of the emerging light ray as &. We note that, since all the boundaries
are parallel to each other, the angle of incidence 4 at the boundary between the j-th and
the (j + 1)-th layers is the same as the angle between the transmitted light ray and the
normal in the j-th layer. Thus, for the first boundary (the one between the air and the first
layer)

n, _sing,

n, siné,’
for the second boundary

n, siné,

2
n, siné,
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and so on. Finally, for the last boundary

n, sind,

Mo
n, sing,’

Multiplying these equations, we obtain

(M )N} (Ng | _(sing |(sing, |[sind, | |sing,

n, )\ Jn, n, ) \sing, ){sin@, |\sing, sing, |
We see that the L.H.S. of the equation above can be reduced to no/ng while the R.H.S. is
equal to sin@/sin&. Equating these two expressions, we find

sing, = (&j sing, =sing,,

nO
which gives & = &. So for the two light rays in the problem statement, the angle of the
emerging light rays are both the same as their respective incident angles. Thus, & = 0 for
ray a,

(b) and & = 20° for ray b.

(c) In this case, all we need to do is to change the value of no from 1.0 (for air) to 1.5 (for
glass). This does not change the result above. That is, we still have & = 0 for ray a,

(d) and & = 20° for ray b.

Note that the result of this problem is fairly general. It is independent of the number of
layers and the thickness and index of refraction of each layer.

91. (a) At r =40 m, the intensity is

P P 4(3.0x10°W)
xd?/4  7(6r)?/4 7| (0.17x10"rad) (40m) |

- =83W/m’.

(b) P’ =4nr’l = 4n(40m)*(83W/m?) =17 x10°W.
92. The law of refraction requires that

sin @i/sin & = Nyater = CONSL.
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We can check that this is indeed valid for any given pair of 6 and &. For example, sin
10° /sin 8° = 1.3, and sin 20° / sin 15°30" = 1.3, etc. Therefore, the index of refraction of
water is Nyager = 1.3.

93. We remind ourselves that when the unpolarized light passes through the first sheet, its
intensity is reduced by a factor of 2. Thus, to end up with an overall reduction of one-
third, the second sheet must cause a further decrease by a factor of two-thirds (since
(1/2)(2/3) = 1/3). Thus, cos’6=2/3 = @=35°.

94. (a) The magnitude of the electric field at point P is

1.00Q

=Y ! 1006
| 300 m

:TR: (25.0 A)( j: 0.0833 V/m.

The direction of E at point P is in the +x direction, same as the current.

(b) We use Ampere’s law: j: B-dS = u,i , where the integral is around a closed loop and i
is the net current through the loop. The magnitude of the magnetic field is

B— Hol _ (47x107 T-m/A)(25.0A)

_ —4.00x1073T.
27r 2;z(1.25x10-3m)

The direction of B at point P is in the +z direction (out of the page).

(c) From S =Ex E/yo, we find the magnitude of the Poynting vector to be

_EB_ (0.0833V/m)(4.0x10° T)

$ = 265W/m?>.
o 2(4nx107 T-m/A)

S

(d) Since S points in the direction of E x B, using the right-hand-rule, the direction of S
at point P is in the —y direction.

95. (a) For the cylindrical resistor shown in Figure 33-74, the magnetic field is in the -9,
or clockwise direction. On the other hand, the electric field is in the same direction as the

current, —2. Since S=ExB/y,, S is in the direction of (-2)x(-8) =—F, or radially
inward.

(b) The magnitudes of the electric and magnetic fields are E=V/I=iR/l and
B = 1,1/ 2ra, respectively. Thus,
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G- E8_ L () i) i
i\ 1 N\ 27ra) 2rzal’

Noting that the magnitude of the Poynting vector S is constant, we have

i’R
2ra

jst.dZ\ZSA:(

J(zﬁau): iR

96. The average rate of energy flow per unit area, or intensity, is related to the electric
field amplitude En by | =EZ2/2u,c, implying that the rate of energy absorbed is

P, =IA=E2A/2u.c. If all the energy is used to heat up the sheet (converting to its
internal energy), then
_dE, __dT
g Cdt

where s is the specific heat of the material. Solving for dT/dt, we find

dT  EZA dT  EZA
mc, — = = —= .
dt  2u.c dt  2mc y,C

97. Let Iy be the intensity of the unpolarized light that is incident on the first polarizing
sheet. The transmitted intensity is, by one-half rule, 1, =3 1,. For the second sheet, we

apply the cosine-squared rule:

|, =1,c0s°0 =% I, cos’d

where @ is the angle between the direction of polarization of the two sheets. With
I,/1,=p/100, we solve for §and obtain

I—Zzﬁzlcosze = @=cos?| ||
I, 100 2 \'50

98. The cross-sectional area of the beam on the surface is Acosé. In a time interval At,
the volume of the beam that’s been reflected is AV = (Acosd)cAt, and the momentum
carried by this volume is p=(1/c*)(Acos&)cAt. Upon being reflected, the change in
momentum is

Ap =2pcoséd =21Acos’ OAt/ ¢

Thus, the radiation pressure is

_2 s 0= p,, cos’ @
c

o F_ap
A AAt
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where p,, =2l /c is the radiation pressure when 6 =0.

99. Consider the figure shown to the right. The y-
component of the force cancels out, and we’re left
with the x-component:

\/
dF, =2dF cosd =2(p,dA)cosé.
Using the result from  Problem  98:
p, =(21/c)cos’* @, and dA=RLdA, where L is the
length of the cylinder, we obtain
Lt :_[2(2I cosé/c)cosd rdo= 2R mcos36’d0=8|—R.
L c 3c

100. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain
l 2 2
I =§|0cos 0/ cos” 6,

where g/ =(90°—-6,)+6, =110° is the relative angle between the first and the second
polarizing sheets, and &, =90°—@, =50° is the relative angle between the second and the
third polarizing sheets. Thus, we have /1o = 0.024.

101. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain
1 2 2 nn
I =§|0005 0'cos” 6"

With @' =6, -6, = 60° — 20° = 40° and 0" =6, + (= /2—6,) = 40° + 30° = 70°, we get
I/lp = 0.034.

102. We use Eq. 33-33 for the force, where A is the area of the reflecting surface (4.0 m?).
The intensity is gotten from Eq. 33-27 where P = Ps is in Appendix C (see also Sample
Problem 33-2) and r = 3.0 x 10" m (given in the problem statement). Our result for the
force is 9.2 uN.

103. Eq. 33-5 gives B = E/c, which relates the field values at any instant — and so relates

rms values to rms values, and amplitude values to amplitude values, as the case may be.
Thus, the rms value of the magnetic field is

B,y =(0.200 V/m)/(3 x 10° m/s) = 6.67 x 10 ° T,
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which (upon multiplication by +/2) yields an amplitude value of magnetic field equal to
9.43x107°T.

104. (a) The Sun is far enough away that we approximate its rays as “parallel” in this
Figure. That is, if the sunray makes angle @ from horizontal when the bird is in one
position, then it makes the same angle @ when the bird is any other position. Therefore,
its shadow on the ground moves as the bird moves: at 15 m/s.

(b) If the bird is in a position, a distance x > 0 from the wall, such that its shadow is on
the wall at a distance 0 >y > h from the top of the wall, then it is clear from the Figure
that tand = y/x. Thus,

ﬂ=%tam9: (15 m/s)tan30°=—-8.7 m/s,
dt dt

which means that the distance y (which was measured as a positive humber downward
from the top of the wall) is shrinking at the rate of 8.7 m/s.

(c) Since tan@ grows as 0 < @ < 90° increases, then a larger value of |dy/dt| implies a
larger value of 8. The Sun is higher in the sky when the hawk glides by.

(d) With |dy/dt| = 45 m/s, we find
dx
dt

B |dy/dt|
~ tan@

hawk —

so that we obtain 8= 72° if we assume Vhawk = 15 m/s.

105. (a) The wave is traveling in the —y direction (see 816-5 for the significance of the
relative sign between the spatial and temporal arguments of the wave function).

(b) Figure 33-5 may help in visualizing this. The direction of propagation (along the y
axis) is perpendicular to B (presumably along the x axis, since the problem gives By and

no other component) and both are perpendicular to E (which determines the axis of
polarization). Thus, the wave is z-polarized.

(c) Since the magnetic field amplitude is By = 4.00 uT, then (by Eg. 33-5) E,, = 1199
V/m ~1.20x10° V/m. Dividing by V2 yields E;ms = 848 VV/m. Then, Eq. 33-26 gives

I =LE2 =191x10° W/ m?.

rms
Ciy

(d) Since kc = @ (equivalent to ¢ =f 1), we have
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_ 200x10%
C

k =6.67x10°m™.

Summarizing the information gathered so far, we have (with SI units understood)
E, = (1.2x10° V/m) sin[(6.67x10° / m)y + (2.00x10" / s)t].

(e) A =2n/k =942 nm,

(f) This is an infrared light.

106. (a) The angle of incidence 61 at B is the complement of the critical angle at A; it
sine is

w

2
sing,, =cosé, = 1—[&]
: n,

so that the angle of refraction 6, at B becomes

2 2
0,,=sin"| 2 1—(&j —sin™ E&j ~1=35.1°.
’ n3 n2 n3

(b) From ny sin &= n; sin &, = ny(ns/ny), we find

0= sin-l(&} ~49.9°.
n

(c) The angle of incidence 6a1 at A is the complement of the critical angle at B; its sine is
2
. n,
sing,, =cosd, = 1—(—} .

n,

so that the angle of refraction €, at A becomes

2 2
B,, =sin" Ny 1—(ﬁj =sin™ E&j ~-1=35.1°.
’ n3 n2 n3

2
: : n
nsin@=n,sind,, =n, 1—(—3] =Jn?-n,
, n,

(d) From
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we find

n

2 _ .2
9[_4 szo

(e) The angle of incidence és; at B is the complement of the Brewster angle at A; its sine
IS
r]2

2 2
Jné+n2

so that the angle of refraction 0, at B becomes

2
. n
0,, =sin 1[%} =60.7°.
Ny/N; + 1,

sindy, =

(f) From
. . n,
n sin 0= n,sin eBrewster =n, T2 2!
an +;
we find

. n,n
f=sin"| —2=— |=35.3° .
[np/nz2 +n’ J
107. (a) and (b) At the Brewster angle, Gncident + Grefracted = G5 + 32.0° = 90.0°, so & =
58.0° and
Nglass = tan &g = tan 58.0° = 1.60.

108. We take the derivative with respect to x of both sides of Eq. 33-11:

ala )5 -alR)5
xlox) o "\ o) et

Now we differentiate both sides of Eq. 33-18 with respect to t:

o( 0B B 0 oE O°E
= = | Coto— | = Eokto :

o\ ox ) oxot ot ot ot

Substituting 6°E/ox* = —6°B/oxat from the first equation above into the second one, we
get
0’E _0°E O’E 1 0°E_ ,0E

P — = = =C .
otr ox’ ot® gyu, OX° ox’

Eolty
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Similarly, we differentiate both sides of Eq. 33-11 with respect to t

°E__o'B
oXot ot?’

and differentiate both sides of Eq. 33-18 with respect to x

_oB__, _OE
ox2 T

Combining these two equations, we get

B 1 8ZB_C2628
ot* ey, OX° ox*’

109. (a) From Eq. 33-1,

2 2
%tlf =% E_sin(kx—at) = —o’E, sin (kx—at),
and
2 O’E 2 & ; 2.2 o 2 ;
C°—5 =C"—5 E_sin(kx—at) =-k“c”sin(kx —at) = - E_ sin (kx — at).
OX OX
Consequently,
O’E ,0°E
7 =0 =%
ot OX

is satisfied. Analogously, one can show that Eq. 33-2 satisfies

(b) From E = E_ f(kx £ at),

aZE_E O f(kxtat) = d*f
" a2 A
u=kx+awt
and
2 2 + 2
czgzczEm O Hkx £ at) f(kxz_a)t) =c2Emk2¥
OX du”|

Since w = ck the right-hand sides of these two equations are equal. Therefore,
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oz oot

0°E o2 O°E

Changing E to B and repeating the derivation above shows that B=B_f (kx £ at)
satisfies
'8 _ .08

—=c .
ot? x>

110. Since intensity is power divided by area (and the area is spherical in the isotropic
case), then the intensity at a distance of r = 20 m from the source is

| = P2 =O.O4OW/m2.
4ntr

as illustrated in Sample Problem 33-2. Now, in Eq. 33-32 for a totally absorbing area A,
we note that the exposed area of the small sphere is that on a flat circle A = £(0.020 m)? =
0.0013 m?. Therefore,

£ _ A _ (0.040)(0.0013)

- T 17x107"N.
X




Chapter 34

1. The bird is a distance d; in front of the mirror; the plane of its image is that same
distance d, behind the mirror. The lateral distance between you and the bird is d; = 5.00
m. We denote the distance from the camera to the mirror as d;, and we construct a right
triangle out of d; and the distance between the camera and the image plane (d; + dy).
Thus, the focus distance is

d=\/(d, +d,)’ +d2 =(430 m+3.30 m)° +(5.00 m)’ =9.10 m.

2. The image is 10 cm behind the mirror and you are 30 cm in front of the mirror. You
must focus your eyes for a distance of 10 cm + 30 cm =40 cm.

3. The intensity of light from a point source varies as the inverse of the square of the
distance from the source. Before the mirror is in place, the intensity at the center of the
screen is given by Ip = A/d 2, where A is a constant of proportionality. After the mirror is
in place, the light that goes directly to the screen contributes intensity Ip, as before.
Reflected light also reaches the screen. This light appears to come from the image of the
source, a distance d behind the mirror and a distance 3d from the screen. Its contribution
to the intensity at the center of the screen is

oA AL
" (3d)? 9d? 9
The total intensity at the center of the screen is
I, 10
I:Ip+lr:Ip+3P:§IP.

The ratio of the new intensity to the original intensity is I/l = 10/9 = 1.11.

4. When S is barely able to see B, the light rays from B must reflect to S off the edge of
the mirror. The angle of reflection in this case is 45°, since a line drawn from S to the
mirror’s edge makes a 45° angle relative to the wall. By the law of reflection, we find

3.0m

L:tan45°:l = X=—=——=15m.
/2 2

N

5. THINK This problem involves refraction at air—water interface and reflection from a
plane mirror at the bottom of the pool.

1455
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EXPRESS We apply the law of refraction, assuming all angles are in radians:

sind _n,

sind n

air

which in our case reduces to & ~ én,, (since both #and &'
are small, and n,r ~ 1). We refer to our figure on the right.

The object O is a vertical distance d; above the water, and

air

the water surface is a vertical distance d, above the mirror.
We are looking for a distance d (treated as a positive
number) below the mirror where the image | of the object is

water

formed. In the triangle O AB

mirror

| AB|=d,tand~d,6,

and in the triangle CBD

1BC|=2d, tan &' ~2d,0' ~ 297
Finally, in the triangle ACI, we have |Al| = d + d..
ANALY ZE Therefore,
d :|A| |—d2 :M_d2 zm_dz = dle+ﬁ l_dz :d1+2_(jZ_d2
tan @ Iz n, )0 n,
2(200cm)

=250cm+ —200cm=351cm.

LEARN If the pool were empty without water, then 8 =¢", and the distance would be
d=d,+2d,—-d, =d, +d,. This is precisely what we expect from a plane mirror.

6. We note from Fig. 34-34 that m :% when p =5 cm. Thus Eq. 34-7 (the magnification

equation) gives us i = =10 cm in that case. Then, by Eq. 34-9 (which applies to mirrors
and thin lenses) we find the focal length of the mirror is f = 10 cm. Next, the problem
asks us to consider p = 14 cm. With the focal length value already determined, then Eq.
34-9 yields i = 35 cm for this new value of object distance. Then, using Eq. 34-7 again,
we find m =i/p =-25.

7. We use Egs. 34-3 and 34-4, and note that m = —i/p. Thus,
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it 1.2
p pm f r
We solve for p: p=£(1—£j=35'ocm (1— ! )=10.5 cm.
2 m 2 250

8. The graph in Fig. 34-35 implies that f =20 cm, which we can plug into Eq. 34-9 (with
p= 70 cm) to obtain i = +28 cm.

9. THINK A concave mirror has a positive value of focal length.

EXPRESS For spherical mirrors, the focal length f is related to the radius of curvature r
by f =r/2. The object distance p, the image distance i, and the focal length f are related

by Eq. 34-4:
1
+_ —

1
it

S |-

The value of i is positive for a real images, and negative for virtual images.

The corresponding lateral magnification is m=—i/p. The value of m is positive for

upright (not inverted) images, and negative for inverted images. Real images are formed
on the same side as the object, while virtual images are formed on the opposite side of the
mirror.

ANALYZE (a) With f = +12 cm and p = +18 cm, the radius of curvature is r = 2f = 2(12
cm) =+ 24 cm.

pf (18 cm)(12 cm) _

= 36 cm
p—f 18cm-12cm

(b) The image distance is i =

(c) The lateral magnification is m = —i/p = — (36 cm)/(18 cm) = -2.0.
(d) Since the image distance i is positive, the image is real (R).

(e) Since the magnification m is negative, the image is inverted (1).
(f) A real image is formed on the same side as the object.
LEARN The situation in this problem is similar to

that illustrated in Fig. 34-10(c). The object is outside
the focal point, and its image is real and inverted.




1458 CHAPTER 34

10. A concave mirror has a positive value of focal length.

(@) Then (with f=+10cm and p = +15 cm), the radius of curvature is r=2f =+20 cm.
(b) Equation 34-9 yields i = pf/(p—f)=+30cm.

(c)Then, by Eq. 34-7, m = —i/p =-2.0.

(d) Since the image distance computation produced a positive value, the image is real (R).
(e) The magnification computation produced a negative value, so it is inverted (1).

(f) A real image is formed on the same side as the object.

11. THINK A convex mirror has a negative value of focal length.

EXPRESS For spherical mirrors, the focal length f is related to the radius of curvature r
by f =r/2. The object distance p, the image distance i, and the focal length f are related

by Eq. 34-4:
1
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The value of i is positive for a real images, and negative for virtual images.

The corresponding lateral magnification is

i
m=——.
p

The value of m is positive for upright (not inverted) images, and negative for inverted
images. Real images are formed on the same side as the object, while virtual images are
formed on the opposite side of the mirror.

ANALYZE (a) With f =-10 cm and p = +8 cm, the radius of curvature is r = 2f = -20 cm.

pr__@®cm(=10cm) _ , ,, cm.
p—f 8cm—(-10) cm

(b) The image distance is i =

(c) The lateral magnification is m = —i/p = —(-4.44 cm)/(8.0 cm) = +0.56.
(d) Since the image distance is negative, the image is virtual (V).
(e) The magnification m is positive, so the image is upright [not inverted] (NI).

(f) A virtual image is formed on the opposite side of the mirror from the object.
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LEARN The situation in this problem is similar
to that illustrated in Fig. 34-11(c). The mirroris  : —= 4
convex, and its image is virtual and upright. \

(@) Then (with f=+36 cm and p = +24 cm), the radius of curvature isr = 2f = + 72 cm.

12. A concave mirror has a positive value of focal length.

(b) Equation 34-9 yieldsi= pf/(p—f)= —72cm.
(c) Then, by Eq. 34-7, m = —i/p = +3.0.
(d) Since the image distance is negative, the image is virtual (V).

(e) The magnification computation produced a positive value, so it is upright [not
inverted] (NI).

(f) A virtual image is formed on the opposite side of the mirror from the object.
13. THINK A concave mirror has a positive value of focal length.

EXPRESS For spherical mirrors, the focal length f is related to the radius of curvature r
by f=r/2.

The object distance p, the image distance i, and the focal length f are related by Eq. 34-4:

1
i
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The value of i is positive for real images and negative for virtual images.

The corresponding lateral magnification is m=—i/ p. The value of m is positive for
upright (not inverted) images, and is negative for inverted images. Real images are

formed on the same side as the object, while virtual images are formed on the opposite
side of the mirror.

ANALYZE With f=+18 cmand p = +12 cm, the radius of curvature is r = 2f = + 36 cm.
(b) Equation 34-9 yieldsi= pf/(p—-f)= -36 cm.

(c) Then, by Eq. 34-7, m = —i/p = +3.0.

(d) Since the image distance is negative, the image is virtual (V).
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(e) The magnification computation produced a positive value, so it is upright [not
inverted] (NI).

(f) A virtual image is formed on the opposite side of the mirror from the object.

Virtual
LEARN The situation in this problem is similar to .
that illustrated in Fig. 34-11(a). The mirror is - I

concave, and its image is virtual, enlarged, and
upright.

14. A convex mirror has a negative value of focal length.

(@) Then (with f=-35cmand p = +22 cm), the radius of curvature is r = 2f =—70 cm.
(b) Equation 34-9 yieldsi= pf/(p—f)= —-14 cm.

(c) Then, by Eq. 34-7, m = —i/p = +0.61.

(d) Since the image distance is negative, the image is virtual (V).

(e) The magnification computation produced a positive value, so it is upright [not
inverted] (NI).

(f) The side where a virtual image forms is opposite from the side where the object is.
15. THINK A convex mirror has a negative value of focal length.

EXPRESS For spherical mirrors, the focal length f is related to the radius of curvature r
by f =r/2.

The object distance p, the image distance i, and the focal length f are related by Eq. 34-4:

1
LT

1
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The value of i is positive for a real images, and negative for virtual images.

The corresponding lateral magnification is m=—i/ p. The value of m is positive for
upright (not inverted) images, and is negative for inverted images. Real images are
formed on the same side as the object, while virtual images are formed on the opposite
side of the mirror.



1461

ANALYZE (a) With f =-8 cm and p = +10 cm, the radius of curvature is r = 2f = 2(-8
cm) =-16 cm.

pf__ Q0cm)(=8¢m) _ , 14 e
p—f 10cm—(-8) cm

(b) The image distance is i =

(c) The lateral magnification is m = —i/p = —(-4.44 cm)/(10 cm) = +0.44.

(d) Since the image distance is negative, the image is virtual (V).

(e) The magnification m is positive, so the image is upright [not inverted] (NI).
(f) A virtual image is formed on the opposite side of the mirror from the object.

LEARN The situation in this problem is similar to that illustrated in Fig. 34-11(c). The
mirror is convex, and its image is virtual and upright.

16. A convex mirror has a negative value of focal length.

(@) Then (with f=-14 cmand p = +17 cm), the radius of curvature is r = 2f = —-28 cm.
(b) Equation 34-9 yields i = pf/(p—f)= —7.7 cm.

(c) Then, by Eq. 34-7, m = —i/p = +0.45.

(d) Since the image distance is negative, the image is virtual (V).

(e) The magnification computation produced a positive value, so it is upright [not
inverted] (NI).

(f) A virtual image is formed on the opposite side of the mirror from the object.
17. (a) The mirror is concave.

(b) f = +20 cm (positive, because the mirror is concave).

(c) r =2f = 2(+20 cm) = +40 cm,

(d) The object distance p = +10 cm, as given in the table.

(e) The image distance is i = (1/f — 1/p) * = (1/20 cm — 1/10 cm) ™ = —20 cm.

(f) m =—i/p =—(-20 cm/10 cm) = +2.0.

(9) The image is virtual (V).
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(h) The image is upright or not inverted (NI).
(i) A virtual image is formed on the opposite side of the mirror from the object.

18. (a) Since the image is inverted, we can scan Figs. 34-8, 34-10, and 34-11 in the
textbook and find that the mirror must be concave.

(b) This also implies that we must put a minus sign in front of the “0.50” value given for
m. To solve for f, we first find i = —pm = +12 cm from Eq. 34-6 and plug into Eq. 34-4;
the result is f = +8 cm.

(c) Thus, r =2f =+16 cm.

(d) p =+24 cm, as given in the table.

(e) As shown above, i = —pm = +12 cm.

(f) m = -0.50, with a minus sign.

(9) The image is real (R), since i > 0.

(h) The image is inverted (1), as noted above.

(i) A real image is formed on the same side as the object.

19. (a) Since r < 0 then (by Eq. 34-3) f < 0, which means the mirror is convex.

(b) The focal length is f = r/2 =-20 cm.

(c) r =—40 cm, as given in the table.

(d) Equation 34-4 leads to p = +20 cm.

(e) i =—10 cm, as given in the table.

(f) Equation 34-6 gives m = +0.50.

(9) The image is virtual (V).

(h) The image is upright, or not inverted (NI).

(i) A virtual image is formed on the opposite side of the mirror from the object.

20. (a) From Eq. 34-7, we get i = —mp = +28 cm, which implies the image is real (R) and
on the same side as the object. Since m <0, we know it was inverted (). From Eq. 34-9,
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we obtain f = ip/(i + p) = +16 cm, which tells us (among other things) that the mirror is
concave.

(b) f=ip/(i + p) = +16 cm.

(c) r=2f=+32cm.

(d) p = +40 cm, as given in the table.

(e)i= —mp=+28 cm.

(f) m =-0.70, as given in the table.

(g9) The image is real (R).

(h) The image is inverted (1).

(i) A real image is formed on the same side as the object.

21. (a) Since f > 0, the mirror is concave.

(b) f=+ 20 cm, as given in the table.

(c) Using Eq. 34-3, we obtain r = 2f = +40 cm.

(d) p =+ 10 cm, as given in the table.

(e) Equation 34-4 readily yields i = pf/(p—f) = +60 cm.

(f) Equation 34-6 gives m = —i/p =-2.0.

(g) Since i > 0, the image is real (R).

(h) Since m < 0, the image is inverted ().

(1) A real image is formed on the same side as the object.

22. (a) Since 0 < m < 1, the image is upright but smaller than the object. With that in
mind, we examine the various possibilities in Figs. 34-8, 34-10, and 34-11, and note that
such an image (for reflections from a single mirror) can only occur if the mirror is convex.

(b) Thus, we must put a minus sign in front of the “20” value given for f, that is, f = — 20
cm.

(c) Equation 34-3 then gives r = 2f = —-40 cm.
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(d) To solve for i and p we must set up Eq. 34-4 and Eq. 34-6 as a simultaneous set and
solve for the two unknowns. The results are p = +180 cm = +1.8 m, and

(e) i=-18cm.

(f) m = 0.10, as given in the table.

(9) The image is virtual (V) since i <0.

(h) The image is upright, or not inverted (NI), as already noted.

(i) A virtual image is formed on the opposite side of the mirror from the object.

23. THINK A positive value for the magnification means that the image is upright (not
inverted).

EXPRESS For spherical mirrors, the focal length f is related to the radius of curvature r
by f =r/2. The object distance p, the image distance i, and the focal length f are related

by Eq. 34-4:
1
+_ —_—
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The value of i is positive for a real images, and negative for virtual images. The
corresponding lateral magnification is m=—i/ p. The value of m is positive for upright

(not inverted) images, and is negative for inverted images. Real images are formed on the
same side as the object, while virtual images are formed on the opposite side of the mirror.

ANALYZE (a) The magnification is given by m=—i/ p.Since p > 0, a positive value for
m means that the image distance (i) is negative, implying a virtual image. A positive
magnification of magnitude less than unity is only possible for convex mirrors.

(b) With i =—mp, we may write p= f(1-1/m). For 0 <m < 1, a positive value for p can
be obtained only if f<0. Thus, with a minus sign, we have f = -30 cm.

(c) The radius of curvature is r = 2f =—-60 cm.

(d) The object distance is p=f (1 — 1/m) = (-30 cm)(1 -1/0.20) = + 120cm =1.2 m.
(e) The image distance is i = -mp = —(0.20)(120 cm) = -24 cm.

(f) The magnification is m = +0.20, as given in the Table.

(9) As discussed in (a), the image is virtual (V).

(h) As discussed in (a), the image is upright, or not inverted (NI).
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(i) A virtual image is formed on the opposite side of the mirror from the object.

1
LEARN The situation in this problem is
similar to that illustrated in Fig. 34-11(c). | o

The mirror is convex, and its image is 0 [ 1
virtual and upright. ‘

s

24. (a) Since m = — 1/2 < 0, the image is inverted. With that in mind, we examine the
various possibilities in Figs. 34-8, 34-10, and 34-11, and note that an inverted image (for
reflections from a single mirror) can only occur if the mirror is concave (and if p > f).

(b) Next, we find i from Eq. 34-6 (which yields i = mp = 30 cm) and then use this value
(and Eq. 34-4) to compute the focal length; we obtain f = +20 cm.

(c) Then, Eq. 34-3 gives r = 2f = +40 cm.

(d) p =60 cm, as given in the table.

(e) As already noted, i = +30 cm.

(f) m=-1/2, as given.

(9) Since i > 0, the image is real (R).

(h) As already noted, the image is inverted ().

(1) A real image is formed on the same side as the object.

25. (a) As stated in the problem, the image is inverted (1), which implies that it is real (R).
It also (more directly) tells us that the magnification is equal to a negative value: m =
—0.40. By Eq. 34-7, the image distance is consequently found to be i = +12 cm. Real
images don’t arise (under normal circumstances) from convex mirrors, SO we conclude
that this mirror is concave.

(b) The focal length is f = +8.6 cm, using Eq. 34-9, f = +8.6 cm.

(c) The radius of curvature isr = 2f =+17.2 cm ~ 17 cm.

(d) p =+30 cm, as given in the table.

(e) As noted above, i = +12 cm.

(f) Similarly, m = —0.40, with a minus sign.
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(g9) The image is real (R).
(h) The image is inverted (1).
(i) A real image is formed on the same side as the object.

26. (a) We are told that the image is on the same side as the object; this means the image
is real (R) and further implies that the mirror is concave.

(b) The focal distance is f = +20 cm.

(c) The radius of curvature is r = 2f = +40 cm.

(d) p = +60 cm, as given in the table.

(e) Equation 34-9 gives i = pf/(p —f) = +30 cm.

(f) Equation 34-7 gives m = —i/p = —0.50.

(9) As noted above, the image is real (R).

(h) The image is inverted (1) since m < 0.

(1) A real image is formed on the same side as the object.

27. (a) The fact that the focal length is given as a negative value means the mirror is
convex.

(b) f=-30 cm, as given in the Table.

(c) The radius of curvature is r = 2f =60 cm.
(d) Equation 34-9 gives p = if /(i —f) = +30 cm.
(e) i =15, as given in the table.

(f) From Eq. 34-7, we get m = +1/2 = 0.50.

(9) The image distance is given as a negative value (as it would have to be, since the
mirror is convex), which means the image is virtual (V).

(h) Since m > 0, the image is upright (not inverted: NI).
(i) The image is on the opposite side of the mirror as the object.

28. (a) The fact that the magnification is 1 means that the mirror is flat (plane).
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(b) Flat mirrors (and flat “lenses” such as a window pane) have f = oo (or f = —o0 since the
sign does not matter in this extreme case).

(c) The radius of curvature is r = 2f = o (or r = —0) by Eq. 34-3.

(d) p =+ 10 cm, as given in the table.

(e) Equation 34-4 readily yields i = pf/(p—f)=-10 cm.

(f) The magnification is m = —i/p = +1.0.

(9) The image is virtual (V) since i <0.

(h) The image is upright, or not inverted (NI).

(i) A virtual image is formed on the opposite side of the mirror from the object.
29. THINK A convex mirror has a negative value of focal length.

EXPRESS For spherical mirrors, the focal length f is related to the radius of curvature r
by f =r/2. The object distance p, the image distance i, and the focal length f are related

by Eq. 34-4:

1 1
+=—.
f

S |-

The value of i is positive for a real images, and negative for virtual images. The
corresponding lateral magnification is m=—i/ p. The value of m is positive for upright
(not inverted) images, and is negative for inverted images. Real images are formed on the
same side as the object, while virtual images are formed on the opposite side of the mirror.

ANALYZE (a) The mirror is convex, as given.

(b) Since the mirror is convex, the radius of curvature is negative, so r = — 40 cm. Then,
the focal length is f = r/2 = (-40 cm)/2 =-20 cm.

(c) The radius of curvature is r =— 40 cm.

(d) The fact that the mirror is convex also means that we need to insert a minus sign in
front of the “4.0” value given for i, since the image in this case must be virtual. Eq. 34-4
leads to
D= if _ (4.0 cm)(—20 cm) _50cm
i—f —-4.0cm—(-20 cm)

(e) As noted above, i =—4.0 cm.
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(f) The magnification ism = —i/ p=—(—4.0 cm) /(5.0 cm) = +0.80.

(9) The image is virtual (V) since i < 0.

(h) The image is upright, or not inverted (NI).

(i) A virtual image is formed on the opposite side of the mirror from the object.

