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Next we observe that the ordinate of point f is given by
7= nf = cfsin (28, — 28) = cf(sin 26, cos 26 — cos 26, sin 20)
= \/[i(cr, - t;r,)]2 + (-:;,,)2 (sin 26, cos 260 — cos 26, sin 26)

Again, substituting the values of 7,, and }(o, — o) from () into this equation, we find
7= 1,,00820 + }(0, — 0,)sin 20

But this is exactly the shearing stress on a plane inclined at an angle 8 to the x-axis as derived in (2) of

Problem 16.13.
Hence the coordinates of point f on Mohr's circle represent the normal and shearing stresses on a

plane inclined at an angle 6 to the x-axis.

16.15. A plane element is subject to the stresses shown in Fig. 16-42. Determine (a) the principal
stresses and their directions, (b) the maximum shearing stresses and the directions of the planes
on which they occur.

'If

l 15,000 Ibfin?
Ilz.ooo bfint g

8000 1b/in®

8000 1b/in?
12,000 Ib!in'l

15,000 Ib/in?

Fig. 16-42

(a) In accordance with the notation of Problem 16.13, we have o, = 12,000 Ib/in?, o, = 15,000 Ibfin?, and
T,y = 8000 1bfin?. The maximum normal stress is, by (5) of Problem 16.13,

s =} + 0,) + V30 — 0,)F + (7,,)°
= }(12,000 + 15,000) + V[1(12,000 — 15,000)]* + (8000)>
= 13,500 + 8150 = 21,650 Ibfin?
The minimum normal stress is given by (6) of Problem 16.13 to be
e = 3(0, + 0,) = V[i(0, — 0,)F + (7,)* = 13,500 — 8150 = 5350 Ib/in?

From (3) of Problem 16.13 the directions of the principal planes on which these stresses of
21,650 1b/in’ and 5350 Ibfin? occur are given by

Tay 8000

533

NPT THo—a,)  K12.000 - 15,000)

Then 26, = 79°24', 259°24' and 6, = 39°42', 129°42".
To determine which of the above principal stresses occurs on each of these planes, we return to
(7) of Problem 16.13, namely,

o=¥Ho. + a,) — o, - 0,)cos 20 + 7,,5in 26
and substitute = 39°42’ 1ogether with the given values of o, o,, and 7,, to obtain
o = 3(12,000 + 15,000) — 3(12,000 — 15,000) cos 79°24’ + 8000sin 79°24’ = 21,650 Ibfin’

Thus an element oriented along the principal planes and subject to the above principal stresses
appears as in Fig. 16-43. The shearing stresses on these planes are zero.
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Fig. 16-43 Fig. 16-44

(b) The maximum and minimum shearing stresses were found in (8) of Problem 16.13 to be

Tnax = = Vo, — 0)F + (7,,)
™ = + V[i(12,000 — 15,000)] + (8000)? = +8150 Ib/in

From (7) of Problem 16.13 the planes on which these maximum shearing stresses occur are
defined by the equation

Ho—a,) _

Ty
Then 26, = 169°24°, 349°24" and 6, = 84°42, 174°42'. Evidently these planes are located 45° from the
planes of maximum and minimum normal stress.

To determine whether the shearing stress is positive or negative on the 84°42’ plane, we return
to (2) of Problem 16.13, namely,

tan 26, = —-0.188

7= Yo, — 0,)sin26+ 7, cos 26
and substitute 8 = 84°42’ together with the given values of e,, o,, and 7,, to obtain
7 = 3(12,000 ~ 15,000) sin 169°24" + 8000 cos 169°24° = —8150 Ibfin’

The negative sign indicates that the shearing stress is directed oppositely to the assumed positive
direction shown in Fig. 16-36. Finally, the normal stresses on these planes of maximum shearing stress
are found from (2) of Problem 16.13 to be

o = (o, + ;) = (12,000 + 15,000) = 13,500 Ibfin’

The orientation of the element for which the shearing stresses are maximum is as in Fig. 16-44.

16.16. A plane element is subject to the stresses shown in Fig. 16-45. Using Mohr’s circle, determine
(a) the principal stresses and their directions and (b) the maximum shearing stresses and the
directions of the planes on which they occur.

tv
15.000 Ib/in? }

8000 I1b/in? —gfe
12,000 Ib/in?
12,000 Ib/int

el 8000 1h/in?

'15.0011 Ib/in?
Fig. 16-45
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The procedure for the construction of Mobr’s circle was outlined in Problem 16.14. Following the
instructions there, we realized that the shearing stresses on the vertical faces of the given element are
posllwe, whereas those on the horizontal faces are negative. Thus the stress condition of ¢, = 12,000 Ib/in®,

= 8000 Ib/in? existing on the vertical faces of the element plots as point b in Fig. 16-46. The stress
condlu(m of o, =15 000 1b/in?, Ty = —8000 Ib/in? existing on the horizontal faces plots as point d. Line bd
is drawn, its mldpoml c is located, and a circle of radius cb = cd is drawn with ¢ as a center. This is Mohr’s
circle. The endpoints of the diameter bd represent the stress conditions existing in the element if it has the
original orientation of Fig. 16-45.

Shearing Stress

12,000 nm'r.; !
1 =~ 28, f
o 110°
8000 lbfint & h Normal Stress

0 [ c[N\ze,
so-nolbﬁ

m
po——— 15,000 Ib/in?

Fig. 16-46

(a) The principal stresses are represented by points g and h, as demonstrated in Problem 16.14. The
principal stress may be determined either by direct measurement from Fig. 16-46 or by rcalizing that
the coordinate of ¢ is 13,500, that ck = 1500, and that c¢d = V/(1500)% + (8000)? = 8150. Thus the
minimum principal stress is

Omun = 08 = 0C — g = 13,500 — 8150 = 5350 Ib/in’

Also, the maximum principal stress is

Omax = 0h = oc + ch = 13,500 + 8150 = 21,650 Ib/in?

The angle 26, is given by tan 26, = 8000/1500 = 5.33 from which 6, = 39°42’. This value could also
be obtained by measurement of Zdck in Mohr's circle. From this it is readily seen that the principal
stress represented by point h acts on a plane oriented 39°42" from the original x-axis. The principal
stresses thus appear as in Fig. 16-47. It is evident that the shearing stresses on these planes are zero,
since points g and 4 lie on the horizontal axis of Mohr's circle,

(b) The maximum shearing stress is represented by cl in Mohr’s circle. This radius has already been found
to represent 8150 Ib/in’. The angle 26, may be found either by direct measurement from the above
plot or simply by adding 90° to the angle 26,, which has already been determined. This leads to
26, = 169°24" and 6, = 84°42’. The shearing stress represented by point / is positive; hence on this
84°42’ plane the shearing stress tends to rotate the element in a clockwise direction.

21,650 Ib/in? £360 1bin®

21,850 Ib/in2
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Also, from Mohr’s circle the abscissa of point / is 13,500 Ib/in? and this represents the normal
stress occurring on the planes of maximum shearing stress. The maximum shearing stresses thus
appear as in Fig. 16-48.

For the element discussed in Problem 16.16, determine the normal and shearing stresses on a
plane making an angle of 55° measured counterclockwise from the positive end of the x-axis.

12,000 Ib/in?

e 8000 1b/fin?

15,000 Ilu‘h\*'

Fig. 16-49

According to the properties of Mohr’s circle discussed in Problem 16.14, we realize that the endpoints
of the diameter bd represent the stress conditions occurring on the original x-y plane. On any plane inclined
at an angle 8 to the x-axis the stress conditions are represented by the coordinates of a point f, where the
radius cf makes an angle of 28 with the original diameter bd. This angle 26 appearing in Mohr's circle is
measured in the same direction as the angle representing the inclined plane, namely, counterclockwise.

Hence in the Mohr’s circle appearing in Problem 16.16, we merely measure a counterclockwise angle
of 2(55°) = 110° from line cd. This locates point f. The abscissa of point f represents the normal stress on
the desired 55° plane and may be found either by direct measurement or by realizing that

on = oc + ¢n = 13,500 + 8150 cos (110° — 79°24') = 20,500 Ib/in?

The ordinate of point f represents the shearing stress on the desired 55° plane and may be found from the
relation

fn = 8150sin (110° — 79°24') = 4150 Ibfin?
The stresses acting on the 55° plane may thus be represented as in Fig. 16-49,

A plane element is subject to the stresses shown in Fig. 16-50. Determine (a) the principal
stresses and their directions and (b) the maximum shearing stresses and the directions of the
planes on which they occur.

(¢) In accordance with the notation of Problem 16.13, o, = -75MPa, o, = 100MPa, and
T, = —50 MPa. The maximum normal stress is given by (5) of Problem 16.13 to be

Tox = W0+ 0,) + V[ilo, = 0,) + (7,)}
= (=75 +100) + V[}(~75~ 100)]? + (—50)
=125+ 100.8 = 113.3 MPa
The minimum normal stress is given by (6) of Problem 16.13 to be
O = Yo+ 0,) = Vo, — 0 ) + (1,,) = 12.5- 100.8 = —883 MPa
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From (3) of Problem 16.13 the directions of the principal planes on which these stresses of

113.3 MPa and —88.3 MPa occur are given by
-50

Ty
= — = = = —(). 7
tan26, Tp—— 175 - 100) 0.571

Then 26, = 150°15’, 330°15’ and 6, = 75°8', 165°8".
To determine which of the above principal stresses occurs on each of these planes, we return to
(1) of Problem 16.13, namely,

o= (o, +a,) — Yo, ~ 7,)c0s26 + 7,,5in 20

and substitute & = 75°8" together with the given values of o, o,, and 7,, to obtain
o = —75+ 100) — (—75 — 100) cos 150°15" — 50sin 150°15' = 88.3 MPa
Consequently an element oriented along the principal planes and subject to the above principal
stresses appears as in Fig. 16-51. The shearing stresses on these planes are zero.
The maximum and minimum shearing stresses were found in (8) of Problem 16.13 to be
Toax = * V[i(0, — 0,)F + (1,)* = = V(=75 — 100)]* + (=50)2 = +100.8 MPa
min

From (7) of Problem 16.13, the planes on which these maximum shearing stresses occur are

defined by

i(a'r - a,) =175

Tey

tan26, =

113.3 MPa

113.3 MPs

Fig. 16-51
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Then 20, = 60°15°, 240°15’ and 6, = 30°8’, 120°8". I1 is apparent that these planes are located 45° from
the planes of maximum and minimum normal stress.

To determine whether the shearing stress is positive or negative on the 30°8' plane, we return
to (2) of Problem 16.13. namely.

= Yo, —0,)sin26 + 7,,c0s 20
and substitute 6 = 30°8" together with the given values of o,. 0. and 7,, to obtain
7= }—75—100) sin 60°15" — 50 cos 60°15' = —100.8 MPa

The negative sign indicates that the shearing stress on the 30°8" plane is directed oppositely to the
assumed positive direction shown in Fig. 16-36. The normal stresses on these planes of maximum
shearing stress were found in (9) of Problem 16.13 to be

o= %("Jt + GV)
=% =75+ 100} = 12.5 MPa

Consequently, the orientation of the element for which the shearing stresses are a maximum
appears as in Fig. 16-52.

12.5 MPa

Fig. 16-52

16.19. A plane element is subject to the stresses shown in Fig. 16-53. Using Mohr’s circle, determine

(a) the principal stresses and their directions and (b) the maximum shearing stresses and the
directions of the planes on which they occur.

Again we refer to Problem 16.14 for the procedure for constructing Mohr’s circle. In accordance with

the sign convention outlined there, the shearing stresses on the vertical faces of the element are negative,
those on the horizontal faces positive. Thus the stress condition of o, = —75 MPa, 7,, = —50 MPa existing
on the vertical faces of the element plots as point b in Fig. 16-54. The stress condition of o, = 100 MPa,
7., = 50 MPa existing on the horizontal faces plots as point d. Line bd is drawn, its midpoint c is located,
and a circle of radius ¢b = cd is drawn with ¢ as a center. This is Mohr's circle. The endpoints of the

I v Shearing Streas
4 100 MPa I00MPs  —= | l—
SOMPE g 26, |20, N |
. 1 g z ’ ! h&ﬂ;l’a
— Normal Stress
Brve v 50 MP3 \ /
)
e 5() M Pa.
* "
100 MPa —-I fe— 75 MPa

Fig. 16-53 Fig. 16-54
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diameter bd represent the stress conditions existing in the element if it has the original oricntation shown
above.

(@) The principal stresses are represented by points g and A. as shown in Problem 16.14. They may be
found either by direct measurement from the above diagram or by realizing that the coordinate of
¢ is 12.5, that ck = 87.5, and that cd = V(87.5)2 + (50)° = 100.8 MPa. Thus the minimum principal
stress is

O = 08 = 0C — cg = 12.5— 100.8 = 883 MPa
Also, the maximum principal stress is
Omax = Oh = 0C + ch = 12.5 + 100.8 = 113.3 MPa

The angle 28, is given by tan26, = —50/87.5 = —0.571 from which 6, = 75°8'. This value could also
be obtained by measurement of 2dcg in Mobr's circle. From this it is readily seen that the principal
stress represented by point g acts on a plane oriented 75°8" from the original x-axis. The principal
stresses thus appear as in Fig. 16-55. Since the ordinates of points g and 4 are cach zero, the shearing
stresses on these planes are zero.

(b) The maximum shearing stress is represented by ¢l in Mohr's circle. This radius has already been found
to represent 100.8 MPa. The angle 26, may be found either by direct measurement from the above
plot or simply by subtracting 90° from the angle 26, which has already been determined. This Icads
to 26, = 60°15' and 6, = 30°8'. The shearing stress represented by point [ is positive, hence on this
30°8' plane the shearing stress tends to rotate the element in a clockwise direction.

Also, from Mohr’s circle the abscissa of point ! is 12.5 MPa and this represents the normal stress
occurring on the planes of maximum shearing stress. The maximum shearing stresses thus appear as
in Fig. 16-56.

113.3 MPa

12.5 MPa

3.3 MPa

Fig. 16-55 Fig. 16-56

16.20. Develop a FORTRAN program to indicate the principal stresses as well as their directions for
an element subject to the stresses shown in Fig. 16-36.

The input to the program consists of the two normal stresses and one shearing stress. as indicated in
Fig. 16-36. The normal stresses, for purposes of developing a program, are, as before, taken to be positive
if tensile. The simplest sign convention for shearing stresses is to regard the horizontally directed shears
as positive if they tend to produce clockwise rotation of the element, i.e.. opposite to the convention
associated with Problem 16.13. In Problem 16.13 we found the principal stresses to be given by Egs. (5)
and (6) and their directions by Eq. (3). The desired program is listed below.

Q001LONAAAAARAAARARRARRARARAAANAARAARARARAARARAAARARAAAARARARAAAAAAARAARNARAAAR AN AR

00020 PROGRAM STRES2D ( INPUT,OUTPUT)
Q003" AR AR AAARAARAARANAARAARAAAAARANAARAARAAA AR AR AR A RAAR A AR AR AR A A AR A AR
00040*

00050* AUTHOR: KATELEEN DERWIN

00060* DATE : JANUARY 26,1989

00070*

00080* BRIEF DESCRIPTION:
00090* THIS FORTRAN PROGRAM MAY BE USED TO SOLVE A SIMPLE 2-D STRESS
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PROBLEM WHERE THE USER IS8 PROMPTED FOR THE STRESS CONDITIONS FOR A
SINGLE OR SET OF POINTS, AND THE PRINCIPAL STRESS AND ROTATING ANGLE

00120* ARE CALCULATED,

00130*
00140*
00150*
00160*
00170%

INPUT:

TEE USER WILL BE ASKED TO INPUT THE NUMBER OF STRESS SETS AND THE

NORMAL AND SHEAR STRESSES AT EACH POINT.

00180* OUTPUT:

00185*
00190%
00200*
00210*
00220*
00230*
00240*
00250#
00260#
00270+
00280+
00290+

THE PRINCIPAL STRESSES AND ROTATING ANGLE FOR EACH SET OF PTS. WIL

BE PRINTED.
VARIABLES:
X(100),¥(100),8(100) --- NORMAL AND SHEAR STRESS ARRAYS
NUM -=-- THE NUMBER OF STRESS SETS
Pl === 3.14159
SUBROUTINES CALLED;:
PRINCIP --- CALCULATES THE PRINCIPAL STRESSES AND THE ROTATING

ANGLE FOR A BINGLE OR SET OF POINTS.

Q0300ARAARARARANAARARARRRAARRARAARARARARRARRASARARRRAAARRAAARAAAAMAARARARAAANRR

00310RAAAARAARS MAIN PROGRAM RRARARRRNRAR
D0320AARAAAAARARARARARAARRRRAARRARARNARARANAARRARARRARARRAARRARARRRARRARAARNR

00330+

00340* VARIABLE DECLARATIONS

00350

00360 REAL X(100),¥(100),8(100),PI

00370 INTEGER NUM

00380*

00390 PI = 3.14159

00400*

00410* USER INPUT

00420*

00430 PRINT*, 'PLEASE ENTER THE NUMBER OF STRESS SETS:'

00440 READ*, NUM

00450 DO 10 N=1,NUM

00460 PRINT#*, 'PLEASE ENTER THE NORMAL STRESSES IN THE X,Y DIRECTIONS'
00470 PRINT*, 'AND THE SHEAR STRESS;'

00480 READ#*,X(N),Y(N),S(N)

00490 10 CONTINUE

00500*

005104 CALLING SUBROUTINE PRINCIP TO CALCULATE THE PRINCIPAL
00520% STRESSES AND THE ROTATING ANGLE

00530%

00540 CALL PRINCIP(X,Y,S,NUM)

00550*

00560 STOP

00570 END
00530‘****‘*&*&**‘tt*****i*tﬁQ**Qﬁ*****t**t****ti‘ii***Qﬁﬁtii*itﬁi‘iiﬁtti‘t*i
00590 SUBROUTINE PRINCIP(XX,YY,SS,NUM)

00600*

00610* THIS SUBROUTINE WILL EVALUATE THE PRINCIPAL STRESSES AND ROTATING
00620% ANGLE FOR A SINGLE OR SET OF POINTS.