1
LEARN The situation in this problem is w
similar to that illustrated in Fig. 34-11(c). , —

The mirror is convex, and its image is virtual o] [ 1
and upright. ‘

-

30. We note that there is “singularity” in this graph (Fig. 34-36) like there was in Fig. 34-
35), which tells us that there is no point where p = f (which causes Eq. 34-9 to “blow
up”). Since p > 0, as usual, then this means that the focal length is not positive. We
know it is not a flat mirror since the curve shown does decrease with p, so we conclude it
is a convex mirror. \We examine the point where m = 0.50 and p = 10 cm. Combining Eq.
34-7 and Eq. 34-9 we obtain

This yields f = =10 cm (verifying our expectation that the mirror is convex). Now, for
p=21cm, we findm=-f/(p-f) =+0.32.

31. (a) From Egs. 34-3 and 34-4, we obtain

pf pr

I:p—f:2p—r'

Differentiating both sides with respect to time and using vo = —dp/dt, we find

_di_d( pr j__rvo(zp_r)"'zvopr_( r JZV
o

V,=—=—
dt dt\2p-r 2p-r

(2p-r)’

15¢cm
2(30 cm)—15cm

2
(b) If p =30 cm, we obtain v, :{ } (50 cm/s) =056 cm/s.

15cm
2(8.0 cm)—15cm

2
(c) If p=8.0 cm, we obtain v, =[ } (50 cm/s) =11x10° cm/s.
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15cm
2(1.0cm)—-15cm

2
(d) If p=1.0 cm, we obtain v, :{ } (5.0cm/s)=6.7cmis.

32. In addition to n; =1.0, we are given (a) n,= 1.5, (b) p=+10cm, and (c) r = +30 cm.

15-10 B 10
30cm 10cm

-1
(d) Equation 34-8 yields i =n, (”2 ;”l —”—plj ~15 ( ]: 18 cm.

(e) The image is virtual (V) and upright since i<0.

(f) The object and its image are on the same side. The ray diagram would be similar to
Fig. 34-12(c) in the textbook.

33. THINK An image is formed by refraction through a spherical surface. A negative
value for the image distance implies that the image is virtual.

EXPRESS Let n; be the index of refraction of the material where the object is located, n,
be the index of refraction of the material on the other side of the refracting surface, and r
be the radius of curvature of the surface. The image distance i is related to the object
distance p by Eq. 34-8:

The value of i is positive for a real images, and negative for virtual images.

ANALYZE In addition to n; =1.0, we are given (a) n,= 1.5, (b) p = +10 cm, and (d)
i=-13cm.

(c) Eq. 34-8 yields

-1 1
r=(n,—n,) [&4‘&} :(1.5—1.0)( 10 15 j =-32.5cm=~-33cm.
P

i 10cm -13cm
(e) The image is virtual (V) and upright.

(f) The object and its image are on the same side.

LEARN The ray diagram for this problem is similar "
to the one shown in Fig. 34-12(e). Here refraction Virtual

always directs the ray away from the central axis; the —

images are always virtual, regardless of the object 0 I J
distance. " fi2
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34. In addition to n; =1.5, we are given (b) p = +100, (c) r =-30 cm, and (d) i=+600cm.

(a) We manipulate Eq. 34-8 to separate the indices:

n[l_}]_ nony
Lr i pr

which implies n, = 1.0.

ng( 1 1 jz(1-5+1-5) — n, (~0.035)=—0.035
-30 600 100 -30

(e) The image is real (R) and inverted.

(f) The object and its image are on the opposite side. The ray diagram would be similar to
Fig. 34-12(b) in the textbook.

35. THINK An image is formed by refraction through a spherical surface. Whether the
image is real or virtual depends on the relative values of n; and n,, and on the geometry.

EXPRESS Let n; be the index of refraction of the material where the object is located, n,
be the index of refraction of the material on the other side of the refracting surface, and r
be the radius of curvature of the surface. The image distance i is related to the object
distance p by Eq. 34-8:

The value of i is positive for a real images, and negative for virtual images.

ANALYZE In addition to n; =1.5, we are also given (a) n,= 1.0, (b) p =+70 cm, and (c)
r = +30 cm. Notice that n, <n,.

(d) We manipulate Eq. 34-8 to find the image distance:

-1 -1
ion (=M M) (0= 1S\ e
r p 30cm 70 cm

(e) The image is virtual (V) and upright.
(f) The object and its image are on the same side.

LEARN The ray diagram for this problem is similar to
the one shown in Fig. 34-12(f). Here refraction always
directs the ray away from the central axis; the images
are always virtual, regardless of the object distance.

Virtual =~
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36. In addition to n; =1.5, we are given (a) n;=1.0, (¢) r=-30cmand (d) i=—7.5cm.
(b)We manipulate Eq. 34-8 to find p:
n 1.5

P=n Tn n, L0-15_ 1.0
r j —30cm -7.5cm

=10 cm.

(e) The image is virtual (V) and upright.

(f) The object and its image are on the same side. The ray diagram would be similar to
Fig. 34-12(d) in the textbook.

37. In addition to n; =1.5, we are given (a) n,=1.0, (b) p=+10cm, and (d) i=-6.0cm.

(c) We manipulate Eq. 34-8 to find r:

-1 1
r:(nz—nl)[n—g+%j :(1.0_1.5)(101'5’m+ 6160ch ~30cm.

(e) The image is virtual (V) and upright.

(f) The object and its image are on the same side. The ray diagram would be similar to
Fig. 34-12(f) in the textbook, but with the object and the image located closer to the
surface.

38. In addition to n; =1.0, we are given (a) n,=1.5, (c) r =+30 cm, and (d) i=+600.

| o 1.0
(b) Equation 34-8 gives p= n,-n n, 15-1.0_ 15

r i 30cm 600cm

=71lcm.

(e) With i>0, the image is real (R) and inverted.

(f) The object and its image are on the opposite side. The ray diagram would be similar to
Fig. 34-12(a) in the textbook.

39. (a) We use Eq. 34-8 and note that n; = n,; =1.00, N, =n, p=o0, and i = 2r:

100 n n-1
o 2r r

We solve for the unknown index; n = 2.00.

(b) Now i = r so Eq. 34-8 becomes
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which is not valid unless n— oo or r —oo. It is impossible to focus at the center of the
sphere.

40. We use Eq. 34-8 (and Fig. 34-11(d) is useful), with n; = 1.6 and n, = 1 (using the
rounded-off value for air):
16 +} 1-16

? i r

Using the sign convention for r stated in the paragraph following Eq. 34-8 (so that
r=-5.0 cm), we obtain i = —2.4 cm for objects at p = 3.0 cm. Returning to Fig. 34-38
(and noting the location of the observer), we conclude that the tabletop seems 7.4 cm
away.

41. (a) We use Eq. 34-10:

=lo-n[ 22| <Jas-a(2- )l <o

(b) From Eq. 34-9,
(1 1) (1 1)
l=| ——— = — = 00
f p 40cm 40 cm

42. Combining Eq. 34-7 and Eq. 34-9, we have m( p —f) = —f. The graph in Fig. 34-39
indicates that m = 0.5 where p = 15 cm, so our expression yields f = —15 cm. Plugging
this back into our expression and evaluating at p = 35 cm yields m = +0.30.

43. We solve Eq. 34-9 for the image distance:

(1 1) P
f p p—f
The height of the image is

i fh
» "1 p)® p—f 27m-0075m

=50 mm.

44, The singularity the graph (where the curve goes to o) is at p = 30 cm, which implies
(by Eqg. 34-9) that f = 30 cm > 0 (converging type lens). For p = 100 cm, Eq. 34-9 leads
toi= +43 cm.

45, Let the diameter of the Sun be ds and that of the image be d;. Then, Eqg. 34-5 leads to
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i f (20.0x10%m)(2)(6.96x10°m)
d=|m|d, =| — |d,~| — |d, = - =1.86x10°m=1.86 mm.
p p 1.50x10"m

46. Since the focal length is a constant for the whole graph, then 1/p + 1/i = constant.
Consider the value of the graph at p = 20 cm; we estimate its value there to be —10 cm.
Therefore, 1/20 + 1/(-10) = 1/70 + 1/ipew. Thus, inew =16 cm.

47. THINK Our lens is of double-convex type. We apply lens maker’s equation to
analyze the problem.

EXPRESS The lens maker’s equation is given by Eq. 34-10:

el

where f is the focal length, n is the index of refraction, ry is the radius of curvature of the
first surface encountered by the light and r, is the radius of curvature of the second
surface. Since one surface has twice the radius of the other and since one surface is
convex to the incoming light while the other is concave, set r, = —2r; to obtain

%z(n_l)(LL}M_

o 2r 2r,
ANALYZE (a) We solve for the smaller radius r:

. _3(-Df _3(5-1)(60 mm)

1 =45 mm.
2 2

(b) The magnitude of the larger radius is |r,|=2r, =90 mm.

LEARN An image of an object can be formed with a lens because it can bend the light
rays, but the bending is possible only if the index of refraction of the lens is different
from that of its surrounding medium.

48. Combining Eq. 34-7 and Eq. 34-9, we have m(p —f) = —f. The graph in Fig. 34-42
indicates that m = 2 where p = 5 cm, so our expression yields f = 10 cm. Plugging this
back into our expression and evaluating at p = 14 cm yields m = -2.5.

49. THINK The image is formed on the screen, so the sum of the object distance and the
image distance is equal to the distance between the slide and the screen.

EXPRESS Using Eq. 34-9:
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and noting that p + i = d = 44 cm, we obtain p? — dp + df = 0.

ANALYZE The focal length is f = 11 cm. Solving the quadratic equation, we find the
solution to p to be

p= %(d +./d? —4df) =22 cmi%\/(44 cm)? — 4(44 cm)(11 cm) = 22 cm.

LEARN Since p > f, the object is outside the focal length. The image distance isi=d—p
=44 -22 =22 cm.

50. We recall that for a converging (C) lens, the focal length value should be positive ( f =
+4 cm).

(a) Equation 34-9 gives i = pf/(p —f) =+5.3 cm.

(b) Equation 34-7 givesm = —i/ p=-0.33.

(c) The fact that the image distance i is a positive value means the image is real (R).
(d) The fact that the magnification is a negative value means the image is inverted ().
(e) The image is on the opposite side of the object (see Fig. 34-16(a)).

51. We recall that for a converging (C) lens, the focal length value should be positive ( f =
+16 cm).

(a) Equation 34-9 gives i = pf/(p—f) =—-48 cm.

(b) Equation 34-7 givesm = —i/ p = +4.0.

(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).

(e) The image is on the same side as the object (see Fig. 34-16(b)).

52. We recall that for a converging (C) lens, the focal length value should be positive ( f =
+35 cm).

(a) Equation 34-9 gives i = pf/(p —f) =-88 cm.
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(b) Equation 34-7 give m = —i/ p=+3.5.

(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).

(e) The image is on the same side as the object (see Fig. 34-16(b)).

53. THINK For a diverging (D) lens, the focal length value is negative.

EXPRESS The object distance p, the image distance i, and the focal length f are related
by Eq. 34-9:

The value of i is positive for a real images, and negative for virtual images. The
corresponding lateral magnification is m=—i/ p. The value of m is positive for upright

(not inverted) images, and is negative for inverted images.
ANALYZE For this lens, we have f =—12 cm and p = +8.0 cm.

pf _ (8.0 cm)(-12 cm) __48cm.
p—f 8.0cm—-(-12) cm

(a) The image distance is i =

(b) The magnification ism = —i/ p=—(—4.8 cm)/(8.0 cm) = +0.60.

(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).

(e) The image is on the same side as the object.

LEARN The ray diagram for this problem is 1
similar to the one shown in Fig. 34-16(c). The rt,_
i

lens is diverging, forming a virtual image with T z
the same orientation as the object, and on the B 1 —_7
same side as the object. Ti—a

54. We recall that for a diverging (D) lens, the focal length value should be negative ( f
=-6 cm).

(a) Equation 34-9 gives i = pf/(p —f) =-3.8 cm.

(b) Equation 34-7 givesm = —i/ p = +0.38.
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(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).

(e) The image is on the same side as the object (see Fig. 34-16(c)).

55. THINK For a diverging (D) lens, the value of the focal length is negative.

EXPRESS The object distance p, the image distance i, and the focal length f are related
by Eq. 34-9:
1 11
—_— = +T .
f i

The value of i is positive for a real images, and negative for virtual images. The
corresponding lateral magnification is m=—i/ p. The value of m is positive for upright

(not inverted) images, and is negative for inverted images.
ANALYZE For this lens, we have f =-14 cm and p = +22.0 cm.

pf  (22cm)(-14 cm)

(@) The image distance is i = = =-8.6 cm.
p—f 22cm-(-14) cm

(b) The magnification ism = —i/ p=—(-8.6 cm) /(22 cm) = +0.39.

(c) The fact that the image distance is a negative value means the image is virtual (V).

(d) A positive value of magnification means the image is not inverted (NI).

(e) The image is on the same side as the object.

LEARN The ray diagram for this problem is similar to the one shown in Fig. 34-16(c).
The lens is diverging, forming a virtual image with the same orientation as the object, and

on the same side as the object.

56. We recall that for a diverging (D) lens, the focal length value should be negative ( f
=-31 cm).

(a) Equation 34-9 gives i = pf/( p—f) =-8.7 cm.
(b) Equation 34-7 givesm = —i/ p=+0.72.
(c) The fact that the image distance is a negative value means the image is virtual (V).

(d) A positive value of magnification means the image is not inverted (NI).
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(e) The image is on the same side as the object (see Fig. 34-16(c)).
57. THINK For a converging (C) lens, the focal length value is positive.

EXPRESS The object distance p, the image distance i, and the focal length f are related
by Eq. 34-9:
1

_=_+T'
f i

The value of i is positive for a real images, and negative for virtual images. The
corresponding lateral magnification is m=—i/ p. The value of m is positive for upright

(not inverted) images, and is negative for inverted images.
ANALYZE For this lens, we have f = +20 cm and p = +45.0 cm.

(a) The image distance is i = pf = (45 cm)(20 cm) =+36 cm.
p—f 45cm-20cm

(b) The magnification is m = —i/ p=—(+36 cm) /(45 cm) =-0.80.

(c) The fact that the image distance is a positive value means the image is real (R).
(d) A negative value of magnification means the image is inverted ().

(e) The image is on the opposite side of the object.

LEARN The ray diagram for this problem is similar to the one shown in Fig. 34-16(a).
The lens is converging, forming a real, inverted image on the opposite side of the object.

58. (a) Combining Eq. 34-9 and Eq. 34-10 gives i = —63 cm.

(b) Equation 34-7 givesm = —i/ p=+2.2.

(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).

(e) The image is on the same side as the object.

59. THINK Since r; is positive and r; is negative, our lens is of double-convex type. We
apply lens maker’s equation to analyze the problem.

EXPRESS The lens maker’s equation is given by Eq. 34-10:
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el

where f is the focal length, n is the index of refraction, ry is the radius of curvature of the
first surface encountered by the light and r, is the radius of curvature of the second
surface. The object distance p, the image distance i, and the focal length f are related by
Eq. 34-9:

ANALYZE For this lens, we have r;=+30 cm, r,=—42cm,n=155and p = +75 cm.

(@) The focal length is
nr, B (+30 cm)(—42 cm)

T (n-1(r,—r) (155-1)(—42 cm—30 cm)

=+31.8cm.

Thus, the image distance is i = pf = (75 cm)(31.8 cm) =+55 cm.

p—f 75cm-31.8cm

(b) Eq. 34-7 give m = —i/ p=—(55 cm) /(75 cm) = -0.74.
(c) The fact that the image distance is a positive value means the image is real (R).
(d) The fact that the magnification is a negative value means the image is inverted ().

(e) The image is on the side opposite from the object.

LEARN The ray diagram for this problem is > l

similar to the one shown in Fig. 34-16(a). The "]\\\ F

lens is converging, forming a real, inverted R 2 I
image on the opposite side of the object. ———

60. (a) Combining Eq. 34-9 and Eq. 34-10 gives i = 26 cm.

(b) Equation 34-7 givesm = —i/ p=+4.3.

(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).

(e) The image is on the same side as the object.
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61. (a) Combining Eq. 34-9 and Eq. 34-10 gives i =—18 cm.

(b) Equation 34-7 gives m = —i/ p=+0.76.

(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).

(e) The image is on the same side as the object.

62. (a) Equation 34-10 yields
hr

=——==  —430cm
(n _1)(r2 - rl)

Since f > 0, this must be a converging (“C”) lens. From Eq. 34-9, we obtain
1 1

1.1 1 1
f p 30cm 10cm

i =-15cm.

(b) Equation 34-6 yields m = —i/ p=—(-15 cm)/(10 cm) = +1.5.
(c) Since i <0, the image is virtual (V).
(d) Since m > 0, the image is upright, or not inverted (NI).

(e) The image is on the same side as the object. The ray diagram is similar to Fig. 34-16(b)
of the textbook.

63. (a) Combining Eq. 34-9 and Eq. 34-10 gives i =-30 cm.

(b) Equation 34-7 gives m = —i/ p=+0.86.

(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).

(e) The image is on the same side as the object.

64. (a) Equation 34-10 yields

1 -1
f :n_—l(llrl_ll r,) =-120 cm.

Since f < 0, this must be a diverging (“D”) lens. From Eq. 34-9, we obtain
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1 1

1.1 1 1
f p -120cm 10cm

i =-9.2cm.

(b) Equation 34-6 yields m = —i/ p=—(-9.2 cm)/(10 cm) = +0.92.
(c) Since i <0, the image is virtual (V).
(d) Since m > 0, the image is upright, or not inverted (NI).

(e) The image is on the same side as the object. The ray diagram is similar to Fig. 34-16(c)
of the textbook.

65. (a) Equation 34-10 yields f :il(l/rl—ll r,)" =-30 cm. Since f < 0, this must be
n_
a diverging (“D”) lens. From Eq. 34-9, we obtain

1 1

T1.1 1 1
f p -30cm 10cm

i =—7.5cm.

(b) Equation 34-6 yields m = —i/ p=—(-7.5 cm)/(10 cm) = +0.75.
(c) Since i <0, the image is virtual (V).
(d) Since m > 0, the image is upright, or not inverted (NI).

(e) The image is on the same side as the object. The ray diagram is similar to Fig. 34-16(c)
of the textbook.

66. (a) Combining Eq. 34-9 and Eq. 34-10 gives i =-9.7 cm.

(b) Equation 34-7 gives m = —i/ p=+0.54.

(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).

(e) The image is on the same side as the object.

67. (a) Combining Eq. 34-9 and Eq. 34-10 gives i = +84 cm.

(b) Equation 34-7 givesm = —i/ p=-1.4.

(c) The fact that the image distance is a positive value means the image is real (R).
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(d) The fact that the magnification is a negative value means the image is inverted ().
(e) The image is on the side opposite from the object.
68. (a) A convex (converging) lens, since a real image is formed.

(b) Sincei=d-pand i/p = 1/2,

(c) The focal length is

] 1
i "p) “\d/3 2d/3 9

69. (a) Since f > 0, this is a converging lens (“C”).

(d) Equation 34-9 gives
1 1
1.1 1 1

f p 10cm 50cm

i =-10cm.

(e) From Eg. 34-6, m = —(-10 cm)/(5.0 cm) = +2.0.

(f) The fact that the image distance i is a negative value means the image is virtual (V).
(9) A positive value of magnification means the image is not inverted (NI).

(h) The image is on the same side as the object.

70. (a) The fact that m < 1 and that the image is upright (not inverted: NI) means the lens
is of the diverging type (D) (it may help to look at Fig. 34-16 to illustrate this).

(b) A diverging lens implies that f = —20 cm, with a minus sign.

(d) Equation 34-9 gives i =-5.7 cm.

(e) Equation 34-7 gives m = —i/ p=+0.71.

() The fact that the image distance i is a negative value means the image is virtual (V).

(h) The image is on the same side as the object.
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71. (a) Eq. 34-7 yields i = —-mp =—(0.25)(16 cm) = —4.0 cm. Equation 34-9 gives f = -5.3
cm, which implies the lens is of the diverging type (D).

(b) From (a), we have f =-5.3 cm.

(d) Similarly, i =-4.0 cm.

(f) The fact that the image distance i is a negative value means the image is virtual (V).
(9) A positive value of magnification means the image is not inverted (NI).

(h) The image is on the same side as the object.

72. (a) Equation 34-7 readily yields i = +4.0 cm. Then Eq. 34-9 gives f = +3.2 cm, which
implies the lens is of the converging type (C).

(b) From (a), we have f = +3.2 cm.

(d) Similarly, i = +4.0 cm.

(f) The fact that the image distance is a positive value means the image is real (R).

(9) The fact that the magnification is a negative value means the image is inverted ().

(h) The image is on the opposite side of the object.

73. (a) Using Eq. 34-6 (which implies the image is inverted) and the given value of p, we
find i = -mp = +5.0 cm; it is a real image. Equation 34-9 then yields the focal length: f =
+3.3 cm. Therefore, the lens is of the converging (“C”) type.

(b) From (a), we have f = +3.3 cm.

(d) Similarly, i = —mp = +5.0 cm.

(f) The fact that the image distance is a positive value means the image is real (R).

(9) The fact that the magnification is a negative value means the image is inverted (1).

(h) The image is on the side opposite from the object. The ray diagram is similar to Fig.
34-16(a) of the textbook.

74. (b) Since this is a converging lens (“C”) then f > 0, so we should put a plus sign in
front of the “10” value given for the focal length.

(d) Equation 34-9 gives
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1 1

1.1 1 1
f p 10cm 20cm

i =+20cm.

(e) From Eg. 34-6, m =—-20/20 = -1.0.

(f) The fact that the image distance is a positive value means the image is real (R).

(9) The fact that the magnification is a negative value means the image is inverted ().

(h) The image is on the side opposite from the object.

75. THINK Since the image is on the same side as the object, it must be a virtual image.
EXPRESS The object distance p, the image distance i, and the focal length f are related

by Eq. 34-9:

1
_:_+T'
f i

The value of i is positive for a real images, and negative for virtual images. The
corresponding lateral magnification is m=—i/ p. The value of m is positive for upright

(not inverted) images, and is negative for inverted images.

ANALYZE (a) Since the image is virtual (on the same side as the object), the image
distance i is negative. By substituting i = fp/(p— f) into m=—i/ p, we obtain

The fact that the magnification is less than 1.0 implies that f must be negative. This
means that the lens is of the diverging (“D”) type.

(b) Thus, the focal length is f =—10 cm.

pf  (5.0cm)(-10cm)

(d) The image distance is i = = =-3.3cm.
p—f 5.0cm—(-10 cm)

(e) The magnification is m=—i/ p=—(-3.3 cm) /(5.0 cm)=+0.67 .
(f) The fact that the image distance i is a negative value means the image is virtual (V).

(9) A positive value of magnification means the image is not inverted (NI).
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LEARN The ray diagram for this problem is similar to the one shown in Fig. 34-16(c).
The lens is diverging, forming a virtual image with the same orientation as the object, and
on the same side as the object.

76. (a) We are told the magnification is positive and greater than 1. Scanning the single-
lens-image figures in the textbook (Figs. 34-16, 34-17, and 34-19), we see that such a
magnification (which implies an upright image larger than the object) is only possible if
the lens is of the converging (“C”) type (and if p <f).

(b) We should put a plus sign in front of the “10” value given for the focal length.
1

1 j—
1.1 1 _ 1
f p 10cm 5.0cm

(d) Equation 34-9 gives i= =-10cm.

(e) m=—i/ p=+2.0.

(f) The fact that the image distance i is a negative value means the image is virtual (V).
(9) A positive value of magnification means the image is not inverted (NI).

(h) The image is on the same side as the object.

77. THINK A positive value for the magnification m means that the image is upright (not
inverted). In addition, m > 1 indicates that the image is enlarged.

EXPRESS The object distance p, the image distance i, and the focal length f are related
by Eq. 34-9:

The value of i is positive for a real images, and negative for virtual images. The
corresponding lateral magnification is m=—i/ p. The value of m is positive for upright

(not inverted) images, and is negative for inverted images.
ANALYZE (a) Combining Egs. 34-7 and 34-9, we find the focal length to be

p _ 1l6cm

f= = =80 cm.
1-1/m 1-1/1.25

Since the value of f is positive, the lens is of the converging type (C).
(b) From (a), we have f = +80 cm.

(d) The image distance is i =—mp =—(1.25)(16 cm) =-20 cm.
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(e) The magnification is m = + 1.25, as given.

(f) The fact that the image distance i is a negative value means the image is virtual (V).
(9) A positive value of magnification means the image is not inverted (NI).

(h) The image it is on the same side as the object.

LEARN The ray diagram for this problem is similar to the one shown in Fig. 34-16(b).
The lens is converging. With the object placed inside the focal point (p < f), we have a
virtual image with the same orientation as the object, and on the same side as the object.
78. (a) We are told the absolute value of the magnification is 0.5 and that the image was
upright (NI). Thus, m = +0.5. Using Eqg. 34-6 and the given value of p, we find i = -5.0
cm; it is a virtual image. Equation 34-9 then vyields the focal length: f = —10 cm.
Therefore, the lens is of the diverging (“D”) type.

(b) From (a), we have f =10 cm.

(d) Similarly, i =-5.0 cm.

(e) m = +0.5, with a plus sign.

(f) The fact that the image distance i is a negative value means the image is virtual (V).

(h) The image is on the same side as the object.

79. (a) The fact that m > 1 means the lens is of the converging type (C) (it may help to
look at Fig. 34-16 to illustrate this).

(b) A converging lens implies f = +20 cm, with a plus sign.

(d) Equation 34-9 then gives i =-13 cm.

(e) Equation 34-7 givesm = —i/ p=+1.7.

(f) The fact that the image distance i is a negative value means the image is virtual (V).
(9) A positive value of magnification means the image is not inverted (NI).

(h) The image is on the same side as the object.

80. (a) The image from lens 1 (which has f, = +15 cm) is at i; = =30 cm (by Eq. 34-9).

This serves as an “object” for lens 2 (which has f, = +8 cm) with p, = d — i, = 40 cm.
Then Eq. 34-9 (applied to lens 2) yields i,= +10 cm.
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(b) Equation 34-11 yields M = mymy =(—i,/ p,)(-,/ p,) =i,/ p,p,=—0.75.

(c) The fact that the (final) image distance is a positive value means the image is real (R).
(d) The fact that the magnification is a negative value means the image is inverted ().

(e) The image is on the side opposite from the object (relative to lens 2).

81. (a) The image from lens 1 (which has f; = +8 cm) is at i; = 24 cm (by Eq. 34-9). This
serves as an “object” for lens 2 (which has f, = +6 cm) with p, =d —i; =8 cm. Then Eq.
34-9 (applied to lens 2) yields i, = +24 cm.

(b) Equation 34-11 yields M = mimy =(—i,/ p,))(—i,/ p,) =i,/ p,p,= +6.0.

(c)The fact that the (final) image distance is a positive value means the image is real (R).
(d) The fact that the magnification is positive means the image is not inverted (NI).

(e) The image is on the side opposite from the object (relative to lens 2).

82. (a) The image from lens 1 (which has f; = —6 cm) is at i, = —-3.4 cm (by Eq. 34-9).
This serves as an “object” for lens 2 (which has f, = +6 cm) with p, = d — i, = 15.4 cm.
Then Eq. 34-9 (applied to lens 2) yields i,= +9.8 cm.

(b) Equation 34-11 yields M = -0.27.

(c) The fact that the (final) image distance is a positive value means the image is real (R).
(d) The fact that the magnification is a negative value means the image is inverted ().

(e) The image is on the side opposite from the object (relative to lens 2).

83. THINK In a system with two lenses, the image formed by lens 1 serves the “object”
for lens 2.

EXPRESS To analyze two-lens systems, we first ignore lens 2, and apply the standard
procedure used for a single-lens system. The object distance p;, the image distance iy, and
the focal length f; are related by:

Next, we ignore the lens 1 but treat the image formed by lens 1 as the object for lens 2.
The object distance p; is the distance between lens 2 and the location of the first image.
The location of the final image, i,, is obtained by solving
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1 1 1
— =t

f, b, i
where f, is the focal length of lens 2.

ANALYZE (a) Since lens 1 is converging, f, = +9 cm, and we find the image distance to
be

p.f, (20 cm)(9 cm)
p—f, 20cm-9cm

=16.4 cm.

L

This serves as an “object” for lens 2 (which has f, = +5 cm) with an object distance given
by p, = d — i, = 8.4 cm. The negative sign means that the “object” is behind lens 2.
Solving the lens equation, we obtain

p,f,  (-8.4cm)(5.0 cm)
p,—f, —-84cm-50cm

=3.13 cm.

I,

(b) Te overall magnification is M = mim, =(—i,/ p,)(—i,/ p,) =i,/ p,p,=—-0.31.

(c) The fact that the (final) image distance is a positive value means the image is real (R).
(d) The fact that the magnification is a negative value means the image is inverted (I).

(e) The image it is on the side opposite from the object (relative to lens 2).

LEARN Since this result involves a negative value for p, (and perhaps other “non-
intuitive” features), we offer a few words of explanation: lens 1 is converging the rays
towards an image (that never gets a chance to form due to the intervening presence of
lens 2) that would be real and inverted (and 8.4 cm beyond lens 2’s location). Lens 2, in
a sense, just causes these rays to converge a little more rapidly, and causes the image to
form a little closer (to the lens system) than if lens 2 were not present.

84. (a) The image from lens 1 (which has f; = +12 cm) is at i; = +60 cm (by Eq. 34-9).
This serves as an “object” for lens 2 (which has f, = +10 cm) with p, =d — i, = 7 cm.
Then Eq. 34-9 (applied to lens 2) yields i,=-23 cm.

(b) Equation 34-11 yields M = mim, =(—i,/ p,)(—i,/ p,) =i, / p,p,=-13.

(c) The fact that the (final) image distance is negative means the image is virtual (V).

(d) The fact that the magnification is a negative value means the image is inverted ().

(e) The image is on the same side as the object (relative to lens 2).
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85. (a) The image from lens 1 (which has f; = +6 cm) is at i; =—12 cm (by Eq. 34-9). This
serves as an “object” for lens 2 (which has f, = -6 cm) with p, =d —i; =20 cm. Then Eq.
34-9 (applied to lens 2) yields i,=—4.6 cm.

(b) Equation 34-11 yields M = +0.69.

(c) The fact that the (final) image distance is negative means the image is virtual (V).

(d) The fact that the magnification is positive means the image is not inverted (NI).

(e) The image is on the same side as the object (relative to lens 2).

86. (a) The image from lens 1 (which has f; = +8 cm) is at i; = +24 cm (by Eq. 34-9). This
serves as an “object” for lens 2 (which has f, = -8 cm) with p, =d —i; =6 cm. Then Eq.
34-9 (applied to lens 2) yields i,=-3.4 cm.

(b) Equation 34-11 yields M =-1.1.

(c) The fact that the (final) image distance is negative means the image is virtual (V).

(d) The fact that the magnification is a negative value means the image is inverted ().

(e) The image is on the same side as the object (relative to lens 2).

87. (a) The image from lens 1 (which has f; = —12 cm) is at i; = —7.5 cm (by Eq. 34-9).
This serves as an “object” for lens 2 (which has f, = -8 cm) with

p,=d—1i;=17.5cm.
Then Eq. 34-9 (applied to lens 2) yields i,=-5.5 cm.
(b) Equation 34-11 yields M = +0.12.
(c) The fact that the (final) image distance is negative means the image is virtual (V).
(d) The fact that the magnification is positive means the image is not inverted (NI).
(e) The image is on the same side as the object (relative to lens 2).
88. The minimum diameter of the eyepiece is given by

dyp 75 mm
m, 36

d = =21 mm.

89. THINK The compound microscope shown in Fig. 34-20 consists of an objective and
an eyepiece. It’s used for viewing small objects that are very close to the objective.
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EXPRESS Let fq, be the focal length of the objective, and fs, be the focal length of the
eyepiece. The distance between the two lenses is

L:S+fob+fey,

where s is the tube length. The magnification of the objective is

and the angular magnification produced by the eyepiece is m, = (25 cm)/ f,.

ANALYZE (a) The tube length is
s=L—fop—fey =25.0cm —4.00 cm —8.00 cm = 13.0 cm.
(b) We solve (1/p) + (1/i) = (1/fop) for p. The image distance is

i=fp+s5=4.00cm+ 13.0cm=17.0 cm,
o)

o- if, _(17.0cm)(4.00cm)

=- = =5.23cm.
i—f, 17.0cm-4.00cm

(c) The magnification of the objective is m= L 17.0 cm =-3.25.

p 523cm

25cm  25cm
f  8.00cm

ey

(d) The angular magnification of the eyepiece is m, = =313

(e) The overall magnification of the microscope is
M =mm, = (-325)(313) = -10.2.
LEARN The objective produces a real image | of the object inside the focal point of the

eyepiece (i > fyy). Image | then serves as the object for the eyepiece, which produces a
virtual image I seen by the observer.

-1 -1
90. (a) Now, the lens-film distanceis i =[ ~—+ | =[—t —— 1 | _s3em
f p 50cm 100cm

(b) The change in the lens-film distance is 5.3 cm — 5.0 cm = 0.30 cm.



1490 CHAPTER 34

91. THINK This problem is about human eyes. We model the cornea and eye lens as a
single effective thin lens, with image formed at the retina.

EXPRESS When the eye is relaxed, its lens focuses far-away objects on the retina, a
distance i behind the lens. We set p = oo in the thin lens equation to obtain 1/i = 1/f, where
f is the focal length of the relaxed effective lens. Thus, i = f = 2.50 cm. When the eye
focuses on closer objects, the image distance i remains the same but the object distance
and focal length change.

ANALYZE (a) If p is the new object distance and f ' is the new focal length, then

11 1
—+S=—.
i fr
pf  (40.0cm)(250cm)

We substitute i = fand solve forf': f'= = =2.35cm.
f+p 400cm+2.50cm

(b) Consider the lens maker’s equation
1oyt L
f n

where r; and r; are the radii of curvature of the two surfaces of the lens and n is the index
of refraction of the lens material. For the lens pictured in Fig. 34-46, r; and r, have about
the same magnitude, r; is positive, and r; is negative. Since the focal length decreases, the
combination (1/r;) — (1/r;) must increase. This can be accomplished by decreasing the
magnitudes of both radii.

LEARN When focusing on an object near the eye, the lens bulges a bit (smaller radius of
curvature), and its focal length decreases.

92. We refer to Fig. 34-20. For the intermediate image, p = 10 mm and

I = (fob + S + fey) — fey = 300 m — 50 mm = 250 mm,
so
11

fo 1

1 N 1
250 mm 10 mm

+% = f, =9.62 mm,

and
S = (fop + 5 + fey) — fop — fey = 300 mm — 9.62 mm — 50 mm = 240 mm.

Then from Eq. 34-14,

_ s 25cm (240 mm |( 150 mm _ 195
- ~ \962mm){ 50mm ) T
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93. (a) Without the magnifier, 8= h/P, (see Fig. 34-19). With the magnifier, letting

i=— il =P,
we obtain
1 11 1 1 1 1
_:____:_+__:_+_
p f f | f P
Consequently,
¢ hip 1/f+1/P P, 25¢cm
m,=—= = =1+"=1+ .
6 hl/P 1/ P, f f
With f= 10 cm, m, =14+ 2" _35
10cm
(b) In the case where the image appears at infinity, let i=—|i|>— , so that

1/ p+1/i=1/p=1/f , we have
6" h/ip 1/f P, 25cm

n

m,=—= =——=
0 hiP, 1P, f f

25¢cm

Withf=10cm, m, =
10 cm

2.5.

94. By Eq. 34-9, 1/i + 1/p is equal to constant (1/f ). Thus,

1/(=10) + 1/(15) = Linew + 1/(70).
This leads to inew = —21 cm.

95. A converging lens has a positive-valued focal length, so f; = +8 cm, f, = +6 cm, and f,
= +6 cm. We use Eq. 34-9 for each lens separately, “bridging the gap” between the results
of one calculation and the next with p, =d;, —i; and p; = d,; —i,. We also use Eq. 34-7
for each magnification (m,, etc.), and m = m;m,m; (a generalized version of Eq. 34-11)
for the net magnification of the system. Our intermediate results for image distances are
I; =24 cmand i, =12 cm. Our final results are as follows:

(@) i3 =+8.6 cm.

(b) m= +2.6.

(c) The image is real (R).

(d) The image is not inverted (NI).

(e) It is on the opposite side of lens 3 from the object (which is expected for a real final
image).
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96. A converging lens has a positive-valued focal length, and a diverging lens has a
negative-valued focal length. Therefore, f, = — 6.0 cm, f, = +6.0 cm, and f; = +4.0 cm. We
use Eg. 34-9 for each lens separately, “bridging the gap” between the results of one
calculation and the next with p, = d;; — iy and p; = d,; — i,. We also use Eq. 34-7 for
each magnification (m,, etc.), and m = mym,m; (a generalized version of Eq. 34-11) for
the net magnification of the system. Our intermediate results for image distances are i,
=-2.4cmand i, =12 cm. Our final results are as follows:

(@ iz=—4.0cm.

(b)ym=-1.2.

(c) The image is virtual (V).

(d) The image is inverted (I).

(e) It is on the same side as the object (relative to lens 3) as expected for a virtual image.
97. A converging lens has a positive-valued focal length, so f, = +6.0 cm, f, = +3.0 cm,
and f; = +3.0 cm. We use Eq. 34-9 for each lens separately, “bridging the gap” between
the results of one calculation and the next with p, =d;, —i; and p; =dy» —i,. We also use
Eq. 34-7 for each magnification (my, etc.), and m = mym, m; (a generalized version of Eq.
34-11) for the net magnification of the system. Our intermediate results for image
distances are i; = 9.0 cm and i, = 6.0 cm. Our final results are as follows:

(@) i3=+7.5cm.

(b) m=-0.75.

(c) The image is real (R).

(d) The image is inverted (1).

(e) It is on the opposite side of lens 3 from the object (which is expected for a real final
image).

98. A converging lens has a positive-valued focal length, so f, = +6.0 cm, f, = +6.0 cm,
and f; = +5.0 cm. We use Eq. 34-9 for each lens separately, “bridging the gap” between
the results of one calculation and the next with p, =d;, —i; and p; = d,; —i,. We also use
Eq. 34-7 for each magnification (m,, etc.), and m = mym,m; (a generalized version of Eq.
34-11) for the net magnification of the system. Our intermediate results for image
distances are i; =—3.0 cm and i, = 9.0 cm. Our final results are as follows:

(@) i3 =+10cm.

(b) m = +0.75.
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(c) The image is real (R).
(d) The image is not inverted (NI).

(e) It is on the opposite side of lens 3 from the object (which is expected for a real final
image).

99. A converging lens has a positive-valued focal length, and a diverging lens has a
negative-valued focal length. Therefore, f, = — 8.0 cm, f, = — 16 cm, and f; = +8.0 cm.
We use Eg. 34-9 for each lens separately, “bridging the gap” between the results of one
calculation and the next with p, = d;; —i;and ps = d,; — i, We also use Eq. 34-7 for
each magnification (m,, etc.), and m = mym,m; (a generalized version of Eq. 34-11) for

the net magnification of the system. Our intermediate results for image distances are i,
=-4.0 cmand i, =-6.86 cm. Our final results are as follows:

(@) i3 =+24.2 cm.

(b) m=-0.58.

(c) The image is real (R).

(d) The image is inverted (I).

(e) It is on the opposite side of lens 3 from the object (as expected for a real image).

100. A converging lens has a positive-valued focal length, and a diverging lens has a
negative-valued focal length. Therefore, f; = +6.0 cm, f, =— 4.0 cm, and f; = -12 cm. We
use Eqg. 34-9 for each lens separately, “bridging the gap” between the results of one
calculation and the next with p, = d;; —i;and p; = d,3 — i,. We also use Eq. 34-7 for
each magnification (m;, etc.), and m = m;m,m; (a generalized version of Eq. 34-11) for
the net magnification of the system. Our intermediate results for image distances are i,
=-12 cmand i, =-3.33 cm. Our final results are as follows:

(@i3=-5.15cm ~-5.2cm.

(b) m=+0.285 ~ +0.29.

(c) The image is virtual (V).

(d) The image is not inverted (NI).

(e) It is on the same side as the object (relative to lens 3) as expected for a virtual image.

101. THINK In this problem we convert the Gaussian form of the thin-lens formula to
the Newtonian form.
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EXPRESS For a thin lens, the Gaussian form of the thin-lens formula gives (1/p) + (1/i)
= (1/f), where p is the object distance, i is the image distance, and f is the focal length. To
convert the formula to the Newtonian form, let p = f + x, where x is positive if the object
is outside the focal point and negative if it is inside. In addition, let i = f + X', where X' is
positive if the image is outside the focal point and negative if it is inside.

ANALYZE From the Gaussian form, we solve for | and obtain:

|——fp
e
Substituting p = f + x gives
_f(f +x)
= M
With i =f+ x', we have
2
Wi f - f(f+x)_f _ f
X X

which leads to xx' = f 2.

LEARN The Newtonain form is equivalent to the Gaussian form, and it provides another
convenient way to analyze problems involving thin lenses.

102. (a) There are three images. Two are formed by single reflections from each of the
mirrors and the third is formed by successive reflections from both mirrors. The positions
of the images are shown on the two diagrams that follow. The diagram on the left shows
the image 1;, formed by reflections from the left-hand mirror. It is the same distance
behind the mirror as the object O is in front, and lies on the line perpendicular to the
mirror and through the object. Image 1, is formed by light that is reflected from both
mirrors.

We may consider I, to be the image of I; formed by the right-hand mirror, extended. I, is
the same distance behind the line of the right-hand mirror as I is in front, and it is on the
line that is perpendicular to the line of the mirror. The diagram on the right shows image
I3, formed by reflections from the right-hand mirror. It is the same distance behind the
mirror as the object is in front, and lies on the line perpendicular to the mirror and
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through the object. As the diagram shows, light that is first reflected from the right-hand
mirror and then from the left-hand mirror forms an image at I..

(b) For € = 45°, we have two images in the second mirror caused by the object and its
“first” image, and from these one can construct two new images | and I' behind the first
mirror plane. Extending the second mirror plane, we can find two further images of | and
I' that are on equal sides of the extension of the first mirror plane. This circumstance
implies there are no further images, since these final images are each other’s “twins.” We
show this construction in the figure below. Summarizing, we find 1 + 2 + 2 + 2 =7

images in this case.

f
/I |
% o | I _
N 2N 1 | first image
/\/ [N I
b N\
7 N s |
/ X
[ L]
I i

(c) For 8= 60°, we have two images in the second mirror caused by the object and its
“first” image, and from these one can construct two new images | and I' behind the first
mirror plane. The images | and I' are each other’s “twins” in the sense that they are each
other’s reflections about the extension of the second mirror plane; there are no further
images. Summarizing, we find 1 + 2 + 2 = 5 images in this case.

For 8 = 120°, we have two images I'; and I, behind the extension of the second mirror
plane, caused by the object and its “first” image (which we refer to here as I1). No further
images can be constructed from I'; and I, since the method indicated above would place
any further possibilities in front of the mirrors. This construction has the disadvantage of
deemphasizing the actual ray-tracing, and thus any dependence on where the observer of
these images is actually placing his or her eyes. It turns out in this case that the number of
images that can be seen ranges from 1 to 3, depending on the locations of both the object
and the observer.

(d) Thus, the smallest number of images that can be seen is 1. For example, if the
observer’s eye is collinear with I; and I'y, then the observer can only see one image (I;
and not the one behind it). Note that an observer who stands close to the second mirror
would probably be able to see two images, I, and ;.

(e) Similarly, the largest number would be 3. This happens if the observer moves further
back from the vertex of the two mirrors. He or she should also be able to see the third
image, I';, which is essentially the “twin” image formed from I, relative to the extension
of the second mirror plane.
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103. THINK Two lenses in contact can be treated as one single lens with an effective
focal length.

EXPRESS We place an object far away from the composite lens and find the image
distance i. Since the image is at a focal point, i = f, where f equals the effective focal
length of the composite. The final image is produced by two lenses, with the image of the
first lens being the object for the second. For the first lens, (1/p;) + (1/iy) = (1/f;), where f;
is the focal length of this lens and iy is the image distance for the image it forms. Since p;
= oo, Iy = f;. The thin lens equation, applied to the second lens, is (1/p,) + (1/iy) = (1/f),
where p, is the object distance, i, is the image distance, and f; is the focal length. If the
thickness of the lenses can be ignored, the object distance for the second lens is p, = —i;.
The negative sign must be used since the image formed by the first lens is beyond the
second lens if iy is positive. This means the object for the second lens is virtual and the
object distance is negative. If i; is negative, the image formed by the first lens is in front
of the second lens and p; is positive.

ANALYZE In the thin lens equation, we replace p, with —f; and i, with f to obtain

or

Thus, the effective focal length of the system is f = ffl fzf .
1+ 2

LEARN The reciprocal of the focal length, 1/f, is known as the power of the lens, a
quantity used by the optometrists to specify the strength of eyeglasses. From the
derivation above, we see that when two lenses are in contact, the power of the effective
lens is the sum of the two powers.

104. (a) In the closest mirror My, the “first” image I; is 10 cm behind M; and therefore
20 cmfrom the object O. This is the smallest distance between the object and an image
of the object.

(b) There are images from both O and I, in the more distant mirror, M,: an image I,
located at 30 cm behind M. Since O is 30 cm in front of it, I, is 60 cm from O. This is
the second smallest distance between the object and an image of the object.

(c) There is also an image I3 that is 50 cm behind M, (since 1; is 50 cm in front of it).
Thus, I3 is 80 cm from O. In addition, we have another image 14 that is 70 cm behind M;
(since I, is 70 cm in front of it). The distance from I5to O for is 80 cm.
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(d) Returning to the closer mirror My, there is an image Is that is 90 cm behind the mirror
(since I3 is 90 cm in front of it). The distances (measured from O) for Is is 100 cm = 1.0
m.

105. (a) The “object” for the mirror that results in that box image is equally in front of the
mirror (4 cm). This object is actually the first image formed by the system (produced by
the first transmission through the lens); in those terms, it corresponds to iy = 10 — 4 =
6 cm. Thus, with f; = 2 cm, Eq. 34-9 leads to

i-i-_l:i:) p, =3.00cm.

pl Il fl
(b) The previously mentioned box image (4 cm behind the mirror) serves as an “object”
(at ps = 14 cm) for the return trip of light through the lens (f; = f; = 2 cm). This time, Eq.

34-9 leads to

i+_1:i:>i3:2.33cm.

p3 I3 f3
106. (a) First, the lens forms a real image of the object located at a distance

1 1) (1 1)
)
fl pl fl 2fl

to the right of the lens, or at
p2= 2(f1 + fz) — 2f1 = 2f2

in front of the mirror. The subsequent image formed by the mirror is located at a distance

1 1Y (1 1Y)
f2 pZ f2 2 f2

to the left of the mirror, or at
pll = 2(f1 + f2) — 2f2 = 2f1

to the right of the lens. The final image formed by the lens is at a distance i'; to the left of

the lens, where
-1 -1
il,:(i_i,] :(i_i] ot
fl pl fl 2fl

This turns out to be the same as the location of the original object.

(b) The lateral magnification is

S ) SR e
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(c) The final image is real (R).
(d) It is at a distance i'; to the left of the lens,

(e) and inverted (1), as shown in the figure below.

N

0]

107. THINK The nature of the lenses, whether converging or diverging, can be
determined from the magnification and orientation of the images they produce.

EXPRESS By examining the ray diagrams shown in Fig. 34-16(a) — (c), we see that only
a converging lens can produce an enlarged, upright image, while the image produced by a
diverging lens is always virtual, reduced in size, and not inverted.

ANALYZE (a) In this case m > +1 and we know that lens 1 is converging (producing a
virtual image), so that our result for focal length should be positive. Since
[P + i3] =20 cm and i; = — 2py, we find p; = 20 cm and i; = — 40 cm. Substituting these
into Eq. 34-9,
1
Py

| =

1
==
1 fl

leads to

f = plll. _ (20 cm)(—40 cm) _ 140 cm,
p,+i; 20 cm+(—40 cm)

which is positive as we expected.
(b) The object distance is p; = 20 cm, as shown in part (a).

(c) In this case 0 < m < 1 and we know that lens 2 is diverging (producing a virtual
image), so that our result for focal length should be negative. Since |p + iz| = 20 cm and
12 = — p2/2, we find p, = 40 cm and i, = — 20 cm. Substituting these into Eq. 34-9 leads to

pi, (40 cm)(-20 cm)

f, = — = =-40 cm,
p, +i, 40 cm+(-20 cm)

which is negative as we expected.

(d) The object distance is p, = 40 cm, as shown in part (c).
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LEARN The ray diagram for lens 1 is similar to the one shown in Fig. 34-16(b). The lens
is converging. With the fly inside the focal point (p; < f;), we have a virtual image with
the same orientation, and on the same side as the object. On the other hand, the ray
diagram for lens 2 is similar to the one shown in Fig. 34-16(c). The lens is diverging,
forming a virtual image with the same orientation but smaller in size as the object, and on
the same side as the object.

108. We use Eq. 34-10, with the conventions for signs discussed in the text.

(@) For lens 1, the biconvex (or double convex) case, we have

sl ool ] o

(b) Since f > 0 the lens forms a real image of the Sun.

(c) For lens 2, of the planar convex type, we find

f :[(1.5-1) [é__4gcmﬂ1280cm.

(d) The image formed is real (since f > 0).

(e) Now for lens 3, of the meniscus convex type, we have

-1
f= (1.5—1) 1 =240cm=2.4 m.
40cm 60cm

(f) The image formed is real (since f > 0).

(g) For lens 4, of the biconcave type, the focal length is

-1
f= (1.5—1) 11 =-40cm.
—-40cm 40cm

(h) The image formed is virtual (since f < 0).

-1
(i) For lens 5 (plane-concave), we have f =|(1.5-1) i 1 =-80cm.
oo 40cm

(j) The image formed is virtual (since f < 0).
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1 B 1
60cm 40cm

-1
(k) For lens 6 (meniscus concave), f :[(1.5—1) [ H =-240cm=-2.4 m.

(I) The image formed is virtual (since f < 0).

109. (a) The first image is figured using Eq. 34-8, with n; = 1 (using the rounded-off
value for air) and n, = 8/5.
_16-1

r

1 8
— 4+ — =
p Si
For a “flat lens” r = oo, SO We obtain

i =—8p/5=-64/5

(with the unit cm understood) for that object at p = 10 cm. Relative to the second surface,
this image is at a distance of 3 + 64/5 = 79/5. This serves as an object in order to find the
final image, using Eq. 34-8 again (and r = o) but with n; = 8/5 and n, = 4/3.

8 4

5p" 3’
which produces (for p' = 79/5)

i'=—5p/6 =—79/6 ~—13.2.
This means the observer appears 13.2 + 6.8 = 20 cm from the fish.

(b) It is straightforward to “reverse” the above reasoning, the result being that the final
fish image is 7.0 cm to the right of the air-wall interface, and thus 15 cm from the
observer.

110. Setting Nair = 1, Nwaer = N, and p = r/2 in Eq. 34-8 (and being careful with the sign
convention for r in that equation), we obtain i = —r/(1 + n), or |i| = r/(1 + n). Then we use
similar triangles (where h is the size of the fish and h” is that of the “virtual fish”) to set
up the ratio

h' _ _h
r—|if = r/i2 -

Using our previous result for |i|, this gives h7h = 2(1 — 1/(1 + n)) = 1.14.

111. (a) Parallel rays are bent by positive-f lenses to their focal points F1, and rays that
come from the focal point positions F; in front of positive-f lenses are made to emerge
parallel. The key, then, to this type of beam expander is to have the rear focal point F; of
the first lens coincide with the front focal point F, of the second lens. Since the triangles
that meet at the coincident focal point are similar (they share the same angle; they are
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vertex angles), then Wi/f, = Wi/f; follows immediately. Substituting the values given, we
have

f W :30.0 cm

F =—=W, (2.5 mm)=6.0 mm.
f, 12.5cm

(b) The area is proportional to W 2. Since intensity is defined as power P divided by area,
we have

2
= —j |, =1.6 KW/m?,

(c) The previous argument can be adapted to the first lens in the expanding pair being of
the diverging type, by ensuring that the front focal point of the first lens coincides with
the front focal point of the second lens. The distance between the lenses in this case is

f, — [f1] =30.0 cm —26.0 cm = 4.0 cm.

112. The water is medium 1, so n; = ny, which we simply write as n. The air is medium 2,
for which n, = 1. We refer to points where the light rays strike the water surface as A (on
the left side of Fig. 34-56) and B (on the right side of the picture). The point midway
between A and B (the center point in the picture) is C. The penny P is directly below C,
and the location of the “apparent” or virtual penny is V. We note that the angle ZCVB
(the same as ZCVA) is equal to &, and the angle ~ZCPB (the same as ZCPA) is equal to
6. The triangles CVB and CPB share a common side, the horizontal distance from C to B
(which we refer to as x). Therefore,

tan g, = di and tand, = g

a

Using the small angle approximation (so a ratio of tangents is nearly equal to a ratio of
sines) and the law of refraction, we obtain

X
tan02z3|_n6'2 N &z& N izn
tan 6, sin g, g n, d,

which yields the desired relation: d, = d/n.

113. The top view of the arrangement is depicted in the figure below.

painting

image

12 cm

50 cm
pinhole
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From the figure, we obtain

tan @ = § = i
x 12
which gives x =100 cm.
114. Consider the ray diagram below. |
4 : B
[} /y}/'O

/1’

Since 0+y =¢+y =2, we readily see that 8 = ¢, i.e., the angle of incidence is equal to

the angle of reflection. To show that AOB is the shortest path, consider an incident ray
AO’ with a reflected ray O'B, where the angle of incidence is not equal to the angle of

reflection. From the figure, we have
AOB=A0'+0OB=A0'+0OB>AB=A'0+0B=A0+0B=A0B

The inequality comes from the fact that the sum of the two sides of a triangle is always
greater than the hypotenuse.

115. We refer to Fig. 34-2 in the textbook. Consider the two light rays, r and r', which are
closest to and on either side of the normal ray (the ray that reverses when it reflects).
Each of these rays has an angle of incidence equal to @ when they reach the mirror.
Consider that these two rays reach the top and bottom edges of the pupil after they have
reflected. If ray r strikes the mirror at point A and ray r' strikes the mirror at B, the
distance between A and B (call it x) is

X =2d,tanéd

where d, is the distance from the mirror to the object. We can construct a right triangle
starting with the image point of the object (a distance d, behind the mirror; see I in Fig.
34-2). One side of the triangle follows the extended normal axis (which would reach from
| to the middle of the pupil), and the hypotenuse is along the extension of ray r (after
reflection). The distance from the pupil to I is dey + do, and the small angle in this triangle
is again @. Thus,

tan@ =
+d

ey 0

where R is the pupil radius (2.5 mm). Combining these relations, we find
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R
+d

ey 0

25mm
300mMmM+100mm

x=2d, = 2(100mm)

which yields x = 1.67 mm. Now, x serves as the diameter of a circular area A on the
mirror, in which all rays that reflect will reach the eye. Therefore,

A= %nx2 = %(]_67 mm)’ = 22mm?

116. For an object in front of a thin lens, the object distance p and the image distance i are
related by (1/p) + (1/i) = (1/f ), where f is the focal length of the lens. For the situation
described by the problem, all quantities are positive, so the distance x between the object
and image is x = p + i. We substitute i = x — p into the thin lens equation and solve for x:

To find the minimum value of x, we set dx/dp = 0 and solve for p. Since

dx _ p(p-2f)

dp  (p-f)*"

the result is p = 2f. The minimum distance is

2 2
ML LD ST
p—f 2f—f

This is a minimum, rather than a maximum, since the image distance i becomes large
without bound as the object approaches the focal point.

117. (a) If the object distance is X, then the image distance is D — x and the thin lens
equation becomes

We multiply each term in the equation by fx(D — x) and obtain x* — Dx + Df = 0. Solving
for x, we find that the two object distances for which images are formed on the screen are

D-./D(D-4f) _ D+,/D(D-4f)

X, = 5 and x, = >

The distance between the two object positions is
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d=x,—x =.,D(D-4f).

(b) The ratio of the image sizes is the same as the ratio of the lateral magnifications. If the
object is at p = Xy, the magnitude of the lateral magnification is

=i_1= D-x
| Py X

Now x, =%(D—d), where d =,/D(D—- f), so

D-(D-d)/2 D+d
my|=——— =—
(D-d)/2 D-d

Similarly, when the object is at x,, the magnitude of the lateral magnification is

|m|_I_2_D—x2_D—(D+d)/2_D—d
“p, %  (D+d)/2  D+d’

The ratio of the magnifications is

m, (D-d)/(D+d) _(B_ST'

m,  (D+d)/(D-d)

118. (a) Our first step is to form the image from the first lens. With p; = 10 cm and
f,=—15cm, Eq. 34-9 leads to

i+_1:% = i, =-6.0cm.
1

Pk

The corresponding magnification is m; = —i3/p; = 0.60. This image serves the role of
“object” for the second lens, with p, = 12 + 6.0 = 18 cm, and f, = 12 cm. Now, Eq. 34-9
leads to

i E:i = 1,=36cm.
P, b
(b) The corresponding magnification is m, = —iy/p, = —2.0, which results in a net

magnification of m = mym, = —1.2. The height of the final image is (in absolute value)
(2.2)(2.0cm) =1.2 cm.

(c) The fact that i, is positive means that the final image is real.
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(d) The fact that m is negative means that the orientation of the final image is inverted
with respect to the (original) object.

119. (a) Without the diverging lens (lens 2), the real image formed by the converging lens
(lens 1) is located at a distance

-1 -1
I, = NN P - =40 cm
f,. p 20cm 40cm

to the right of lens 1. This image now serves as an object for lens 2, with p, = —(40 cm —
10 cm) =-30 cm. So

-1 -1
I, =(i—iJ :( t ! ) =-30cm.
f, p, -15cm  -30cm

Thus, the image formed by lens 2 is located 30 cm to the left of lens 2.

(b) The magnification is m = (—i1/p1) x (—i2/p2) = +1.0 > 0, so the image is not inverted.
(c) The image is virtual since i, < 0.

(d) The magnification is m = (—i1/p1) x (—i2/p2) = +1.0, so the image has the same size as
the object.

120. (a) For the image formed by the first lens
1 1) (1 1)’
h=|——| = - =20cm.
f, p 10cm 20cm
For the subsequent image formed by the second lens p, =30 cm — 20 cm = 10 ¢cm, so

-1 -1
I, = ERNEN t 1 =-50cm.
f, p, 125cm  10cm

Thus, the final image is 50 cm to the left of the second lens, which means that it coincides
with the object.

(b) The magnification is

M Ay )[4, ) _(20cm }f —50cm _ 50,
PP, 20cm ){ 10cm

which means that the final image is five times larger than the original object.
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(c) The image is virtual since i, < 0.
(d) The image is inverted since m < 0.

121. (a) We solve Eq. 34-9 for the image distance i: i = pf/(p — f ). The lens is diverging,
so its focal length is f = —30 cm. The object distance is p = 20 cm. Thus,

. (20cm)(-30cm)
'= (20cm)—(-30cm) —eem

The negative sign indicates that the image is virtual and is on the same side of the lens as
the object.

(b) The ray diagram, drawn to scale, is shown below.

lens
122. (a) Suppose that the lens is placed to the left of the mirror. The image formed by the
converging lens is located at a distance

-1 -1
i 1) (X 1) _iom
f p 050m 10m

to the right of the lens, or 2.0 m — 1.0 m = 1.0 m in front of the mirror. The image formed
by the mirror for this real image is then at 1.0 m to the right of the mirror, or 2.0 m + 1.0
m = 3.0 m to the right of the lens. This image then results in another image formed by the
lens, located at a distance

-1 -1
o L_1) (1 1 ) _geom
f p 0.50m 3.0m

to the left of the lens (that is, 2.6 cm from the mirror).

(b) The lateral magnification is

S e

(c) The final image is real since i* > 0.
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(d) The image is to the left of the lens.

(e) It also has the same orientation as the object since m > 0. Therefore, the image is not
inverted.

123. (a) We use Eq. 34-8 (and Fig. 34-12(b) is useful), with n; = 1 (using the rounded-off
value for air) and n, = 1.5.

1 15 15-1

— +f —

p i r
Using the sign convention for r stated in the paragraph following Eq. 34-8 (so that r =
+6.0 cm), we obtain i = -90 cm for objects at p = 10 cm. Thus, the object and image are
80 cm apart.

(b) The image distance i is negative with increasing magnitude as p increases from very
small values to some value po at which point i — —oo. Since 1/(-») = 0, the above
equation yields

— =222 o p,=2r

Thus, the range for producing virtual images is 0 < p <12 cm.

124. (a) Suppose one end of the object is a distance p from the mirror and the other end is
a distance p + L. The position i; of the image of the first end is given by

f
where f is the focal length of the mirror. Thus, i, = pf . The image of the other end is

located at
L _ f(p+L)
2 p+L-—f"’
so the length of the image is
fp f(p+L) _ f2L

L'=Ii —i, = = .
hTh p—f p+L-f (p—f)p+L-f)

Since the object is short compared to p — f, we may neglect the L in the denominator and

write
2
Lo L(_f J |
p—f
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(b) The lateral magnification is m = —i/p and since i = fp/(p — f ), this can be written m
= —f/(p —f). The longitudinal magnification is

2
, L f )
ms=—=|——| =m".
L (p—f]

125. Consider a single ray from the source to the mirror and let & be the angle of
incidence. The angle of reflection is also & and the reflected ray makes an angle of 26
with the incident ray.

0

Now we rotate the mirror through the angle « so that the angle of incidence increases to 6
+ a. The reflected ray now makes an angle of 2(8 + «) with the incident ray. The
reflected ray has been rotated through an angle of 2. If the mirror is rotated so the angle
of incidence is decreased by «, then the reflected ray makes an angle of 2(6— ) with the
incident ray. Again it has been rotated through 2«. The diagrams below show the
situation for « = 45°. The ray from the object to the mirror is the same in both cases and
the reflected rays are 90° apart.

126. The fact that it is inverted implies m < 0. Therefore, with m =-1/2, we have i = p/2,
which we substitute into Eq. 34-4:

1
il

1
i f

o |-

or

300cm  f

Consequently, we find f = (30.0 cm)/3 = 10.0 cm. The fact that f > 0 implies the mirror is
concave.

127. (a) The mirror has focal length f = 12.0 cm. With m = +3, we have i = —3p. We
substitute this into Eq. 34-4:

1 1 1
= —+—
P

! _
-3p 12cm

1
—+=-=
p

1
i f
or
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2 1
3p 12cm’

Consequently, we find p = 2(12 cm)/3 = 8.0 cm.

(b) With m = -3, we have i = +3p, which we substitute into Eq. 34-4:

11 1 1 1 1
_+T:_ - —+—=—
p i f p 3p 12
or
4 1
3p 12cm

Consequently, we find p = 4(12 cm)/3 = 16 cm.

(c) With m =-1/3, we have i = p/3. Thus, Eq. 34-4 leads to

1 1 1 1 3 1
—+s== => —+—=
p i f p p 12cm
or
4 1
p 12cm’

Consequently, we find p = 4(12 cm) =48 cm.

128. Since 0 < m < 1, we conclude the lens is of the diverging type (so f =40 cm). Thus,
substituting i = -3p/10 into Eq. 34-9 produces

1 10 7 1

p 3p 3p f
Therefore, we find p =93.3cmand i =-28.0 cm, or | i | =28.0 cm.

129. (a) We show the o = 0.500 rad, r =12 cm, p = 20 cm calculation in detail. The
understood length unit is the centimeter:

The distance from the object to point x:

d=p-r+x = 8+x
y =dtan o =4.3704 + 0.54630x

From the solution of x* +y® =r? we get x = 8.1398.

B = tan~'(y/x) = 0.8253 rad
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y=2p3 — a= 1151rad

From the solution of tan(y)=y/(x + i —r) we geti= 7.799 . The other results are shown
without the intermediate steps:

For o = 0.100 rad, we get i = 8.544 cm; for o = 0.0100 rad, we get i = 8.571 cm. Eq. 34-
3 and Eq. 34-4 (the mirror equation) yield i= 8.571 cm.

(b) Here the results are: (o = 0.500 rad, i = —-13.56 cm), (o = 0.100 rad, i = —12.05 cm),
(0. =0.0100 rad, i = —12.00 cm). The mirror equation gives i = —12.00 cm.