00630

00640* VARIABLE DECLARATIONS

00650%

00660 REAL PI,XX(100),YY(100),88(100),P1(100),P2(100),T(100)
00670 INTEGER NUM

00680%

00690* CALCULATIONS

00700*

00710 PI = 3.14159

00720 DO 15 N=1,NUM

00730 A=( (XX(N)-YY(N))/2.0)**2

00740 B=SQRT (A+(SS(N)**2))
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00750
00760
00770
00780
00790
00800
00810
00820
00830 15
00840*
00850*
00860*
00870
00880
00890
00500 20
00910*
00920*
00930#
00940 30
00950+
00960 40
00970*
00980*
00590*
01000
01010
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C=(XX(N)+YY(N))/2.0
P1(N)=C+B
P2(N)=C-B
Al=2*SS(N)/(XX(N)-YY(N))
T(N)=90*ATAN(AL)/PI
IF (XX(N).EQ.YY(N)) THEN
T(N) = 45.0

ENDIF

CONTINUE

PRINTING OUTPUT
PRINT 30
DO 20 N=1,NUM
PRINT 40,N,XX(N),YY(N),SS(N),P1(N),P2(N),T(N)
CONTINUE
FORMAT STATEMENTS
FORMAT(/,2X,'NO."',5X, 'SIGXX',7X, 'SIGYY',7X,'SIGXY',7X,'SIG(1)"',
7X,'SI1IG(2)',7X, "THETA',/)
FomT( 2!;12;3!,5[?9.2,3x) 1F9.2]
END SUBROUTINE PRINCIF

RETURN
END

16.21. Use the FORTRAN program of Problem 16.20 to determine principal stresses and their
directions for an element subject to the stresses indicated in Fig. 16-57.

18,750 Ib/in?

6750 Ib/in?

6750 Ib/in?

23,500 Ib/in? 23,500 Ib/in?

6750 Ib/in?

6750 Ibfin?

18,750 Ib/in?

Fig. 16-57

If we use the notation of Problem 16.20 together with the directions of stresses shown in Fig. 16-57,

we have ¢, = 23,500 1b/in?, g, = —18,750 Ib/in’, and 7,, = —6750 Ib/in’. Substituting these values into the
self-prompting program of Problem 16.20, we get the following computer run.

READY.
run

PLEASE ENTER THE NUMBER OF STRESS SETS:

21

PLEASE ENTER THE NORMAL STRESSES IN THE X,Y DIRECTIONS
AND THE SHEAR STRESS:
? 23500,-18750,-6750
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NO.

SRU

RUN

16.22.

16.23,

16.24.

16,25.

16.26.

16.27.

16.28.

16.29.
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SIGXX SIGYY SIGXY SIG(1) SIG(2) THETA
23500.00 -18750.00 -6750.00 24552.20 -19802.20 -B.8B6
0.734 UNTS.
COMPLETE.

Supplementary Problems

A bar of uniform cross section 50 mm X 75 mm is subject to an axial tensile force of 500 kN applied at each
end of the bar. Determine the maximum shearing stress existing in the bar. Ans.  66.7 MPa

In Problem 16.22 determine the normal and shearing stresses acting on a plane inclined at 11° to the line
of action of the axial loads. Ans.  4.87 MPa, 24.97 MPa

A square steel bar 1 in on a side is subject to an axial compressive load of 8000 Ib. Determine the normal
and shearing stresses acting on a plane inclined at 30° to the line of action of the axial loads. The bar is
so short that the possibility of buckling as a column may be neglected.

Ans. o= —2000lb/in’, 7= —3460 Ib/in?

Rework Problem 16.24 by use of Mohr’s circle.

Ans. See Fig. 16.58. 0 = ko = —2000 Ibf/in?, 7 = dk = 3460 Ibfin?

Shearing Stress
~—r d f+— 2000 1b/in?

3460 Ib/in?

60° i -
¢ J ok 0 Normal Stress

8000 Ib/in? —=

Fig. 16-58

A plane element in a body is subject to the stresses o, = 20 MPa, o, = 0, and 7,, = 30 MPa. Determine
analytically the normal and shearing stresses existing on a plane inclined at 45° to the x-axis.
Ans. o=40MPa, 7= 10MPa

A plane element is subject to the stresses o, = 50 MPa and e, = 50 MPa, Determine analytically the
maximum shearing stress existing in the element.  Ans 0

A plane element is subject to the stresses o, = 12,000Ib/in’ and o, = —12,0001bfin>. Determine
analytically the maximum shearing stress existing in the element. What is the direction of the planes on
which the maximum shearing stresses occur? Ans. 12,000 Ib/in® at 45°

For the element described in Problem 16.28 determine analytically the normal and shearing stresses acting
on a plane inclined at 30° to the x-axis.  Ans. o = —6000 Ib/in’, 7 = 10,400 Ib/in’
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16.30. Draw Mohr's circle for a plane element subject to the stresses o, = 8000 Ib/in? and ¢, = —8000 Ib/in*. From
Mohr’s circle determine the stresses acting on a plane inclined at 20° to the x-axis.

Ans. See Fig. 16-59. ¢ = on = —6130 Ib/in?, 7 = nf = —5130 Ibfin’

Shearing Stress
50 MPa
50 MPa
2. d L { h, b Nor l'l'll_! Stress
0710, ¢
50 MPs
f 50 MPa

8000 _|_ 8000
Ibtin? Ibfin2

Fig. 16-59 Fig. 16-60

16.31. A plane element removed from a thin-walled cylindrical shell loaded in torsion is subject to the shearing
stresses shown in Fig. 16-60. Determine the principal stresses existing in this element and the directions
of the planes on which they occur.  Ans  SOMPa at 45°

75 MPa

62.5 MPa

50 MPa

50 MPa

75 MPa

Fig. 16-61

16.32. A plane element is subject to the stresses shown in Fig. 16-61. Determine analytically (a) the principal
stresses and their directions and (b) the maximum shearing stresses and the directions of the planes on

which they act.
Ans. (@) Omax = 1.2 MPa at 50°40', 0, = —126.2 MPa at 140°40°; (b) 7y, = 63.7 MPa at 5°40°

16.33. Rework Problem 16.32 by the use of Mohr's circle. ~ Ans.  See Fig. 16-62.

Shearing Stress

50 MPa —o bo—

T

62.5 MPa
k JNormal Stress

i ° !
s2smpe |\20:] AP0 637 MPa
e
@® |
j 1 N 12MPa
= 75 MPa

126.2 MPa —=

=]

i

< 3
~{n, /lev

L]

Fig. 16-62
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16.34. A plane element is subject to the stresses indicated in Fig. 16-63. Use the FORTRAN program of Problem
16.20 to determine principal stresses together with their orientation.
Ans.  SIG(1): 198.12; SIG(2): 66.88; THETA: 24.82

90 MPa

50 MPa

50 MPa

175 MPa 175 MPa

50 MPa

S0 MPa

90 MPa

Fig. 16-63

16.35. A plane element is subject to the stresses indicated in Fig. 16-64. Use the FORTRAN program of Problem
16.20 to determine principal stresses together with their orientation.
Ans.  SIG(1): 20,388.68; SIG(2): —31.738.68; THETA: 14.20

17,250 1b/in?

12,400 Ib/in?

12,400 Ib/in?
28,600 Ib/in? 28,600 Ib/in?
12,400 Ib/in?

12,400 Ib/in?

17,250 Ib/in?

Fig. 16-64



Chapter 17

Members Subject to Combined Loadings;
Theories of Failure

AXIALLY LOADED MEMBERS SUBJECT TO ECCENTRIC LOADS

In Chaps. 1 and 2, where we considered straight bars subject to either tensile or compressive loads,
it was always required that the action line of the applied force pass through the centroid of the cross
section of the member. In the present chapter we shall consider those cases where the action line of
the applied force acting on a bar in either tension or compression does not pass through the centroid
of the cross section. A typical example of such an eccentric loading is shown in Fig. 17-1. For those cross
sections of the bar that are perpendicular to the direction of the load, the resultant stress at any point
is the sum of the direct stress due to a concentric load of equal magnitude P plus a bending stress due
to a couple of moment Pe. This first stress is found from the expression derived in Chap. 1, namely,
o = P/A. The second stress is found from the formula for bending stress presented in Chap. 8, namely,
o = Myll. An application may be found in Problem 17.1.

CYLINDRICAL SHELLS SUBJECT TO COMBINED INTERNAL PRESSURE
AND AXIAL TENSION

In Chap. 3 we considered the stresses arising in a thin-walled cylindrical shell subject to uniform
internal pressure, There it was shown that a longitudinal stress given by ¢ = pr/2t, as well as a
circumferential stress given by o = prit, exists because of the internal pressure p. If in addition an axial
tension P is acting simultaneously with the internal pressure, then there arises an additional
longitudinal stress given by o= P/A where A denotes the cross-sectional area of the shell. The
resultant stress in the longitudinal direction is thus the algebraic sum of these two longitudinal stresses,
and the resultant stress in the circumferential direction is equal to that due to the internal pressure.

CYLINDRICAL SHELLS SUBJECT TO COMBINED TORSION AND
AXIAL TENSION/COMPRESSION

In Chap. 5 we considered the stresses arising in a thin-walled cylindrical shell subject to torsion.
There it was shown that a shearing stress given by 7., = Tp/J exists on cross sections perpendicular to
the axis of the cylinder. If in addition an axial tension P is acting simultaneously with the torque, then
there arises a longitudinal stress given by o = P/A. This loading is illustrated in Fig. 17-2. In this case
the stresses due to these two loadings are acting in different directions and use must be made of the
results obtained in Chap. 16. In this manner it will be possible to obtain the principal stresses due to
these two loads acting simultaneously. For an application see Problem 17.2.

Fig. 17-1 Fig. 17-2

457
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CIRCULAR SHAFT SUBJECT TO COMBINED AXIAL TENSION AND TORSION

This loading 1s illustrated in Fig. 17-3. Due to the axial tensile force P, there exists a uniform
longitudinal tensile stress given by o = P/A, where A denotes the cross-sectional area of the bar. From
Chap. 5 we know that there exists a torsional shearing stress over any cross section perpendicular to
the axis given by 7,, = TplJ. Again, the stresses due to these two loadings are acting in different
directions and the results of Chap. 16 must be employed to obtain the values of the principal stresses
al any point or to obtain the state of stress on any plane inclined at some angle to a generator of the
shaft.

T T

Fig. 17-3 Fig. 17-4

CIRCULAR SHAFT SUBJECT TO COMBINED BENDING AND TORSION

This loading is illustrated in Fig. 17-4. Again from Chap. 5 we know that there exists a torsional
shearing stress over any cross section perpendicular to the axis given by 1., = Tp/J. From Chap. 8 we
know that there also exists a bending stress perpendicular to this cross section, i.e., in the direction of
the axis of the shaft, given by o = My/I. Since these stresses are acting in different directions the results
of Chap. 16 must be employed to obtain the values of the principal stresses at any point in the shaft
or to obtain the state of stress on any plane inclined to a generator of the shaft. For applications see
Problem 17.3.

DESIGN OF MEMBERS SUBJECT TO COMBINED LOADINGS

So far we have discussed only analysis, i.e., determination of principal stresses in a member subject
to combined loadings. The inverse problem, i.c., design of a member to withstand combined loads, is
somewhat more complex and must necessarily be related to experimentally determined mechanical
properties of the materials. Because such properties cannot be determined for all possible combina-
tions of loadings, the mechanical characteristics are usually determined in very simple tensile,
compressive, or shear tests, The problem then arises as to how to relate the strength of an elastic body
subject to combined loadings to these known strength characteristics under the simpler loading
conditions. Relations between strength under various combined loads and simple mechanical
properties of the material are termed theories of failure. Many such theories are available but we shall
discuss only the three most commonly used, one applicable to brittle materials and two suitable for use
in design of ductile members.

MAXIMUM NORMAL STRESS THEORY

This theory states that failure of the material subject to biaxial or triaxial stresses occurs when the
maximum normal stress reaches the value at which failure occurs in a simple tension test on the same
material. Failure is usually defined as either yielding or fracture — whichever occurs first. This theory
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is in good agreement with experimental evidence on brittle materials. For applications. see Problems
17.9 and 17.10.

MAXIMUM SHEARING STRESS THEORY

This theory states that failure of the material subject to biaxial or triaxial stresses occurs when the
maximum shearing stress reaches the value of the shearing stress at failure in a simple tension or
compression test on the same material. The theory is widely used for design of ductile materials. For
applications see Problem 17.11.

HUBER-VON MISES-HENCKY (MAXIMUM ENERGY OF DISTORTION) THEORY

For an element subject to the principal stresses ,, o3, 03 this theory states that yielding begins
when

(a1 — ) + (02— o3) + (01 — &3) = 2(0,,)

where o,, is the yield point of the material. This theory is in excellent agreement with experiments on
ductile materials. For applications see Problem 17.12.

Solved Problems

17.1. The rectangular block shown in Fig. 17-5 has its axis of symmetry oriented vertically, is clamped
at its lower base, and is subject to a concentric compressive force of 220 kN together with a
couple M at point C, the midpoint of the top cross section. If the peak allowable compressive
stress is 180 MPa, determine the allowable magnitude of the couple.

The compressive force gives rise to a compressive stress that is uniform over any horizontal cross
section. From Chap. 1 this vertically directed stress is

P 220,000 N

A~ (007m)(00sm) o286 MPa

| =

The couple (located in the x-y plane) gives rise to bending about the z-axis (as a ncutral axis) and from
Chap. 8 creates a compressive stress everywhere to the right of the z-axis. At point A this is given by
Mc  M(0.035m)

02=—

I }(0.05m)(0.07 m)*

The resultant compressive stress at A is (o, + ;) and since this must not exceed 180 MPa. we have
at A

M(0.035 m)

v, 2 _ X 1+
180 X 10°N/m” = 62.86 X 10° N/m 1(0.05 m) (0.07 m)’

Solving,
M=470kN'm

17.2. Consider a hollow cylindrical shell of outer radius R, = 140 mm and inner radius R; = 125 mm.
It is subject to an axial compressive force of 68 kN together with a torque of 35 kN - m, as shown
in Fig. 17-6. Determine the principal stresses as well as the peak shearing stress in the shell.
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T mm

220000 N

M

ISkN'm  68KkN ) 68kN  35kN-m
ol — : ljl —i-
[}
NAT

Fig. 17-6

The 68-kN force produces a uniformly distributed compressive stress given by
- —68,000 N
7{(0.140 m)* = (0.125 m)?]

as shown in Fig. 17-7. The torsional shearing stresses due to the 35-kN-m torque were found in Problem
5.2 to be 7= TplJ. Here, the polar moment of inertia is

= —5.44 MPa

L5}

J= g [(0.140 m)* — (0.125)°] = 0.0002199 m*
ol —

Fig. 17-7
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17.3.

If the approximate expression of Problem 5.6 is used, we find 0.0002191 m*. Thus, the shearing stresses at
the outer fibers of the shell are given by

Tp  (35,000N-m)(0.140 m)
T  — =

7 0.0002199 = 22.3MPa

and these are shown in Fig. 17-7.
From Problem 16.13 the principal stresses are found to be

—_ — 2
0':—5'424+OI \/(—5‘442 0) + (2237

Omax = 19.75MPa
Oin = —25.19 MPa

and the peak shearing stress is 22.47 MPa.

Consider a hollow circular shaft whose outside diameter is 3in and whose inside diameter is
equal to one-half the outside diameter. The shaft is subject to a twisting moment of 20,000 Ib- in
as well as a bending moment of 30,000 1b - in. Determine the principal stresses in the body. Also,
determine the maximum shearing stress.

The twisting moment gives rise to shearing stresses that attain their peak values in the outer fibers of
the shaft. From Problem 5.2 these shearing stresses are given by 7,, = TplJ. From Problem 5.1 it is seen
that for the hollow circular area

=£ 4 _ =£ 4 a4} — g
5 DY) 32[3. (1.5)%) = 7.46 in

where D, denotes the outer diameter of the section and D, represents the inner diameter. At the outer
fibers the torsional shearing stresses are thus

™ 7.46
Let the bending moments lie in a vertical plane. Then the upper and lower fibers of the beam are

subject to the peak bending stresses. These are found from the expression o, = My/l. The moment of
inertia / for the hollow circular cross section may be seen from Problem 7.9 to be

T nd_ = T rad _ 4 — 4
I=2(Di- DY) = 23~ (15)] = 373in

Substituting,

— b T e —— i 2
o= 373 12,000 Ib/in
el 4000 1b/in?
12,000 12,000
1b/in? 1b/in?

4000 1b/in? se——-

Fig. 17-8
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Thus an element locatcd at the lower extremity of the shaft is subject to the stresses shown in Fig, 17-8.
From Problem 16.7 the principal stresses for this clement are

Cmar = 30+ Vo, P + (1,)7 = 12,0002 + V(12,0002)? + (4000)? = 13,200 Ib/in?
Omin = 30, + VG0 ) + (.Y = 12,0002 — V(12,000/2)% + (4000)% = —1200 Ibfin’

These stresses occur on planes defined by (3) of Problem 16.7:

T, 4000 2
2 e 1 A e — =7o M 30 '
tan26, o, 1 3 O 6, = 73°10", 163°10

Substituting in (1} of Problem 16.7 and letting # = 73°10’. we have
o = 12,000/2 — (12,000/2) cos 146°20" + 4000 sin 146°20" = 13,200 Ib/in®

Thus the maximum tensile stress is 13,200 Ibfin’, occurring on a plane oriented 73°10’ to the geometric
axis of the shaft. The other principal stress, o,,, = —1200 Ib/in’, occurs on a plane oriented 163°10’ to
the axis.

The maximum shcaring stress is given by (8) of Problem 16.7. It is

7= *V{io,) + (1,0 = + V(12.00022) + (4000)% = +7200 Ibfin?

and occurs on planes oriented at 45° to the plancs found above on which the principal stresscs act.

The thick-walled cylindrical shell shown in Fig. 17-9 has its axis of symmetry oriented vertically.
It is clamped at its lower extremity and subject to the three concentrated forces indicated.
Determine the normal stresses at points A, B, C, and D.

2P

Quier diameler = D

o
Inner diameler = =
4 2

Fig. 17-9

Let us look down the z-axis toward the x-y plane. Also, let us introduce two forces, each of magnitude
2P, at the center E of the top surface. The force system in the x-y plane for this set of three forces thus
appears as in Fig. 17-10(a). The two forces included within the dotted lines constitute a couple of magnitude
(2P)(Di2) = PD, so that the loading on the top surface (corresponding to the original force 2P) may be
considered to consist of a central downward force of magnitude 2P together with a couple of magnitude
PD, as shown in Fig. 17-10(b). The total loading on the shell thus consists of the concentric force 2P, the
couple PD, and the two concentrated forces of magnitudes 1.5P and 2P,
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The effects of these four forces are:
(@) The central downward force 2P gives rise to uniform compressive stresses over any horizontal cross

section.
(b) The couple PD shown in Fig. 17-10(5) gives rise to bending about an axis parallel to the z-axis as a

neutral axis.
(c) The force 1.5P gives rise to bending about an axis parallel to the z-axis as a neutral axis.

(d) The force 2P gives rise to bending about an axis parallel to the x-axis as a neutral axis.

¥
AN
1
:- ZP.‘ '2}, oD 2P
1 \\ E E
1\ -~ -t X
"\ 2P |
\\:ﬁ\/‘h‘—
S -‘;
(@) ®
Fig. 17-10

From the geometry of the cross section, we find A = 0.589D? in and I, = I, = 0.0460D" in®,
From effect (a), we have

P 2p P
== =- = —3.396—
NTLT Tossr . e
From (b), the bending stresses are
_Mc_(PDYDR) oo P
%=1 = oeop® 0¥
,_EE**(PD)(DIZ)__ i
9T T T To0460D° 1087 D?
From (c), the bending stresses are
Mc  (1.5P)(2D)(DR2) P
Oy =—=— = ~32.61 —
AT 0.0460D° 6l
_Mc_(sneD)(DR) _,, P
C 00460D* T D?
These stresses appear at A and C as shown in Fig. 17-11, for which
P P P P
o4 = -—3.396; + 10.8731- - 3261 > = —25.14?
P P P P
O¢c= *3.3963 - 10.87F + 3261 E = - 18.3453

From effect (d), we have the bending as

,_Mc_-@P)GD)(D) . P
% = I 0.046D* - 65'2202
ﬁ
I

(2P)(3D)(DI2) _ P
0046D* 02

T =



464 MEMBERS SUBJECT TO COMBINED LOADINGS; THEORIES OF FAILURE [CHAP 17

Fig. 17-11
To these values must be added the direct stresses so that the resultant vertical normal stresses at B and
D are
P P P
= —-3396—-6522— = —6862—
og 3,396 173 65 D 68.62 7
P P P
op = —3.3965 1 65.225 = 61.82E

17.5. The shaft shown in Fig. 17-12(a) rotates with constant angular velocity. The belt pulls create a
state of combined bending and torsion. Neglect the weights of the shaft and pulleys and assume
that the bearings can exert only concentrated force reactions. The diameter of the shaft is 1.25in.
Determine the principal stresses in the shaft.

800 1b 09 p

(@) Fig. 17-12 (b)

The transverse forces acting on the shaft are not parallel and the bending moments caused by them
must be added vectorially to obtain the resultant bending moment. This vector addition need be carried
out at only a few apparently critical points along the length of the shaft. The loads causing bending,
together with the reactions they produce, are shown above in Fig. 17-12(b). They are considered as passing
through the axis of the shaft. The upper and lower shaded portions of Fig. 17-13, respectively, represent
the bending moment diagrams for a vertical and for a horizontal plane.
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17.6.

17.7.

The resultant bending moments at B and C are

Mg = V/(4080) + (728)2 = 4140 1b-in
Mc = V(1160) + (1636)* = 2000 1b-in

The twisting moment between the two pulleys is constant and equal to
T = (400 - 100) (4) = 12001b-in

Since the torque is the same at B and C, the critical element lies at the outer fibers of the shaft at point
B. The maximum bending stress is given by

o T T 1.25)64
The maximum shearing stress, occurring at the outer fibers of the shaft, is given by

T, _ 1200(1.25/2)

= = in?
Ty 7 = 257 3100 Ib/in

The principal stresses were found in Problem 16.13 to be

Omax = 305 + V(30,)? + (1,)* = 21,5002 + V(21,500/2) + (3100)* = 22,000 Ib/in?
Omin = 10, — V(§0,)? + (1,,)* = 21,5002 — V/(21,500/2)* + (3100)? = —400 Ib/in’

Discuss a failure criterion for brittle materials.

The criterion which is in best agreement with experimental evidence was advanced by the English
engineer W. J. M. Rankine and is termed the maximum normal stress theory. It states that failure of the
material (i.e., either yielding or fracture — whichever occurs first) occurs when the maximumn normal stress
reaches the value at which failure occurs in a simple tension test on the same material. Alternatively, if
the loading is compressive, failure occurs when the minimum normal stress reaches the value at which
failure occurs in a simple compression test. Evidently this criterion considers only the greatest (or smallest)
of the principal stresses and disregards the influence of the other principal stresses.

Discuss the maximum shearing stress failure criterion for ductile materials.

This criterion is in good agreement with experimental evidence, provided the yield point of the
material in tension is equal to that in compression, It was advanced first by C. A. Coulomb in 1773 and
later by H. Tresca in 1864; in fact, it is often called the Tresca criterion. The criterion states that failure of
the material subject to biaxial or triaxial stress occurs when the maximum shearing stress at any point
reaches the value of the shearing stress at failure in a simple tension or compression test on the same
material. In Problem 16.13 it was shown that the maximum shear stress is one-half the difference between
the maximum and minimum principal stresses and always occurs on a plane inclined at 45° to the principal
planes. Thus, if o,, denotes the yield point of the material in simple tension or compression, then the
corresponding maximum shear stress is 0,,/2. Accordingly, the maximum shearing stress criterion may be
formulated as

Tenax ~ Omin _ Typ

2 2
or Omax ~ Omn = Oyp (¢)]
where ¢, and 0., are maximum and minimum principal stresses, respectively. It is to be observed that

judgment must be used in analysis of three-dimensional situations to determine which of the three principal
stresses lead to the greatest difference on the left-hand side of (7).
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17.8. Discuss the Huber-von Mises—Hencky failure criterion for ductile materials.

This theory was advanced by M. T. Huber in Poland in 1904 and independently by R. von Miscs in
Germany in 1913 and H. Hencky in 1925. It is in even better agrecement with experimental evidence
concerning failure of ductile materials subject to biaxial or triaxial stresses than the maximum shearing
stress theory discussed in Problem 17.7.

Development of this widely accepted criterion first necessitates determination of the strain energy per
unit volume in a simple tension specimen. If the axial tensilc stress arising in this test is o; and the
corresponding axial strain is €, then the work done on a unit volume of the test specimen is the product
of the mean value of force per unit area, that is, ¢/2, times the displacement in the direction of the force,
or €,. The work is thus U = o €,/2 and this work is stored as internal strain energy.

The strain energy per unit volume in an element subject o triaxial principal stresses @, 03, o3 is readily
found by supcrposition (sincc energy is a scalar quantity) to be

U= 3016 + 30,6 + 3036 (a)

where €, €, & are the normal strains in the directions of the principal stresses, respectively. If the strains
are expressed in terms of the stresscs according to the relations given in Problem 1.23, Eq. (a) becomes

1
U= E[(aﬁ + a5+ 03) - 2ulon on + 0y 03 + 0 07)] (b)

The triaxial principal stresses may be represented as in Fig. 17-14(a). Alternatively, this general state
of stress may be represented as the sum of the two triaxial states shown in Figs. 17-14(b) and 17-14{c).

¥

(a) (b) ()

Fig. 17-14

The strain energy U given by Eq. (b) may be resolved into two components, on¢ portion U,
corresponding to a change of volume with no distortion of the ¢lement, the other, U, corresponding Lo
distortion of the element with no change of volume. The stresses indicated in Fig, 17-14(c¢) represent
distortion only with no change of volume, provided the expression for dilatarion given in Problem 1.23 is
set equal to zero. Thus

6tete= é[(ol —a)- o+ oz —20) + (02— 0) — plon, + o3 — 20)

+ (o — o)~ ulon + o —20)] =0 (c)
Solving (c), we find

(5] + o +03

o= DIRTD (@)

for the uniform stresses in Fig. 17-14(b) which correspond to change of volume with no distortion. The
normal strains corresponding to the stresses given in (d) are readily found from the three-dimensional form
of Hooke’s law given in Problem 1.23 to be

(1-2u)er
€= ————

3 (e)
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“17.9.

17& 10‘

Thus, the internal strain energy corresponding to the unit volume indicated in Fig. 17-14(b) is found by

substituting the expressions (d) and (e) in (a), with o, = 6; = 03 = o and €, = € = €, = €. l0 oblain
oe) _1-2u

2/ 6E

U, = 3( (o0 + o + o) o)

The strain energy corresponding to distortion only, with no change of volume, is now found to be

+
U,,=U~Ul,=-1—p'

6E (o, — &) + (02— 63)* + (00 — 03)] (&)

The Huber-von Mises—-Hencky theory assumes that failure takes place when the internal strain energy
of distortion given by (g) is equal to that at which failure occurs in a simple tension test. In such a test
o, = 0y = (), 0y = 0, and the right side of (g) becomes

1tw
6E
Equating the right side of (g) to (h), we find

(o — &) + (0, — 03)° + (0 — 03) = 207, (i)

[203,] (h)

as the criterion for failure. This is sometimes called the maximum energy of distortion theory. It assumes
that U, is ineffective in causing failure.

A thin-walled cylindrical pressure vessel is subject to an internal pressure of 5 MPa. The mean
radius of the cylinder is 400 mm. If the material has a yield point of 300 MPa and a safety factor
of 3 is employed, determine the required wall thickness using (a) the maximum normal stress
theory, and (b) the Huber-von Mises-Hencky theory.

The stresses determined in Problem 3.1 are principal stresses. Thus we have
_ pr _ 5(400) _ 2000

o =0, —

h h h

Kt i T

The third principal stress varies from zero at the outside of the shell to the value —p at the inside. It is
customary to neglect this third component in thin-shell design, so we shall assume that o3 = ().

(a) Using the maximum normal stress theory we have
2 300
2000 =— from which h =20mm

h 3
(b) Using the Huber-von Mises-Hencky theory we have, from (i) of Problem 17.8,
2000 1000y’ /1000 2 (2000 2 300\
- + -0} +[——-0) =2|—
h h h h 3

whence A = 17.3 mm.

The solid circular shaft in Fig. 17-15(a) is subject to belt pulls at each end and is simply
supported at the two bearings. The material has a yield point of 250 MPa. Determine the
required diameter of the shaft using the maximum normal stress theory together with a safety
factor of 3.

The bearing reactions, which are in a vertical plane. are denoted by R, and R, in the free-body
diagram, Fig. 17-15(b). From statics it is found that Ry = 2.83kN and R, = 3.67kN. The variation of
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2kN

150 mm 450 mm [ 150 mm
1

{a)

t50 mm t 430 mm t 150 mm
'3.5I.N
Rg R,
(b
0A4SkN-m 0.53 kN-m

Bending Moment

{e)

0.6kN-m

|-—

Twisting Momaent
id)

Fig. 17-15

bending moment along the length of the shaft is shown in Fig. 17-15(c). Similarly, the twisting moment
along the length of the shaft may be depicted as a constant, as in Fig. 17-15(d).

Evidently the shaft is most eritically stressed at its outer fibers at point C, where a top view of the
uppermost element indicates the stresses o, and 7,, shown in Fig. 17-16. The normal stress o, arises because
of bending action, and is found from Problem 8.1 to be

_ Mc  (0.53x10°) (10°) (dr2)  5.4x10°
=T 64 == MPa (a)

The other normal stresses, o, and o, are zero. The shearing stresses 7,, arise from the torsion due to the
unequal belt pulls, and are found from Problem 5.2 to be

Tr _ (06X 10°) (10°) (df2) _ 3.06 X 10°

2 wd*132 FE

Tl}' =

MPa (b)
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#— f"

'.t’ i —

Fig. 17-16

According to the maximum normal stress theory, yielding of the shaft occurs when the maximum
normal stress reaches the value at which yielding occurs in a simple tensile test. The maximum normal
stress is found as the maximum principal stress of Problem 16.13 to be

X+ X—_ I
a’w=a 3 T 4 /(0—20-!) + (1) ()

Substituting the results of (a) and (b) into (c), and introducing the safety factor of 3, yields

250 _54x10°40 \/(5.4x10“—0)2+(3.06x10°)2
3 2d* &

from which d = 43 mm.

17.11. For the shaft loaded as in Problem 17.10 determine the required diameter using the maximum
shearing stress theory together with a safety factor of 3.
The maximum normal stress is given in (c) of Problem 16.13. The minimum normal stress is

given by
o, + o, o, — o, \
L (—*2—'!) +(1,) (a)

It is to be carefully noted that the difference between the o, and o, indicated above leads to the greatest
possible difference, since the third principal stress is zero and o, is evidently negative. Substituting in (/)
of Problem 17.7, we have

(5.4>< 10° ~0)‘ 4 (3.06>< 10")2 250

YL FE =T or d =46 mm

17.12. For the shaft loaded as in Problem 17.10 determine the required diameter using the Huber-von
Mises—-Hencky theory together with a safety factor of 3.

The criterion is expressed by (i) of Problem 17.8, where g, a3, and o3 are principal stresses. We take
these principal stresses to be

54)(106-1-0 4)(10" 0 3.06 X10°\? 6.8x%10°
0’|=Umax= ( d3 ) = dﬂ

O'2=0

24° 24° & d
Substituting in (i) of Problem 17.8, we have

68x10° 17, 0*(1.4:«105 ', ﬁ.sxloﬁ_(l.dxlo" ’_2(@)2
e & ) & @ ) R

Solving, d = 45 mm.

54%10°+0 J5.4x10*—0 2 306X 10°)\2 1.4 X 10°
a3=anﬁn=( )_ ( )-l-( )=__
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Supplementary Problems

17.13. A short block is loaded by a comprehensive force of 1.5 MN. The force is applied with an eccentricity of
60 mm, as shown in Fig. 17-17. The block is 300 mm in cross section. Determine the stresses at the outer
fibers m and n. Ans. o, = —36.7MPa, o, = +3.3MPa

17.14. In Problem 17.13 how large an eccentricity must exist if the resultant stress at fiber m is to be zero?
Ans.  5S0mm

17.15. A short block is loaded by a compressive force of 500 kN acting 50 mm from one axis and 75 mm from
another axis of a 200-mm X 200-mm cross section, as shown in Fig. 17-18. Determine the peak tensile and
compressive stresses in the cross section. Ans. 34.75 MPa, —59.0 MPa

17.16. The hollow rectangular block shown in Fig. 17-19 has its vertical axis of symmetry parallel to the
y-direction. is clamped at its lower extremity, and is subject to a single vertical concentrated load
P = 180 kN as indicated. Determine the resultant vertical stress at point A lying at the remote corner of
the lower extremity of the block. Ans. —111.9MPa

500 kN
75 mm

/

/

S— .V

Fig. 17-17 Fig. 17-18

200 mm 160 mm P

Fig. 17-19

17.17. In Problem 17.2, if the axial compressive force is 200 kN, find the allowable torque if the allowable shearing
stress is 100MPa.  Ans. 1570kN-m

17.18. A thin-walled cylinderis 10i a diameter and of wall thickness 0.10 in. The cylinder is subject to a uniform
internal pressure of 1001h*  What additional axial tension may act simultaneously without the maximum
tensile stress exceeding 20,000 Ib/in?? Apns. 55.0001b
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17.19.

17.20.

17.21.

17.22.

17.23.

17.24,

17.25.

A thin-walled cylindrical shell is subject to an axial compression of 50.000 Ib together with a torsional
moment of 30,000 1b-in. The diameter of the cylinder is 12 in and the wall thickness 0.125 in. Determine
the principal stresses in the shell. Also determine the maximum shearing stress. Neglect the possibility of
buckling of the shell.  Ans.  op = 1201b/in%, o, = —10,680 Ib/in®, = = 5400 Ib/in’

A shaft 2.50in in diameter is subject to an axial tension of 40,000 Ib together with a twisting moment of
35,000 Ib-in. Determine the principal stresses in the shaft. Also determine the maximum shearing
stress. Ans.  Opax = 16,180 Ib/in?, 0, = —80201b/in?, 7 = 12,100 Ib/in’

Consider a solid circular shaft subject to a twisting moment of 20,0001b-in together with a bending
moment of 30,0001b-in. The diameter of the shaft is 3 in. Detcrmine the principal stresses, as well as the
maximum shearing stress in the shaft.  Ans.  0,.., = 12,4501b/in?, o,,,, = —1150Ibfin?, T = 6800 Ib/in®

The shaft shown in Fig. 17-20 rotates with constant angular velocity and is subject to combined bending
and torsion due to the indicated belt pulls. The weights of the shaft and pullcys may be neglected and the
bearings can exert only concentrated force reactions. The diameter of the shaft is 1.75 in. Determine the
principal stresses in the shaft.  Ans. ., = 16,600 Ib/in’, o, = —750 Ib/in?