130. (a) Since m = +0.250, we have i = — 0.25p which indicates that the image is virtual
(as well as being diminished in size). We conclude from this that the mirror is convex and
that f < 0; in fact, f =— 2.00 cm. Substituting i = — p/4 into Eq. 34-4 produces

Therefore, we find p =6.00 cm and i =—1.50 cm, or |i|=1.50 cm.

(b) The focal length is negative.
(c) As shown in (a), the image is virtual.

131. First, we note that — relative to the water — the index of refraction of the carbon
tetrachloride should be thought of as n = 1.46/1.33 = 1.1 (this notation is chosen to be
consistent with Problem 34-122). Now, if the observer were in the water, directly above
the 40 mm deep carbon tetrachloride layer, then the apparent depth of the penny as
measured below the surface of the carbon tetrachloride is d; = 40 mm/1.1 = 36.4 mm.
This “apparent penny” serves as an “object” for the rays propagating upward through the
20 mm layer of water, where this “object” should be thought of as being 20 mm + 36.4
mm = 56.4 mm from the top surface. Using the result of Problem 34-122 again, we find
the perceived location of the penny, for a person at the normal viewing position above the
water, to be 56.4 mm/1.33 = 42 mm below the water surface.

132. The sphere (of radius 0.35 m) is a convex mirror with focal length f =-0.175 m. We
adopt the approximation that the rays are close enough to the central axis for Eq. 34-4 to
be applicable.

(@ With p = 1.0 m, the equation 1/p + 1/i = 1/f yields i = —0.15 m, which means the
image is 0.15 m from the front surface, appearing to be inside the sphere.

(b) The lateral magnification is m = —i/p which yields m = 0.15. Therefore, the image
distance is (0.15)(2.0 m) = 0.30 m.

(c) Sincem>0 , the image is upright, or not inverted (NI).
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133. (a) In this case i < 0 so i =—|i|, and Eq. 34-9 becomes 1/f = 1/p — 1/i|.
We differentiate this with respect to time (t) to obtain

di _ (mfmq

dt — \p/ dt -

As the object is moved toward the lens, p is decreasing, so dp/dt < 0. Consequently, the
above expression shows that d|ij/dt < O; that is, the image moves in from infinity. The
angular magnification mg = 0'/0 also increases as the following graph shows (“read” the
graph from left to right since we are considering decreasing p from near the focal length
to near 0). To obtain this graph of mg, we chose f =30 cm and h =2 cm.

T34 6 8 10 12 14 16 18 20 22 24 26 28
(b) When the image appears to be at the near point (that is, |i| = P,), mg is at its maximum

usable value. Since one generally takes P, to be equal to 25 cm (this value, too, was used
in making the above graph).

(c) In this case,
it Ji|f _ PBf
i—f Ji|+f P+f

n

p:

If we use the small angle approximation, we have 0'~ h'/|i| and 6 ~ h/P, (note: this
approximation was not used in obtaining the graph, above). We therefore find

mo = (h/i[)/(h/Py)

which (using Eq. 34-7 relating the ratio of heights to the ratio of distances) becomes

HER DA R R R+
"“hlil plil p REIP+T) f

which readily simplifies to the desired result.
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(d) The linear magnification (Eq. 34-7) is given by (h'/h) ~mq (|i|/ P,) (see the first in the
chain of equalities, above). Once we set [i| = P, (see part (b)) then this shows the
equality in the magnifications.

134. (a) The discussion in the textbook of the refracting telescope applies to the
Newtonian arrangement if we replace the objective lens of Fig. 34-21 with an objective
mirror (with the light incident on it from the right). This might suggest that the incident
light would be blocked by the person’s head in Fig. 34-21, which is why Newton added
the mirror M" in his design (to move the head and eyepiece out of the way of the
incoming light). The beauty of the idea of characterizing both lenses and mirrors by focal
lengths is that it is easy, in a case like this, to simply carry over the results of the
objective-lens telescope to the objective-mirror telescope, so long as we replace a positive
f device with another positive f device. Thus, the converging lens serving as the objective
of Fig. 34-21 must be replaced (as Newton has done in Fig. 34-58) with a concave mirror.
With this change of language, the discussion in the textbook leading up to Eq. 34-15
applies equally as well to the Newtonian telescope: my = — fop/fey.

(b) A meter stick (held perpendicular to the line of sight) at a distance of 2000 m subtends
an angle of
Im

O ~ ——— =0.0005 rad.
2000 m

multiplying this by the mirror focal length gives (16.8 m) (0.0005) = 8.4 mm for the size
of the image.

(c) With r =10 m, Eq. 34-3 gives fo,, = 5 m. Plugging this into (the absolute value of) Eq.
34-15 leads to fey = 5/200 = 2.5 cm.

135. (a) If we let p —> o in Eq. 34-8, we geti = n, r/(n, —n,). If we set n,= 1 (for air)
and restrict n, so that 1 < n, < 2, then this suggests that i > 2r (so this image does form
before the rays strike the opposite side of the sphere). We can still consider this as a sort
of “virtual” object for the second imaging event, where this “virtual” object distance is

2r—i=(n-2)r/(n-1),
where we have simplified the notation by writing n, = n. Putting this in for p in Eq. 34-8
and being careful with the sign convention for r in that equation, we arrive at the final
image location: i” = (0.5)(2 — n)r/(n — 1).
(b) The image is to the right of the right side of the sphere.
136. We set up an xyz coordinate system where the individual planes (xy, yz, xz) serve as

the mirror surfaces. Suppose an incident ray of light A first strikes the mirror in the xy
plane. If the unit vector denoting the direction of A is given by

cos(a)? + cos(B)f + COS(y)lA(
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where a, B,y are the angles A nlakes WithAthe axes, tAhen after reflection off the xy plane
the unit vector becomes cos(a)i + cos(B)j — cos(y)k (one way to rationalize this is to
think of the reflection as causing the angle y to become © — y). Next suppose it striIA<es
the miArror in the xz plane. The unit vector of the reflected ray is now cos(a)i — cos(B)j —
cos(y)k . Finally as it reflects off the mirror in the yz plane o becoAmes T -, SO the urA1it
vector in the direction of the reflected ray is given by — cos(a)i— cos(B)j — cos(y)k,
exactly reversed from A’s original direction. A further observation may be made: this
argument would fail if the ray could strike any given surface twice and some
consideration (perhaps an illustration) should convince the student that such an
occurrence is not possible.

137. Since m =—-2 and p = 4.00 cm, then i = 8.00 cm (and is real). Eq. 34-9 is

1
i

1
i f

S |-

and leads to f = 2.67 cm (which is positive, as it must be for a converging lens).

138. (a) Since m = +0.200, we have i = —-0.2p which indicates that the image is virtual (as
well as being diminished in size). We conclude from this that the mirror is convex (and
that f =—40.0 cm).

(b) Substituting i = —p/5 into Eq. 34-4 produces

Therefore, we find p=-4f =—4(—40.0 cm) =160 cm.

139. (a) Our first step is to form the image from the first lens. With p; = 3.00 cm and f; =
+4.00 cm, Eq. 34-9 leads to

i+_1 :i = = f.p, _ (4.00 cm)(3.00 cm) _ _12.0cm.
p i, f, p,—f,  3.00cm-4.00 cm

The corresponding magnification is m; = —i;/p; = 4. This image serves the role of
“object” for the second lens, with p, = 8.00 + 12.0 = 20.0 cm, and f, = — 4.00 cm. Now,
Eq. 34-9 leads to

1 1 1 . f,p,  (-4.00 cm)(20.0cm)

—t—=— = I, = = _—3.33cm,
p, i, f, p,—f, 20.0cm—(—4.00 cm)

or|i,|=3.33cm.
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(b) The fact that i, is negative means that the final image is virtual (and therefore to the
left of the second lens).

(c) The image is virtual.

(d) With m, = —i,/p, = 1/6, the net magnification is m = mym, = 2/3 > 0. The fact that m is
positive means that the orientation of the final image is the same as the (original) object.
Therefore, the image is not inverted.

140. The far point of the person is 50 cm = 0.50 m from the eye. The object distance is
taken to be at infinity, and the corrected lens will allow the image to be formed at the near
point. Thus,

1

—-0.50m

!
i

1
o0

1
==+
p

and we find the focal length of the lensto f =—0.50 m.
(b) Since f < 0, the lens is diverging.

1
—0.50 m

(c) The power of the lens is P = % = =-2.0 diopters.

141. (a) Without the magnifier, & = h/P,. With the magnifier, letting p = p, and i = — |i|

= — Py, we obtain
1 11 1 1 1 1
e
p f i f i f P
Consequently,
¢ hip 1/f+1/P P, 25¢cm
) =— = = =1+-—"=1+ .
6 hl/P 1/ P, f f
(b) Now i =—li| > —o,501/ p+1/i=1/p=1/f and

_¢ _hip _Uf B _25cm

m, - =
& hiP, 1P f f

25¢cm

(c) For f = 10 cm, we find the magnifications to be m, =1+
10cm

= 3.5 for cases (a), and

25¢cm
m, =
10cm

= 2.5for case (b).



Chapter 35

1. The fact that wave W, reflects two additional times has no substantive effect on the
calculations, since two reflections amount to a 2(4/2) = A phase difference, which is
effectively not a phase difference at all. The substantive difference between W, and W, is
the extra distance 2L traveled by W,.

(a) For wave W, to be a half-wavelength “behind” wave W, we require 2L = A/2, or L =
Al4 = (620 nm)/4 =155 nm using the wavelength value given in the problem.

(b) Destructive interference will again appear if W, is 31 “behind” the other wave. In
this case, 2L’ =3)/2, and the difference is

L,_L_3_7»_&_k_620 nm

= == =310nm.
4 4 2 2

2. We consider waves W, and W; with an initial effective phase difference (in
wavelengths) equal to 1, and seek positions of the sliver that cause the wave to
constructively interfere (which corresponds to an integer-valued phase difference in

wavelengths). Thus, the extra distance 2L traveled by W, must amountto 34, 21, and so
on. We may write this requirement succinctly as

L= 2m+1x where m=0,1, 2,....

(@) Thus, the smallest value of L/ A that results in the final waves being exactly in phase
is when m =0, which gives L/41=1/4=0.25.

(b) The second smallest value of L/Athat results in the final waves being exactly in
phase is when m = 1, which gives L/ 1=3/4=0.75.

(c) The third smallest value of L/ Athat results in the final waves being exactly in phase
iIs when m = 2, which gives L/ 1=5/4=1.25.

3. THINK The wavelength of light in a medium depends on the index of refraction of the
medium. The nature of the interference, whether constructive or destructive, depends on
the phase difference of the two waves.

EXPRESS We take the phases of both waves to be zero at the front surfaces of the layers.
The phase of the first wave at the back surface of the glass is given by ¢ = kiL — af,
where k; (= 2n/A;) is the angular wave number and A; is the wavelength in glass.
Similarly, the phase of the second wave at the back surface of the plastic is given by ¢, =

1515
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koL — at, where ko (= 2n/A;) is the angular wave number and A, is the wavelength in
plastic. The angular frequencies are the same since the waves have the same wavelength
in air and the frequency of a wave does not change when the wave enters another medium.
The phase difference is

44, :(kl—kZ)L:Zn[%—iJ L
1 2
Now, A1 = Aqi/n1, Where A, IS the wavelength in air and n; is the index of refraction of
the glass. Similarly, A, = Aai/n2, where ny is the index of refraction of the plastic. This
means that the phase difference is

¢1_¢2 :%(nl_nz)L'

air

ANALYZE (a) The value of L that makes this 5.65 rad is

- _ 565(400x10°°
L — (¢l ¢2 )Xall’ — ( x m) — 360 % 10—6 m.
2n(n,—n,)  2x(1.60—1.50)

(b) A phase difference of 5.65 rad is less than 2r rad = 6.28 rad, the phase difference for
completely constructive interference, but greater than = rad (= 3.14 rad), the phase
difference for completely destructive interference. The interference is, therefore,
intermediate, neither completely constructive nor completely destructive. It is, however,
closer to completely constructive than to completely destructive.

LEARN The phase difference of two light waves can change when they travel through
different materials having different indices of refraction.

4. Note that Snell’s law (the law of refraction) leads to & = & when n; = n,. The graph
indicates that & = 30° (which is what the problem gives as the value of &) occurs at n, =
1.5. Thus, n; = 1.5, and the speed with which light propagates in that medium is

C _2.998x10°m/s

=2.0x10% m/s.
n 15

5. Comparing the light speeds in sapphire and diamond, we obtain

AV =V, -V, =C 1 1 =(2.998x10° m/s)(i—ij=4.55x107 m/s.
n, n, 177 2.42

S

6. (2) The frequency of yellow sodium light is

8
£ C_2998XA0°Ms oo 00,

A 589x107°m
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(b) When traveling through the glass, its wavelength is

= =388 nm.
1.52

n

i 589nm
n

(c) The light speed when traveling through the glass is
v=f A, =(5.09x10" Hz)(388x10°m) =1.97 x10° m/s.
7. The index of refraction is found from Eq. 35-3:

8
_C_ 2.998><1C; m/s _156.
v 192x10°m/s

8. () The time t; it takes for pulse 2 to travel through the plastic is

L L L L 6.30L
t, = + + + = :
c/155 ¢/1L70 c¢/160 c/145 C

Similarly for pulse 1:
2L L L  633L

t, = + + =
' ¢/159 c¢/165 ¢/150 ¢

Thus, pulse 2 travels through the plastic in less time.
(b) The time difference (as a multiple of L/c) is

6.33L B 6.30L B 0.03L
c C c

At=t,—t, =

Thus, the multiple is 0.03.

9. (a) We wish to set Eq. 35-11 equal to 1/2, since a half-wavelength phase difference is
equivalent to a = radians difference. Thus,
A 620 nm

L. = = =1550nm =155 um.
™ 2(n,—n) 2(1.65—145) 4

(b) Since a phase difference of g (wavelengths) is effectively the same as what we

required in part (a), then
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-
Il
Il

3L, = 3(155.m) = 4.65 um.

10. (a) The exiting angle is 50°, the same as the incident angle, due to what one might call
the “transitive” nature of Snell’s law: n; sin@; =n, sin@d, =n; sin@; = ...

(b) Due to the fact that the speed (in a certain medium) is ¢/n (where n is that medium’s
index of refraction) and that speed is distance divided by time (while it’s constant), we
find

t = nL/c = (1.45)(25 x 10" m)/(3.0 x 10° m/s) = 1.4 x 10 s = 0.14 ps.

11. (a) Equation 35-11 (in absolute value) yields

L 850x10°m

x|n2 — n1| = W(160—150) =170.
(b) Similarly,

L 850x10°m

x|n2 — n1| = W(]JZ —1.62) =170.

(c) In this case, we obtain

325x10°m
£|n2 —n|= %(179 —159) =130.
A 500x10°m

(d) Since their phase differences were identical, the brightness should be the same for (a)
and (b). Now, the phase difference in (c) differs from an integer by 0.30, which is also
true for (a) and (b). Thus, their effective phase differences are equal, and the brightness in
case (c) should be the same as that in (a) and (b).

12. (a) We note that ray 1 travels an extra distance 4L more than ray 2. To get the least
possible L that will result in destructive interference, we set this extra distance equal to
half of a wavelength:
a=2
2

A 420.0 nm
= ng

=————=5250nm.
8

(b) The next case occurs when that extra distance is set equal to %/1. The result is

34 3(420.0 nm)
8

L =157.5 nm.

13. (a) We choose a horizontal x axis with its origin at the left edge of the plastic.
Between x = 0 and x = L, the phase difference is that given by Eq. 35-11 (with L in that
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equation replaced with L,). Between x = L, and x = L; the phase difference is given by an
expression similar to Eq. 35-11 but with L replaced with L; — L, and n; replaced with 1
(since the top ray in Fig. 35-36 is now traveling through air, which has index of refraction
approximately equal to 1). Thus, combining these phase differences with 4 = 0.600 zm,
we have

L
A

4.00 m—3.50 pm

-L 3.50 um
(n,—n)+ 2=t (1) = 3204M 4 651 40)+ o

) ~ 0.600 um
=0.833.

(1-1.40)

(b) Since the answer in part (a) is closer to an integer than to a half-integer, the
interference is more nearly constructive than destructive.

14. (a) For the maximum adjacent to the central one, we set m =1 in Eqg. 35-14 and obtain

=sin™* M =0.010rad.
. 1001,

0, =sin™* (mj
d J|m

(b) Since y; = D tan &, (see Fig. 35-10(a)), we obtain

y1 = (500 mm) tan (0.010 rad) = 5.0 mm.
The separation is Ay =y; —yo =y1 —0=5.0 mm.

15. THINK The interference at a point depends on the path-length difference of the light
rays reaching that point from the two slits.

EXPRESS The angular positions of the maxima of a two-slit interference pattern are
given by AL=dsind=mA, where AL is the path-length difference, d is the slit separation,
A is the wavelength, and m is an integer. If @is small, sin @ may be approximated by & in
radians. Then, & = mA/d to good approximation. The angular separation of two adjacent
maxima is A@= A/d.

ANALYZE Let A" be the wavelength for which the angular separation is greater by10.0%.
Then, 1.10A/d = A'/d. or
A'=1.101 = 1.10(589 nm) = 648 nm.

LEARN The angular separation A& is proportional to the wavelength of the light. For

small &, we have
M:(ijw.
A
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16. The distance between adjacent maxima is given by Ay = AD/d (see Egs. 35-17 and

35-18). Dividing both sides by D, this becomes A8 = A/d with & in radians. In the steps

that follow, however, we will end up with an expression where degrees may be directly
used. Thus, in the present case,

AenzﬁzizA_Q:O.ZO

d nd n 133

=0.15°.

17. THINK Interference maxima occur at angles @ such that d sin &= mAx, where m is an
integer.

EXPRESS Since d = 2.0 m and A = 0.50 m, this means that sin@ = 0.25m. We want all
values of m (positive and negative) for which |0.25m| < 1. These are -4, -3, -2, -1, 0, +1,
+2, +3, and +4.

ANALYZE For each of these except —4 and +4, there are two different values for 6. A
single value of & (-90°) is associated with m = —4 and a single value (+90°) is associated
with m = +4. There are sixteen different angles in all and, therefore, sixteen maxima.

LEARN The angles at which the maxima occur are given by
6 =sin" [mTﬂ,] =sin™(0.25m)
Similarly, the condition for interference minima (destructive interference) is
. 1
dsind= [m+§jﬂ, m=0,12,...

18. (a) The phase difference (in wavelengths) is
¢=dsind 1 = (4.24 um)sin(20°)/(0.500 um) = 2.90 .
(b) Multiplying this by 2r gives ¢ = 18.2 rad.

(c) The result from part (a) is greater thang (which would indicate the third minimum)
and is less than 3 (which would correspond to the third side maximum).

19. THINK The condition for a maximum in the two-slit interference pattern is d sin €=
mA, where d is the slit separation, A is the wavelength, m is an integer, and &is the angle
made by the interfering rays with the forward direction.

EXPRESS If @is small, sin @ may be approximated by &in radians. Then, &= mA/d, and
the angular separation of adjacent maxima, one associated with the integer m and the
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other associated with the integer m + 1, is given by A@= A/d. The separation on a screen a
distance D away is given by
Ay =D A6 =\D/d.

ANALYZE Thus,
(500x107°m)(540m)

20%10°m =2.25x10"°m=2.25 mm.
X

Ay =

LEARN For small 6, the spacing is nearly uniform. However, away from the center of
the pattern, € increases and the spacing gets larger.
20. (a) We use Eq. 35-14 with m = 3:

2(550x10°m
0= sinl(n%) = sinll (7 20%10°m )} =0.216rad.
. X

(b) = (0.216) (180°/z) = 12.4°.

21. The maxima of a two-slit interference pattern are at angles & given by d sin 8= mA/,
where d is the slit separation, A is the wavelength, and m is an integer. If 8is small, sin 8
may be replaced by & in radians. Then, d@ = mA. The angular separation of two maxima
associated with different wavelengths but the same value of m is

AG= (m/d)(A2 — 1),

and their separation on a screen a distance D away is
Ay =DtanAf ~ DAH=[mTD}(7»2 -7,)

1
- 3(—0”[‘3) (600x10°m—480x10°m)=7.2x10"m.
5.0%10°m

The small angle approximation tan AG@~ A8 (in radians) is made.

22. Imagine a y axis midway between the two sources in the figure. Thirty points of
destructive interference (to be considered in the xy plane of the figure) implies there are
7+1+7=15 on each side of the y axis. There is no point of destructive interference on
the y axis itself since the sources are in phase and any point on the y axis must therefore
correspond to a zero phase difference (and corresponds to 8= 0 in Eq. 35-14). In other
words, there are 7 “dark” points in the first quadrant, one along the +x axis, and 7 in the
fourth quadrant, constituting the 15 dark points on the right-hand side of the y axis. Since
the y axis corresponds to a minimum phase difference, we can count (say, in the first
guadrant) the m values for the destructive interference (in the sense of Eg. 35-16)
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beginning with the one closest to the y axis and going clockwise until we reach the x axis
(at any point beyond S,). This leads us to assign m = 7 (in the sense of Eq. 35-16) to the
point on the x axis itself (where the path difference for waves coming from the sources is
simply equal to the separation of the sources, d); this would correspond to &= 90° in Eq.
35-16. Thus,

d=(7+3)A= 754 = %:7.5.

23. Initially, source A leads source B by 90°, which is equivalent to 1/4 wavelength.

However, source A also lags behind source B since ra is longer than rg by 100 m, which
is100m/400m =1/4 wavelength. So the net phase difference between A and B at the

detector is zero.

24. (a) We note that, just as in the usual discussion of the double slit pattern, the x = 0
point on the screen (where that vertical line of length D in the picture intersects the screen)
is a bright spot with phase difference equal to zero (it would be the middle fringe in the
usual double slit pattern). We are not considering x < 0 values here, so that negative
phase differences are not relevant (and if we did wish to consider x < 0 values, we could
limit our discussion to absolute values of the phase difference, so that, again, negative
phase differences do not enter it). Thus, the x = 0 point is the one with the minimum
phase difference.

(b) As noted in part (a), the phase difference ¢ =0 atx = 0.

(c) The path length difference is greatest at the rightmost “edge” of the screen (which is
assumed to go on forever), SO ¢is maximum at X = oo.

(d) In considering x = oo, we can treat the rays from the sources as if they are essentially
horizontal. In this way, we see that the difference between the path lengths is simply the
distance (2d) between the sources. The problem specifies 2d = 6.00 A, or 2d/4 = 6.00.

(e) Using the Pythagorean theorem, we have

JD? +(x+d)* D+ (x—d)?
A

¢= =171

where we have plugged in D = 204, d = 34 and x = 6. Thus, the phase difference at that
point is 1.71 wavelengths.

(F) We note that the answer to part (e) is closer to% (destructive interference) than to 2

(constructive interference), so that the point is “intermediate” but closer to a minimum than
to a maximum.
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25. Let the distance in question be x. The path difference (between rays originating from
S; and S, and arriving at points on the x > 0 axis) is

Vd? +x? —x:(m+1)k,

2

where we are requiring destructive interference (half-integer wavelength phase

differences) and m=0,1, 2,.... After some algebraic steps, we solve for the distance in
terms of m:
d? (2m+1)A

(2m+1)A 4

To obtain the largest value of x, we set m = 0:

2 3.001)
=%—%=(T)—§=8.752=8.75(900 nm)=7.88x10° nm=7.88m.

26. (a) We use Eq. 35-14 to find d:
dsind=mA =  d=(4)(450 nm)/sin(90°) = 1800 nm .
For the third-order spectrum, the wavelength that corresponds to 8= 90° is
A=dsin(90°)/3 = 600 nm .

Any wavelength greater than this will not be seen. Thus, 600 nm < 8 < 700 nm are
absent.

(b) The slit separation d needs to be decreased.
(c) In this case, the 400 nm wavelength in the m = 4 diffraction is to occur at 90°. Thus

dhewSINd=MA = dnew = (4)(400 nm)/sin(90°) = 1600 nm .
This represents a change of

|Ad| = d — dhew =200 Nm = 0.20 pm.

27. Consider the two waves, one from each slit, that produce the seventh bright fringe in
the absence of the mica. They are in phase at the slits and travel different distances to the
seventh bright fringe, where they have a phase difference of 2zm = 14z Now a piece of

mica with thickness x is placed in front of one of the slits, and an additional phase
difference between the waves develops. Specifically, their phases at the slits differ by
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21X 3 27X _ 27X (n _1)
A A A

m

where An is the wavelength in the mica and n is the index of refraction of the mica. The
relationship A, = A/n is used to substitute for An,. Since the waves are now in phase at the
screen,
21X (1 1)~ 14x
A

or

7(550x10°m
X = A = ( )=6.64><10‘6m.
n-1 158-1

28. The problem asks for “the greatest value of X... exactly out of phase,” which is to be
interpreted as the value of x where the curve shown in the figure passes through a phase
value of r radians. This happens as some point P on the x axis, which is, of course, a
distance x from the top source and (using Pythagoras’ theorem) a distance \/d? + x* from
the bottom source. The difference (in normal length units) is therefore \/d* + x* — x, or

(expressed in radians) is
2n
T(Vd +X = X) .

We note (looking at the leftmost point in the graph) that at x = 0, this latter quantity
equals 67, which means d = 3. Using this value for d, we now must solve the condition

277[(\/d2+x2 —X):ﬂ'.
Straightforward algebra then leads to x = (35/4) 4, and using A = 400 nm we find x = 3500
nm, or 3.5 um.
29. THINK The intensity is proportional to the square of the resultant field amplitude.
EXPRESS Let the electric field components of the two waves be written as

E, =E,sinat
E, = E,, sin(wt +¢),

where Ejo = 1.00, Ez = 2.00, and ¢ = 60°. The resultant field is E=E, +E,. We use
phasor diagram to calculate the amplitude of E.

ANALYZE The phasor diagram is shown next.
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The resultant amplitude E,, is given by the trigonometric
law of cosines:

E2 = E% +E2 — 2E,,E,, c0s(180°— ¢}) .

Thus,

E,, =+/(L00)’ +(2.00)° — 2(100)(2.00)cos120° = 265.

LEARN Summing over the horizontal components of the two fields gives
Z E, = E,, cos0+ E,, cos60°=1.00+(2.00) cos 60° = 2.00
Similarly, the sum over the vertical components is
Z E, =E,sin0+E,;sin60°=1.00sin 0°+(2.00)sin 60° =1.732.

The resultant amplitude is

E, =+/(2.00) + (1.732)* = 2.65,
which agrees with what we found above. The phase angle relative to the phasor
representing Ej is

1.732] _40.0°

=tan™
p ( 2.00

Thus, the resultant field can be written as E = (2.65)sin(wt +40.9°).

30. In adding these with the phasor method (as opposed to, say, trig identities), we may
sett = 0 and add them as vectors:

Yy, =10c0s0°+8.0c0s30°=16.9
y, =10sin0°+8.0sin30°=4.0

so that
Ve =/¥n +Yy =174
[= tanl[ﬁj =133°.
Yn
Thus,

y=Y,+Y, =Yg sin(at + §) =17 4sin(at +133°).
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Quoting the answer to two significant figures, we have y =17sin (a)t +13°) .

31. In adding these with the phasor method (as opposed to, say, trig identities), we may
sett = 0 and add them as vectors:

¥y, =10c0s0°+15c0s30°+5.0c0s(—45°) = 265
y, =10sin0°+15sin 30°+5.0sin(—45°) = 4.0

so that

Yo =i + Y. =26.8~27

p=tan" (Lj =8.5°.

Yh
Thus, y=Y,+Y,+Y, = Yz Sin(at+ £)=27sin (ot +8.5°).

32. (a) We can use phasor techniques or use trig identities. Here we show the latter
approach. Since
sin a + sin(a + b) = 2cos(b/2)sin(a + b/2),

we find
E, +E, =2E, cos(¢/ 2)sin(et + ¢/ 2)

where E, = 2.00 pV/m, w= 1.26 x 10" rad/s, and ¢=39.6 rad. This shows that the
electric field amplitude of the resultant wave is

E =2E, cos(¢/2) =2(2.00 1VV/m)cos(19.2 rad) =2.33 uV/m.

(b) Equation 35-22 leads to
| =41,cos’(¢/2)=1.351,

at point P, and

| oner =41, €0S%(0) =4 1,

center

at the center. Thus, 1/1 =1.35/4=0.338.

center

(c) The phase difference ¢ (in wavelengths) is gotten from ¢ in radians by dividing by 2.
Thus, ¢=39.6/27= 6.3 wavelengths. Thus, point P is between the sixth side maximum

(at which ¢ = 6 wavelengths) and the seventh minimum (at which ¢= 6% wavelengths).

d) The rate is given by @ = 1.26 x 10" rad/s.
( g y
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(e) The angle between the phasors is ¢=39.6 rad = 2270° (which would look like about
110° when drawn in the usual way).

33. With phasor techniques, this amounts to a vector addition problem R=A+B+C
where (in magnitude-angle notation) A=(10£0°),B=(5245°), and C=(5£-45°),
where the magnitudes are understood to be in #V/m. We obtain the resultant (especially
efficient on a vector-capable calculator in polar mode):

R=(10£0°)+(5£45°)+(5£ —45°) = (171£0°)

which leads to
Er =(1714V/m)sin(et)

where o= 2.0 x 10* rad/s.
34. (a) Referring to Figure 35-10(a) makes clear that
0= tan"}(y/D) = tan *(0.205/4) = 2.93°.

Thus, the phase difference at point P is ¢ = dsind/4 = 0.397 wavelengths, which means it
IS between the central maximum (zero wavelength difference) and the first minimum (%

wavelength difference). Note that the above computation could have been simplified
somewhat by avoiding the explicit use of the tangent and sine functions and making use
of the small-angle approximation (tané ~siné).

(b) From Eq. 35-22, we get (with ¢ = (0.397)(27) = 2.495 rad)

| =41,c0s’(¢/2) =0.404 1,
at point P and

| oner =41, €0S%(0) =4 1,

center

at the center. Thus, 1/1 =0.404/4=0.101.

center
35. THINK For complete destructive interference, we want the waves reflected from the
front and back of the coating to differ in phase by an odd multiple of = rad.

EXPRESS Each wave is incident on a medium of higher index of refraction from a
medium of lower index, so both suffer phase changes of = rad on reflection. If L is the
thickness of the coating, the wave reflected from the back surface travels a distance 2L
farther than the wave reflected from the front. The phase difference is 2L(2n/Ac), where
Ac Is the wavelength in the coating. If n is the index of refraction of the coating, A, = A/n,
where A is the wavelength in vacuum, and the phase difference is 2nL(2n/A). We solve
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2nL(27nj =(2m+n

(2m+1)7u.

for L. Here mis an integer. The result is L = 1
n

ANALYZE To find the least thickness for which destructive interference occurs, we take
m = 0. Then,
-9
_ A 8000 M 56,007 m,
4n  4(1.25)
LEARN A light ray reflected by a material changes phase by = rad (or 180°) if the
refractive index of the material is greater than that of the medium in which the light is
traveling.

36. (a) On both sides of the soap is a medium with lower index (air) and we are
examining the reflected light, so the condition for strong reflection is Eq. 35-36. With
lengths in nm,

3360 form=0

1120 form=1

_2mL 672 form=2
k_m+% ] 480 form=3
373 form=4

305 form=5

from which we see the latter four values are in the given range.

(b) We now turn to Eq. 35-37 and obtain

1680 form=1

2n,L 840 form=2

L = T = 560 form=3
420 form=4

336 form=5

from which we see the latter three values are in the given range.

37. Light reflected from the front surface of the coating suffers a phase change of = rad
while light reflected from the back surface does not change phase. If L is the thickness of
the coating, light reflected from the back surface travels a distance 2L farther than light
reflected from the front surface. The difference in phase of the two waves is 2L(274 1) —
7, where A is the wavelength in the coating. If A is the wavelength in vacuum, then A =
A/n, where n is the index of refraction of the coating. Thus, the phase difference is
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2nL(24 1) — =. For fully constructive interference, this should be a multiple of 2z. We
solve

2nL (2—7[)— T=2Mmrx
A

for L. Here m is an integer. The solution is
(2m+1)r
4n

To find the smallest coating thickness, we take m = 0. Then,

-9
_ A _560x10 "M _ ;00 10 m.
an~ 4(2.00)

38. (@) We are dealing with a thin film (material 2) in a situation where n; > n, > ns,
looking for strong reflections; the appropriate condition is the one expressed by Eq. 35-
37. Therefore, with lengths in nm and L =500 and n, = 1.7, we have

1700 form=1

_2ml 850 form=2
A= m 567 form=3
425 form=4

from which we see the latter two values are in the given range. The longer wavelength
(m=3) is =567 nm.