Consider a thin-walled cylindrical pressure vessel with mean diameter 150 mm subject to a twisting
moment of 1 kN-m together with an internal pressure of 3 MPa. If the allowable working stress in tension
is 150 MPa, determine the wall thickness as required by the maximum normal stress theory,

Ans. 1.55mm

For Problem 17.23 determine the wall thickness as required by the maximum shearing stress theory.
Ans. 1.55mm

For Problem 17.23 determine the wall thickness as required by the Huber-von Mises-Hencky theory.
Ans. 1.34mm
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proportional, 4
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mechanical properties of, 37
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of failure, 459, 466-467, 469
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failure, 465, 467
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Moment:
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238-241, 264,266
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156-157, 166-168
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Planes, principal, 421, 436437, 441,
442
Plastic bending, 180-181, 205-213
Plastic section modulus, 209
Plastic torsion, 98, 117-118
Poisson’s ratio, 6
effective value of, 27
Polar moment of inertia of area, 96,
99, 103
Pressure vessels, 6380
Principal axes of a plane area, 170-173
Principal moments of inertia, 170-173
Principal planes, shearing stresses on,
421, 449
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Mohr’s circle, 423, 431, 433,
435-436, 438, 442445, 446-447
Product of inertia of a finite area, 157,
168, 169
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Pure bending, 177, 185
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slenderness, 356-357
Rectangular beams, shearing stresses
in, 179-180, 200-201
Resisting moment, 124
Resisting shear, 125

Secant formula for columns, 379
Section modulus, 179, 186-188, 190,
192
Shaft:
horsepower in rotating, 98, 105-106
torsion of hollow circular, 96-97,
116
torsion of solid circular, 96-97
Shear, resisting, 125
Shear center of beam, 310, 311-318
Shear strain, 83
Shear stress, B2
Shearing force and bending moment
diagrams, 126-134
computer program for, 143-145
Shearing stresses:
in beams, 179, 198-204
directions of maximum, 422, 442
in I-beams, 209-211
maximum, 440442
on perpendicular planes, 200
on principal planes, 421, 442
in rectangular beams, 196, 200
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conical, 74-75
cylindrical, 6469
of revolution, 77-78
spherical, 69-72, 78-79
toroidal, 79-80
Shrink fit, 72-73
Signs:
for combined stresses, 440-443
for double integration method, 222
for Mohr's aurcle, 423-424
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for shearing force and bending
moment, 125, 138-139
Singularity functions. 135, 260-274
Slenderness ratio, 356, 361
Specific modulus, 7, 30
Specific strength, 7, 30
Spherical shells, stresses in thin-walled,
69-72, 78-79
Statically determinate beams, 123
Statically indeterminate beams, 123
Statically indeterminate problems:
in bending, 289-305
in tension and compression, 38-58
in torsion, 110-115
Strain:
hardening, 5
normal, 2
shear, 97
Strain energy:
in axial loading. 394, 401. 403
in bending, 395, 396
in torsion. 394, 402
Strength:
breaking, 5
ultimate, S
yield, 4
Strength-weight ratio in torsion,
102-103
Stress:
compressive, 1
hoop. 63-65
shear, 82, 84-91
tensile, 1
torsional, 97, 100-103
working, 5
Stress-strain curve, 2-3
Stresses:
bending, in beams, 177-179
circumferential, in cylindrical shells,
6469
computer program for
two-dimensional principal.
451454
determination of principal, by
Mohr's circle, 423, 427, 431432,
435-436. 438439, 442-444,
450451
equations for combined, 440-441
flexural. in beams, 178. 181-198
hoop. in cylindrical shells, 63-65
longitudinal in cylindrical shells.
6465
maximum shearing, 422, 440-442
normal, in axially loaded bars, 2,
9-20
normal, in beams, 178, 181-198
normal. on planes of maximum
shearing stress, 422423, 435, 442
principal, 421, 440-442
shearing, in beams, 179, 198-204
thermal, in axially loaded bars,
45-49
in thin shells, 6480
Structural Stability Research Council
(SSRC), design formula for
columns, 358, 370
Superposition, deflection of beams by,
237238
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Supports:
clamped (fixed), 260-261, 288-289
clastic spring, 290, 304
pin reaction. 10, 17, 19, 25
roller reaction, 122-123, 127, 129,
132

Tangent modulus, 6
Tangent modulus formula for columns,

T-beam. shearing stresses in, 192-193,
194-195, 201-202

Tensile strength. 1

Tension. 1

INDEX

Thermal effects, 4548
Toroidal shells, stresses in, 79-80
Torsion:
angle of twist, 98, 101-104
computer program for variable cross
section of bars in torsion,
107-110
elasto-plastic, 98, 117
fully plastic, 98, 118
hollow circular shaft, 106
solid circular shaft, 99, 103
stepped shaft, 116-117
variable diameter shaft, 103
Twist, angle of, in torsion, 98, 101-104

Ultimate load, 54-58
Ultimate strength, 5

Welded joints, 83
electron beam welding, 84, 91
laser beamn welding, 84, 92
Wide flange seclions, properties of,
218-219

Yield point, 4
Yield strength, 3
Young's modulus, 4, 9-20
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Fig. 11-10

and we must supplement these equations with additional relations stemming from beam deformations. The
bending moment along the length ABC is conveniently written in terms of singularity functions:

d’y o wix — 0.4L)
Fl—= = M0+ R4(x) 5 ()
Integrating,
LAy _ L x?  wi{x—04L)
Eldx = MA(X) + RA 2 2 3 + Cl (2)

where C, is a constant of integration. As the first boundary condition, we have: when x = 0, the slope
dyldx = (. Substituting in Eq. (2). we have

0=-0+0-0+C, for ¢, =0
As the second boundary condition, when x = L, dy/dx = 0. Substituting in Eq. (2), we find

3
0= —M,,L+R“‘L

- Z 6Ly )

Next, integrating Eq. (2), we find

(¥ R, Y w{x—-04L)
Ely=-M,~2 422 2077
Y A2 723 6 a
The third boundary condition is: when x = 0, y = 0, so from Eq. (4) we have C; = 0. The fourth boundary
condition is: when x = L, y = 0, so from Eq. (#) we have

+ G (4)

2 E
0= ——4= 4242 _ Z06L) (5)

The expressions for M, given in Egs. (3) and (5) may now be equated to obtain a single equation
containing R, as an unknown. Solving this equation, we find

Ey

R, = wLI{O.G)" -
=0.1512wL

Substituting this value in Eq. (3), we find M, = 0.0396wL’.
From statics we have

SF, = —(06L)w+0.1512wL + Re =0 . Rc = 0.4488wL
and +) M, = —0.0396wL?— M+ (0.4488wL) (L) — [w(0.6L)](0.7L) = 0
Mo = 0.0684wl?

11.7. The beam in Fig. 11-11 of flexural rigidity EJ is clamped at A, supported between knife edges
at B, and loaded by a vertical force P at the unsupported tip C. Determine the deflection
at C.
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Fig. 11-11

The reactions at A are the moment M, and shear force R, as shown in Fig. 11-11. From statics
we have

+) M, =MA+P(%L—) ~Re(L)=0 1)

SF,=R,+P-Rz=0 @)

These two equations contain the three unknowns M,, R,, and Rg. Thus, we must supplement these two
statics equations with another equation arising from deformation of the beam. Using the x-y coordinate
system shown, the differential equation of the deformed beam in terms of singularity functions is

dl
Efzj; = — M)+ Ra{x) — Ralx — L)' 3)
The first integration yields
d x)? (x-L)y
EIE’ = ~Mu0)' + Ry~ R+ G, )

where C, is a constant of integration. The first boundary condition is that when x = 0, dy/dx = (; hence
from (4). C, = 0. The next integration yields
(Y | Ra{xY Rsg(x—L)Y
= -My——F ==

Ely=-Ma">-+ 5 = -5 3 G ()
where the constant G, is determined from the second boundary condition x = 0, y = 0, leading to C; = 0.
The third boundary condition arises from the fact that there is no deflection at B; that is, whenx = L,y = 0.
Substituting in Eq. (§), we find

M,L* R,L’
= —_———
0 2 6 0 (6)
Solving Egs. (1), (2). and (6) simultaneously, we have
imMm, P PL 3P
R,=—%=— My=— Rg=— 7
ATTT3S A= % 8= (7)
If we now introduce these values into Eq. (5) and also set x = 4L/3 (point C), we have
EIA; = 0.0401PL> (8)

In Problem 11.7 if the beam is a W6 x 15} steel wide-flange section of length 10 ft, determine
the force P required to deflect the tip C 0.2 in.

From Eq. (8) of Problem 11.7, we have the tip deflection A as
EIA- = 0.0401PL?
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For this structural shape, we have from Table 8-1 that [ = 28.1in®. Substituting
(30 X 1061%) (28.1in*) (0.2 in) = 0.040LP(120 in)*
Solving, P = 24301b.
11.9. The beam of flexural rigidity E7 in Fig. 11-12 is clamped at end A, supported at C, and loaded
by the couple at B together with the load uniformly distributed over the region BC. Determine

all reactions,
¥

2
‘ n,='% w/Unit length

S -
C - |8 e
AN IR

;—
&

Fig. 11-12

The reactions at the left support A consist of the moment M, plus the shear force R,. From statics,
for this parallel force system. we have two equations of equilibrium

L [ L\(3L
+ $My= My - (w3 ) (3) + R =0 )
EF,.=RA+RC—WTL=0 @

These two equations contain the three unknowns M,, R4, and R.. Accordingly we must supplement the
two statics equations with another equation stemming from deformations of the system.
For the x-y coordinate system shown, the differential equation of the bent beam written in terms of
singularity functions is
d’ L\° w L\’
Efd_xi'=_MA(x)o-}-RA{-t)l-l-MB(x_E) _"E(x_“"> (3)

Integrating the first time, this becomes

d {x)? L\ w{x-L2y
Ef—y = —MA(X)' +RA-+2—+ MB(X—E) - -é*~—3—

+ 4
dx G (4)

where C, is a constant of integration. As the first boundary condition, when x = 0, dy/dx = (. Substituting
these values in Eq. (¢4), we find C, = 0. Integrating the second time, we find

0 Ry ()

Ely=-Mr 4573

{x — L2y oW lx - L2y N
2 6 4

+ Mg & (&)}

where G, is the second constant of integration. As a second boundary condition, we have at point A, x = 0,
y = 0, and so from Eq. (5) we see that C, = 0. The third boundary condition is that at point C whenx = L,
y = 0. Substituting these values in Eq. (§), we have

—_

2 6 2 4 24

2 3 2 4
__M"‘L +_R“'L +%,L__ id (;) =( (6)
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Solving Egs. (1). (2), and (6) simultancously, we find
M, = ZwlL? R, = 4wl Rqo= ZwL 7)

Thw

11.10. In Problem 11.9 if the beam is titanium having a Young’s modulus of 110 GPa, with a
rectangular cross section 20 mm X 30 mm, is 2 m long, and carries the uniform load in BC of
960 N/m, determine the deflection at the midpoint B.

From Eq. (5) of Problem 11.9 we have the deflection at the midpoint B as

My (LY R, (LY
el = =3 (3) + 8 (3)

3 L2 7 L
—awL (E)-I-G—dwf_.(ﬁ)
ou

(48) (64)

L* = —0.00358wL* @)

For this beam
I = {5(0.020 m) (0.030 m)* = 0.045 % 10 °* m*
so that Eq. (/) becomes
(110 x 10” N/m?) (0.045 X 10 m*) [y] .= = —0.00358(960 N/m) (2 m)*
Solving,

Yhorp=—-11L1 mm

11.11. The beam AB of flexural rigidity EJ is simply supported at A, rigidly clamped at end B, and
subject to the load of uniformly varying intensity shown in Fig. 11-13. Determine the reactions
developed at A and B by the use of the method of singularity functions.

=

) wl) —
A ' BR l

| N\
&= N,

i
i

7z

R, L Ry

Fig. 11-13

Let us denote the vertical force reaction at A by R, that at B by Ry, and the moment exerted by the
wall on the beam at B by My, as shown in Fig. 11-13. A related problem is 10.5 in this book. Following
the procedure discussed there. we write the contribution to bending moment of the distributed loading at
any point a distance x to the right of A:

=R -l )0 (3)(3)

d’y wolx)
ThllS, E!F = RA(X)“T U)
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Integrating the first time,
dy )’ wo ()

—=R,——-——+C
e T :
When x = L, dy/dx = 0, so from Eq. (2)
Lz W0L3
= —_—— + C,
0=Ra5 % !
Integrating a second time,
Ry (x)  wy (x)°
=2l - — L+ Cx+C
Ely= 3 "2 s TOxt G
When x = L, y = 0, so we have from Eq. (4)
RLL? L
OEAT_“;OZO +C1L+C2

Also, when x =0, y = 0, so from Eq. (4), C; = 0.
From Egs. (3) and (5) we have

_wol? R,L? _ R,.,L2+ wol?

6= 2 6 120
Solving,
RA = ilﬁlVUL
The two statics equations for such a force system are
SF, = RA+R3—"%L =0
Wo L
Solving,
Ry =3wolL
MB = TISI’U];NL2
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(2)

(3

(4)

(5)

(6)

(7)

T1L12. The beam AC in Fig. 11-14 is rigidly clamped at both ends and loaded by a concentrated force
P at point B. Determine all reactions, the deflection at B, and the maximum deflection occurring

to the left of point B. Take a>b.

-
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The end moment and shear reactions are shown in Fig. 11-14. From statics we have the two
equations

+)EIMs=M,—Pa+RcL—M =0 )
ZF,=R,+Rc—P=0 2)
Next, writing the differential equation of the deflected beam in terms of singularity functions,
d’y o 1
E!F= =M 0"+ Rux) — Plx — a) )

Integrating the first time, we obtain

2 a2
El%= M+ R, P,

d 2 2 G “

As the first boundary condition, when x = 0, the slope dy/dx = (. Substituting these values in Eq. (4). we
abtain C, = 0.
Integrating again, we find

Y  Ry{x) P(x—a)
2 72 3 77 3 +G

Ely=-M, %)

The second boundary condition is that when x = 0, y = 0. Substituting these values in Eq. (5), we find
C, = 0. The equation of the deflected beam is consequently

Ely = = A7 + 240 - St - oy ®)

Now, apply the boundary conditions at point C. The slope there is zero; hence from Eq. (4) we obtain
the equation

R4 Pb?
ML+ -— = 7
a 5 L 2 0 (7)
The deflection y = 0 at x = L; hence we have from Eq. (6) the relation
M, , R, , PV
_Za Ary_ T o 8
3 L+ 6 L 6 0 (8)
We may now solve Egs. (1). (2), (7). and (8) simultaneously to find the end reactions
Pb? Pab’
RA'_“'ET@“"‘*!’) M, = 12
)
Pa? Pdb
RC=I§"(0+3b) M¢'=—Ef—

The deflection at B under the point of application of the load P is found by setting x = a in
Eq. (6):
_Pﬂ’b]

M, , Ri,
Elly]sea > a+ e =30 (10)

To determine the maximum deflection of the beam for our case of a > b, we consider the deflected
bar as shown in Fig. 11-15, from which it is evident that the point of horizontal tangency to the beam
occurs to the left of B; that is, we are concerned with x <a in Eq. () so that the slope in region AB is
given by

d R
E:E” = —Ma0)' + 0 (In
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11.13.

Horizontal ™~
" ot
Fig. 11-15

which we set equal to zero to find the value x,. This leads to a horizontal tangent at the value of x,
given by
2al.

= 12
Y1~ Ga+b) 2)
Substituting this x; in Eq. (6) and remembering that x <a, we obtain
3
2P’ b’ (13)

Elly]max = ~3Gat bp

In Problem 11.12 the beam has a = 6ft, b = 3ft, and is of circular cross section 2.5in in
diameter. The applied load is P =60001b. Determine the deflection under the point
of application of the load as well as the maximum deflection of the beam. Take
E = 30 % 10° Ib/in?.

The moment of inertia of the cross section is
= ép‘ - 6—:(2.5 in)* = 1.917 in*

The deflection under the point of application of the load is given by Eq. (10) of Problem 11.12 to be
v
Yoo = 73017
Substituting,
Joow = —(60001b)(72 in)’ (36 in)’
Yie-e 3(30 X 10° Ibfin?) (1.917 in*) (108 in)°
The location of the point of maximum deflection is given by Eq. (12) to be
__2al _26Mt)(91ft)
Ja+b 18ft+3ft
and the desired maximum deflection is found from Eq. (13) to be
_opep
3(3a + b)*El
_ 2(6000 1b) (72 in)* (36 in)’
2[(3) (72 in) + (36 in)]*(30 X 10°Ib/in?) (1.917 in)
=—0.522in

= —0.480in

= 5.14ft

Xy

Vlmax =

11.14. The initially horizontal beam ABC in Fig. 11-16 is clamped at C and supported on a smooth

roller at B. A uniform load w per unit length acts over the entire length of the beam. After
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application of the load, the reaction at B is mechanically displaced upward an amount A so that
the beam then has the configuration shown by the dotted line. Determine the reaction Ry after
this displacement has been imposed.

The beam reactions are Rg, R.. and a moment M. Using the method of singularity functions. we have
the equation of the bent beam.

d’y {x)* L
E!Ex—z = WT'FR;;(J‘ 2> ()

Integrating the first time, we obtain

dy _ _wo' _‘31( _LY

For the first boundary condition, we know that, when x = 3L/2, dy/dx = 0. Substituting in Eq. (2)

3 Lz
0= —f(zl'*—) Ry—+C,

6\ 8 8
from which
9 . Ryl

= —wli— E 3
C, 1 6w.’ 8 (&2

Integrating a sccond time,

w{x)* Ry {(x— L2y 9 LZ)

p= —— — 4 ———+ | —wl'— Ry— +C 4
Ey=-¢3 "2 3 (IGWL Rug )2+ G @

For the second boundary condition, when x = 3L/2, y = (. Substituting in Eq. (4), we have

7 27 L3
40 — |+ —_— =1+ =0
[ (8)(16)+32] 516 16 ?
from which
8 . 1. .
2= ———wl+— .
Co= gl gl

The third and last boundary condition stems from the imposed displacement at point b; that is, when
x = L/2, y = A Substituting thesc valucs in Eq. (4), we have

7

w L} 9 L’
=——\|-—] +0+ | —wl?—Rz—
I8 ( ) 0 (16"”“ ”8)(

LY 8L
24\16 2

Solving for Ry, we obtain
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11.15. The horizontal beam AB shown in Fig. 11-17 is clamped at A, subjected to a uniformly
distributed load w per unit length, and supported at B in such a manner that it is free to deflect
vertically but is completely restrained against rotation at that point. Determine the vertical
deflection at B after the beam has deflected as shown by the dotted line.

w/ Unit length I

Fig. 11-17

The equation of the dcflected beam 1s

dy wix)?
El dxz = _MA(I}" + Rﬂ(-“)I - 2 (})
Integrating the first time, we find
d @2 w )
EI d—i = “M Y + Ry “3) +C )

The first boundary condition is that when x = 0. dyfdx = (. Substituting these values in Eq. (2). we find
that € = 0. Integrating again,
x) R0 w ﬂ

PR} AL , 3
2t 23 54 tC )

Efy = _MA

Imposing the boundary condition that x = () at y = 0. we have C, = 0.
The third boundary condition is that, when x = L, dy/dx = 0. Substituting thcse values in Eq. (2), we
obtain the equation
R L} wl?

2 6 @

D=-M,L+

From statics, we have the two equilibrium cquations

.-Lz
+YSMy= M+ My ”2 -0 (5)

SF,=R,—wL=10 (6)
Solving Eqgs. (4), (5), and (6) simultancously, we have
R, =wL

MA = %WLZ
Mp,- = %WL‘
Substitution of these values in Eq. (3) leads to

121 wL L' wi?
EI[Y]... = owh L wt L Wk

wil?
24E1

or y]J\.'--L =~
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11.16. The cantilever beam AB in Fig. 11-18 is clamped at B and supported through a hinge by a

partially submerged (in water) pontoon at A. The beam is of flexural nigidity £/ and length L.

It is loaded by a vertical concentrated force F at A. Determine the reactive moment at B.

Q
N
\)
BN
A1 N
oo Pemoon | Ry

Fig. 11-18

When the force F is applied. the pontoon submerges a distance A. According to the law of
Archimedes, the pontoon is buoyed up by a force R, of magnitude equal to the weight of the additional
water displaced during the movement through A. If the cross-sectional area of the pontoon is A, and the

weight of the water per unit volume is vy, then
An ﬁ'}‘ = _RA

For the coordinate system shown in Fig. 11-18, we have

2

d
EI"Y - R.x— Fx
dx-

Integrating the first time, we have

E!&—x= RAE_ F—2-+C.
As a boundary condition, we havc dy/dx = 0 when x = L, so from Eq. (3)
R R,E
T2 2
Integrating a second time,
-5 L2 (BB
As a second boundary condition we have y = 0 when x = L, so from Eq. (4)
C. = R,L* _FL
) 2 3

The equation of the deflected beam AB is thus

Ry, F , (FL' R,L’ R,1} FL?
ly=—x'——x+|—-—— |x+————
Ey="¢%"% ( 2 2 ) 33
We seek the deflection y at x = 0. From Eq. (1), it is

R4
Apy

y:ﬁ—_-—

()

(2)

(3)

(4

&)
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Accordingly at x = 0 from Eq. (5) we have

Solving,
()
3
——+
3 Agy
From statics,
+)2MH=R‘QL_FL+MB=0 (7)

Solving Egs. (6) and (7) simultaneously we have

3FLEI

B 3A,y+3EI

Supplementary Problems

11.17. A clamped-end beam is supported at the right end, clamped at the left, and carries the two concentrated
forces shown in Fig. 11-19. Determine the reaction at the wall and the reaction at the right end of the
beam.

Ans.  4P/3 acting upward at left end, PL/3 acting counterclockwise at left end, 2P/3 acting upward at
right end

11.18. Determine the defiection under the point of application of the force P located a distance £./3 from the right
end of the beam described in Problem 11.17. Ans.  7PLY486EI

| ¥

P
§~F 8 1 3

2
7

Fig. 11-19

11.19. The beam of Problem 11.17 is of titanium Ti-4Al-3Mo-IV (STA) with a tensile ultimate strength of
175,000 Ib/in” at room temperature. If the cross section is 2 in X 5 in and a safety factor of 1.4 is employed,
determine the maximum allowable value of each load P. Ans. 174001b

|

I - - o |

e

Fig. 11-20



306 STATICALLY INDETERMINATE ELASTIC BEAMS [CHAP. 11

11.20. A clamped-end beam is supported at an intermediate point and loaded as shown in Fig. 11-20. Determine
the various reactions.
Ans. iwL —3P upward at left end, fwl?—}PL counterclockwise at left end, wlL + 1P upward at
support

11.21. A clamped-end beam is supported at the right end, clamped at the left, and carries the load of uniformly
varying intensity, as indicated in Fig. 11-21. Determine the moment exerted by the support on the
beam. Ans.  TwlL¥120

b
wfUnit length

Y

S

L |

Fig. 11-21
11.22. The beam shown in Fig, 11-22 is clamped at the left end, supported at the right, and loaded by a couple
M. Determine the reaction at the right support. Ans. 3Mya(a + 2B)2(a + b)?

11.23. For the beam shown in Fig. 11-22, determine the deflection under the point of application of the applied
moment M,  Ans. M,a’b(a®> —2b%)/4(a + b)Y EI

3}- ——t

NIVA

M,

Fig. 11-22

11.24. In Fig. 11-23 AB and CD are cantilever beams with a roller E between their end points. A load of
5kN is applied as shown. Both beams are made of steel for which £ = 200 GPa. For beam AB,
I =20x10°mm? for CD, I = 30 X 10® mm®. Find the reaction at E. Ans. 398N

D CE
ECy
1B
A
Sm I 2m 2m B
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11.25. The straight elastic beam AB in Fig. 11-24 is a W152 X 23 wide-flange section having [ = 11.7 % 10° mm®*.
Member CD is a vertical steel wire of 3-mm-diameter circular cross section and length 4 m. Both the beam
and the wire are steel for which E = 200 GPa. Prior to the application of any load to the beam, due to a
fabrication error, the end D of the wire is 5 mm above the tip B of the beam. The end D of the wire and
the tip B of the beam are then mechanically pulled together and joined. Determine the axial stress in the
bar prior to the application of any load to the beam. Ans. 106 MPa

Y
C
=~ |4m
A bo
177
§\I 3!11 B 5 mm
1
Fig. 11-24

11.26. A beam is clamped at both ends and supports a uniform load over its right half, as shown in Fig. 11-25.
Determine all reactions.
Ans.  3wL/32 acting upward at left end, SwL?/192 acting counterclockwise at left end, 13wL/32 acting
upward at right end, 11wL%192 acting clockwise at right end

w Ib/unit langth
§ L L _F
—3 —

Fig. 11-25

11.27. Determine the central deflection of the beam described in Problem 11.26. Ans. wLY768Ef

s

[ & & 4

Fig. 11-26

1L.28. A 16-ft beam carries a uniform load over the right half of its span and is supported at the center of the
span by a vertical rod, as shown in Fig. 11-26. The rod is steel, 12 ft in length, 0.5 in? in cross-sectional area,
and E, = 30 X 10° Ibfin?. The beam is wood 4 in X 8 in in cross section and E,, = 1.5 X 10° Ibfin?. Determine
the stress in the vertical steel rod.  Ans. 2960 Ibfin’
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11.29. The beam of flexural rigidity EI in Fig. 11-27 is clamped at A, supported between knife edges at B,
and subjected to the couple M, at its unsupported tip C. Determine the deflection of point C.
Ans. MyLYAEI

M,

14 s c

L X1

Fig. 11-27

11.30. The cantilever beam in Fig. 11-28 of length 3 m and rectangular cross section 100 mm > 200 mm has its free
end (at no load) 3 mm above the top of a spring whose constant is 150 kN/m. The material is titanium alloy,
which has E = 110 GPa and a yield point of 900 MPa. A downward force P of 7000 N is applied to the tip
of the beam. Find the deformation of the top of the spring under this load. Ans. 472 mm

I
. 3m ' 100
'

3 mm (At no load)

)
200 mm
150 kN/m %

ke

Fig. 1128

1L.31. A beam AB is clamped at each end and subject to a load of uniformly varying intensity as shown in Fig.
11-29. Determine the moment reactions developed at each end of the beam.
Ans.  wL?30 counterclockwise at A, wlL?/20 clockwise at B

N

A BN
L

s

~

0277
7

Fig. 11-29

11.32. The beam AR is pinned at its left end, clamped at the right end, and subjected to the uniformly varying
vertical load shown in Fig. 11-30. Determine the vertical reaction at the support at A.
wols

Ans. R, = 24017 [10L, Ly +5L3 +15(L, + L)L — L3 — 2L5(L, + L3) — 3L3(Ly + Ly) —4(L, + L3)7]
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Fig. 11-30

11.33. The two-span continuous beam shown in Fig. 11-31 supports the two concentrated loads shown. Determine
the various reactions. Ans. R, =6681b, Rz =12,0611lb, R-=72711b

6000 1b 14,000 Ib

I__ sn_4 ".L.|

9ft |[ 11 £ !

Fig. 11-31

11.34. The three-span continuous beam shown in Fig. 11-32 supports a uniformly distributed load in the left and
central span, but is unloaded in the right span. Determine the reactions at A, B, C, and D.
Ans. R, =0383wL(), R = 1.20wL (1), Rc = 0450wl (1), Rp = —0.033wL (|)

11.35. The beam shown in Fig. 11-33 is simply supported at the left and right ends and spring supported at the

center. Determine the spring constant so that the bending moment will be zero at the point where the
spring supports the beam.  Ans k= 16E}L?

| 2 L \
L _arp PR_L
2 2
IC z

=T
?§.W (=}
P

Fig. 11-33



Chapter 12

Special Topics in Elastic Beam Theory

SHEAR CENTER

The simple flexure formula o = My/! determined in Problem 8.1 is valid only if the transverse loads
which give rise to bending act in a plane of symmetry of the beam cross section. In this type of loading
there is obviously no torsion of the beam. However, in more general cases the beam cross section will
have no axes of symmetry and the problem of where to apply transverse loads so that the action is
entirely bending with no torsion arises. Every elastic beam cross section possesses a point through
which transverse forces may be applied so as to produce bending only with no torsion of the beam. This
point is called the shear center. In general. determination of the shear center location is extremely
difficult and requires use of the theory of elasticity. However, in this chapter we will be concerned only
with beams of thin-walled open cross section having a single axis of symmetry, with the loads acting in
a plane perpendicular to this axis of symmetry. We will locate the shear center of the open cross section
on the axis of symmetry of the becam. For applications, see Problems 12.1 through 12.4.

UNSYMMETRIC BENDING

Frequently beams are of unsymmetric cross section, or even if the cross section is symmetric the
plane of the applied loads may not be one of the planes of symmetry. In either of these cases the
expression o = My/I derived in Problem 8.1 is not valid for determination of the bending stress. It is
convenient to resolve the bending moment into components along the y- and z-axes of the cross
section. as indicated by the double-headed vector representations of these moments in Fig. 12-1.

Fig, 12-1

The bending stress at a point located by the coordinates y, z is shown in Problem 12.5 to be
_ M+ M_‘,I}.:)y +(-M, L. —M.1,)z
11.-1}

o

(12.1)

310
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where [, and I, denote the moments of inertia about the y- and z-axes, respectively, and 1, is the
product of inertia. These quantities are determined by the methods of Chap. 7. There exists a neutral
axis and those longitudinal fibers lying on the neutral axis are not subject to any normal stress.
However, the neutral axis is usually not perpendicular to the plane of the applied loads nor does it
coincide with either of the principal axes. For applications, see Problems 12.6 and 12.7. A computerized
approach for determination of bending stresses is offered in Problem 12.8 and examples are offered
in Problems 12.9 and 12.10.

CURVED BEAMS

Occasionally initially curved beams are encountered in machine design and other areas, Here we
consider only those elastic beams for which the plane of curvature is also a plane of symmetry of every
cross section and the bending loads act in this plane of symmeiry. Unlike the case of the initially straight
beam, the neutral axis no longer passes through the centroid of the cross section but instead shifts
toward the center of curvature of the beam by a distance denoted by y. The bending stress distribution
over the cross section is hyperbolic in nature and in Problem 12.11 it is shown that these stresses are
given by

My
o=—""-
Ay(r +y)
where M is the bending moment, A is the cross-sectional area, 7 is the radius of curvature of the neutral
axis, and y denotes the distance of any fiber from the neutral axis. For applications see Problem 12.12.
Because of the tedious nature of calculations associated with bending of curved beams, the problem

is well suited to computer implementation and a FORTRAN program is developed in Problem 12.13
together with examples in Problems 12.14 and 12.15.

(12.2)

Solved Problems

Shear Center

12.1. Determine the shear center of half of a thin-walled cylindrical section oriented as shown in
Fig. 12-2 and subject to a vertical load.

Fig. 12-2
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Since the beam action is one of bending only with no torsion, it follows that normal stresses are
distributed over the cross section in accordance with the flexure formula o= My/l. Consequently,
according to Problem 8.19, page 198, horizontal shearing stresses acting perpendicular to the plane of the
cross section are generated and are determined by the relation

V [
=% yda

Yo
As indicated in Problem 8.19, the presence of these horizontal shearing stresses necessitates the
presence of equal intensity shear stresses acting over the vertical cross section. In Fig. 12-3(a) these shear
stresses have been shown as acting tangential to the center line of the cross section and further, for a
thin-walled section, it is customary to assume a uniform distribution of the shear stresses across the
thickness r. Finally, it is assumed that shearing stresses perpendicular to the circular centerline of the
section are negligible. In Fig. 12-3(a), V denotes the resultant of the distributed shearing stresses and it,
of course, acts vertically, since the horizontal components of the various stress vectors above and below

the axis of symmetry annul one another.

< -

(a) (%)

Fig. 12-3

Let us examine the shearing stress 7 at an arbitrary point denoted by the angle 6, as indicated in
Fig. 12-3(b). Determination of this stress from the relation

Ll

v
=—| yd
= | Yde (a)

Yo
necessitates evaluation of I as well as the integral, which, as explained in Chap. 7, represents the first
moment of the shaded area about the axis of symmetry. This is accomplished by introducing an auxiliary
variable « (0 < « < 8) as shown in Fig. 12-3(b) so that

« L]
J. yda = f (Rcosa)i(Rda) = R*tsin 6 (b)
¥ i
Next, the moment of inertia of the entire cross section about the axis of symmetry is given by
i Rt
I=fyzda=J (Rcose)‘*ere="2 ()
0
The shearing stress at any point represented by 8 is now found from (a), (b), and (¢) to be
2V
[R?¢sin 6] = ——sin 8 (d)

T wR ) Rt
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12.2.

The moment of these distributed shearing stresses about any point, say O, must be equal to the
moment of the resultant V about that same point. Thus since 7 acts over an area {(R d6) we have

g=x 2V
J. (—sin 9) (RtdB)R = Ve
=0 Rt

4
m

gives the location of the shear center.

Determine the shear center of the “hat”-type thin-walled section indicated in Fig. 12-4. The
thickness ¢ is constant throughout the beam.

. S A A _
- | IR
c 1 c:_._l C Y 'F,, .
L2 R Bl 1 B B
_ 1 _
" !
_—-L- V | l—ﬁ —
1” l
|
l!!
Fig. 12-4 Fig. 12-5 Fig. 12-6

In accordance with the reascning given in Problem 12.1, the distribution of shear stresses over the
cross section appears as in Fig. 12-5. The resultant of the distributed shearing stresses, denoted V, acts
vertically because the net horizontal effect of the shearing stresses in the two horizontal portions of the
“hat” is zero. Let us first examine the shearing stress in the upper vertical member AB. At a distance y
below the extreme point A, as shown in Fig. 12-6, the shearing stress is given by

V [
T_EJ. yda (a)
¥o

The integral represents the first moment of the shaded area about the axis of symmetry and may be readily
evaluated as the product of the area, that is, yt, and the distance from the centroid of the area to the axis
of symmetry, that is, 2 — y/2. The shear stress at y is thus

e

where it is to be remembered that V and [ pertain to the shear force acting over the entire cross section
and the moment of inertia of the entire cross section, respectively. The resultant shear force V, acting over
the vertical region AB, as indicated in Fig. 12-7, is found by integraticn to be

y=1 V 1
- 1), 2 61
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Let us next examine the shearing stress in the upper horizontal member BC. At a distance x from point
B. as indicated in Fig. 12-8. the shearing stress is given by Eq. (a), where now the integral represents the
first moment of the shaded area in Fig. 12-8 about the axis of symmetry. By inspection the integral has the
value (1) (£) (1.5) + (x){r) (1) and the shear stress at x is thus

Vv
T= E[I.Sr + xt) (d)
A A
dz
| A
C' Vl 1
il — T s
B B
e I 0 l' I ¥
Jd
Pl
——
IV:
Fig. 12-7 Fig. 12-8

where V and [ again pertain to the resultant shear over the entire cross section and the moment of inertia
of the entire cross section. respectively. The resultant shear force V,, as indicated in Fig. 12-7, is found
to be

k1%

x=1 vt 1
V2=-[=o Tl‘dx=-}—L {l,5+x)dx--5l— (e)

Since the entire section is thin walled it is customary to use only nominal dimensions and thus neglect any
slight duplication of areas at the intersections of the various members,

Because of symmetry the forces on the lower members are identical to those just found. The sum of
the moments of these forces about any point, such as @ in Fig. 12-7, must equal the moment of the resultant
V about that same point. Thus, we have —2V (1) +2V,(1) = Ve or

4t

e=3 )
Finally, f may be calculated by the methods of Chap. 7 to be
1 22t
I==@@'+2[()OQayl=— (g)
12 3
The shear center from (f) thus becomes
a4 0.182 in (h)

‘T 323 22

Note that by choosing the moment center at O it is not necessary to determine Vi,

12.3. Determine the shear center of a thin-walled rectangular section in which there is a narrow

longitudinal slit (see Fig. 12-9). The thickness t is constant.

Observe that this section corresponds to the “hat™ section of Problem 12-2 except that the outstanding
flanges of the “*hat™ are turned toward the axis of symmetry here. The distribution of shear stresses appears
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C B
—— #
0 mm b —t
o n
50 mm
Vv
e #
50 mm
Fig. 129 Fig. 12-10

as indicated in Fig. 12-10 and the vertical force V denotes the resultant of these distributed shearing
stresses. Let us first examine the shearing stress in the vertical member AB. See Fig. 12-11. At a distance
z above the axis of symmeltry (assuming the slit to be of negligible thickness) the shearing stress is again
given by

=— y da (ﬂ)

where it is of utmost importance to observe that the integral represents the first moment of the area lying
between the section a-a where the shear stress is desired and the extreme fibers b-b of the section. This is
true even though fibers b-b lie closer to the axis of symmetry than a-a. This statement follows from the
derivation of the above equation as given in Chap. 7. The integral is evaluated as the product of the area,
that is, zt, and the distance from the centroid of the area to the axis of symmetry, that is, z/2. The shear

stress at z is thus
V 2
r=£[zt£] Ve (b)

The resultant shear force V, acting over the vertical region AB, indicated in Fig. 12-12, is found by
integration to be

=50 50 V 2z V
V, = j Trdz = j 2 tdz = 208 X 100 ()
o U {

Let us next examine the shearing stress in the upper horizontal member BC. At a distance x from point
B, as indicated in Fig. 12-13, the shearing stress is given by Eq. (a) where the integral represents the first
moment of the shaded area in Fig. 12-13 about the axis of symmetry. From (a),

T= T‘:[(x)(:)so +(50) (1) (25)] = SOTV (x +25) ()
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Vs 50 mm
$iv v’ Y=t ip
€ i R B
0
od
—:J t 30 mm
nis
Yy v
v _ A
——
V, —
Fig. 12-12 Fig. 12-13

The resultant shear force V, acting over the horizontal member BC, as indicated in Fig. 12-12, is found by
integration to be

x=50 50
V= I Ttdx = f SOTV(x +25)dx = 1.25 % l(}"-l;! ()
x=0 0

From Fig. 12-12 the sum of the moments of the forces V,, V,, and V; about any point, such as O, must equal
the moment of the resultant about that point. Thus 2(50V,) + 2(50V,) = Ve.
Substituting from (c) and (e),

Vi
2.l><105r'?+l.25>410’r}-= Ve ()

e = 146 X 10’:', @®

The second moment of area is given by
I = 2[75(2) (100)*] + 2[501(50)7] = 4.167 % 10°¢

146 X107t

T aterxaoy O™

Thus

which locates the shear center.

Determine the shear center of the thin-walled section indicated in Fig. 12-14. The thickness ¢ is
constant.