(b) The shorter wavelength (m = 4) is A=425 nm.

(c) We assume the temperature dependence of the refraction index is negligible. From
the proportionality evident in the part (a) equation, longer L means longer A.

39. For constructive interference, we use Eq. 35-36:
2n,L=(m+1/2)x.
For the smallest value of L, let m = 0:

_ A2 624nm

%_2% 4(1.33)

=117nm=0.117 zm.

(b) For the second smallest value, we set m = 1 and obtain
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(1+12)2 _34
2n, 2n,

—3L,=3(0.1173m)=0.352m.

40. The incident light is in a low index medium, the thin film of acetone has somewhat
higher n = n,, and the last layer (the glass plate) has the highest refractive index. To see
very little or no reflection, the condition

2L:(m+%)nL where m=0,12,...

2

must hold. This is the same as Eq. 35-36, which was developed for the opposite situation
(constructive interference) regarding a thin film surrounded on both sides by air (a very
different context from the one in this problem). By analogy, we expect Eq. 35-37 to apply
in this problem to reflection maxima. Thus, using Eq. 35-37 with n, = 1.25 and A = 700
nm yields

L=0, 280nm, 560nm, 840nm, 1120 nm, ...

for the first several m values. And the equation shown above (equivalent to Eqg. 35-36)
gives, with A = 600 nm,

L =120 nm, 360 nm, 600 nm,840 nm,1080 nm,.....

for the first several m values. The lowest number these lists have in common is
L =840 nm.

41. In this setup, we have n,<n and n,>n,, and the condition for destructive
interference is

2L:(m+lJi = L:(m+lji, m=0,12,...
2)n, 2)2n,

The second least thickness is (m = 1)

L=(1+1)3%2"M 161 nm.
2 ) 2(1.59)

42. In this setup, we have n,>n and n,>n,, and the condition for constructive
interference is

2L:(m+1ji e
2)n, 2m+1

Thus, we get
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_|4Ln, =4(285 nm)(1.60) =1824 nm (m=0)
B 4Ln,/3=4(285nm)(1.60)/3=608 nm (m=1)

For the wavelength to be in the visible range, we choose m = 1 with 4 =608 nm.

43. When a thin film of thickness L and index of refraction n; is placed between materials
1 and 3 such that n, >n,and n, >n, where n; and nz are the indexes of refraction of the

materials, the general condition for destructive interference for a thin film is
_ 2Ln,

2L:mi = A , m=012,...
n, m

where 4 is the wavelength of light as measured in air. Thus, we have, for m=1

A =2Ln, =2(200 nm)(1.40) =560 nm.

44. In this setup, we have n,<n and n,<n,, and the condition for constructive
interference is

2L=(m+lji = L:[m+1ji, m=0,1, 2,...
2)n, 2)2n,

The second least thickness is (m = 1)

L=(1+1]%870M _ 359 hm.
2 ) 2(1.34)

45. In this setup, we have n,>n and n,>n,, and the condition for constructive

interference is
2L=(m+1ji = Lz[erlji , m=0,12,...
2)n, 2)2n,

The third least thickness is (m = 2)

L:[2+£) o120 _ 478 nm.,
2 2(1.60)

46. In this setup, we have n,<n and n,>n,, and the condition for destructive
interference is
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2L=£m+—]i oA 012
n, 2m+1

Therefore,
4Ln, =4(415 nm)(1.59) = 2639 nm (m=0)
A=44Ln,/3=4(415nm)(1.59)/3=880 nm (m=1) .
4Ln,/5=4(415nm)(1.59)/5=528 nm (m=2)

For the wavelength to be in the visible range, we choose m = 3 with 4 =528 nm.

47. THINK For a complete destructive interference, we want the waves reflected from
the front and back of material 2 of refractive index n, to differ in phase by an odd
multiple of r rad.

EXPRESS In this setup, we have n, <n, so there is no phase change from the first
surface. On the other hand n, <n,, so there is a phase change of z rad from the second
surface. Since the second wave travels an extra distance of 2L, the phase difference is

¢=i—”(2L)+ﬂ

where A, =A/n, is the wavelength in medium 2. The condition for destructive
interference is

Z—E(ZL) +7=02m+1)r,

or

=mt = 1=t _o012..
n, m

ANALYZE Thus, we have

_|2Ln, = 2(380 nm)(1.34) =1018 nm (m=1)
| Ln, = (380 nm)(1.34) =509 nm (m=2)

For the wavelength to be in the visible range, we choose m = 2 with 4 =509 nm.

LEARN In this setup, the condition for constructive interference is

2—7[(2L)+71' =2mr,
4

or
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2L=(m+lji, m=0,1 2,...
2)n,

48. In this setup, we have n,<n and n,<n,, and the condition for constructive
interference is

2L:[m+lji = L=(m+iji, m=0,12,...
2)n, 2)2n,

The second least thickness is (m = 1)

L=(1+11]532"M _ 239 1m.
2 ) 2(1.40)

49. In this setup, we have n,>n and n,>n,, and the condition for constructive

interference is
2L:[m+lji = L=[m+1]i , m=0,12,..
2)n, 2)2n,

The third least thickness is (m = 2)

L=(2+2]3820M o0 im.
2 ) 2(1.75)

50. In this setup, we have n,>n and n,<n,, and the condition for destructive
interference is

2L:(m+lji = L [eriji m=0,12,...
2)n, 2)2n,

The second least thickness is (m = 1)

L=[1+11]%82"M _ 548 1m.
2 ) 2(1.46)

51. THINK For a complete destructive interference, we want the waves reflected from
the front and back of material 2 of refractive index n, to differ in phase by an odd
multiple of & rad.

EXPRESS In this setup, we have n, <n,and n, <n,, which means that both waves are
incident on a medium of higher refractive index from a medium of lower refractive index.
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Thus, in both cases, there is a phase change of = rad from both surfaces. Since the second
wave travels an additional distance of 2L, the phase difference is

27
=— (2L
¢ 22( )

where A, =A/n, is the wavelength in medium 2. The condition for destructive
interference is

1—”(2L) = (2m+1)x,

or

2L=£m+1)i L R
2)n, 2m+1

ANALYZE Thus,
_ |4Ln, = 4(210 nm)(1.46) =1226 nm (m=0)
~ |4Ln, /3=4(210 nm)(1.46)/3 =409 nm (m=1)

For the wavelength to be in the visible range, we choose m = 1 with 2 =409 nm.

LEARN In this setup, the condition for constructive interference is

i-”(zg =2mr,

or

2L:mi, m=0,1 2,...
n2

52. In this setup, we have n,>n and n,>n,, and the condition for constructive

interference is
4Ln,

2L:(m+lji = l=—=, m=012,..
2)n, 2m+1

Thus, we have

4Ln, =4(325 nm)(1.75) =2275 nm (m=0)
A=44Ln,/3=4(325nm)(1.75)/3=758 nm (m=1) .
4Ln,/5=4(325nm)(1.75)/5=455nm (m=2)

For the wavelength to be in the visible range, we choose m = 2 with 4 =455 nm.

53. We solve Eq. 35-36 with n, =1.33and A =600 nm form=1, 2, 3,...:
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L =113 nm, 338nm, 564 nm, 789 nm, ...

And, we similarly solve Eq. 35-37 with the same n, and A = 450 nm:

L =0,169nm, 338nm, 508 nm, 677 nm,...

The lowest number these lists have in common is L = 338 nm.

54. The situation is analogous to that treated in Sample Problem — “Thin-film
interference of a coating on a glass lens,” in the sense that the incident light is in a low
index medium, the thin film of oil has somewhat higher n = n,, and the last layer (the
glass plate) has the highest refractive index. To see very little or no reflection, according
to the Sample Problem, the condition

2L:(m+1j& where m=0,12,...
2)n,

must hold. With A = 500 nm and n, = 1.30, the possible answers for L are

L =96nm, 288nm, 481nm, 673nm, 865nm,...

And, with A =700 nm and the same value of n,, the possible answers for L are

L =135nm, 404 nm, 673nm, 942 nm, ...

The lowest number these lists have in common is L = 673 nm.

55. THINK The index of refraction of oil is greater than that of the air, but smaller than
that of the water.

EXPRESS Let the indices of refraction of the air, oil and water be nq, n,, and ns,
respectively. Since n, <n,and n, <n,, there is a phase change of = rad from both

surfaces. Since the second wave travels an additional distance of 2L, the phase difference
IS

27
=—(2L
¢ /12( )

where A,=A/n,is the wavelength in the oil. The condition for constructive interference
is

i—”(ZL) =2mz,

or
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2L:mi, m=0,12,...
n2

ANALYZE (a) For m=1, 2,..., maximum reflection occurs for wavelengths

_2n,L 2(1.20)(460nm)
T m m

A =1104nm, 552nm, 368nm...

We note that only the 552 nm wavelength falls within the visible light range.

(b) Maximum transmission into the water occurs for wavelengths for which reflection is a
minimum. The condition for such destructive interference is given by

2L=(m+£j£:>7»= an,L
2)n, 2m+1

which yields A = 2208 nm, 736 nm, 442 nm ... for the different values of m. We note that
only the 442 nm wavelength (blue) is in the visible range, though we might expect some
red contribution since the 736 nm is very close to the visible range.

LEARN A light ray reflected by a material changes phase by = rad (or 180°) if the
refractive index of the material is greater than that of the medium in which the light is
traveling. Otherwise, there is no phase change. Note that refraction at an interface does
not cause a phase shift.

56. For constructive interference (which is obtained for A = 600 nm) in this circumstance,
we require
2L= K/IH _k4
2 2n

where k = some positive odd integer and n is the index of refraction of the thin film.
Rearranging and plugging in L = 272.7 nm and the wavelength value, this gives

kA _ k(600nm) _ k

4L 4(272.7nm) 1.818

Since we expect n > 1, then k = 1 is ruled out. However, k = 3 seems reasonable, since it
leads to n = 1.65, which is close to the “typical” values found in Table 34-1. Taking this
to be the correct index of refraction for the thin film, we now consider the destructive

interference part of the question. Now we have 2L = (integer) Agest/n. Thus,

Adest = (900 nm)/(integer).
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We note that setting the integer equal to 1 yields a Aqest Value outside the range of the
visible spectrum. A similar remark holds for setting the integer equal to 3. Thus, we set
it equal to 2 and obtain Agest = 450 nm.

57. In this setup, we have n,>n and n,>n,, and the condition for minimum
transmission (maximum reflection) or destructive interference is

2L=(m+1ji o= 010
2)n, 2m+1

Therefore,

_ |4Ln, =4(285 nm)(1.60) =1824 nm (m=0)
~ |4Ln, /3=4(415 nm)(1.59)/3=608 nm (m =1)

For the wavelength to be in the visible range, we choose m = 1 with 4 =608 nm.

58. In this setup, we have n,>n and n,>n,, and the condition for minimum
transmission (maximum reflection) or destructive interference is

2L:(m+1ji = L:(m+1ji, m=0,12,...
2)n, 2)2n,

The third least thickness is (m = 2)

L=(2+2]3820M >0 im.
2 ) 2(1.75)

59. THINK Maximum transmission means constructive interference.

EXPRESS As shown in Fig. 35-43, one wave travels a distance of 2L further than the
other. This wave is reflected twice, once from the back surface (between materials 2 and

3), and once from the front surface (between materials 1 and 2). Since n, > n,, there is no
phase change at the back-surface reflection. On the other hand, since n, <n,, there is a
phase change of & rad due to the front-surface reflection. The phase difference of the two
waves as they leave material 2 is

¢=1—ﬂ-(2L)+7Z'

where A, =A/n, is the wavelength in material 2. The condition for constructive
interference is
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27 L)+ 7= 2mr,
Z

or

2L=£m+iji T B
2)n, 2m+1

ANALYZE Thus, we have

4Ln, =4(415 nm)(1.59) = 2639 nm (m =0)
A=<4Ln,/3=4(415nm)(1.59)/3=880 nm (m=1) .
4Ln,/5=4(415nm)(1.59)/5=528 nm (m=2)

For the wavelength to be in the visible range, we choose m = 2 with 4 =528 nm.

LEARN similarly, the condition for destructive interference is

Z—E(ZL) +7=02m+1)r,

or
=mt = =2 o012
n, m

60. In this setup, we have n,<n and n,<n,, and the condition for maximum
transmission (minimum reflection) or constructive interference is
A 2Ln,

2L=m— = A= , m=0,12,...
n, m

Thus, we obtain

2Ln, =2(380 nm)(1.34) =1018 nm (m=1)
Ln, = (380 nm)(1.34) =509 nm (m=2)

For the wavelength to be in the visible range, we choose m = 2 with 4 =509 nm.

61. In this setup, we have n,>n and n,>n,, and the condition for minimum
transmission (maximum reflection) or destructive interference is

2L=(m+i)i o= 010
2)n, 2m+1

Therefore,
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4Ln, =4(325 nm)(1.75) =2275 nm (m=0)
A=<4Ln,/3=4(415nm)(1.59)/3=758 nm (m=1)
4Ln,/5=4(415nm)(1.59)/5=455nm (m=2)

For the wavelength to be in the visible range, we choose m = 2 with 4 =455 nm.

62. In this setup, we have n,<n and n,>n,, and the condition for maximum
transmission (minimum reflection) or constructive interference is

2L:[m+1ji = L=[m+1ji, m=0,12,...
2)n, 2)2n,

The second least thickness is (m = 1)

L :(1+1j 3420m _ 16 om.
2 ) 2(159)

63. In this setup, we have n,>n and n,<n,, and the condition for maximum
transmission (minimum reflection) or constructive interference is

2L:£m+1Ji = L:(m+1ji, m=0,12,...
2)n, 2)2n,

The second least thickness is (m = 1)

L=(1+11]%82"M _ 548 1m.
2 ) 2(1.46)

64. In this setup, we have n,>n and n,<n,, and the condition for maximum
transmission (minimum reflection) or constructive interference is

2L:(m+1ji R
2)n, 2m+1

Thus, we have

4Ln, =4(210 nm)(1.46) =1226 nm (m=0)
4Ln, /3=4(210 nm)(1.46)/3=409 nm (m=1)

For the wavelength to be in the visible range, we choose m = 1 with 2 =409 nm.
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65. In this setup, we have n,<n and n,<n,, and the condition for minimum
transmission (maximum reflection) or destructive interference is

2L:£m+1Ji = L:(m+1ji, m=0,12,...
2)n, 2)2n,

The second least thickness is (m = 1)

L=(141)8320M _ o9 i,
2 ) 2(1.40)

66. In this setup, we have n,<n and n,<n,, and the condition for maximum
transmission (minimum reflection) or constructive interference is
A _2Ln,

2L=m— = 4 , m=012,..
n, m

Thus, we have (with m =1)

A =2Ln, = 2(200 nm)(L.40) =560 nm .

67. In this setup, we have n,<n and n,<n,, and the condition for minimum
transmission (maximum reflection) or destructive interference is

2L=(m+1ji = L=[m+1ji, m=0,12,...
2)n, 2)2n,

The second least thickness is (m = 1)

L=(142)287"M _ 259 nm.
2 ) 2(1.38)

68. In this setup, we have n,>n and n,>n,, and the condition for minimum
transmission (maximum reflection) or destructive interference is

2L:[m+lji = L=(m+iji, m=0,12,...
2)n, 2)2n,

The third least thickness is (m = 2)

L:[2+EJ OL20M _ 478 nm.,
2 2(1.60)
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69. Assume the wedge-shaped film is in air, so the wave reflected from one surface
undergoes a phase change of z rad while the wave reflected from the other surface does
not. At a place where the film thickness is L, the condition for fully constructive

interference is2nL =(m+2)A, where n is the index of refraction of the film, 1 is the

wavelength in vacuum, and m is an integer. The ends of the film are bright. Suppose the
end where the film is narrow has thickness L; and the bright fringe there corresponds to m
= m;. Suppose the end where the film is thick has thickness L, and the bright fringe there
corresponds to m = m,. Since there are ten bright fringes, m, = m; + 9. Subtract

2nL, =(m, +2)A from 2nL, =(m, +9+2)A to obtain 2n AL = 94, where AL = L, — Ly is
the change in the film thickness over its length. Thus,

on  9(630x10°m)
“2n 2(150)

AL =189 x10°m.

70. (a) The third sentence of the problem implies m, = 9.5 in 2d, = myA initially. Then,
At =15 s later, we have m’ = 9.0 in 2d’ = m’A. This means

IAd| = do—d’ = 2(moh —m'A) =155nm.

Thus, |Ad| divided by At gives 10.3 nm/s.

(b) In this case, m¢ = 6 so that

do— 0= 3(MoA — Mg A) =%4=1085nm =1.09 pm.

71. The (vertical) change between the center of one dark band and the next is

=== 250 nm = 2.50x10"*mm.

Ay:% 500 nm

Thus, with the (horizontal) separation of dark bands given by Ax = 1.2 mm, we have

O~tanf= Ay _ 2.08 x10*rad.
AX

Converting this angle into degrees, we arrive at &= 0.012°.

72. We apply Eq. 35-27 to both scenarios: m = 4001 and n, = n,;, and m = 4000 and n, =
nvacuum = 100000

zL:(4001)ni and 2L = (4000) - 03‘000.

air
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Since the 2L factor is the same in both cases, we set the right-hand sides of these
expressions equal to each other and cancel the wavelength. Finally, we obtain

n,, = (100000) 22 _ 1 0025,
4000

We remark that this same result can be obtained starting with Eq. 35-43 (which is
developed in the textbook for a somewhat different situation) and using Eq. 35-42 to
eliminate the 2L/A term.

73. THINK A light ray reflected by a material changes phase by = rad (or 180°) if the
refractive index of the material is greater than that of the medium in which the light is
traveling.

EXPRESS Consider the interference of waves reflected from the top and bottom surfaces
of the air film. The wave reflected from the upper surface does not change phase on
reflection but the wave reflected from the bottom surface changes phase by = rad. At a
place where the thickness of the air film is L, the condition for fully constructive

interference is2L = (m+£)A where A (= 683 nm) is the wavelength and m is an integer.

ANALYZE For L = 48 pm, we find the value of m to be

o _2L_1_2(480x10°m) 1

=140
A 2 683x10°m 2

At the thin end of the air film, there is a bright fringe. It is associated with m = 0. There
are, therefore, 140 bright fringes in all.

LEARN The number of bright fringes increases with L, but decreases with A.

74. By the condition mA = 2y where y is the thickness of the air film between the plates
directly underneath the middle of a dark band), the edges of the plates (the edges where
they are not touching) are y = 84/2 = 2400 nm apart (where we have assumed that the
middle of the ninth dark band is at the edge). Increasing that to y' = 3000 nm would
correspond to m' = 2y'/4 = 10 (counted as the eleventh dark band, since the first one
corresponds to m = 0). There are thus 11 dark fringes along the top plate.

75. THINK The formation of Newton’s rings is due to the interference between the rays
reflected from the flat glass plate and the curved lens surface.

EXPRESS Consider the interference pattern formed by waves reflected from the upper
and lower surfaces of the air wedge. The wave reflected from the lower surface
undergoes a & rad phase change while the wave reflected from the upper surface does not.



1543

At a place where the thickness of the wedge is d, the condition for a maximum in
intensity is 2d = (m+%)k, where A is the wavelength in air and m is an integer. Therefore,

d = (2m + 1)A/4.

ANALYZE As the geometry of Fig. 35-46 shows,d = R—+/R*—r?, where R is the
radius of curvature of the lens and r is the radius of a Newton’s ring. Thus,

(2m+1)A/4=R—~/R* —r?. First, we rearrange the terms so the equation becomes

(2m+1)
y

R*—r*=R-

Next, we square both sides, rearrange to solve for r?, then take the square root. We get

- \/(2m+1)Rx (2m+1)°A2
- 2 16
If R is much larger than a wavelength, the first term dominates the second and

(2m+1)RA
—

LEARN Similarly, the radii of the dark fringes are given by

r:x/mR/I.

76. (a) We find m from the last formula obtained in Problem 35-75:

21 (10x10°® m)2 1

m=———= —
RA 2 (50m)(589x10°m) 2

which (rounding down) yields m = 33. Since the first bright fringe corresponds to m = 0,
m = 33 corresponds to the thirty-fourth bright fringe.

(b) We now replace 4 by A, = A/n,,. Thus,

2
21 nr? o1 (1.33)(10x10°m) L 4
" Rk, 2 RL 2 (50m)(589x10°m) 2
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This corresponds to the forty-sixth bright fringe (see the remark at the end of our solution
in part (a)).

77. We solve for m using the formula r =,/(2m+1)R)A/2 obtained in Problem 35-75 and
find m = r¥RA — 1/2. Now, when m is changed to m + 20, r becomes r', so

m+20=r"%Rr—1/2.

Taking the difference between the two equations above, we eliminate m and find

12 _ 2 ‘- 2
Rl -r* _(0368cm) —(0162cm)” o
201 20(546>10""cm)

78. The time to change from one minimum to the next is At = 12 s. This involves a
change in thickness AL = 4/2n, (see Eq. 35-37), and thus a change of volume

72 dvV _ zr2A _ m(0.0180)2 (550 x 10°)

V = nrAL = b P
A= T a At 2040)(12)

using Sl units. Thus, the rate of change of volume is 1.67 x 10 ' m%s.

79. A shift of one fringe corresponds to a change in the optical path length of one
wavelength. When the mirror moves a distance d, the path length changes by 2d since the
light traverses the mirror arm twice. Let N be the number of fringes shifted. Then, 2d =
NA and

2d  2(0.233x10°m)

A="—1= =588x10" m=588nm.
N 792

80. According to Eq. 35-43, the number of fringes shifted (AN) due to the insertion of the
film of thickness L is AN = (2L / 1) (n — 1). Therefore,

AAN  (589nm)(7.0)

L= = =52 :
2-1) 2ta0-1 M

81. THINK The wavelength in air is different from the wavelength in vacuum.

EXPRESS Let ¢ be the phase difference of the waves in the two arms when the tube has
air in it, and let ¢ be the phase difference when the tube is evacuated. If A is the
wavelength in vacuum, then the wavelength in air is A/n, where n is the index of
refraction of air. This means

2nn 27
¢~ 9, —ZL[T—T}—

4rn(n-1)L
»
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where L is the length of the tube. The factor 2 arises because the light traverses the tube
twice, once on the way to a mirror and once after reflection from the mirror. Each shift by
one fringe corresponds to a change in phase of 2x rad, so if the interference pattern shifts
by N fringes as the tube is evacuated, then

4n(n-1)L
A

=2Nm.

ANALYZE Solving for n, we obtain

NA _, 60(500 x10°° m)
+
2L 2(50x107%m)

=100030.

LEARN The interferometer provides an accurate way to measure the refractive index of
the air (and other gases as well).

82. We apply Eq. 35-42 to both wavelengths and take the difference:

We now require N; — N, = 1 and solve for L:

1 1
it oty 1 L - L =2.91x10° nm =291 zm.
2\ A, A, 21 588.9950 nm 589.5924 nm

83. (a) The path length difference between rays 1 and 2 is 7d — 2d = 5d. For this to
correspond to a half-wavelength requires 5d = A/2, so that d = 50.0 nm.

(b) The above requirement becomes 5d = A/2n in the presence of the solution, with n =
1.38. Therefore, d = 36.2 nm.

84. (a) The minimum path length difference occurs when both rays are nearly vertical.
This would correspond to a point as far up in the picture as possible. Treating the screen
as if it extended forever, then the point is aty = o.

(b) When both rays are nearly vertical, there is no path length difference between them.
Thus at y = oo, the phase difference is ¢= 0.

(c) Aty = 0 (where the screen crosses the x axis) both rays are horizontal, with the ray
from S; being longer than the one from S, by distance d.
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(d) Since the problem specifies d = 6.00A, then the phase difference here is ¢ = 6.00
wavelengths and is at its maximum value.

(e) With D = 204, use of the Pythagorean theorem leads to

_ Li—L,  +Jd2+(d+D)2—+/d?+ D2
= T A

=5.80

which means the rays reaching the point y = d have a phase difference of roughly 5.8
wavelengths.

(f) The result of the previous part is “intermediate” — closer to 6 (constructive
interference) than to 5% (destructive interference).

85. THINK The angle between adjacent fringes depends the wavelength of the light and
the distance between the slits.

EXPRESS The angular positions of the maxima of a two-slit interference pattern are
given by AL=dsind=mA, where AL is the path-length difference, d is the slit separation,
A is the wavelength, and m is an integer. If @is small, sin & may be approximated by & in
radians. Then, & = mA/d to good approximation. The angular separation of two adjacent
maxima is A@ = A/d. When the arrangement is immersed in water, the wavelength
changes to A' = A/n, and the equation above becomes
no =2
d

ANALYZE Dividing the equation by A@= A/d, we obtain
A0 A1
A0 A n
Therefore, with n =1.33 and A= 0.30°, we find A@"' = 0.23°.

LEARN The angular separation decreases with increasing index of refraction; the greater
the value of n, the smaller the value of Aé.

86. (a) The graph shows part of a periodic pattern of half-cycle “length” An = 0.4. Thus
if we setn=1.0 + 2An = 1.8 then the maximum at n = 1.0 should repeat itself there.

(b) Continuing the reasoning of part (a), adding another half-cycle “length” we get
1.8+ An=2.2 for the answer.
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(c) Since An = 0.4 represents a half-cycle, then An/2 represents a quarter-cycle. To
accumulate a total change of 2.0 — 1.0 = 1.0 (see problem statement), then we need 2An +
An/2 = 5/4™ of a cycle, which corresponds to 1.25 wavelengths.

87. THINK For a completely destructive interference, the intensity produced by the two
waves is zero.

EXPRESS When the interference between two waves is completely destructive, their
phase difference is given by

¢p=02m+1)z, m=0,12,...

The equivalent condition is that their path-length difference is an odd multiple of 1/2,
where A is the wavelength of the light.

ANALYZE (a) Looking at Fig. 35-52, we see that half of the periodic pattern is of length
AL = 750 nm (judging from the maximum at x = 0 to the minimum at x = 750 nm); this
suggests that AL = 4/2, and the wavelength (the full length of the periodic pattern) is 4 =
2AL = 1500 nm. Thus, a maximum should be reached again at x = 1500 nm (and at x =
3000nm, x =4500 nm, ...).

(b) From our discussion in part (a), we expect a minimum to be reached at odd multiple
of A/2, or x = 750 nm + n(1500 nm), where n=1, 2, 3 ... . For instance, for n = 1 we
would find the minimum at x = 2250 nm.

(c) With A = 1500 nm (found in part (a)), we can express x = 1200 nm as x = 1200/1500 =
0.80 wavelength.

LEARN For a completely destructive interference, the phase difference between two
light sources is an odd multiple of =; however, for a completely constructive interference,
the phase difference is a multiple of 2x.

88. (a) The difference in wavelengths, with and without the n = 1.4 material, is found
using Eqg. 35-9:

AN = (n—1)L =1.143.
A
The result is equal to a phase shift of (1.143)(360°) = 411.4°, or

(b) more meaningfully, a shift of 411.4° — 360° = 51.4°.

89. THINK Since the index of refraction of water is greater than that of air, the wave that
is reflected from the water surface suffers a phase change of « rad on reflection.
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EXPRESS Suppose the wave that goes directly to the receiver travels a distance L; and
the reflected wave travels a distance L,. The last wave suffers a phase change on
reflection of half a wavelength since water has higher refractive index than air. To obtain
constructive interference at the receiver, the difference L, — Ly must be an odd multiple of
a half wavelength.

ANALYZE Consider the diagram below.
T

<« = —>

% %
<«—D,—>»<«—D,—>

The right triangle on the left, formed by the vertical line from the water to the transmitter
T, the ray incident on the water, and the water line, gives D, = a/ tan 6. The right triangle
on the right, formed by the vertical line from the water to the receiver R, the reflected ray,

and the water line leads to D, =x/tané . Since D, + Dy = D,

tanezw.
D

We use the identity sin? = tan” 8/ (1 + tan® 6) to show that

sin¢9:(a+x)/«/D2+(a+x)2 .

This means
_a _a D? +(a+x)’
I'za_sinﬁ_ a+ X
and
x X D2+(a+x)2
I_zb_sine_ a+x '
Therefore,
a+x)yD?+(a+x)
L2:L2a+L2b:( )a (@+x) = D*+(a+x)" .
+X

Using the binomial theorem, with D? large and a* + x* small, we approximate this
expression: L, ~D+(a+ x)2/2D. The distance traveled by the direct wave is
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L, =+ D? +(a—x)2 . Using the binomial theorem, we approximate this expression:
L, ~D+(a—x)"/2D. Thus,
a’+2ax+x* | a’-—2ax+x° _2ax

-L=D+—+——-D = :
=~k 2D 2D D

Setting this equal to (m+%)A , where m is zero or a positive integer, we find
x=(m+1)(A1D/2a).

LEARN Similarly, the condition for destructive interference is

2ax
L2 — Li NF: m/l,
or
x=m£, m=0,1 2,...
2a

90. (a) Since P, is equidistant from S; and S, we conclude the sources are not in phase
with each other. Their phase difference is A@ource = 0.60 7 rad, which may be expressed
in terms of “wavelengths” (thinking of the 4 < 2r correspondence in discussing a full
cycle) as

Adsource = (0.60 7/ 27) A =0.3 L

(with S,“leading” as the problem states). Now S, is closer to P, than S, is. Source S; is
80 nm (< 80/400 4 = 0.2 1) from P, while source S, is 1360 nm (<> 1360/400 A =3.4 1)
from P,. Here we find a difference of Adgpan = 3.2 A (with S; “leading” since it is closer).
Thus, the net difference is

Ahet = A¢path — Adsource = 2.90 4,
or 2.90 wavelengths.

(b) A whole number (like 3 wavelengths) would mean fully constructive, so our result is
of the following nature: intermediate, but close to fully constructive.

91. (a) Applying the law of refraction, we obtain sin & / sin & = sin & / sin 30° = vy/vy.
Consequently,

in30° 3.0 in30°
0, =sin™ v, Sin 30° =sin™* (30my/s)sin =22°.
v, 4.0m/s
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(b) The angle of incidence is gradually reduced due to refraction, such as shown in the
calculation above (from 30° to 22°). Eventually after several refractions, & will be
virtually zero. This is why most waves come in normal to a shore.

92. When the depth of the liquid (Liiq) is zero, the phase difference ¢ is 60 wavelengths;
this must equal the difference between the number of wavelengths in length L = 40 pm
(since the liquid initially fills the hole) of the plastic (for ray r;) and the number in that
same length of the air (for ray r,). That is,

anlastic _ Lnair —60.
A A

(a) Since A =400 x 10~ m and na;; = 1 (to good approximation), we find Nplastic = 1.6.

(b) The slope of the graph can be used to determine njq, but we show an approach more
closely based on the above equation:

Ln Ln

plastic lig 20

A A
which makes use of the leftmost point of the graph. This readily yields nji; = 1.4.

93. THINK Knowing the slit separation and the distance between interference fringes
allows us to calculate the wavelength of the light used.

EXPRESS The condition for a minimum in the two-slit interference pattern is d sin 8 =
(m + %2)A, where d is the slit separation, A is the wavelength, m is an integer, and @is the
angle made by the interfering rays with the forward direction. If &is small, sin 8 may be
approximated by @ in radians. Then, 8= (m + %2)A/d, and the distance from the minimum
to the central fringe is

y=Dtan@d~Dsind = D9=[m+%) D4 ,
where D is the distance from the slits to the screen. For the first minimum m = 0 and for
the tenth one, m = 9. The separation is

1\D4A 1DA 9DA
Ay =|9+— —— = .
2)d 2d d

ANALYZE We solve for the wavelength:

_day  (015x107°m)(18x10°m)

=—2 = =6.0x10"m =600 nm.
9D 9(50x10*m)
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LEARN The distance between two adjacent dark fringes, one associated with the integer
m and the other associated with the integer m + 1, is

Ay = D@ = DAd.

94. A light ray traveling directly along the central axis reaches the end in time

- L nL
direct V1 c '

For the ray taking the critical zig-zag path, only its velocity component along the core
axis direction contributes to reaching the other end of the fiber. That component is
vi cos @', so the time of travel for this ray is

L _ nL
v, cos ¢’ c\jl—(sin o/n, Y

zig zag =

using results from the previous solution. Plugging in sin@=./n? —n and simplifying,
we obtain

(. mb n/L

w0 e(n, /n)  n,c’

The difference is

At=t

direct —

nc ¢ ¢

zigzag

t _ﬁ_nl_t=&£&_1j,

With n; =1.58, n, =1.53, and L = 300 m, we obtain

at="ak[ My | (258)(300 m)(1'58—1j:5.16x10‘8 s=51.6ns.
c {n, 3.0x10° m/s \1.53

95. THINK The dark band corresponds to a completely destructive interference.

EXPRESS When the interference between two waves is completely destructive, their
phase difference is given by

¢p=02m+1)xz, m=0,12,...

The equivalent condition is that their path-length difference is an odd multiple of A1/2,
where A is the wavelength of the light.
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ANALYZE (a) A path length difference of A/2 produces the first dark band, of 31/2
produces the second dark band, and so on. Therefore, the fourth dark band corresponds to
a path length difference of 7A/2 = 1750 nm = 1.75 um.

(b) In the small angle approximation (which we assume holds here), the fringes are
equally spaced, so that if Ay denotes the distance from one maximum to the next, then the
distance from the middle of the pattern to the fourth dark band must be 16.8 mm = 3.5 Ay.
Therefore, we obtain Ay = (16.8 mm)/3.5 = 4.8 mm.

LEARN The distance from the mth maximum to the central fringe is

ybright =Dtand = DSinHz D@ = m%

Similarly, the distance from the mth minimum to the central fringe is

1)D/1
g

=m+=
ydark ( 2

96. We use the formula obtained in Sample Problem — “Thin-film interference of a
coating on a glass lens:”

L= % 02000 = Lmn_g200.
an, 4(1.25) A

97. THINK The intensity of the light observed in the interferometer depends on the
phase difference between the two waves.

EXPRESS Let the position of the mirror measured from the point at which d; = d, be x.
We assume the beam-splitting mechanism is such that the two waves interfere
constructively for x = 0 (with some beam-splitters, this would not be the case). We can
adapt Eq. 35-23 to this situation by incorporating a factor of 2 (since the interferometer
utilizes directly reflected light in contrast to the double-slit experiment) and eliminating
the sin@ factor. Thus, the path difference is 2x, and the phase difference between the two
light paths is A¢ = 2(2ntx/A) = 4nx/A.

ANALYZE From Eq. 35-22, we see that the intensity is proportional to cos®(Ag/2).
Thus, writing 4l as I, we find

| = Imcosz(A—¢j: Imcosz(%j :
2 A

LEARN The intensity |/1_ as a function of x/A is plotted below.
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0.2 0.4 0.6 0.8 1 'X/x'

From the figure, we see that the intensity is at a maximum when
x=g/1, m=012,.

Similarly, the condition for minima is

X =%(2m +1)4, m=0,1,2,..

98. We note that ray 1 travels an extra distance 4L more than ray 2. For constructive
interference (which is obtained for A = 620 nm) we require

4L =mA  where m = some positive integer.

For destructive interference (which is obtained for A’ = 4196 nm) we require
4L = g A" where k = some positive odd integer.

Equating these two equations (since their left-hand sides are equal) and rearranging, we
obtain
A 620

kZZmT :2mr96 =25m.

We note that this condition is satisfied for k =5 and m = 2. It is satisfied for some larger
values, too, but recalling that we want the least possible value for L, we choose the
solution set (k, m) = (5, 2). Plugging back into either of the equations above, we obtain
the distance L:

N[>

4L =24 = L=7 =3100nm.

99. (a) Straightforward application of Eg. 35-3 n=c/vand v = Ax/At yields the result:
pistol 1 with a time equal to At = nAx/c = 42.0 x 10 ** s = 42.0 ps.
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(b) For pistol 2, the travel time is equal to 42.3 x 10 **s.
(c) For pistol 3, the travel time is equal to 43.2 x 10 **s.
(d) For pistol 4, the travel time is equal to 41.8 x 10 *?s.
(e) We see that the blast from pistol 4 arrives first.

100. We use Eq. 35-36 for constructive interference: 2n,L = (m + 1/2)4, or

_2n,L _ 2(150)(410nm) 1230 nm

T m+12 m+12 m+12 °

where m =0, 1, 2, .... The only value of m which, when substituted into the equation
above, would yield a wavelength that falls within the visible light range is m = 1.
Therefore,

~1230nm

=492 nm.
1+12

101. In the case of a distant screen the angle @is close to zero so sin &~ 6. Thus from Eq.
35-14,

AezAsin0=A(Mj=£Am=i,

d d d

ord~A/A0=589 x 10° m/0.018 rad = 3.3 x 10° m = 33 um.
102. We note that A¢ = 60° :% rad. The phasors rotate with constant angular velocity

w=20_ 71318 19,10° radss.

At 25x107s
Since we are working with light waves traveling in a medium (presumably air) where the
wave speed is approximately c, then kc = @ (where k = 27/4), which leads to

%= 27C = 450 nm.

@

103. (a) Each wave is incident on a medium of higher index of refraction from a medium
of lower index (air to oil, and oil to water), so both suffer phase changes of = rad on
reflection. If L is the thickness of the oil, the wave reflected from the back surface travels
a distance 2L farther than the wave reflected from the front. The phase difference is
2L(2n/)o), Where A, is the wavelength in oil. If n is the index of refraction of the oil, A, =
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A/n, where A is the wavelength in vacuum, and the phase difference is 2nL(2n/A). The
conditions for constructive and destructive interferences are

constructive : 2nL(27”) =2mzr = 2nL=mA4, m=0,12,...

destructive: 2nL[27”) =(2m+1)r =2nL=(m+1)4, m=012,...

Near the rim of the drop, L < A/4n, so only the condition for constructive interference
with m = 0 can be met. So the outer (thinnest) region is bright.

(b) The third band from the rim corresponds to 2nL =34/2. Thus, the film thickness
there is
Lo 34 _3(475nm)
2n  2(1.20)

=594 nm.

(c) The primary reason why colors gradually fade and then disappear as the oil thickness
increases is because the colored bands begin to overlap too much to be distinguished.
Also, the two reflecting surfaces would be too separated for the light reflecting from them
to be coherent.

104. (a) The combination of the direct ray and the reflected ray from the mirror will
produce an interference pattern on the screen, like the double-slit experiment. However,
in this case, the reflected ray has a phase change of 7z, causing the locations of the dark
and bright fringes to be interchanged. Thus, a zero path difference would correspond to a
dark fringe.
(b) The condition for constructive interferences is

2hsind=(m+3)4, m=0,12,...
(c) Similarly, the condition for destructive interference is

2hsind =m4, m=0,12,...
105. The Hint essentially answers the question, but we put in some algebraic details and

arrive at the familiar analytic-geometry expression for a hyperbola. The distance d/2 is
denoted a and the constant value for the path length difference is denoted ¢:

rn—rn=¢

V@) 2 +y2-\(@x)2+y? =¢

Rearranging and squaring, we have
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(V@2 +y2)2= (Vian2 +y2 + ¢)2
a2+2ax+X2+y?2 = a2—2ax+x2+y2+ 2+ 2 h[(@x)?2 +y?
Many terms on both sides are identical and may be eliminated. This leaves us with
“2¢\@xp+y? = ¢? - 4ax
at which point we square both sides again:
4 §?a? -8 Pax + 4 22 +4 ¢2y? = ¢*-8 ¢?ax +16a2x?

We eliminate the —8 ¢?ax term from both sides and plug in a = 2d to get back to the
original notation used in the problem statement:

QA2+ 4 2x2 +4 92y = ¢ +4d2x2
Then a simple rearrangement puts it in the familiar analytic format for a hyperbola:
g2 — ¢* = Ad- ¢Axe — 442 y?

which can be further simplified by dividing through by ¢?d2 — ¢":

4 o (4 )
() et )



Chapter 36

1. (a) We use Eq. 36-3 to calculate the separation between the first (m; = 1) and fifth
(m, =5) minima:
mA

Ay=DAsing= DA(—)
a

DA DA
a m a (m2 ml)

Solving for the slit width, we obtain

— 400 550x10°° 5-1
__ Dim,—m,) _(400mm)(55010 *mm)5-1)
Ay 0.35mm

(b) Form=1,

1)(550 x 10°° mm
sin@:m—kz()( - ):2.2><10*4.
a 25mm

The angle is #=sin" (2.2 x 10%) = 2.2 x 10™* rad.

2. From Eqg. 36-3,

a_m__ 1 4
A sin@ sin450°

3. (@) A plane wave is incident on the lens so it is brought to focus in the focal plane of
the lens, a distance of 70 cm from the lens.

(b) Waves leaving the lens at an angle & to the forward direction interfere to produce an
intensity minimum if a sin &= mA, where a is the slit width, 4 is the wavelength, and m is
an integer. The distance on the screen from the center of the pattern to the minimum is
given by y = D tan 6, where D is the distance from the lens to the screen. For the
conditions of this problem,

mr  (1)(590x107° m)

sinf=—= — =1475%x107° .
a 040x107m

This means 8= 1.475 x 10~ rad and
y = (0.70 m) tan(1.475 x 10~ rad) = 1.0 x 103 m.

4. (a) Equations 36-3 and 36-12 imply smaller angles for diffraction for smaller
wavelengths. This suggests that diffraction effects in general would decrease.

1557
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(b) Using Eqg. 36-3 with m = 1 and solving for 26 (the angular width of the central
diffraction maximum), we find

20 = Zsinl(&) =2sin™ 050m =11°.
a 50m

(c) A similar calculation yields 0.23° for 4 = 0.010 m.
5. (a) The condition for a minimum in a single-slit diffraction pattern is given by
asin d=m4i,

where a is the slit width, A is the wavelength, and m is an integer. For A = A and m = 1,
the angle @is the same as for A = A, and m = 2. Thus,

Aa = 24 = 2(350 nm) = 700 nm.

(b) Let m, be the integer associated with a minimum in the pattern produced by light with
wavelength A,, and let m, be the integer associated with a minimum in the pattern
produced by light with wavelength A,. A minimum in one pattern coincides with a
minimum in the other if they occur at the same angle. This means maA, = mpAy,. Since Ay
= 2y, the minima coincide if 2m, = my,. Consequently, every other minimum of the A,
pattern coincides with a minimum of the A, pattern. With m, =2, we have m, = 4.

(c) With m, =3, we have mp = 6.
6. (a) #=sin* (1.50 cm/2.00 m) = 0.430°.
(b) For the mth diffraction minimum, a sin = mA. We solve for the slit width:

2(441
ao M _20440m) e
sind sin0.430°

7. The condition for a minimum of a single-slit diffraction pattern is
asind=mA

where a is the slit width, A is the wavelength, and m is an integer. The angle 4 is
measured from the forward direction, so for the situation described in the problem, it is
0.60° for m = 1. Thus,

~ mAl _ 633x10°m

== =6.04x10°m.
sin@ sin0.60°
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8. Let the first minimum be a distance y from the central axis that is perpendicular to the
speaker. Then

sing= y/(D2 + yz)y2 =m\/a=x/a (form=1).
Therefore,

Db Db 100m
Y@y =1 J(af v,) -1 |[[(0.300m)(3000Hz)/(343m/s) | -1

=412m.

9. THINK The condition for a minimum of intensity in a single-slit diffraction pattern is
given by asin & = mA, where a is the slit width, A is the wavelength, and m is an integer.

EXPRESS To find the angular position of the first minimum to one side of the central
maximum, we setm = 1:

xj ._1[589x10‘9m
=Sn | ———

0, = sin‘l(— -
100x10~m

J =589x10“rad .
a

If D is the distance from the slit to the screen, the distance on the screen from the center
of the pattern to the minimum is

y, = Dtan6, = (300m)tan(589 x 10~ rad) = 1767 x 10 m .

To find the second minimum, we set m = 2:

[ 2(589x107 m) \
6, =sin" =1178x10"rad .

100x10°m

ANALYZE The distance from the center of the pattern to this second minimum is
y> =D tan & = (3.00 m) tan (1.178 x 10 rad) = 3.534 x 10 > m.
The separation of the two minima is
Ay =Yy, —y1=3.534 mm - 1.767 mm = 1.77 mm.

LEARN The angles ¢ and & found above are quite small. In the small-angle
approximation, sind~tané@ ~ ¢, and the separation between two adjacent diffraction

minima can be approximated as

DA

Ay=D(tan@, ,, —tan6 )~D(0,,, -6,)= 2

+1
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10. From y = mAL/a we get

Ay = A(m—}d—j _ AL\ (63280mM)@80) 1 1051- 24.0mm .
a a 1.37mm

11. We note that 1 nm = 1 x10° m = 1 x10® mm. From Eq. 36-4,

Ap= (2_“)( Axsin6) = 2”_6 (0'10 mm)sin 30°=266.7rad .
N 589x10° mm ) 2

This is equivalent to 266.7 rad — 847 = 2.8 rad = 160°.

12. (a) The slope of the plotted line is 12, and we see from Eq. 36-6 that this slope should
correspond to

7a 12 — a- 124 _ 12(610 nm)
A T T

=2330 nm = 2.33 um

(b) Consider Eq. 36-3 with “continuously variable” m (of course, m should be an integer
for diffraction minima, but for the moment we will solve for it as if it could be any real
number):

mmang(sinﬁ) _2._230mm 4
A ™A 610 nm

which suggests that, on each side of the central maximum (Gen = 0), there are three
minima; considering both sides then implies there are six minima in the pattern.

(c) Setting m =1 in Eq. 36-3 and solving for fyields 15.2°.
(d) Setting m = 3 in Eq. 36-3 and solving for #yields 51.8°.
13. (@) #=sin* (0.011 m/3.5 m) = 0.18°.

(b) We use Eq. 36-6:

=0.46rad .

(ﬂaj . (0.025mm)sin0.18°
a=|— [sin@= =
538x10™ mm

(c) Making sure our calculator is in radian mode, Eq. 36-5 yields

10) _ (S"”—“T =093,

I o
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14. We will make use of arctangents and sines in our solution, even though they can be
“shortcut” somewhat since the angles are small enough to justify the use of the small
angle approximation.

(a) Given y/D = 15/300 (both expressed here in centimeters), then &= tan"*(y/D) = 2.86°.
Use of Eq. 36-6 (with a = 6000 nm and A = 500 nm) leads to

zasin@  (6000nm)sin 2.86°
a = =
A 500nm

=1.883rad.

Thus,

I . 2
o _ [Wj —0.256 .
o

(b) Consider Eq. 36-3 with “continuously variable” m (of course, m should be an integer
for diffraction minima, but for the moment we will solve for it as if it could be any real
number):

M asin@ (6000 nm)sin 2.86°

~0.60,
A 500 nm

which suggests that the angle takes us to a point between the central maximum (G.entr = 0)
and the first minimum (which corresponds to m = 1 in Eq. 36-3).

15. THINK The relative intensity in a single-slit diffraction depends on the ratio a/A,
where a is the slit width and A is the wavelength.

EXPRESS The intensity for a single-slit diffraction pattern is given by

sina
m 2

o

where |, is the maximum intensity and « = (ra/A) sin 6. The angle € is measured from
the forward direction.

ANALYZE (a) We require | = 1/2, so

] 1
sinfa==a?.
2

(b) We evaluate sin® « and a’/2 for a = 1.39 rad and compare the results. To be sure

that 1.39 rad is closer to the correct value for « than any other value with three significant
digits, we could also try 1.385 rad and 1.395 rad.
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0= sin‘l(a—x) .
na

o Sin_1(0.442x)

(c) Since a = (na/)) sin 6,

Now ofn = 1.39/n = 0.442, so

a

The angular separation of the two points of half intensity, one on either side of the center
of the diffraction pattern, is

AO=20= 25in‘1(0'442kj )

a
(d) For a/A = 1.0,
AO=2sin""(0.442/1.0)=0.916rad =52.5°.

(e) For a/A =5.0,
A@=2sin"(0.442/5.0) =0.177rad =10.1°.

(f) For a/A =10,
A6 =2sin"*(0442/10) = 00884 rad = 5.06° .

LEARN As shown in Fig. 36-8, the wider the slit is (relative to the wavelength), the
narrower is the central diffraction maximum.

16. Consider Huygens’ explanation of diffraction phenomena. When A is in place only
the Huygens’ wavelets that pass through the hole get to point P. Suppose they produce a
resultant electric field Ea. When B is in place, the light that was blocked by A gets to P
and the light that passed through the hole in A is blocked. Suppose the electric field at P

isnow E, . The sum E, +E, is the resultant of all waves that get to P when neither A nor

B are present. Since P is in the geometric shadow, this is zero. Thus E, = —E,, and since

the intensity is proportional to the square of the electric field, the intensity at P is the
same when A is present as when B is present.

17. (a) The intensity for a single-slit diffraction pattern is given by

sina
m 0(2

where « is described in the text (see Eq. 36-6). To locate the extrema, we set the
derivative of I with respect to « equal to zero and solve for «. The derivative is
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d_I:2|msm3a
da a

(acosa—sina) .

The derivative vanishes if a #0 but sin « = 0. This
yields @ = mz, where m is a nonzero integer. These
are the intensity minima: 1 = 0 for ¢ = mz The }:tana

|

|

|

|

|

|

|

derivative also vanishes for « cos a—sin ¢ =0. This
condition can be written tan « = «. These implicitly
locate the maxima.

y =tanx

(b) The values of « that satisfy tan « = « can be y=a
found by trial and error on a pocket calculator or
computer. Each of them is slightly less than one of

the values (m+%)z rad , so we start with these
values. They can also be found graphically. As in the
diagram that follows, we plot y = tan e and y = « on the same graph. The intersections of
the line with the tan « curves are the solutions. The smallest «is ¢ =0.

0 T2 T 3r/2 o (rad)

(c) We write o =(m+21)rn for the maxima. For the central maximum, « = 0 and
m=-1/2=-0.500.

(d) The next one can be found to be & = 4.493 rad.
(e) For a=4.4934, m = 0.930.

(f) The next one can be found to be = 7.725 rad.
(9) For a¢=7.7252, m = 1.96.

18. Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of
your eye,” the maximum distance is

_D__ D =(5.O><10‘3m)(4.0x10‘3m)ZSOm.
0, 1.22)/d 1.22(550x10° m)

19. (a) Using the notation of Sample Problem — “Pointillistic paintings use the
diffraction of your eye,”

D 2(50x10° m)(1.5x10°° m)
122x/d 122(650%x107° m)

=019 m.

(b) The wavelength of the blue light is shorter S0 Lyax o< & will be larger.
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20. Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of
your eye,” the minimum separation is

-2
D=L6, = L(%) =(6.2x10° m)(l'zz)(l'6><10 m) =53m.

2.3m

21. THINK We apply the Rayleigh criterion to estimate the linear separation between the
two objects.

EXPRESS If L is the distance from the observer to the objects, then the smallest
separation D they can have and still be resolvable is D = L&k, where 6k is measured in
radians.

ANALYZE (a) With small angle approximation, 6, =1.224/d, where A is the
wavelength and d is the diameter of the aperture. Thus,

12215 122(80x10" m)(550x10°° m)

3 =11x10"m=1.1x10"km .
d 50x10™ m

D

This distance is greater than the diameter of Mars; therefore, one part of the planet’s
surface cannot be resolved from another part.

1.22(8.0><101° m)(550><10*9 m)
51m

(b) Nowd=51mandD = =1.1x10*m=11 km .

LEARN By the Rayleigh criterion for resolvability, two objects can be resolved only if
their angular separation at the observer is greater than 6, =1.221/d.

22. (@) Using the notation of Sample Problem — “Pointillistic paintings use the
diffraction of your eye,” the minimum separation is

~50 m.

122 xj _ (400x10°m)(122)(550x10°m)

D=L6&, =L
" ( d (0.005m)

(b) The Rayleigh criterion suggests that the astronaut will not be able to discern the Great

Wall (see the result of part (a)).

(c) The signs of intelligent life would probably be, at most, ambiguous on the sunlit half
of the planet. However, while passing over the half of the planet on the opposite side
from the Sun, the astronaut would be able to notice the effects of artificial lighting.
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23. THINK We apply the Rayleigh criterion to determine the conditions that allow the
headlights to be resolved.

EXPRESS By the Rayleigh criteria, two point sources can be resolved if the central
diffraction maximum of one source is centered on the first minimum of the diffraction
pattern of the other. Thus, the angular separation (in radians) of the sources must be at
least &k = 1.22A/d, where X is the wavelength and d is the diameter of the aperture.

ANALYZE (a) For the headlights of this problem,

1.22(550x10° m) \
O = = =1.34x10"" rad,
5.0x10°m

or 1.3x10™* rad, in two significant figures.

(b) If L is the distance from the headlights to the eye when the headlights are just
resolvable and D is the separation of the headlights, then D = L&k, where the small angle
approximation is made. This is valid for &k in radians. Thus,

L=2 - MM 0.10'm=10km.
6, 1.34x10"rad

LEARN A distance of 10 km far exceeds what human eyes can resolve. In reality, our
visual resolvability depends on other factors such as the relative brightness of the source
and their surroundings, turbulence in the air between the lights and the eyes, the health of
one’s vision.

24. We use Eq. 36-12 with #=2.5°/2 = 1.25°. Thus,

122(550nm
sin@ sinl125°

d

25. Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of
your eye,” the minimum separation is

1.22)(550x10° m
D=L6g, =L 1202 =(3.82><108m)( )( - ):50m.
R d 5.1m

26. Using the same notation found in Sample Problem — “Pointillistic paintings use the
diffraction of your eye,”

Py, _120t
L d



1566 CHAPTER 36

where we will assume a “typical” wavelength for visible light: A ~ 550 x 10~ m.
(a) With L = 400 x 10° m and D = 0.85 m, the above relation leads to d = 0.32 m.
(b) Now with D = 0.10 m, the above relation leads to d = 2.7 m.

(c) The military satellites do not use Hubble Telescope-sized apertures. A great deal of
very sophisticated optical filtering and digital signal processing techniques go into the
final product, for which there is not space for us to describe here.

27. Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of
your eye,”

-2 -3
L-D__D _GOA0Tm@E0xI0M) ;6 g0 m _16x10°km |

6. 122n/d  1.22(0.10x10°m)

28. Eq. 36-14 gives ¢k = 1.221/d, where in our case ¢ ~ D/L, with D = 60 um being the
size of the object your eyes must resolve, and L being the maximum viewing distance in
question. If d = 3.00 mm = 3000 zm is the diameter of your pupil, then

Dd _ (604m)(3000 xm)

= = =2.7x10° um =27cm.
1.22%  1.22(0.55um)

29. (a) Using Eq. 36-14, the angular separation is

1223, (1.22)(550x10° m)
od 0.76m

O, =8.8x10"rad .

(b) Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of
your eye,” the distance between the stars is

(101y)(9.46x10* km/ly)(0.18)m

~8.4x10 km .
(3600)(180) e

D=L6, =

(c) The diameter of the first dark ring is

2(0.18)(n)(14m)

=25x10°m=0.025mm .
(3600)(180)

d=20,L =

30. From Fig. 36-42(a), we find the diameter D’ on the retina to be

L' 2.00 cm

D'=D—=(2.00 mm) =0.0889 mm.
L 45.0 cm
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Next, using Fig. 36-42(b), the angle from the axis is

e:tan—l(D"Zj:tan-l(w
X 6.00 mm

j:0.424°.

Since the angle corresponds to the first minimum in the diffraction pattern, we have
sin@=1.221/d, where A is the wavelength and d is the diameter of the defect. With
A =550 nm, we obtain

d- 1.222 1.22(550 nm)
sind  sin(0.424°)

=9.06x10"° m~91um.

31. THINK We apply the Rayleigh criterion to calculate the angular width of the central
maxima.

EXPRESS The first minimum in the diffraction pattern is at an angular position 6,
measured from the center of the pattern, such that sin 6 = 1.22A/d, where A is the
wavelength and d is the diameter of the antenna. If f is the frequency, then the wavelength
IS

€ _300x10°m/s

= 5 =136x10°m.
f 220x10°Hz

ANALYZE (a) Thus, we have

122(136 x10° m
0= sin‘l(lzdﬂj = sinl{ ( )J =302x1073rad .

550x107°m

The angular width of the central maximum is twice this, or 6.04 x 10> rad (0.346°).

(b) Now A =1.6cmand d=2.3m,so

. [122(16x107 m) \
@ =sin" =85x10"rad .

2.3m

The angular width of the central maximum is 1.7 x 102 rad (or 0.97°).

LEARN Using small angle approximation, we can write the angular width as

29z2(1.22k]= 244\ .

d d
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32. (a) We use Eqg. 36-12:

6=sin" (%J =sin™* {%} =sin™ [( (1.22)(1450ms) )] — 6.8°.

25x10°Hz)(0.60m

(b) Now f = 1.0 x 10° Hz so

122, (L22)(u450m)s) o,

d  (1.0x10°Hz)(0.60m)

Since sin @cannot exceed 1 there is no minimum.
33. Equation 36-14 gives the Rayleigh angle (in radians):

1222 D

0
Rod L

where the rationale behind the second equality is given in Sample Problem —
“Pointillistic paintings use the diffraction of your eye.”

(a) We are asked to solve for D and are given A = 1.40 x 10 °m, d = 0.200 x 10>m, and
L =2000x10> m. Consequently, we obtain D = 17.1 m.

(b) Intensity is power over area (with the area assumed spherical in this case, which
means it is proportional to radius-squared), so the ratio of intensities is given by the
square of a ratio of distances: (d/D)* = 1.37 x 107%°.

34. (a) Since 0 = 1.224/d, the larger the wavelength the larger the radius of the first
minimum (and second maximum, etc). Therefore, the white pattern is outlined by red
lights (with longer wavelength than blue lights).

(b) The diameter of a water drop is

1224 1.22(7><1O’7 m)

~ =1.3x10"m .
0 15(0509)(mi80°)2 o

35. Bright interference fringes occur at angles € given by d sin & = mA, where m is an
integer. For the slits of this problem, we have d = 11a/2, so

asin 8=2mA/11 .

The first minimum of the diffraction pattern occurs at the angle & given by a sin 6, = 4,
and the second occurs at the angle & given by a sin & = 24, where a is the slit width. We
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should count the values of m for which 6 < 6 < 6, or, equivalently, the values of m for
which sin 6, < sin < sin &. This means 1 < (2m/11) < 2. The valuesare m =6, 7, 8, 9,
and 10. There are five bright fringes in all.

36. Following the method of Sample Problem — “Double-slit experiment with diffraction
of each slit included,” we find
-3

d_ 0.30><1(?6 M _ 659

a 46x107m
which we interpret to mean that the first diffraction minimum occurs slightly farther
“out” than the m = 6 interference maximum. This implies that the central diffraction
envelope includes the central (m = 0) interference maximum as well as six interference
maxima on each side of it. Therefore, there are 6 + 1 + 6 = 13 bright fringes (interference
maxima) in the central diffraction envelope.

37. In a manner similar to that discussed in Sample Problem — “Double-slit experiment
with diffraction of each slit included,” we find the number is 2(d/a) — 1 = 2(2a/a) — 1 = 3.

38. We note that the central diffraction envelope contains the central bright interference
fringe (corresponding to m = 0 in Eq. 36-25) plus ten on either side of it. Since the
eleventh order bright interference fringe is not seen in the central envelope, then we
conclude the first diffraction minimum (satisfying sin@ = A/a) coincides with the m = 11
instantiation of Eq. 36-25:

mA
d= sing - =1la.
Thus, the ratio d/a is equal to 11.

39. (a) The first minimum of the diffraction pattern is at 5.00°, so

h__04d0um oo

"~ sin@  sin5.00°

(b) Since the fourth bright fringe is missing, d = 4a = 4(5.05 gm) = 20.2 um.
(c) For the m = 1 bright fringe,

rasin@ 7(5.05um)sin1.25°
a= =
A 0.440 um

=0.787rad .

Consequently, the intensity of the m =1 fringe is

. 2 . 2
| = |m(—s'” “) ~(7.0 mW/cmz)(—sm 0.787 rad ) =57 mwW/cm? ,
a 0.787
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which agrees with Fig. 36-45. Similarly for m = 2, the intensity is | = 2.9 mW/cm?, also
in agreement with Fig. 36-45.

40. (a) We note that the slope of the graph is 80, and that Eq. 36-20 implies that the slope
should correspond to

@ 80 = d- 804 _ 80(435 nm)
A T T

=11077 nm=11.1 um.

(b) Consider Eq. 36-25 with “continuously variable” m (of course, m should be an integer
for interference maxima, but for the moment we will solve for it as if it could be any real
number):
My =2 (sing),_ =9 11077 MM 55
A m 4 435nm

which indicates (on one side of the interference pattern) there are 25 bright fringes. Thus
on the other side there are also 25 bright fringes. Including the one in the middle, then,
means there are a total of 51 maxima in the interference pattern (assuming, as the
problem remarks, that none of the interference maxima have been eliminated by
diffraction minima).

(c) Clearly, the maximum closest to the axis is the middle fringe at 8= 0°.

(d) If we set m = 25 in Eq. 36-25, we find

mAi=dsind = O=sin? (m_/lj =sin? (wj =79.0°
d 11077 nm

41. We will make use of arctangents and sines in our solution, even though they can be
“shortcut” somewhat since the angles are [almost] small enough to justify the use of the
small angle approximation.

(@) Given y/D = (0.700 m)/(4.00 m), then

0=tan™ (lj - tanl(o'mo mj ~0.93°=0.173rad .
D 400 m

Equation 36-20 then gives

_zdsing  7(24.0 um)sin9.93°
o4 0.600 &m

yij =21.66rad.

Thus, use of Eq. 36-21 (with a =12 pm and A = 0.60 pm) leads to
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rasing 7(12.0 um)sin9.93°
o = =
2 0.600 zm

=10.83 rad .

Thus,

- 2 - 2
L = Sm_a (COSﬁ)Z = w (COS 21.66 rad)2 =0.00743 .
I a 10.83

m

(b) Consider Eq. 36-25 with “continuously variable” m (of course, m should be an integer

for interference maxima, but for the moment we will solve for it as if it could be any real
number):

o dsing _ (24.0 um)sin9.93°

A 0600um

6.9

which suggests that the angle takes us to a point between the sixth minimum (which
would have m = 6.5) and the seventh maximum (which corresponds to m = 7).

(c) Similarly, consider Eqg. 36-3 with “continuously variable” m (of course, m should be
an integer for diffraction minima, but for the moment we will solve for it as if it could be
any real number):

m_asing _ (12.0 um)sin9.93°
- »  0600um

3.4

which suggests that the angle takes us to a point between the third diffraction minimum
(m = 3) and the fourth one (m = 4). The maxima (in the smaller peaks of the diffraction
pattern) are not exactly midway between the minima; their location would make use of
mathematics not covered in the prerequisites of the usual sophomore-level physics course.

42. (a) In a manner similar to that discussed in Sample Problem — “Double-slit
experiment with diffraction of each slit included,” we find the ratio should be d/a = 4.
Our reasoning is, briefly, as follows: we let the location of the fourth bright fringe
coincide with the first minimum of diffraction pattern, and then set sin 8= 41/d = A/a (so
d =4a).

(b) Any bright fringe that happens to be at the same location with a diffraction minimum
will vanish. Thus, if we let
sing = mA _ M4 _ mA ,
d a 4a

or my = 4m; wherem, =1,2,3,.... The fringes missing are the 4th, 8th, 12th, and so on.
Hence, every fourth fringe is missing.
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43. THINK For relatively wide slits, the interference of light from two slits produces
bright fringes that do not all have the same intensity; instead, the intensities are modified
by diffraction of light passing through each slit.

EXPRESS The angular positions & of the bright interference fringes are given by d sin 6
= mA, where d is the slit separation, A is the wavelength, and m is an integer. The first

diffraction minimum occurs at the angle &, given by a sin & = A, where a is the slit width.

The diffraction peak extends from —6& to +6;, so we should count the number of values of
m for which -6, < < +6, or, equivalently, the number of values of m for which

—sin 6, <sin @ <+ sin 4.

The intensity at the screen is given by

| =1,(cos’ ,B)(Sina)z

a
where a = (na/A) sin 6, = (nd/L) sin 6, and I, is the intensity at the center of the pattern.
ANALYZE (a) The condition above means — 1/a < m/d < 1/a, or —d/a < m < +d/a. Now
d/a = (0.150 x 103 m)/(30.0 x 10°° m) = 5.00,
so the values of mare m =4, -3, -2, -1, 0, +1, +2, +3, and +4. There are 9 fringes.