The distribution of shear stresses appears as in Fig. 12-15 where the vertical force V denotes the
resultant of these distributed shearing stresses. Let us first determine the shearing stress in the horizontal
member AB. At a distance x from point A, as indicated in Fig. 12-16, the shearing stress is found to be

V [
=% yda (a)
¥o
v 3Vx
or T= E [(D®O3)]= T (b)

The resultant shear force V, acting over AB, as indicated in Fig. 12-17, is found by integration to be

x=2 2 3y. Vi
V.=f ud.r=fT”dx=¥ ©
x=l) (1]
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18"

1.5”

Fig. 12-14

Fig. 12-16

The shearing stress in the inclined member BC at a distance y from point B, as indicated in Fig. 12-18.
is again given by Eq. (a), where the integral represents the first moment of the shaded area in Fig. 12-18
about the axis of symmetry. For the inclined portion of that area, it is simplest to integrate through
introduction of an auxiliary variable « as indicated. Thus

= !—‘:[ @) O3+ I " [1.5+ (1.80 — ) sin 56°20’]fdu]
u=0

y-

= %(6 + 3y — 0.416)%) (d)

The resultant shear force V, acting over the inclined member BC in Fig. 12-17 is found by integration

¥=1LBO
V,= j ﬂdy
¥

=0

to be

14.85V
d (e)

1.80 Vi
= j =~ (6+3y - 0416 dy =
i}
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3"

Fig. 12-18

From Fig. 12-17 the sum of the moments of the forces V. V,, and V; about any point. such as O, must equal
the moment of the resultant about that point. Thus

2(3V4) + 2(V,sin 56°20°) (1) = Ve
Substituting from {c) and (e),
_ 608 f)

e = ——

{
The moment of inertia is given by

=180
[= 1_12([) (37 +2[(2) () (3)] + 2[ [1.5 + (1.80 — u) sin 56°20°}*t du:

w=0

We then have

which locates the shear center.

Unsymmerric Bending

12.5. Consider a beam of arbitrary unsymmetric cross section subject to pure bending, as indicated

in Fig. 12-19(a). Derive an expression for the relationship between the bending moment and the
bending stress at any point in this section. Assume Hooke’s law holds.

It is convenient to resolve the moment M, which acts in a plane oblique to the y- and z-axes (through
the centroid), into moment components about those axes. These components are designated as M, and M,
and their positive directions are indicated by the double-headed vectors in Fig. 12-19(b).

As in Problem 8.1 it is reasonable to assume that cross sections that were plane prior to bending
remain plane after application of the loads. However, in the general case being considered here there is
one radius of curvature p, in the x-y plane and another p, in the x-z plane. Thus, for a longitudinal fiber
of area da as indicated in Fig. 12-19(b) the normal strain, analogous to (/) of Problem 8.1, is given by

e=2+ L ()
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(a) (d}
Fig. 12-19

Since Hooke’s law holds, we immediately have

E
oo B2 @)
P: P

and this longitudinal. or bending, stress is indicated in the figure.
The resultant leongitudinal force acting over the cross section is zero (for the case of pure bending)
and this condition may be cxpressed as

Ia-da=0 or I(Ey EZ)(I =0
A AP Py

where the integration is extended over the cross-sectional area A. Since p, and p, are constant over the

cross section, we have
E E
_jy@+—Jz“=n 3)
P P |,

This equation is satisfied if the integrals vanish. This implies taking the origin of the y-z coordinate system
to coincide with the centroid of the cross section.
From Fig. 12-19(b) it is cvident that

2 F

M.= I (l}dﬂ-J (E_v Eyz)da
b
*—J y da+—I}zda

where the first integral represents the moment of inertia of the cross-sectional area about the z-axis and
the second integral (as mentioned in Chap. 7) represents the product of inertia of the same area about the
y- and z-axes. Using the notation of Chap. 7, this last equation becomes
El, EI_.
M: L — (4 )
p: P
Also from Fig. 12-19(b) we have

E Ez’
M,=-J‘ rrzda=—J (Lz—i- z)da
4 PR Py

i 1,
= — L + _E__ (5)
p: P
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Equations (4) and (5) may be solved for p, and p, to yield

| M- ML,

E - E(I.Jz - !ﬁz ©)
I MJIL+MI,
p. E(LI-I%) )
Substituting (6) and (7) in (2) yiclds the bending stress
szr + valz)y + (_Mx!: - sz-z Z
o= LI-1%, - ®)

Equation (8) is termed the generalized flexure formuda and holds for an elastic beam of arbitrary cross
section with bending loads in an arbitrary planc. For the special case M, = I, = 0 (implying that the y-
and z-axes are principal axes and that bending takes place only about the z-axis) (8) reduces to o = M, y/[,
which is equivalent to (9) of Problem 8.1.

The equation of the neutral axis is readily found by setting the stress from (8) equal to zero, since by
definition the fibers along the ncutral axis are free of longitudinal stress. Thus

y_M, I . M e
Z=—F2 =¥ _an 9
z M.+ ML, “ ©)
where a denotes the angle of inclination of the neutral axis as indicated in Fig. 12-20. [n general the ncutral
axis is nor perpendicular to the planc of the applied moments nor docs it coincide with cither of the
principal axes.

Neutral Axis /

Fig. 12-20

The rectangular beam of Fig. 12-21 is subject to loads that create a bending moment of 2000 1b - ft
acting in a plane oriented at 30° to the y-axis. Determine the peak tensile and compressive
stresses in the beam.

The vector representation of the 2000 Ib - ft moment is indicated by the solid double-headed vector in
Fig. 12-22, together with its moment components (dashed vectors) in the y- and z-directions. This
convenient vector representation enables us to find the components as

M, = 2000 sin 30° = 1000 Ib - ft M. = 2000 cos 30° = 1732 Ib-ft
From Problem 7.3, we have
I, = 5(6) (3 = 135in* I. = 5(3)(6) = 54in®

Also, since the y- and z-axes are axes of symmetry, they are principal axes of the cross section and, from
Chap. 7, the product of inertia with respect to these axes vanishes: /.. = 0.
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Flane of loads

M
z - I-—{ — 6
" B80° I
3 " 1

rd

Fig. 12-21 Fig. 12-22

The angle of inclination of the neutral axis (which passes through the centroid) is given by (9) of
Problem 12.5 to be

M1, + M,
M, I+ M.,
_ (1000) (54) + (1732) (0)
(1732) (13.5) + 1000(0)
= 66°4(’

tan o =

=231

As mentioned in Problem 12.5, there is no reason to expect the neutral axis, as indicated in Fig. 12-23, to
be normal to the plane of the loads.

In Problem 12.5, it was assumed that plane sections remain plane during bending. The originally plane
section rotates about the neutral axis indicated in Fig. 12-23 and since both strains as well as stresses vary
as the distance from the neutral axis it is evident that the peak tensile stress occurs at point B and the peak
compressive stress occurs at A, i.e., at those points most remote from the neutral axis. Substituting the

\——

Neutral Axis_svy B‘.\
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coordinates of these points and the values of the moment components in (8) of Problem 12.5, we
obtain

_ [(1732) (12) (13.5) + 0] (3) + [-(1000) (12) (54) — O] (—15)

(135 (50 = 2480 Ib/in®

_ [(1732) (12) (13.5) + O] (—3) + [—(1000) (12) (54) — 0] (1.5) _ .
T4 = (13.5)(54) -0 = —2480 Ib/in®

The structural angle section designated as 1.127 X 127 X 22.2 has the dimensions and centroidal
axis indicated in Fig. 12.24. The values of the cross-sectional properties with respect to the
centroidal axis of the section are I, = I, = 7.41 X 10 ®*m* and I, = —4.201 X 10~°m®. For a
loading M, = 0, M, = 10 kN - m, find the angle of inclination of the neutral axis and the bending
stress at point A.

Fig. 12-24

The angle of inclination of the neutral axis is given by Eq. (¢) of Problem 12.5 as
0+ M,(—4.201 X 10 *m*)

AN T (741X 10 *m") + 0
= —0.567
a=-295°

which is shown in Fig, 12-24, The minus sign indicates clockwise rotation from the positive end of the z-axis
because the positive direction of & was taken to be counterclockwise as indicated in Fig. 12-20.

Point A has coordinates y = z = —39.9mm so that the desired stress at that point from Eq. (8) of
Problem 12.5 is

[(10,000N -m) (7.41 X 10~ m*) — 0] (0.0399 m) + [0 — (10,000 N - m) (—4.201 % 10 ® m*) (—0.0399 m)
(7.41 X 10 *m®) (7.41 X 10 °*m*) — (—4.201 X 10"® m*)?

= —124 MPa

Write a computer program in FORTRAN to determine elastic bending stresses as well as the
orientation of the neutral axis in a beam of unsymmetric cross section subject to pure bending
as shown in Fig. 12-19.
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The desired stress is given by Eq. (8) in Problem 12.5 and the angular oricntation of the neutral axis

is indicated by Eq. (9) of that problem. The components of moment M, and M. have the positive dircctions
shown in Fig. 12-19 and all other symbols arc defined in Problem 12.5. The program is

D0010**kkhhhhhhhkhhhhhhhhhhhhhhhhohhhhhhhhhhhbhhhhhkhkhhhrhhhhdhhhhhhhhhhhhhhhhhdk

00020

PROGRAM BEND (INPUT,OUTPUT)

00030 kkhhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhohhhkhkhkhik

00040*
00050*
00060*
00070%
00080*
00050*
00100*
00110*
00120*
00130*
C0140*
00150*
00160*
00170*
00180*
00190*
00200*
00210*
00220*
00230*
00240*
00250*
00260%
00270*
00280*
00290*
00300*
00310*
00320*
00330*
00340*
00350*
00360*
00370*

AUTHOR: KATELEEN DERWIN
DATE : JANUARY 27,1989

BRIEF DESCRIPTION:

THIS PROGRAM CONSIDERS A BEAM OF ARBITRARY UNSYMMETRIC CROSS
SECTION SUBJECTED TO PURE BENDING. THE GENERALIZED FLEXURE FORMULA
HOLDS FOR THIS CASE, AND PROVIDES A RELATIONSHIP BETWEEN THE BENDING
MOMENT AND THE BENDING STRESS AT ANY POINT IN THE SECTION. ALSO,

THE ANGLE OF INCLINATION OF THE NEUTRAL AXIS CAN BE CALCULATED AS A
FUNCTION OF THE BENDING MOMENTS.

INPUT:

THE USER IS FIRST ASKED IF USCS OR SI UNITS WILL BE USED. THEN,
THE SECTIONAL PROPERTIES (MOMENTS OF INERTIA 1Y,I1Z,IYZ) ARE INPUTTED,
AS WELL AS THE BENDING MOMENTS., FINALLY, THE COORDINATES OF THE POINT

WHERE THE BENDING STRESS IS DESIRED ARE ENTERED.

OUTPUT:
THE BENDING STRESS AT ANY POINT ON THE CROSS SECTION MAY BE
OBTAINED, AS WELL AS THE ANGLE OF INCLINATION OF THE NEUTRAL AXIS.

VARIABLES:
1Y,12,IYZ -— SECTIONAL PROPERTIES (MOMENTS OF INERTIA)
MY, MZ -— BENDING MOMENTS
SIGMA - BENDING STRESS AT THE DESIRED POINT ON THE SECTI
TALPHA - THE TANGENT OF THE ANGLE OF INCLINATION OF THE
NEUTRAL AXIS
ALPHA -— THE ANGLE OF INCLINATION OF THE NEUTRAL AXIS
Y,Z -— COORDINATE OF THE POINT WHERE STRESS DETERMINATI
1S DESIRED
ANS -— DENOTES IF USCS OR SI UNITS ARE TO BE USED
UNIT — GIVES THE USCS OR SI UNIT FOR STRESS

Q0380 ik khhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhkhhhhhhhkhkhhhhhhkhhhhhhhhhhhhhhbhk

00390k *kk&k MAIN PROGRAM ke hkkdk
e L Ly T e T T T P T e

00410%
00420*
00430*
00440
00450
00460
00470*
00480*
00490*
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610

VARIABLE DECLARATIONS

REAL IY,IZ,IYZ,SIGMA,MY, MZ,TALPHA,ALPHA
INTEGER ANS
CHARACTER UNIT*4

USER INPUT

PRINT*, 'PLEASE INDICATE YOUR CHOICE OF UNITS:'
PRINT*,'1 - USCS'

PRINT*,'2 - SI'

PRINT*," °

PRINT*, 'ENTER 1,2°

READ*, ANS

PRINT*,' '

PRINT*,* '

PRINT*, 'NOTE, THE COORDINATE SYSTEM USED HAS THE X-AXIS ORIENTED'
PRINT*,'SO THAT IT IS POSITIVE INTO THE PAGE AND ACTING AS THE'
PRINT*, "NEUTRAL AXIS OF THE SECTION. THE POSITIVE Y-AXIS IS DIRECTED'
PRINT#*, ' DOWNWARD, WHILE THE POSITIVE Z-AXIS IS TO THE LEFT AS ONE'
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00620 PRINT*, 'FACES THE SECTION, (IT IS A RIGHT HANDED SYSTEM.)'

00630 PRINT*,*' !

00640 PRINT*, ' ¢

00650 IF (ANS.EQ.1) THEN

00660 PRINT*, 'PLEASE ENTER THE SECTION PROPERTIES 1Y,IZ,IYZ ,(IN~g4):'
00670 READ*,1Y,IZ,1IYZ

00680 PRINT*,' '

00690 PRINT*, 'PLEASE ENTER THE MAGNITUDE OF THE BENDING MOMENTS MY,MZ'
00700 PRINT*, 'FOLLOWING THE SIGN CONVENTION STATED (LB-FT):'

00710 READ#* ,MY , M2

00720 MY = MY*12

00730 MZ = MZ*12

00740 ELSE

00750 PRINT*, 'PLEASE ENTER THE SECTION PROPERTIES IY,IZ,IYZ ,(MM~4):'
00760 READ*,IY,1Z,1YZ

00770 PRINT*,' °*

00780 PRINT*, 'PLEASE ENTER THE MAGNITUDE OF THE BENDING MOMENTS MY,MZ'
00790 PRINT*, 'FOLLOWING THE SIGN CONVENTION STATED (KN-M):'

00800 READ*, MY ,M2Z

00810 MY = MY*1E§

00820 MZ = MZ*1E6

00830 ENDIF

00B40*

00850 PRINT*,' °*

00860 PRINT*, 'ENTER THE Y AND Z COORDINATES OF THE POINT WHERE STRESS '
00870 PRINT*, 'DETERMINATION IS DESIRED.(FOLLOW THE SIGN CONVENTION STATED
00880 IF(ANS.EQ.1) THEN

00890 PRINT*,'Y AND Z ARE DISTANCES IN INCHES FROM THE NEUTRAL AXIS:'
00900 ELSE

00910 PRINT*,'Y AND Z ARE DISTANCES IN MILLIMETERS FROM NEUTRAL AXIS:'
00920 ENDIF

00930 READ*, Y, 2

00940*

00950% END USER INPUT
00960***********5*t***!tt******tﬁ****lt*t**ﬁ***************t**t*t

00970#* CALCULATIONS FOR BENDING STRESS AND THE ANGLE OF INCLINATION
00980* AS FUNCTIONS OF THE APPLIED BENDING MOMENTS AND THE SECTION
00990 PROPERTIES

01000*

01010 SIGMA=(( (MZ*IY + MY*IYZ)*Y) +((-MY*IZ - MZ*IYZ)*2))/(IY*IZ - IYZ**2
01020 TALPHA =((MY*IZ + MZ*IYZ)/(MZ*IY + MY*IYZ))

01030 ALPHA = ATAN(TALPHA)

01040 ALPHA = ALPHA*180/3.14159

01050*

01060* PRINTING OUTPUT

01070*

01080 IF (ANS.EQ.1) THEN

01090 UNIT = ' PSI'

01100 ELSE

01110 UNIT = ' MPA'

01120 ENDIF

01130 PRINT 10, 'THE BENDING STRESS AT (',Y,',',2,') 1S',SIGMA,UNIT,".'

01140 PRINT 20,'THE ANGLE OF INCLINATION OF THE NEUTRAL AXIS IS',ALPHA, 'DEG.’
01150%

01160% FORMAT STATEMENTS

01170%

01180 10 FORMAT(//,2X,A23,F6.1,Al,F6.1,A4,F10.1,R49,A1)

01190 20 FORMAT(/,2X,A,F8.2,1X,A)

01200%

01210 STOP

01220 END
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12.9. Rework Problem 12.6 using the FORTRAN program in Problem 12.8.

The self-prompting program is utilized by entering the moment components and sectional properties
from Problem 12.6. Consideration of the directions of moment components indicates that the peak tensile
stress will occur at point B in Fig. 12-23 and the coordinates of that point are y = 3, z = —1.5. The
printout is

run
PLEASE INDICATE YOUR CHOICE OF UNITS:
1 - USCs
2 - SI

ENTER 1,2
?21

NOTE, THE COORDINATE SYSTEM USED HAS THE X-AXIS ORIENTED

SO THAT IT IS POSITIVE INTO THE PAGE AND ACTING AS THE
NEUTRAL AXIS OF THE SECTION. THE POSITIVE Y-AXIS IS DIRECTED
DOWNWARD, WHILE THE POSITIVE Z-AXIS IS TO THE LEFT AS ONE
FACES THE SECTION. (IT IS A RIGHT HANDED SYSTEM.)

PLEASE ENTER THE SECTION PROPERTIES 1Y,IZ,IYZ ,(IN"4):
? 13.5,54,0

PLEASE ENTER THE MAGNITUDE OF THE BENDING MOMENTS MY,MZ
FOLLOWING THE SIGN CONVENTION STATED (LB-FT):
2?2 1000,1732

ENTER THE Y AND Z COORDINATES OF THE POINT WHERE STRESS
DETERMINATION IS DESIRED. (FOLLOW THE SIGN CONVENTION STATED)
Y AND Z ARE DISTANCES IN INCHES FROM THE NEUTRAL AXIS:

?2 3,-1.5

THE BENDING STRESS AT ( 3.0, -1.5) 18 2488.0 PSI.
THE ANGLE OF INCLINATION OF THE NEUTRAL AXIS IS 66.59 DEG.

SRU 0.895 UNTS.

RUN COMPLETE.

12.10. Rework Problem 12.7 using the FORTRAN program of Problem 12.8.

Enter the given cross-sectional properties, moment components, and coordinates of point A indicated
in Problem 12.8 into the self-prompting program to obtain the following printout, which agrees with the
results of Problem 12.7

run

PLEASE INDICATE YOUR CHOICE OF UNITS:
1 - UscCs

2 - SI

ENTER 1,2
? 2

NOTE, THE COORDINATE SYSTEM USED HAS THE X-AXIS ORIENTED
SO THAT IT IS POSITIVE INTO THE PAGE AND ACTING AS THE
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NEUTRAL AXIS OF THE SECTION. THE POSITIVE Y-AXIS IS DIRECTED
DOWNWARD, WHILE THE POSITIVE Z-AXIS IS TO THE LEFT AS ONE
FACES THE SECTION. (IT IS A RIGHT HANDED SYSTEM.)