(b) For the third bright interference fringe, d sin 8= 3, so 8= 3x rad and cos® g = 1.
Similarly, « = 3ra/d = 37/5.00 = 0.6007 rad and

. 2 . 2
(sma =(5|n0.600nj 0255
a 0.6007

The intensity ratio is I/l = 0.255.

LEARN The expression for intensity contains two factors: (1) the interference factor
cos®  due to the interference between two slits ULy,

with separation d, and (2) the diffraction factor
[(sina)/a]® which arises due to diffraction by a
single slit of width a. In the limit a—0,
(sinax)/ a —1, and we recover Eq. 35-22 for the

interference between two slits of vanishingly
narrow slits separated by d. Similarly, settingd =0
or equivalently, g = 0, we recover Eq. 36-5 for the
diffraction of a single slit of width a. A plot of the
relative intensity is shown to the right.

Z0.015-0.01 -0.005 '  0.005 0.01 0.015

0
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44. We use Eq. 36-25 for diffraction maxima: d sin &= mA. In our case, since the angle
between the m = 1 and m = —1 maxima is 26°, the angle & correspondingtom =1is =
26°/2 = 13°. We solve for the grating spacing:

4 mL (1)(550nm)
Csin@  sin13°

=24um=2um.

45. The distance between adjacent rulings is
d =20.0 mm/6000 = 0.00333 mm = 3.33 gm.

(a) Letdsind=mA(m=0,+1,%2,...). Since |m|4/d > 1 for |m| > 6, the largest value of &
corresponds to | m | = 5, which yields

o =sin*(Im|n/d)=sin | 2C8HM | g5 4o
3.33 um

(b) The second largest value of @ corresponds to [m| = 4, which yields

4(0.589 um)

@=sin"(|m|r/d)=sin"
3.33um

Jz 45.0°.

(c) The third largest value of @ corresponds to | m | = 3, which yields

o =sin*(Im|n/d)=sin | XC8OLM |35 5o
3.33 um

46. The angular location of the mth order diffraction maximum is given by mA = d sin 6.
To be able to observe the fifth-order maximum, we must let sin éy=5s = 54/d < 1, or

_d _100nm/315
5

A =635nm.

Therefore, the longest wavelength that can be used is A = 635 nm.

47. THINK Diffraction lines occur at angles & such that d sin & = mA, where d is the
grating spacing, A is the wavelength and m is an integer.

EXPRESS The ruling separation is

d = 1/(400 mm™) = 2.5 x 10° mm.
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Notice that for a given order, the line associated with a long wavelength is produced at a
greater angle than the line associated with a shorter wavelength. We take A to be the
longest wavelength in the visible spectrum (700 nm) and find the greatest integer value of
m such that @is less than 90°. That is, find the greatest integer value of m for which mi <
d.

ANALYZE Since
2.5x10°m

=2 ~357,

d
A 700x10°m

that value is m = 3. There are three complete orders on each side of the m = 0 order. The

second and third orders overlap.

LEARN From @=sin""(mA/d), the condition for maxima or lines, we see that for a

given diffraction grating, the angle from the central axis to any line depends on the
wavelength of the light being used.

48. (a) For the maximum with the greatest value of m = M we have MA = a sin < d, so
M < d/A =900 nm/600 nm = 1.5, or M = 1. Thus three maxima can be seen, with m =0,
1.

(b) From Eq. 36-28, we obtain

A dsing tand 1 . (A
AG,, = = = =—tan|sin"| —
Ndcosd Ndcosé N N d

49. THINK Maxima of a diffraction grating pattern occur at angles & given by d sin €=
mA, where d is the slit separation, A is the wavelength, and m is an integer.

EXPRESS If two lines are adjacent, then their order numbers differ by unity. Let m be
the order number for the line with sin 8= 0.2 and m + 1 be the order number for the line
with sin 8=0.3. Then,

0.2d=mx, 0.3d=(m+ 1A

ANALYZE (a) We subtract the first equation from the second to obtain 0.1d =, or
d =2/0.1 = (600 x 10°m)/0.1 = 6.0 x 10 ° m.

(b) Minima of the single-slit diffraction pattern occur at angles & given by a sin 8= mA,
where a is the slit width. Since the fourth-order interference maximum is missing, it must
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fall at one of these angles. If a is the smallest slit width for which this order is missing,
the angle must be given by a sin & = A. It is also given by d sin 8 = 4A, so

a=d/4=(6.0x10°m)/4=15x10°m.

(c) First, we set & =90° and find the largest value of m for which mi < d siné. This is the
highest order that is diffracted toward the screen. The condition is the same as m < d/A
and since

d/x = (6.0 x 10° m)/(600 x 10" m) = 10.0,
the highest order seen is the m = 9 order. The fourth and eighth orders are missing, so the
observable orders are m =0, 1, 2, 3, 5, 6, 7, and 9. Thus, the largest value of the order
number ism = 9.
(d) Using the result obtained in (c), the second largest value of the order number ism = 7.

(e) Similarly, the third largest value of the order number is m = 6.

LEARN Interference maxima occur when d sin & = mA, while the condition for
diffraction minima is a sin &= m’A. Thus, a particular interference maximum with order
m may coincide with the diffraction minimum of order m’. The value of m is given by

dsind mAi (dj ,
— = = m=|—m.
asind m'A

Since m =4 when m’' =1, we conclude that d/a = 4. Thus, m = 8 would correspond to the
second diffraction minimum (m'’=2).

50. We use Eq. 36-25. Form =1

_dsing  (1.73um)sin(£17.6°)
m +1

A =523 nm,

and for m = £2,
_ (L73pm)sin(+37.3°)
B +2

A =524 nm.

Similarly, we may compute the values of A corresponding to the angles for m = £3. The
average value of these A’s is 523 nm.

51. (a) Since d = (1.00 mm)/180 = 0.0056 mm, we write Eq. 36-25 as

0 =sint (m?”j _sin"(180)(2)%
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where A, =4x10*mmand A, =5x10*mm. Thus,A8=6, -6, =2.1°.
(b) Use of Eq. 36-25 for each wavelength leads to the condition
mA, =ma,

for which the smallest possible choices are m; = 5 and m, = 4. Returning to Eq. 36-25,
then, we find

4
0=sin‘1(ml—klj=sin‘1 5(4.0x10 " mm) =sin"(0.36) = 21°.
d 0.0056 mm

(c) There are no refraction angles greater than 90°, so we can solve for “Mmay” (realizing
it might not be an integer):

dsin90° d 0.0056 mm
max = = — = —_4 ~ 11
A, A, 5.0x107° mm

where we have rounded down. There are no values of m (for light of wavelength A,)
greater than m = 11.

52. We are given the “number of lines per millimeter” (which is a common way to
express 1/d for diffraction gratings); thus,

o |-

= 160 lines/mm = d=6.25x10°m.

(@) We solve Eq. 36-25 for @ with various values of m and 4. We show here the m = 2
and A =460 nm calculation:

-9
@ =sin" (mT/lJ =sin™ (2((5426;) X1186 nT)] =sin™(0.1472) =8.46°.
. X

Similarly, we get 11.81° for m = 2 and A = 640 nm, 12.75° for m = 3 and A = 460 nm,
and 17.89° for m = 3 and A = 640 nm. The first indication of overlap occurs when we
compute the angle for m = 4 and A = 460 nm; the result is 17.12° which clearly shows
overlap with the large-wavelength portion of the m = 3 spectrum.

(b) We solve Eq. 36-25 for m with #=90° and A = 640 nm. In this case, we obtain m =
9.8 which means that the largest order in which the full range (which must include that
largest wavelength) is seen is ninth order.

(c) Now with m =9, Eq. 36-25 gives 0= 41.5° for A =460 nm.
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(d) It similarly gives 6= 67.2° for A =640 nm.

(e) We solve Eqg. 36-25 for m with d=90° and A = 460 nm. In this case, we obtain m =
13.6 which means that the largest order in which the wavelength is seen is the thirteenth
order. Now with m = 13, Eq. 36-25 gives 8= 73.1° for A =460 nm.

53. At the point on the screen where we find the inner edge of the hole, we have tan 6=
5.0 cm/30 cm, which gives 8 = 9.46°. We note that d for the grating is equal to
1.0 mm/350 = 1.0 x 10° nm/350.

(@) From mA =d sin 6, we find

dsing (1.0x10° nm/350)(0.1644)  470nm
m= = = .
A A A

Since for white light 2 > 400 nm, the only integer m allowed here is m = 1. Thus, at
one edge of the hole, 2 =470 nm. This is the shortest wavelength of the light that passes
through the hole.

(b) At the other edge, we have tan ' = 6.0 cm/30 cm, which gives ' = 11.31°. This
leads to

6
A =dsing’ :(W] sin(11.31°) =560 nm.

This corresponds to the longest wavelength of the light that passes through the hole.

54. Since the slit width is much less than the wavelength of the light, the central peak of
the single-slit diffraction pattern is spread across the screen and the diffraction envelope
can be ignored. Consider three waves, one from each slit. Since the slits are evenly
spaced, the phase difference for waves from the first and second slits is the same as the
phase difference for waves from the second and third slits. The electric fields of the

waves at the screen can be written as \
\

E3 ¢\\ ¢i//

E, = E, sin(wt)

E, = E;sin(wt +¢)

E, = E, sin(wt +2¢)
where ¢ = (2rnd/A) sin 6. Here d is the separation of
adjacent slits and A is the wavelength. The phasor

diagram is shown on the right. It yields

E = E,cos¢+ E, cos¢g = E,(1+2c0sg). B s o o o s e e
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for the amplitude of the resultant wave. Since the intensity of a wave is proportional to
the square of the electric field, we may write | = AE; (1+2005¢)2 , where A is a constant

of proportionality. If Iy, is the intensity at the center of the pattern, for which ¢ = 0, then
I, =9AE;. Wetake Ato be I, /9EZ and obtain

Ly (1+2cos¢)’ = Ly (1+4cosg+4cos’ ¢).

| =-n n
9 9

55. THINK If a grating just resolves two wavelengths whose average is Aavg and whose
separation is AL, then its resolving power is defined by R = A4g/AA.

EXPRESS As shown in Eq. 36-32, the resolving power can also be written as Nm, where
N is the number of rulings in the grating and m is the order of the lines.

ANALYZE Thus Aag/AA = Nm and

Mavg 656.3nm

N = = =3.65x10° rulings.
mA%  (1)(0.48nm) oo e

LEARN A large N (more rulings) means greater resolving power.

56. (a) From R=A/AA = Nm we find

2 (415.496 nm+415.487 nm)/2
" mAZ  2(415.96 nm—415.487 nm)

=23100.

(b) We note that d = (4.0 x 10" nm)/23100 = 1732 nm. The maxima are found at

0= sinl(m%j - sinl[—(z) (4155 nm)} —287°,

1732 nm

57. (a) We note that d = (76 x 10° nm)/40000 = 1900 nm. For the first order maxima A =
d sin &, which leads to
0= sin‘l(&) =sin™ 89 nm 18°.
d 1900 nm

Now, substituting m = d sin d/4 into Eq. 36-30 leads to
D = tan &/4 = tan 18°/589 nm = 5.5 x 10~ rad/nm = 0.032°/nm.

(b) For m = 1, the resolving power is R = Nm = 40000 m = 40000 = 4.0 x 10,
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(c) For m = 2 we have 6= 38°, and the corresponding value of dispersion is 0.076°/nm.
(d) For m = 2, the resolving power is R = Nm = 40000 m = (40000)2 = 8.0 x 10",

(e) Similarly for m = 3, we have 6 = 68°, and the corresponding value of dispersion is
0.24°/nm.

(f) For m = 3, the resolving power is R = Nm = 40000 m = (40000)3 = 1.2 x 10°.
58. (a) We find AA from R = A/AA = Nm:

A 500nm
AN = = =0.056nm =56 pm.
Nm (6007 mm)(50 mm)(3) m==opm

(b) Since sin = MyxA/ld <1,

m_ < d = 1 =33
™2 (600/mm)(500x10°mm)

Therefore, mmax = 3. No higher orders of maxima can be seen.

59. Assuming all N = 2000 lines are uniformly illuminated, we have

ﬁ: Nm
AN

from Eq. 36-31 and Eq. 36-32. With A, =600 nm and m = 2, we find AZ = 0.15 nm.
60. Letting R = A//AA = Nm, we solve for N:

A (589.6nm+589.0nm)/2

= = =491.
mAZ  2(589.6nm—589.0nm)
61. (a) From d sin =mA we find
mA 3(589.3nm
d=—"2= ( ):10x104nm=10,um.

sin@ sin10°

(b) The total width of the ruling is

A d |
L=Nd = (B)d _ MaygH (589 3nm)(10ﬂm)

- = =33x10° zm=3.3mm.
m mAL  3(589.59 nm—589.00nm)
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62. (a) From the expression for the half-width A&+, (given by Eg. 36-28) and that for the
resolving power R (given by Eq. 36-32), we find the product of A&y, and R to be

AG,,R= _r Nm = mA :dsmeztane,
N d cosé@ dcos@ dcos@

where we used mA =d sin & (see Eq. 36-25).

(b) For first order m = 1, so the corresponding angle & satisfies d sin & = mA = A. Thus
the product in question is given by

_sing _ sing 1 = L
COS 6 \1-sin® 6, \J(1/sin 6)° -1 (d/r) -1
1

= :0.89.
J/(900nm/600nm)° ~1

tan 6,

63. The angular positions of the first-order diffraction lines are given by d sin = A. Let
A1 be the shorter wavelength (430 nm) and & be the angular position of the line associated
with it. Let A, be the longer wavelength (680 nm), and let &+ A& be the angular position
of the line associated with it. Here A@ = 20°. Then,

A, =dsing, A, =dsin(@+A0).
We write
sin (6+ A6) as sin §cos AG+ cos dsin AG,

then use the equation for the first line to replace sin 6 with A;/d, and cos & with
J1-2/d?. After multiplying by d, we obtain

A, COSAO+,/d* — A5 sinAd = 4,.

Solving for d, we find

. _\/(lz—ﬂlcosAH)z+(/IlsinA9)2
- sin’ A@

) \/ (680 nm)— (430 nm)cos20° * + (430 nm)sin20° *
- sin’ 20°
=914 nm =914 x10"* mm.

There are 1/d = 1/(9.14 x 10 mm) = 1.09 x 10° rulings per mm.
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64. We use Eq. 36-34. For smallest value of 6, we let m = 1. Thus,

Orin = sin‘l(m) =sin™ (1)(30pm) =2.9°.
2d 2(0.30% 10° pm)

65. (a) For the first beam 2d sin & = Aa and for the second one 2d sin & = 34g. The
values of d and A can then be determined:

3, 397pm)

=8 =17x10%pm.
2sin@, 2sin60°

(b) A, =2dsin6, =2(1.7x10° pm)(sin 23°) =1.3x10°pm.

66. The x-ray wavelength is A = 2d sin = 2(39.8 pm) sin 30.0° = 39.8 pm.
67. We use Eq. 36-34.

(@) From the peak on the left at angle 0.75° (estimated from Fig. 36-46), we have
A, =2dsin§,=2(0.94 nm)sin(0.75°)=0.025nm =25 pm.

This is the shorter wavelength of the beam. Notice that the estimation should be viewed
as reliable to within £2 pm.

(b) We now consider the next peak:
A, =2dsiné, = 2(0.94 nm)sin115°= 0.038 nm = 38 pm.

This is the longer wavelength of the beam. One can check that the third peak from the left
is the second-order one for A;.

68. For x-ray (“Bragg”) scattering, we have 2d sin 6,=m A. This leads to

2dsin62 _2_ . _ .
—stinel_lx = sin&=2sin6,.

Thus, with 6= 3.4°, this yields & = 6.8°. The fact that 0, is very nearly twice the value
of 0, is due to the small angles involved (when angles are small, sin & /sin 6, = 6/6).

69. Bragg’s law gives the condition for diffraction maximum:

2dsin@d=mA
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where d is the spacing of the crystal planes and A is the wavelength. The angle & is
measured from the surfaces of the planes. For a second-order reflection m = 2, so

mi  2(0.12x10°m)

d=—"_= i =2.56x10""m ~ 0.26 nm.
2sin@ 2sin 28°

70. The angle of incidence on the reflection planes is € = 63.8° — 45.0° = 18.8°, and the
plane-plane separation is d = ao/\/i. Thus, using 2d sin 8= A, we get

a, = \/2— _ \/ﬁ 0.260nm

= =0570nm.
2sind  /2sin188°

71. THINK The criterion for diffraction maxima is given by the Bragg’s law.

EXPRESS We want the reflections to obey the Bragg condition: 2d sin 8= mA, where 6
is the angle between the incoming rays and the reflecting planes, A is the wavelength, and
m is an integer. We solve for &

0125x10°m)m
0= sin‘l(m—kj = sin{( ) ] =0.2480m.

2d 2(0.252x10°m)

ANALYZE (a) For m = 2 the above equation gives & = 29.7°. The crystal should be
turned ¢ =45°—29.7°=15.3° clockwise.

(b) For m = 1 the above equation gives @ = 14.4°. The crystal should be turned
¢ =45°-14.4°=30.6° clockwise.

(c) For m = 3 the above equation gives & = 48.1°. The crystal should be turned
¢ =48.1°—45°=23.1° counterclockwise.

(d) For m = 4 the above equation gives @ = 82.8°. The crystal should be turned
¢ =82.8°—45°=37.8° counterclockwise.

LEARN Note that there are no intensity maxima for m > 4 as one can verify by noting
that mA/2d is greater than 1 for m greater than 4.

72. The wavelengths satisfy
mA = 2d sin 8= 2(275 pm)(sin 45°) = 389 pm.

In the range of wavelengths given, the allowed values of mare m = 3, 4.
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(@) The longest wavelength is 389 pm/3 = 130 pm.
(b) The associated order number is m = 3.

(c) The shortest wavelength is 389 pm/4 = 97.2 pm.
(d) The associated order number is m = 4.

73. The sets of planes with the next five smaller interplanar spacings (after ag) are shown
in the diagram that follows.

(a) In terms of ay, the second largest interplanar spacing is a, / V2= 0.7071a, .
(b) The third largest interplanar spacing is ao/\/g =0.44723, .

(c) The fourth largest interplanar spacing is ao/\/l_o =0.31623, .

(d) The fifth largest interplanar spacing is a, / J13 = 0.2774a,.

(e) The sixth largest interplanar spacing is ao/ﬁ =0.24254, .

(f) Since a crystal plane passes through lattice points, its slope can be written as the ratio
of two integers. Consider a set of planes with slope m/n, as shown in the diagram that
follows. The first and last planes shown pass through adjacent lattice points along a
horizontal line and there are m — 1 planes between. If h is the separation of the first and
last planes, then the interplanar spacing is d = h/m. If the planes make the angle 8 with
the horizontal, then the normal to the planes (shown dashed) makes the angle ¢ = 90° — 6.
The distance h is given by h = ay cos ¢ and the interplanar spacing is d = h/m = (as/m)
cos ¢. Since tan €= m/n, tan ¢ =n/m and
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cosg=1/\[1+tan’ ¢ =m/\n> +m? .

h a,cos¢  a

Thus,
d=

m m  JnZem?

74. (a) We use Eq. 36-14:

1.22)(540x10°° mm
Ox _120% ( )( - ) =1.3x10"rad .
d 5.0mm

(b) The linear separation is D = Lék = (160 x 10° m) (1.3 x 10 * rad) = 21 m.

75. THINK Maxima of a diffraction grating pattern occur at angles & given by d sin =
mX, where d is the slit separation, A is the wavelength, and m is an integer.

EXPRESS The ruling separation is given by

= ;l =5.00x10"° mm =5.00x10"° m =5000 nm.
200 mm

Letting d sin &= mA, we solve for A:

_dsing (5000 nm)(sin30°)  2500nm
m m m

A

where m=1, 2, 3.... In the visible light range m can assume the following values: m; = 4,
m, =5 and m3 = 6.

(@) The longest wavelength corresponds to m; = 4 with A; = 2500 nm/4 = 625 nm.

(b) The second longest wavelength corresponds to m, = 5 with A, = 2500 nm/5 = 500 nm.
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(c) The third longest wavelength corresponds to mz = 6 with A3 = 2500 nm/6 = 416 nm.

LEARN As shown above, only three values of m give wavelengths that are in the visible
spectrum. Note that if the light incident on the diffraction grating is not monochromatic, a
spectrum would be observed since the grating spreads out light into its component
wavelength,

76. We combine Eq. 36-31 (R = Aayg/AA) with Eq. 36-32 (R = Nm) and solve for N:

_ Aayg _990.2nm
“mAX ~ 2(0.061 nm)

N =4.84 x 10°.

77. THINK The condition for a minimum of intensity in a single-slit diffraction pattern
is given by asin & = mA, where a is the slit width, A is the wavelength, and m is an
integer.

EXPRESS As a slit is narrowed, the pattern spreads outward, so the question about
“minimum width” suggests that we are looking at the lowest possible values of m (the
label for the minimum produced by light A = 600 nm) and m' (the label for the minimum
produced by light A' = 500 nm). Since the angles are the same, then Eq. 36-3 leads to

mi=mA\'
which leads to the choicesm =5and m' = 6.

ANALYZE We find the slit width from Eq. 36-3:

L 5(600x10°m)
sin@ sin(1.00x10 °rad)

=3.00x10°m.

LEARN The intensities of the diffraction are shown next (solid line for orange light, and
dashed line for blue-green light). The angle & = 0.001 rad corresponds to m =5 for the
orange light, but m"=6 for the blue-green light.
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78. The central diffraction envelope spans the range -6 < 6 < + 6 where
6, =sin"*(A/a). The maxima in the double-slit pattern are located at

0, :sin‘lm—x,
d

so that our range specification becomes

—sin™*! (&j < sinl(m—)“J < +sin1(ij,
a d a

which we change (since sine is a monotonically increasing function in the fourth and first
quadrants, where all these angles lie) to

A MA A

a d a

Rewriting this as —d/a < m < +d/a, we find -6 < m < +6, or, since m is an integer, -5 <m
< +5. Thus, we find eleven values of m that satisfy this requirement.

79. THINK We relate the resolving power of a diffraction grating to the frequency range.

EXPRESS Since the resolving power of a grating is given by R = A/AX and by Nm, the

range of wavelengths that can just be resolved in order m is AL = A/Nm. Here N is the

number of rulings in the grating and A is the average wavelength. The frequency f is

related to the wavelength by f A = c, where c is the speed of light. This means f AL + AAf
=0, so

2

M= Af =P ap

f c

where f = ¢/A is used. The negative sign means that an increase in frequency corresponds
to a decrease in wavelength.

ANALYZE (a) Equating the two expressions for AA, we have

2
Mg M
C Nm
and
Af=—C
NmA

(b) The difference in travel time for waves traveling along the two extreme rays is At =
AL/c, where AL is the difference in path length. The waves originate at slits that are
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separated by (N — 1)d, where d is the slit separation and N is the number of slits, so the
path difference is AL = (N — 1)d sin #and the time difference is

At (N —1Zd sing

If N is large, this may be approximated by At = (Nd/c) sin 6. The lens does not affect the
travel time.

(c) Substituting the expressions we derived for At and Af, we obtain

AfAt:( C )(Ndsm&)zdsme:l
NmA c mi

The condition d sin 8= mA for a diffraction line is used to obtain the last result.

LEARN We take Af to be positive and interpret it as the range of frequencies that can be
resolved.

80. Eq. 36-14 gives the Rayleigh angle (in radians):

1.224 D
“=7¢ "L

where the rationale behind the second equality is given in Sample Problem —
“Pointillistic paintings use the diffraction of your eye.” We are asked to solve for D and
are given 1 =500 x 10 °m, d = 5.00 x 10°m, and L = 0.250 m. Consequently, D = 3.05
x107°m.

81. Consider two of the rays shown in Fig. 36-49, one just above the other. The extra
distance traveled by the lower one may be found by drawing perpendiculars from where
the top ray changes direction (point P) to the incident and diffracted paths of the lower
one. Where these perpendiculars intersect the lower ray’s paths are here referred to as
points A and C. Where the bottom ray changes direction is point B. We note that angle
Z APB is the same as y, and angle BPC is the same as & (see Fig. 36-49). The difference
in path lengths between the two adjacent light rays is

Ax = |AB| + |BC| =d sin w+d sin 6.
The condition for bright fringes to occur is therefore
AX=d(siny +sind) =mA

wherem=0, 1, 2, .... If we set w= 0 then this reduces to Eq. 36-25.



1588 CHAPTER 36

82. The angular deviation of a diffracted ray (the angle between the forward extrapolation
of the incident ray and its diffracted ray) is y'=w + 6. For m = 1, this becomes

w'=y+O0=y+sin" (%—Sin y/j

where the ratio A/d = 0.40 using the values given in the problem statement. The graph of
this is shown next (with radians used along both axes).

l//’
1.4
1.2
1
0.8
0.6
0.4
0.2

0.5 1 15 3

83. THINK For relatively wide slits, we consider both the interference of light from two
slits, as well as the diffraction of light passing through each slit.

EXPRESS The central diffraction envelope spans the range -6, < € < +6; where
6, =sin"'(A/a) is the angle that corresponds to the first diffraction minimum. The

maxima in the double-slit pattern are at

0., :sin‘lm—x,
d

so that our range specification becomes

—sin‘l(&j < sin‘l(@j < +sin‘1£&)
a d a

which we change (since sine is a monotonically increasing function in the fourth and first
quadrants, where all these angles lie) to

A mA A

a d a
The equation above sets the range of allowable values of m.

ANALYZE (a) Rewriting the equation as -d/a < m < +d/a, noting that d/a = (14 xzm)/(2.0
um) =7, we arrive at the result -7 < m < +7, or (since m must be an integer) -6 <m < +6,
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which amounts to 13 distinct values for m. Thus, thirteen maxima are within the central
envelope.

(b) The range (within one of the first-order envelopes) is now

—sin‘l(&j < sin‘l(mj < +sin‘1(%j,
a d a

which leads to d/a < m < 2d/a or 7 < m < 14. Since m is an integer, this means 8 <m <
13 which includes 6 distinct values for m in that one envelope. If we were to include the
total from both first-order envelopes, the result would be twelve, but the wording of the
problem implies six should be the answer (just one envelope).

LEARN The intensity of the double-slit interference experiment is plotted below. The
central diffraction envelope contains 13 maxima, and the first-order envelope has 6 on
each side.
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84. The central diffraction envelope spans the range -6, <@<+6, where
6, =sin"*(A/a). The maxima in the double-slit pattern are at

. .M
0, =sin™ mA ,
d
so that our range specification becomes

—sin™* (&j <sin™ [m_/’tj <+sin™t (i)
a d a

which we change (since sine is a monotonically increasing function in the fourth and first
quadrants, where all these angles lie) to
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Rewriting thisas —d /a<m<+d/a we arrive at the result m_, <d/a<m_, +1. Dueto
the symmetry of the pattern, the multiplicity of the m values is 2myx + 1 = 17 so that

Mmax = 8, and the result becomes

8<d

—<9
a

where these numbers are as accurate as the experiment allows (that is, “9” means “9.000”
if our measurements are that good).

85. We see that the total number of lines on the grating is (1.8 cm)(1400/cm) = 2520 = N.
Combining Eq. 36-31 and Eq. 36-32, we find

_Aayg _ 450 nm _
AN = Nm ~ (2520)(3) - 0.0595 nm =59.5 pm.
1.22)\.L

86. Use of Eq. 36-21 leadsto D = q - 6.1 mm.
87. Following the method of Sample Problem — “Pointillistic paintings use the
diffraction of your eye,” we have

1220, D

d ~ L

where A =550 x 10°m, D = 0.60 m, and d = 0.0055 m. Thus we get L = 4.9 x 10°m.

88. We use Eq. 36-3 form =2: mi=asind = a__m 2

1 sind sin37e

89. We solve Eq. 36-25 for d:

g M _ 2(600x10~° m)

=—= _ =2.203x10° m=2.203x10™ cm
sin@ sin33°

which is typically expressed in reciprocal form as the “number of lines per centimeter”
(or per millimeter, or per inch):

o |-

= 4539 lines/cm .

The full width is 3.00 cm, so the number of lines is (4539 /cm)(3.00 cm) = 1.36 x 10°,

90. Although the angles in this problem are not particularly big (so that the small angle
approximation could be used with little error), we show the solution appropriate for large
as well as small angles (that is, we do not use the small angle approximation here).
Equation 36-3 gives
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mAi= asind = @ =sin}(mA/a) =sin'[2(0.42 um)/(5.1 um)] = 9.48°.

The geometry of Figure 35-10(a) is a useful reference (even though it shows a double slit
instead of the single slit that we are concerned with here). We see in that figure the
relation between y, D, and 6:

y=Dtan 8 = (3.2 m) tan(9.48°) =0.534 m .

91. The problem specifies d = 12/8900 using the mm unit, and we note there are no
refraction angles greater than 90°. We convert A =500 nm to 5 x 10~ mm and solve Eq.
36-25 for "mmax”* (realizing it might not be an integer):

. _ dsin90° 12 ~ 2
e A (8900)(5x107%)

where we have rounded down. There are no values of m (for light of wavelength 1)
greater than m = 2.

92. We denote the Earth-Moon separation as L. The energy of the beam of light that is
projected onto the Moon is concentrated in a circular spot of diameter d;, where d;/L =
26k = 2(1.22/dp), with do the diameter of the mirror on Earth. The fraction of energy
picked up by the reflector of diameter d; on the Moon is then 7' = (d2/d1)?. This reflected
light, upon reaching the Earth, has a circular cross section of diameter d; satisfying

do/L = 26k = 2(1.222/dy).

The fraction of the reflected energy that is picked up by the telescope is then 7" = (do/d3)>.
Consequently, the fraction of the original energy picked up by the detector is

() () _ dyd, (_dd, Y
T4, ) A, ) 7| (2440d,, /d, ) (2.440d,, /d,) | | 2.440d,,

~ (2.6m)(0.10m)
| 2.44(0.69x10° m)(3.82x10° m)

4
] ~4x1078 .

93. Since we are considering the diameter of the central diffraction maximum, then we
are working with twice the Rayleigh angle. Using notation similar to that in Sample

Problem — “Pointillistic paintings use the diffraction of your eye,” we have 2(1.224/d) =
D/L. Therefore,

L2230l _, (122)(500%10°° m)(354 x 10° m)
D 91m

d=2 =0.047m.

94. Letting d sin = (L/N) sin 8= mA, we get
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_(L/N)sin@ (10x10" nm)(sin 30°)
B m - (1)(10000)

A =500 nm .

95. THINK We use phasors to explore how doubling slit width changes the intensity of
the central maximum of diffraction and the energy passing through the slit.

EXPRESS We imagine dividing the original slit into N strips and represent the light from
each strip, when it reaches the screen, by a phasor. Then, at the central maximum in the
diffraction pattern, we would add the N phasors, all in the same direction and each with
the same amplitude. We would find that the intensity there is proportional to N°.

ANALYZE If we double the slit width, we need 2N phasors if they are each to have the
amplitude of the phasors we used for the narrow slit. The intensity at the central
maximum is proportional to (2N)? and is, therefore, four times the intensity for the
narrow slit. The energy reaching the screen per unit time, however, is only twice the
energy reaching it per unit time when the narrow slit is in place. The energy is simply
redistributed. For example, the central peak is now half as wide and the integral of the
intensity over the peak is only twice the analogous integral for the narrow slit.

LEARN From the discussion above, we see that the intensity of the central maximum
increases as N°. The dependence arises from the following two considerations: (1) The
total power reaching the screen is proportional to N, and (2) the width of each maximum
(distance between two adjacent minima) is proportional to 1/N.

96. The condition for a minimum in a single-slit diffraction pattern is given by Eq. 36-3,
which we solve for the wavelength:

_asing _ (0.022mmjsin 1.8°
m 1

3 =6.91x10* mm =691 nm .

97. Equation 36-14 gives the Rayleigh angle (in radians):

1.224 D
“Td L

where the rationale behind the second equality is given in Sample Problem —
“Pointillistic paintings use the diffraction of your eye.” We are asked to solve for d and
are given 2 =550 x 10°m, D =30 x 10°m, and L = 160 x 10> m. Consequently, we
obtaind =0.358 m ~36 cm.

98. Following Sample Problem — “Pointillistic paintings use the diffraction of your eye,”

we use Eq. 36-17 and obtain L = _Dd =164m .
122\
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99. (a) Use of Eq. 36-25 for the limit-wavelengths (4; = 700 nm and A, = 550 nm) leads
to the condition

mA, =mA,

for my + 1 = m, (the low end of a high-order spectrum is what is overlapping with the
high end of the next-lower-order spectrum). Assuming equality in the above equation, we
can solve for “m;” (realizing it might not be an integer) and obtain m; ~ 4 where we have
rounded up. It is the fourth-order spectrum that is the lowest-order spectrum to overlap
with the next higher spectrum.