PLEASE ENTER THE SECTION PROPERTIES IY,IZ,IYZ ,MM"4):
? 7.41E+6,7.41E+6,-4.201E+6

PLEASE ENTER THE MAGNITUDE OF THE BENDING MOMENTS MY, MZ
FOLLOWING THE SIGN CONVENTION STATED (KN-M):
? 0.10

ENTER THE Y AND Z COORDINATES OF THE POINT WHERE STRESS
DETERMINATICON IS DESIRED. (FOLLOW THE SIGN CONVENTION STATED)
Y AND Z ARE DISTANCES IN MILLIMETERS FROM NEUTRAL AXIS:

? -39.9,-39.9

THE BENDING STRESS AT ( -39.9, -39.9) IS -124.3 MPA.

THE ANGLE OF INCLINATION OF THE NEUTRAL AXIS IS -29.55 DEG.

Curved Beams

12.11. Consider the bending of an initially curved elastic beam for which the plane of curvature is also
a plane of symmetry of every cross section. The bending loads act in this plane of symmetry.
Derive an expression for the relationship between the bending moment and the bending stress
at any point in the cross section. Assume Hooke's law holds.

The beam is illustrated in Fig. 12-25. where R denotes the distance from the center of curvature C to
the axis through the centroid of the cross section. The bending moment M is taken to be positive in the
direction indicated. i.e.. when it tends to increase the curvature (decrease the radius of curvature).

Let us examine the behavior of a part of the beam corresponding to a central angle dé before
dcformation. After deformation. this angle changes to d6 + A d#, as shown in Fig. 12-26. Just as in the casc
of the initially straight beam studied in Problem 8.1, we will assume that plane cross sections originally
perpendicular to the gcometric axis of the beam remain plane after bending. Thus, the normal section CD
prior to loading moves to C* D’ after loading. For convenience we shall assume that AB remains fixed in
space but this in no way influences the results we will obtain. It will still be assumed that there exists one
axis, the ncutral axis, for which the longitudinal fibers do not change length, and thus the section CD may
be considered to rotate about this neutral axis as indicated in Fig, 12-26. However, there is no reason to
believe that the neutral axis coincides with the centroid of the cross section as it did for the initially straight
beam in Problem 8.1. In the present problem involving the curved beam, Fig. 12.26 indicates that the total
elongation of a longitudinal fiber varies as the distance y of the fiber from the neutral axis. The coordinate
vy is measured positive away from the center of curvature. However, the lengths of these fibers prior to
loading arc obviously different; hence the unit clongations. i.e., normal strains, are not proportional to the
distances from the neutral axis. This point constitutes the fundamental difference between behavior of a
curved beam and behavior of the initially straight beam discussed in Problem 8.1. Since Hooke’s law is
assumed 1o hold for this curved beam, it follows that stresses on these fibers are not proportional to the
distances from thc neutral axis.

Let us consider the elongation of the fiber at a distance y from the neutral axis. From Fig. 12-26
this is v(A d#). Dividing this elongation by the original length of the fiber, (r + y) d#. yields the normal
strain as

_ ylAde)

T r+y)de @)

where r denotes the radius of curvature of the neutral axis. Since Hooke™s law holds, the normal stress is

_ Ey(Ade)

77 (r+y)de (b
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de +Aade

Axis
é

Ads

Fig. 12-25 Fig. 12-26

The neutral axis may now be located by requiring the resultant normal force over the cross section to
vanish. Thus

_ [ Ex(Ad)da _ E(nda) yda
J;"da_ (r+y)do J’(r+y) ()

where the integration is over the entire cross-section area A. If u = r + y (i.e., the distance of any fiber from
the center of curvature C) then (c¢) becomes

j(“;u')d—%o or  r=—=2 (d)

f dalu
A

where the integral in the denominator represents a mathematical property of the cross-sectional area and
is analogous to the moment of inertia that arises in the case of bending of an initially straight beam.
The sum of the moments of the normal forces on the fibers must equal the bending moment:

Ey’(Ad®)da E(Ad6) [ y'da
M= | oyde= =
(r+y)de de LTty

Simplifying,

y'da = yda—rf yda
A A

Al’+y

The first integral represents the first or static moment of the cross-sectional area about the neutral axis,
and the second according to (c¢) vanishes. Thus

E(a de)

M =———[Ay] ()

where y denotes the distance from the neutral axis to the centroidal axis. Combining (b) and (¢). we find
the normal stress on any fiber to be
My

= Aty N
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From (f) it is evident that the stress distribution across the depth of the curved beam is hyperbolic. The
maximum stress always occurs at the outer fibers on the concave side of the beam. Further, the neutral
axis always lies betwcen the centroidal axis and the center of curvature.

The U-shaped bar of rectangular cross section is loaded by collinear, oppositely directed forces
of 9680 N, as shown in Fig. 12-27. The cross-sectional dimensions are 40 mm X 60 mm. The
action line of the forces lies 120 mm from the centroid of the cross section. Determine the
normal stresses at points A and B.

| 120 mm _
c 007 m Centroidal axis
Neutral axis
. 00655m |

A B ];=0.04m

= r=004m
/ U | .
. du
| h=006m
70 mm_| ¢ R -010m

Fig. 1227 Fig. 12-28

It is first necessary to use Eq. (d) of Problem 12.11 to locate the neutral axis. A horizontal cross section
of the system coinciding with points A and B is shown in Fig. 12-28, where the variable wu is introduced to
carry out the integration in Eq. (d). We have

bh = h _ 0.6m
= ==
f b(du}]u (In u)"r In(0.1 m/0.04 m)

as the distance from center of curvature to the neutral axis. The variable y is thus 0.07 m —0.0655m =
0.0045 m

The bending stresses are given by Eq. (f) of Problem 12.11, where M = —(9680N){(0.12m) =
—1162 N - m since the loading tends to decrease the curvature, and thus we must call it negative moment.
At point A in Fig. 12-28, we have y = —0.0255 m and the bending stress at A is

(—1162 N-m) (- 0.0255 m)

= 0.0655m

rF =

= 68.6 MPa

74~ (0.06 m) (0.04 m) (0.0045 m) [0.0655 m — 0.0255 m]
At point B, we have y = 0.0345 m and the bending stress at B is
—1162N- .
o (—116 m) (0.0345 m) = —371MPa

~ (0.06 m) (0.04 m) (0:0045 m) [0.0655 m + 0.0345 m]

In addition to these bending stresses, the tensile action of the applied loads on the cross section A-B
scts up uniform tensile stresses given by
P 9680 N

7 AT (00am) oo m) | H03MPa

The resultant normal stress at point A is thus
oy = 68.6 MPa + 4.03 MPa = 72.63 MPa
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and at B it is

ag = —37.1 MPa + 4.03 MPa = —33.07 MPa

12.13. Develop a computer program in FORTRAN to determine extreme fiber bending stresses in the
curved beam loaded in pure bending as shown in Fig. 12-25.

The general theory given in Problem 12.11 indicates that it is first necessary to determine the location

of the neutral axis, which is a distance r from the center of curvature in Fig. 12-26. From Eq. (d) of Problem
12.11, r is seen to be a function of the shape of the cross section. From this general cxpression (d) we
choose to write a computer program for the three common types of cross section: (a) rectangular, (b)
circular, and (c) trapezoidal. The following program carries out the integration of Eq. (d) over each of
these cross sections, then develops outer fiber stress according to Eq. (f) for a pure bending moment
loading M as shown in Fig. 12-25, where it must be carefully noted that the moment is negative if it acts
so as to reduce the curvature of the beam. The program is

Q0010 kdhhhddkhhhkrhkhAhhhrRRRAAR AR A Ah A kA kAR AR AN Ak kR Ak kAR A AR A A&

00020

PROGRAM CRVBEAM

00030**dhhddhkhhhhhhhhhhhhhhhkhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhh kb hhhhhhh hhhkak

00040*
00050*
00060*
00070*
00080*
00090*
coloo*
00l10*
00120%
00130*
00140*
00150*
00160*
00170%*
00180*
00190*
00200%*
00210*
00220*
00230*
00240*
00250*
00260*
00270%
00280*
00290%*
00300*
00310*
00320*
00330*
00340*
00350*
00360*
00370*
00380*
00350*
00400*
00410*
00420*
00430*
00440*

AUTHCR: KATHLEEN DERWIN
DATE : FEBRUARY 5, 158%

BRIEF DESCRIPTION:

THE FOLLOWING PROGRAM CONSIDERS THE BENDING OF AN INITIALLY
CURVED ELASTIC BEAM FOR WHICH THE PLANE OF CURVATURE IS ALSO A
PLANE OF SYMMETRY AT EVERY CROSS SECTION. THE BENDING LOAD ACTS IN
THIS PLANE OF SYMMETRY. THE MAXIMUM BENDING STRESS OCCURS AT THE
EXTREME FIBERS OF THE SECTION, AND CAN BE DETERMINED FOR A RECTANGULA
CIRCULAR, OR TRAPEZOIDAL CROSS SECTION. NOTE, THE RELATIONSHIP BETWEE
THE BENDING MOMENT AND BENDING STRESS INVOLVES TAKING THE NATURAL
LOGARITHM OF THE RATIQO BETWEEN THE DISTANCE FROM THE CENTER OF CURV-
ATURE TO THE OUTER AND INNER EXTREME FIBERS. FOR EXTREMELY THIN
CROSS SECTIONS, THIS RATIO MAY BE QUITE CLOSE TO UNITY, IN WHICH
CASE THE CALCULATION REQUIRES PRECISION BEYOND TEE CAPABILITIES OF
MOST COMPUTERS. TO AVOID THIS PROBLEM, A SERIES EXPANSION HAS BEEN
EMPLOYED TO APPROXIMATE THE LOGARITHMIC FUNCTION. FOR THE CASE OF
THE TRAPEZOIDAL CROSS SECTION, THE LOGARITHMIC FUNCTION IS USED,
ASSUMING THAT IF THE BEAM WERE SUFFICIENTLY THIN TO CAUSE PROBLEMS
IN THE CALCULATIONS, THE USER COULD APPROXIMATE THE CROSS SECTION
AS RECTANGULAR WITH CONSIDERABLE ACCURACY.

INPUT:

THE USER IS FIRST ASKED IF USCS OR SI UNITS ARE DESIRED, AND THEN
FOR THE SHAPE OF THE BEAM CROSS SECTION. THEN, DEPENDING ON THE SHAPE
OF THE SECTION, THE PHYSICAL DIMENSICNS AND THE DISTANCE FROM THE
CENTER OF CURVATURE TO THE INNER FIBERS OF THE SECTION ARE INPUTTED.
FINALLY, AFTER THE PROGRAM FINDS THE CENTRAL AXIS LOCATION, THE USER
MUST DETERMINE AND ENTER THE BENDING MOMENT BASED ON THE LOADING.

QUTPUT:
THE PROGRAM INITIALLY WILL DETERMINE THE LOCATION OF THE CENTRAL

AXIS FOR THE PARTICULAR CROSS -SECTION. (FROM THIS INFORMATION, THE
USER THEN MUST DETERMINE THE BENDING MOMENT BASED ON THE LOADING.)
ULTIMATELY, THE BENDING STRESS AT THE EXTREME FIBERS OF THE CROSS
SECTION IS GIVEN.

VARIABLES:
ANS --- USER INPUT FOR CHOICE OF UNITS
SHAPE === USER INPUT FOR CHOICE OF X-SECTIONAL SHAPE
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00450*
00460*
00470%*
00480*
00490%*
00500*
00510*
00520%*
00530%*
00540*
00550%*
00560*
00570*
00580*
00590%
00600%*
00610*
00620%*
00630*
00640*
00650*
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00670 **hhakkkk MAIN PROGRAM ARAARARRRAKR
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00690*
00700*
00710*
00720
00730
00740
00750
00760*
00770*
00780*
00730
00800
00810
00820
00830
00840
00850
00860*
00870
oogeso
00890
00900
00910
00920
00930
00540
00950*
00960
60970
00980
00950
01000
01010
01020
01030%*
01040*
01050*
01060
01070
0lo080
01090

10
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VARIABLE DECLARATION

REAL B,H,D,Bl,B2,RI,RO,A,RR,YBAR,R,K,YI,YO,M,SIGMAI,SIGMAO
REAL Al,A2,YJ,YK,SUMAY,SUMA,HOLD

INTEGER ANS,SHAPE

CHARACTER UNIT#*7

USER INPUT

PRINT#*, 'PLEASE INPUT YOUR CHOICE OF UNITS:'
PRINT*,'l1 - USCS'

PRINT*,'2 - SI'

PRINT*,' °

PRINT*, 'ENTER 1,2 :'

READ* , ANS

PRINT*," *

PRINT*,' '

PRINT#*, 'PLEASE INPUT THE SHAPE OF THE BEAM CROSS SECTION:'
PRINT*,'1l - RECTANGULAR'

PRINT*,'2 - CIRCULAR'

PRINT*.'3 — TRAPEZOIDAL'

PRINT*,' '

PRINT*, 'ENTER 1,2,

READ* , SHAPE

IF(ANS.EQ.1) THEN
PRINT*, 'PLEASE INPUT THE FOLLOWING DIMENSIONS IN INCHES...'
UNIT="'INCHES.'

ELSE
PRINT*, 'PLEASE INPUT THE FOLLOWING DIMENSIONS IN METERS...'
UNIT ='METERS.'

ENDIF

PROMPTS FOR THE DIMENSIONS OF THE APPROPRIATE SECTION

PRINT*,* °

IF (SHAPE.EQ.l) THEN
PRINT*, ' PLEASE INPUT THE DIMENSIONS OF THE BASE AND HEIGHT, '
PRINT*, 'AND THE DISTANCE FROM THE CENTER OF CURVATURE TO THE

B.H —=—= DIMENSIONS OF BASE, HEIGHT FOR RECTANGULAR SECTION
D -—= DIAMETER OF CIRCULAR SECTION
Bl,B2,H -== DIMENSIONS OF INNER BASE, OUTER BASE, AND HEIGHT
FOR TRAPEZOIDAL SECTION
RI,RO === DISTANCE FRCOM THE CENTER OF CURVATURE TO THE INNER
AND OUTER FIBERS OF THE SECTION RESPECTIVELY
A --= AREA OF THE SECTION
RR -~= DISTANCE FRCM THE CENTER OF CURVATURE TO THE CENTRA
AXIS OF THE SECTION
YBAR -~— DISTANCE FROM THE CENTRAL AXIS TO THE NEUTRAL AXIS
R ~~- THE DISTANCE FROM THE CENTER OF CURVATURE TQ THE
NEUTRAL AXIS (THE DIFFERENCE BETWEEN RR AND YBAR)
K === A CONSTANT USED FOR THE CASE OF THE CIRCULAR SECTIO
YI1,Y0 —-== THE DISTANCES FROM THE NEUTRAL AXIS TO THE INNER AN
QUTER FIBERS RESPECTIVELY
M ——- THE BENDING MOMENT ACTING ON THE SECTION
SIGMAI,SIGMAQO--- THE BENDING STRESSES AT THE INNER AND OUTER FIBERS
Al,A2,¥YJ,YK, --- VARIABLES USED TO FIND THE CENTROID OF TRAPEZOIDAL
SUMAY, SUHA HOLD SECTION
UNIT === CHARACTER VARIABLE DENOTING THE APPROPRIATE UNITS
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01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280*
01250*
01300*
01310%*
01320*
01330*
01340*
01350%*
01360*
01370
01380*
01390*
01400*
01410
01420
01430
01440
01450
01460
01470
01480
01490*
01500*
01510%*
01520
01530
01540
01550
01560
01570
01580
01590
01600*
0l1610*
01620%*
01630
01640
01650
01660*
01670*
01680%*
01690 20
01700
01710
01720
01730
01740
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PRINT*, 'INNER FIBERS OF THE X-SECTION: (B,H,RI)'
READ*,B,H,RI
PRINT*,' °

ELSEIF (SHAPE.EQ.2) THEN
PRINT*, 'PLEASE INPUT THE DIAMETER AND DISTANCE FROM THE CENTER O

PRINT*, 'CURVATURE TO THE INNER FIBERS OF THE X-SECTION: (D,RI)°
READ*,D,RI
PRINT*,' '
ELSEIF (SHAPE.EQ.3) THEN
PRINT*, 'PLEASE INPUT THE DIMENSIONS OF THE INSIDE, THEN OUTSIDE'
PRINT*, 'BASES, THE HEIGHT, AND THE DISTANCE FROM THE CENTER OF'
PRINT*, 'CURVATURE TO THE INNER FIBERS OF THE X-SECTION:(Bl,B2,H,RI)’
READ*,Bl,B2,H,RI
PRINT*,* °
ELSE
PRINT*, 'YOU MUST ENTER A 1,2 OR 3!°
GO TO 10
ENDIF

END USER INPUT

CALCULATIONS --- IN EACH CASE, THE DISTANCE FROM THE CENTER OF
CURVATURE TO THE CENTRAL AND NEUTRAL AXIS IS
FOUND (RR AND R) ,AND THEN THE DISTANCE FROM
THE NEUTRAL AXIS TO THE EXTREME FIBERS (YI,YO) IS
DETERMINED.

IF (SHAPE.EQ.l) THEN
IF SHAPE EQUALS ONE, THEN THE SECTION IS RECTANGULAR

A = B*H

RO = RI + H

RR = (H)/2 + RI

YBAR = H**2/(12*RR)

R = RR-YBAR

YI = YBAR -(H/2)

YO = YBAR +(H/2)
ELSEIF (SHAPE.EQ.2) THEN

IF SHAPE EQUALS TWC, THEN THE SECTION IS CIRCULAR

A = (3.14159/4)*Dx*2
RR = RI + (D/2.)
K = ((D/(2*RR))**2)/4 + ((D/(2*RR))**4)/8
YBAR = (K*RR)/(1-K)
R = RR ~ YBAR
YI = YBAR -(D/2)
YO = YBAR +(D/2)
ELSEIF (SHAPE.EQ.3) THEN

IF SHAPE EQUALS THREE, THEN THE SECTION IS TRAPEZOIDAL

A = ((Bl + B2)/2)*H
RO = RI + H
HOLD = 0.0

FIRST, THE CENTROID OF THE TRAPEZOIDAL SECTION IS FOUND

IF (B1.GT.B2) THEN

Al = (H/4)*(Bl-B2)
A2 = B2*H
YJ = H/3.
YK = H/2.