(b) The problem specifies d = (1/200) mm, and we note there are no refraction angles
greater than 90°. We concentrate on the largest wavelength A = 700 nm = 7 x 10* mm
and solve Eq. 36-25 for “Mmmax” (realizing it might not be an integer):

_dsin90° (1/200) mm _ 7
" A 7x107* mm

where we have rounded down. There are no values of m (for the appearance of the full
spectrum) greater than m = 7.

100. (a) Maxima of a diffraction grating pattern occur at angles & given by d sin €= mA,
where d is the slit separation, A is the wavelength, and m is an integer. With 6 =30°, and

d = (1L mm)/200 =5.0x10"°m, the wavelengths for the mth order maxima are given by

_dsing  (5.0x10°m)sin30°  2.5x10°m _ 2500 nm
m m m m

A

For the light to be in the visible spectrum (400 — 750 nm), the values of m are m = 4, 5,
and 6. The wavelengths are: 4, =(2500 nm)/4 =625 nm, 4, = (2500 nm)/5 =500 nm,

and A, = (2500 nm)/6 =417 nm.

(c) The three wavelengths correspond to orange, blue-green, and violet, respectively.

101. The dispersion of a grating is given by D = dé@/dA, where @is the angular position of
a line associated with wavelength A. The angular position and wavelength are related by
d sin 8 = mA, where d is the slit separation (which we made boldfaced in order not to
confuse it with the d used in the derivative, below) and m is an integer. We differentiate
this expression with respect to #to obtain

%dcosezm,
dr

or
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_do__m
dr dcosd
Now m = (/) sin 8, so D= -99n¢_ _ 1o
dicosé A

102. (a) Employing Eq. 36-3 with the small angle approximation (sin € ~ tan 6 = y/D
where y locates the minimum relative to the middle of the pattern), we find (with m = 1)

_ ya _ (0.90 mm)(0.40 mm)

~ =800 mm =80 cm
mA 4.50x10™ mm

which places the screen 80 cm away from the slit.

(b) The above equation gives for the value of y (for m = 3)

_ (3AD _ (3)(4.50x10* mm)(800 mm)
= a (0.40 mm)

=2.7mm.

Subtracting this from the first minimum position y = 0.9 mm, we find the result
Ay=1.8 mm.

103. (a) We require that sin 8= m\;2/d < sin 30°, where m =1, 2 and A; = 500 nm. This
gives

> 2 2(0000M) o ro0nm = 2.4 m.
sin30° sin30°

For a grating of given total width L we have N =L/d ocd™, so we need to minimize d
to maximize R=mN ocd ™. Thus we choose d = 2400 nm = 2.4 um.

(b) Let the third-order maximum for A, = 600 nm be the first minimum for the single-slit
diffraction profile. This requires that d sin 8= 3L, = asin 6, or

a =d/3 =2400 nm/3 =800 nm = 0.80 xm.
(c) Letting sin &= mmaxio/d < 1, we obtain

m_ si _ 2400nm _3
A, 800nm

Since the third order is missing the only maxima present are the ones with m =0, 1 and 2.
Thus, the largest order of maxima produced by the grating is m = 2.
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104. For A = 0.10 nm, we have scattering for order m, and for A' = 0.075 nm, we have
scattering for order m'. From Eq. 36-34, we see that we must requiremA =m'A", which
suggests (looking for the smallest integer solutions) that m = 3 and m' = 4. Returning with
this result and with d = 0.25 nm to Eq. 36-34, we obtain

p=sin ™ _ 370
2d

Studying Figure 36-30, we conclude that the angle between incident and scattered beams
is 180° — 26 = 106°.

105. The key trigonometric identity used in this proof is sin(26) = 2sin& cosé. Now, we
wish to show that Eq. 36-19 becomes (when d = a) the pattern for a single slit of width 2a

(see Eq. 36-5 and Eq. 36-6):
o) = | (sinanasinelxz)Z
0) = In 2nasino/n ) -

We note from Eq. 36-20 and Eq. 36-21, that the parameters 3 and o are identical in this
case (when d = a), so that Eq. 36-19 becomes

o) =1 (cos(nasine/k)sin(nasinelk)j2
(0) = I nasind/A '

Multiplying numerator and denominator by 2 and using the trig identity mentioned above,

we obtain
)= | (2cos(nasine/k)sin(nasine/k)jz_I (sin(Znasine/k))2
(©)= I 2nasind/x M 2masind/A

which is what we set out to show.
106. Employing Eq. 36-3, we find (with m = 3 and all lengths in zm)

o=sint ™ _ sinlﬂzo's)

a

which yields 6 = 48.6°. Now, we use the experimental geometry (tan& = y/D where y
locates the minimum relative to the middle of the pattern) to find

y=Dtan6=2.27 m.

107. (a) The central diffraction envelope spans the range — &, < < +6, where
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which could be further simplified if the small-angle approximation were justified (which
it is not, since a is so small). The maxima in the double-slit pattern are at

0, :sin’lm,
d

so that our range specification becomes

—sin™ (ij <sin™ [Mj <+sin™ (ij
a d a

which we change (since sine is a monotonically increasing function in the fourth and first
quadrants, where all these angles lie) to
A m A

a d a

Rewriting this as -d/a < m < +d/a we arrive at the result mna < d/a < mmax + 1. Due to
the symmetry of the pattern, the multiplicity of the m values is 2mpma + 1 = 17 so that
Mmax = 8, and the result becomes

8<§59

where these numbers are as accurate as the experiment allows (that is, "9" means "9.000"
if our measurements are that good).

108. We refer (somewhat sloppily) to the 400 nm wavelength as “blue” and the 700 nm
wavelength as “red.” Consider Eq. 36-25 (mA = d siné), for the 3" order blue, and also
for the 2" order red:

(3) Apie =1200 nm = d sin(Ghiye)

(2) }Lred = 1400 nm = d Sln(ered) .

Since sine is an increasing function of angle (in the first quadrant) then the above set of
values make clear that 6req (second order) > hive third order) Which shows that the spectrums
overlap (regardless of the value of d).

109. One strategy is to divide Eq. 36-25 by Eq. 36-3, assuming the same angle (a point
we’ll come back to, later) and the same light wavelength for both:

m_mi _dsing_d

m mA asind a

ml

We recall that d is measured from middle of transparent strip to the middle of the next
transparent strip, which in this particular setup means d = 2a. Thus, m/m”"=2,orm =
2m’.
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Now we interpret our result. First, the division of the equations is not valid when m =0
(which corresponds to @ = 0), so our remarks do not apply to the m = 0 maximum.
Second, Eq. 36-25 gives the “bright” interference results, and Eq. 36-3 gives the “dark”
diffraction results (where the latter overrules the former in places where they coincide —
see Figure 36-17 in the textbook). For m”= any nonzero integer, the relation m = 2m’
implies that m = any nonzero even integer. As mentioned above, these are occurring at
the same angle, so the even integer interference maxima are eliminated by the diffraction
minima.

110. The derivation is similar to that used to obtain Eq. 36-27. At the first minimum
beyond the mth principal maximum, two waves from adjacent slits have a phase
difference of A¢ = 2nm + (2n/N), where N is the number of slits. This implies a
difference in path length of

AL = (A@d2m)) = mA + (M/N).

If &, is the angular position of the mth maximum, then the difference in path length is
also given by AL =d sin(én + A6). Thus

dsin (6n + A6 =mA + (A/N).
We use the trigonometric identity
sin(Gn + A6) =sin Gy cos AG+ coS Gy, Sin A6.
Since A@ is small, we may approximate sin A@ by A@ in radians and cos A& by unity.
s dsin g, +d Afcos G, = mi + (A/N).
We use the condition d sin &, = mA to obtain d A& cos &, = A/N and

o-—
Ndcoséd,

111. There are two unknowns, the x-ray wavelength A and the plane separation d, so data
for scattering at two angles from the same planes should suffice. The observations obey
Bragg’s law, so

2dsin@, =mA, 2dsing, = m,A.

However, these cannot be solved for the unknowns. For example, we can use the first
equation to eliminate A from the second. We obtain

m, sin@, =m; sing,,

an equation that does not contain either of the unknowns.
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112. The problem specifies d = (1 mm)/500 = 2.00 um unit, and we note there are no
refraction angles greater than 90°. We concentrate on the largest wavelength A = 700 nm
= 0.700 um and solve Eq. 36-25 for "mmax" (realizing it might not be an integer):

_dsin90° d 200 um _

M T T A TAN -
2 1 0700 zm

where we have rounded down. There are no values of m (for appearance of the full
spectrum) greater than m = 2.

113. When the speaker phase difference is n rad (180°), we expect to see the “reverse” of
Fig. 36-15 [translated into the acoustic context, so that “bright” becomes “loud” and
“dark” becomes “quiet”]. That is, with 180° phase difference, all the peaks in Fig. 36-15
become valleys and all the valleys become peaks. As the phase changes from zero to
180° (and similarly for the change from 180° back to 360° = original pattern), the peaks
should shift (and change height) in a continuous fashion — with the most dramatic feature
being a large “dip” in the center diffraction envelope which deepens until it seems to split
the central maximum into smaller diffraction maxima which (once the phase difference
reaches = rad) will be located at angles given by a sin6 =+ A. How many interference
fringes would actually “be inside” each of these smaller diffraction maxima would, of
course, depend on the particular values of a, A and d.

114. From d sin @ = mA, where d is the slit separation, A is the wavelength, and m is an
integer, we write
dsin(@+A6) =m(A1+A1)

Subtracting the first equation from the second gives

d[sin(@+A6)—sind]=m(1+AL)—mi=mAZ.

Noting that
lim sin(@+A0)—sin(@+Ab) — 036,
AO—0 AG
the above expression simplifies to
mAA
cosf =——-.
dAg
Thus,
MAA MAA MAA mAA AL

9: = = = = .
dcos® dy1-sin?@ dy1-(mi/d)* d*—(ma)® /(d/m)?-2?



Chapter 37

1. From the time dilation equation At = yAt, (where Aty is the proper time interval,

y =1/1- 3%, and = v/c), we obtain

2
At
= 1| =21.
Sk
The proper time interval is measured by a clock at rest relative to the muon. Specifically,

Aty = 2.2000 zs. We are also told that Earth observers (measuring the decays of moving
muons) find At = 16.000 zs. Therefore,

p= 1| 2200045 " 099050
16.000 1S ' '

2. (3) We find gfrom y =1/,/1- p°:

ﬁ:\/l_iz =J 1 _01403707s.

Y (1.0100000)’

(b) Similarly, 8= \/1— (10.000000)* = 0.99498744.

(c) Inthis case, SB= \9;”1—(100.00000)_2 =0.99995000.

(d) The resultis g = \/1_(1000,0000)‘2 =0.99999950.

3. (&) The round-trip (discounting the time needed to “turn around”) should be one year
according to the clock you are carrying (this is your proper time interval Atp) and 1000
years according to the clocks on Earth, which measure At. We solve Eq. 37-7 for £

2 2
B 1—(%) _ 1—(%) —0.99999950.
y
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(b) The equations do not show a dependence on acceleration (or on the direction of the
velocity vector), which suggests that a circular journey (with its constant magnitude
centripetal acceleration) would give the same result (if the speed is the same) as the one
described in the problem. A more careful argument can be given to support this, but it
should be admitted that this is a fairly subtle question that has occasionally precipitated
debates among professional physicists.

4. Due to the time-dilation effect, the time between initial and final ages for the daughter
is longer than the four years experienced by her father:

tf daughter — ti daughter = (4.000 y)

where yis the Lorentz factor (Eq. 37-8). Letting T denote the age of the father, then the
conditions of the problem require

Ti = tidaughter + 20.00y, Tt = tigaughter —20.00y .

Since Ty — T; = 4.000 vy, then these three equations combine to give a single condition
from which ycan be determined (and consequently v):

h4=4y = y=11 = ﬁ:%@=0.9959.

5. In the laboratory, it travels a distance d = 0.00105 m = vt, where v = 0.992c and t is the
time measured on the laboratory clocks. We can use Eq. 37-7 to relate t to the proper
lifetime of the particle to:

2
R S 1—(!] d_ A-0992°

|—(vic)y c) 0992

which yields to = 4.46 x 103 s = 0.446 ps.

6. From the value of At in the graph when g = 0, we infer than At, in Eq. 37-9 is 8.0 s.
Thus, that equation (which describes the curve in Fig. 37-22) becomes

At — At, __80s .
JI-(v/c)?  1-p°

If we set #=0.98 in this expression, we obtain approximately 40 s for At.

7. We solve the time dilation equation for the time elapsed (as measured by Earth
observers):
At,

J1-(0.9990)>

At =
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where Aty = 120 y. This yields At = 2684 y ~ 2.68x10° .

8. The contracted length of the tube would be

L= Lyy/1- % =(3.00m)/1—(0.999987)? = 0.0153m.

9. THINK The length of the moving spaceship is measured to be shorter by a stationary
observer

EXPRESS Let the rest length of the spaceship be Lo. The length measured by the timing

station is
L =L,\1-(v/c)>.
ANALYZE (a) The rest length is Ly = 130 m. With v = 0.740c, we obtain

L= Ly\I—(v/c)? =(130m)[1—(0.740)° =87.4m,

(b) The time interval for the passage of the spaceship is

= =394x107"s.

At =
(0.740)(300x 10° m/s)

L 874m
\'

LEARN The length of the spaceship appears to be contracted by a factor of

1 1

- = =1.487.
! J1-(v/c)*  \1-(0.740)2

10. Only the “component” of the length in the x direction contracts, so its y component
stays
0\, =(,=1sin30°= (1.0 m)(0.50) = 0.50m

while its x component becomes

0, = ,\1- 7 = (1.0 m)(cos30°)/1(0.90)> =0.38m.

Therefore, using the Pythagorean theorem, the length measured from S' is

= (6 +(2,) =0.38m)* +(0.50 m)® =0.63m.
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11. The length L of the rod, as measured in a frame in which it is moving with speed v

parallel to its length, is related to its rest length Lo by L = Lo/y, where y =1/,/1- 4% and
S =vlc. Since y must be greater than 1, L is less than L. For this problem, Ly = 1.70 m

and #=10.630, so
L= Low/l—,B2 =(1.70 m)qfl—(0.630)2 =1.32m.

12. (a) We solve Eq. 37-13 for v and then plug in:

(b) The Lorentz factor in this case is y = —= 2.00.
1-(v/c)

13. (a) The speed of the traveler is v = 0.99c, which may be equivalently expressed as
0.99 lyly. Let d be the distance traveled. Then, the time for the trip as measured in the
frame of Earth is

At =d/v = (26 1y)/(0.99 lyly) = 26.26 y.

(b) The signal, presumed to be a radio wave, travels with speed ¢ and so takes 26.0 y to
reach Earth. The total time elapsed, in the frame of Earth, is

26.26y+26.0y=52.26y.
(c) The proper time interval is measured by a clock in the spaceship, so Aty = At/y. Now

1 1

= = :709
d J1-/% \1-(0.99)’

Thus, Aty = (26.26 y)/(7.09) = 3.705 y.

14. From the value of L in the graph when g =0, we infer that Lo in Eq. 37-13 is 0.80 m.
Thus, that equation (which describes the curve in Fig. 37-23) with SI units understood

becomes
L= Loafl—(v/c 2 =(0.80m)«;91—,82 .

If we set #=10.95 in this expression, we obtain approximately 0.25 m for L.

15. (a) Let d = 23000 ly = 23000 c y, which would give the distance in meters if we
included a conversion factor for years — seconds. With Aty = 30 y and At = d/v (see Eq.
37-10), we wish to solve for v from Eq. 37-7. Our first step is as follows:
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Aol AL 23000 y _ 30y

v f1-p - B J-p

at which point we can cancel the unit year and manipulate the equation to solve for the
speed parameter £. This yields

1

= _ =0.99999915.
J1+(30/23000)

B

(b) The Lorentz factor is y =1/ «/1— [% =766.6680752. Thus, the length of the galaxy
measured in the traveler’s frame is

Lobo o 23000l 5959999 1y ~ 301y,
¥ 766.6680752

16. The “coincidence” of x = X' = 0 at t = t' = 0 is important for Eq. 37-21 to apply
without additional terms. In part (a), we apply these equations directly with

v = +0.400c = 1.199 x 10° m/s,
and in part (c) we simply change v — —v and recalculate the primed values.

(@) The position coordinate measured in the S' frame is

x—vt  3.00x10°m—(1.199x10°m/s)(2.50s)

N 1-(0.400)°

where we conclude that the numerical result (2.7 x 10° m or 2.3 x 10° m depending on
how precise a value of v is used) is not meaningful (in the significant figures sense) and
should be set equal to zero (that is, it is “consistent with zero” in view of the statistical
uncertainties involved).

X' =y(x-vt)= =2.7x10°m =0,

(b) The time coordinate measured in the S' frame is

=2.29s.

2

o (t ij t—px/c 250s—(0.400)(3.00x10°m)/2.998x10°m/s

J-5 1-(0.400)’

c

(c) Now, we obtain
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. x4vt  3.00x10°m-+(1.199x10° m/s)(2.50 s)
X = =
Ji-p° J1-(0.400)°

—6.54x10% m.

(d) Similarly,

=3.16s.

o (t+VX] 2.50s +(0.400)(3.00x10° m )/ 2.998x10° m/s
= 7/ —_— = —
2 1-(0.400)°

17. THINK We apply Lorentz transformation to calculate x" and t" according to an
observerin S'.

EXPRESS The proper time is not measured by clocks in either frame S or frame S' since
a single clock at rest in either frame cannot be present at the origin and at the event. The
full Lorentz transformation must be used:

X'=y(x—wt), t'=y(t-px/c)
where g =v/c =0.950 and
y =1/1- F =1//1-(0.950)? = 320256 .
ANALYZE (a) Thus, the spatial coordinate in S’ is

X' = 7(x—vt) = (3.20256) (100x 10° m — (0.950)(2.998x 10° m/s)(200x10°°s) )
=1.38x10° m =138 km.

(b) The temporal coordinate in S’ is

3
t' = y(t— Bx/c) = (3.20256) {200><1065 _(0.950)(100x10 m)}

2.998x10° m/s
=-3.74x10"s=-374us .

LEARN The time and the location of the collision recorded by an observer S’ are
different than that by another observer in S.

18. The “coincidence” of x = X' = 0 at t = t' = 0 is important for Eq. 37-21 to apply
without additional terms. We label the event coordinates with subscripts: (xi, t1) = (0, 0)
and (x, tz) = (3000 m, 4.0 x 10°°s).

(a) We expect (x'1, t'1) = (0, 0), and this may be verified using Eq. 37-21.



1605

(b) We now compute (x'5, t'5), assuming v = +0.60c = +1.799 x 10® m/s (the sign of v is
not made clear in the problem statement, but the figure referred to, Fig. 37-9, shows the
motion in the positive x direction).

, _ X—vt 3000 m-—(1.799x10° m/s)(4.0x10°s)

% Ny 1-(0.60)?

o _t=px/c_4.0x10°s—(0.60)(3000 m)/(2.998x10° mis) _
- _

=-25x10"°
h—p? a/1—(0.60)2 i

(c) The two events in frame S occur in the order: first 1, then 2. However, in frame S'
where t; <0, they occur in the reverse order: first 2, then 1. So the two observers see the
two events in the reverse sequence.

=2.85x10° m

We note that the distances x, — x; and x;, —x; are larger than how far light can travel
during the respective times (c(t,—t)=1.2kmandc|t,—t/|~750m) , so that no

inconsistencies arise as a result of the order reversal (that is, no signal from event 1 could
arrive at event 2 or vice versa).

19. (a) We take the flashbulbs to be at rest in frame S, and let frame S' be the rest frame of
the second observer. Clocks in neither frame measure the proper time interval between
the flashes, so the full Lorentz transformation (Eq. 37-21) must be used. Let t; be the time
and xs be the coordinate of the small flash, as measured in frame S. Then, the time of the
small flash, as measured in frame S', is

where £ =v/c =0.250 and

y=1/J1- g =1/,/1-(0.250)? =10328.

Similarly, let t, be the time and x, be the coordinate of the big flash, as measured in frame
S. Then, the time of the big flash, as measured in frame S', is

, X
tb=y(tb—’gcb].

Subtracting the second Lorentz transformation equation from the first and recognizing
that t; = t, (since the flashes are simultaneous in S), we find
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Ap— PP =%,) _ (1.0328)(0.250)(30x10° m)

o =258x107°s
C 3.00x10° m/s

where At'=t, —t. .
(b) Since At' is negative, t, is greater than t; . The small flash occurs firstin S'.
20. From Eq. 2 in Table 37-2, we have

At=v yAX'Icz + y At'.

The coefficient of Ax’ is the slope (4.0 us/400 m) of the graph, and the last term
involving At' is the “y-intercept” of the graph. From the first observation, we can solve
for g = vic = 0.949 and consequently y=3.16. Then, from the second observation, we
find

At 2.00x10°°s

At'=—="""""-63x10"s.
¥ 3.16

21. (a) Using Eq. 2’ of Table 37-2, we have

At'=V£At—g o[ at -2 = [ 1.00x10s - £E0M
¢ c 2.998x10° m/s

where the Lorentz factor is itself a function of £ (see Eq. 37-8).

(b) A plot of At” as a function of # in the range 0< £ <0.01 is shown below:

B

—— T T T T T
0. 0.002 0.004 0.006 0.008 0.01

Note the limits of the vertical axis are +2 us and —2 ps. We note how “flat” the curve is
in this graph; the reason is that for low values of g, Bullwinkle’s measure of the temporal
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separation between the two events is approximately our measure, namely +1.0 xs. There
are no nonintuitive relativistic effects in this case.

(c) A plot of At” as a function of £ in the range 0.1< S <1 is shown below:

LI E NN B B B S (N N BN N B N B B

01 02 0.4 0.6

(d) Setting

At':y(At—@j:y 1.00x10’6s—ﬁ(L0T) =0
c 2.998x10° m/s
leads to

CAt  (2.998x10° m/s)(1.00x10°°s)

AX 400m

=0.7495~0.750.

f=

(e) For the graph shown in part (c), as we increase the speed, the temporal separation
according to Bullwinkle is positive for the lower values and then goes to zero and finally
(as the speed approaches that of light) becomes progressively more negative. For the
lower speeds with

At >0=>t' < 3" = 0<£<0.750,
according to Bullwinkle event A occurs before event B just as we observe.
(f) For the higher speeds with

A" <0 = "> tg" = 0.750< g <1,
according to Bullwinkle event B occurs before event A (the opposite of what we observe).

(9) No, event A cannot cause event B or vice versa. We note that

AXIAt = (400 m)/(1.00 zs) = 4.00 x10° m/s > c.
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A signal cannot travel from event A to event B without exceeding c, so causal influences
cannot originate at A and thus affect what happens at B, or vice versa.

22. (a) From Table 37-2, we find

400 m—(299.8 )3

Nz

AX' =y (AX—VAt) = y (Ax— BcAt) = y[400 m— Sc(1.00 ws)]

(b) A plot of Ax' as a function of g with 0< £ <0.01 is shown below:
Ax'

400

399.5

399

398.5

398

3975

B

0.002 0.004 0.006 0.008 0.01
(c) A plot of Ax" as a function of £ with 0.1< £ <1 is shown below:

Ax'

800
700
600
500
400

0.2 04 06—08— | A

(d) To find the minimum, we can take a derivative of Ax’ with respect to g, simplify, and
then set equal to zero:

dAx" _ d | AXx—fcAt | BAX—CAt _
dp dB| (i-p? | @-p"
This yields

CAt _ (2.998x10° m/s)(1.00x10°°s)

AX 400 m

=0.7495~ 0.750

B=

(e) Substituting this value of ginto the part (a) expression yields Ax'" = 264.8 m
~ 265 m for its minimum value.
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23. (a) The Lorentz factor is

N S 1 _
J1-B 1-(0600)°

125.

(b) In the unprimed frame, the time for the clock to travel from the origin to x = 180 m is

X 180m

= - =100x10"°s.
v (0.600)(3.00x10°m/s)

The proper time interval between the two events (at the origin and at x = 180 m) is
measured by the clock itself. The reading on the clock at the beginning of the interval is
zero, so the reading at the end is

6
=L _100x107s g 5 107s.
y 1.25

24. The time-dilation information in the problem (particularly, the 15 s on “his
wristwatch... which takes 30.0 s according to you”) reveals that the Lorentz factor is y =
2.00 (see Eq. 37-9), which implies his speed is v = 0.866c.

(@) With »=2.00, Eq. 37-13 implies the contracted length is 0.500 m.

(b) There is no contraction along the direction perpendicular to the direction of motion
(or “boost” direction), so meter stick 2 still measures 1.00 m long.

(c) As in part (b), the answer is 1.00 m.
(d) Equation 1’ in Table 37-2 gives

AX' =X} — X =y (AX—VAt) =(2.00)| 20.0 m—(0.866)(2.998x10° m/s)(40.0x10°°s) |
=19.2m

(e) Equation 2" in Table 37-2 gives

AV =t; —t/ =y (At—VAX/c® )=y (At BAX/cC)
=(2.00)[ 40.0x10"° 5—(0.866)(20.0 M) /(2.998x10° m’s) |
=-35.5ns.

In absolute value, the two events are separated by 35.5 ns.

(f) The negative sign obtained in part (e) implies event 2 occurred before event 1.
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25. (a) In frame S, our coordinates are such that x; = +1200 m for the big flash, and x, =
1200 — 720 = 480 m for the small flash (which occurred later). Thus,

AX =X — X1 =720 m.
If we set AX' =0 in Eq. 37-25, we find
0=7y(AX—VAt) =y(-720m-v(500x10°s))
which yields v = —1.44 x 10® m/s, or S=v/c=0.480.

(b) The negative sign in part (a) implies that frame S' must be moving in the —x direction.

(c) Equation 37-28 leads to

_ 8 _
At,zy(m_v;‘zxj:y 5 00x10%5 CLAI0ME(-720m) |
c (2.998x10° m/s)

which turns out to be positive (regardless of the specific value of »). Thus, the order of
the flashes is the same in the S' frame as it is in the S frame (where At is also positive).
Thus, the big flash occurs first, and the small flash occurs later.

(d) Finishing the computation begun in part (c), we obtain

_ 5.00x10"°s— (—1.44x10° m/s)(— 720 m)/(2.998x 10° m/s)’

\/1-0.4807

At’ =4.39%x10°s .

26. We wish to adjust At so that
0=AX'=y(Ax—VAt) = y(-720m—VAt)
in the limiting case of |v|— c. Thus,

Al _AX _AX 720m
Vv Cc 2.998x10®m/s

=2.40x10"°s .

27. THINK We apply relativistic velocity transformation to calculate the velocity of the
particle with respect to frame S.

EXPRESS We assume S' is moving in the +x direction. Let u' be the velocity of the
particle as measured in S' and v be the velocity of S' relative to S, the velocity of the
particle as measured in S is given by Eq. 37-29:
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_u'tv
1+u'v/c?

ANALYZE With u' = +0.40c and v = +0.60c, we obtain

U u+v 0.40c +0.60c B
1+u'v/c® 1+(040c)(+060c)/c®

LEARN The classical Galilean transformation would have given
u=u'+v=0.40c + 0.60c = 1.0c.
28. (a) We use Eq. 37-29:

Ve vV'+u  0.47c+0.62c
1+uwv'/c® 1+(0.47)(0.62)

in the direction of increasing x (since v > 0). In unit-vector notation, we have
vV = (0.84¢)i .

(b) The classical theory predicts that v = 0.47c + 0.62c = 1.1c, or V = (1.1c)i .

(c) Now v' =-0.47ci so

Ve vV'+u  —0.47c+0.62c 0
1+uv'/c? 1+(-0.47)(0.62)

orv= (0.21c)i
(d) By contrast, the classical prediction is v =0.62c — 0.47¢ = 0.15¢c, or V = (0.15c)? .

29. (a) One thing Einstein’s relativity has in common with the more familiar (Galilean)
relativity is the reciprocity of relative velocity. If Joe sees Fred moving at 20 m/s
eastward away from him (Joe), then Fred should see Joe moving at 20 m/s westward
away from him (Fred). Similarly, if we see Galaxy A moving away from us at 0.35c then
an observer in Galaxy A should see our galaxy move away from him at 0.35c, or 0.35 in
multiple of c.

(b) We take the positive axis to be in the direction of motion of Galaxy A, as seen by us.
Using the notation of Eq. 37-29, the problem indicates v = +0.35c (velocity of Galaxy A
relative to Earth) and u = —0.35c¢ (velocity of Galaxy B relative to Earth). We solve for
the velocity of B relative to A:
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u" u/c-v/ic _ (-0.35)-0.35

¢ 1-uv/c® 1-(-0.35)(0.35)

or lu/c|=0.62.

30. Using the notation of Eq. 37-29 and taking “away” (from us) as the positive direction,
the problem indicates v = +0.4c and u = +0.8c (with 3 significant figures understood). We
solve for the velocity of Q, relative to Q; (in multiple of c):

u" u/c-v/ic_ 0.8-04

¢ 1-w/c? 1-(08)(04)

in a direction away from Earth.

31. THINK Both the spaceship and the micrometeorite are moving relativistically, and
we apply relativistic speed transformation to calculate the velocity of the micrometeorite
relative to the spaceship.

EXPRESS Let S be the reference frame of the micrometeorite, and S' be the reference
frame of the spaceship. We assume S to be moving in the +x direction. Let u be the
velocity of the micrometeorite as measured in S and v be the velocity of S' relative to S,
the velocity of the micrometeorite as measured in S' can be solved by using Eq. 37-29:

u'+v , u-v
=T o2 U/
1+u'v/c 1-uv/c

ANALYZE The problem indicates that v = —0.82c (spaceship velocity) and u = +0.82c
(micrometeorite velocity). We solve for the velocity of the micrometeorite relative to the
spaceship:

, u-v  082c-(-082c)

u'= = = 098¢
1-uv/c® 1-(082)(-082)

or 2.94 x 10® m/s. Using Eq. 37-10, we conclude that observers on the ship measure a
transit time for the micrometeorite (as it passes along the length of the ship) equal to

d 350m
Al=—=———
U 294x10°m/s

=12x10°s.
LEARN The classical Galilean transformation would have given
u'=u-v=0.82c —(-0.82c) = 1.64c,

which exceeds c and therefore, is physically impossible.
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32. The figure shows that u’= 0.80c when v = 0. We therefore infer (using the notation
of Eq. 37-29) that u = 0.80c. Now, u is a fixed value and v is variable, so u’as a function
of v is given by
. bl A 0.80c—v
“1-uv/c? 1-(0.80)v/c

which is Eq. 37-29 rearranged so that u’is isolated on the left-hand side. We use this
expression to answer parts (a) and (b).

(@) Substituting v =0.90c in the expression above leads to u’ = - 0.357¢c =~ — 0.36¢.

(b) Substituting v = ¢ in the expression above leads to u’ = —c (regardless of the value of

u).
33. (a) In the messenger’s rest system (called Sp,), the velocity of the armada is

vV, 0.80c —0.95¢

V = - = > =-0.625cC .
1-w, /c® 1-(0.80c)(0.95c)/c

The length of the armada as measured in Sy, is

L = L (1.0 |y)«/1— (-0.625)> =0.781 ly .

7'

Thus, the length of the trip is
p_ L _078lly o y

|[v'| 0.625c

(b) In the armada’s rest frame (called S,), the velocity of the messenger is

, V-V, 0.95¢-0.80c

V' = == > =0.625¢ .
1-w,/c” 1-(0.95c)(0.80c)/c

Now, the length of the trip is

pobo_10ly 4

v 0.625¢

(c) Measured in system S, the length of the armada is

L= 101y /1-(080)? =060y ,
y

so the length of the trip is
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fo b 080l 6y
v_—Vv. 0.95¢c-0.80c

m a

34. We use the transverse Doppler shift formula, Eq. 37-37: f = f,\/1- 5, or
1
—=_1-p5.
A A p
We solve forA -2, :
1

1
A=y = Ao | ——=——=—1 |=(589.00mm)| ————
& j“L/l—ﬂz J ( mm)[«/1(0.100)2

35. THINK This problem deals with the Doppler effect of light. The source is the
spaceship th