SUMA = (2*Al) + A2



01750
01760
01770
01780
01790
01800
01810
01820
01830
01840
01850
01860
01870*
01880
01890
01500
01910
01920
01930
01940*
01950%
01960*
01970%*
01980*
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
02090
02100
02110*
02120*
02130*
02140
02150
02160*
02170
02180
02190
02200
02210
02220
02230
02240%*
02250+
02260*
02270
02280
02250
02300%*
02310 15
02320*
02330
02340
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SUMAY = (Al*YJ*2) + (A2*YK)

ELSE
HOLD = B2
B2 = Bl
Bl = HOLD
GO TO 20
ENDIF

IF (HOLD.EQ.0.) THEN
RR = RI + (SUMAY/SUMA)

ELSE
RR = RI + (H - (SUMAY/SUMA))
ENDIF
R = ((H**2)*(Bl + B2))/2.
R = R/(((B1*RO) - (B2#*RI))*(LOG(RO/RI)) - H*(Bl - B2))

YBAR = RR-R

YI = YBAR - (SUMAY/SUMA)

YO = YBAR + (H-(SUMAY/SUMA))
ENDIF

ONCE THE CENTRAL AXIS HAS BEEN DETERMINED, THE USER
IS PROMPTED FOR THE BENDING MOMENT WHICH THEY MUST
CALCULATE BASED ON THIS DIMENSION AND THE GIVEN LOAD

PRINT*, 'THE DISTANCE FROM THE CENTER OF CURVATURE TO THE CENTRAL'
PRINT 15, 'AXIS OF THE CURVED SECTION IS:',RR,UNIT

PRINT*,' '

PRINT*, 'GIVEN THIS DIMENSION, THE USER MUST NOW CALCULATE THE'
PRINT*, 'MOMENT ACTING ON THE CROSS SECTION...THE MOMENT IS THE'
PRINT*, ' PRODUCT OF THE APPLIED LOAD AND THE DISTANCE TO THE CENTRAL'
PRINT*, 'AXIS FROM THE POINT OF APPLICATION. NOTE, THE MOMENT IS '
PRINT*, 'NEGATIVE IF IT ACTS TO REDUCE THE CURVATURE!'

PRINT*,' *

PRINT*, 'PLEASE ENTER THE MOMENT (IN N-M OR LB-IN):'

READ* , M

PRINT*,' °*

CALCULATING THE BENDING STRESS AT THE INNER AND OQUTER FIBERS

SIGMAI = (M*YI)/(A*YBAR*(R+YI))
SIGMAD = (M*YO)/(A*YBAR* (R+YO))
IF (ANS.EQ.1) THEN

UNIT = ' PSI.'
ELSE

SIGMAI = SIGMAI/1E6

SIGMAO = SIGMAO/1E6

UNIT = ' MPA.'
ENDIF

PRINTING OUTPUT

PRINT*,' '
PRINT iS,'THE BENDING STRESS AT THE INNER FIBERS IS :',SIGMAI,UNIT
PRINT 15, 'THE BENDING STRESS AT THE OUTER FIBERS IS :',SIGMAO,UNIT

FORMAT(1X.A,F11.3,1X,A)

STOP
END
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12.14. Return to Problem 12.12 and use the FORTRAN program of Problem 12.13 to determine the
bending stress at point A.

Using the moment loading and geometry of Problem 12.12 we have 68.58, which is in good agreecment
with the value found in Problem 12.12. Note that the uniform normal stress of 4.03 MPa must be added
to this value to obtain the resultant normal stress at A. The following computer program yields only the
bending effect.

run
PLEASE INPUT YOUR CHOICE OF UNITS:

1 - UsCs
2 - sI

ENTER 1,2 :
? 2

PLEASE INPUT THE SHAPE OF THE BEAM CROSS SECTION:

1 - RECTANGULAR
2 - CIRCULAR
3 - TRAPEZOIDAL

ENTER 1,2,3:
71
PLEASE INPUT THE FOLLOWING DIMENSIONS IN METERS...

PLEASE INPUT THE DIMENSIONS OF THE BASE AND HEIGHT,
AND THE DISTANCE FROM THE CENTER OF CURVATURE TO THE

INNER FIBERS OF THE X-SECTION: (B,H,RI)
? 0.04,0.06,0.04

THE DISTANCE FROM THE CENTER OF CURVATURE TO THE CENTRAL
AXIS OF THE CURVED SECTION IS: .070 METERS.

GIVEN THIS DIMENSION, THE USER MUST NOW CALCULATE THE
MOMENT ACTING ON THE CROSS SECTION...THE MOMENT IS THE
PRODUCT OF THE APPLIED LOAD AND THE DISTANCE TO THE CENTRAL
AXIS FROM THE POINT OF APPLICATION. NOTE, THE MOMENT IS
NEGATIVE IF IT ACTS TO REDUCE THE CURVATURE!

PLERSE ENTER THE MOMENT {IN N-M OR LB-IN):
? -1162

THE BENDING STRESS AT THE INNER FIBERS IS :
68.58

12.15. Consider a crane hook subject to a vertical load of 5000 Ib. The cross section is trapezoidal. as
shown in Fig, 12-29. Determine the tensile stress at point A using the computer program of
Problem 12.13.

The theory of Problem 12.11 is applicable here but the evaluation of the integral in Eq. (d) of that
problem is tedious; hence we employ the FORTRAN program of Problem 12.13 using as input the

geomelry ind?catcd in Fig. 12-29. The printout first indicates that the distance from the center of curvature
to the centroidal axis is 2.287 in and from that we can calculate the acting moment as

= —(1.18in + 2.287in) (5000 1b) = —17.3351Ib-in

Now, using this moment as input in the program, we have the stresses at inner and outer fibers as indicated
in the final two lines of the printout.
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A B
5000 ]b'
—1.18" T
il W o)
187" 0.40""
T
Fig. 12-29
run
PLEASE INPUT YOUR CHOICE OF UNITS:
1 - USCS
2 - SI
ENTER 1,2 :
7?1

PLEASE INPUT THE SHAPE OF THE BEAM CROSS SECTION:

1 - RECTANGULAR
2 - CIRCULAR
3 - TRAPEZOIDAL

ENTER 1,2,3:
? 3

PLEASE INPUT THE FOLLOWING DIMENSIONS IN INCHES...

PLEASE INPUT THE DIMENSIONS OF THE INSIDE, THEN OUTSIDE
BASES, THE HEIGHT, AND THE DISTANCE FROM THE CENTER OF
CURVATURE TO THE INNER FIBERS OF THE X-SECTION: (Bl,B2,H,RI)

? 1.57,0.40,2.76,1.18

THE DISTANCE FROM THE CENTER OF CURVATURE TO THE CENTRAL

AXIS OF THE CURVED SECTION IS:

2.287 INCHES.

GIVEN THIS DIMENSION, THE USER MUST NOW CALCULATE THE
MOMENT ACTING ON THE CROSS SECTION...THE MOMENT IS THE
PRODUCT OF THE APPLIED LOAD AND THE DISTANCE TO THE CENTRAL
AXIS FROM THE POINT OF APPLICATION. NOTE, THE MOMENT IS

NEGATIVE IF IT ACTS TC REDUCE THE

CURVATURE!

[CHAP. 12



CHAP. 12} SPECIAL TOPICS IN ELASTIC BEAM THEORY 335

PLEASE ENTER THE MOMENT (IN N-M CR LB-IN}:
? -17335

THE BENDING STRESS AT THE INNER FIBERS IS : 19878.782 PSI.
THE BENDING STRESS AT THE QOUTER FIBERS IS : -12928.359 PSI.

SRU 1.134 UNTS.

In addition to these bending stresses, there is a uniformly distributed set of tensile stresses over the
cross section AB due to the direct, tensile effect of the 5000-1b load. These stresses are given by

P 5000 1b
- = /m?
A (157 +040)2im] (2 76m) o0 fb/m

OJF =

and must be added to the bending stresses found by the computer program. Thus. thc truc stress at
point A is

oy = 19.879 Ib/in” + 1839 Ib/in® = 21,718 Ib/in’ or 21,700 Ibfin’

Supplementary Problems

12.16. Locate the shear center of a thin-walled circular section with a longitudinal slit (Fig. 12-30).
Ans. e=2R

H\

Fig. 12-30 Fig. 12-31

12.17. Determine the shear center of the thin-walled “hat™ section shown in Fig. 12-31. Ans. ¢=05lin

12.18. Determune the shear center of the thin-walled scction indicated in Fig. 12-32. Ans. ¢ =6.85mm

20 mm |
15 mm

——

25 mm

25 mm

!
l

15 mm

Fig. 12-32 Fig. 12-33



336

12.19.

12.20.

12.21.

12.22.

12.23.

12.24.
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Determine the shear center of the thin-walled scction shown in Fig. 12-33.
Ans.  0.747R measured from the centroid

Find the shear center of the thin-walled section shown in Fig. 12-34.
Ans.  0.703a4 measurcd from the centroid

\
. L 1 - )
/r._- 3 Plane of loads
F 4
) "
v \/ |

X v\

Fig. 12-34 Fig. 12-35

A structural steel 1-beam 250 mm decp is subjccted 10 a bending moment lying in a plane oriented at 2°
to the vertical axis of symmetry of the beam (sce Fig. 12-35). Detcrmine the percentage increase in elastic
tcnsile stress over the stress that would exist if the moment acted in the vertical plane of symmetry. For
this section I, = 57 X 10°mm®* and /7, = 3.3 10°mm®.  Ans. 30 percent

The structural aluminum z-section has the dimensions shown in Fig. 12-36 with cross-sectional properties
I, =41x10°mm?, 1, = 10.7x 10°mm*, and I, = 5.0x10°mm®. The loading has components M, =
—2.235kN-m, M, = 4.47kN-m. Determine the bending stress at point A. Ans. -35.5MPa

In Problem 12.7 find the bending stress at point B. neglecting the effect of the rounded corner therc. Use
the FORTRAN program of Problem 12.8 Ans. 1533 MPa

A semicircular bar is of square cross scction and is clamped at one end and subject 10 a load P at the other
end. as indicated in Fig. 12-37. The cross section is 4 in on a side and the radius of the bar is 20in. If the
maximum tensile stress at the support is not to excecd 28,000 Ib/in®, determine the maximum allowable
valuc of the load P. Ans. 64601b

SSmrn—-I |-‘—'-| l
P
A e
L A I I
3
- i - N
z ] ALt L
1

Fig. 12-36 Fig. 12-37



Chapter 13

Plastic Deformations of Beams

INTRODUCTION

In certain situations in structural design it is acceptable to permit a modest amount of permanent
deformation of the structural element. If this is the case, then it is possible to permit loads greater
than indicated by elastic theory, which permits no stress greater than the yield point of the material
to develop at any point. This results in more efficient use of the material and is called plastic design.
Fundamentally, this more efficient design is possible because of the ability of certain materials, such
as structural steel, to undergo relatively large plastic deformations after the yield point has been
reached. This is illustrated by the horizontal region of the stress-strain diagram shown in Fig. 1-5,
page 3.

PLASTIC HINGE

As the transverse loads on a beam increase, yielding begins at the outer fibers at some critical
station along the length of the beam and progresses rather rapidly toward the central fibers at this
station. When finally all the fibers on one side of the neutral axis are in a state of tension corresponding
to the yield point of the material and all those on the other side are in a state of compression, again
at the yield point, then a flowing or hinging action occurs at that station and the bending moment
transmitted across the plastic hinge remains constant. In this book a plastic hinge is denoted by a small,

open circle.

FULLY PLASTIC MOMENT

The bending moment developed at a plastic hinge is termed a fully plastic moment. This concept
was discussed in Chap. 8.

LOCATION OF PLASTIC HINGES

In general, plastic hinges form at points of maximum moment. For beams subject to concentrated
forces and moments, the peak bending moment must always occur under one of these loadings or at
some reaction and thus the plastic hinges must develop first at these points. In the case of distributed
loads, the location of the plastic hinges is considerably more difficult to determine and often several
possible points must be investigated. This is discussed in Problems 13.8 and 13.9.

COLLAPSE MECHANISM

When enough plastic hinges have formed in a structure to develop its full plastic load-carrying
capacity, then portions of the structure (such as a beam or frame) between hinges may displace without
any further increase of load; i.e., the portions between hinges behave as a mechanism. Essentially, the

337
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hinges allow a kinematic freedom of motion. Under these conditions the shape of the deformed body
may be characterized as a straight line between any pair of hinges. Typical representations of collapse
mechanisms are shown in Problems 13.2, 13.4, and 13.8 through 13.10.

LIMIT LOAD

The external load sufficient to cause the structure to behave as a mechanism is termed the limit
load or collapse load. Any design based upon the concept of development of a mechanism is termed
limit design. All problems in this chapter illustrate computation of the limit load.

Solved Problems

13.1. The simply supported beam ABC in Fig. 13-1(a) is loaded by a central vertical force of 1200 1b
and made of steel having a yield point of 38,000 Ib/in®. The beam is of rectangular cross section,
as shown in Fig. 13-1(b), with width b, depth 1.6b, and length L = 40in. Determine b for fully
plastic action. Also determine the width b’ when only the extreme fibers have reached yield.

e,
1200 1b 7 ? ) c
// 0.8b N
B N.A
4 ,C 4 N-A-t 0.86
<& ‘ 7 | r
ch > Y [ = -
} 1085
20 20i
l_ in - in /
-—
] L=40in | !’T“ %o
600 Ib 600 Ib

{a) {b) {€)

Fig. 13-1

The reactions at A and C are each 6001b by symmetry. The peak bending moment at the midpoint
B is given by
(6001b) (20 in) = 12,000 1b-in
At that time all fibers above the centrally located neutral axis (N.A.) are acting in compression C and those

below that axis are in tension 7, as shown in Fig. 13-1(c). The location of the action line of each of these
forces is shown in Fig. 13-1(c). The moment resulting from the effect of T and C1s

M, = (o,,) (0.8b) (b) [0.8b]

= 0.64b’g,,
= 0.64b° (38,000)
Thus, 0.64b° (38,000) = 12,000
b=0.79in
1.6b = 1.26in

so that the beam cross-sectional area is 0.995 in®.
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From Problem 8.25 for a rectangular cross section, the maximum possible fully elastic moment (i.e.,
when only the extreme outer fibers have reached the yield point) is given by

b'(h')?
M, = 6 Oy
] Fyd
Hence, 12,000 = MGS,DOO)
Solving,
b’ =0.905in
1.6b" = 1.45in

Here, the cross-sectional area is 1.312 in?. The fully elastic moment corresponds 1o an area of 1.312 in”.
Thus, allowing fully plastic action leads to a 24.2 percent reduction of beam weight for any given length.
Suitable safety factors, usually specified by building codes, must be introduced into each of the above
computations.

13.2. Determine the limit load of the simply supported beam shown in Fig. 13-2.

P

_ £ |
Iﬁ'_ 4 ‘ 4 I
A \C
o B O
: K

4 4

Fig. 13-2

The end reactions at A and C are readily found from statics to be P/4 and 3F/4, respectively,
irrespective of whether the beam is in the elastic or plastic state. The peak bending moment occurs under
the point of application of P and is thus (P/4)(3L/4) = 3PL/16. When this bending moment reaches a value
corresponding to fully plastic action of the section of the beam at B, which we term M, a plastic hinge
forms at B and the beam continues to deflect without further increase of P. This collapse mechanism has
the form shown in Fig. 13-3.

,4 L

Fig. 13-3

The value of the load P corresponding to this condition is termed the limir load P,. The reaction at
A is then (P, /4) and thus the moment at B is

P\ (3L
L= =M
(%) (%)=
Solving, P, = 16M,/3L. Dividing P, by some suitable safety factor gives an allowable working load. This
procedure is called limit design.
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13.3. The beam of Problem 13.2 is of rectangular cross section 1.75in X 3in. It is titanium, type
Ti-8Mn, with a yield point stress of 115,000 Ib/in’. If the length of the beam is 5 ft, determine
the central force P necessary to develop the plastic hinge at B.

From Problem 8.25 the fully plastic moment for a rectangular cross section is given by

M, = ftwaH
Substituting,
M, = (115,000 Ihﬁnﬁw = 453,0001b-in
Using the result of Problem 13.2,
p, = 16M,, _ 16(453,0001b in) — 40.3001b

3L 3(60in)

This is the limit load of the beam.
From Problem 8.25. the peak elastic moment that this beam could withstand is given by

bh?
M, = T = 302,000 Ib-in
from which the maximum allowable load P, based on elastic design is
16M,
P = m

Thus use of limit design permits a 50 percent greatcr load than elastic analysis. However, the designer
would want to incorporate sotne safety factor into the above limit load.

= 26,8501b

13.4. Determine the limit load of a simply supported beam subject to a unformly distributed load. See
Fig. 13-4.

According to the methods developed in Chap. 6, the peak bending moment occurs at the midpoint
of the length of the beam and is given by w£.%/8. For fully plastic action at the midpoint, this moment is
denoted by M,,. Thus, when the plastic hinge forms at the center, the uniform load has the value w, (limit
load) so that

Fig. 13-4 Fig. 13-5

13.5. The beam shown in Fig. 13-5is clamped at the left end, simply supported at the right, and subject
to the concentrated load indicated. Determine the magnitude of the limit load P, corresponding
to plastic collapse.
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This statically indeterminate beam cannot collapse plastically through formation of a single plastic
hinge at B because the region AB is constrained to very small lateral deflections until another hinge forms
somewhere along its length. It has been demonstrated in Chap. 6 that significant bending moments in a
beam subject to concentrated forces always occur either at the points of application of these forces or
where the reactions are applied. In the present case, this would imply the formation of another plastic
hinge at A. With hinges al A and B, we have a so-called kinematically admissible mechanism of collapse.
The order in which the plastic hinges are formed is of no consequence. The collapse mechanism appears
in Fig. 13-6.

HQ

L
4

2

Fig. 13-6 Fig. 13-7

The free-body diagram of the right portion of the beam, extending from € to a point just to the right
of the applied load P when that force is the limit load P,. is shown in Fig. 13-7, in which M,, denotes the
fully plastic moment at B. From statics,

RcL M
M-"E5=0  or R )
Py
A Y [
B
MP
L L
1 4 4 0,
R, Re = T’
Fig. 13-8
Next, from the free-body diagram of the entire beam (Fig. 13-8). with plastic hinges at A and B,
we have
4M
EF.,,: R,q‘l'_LE—PL =0
Hence R, =P,_—%'°— (2)
L
EMC=RAL—M,—PL(Z)=0 3)

Substituting R, from (2) in (3) yields

w8
~|X

Py

as thc limit load.
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13.6. The beam described in Problem 13.5 is of hollow circular cross section, as shown in Fig. 13-9,

and is of steel having a yield point of 200 MPa. Find the limit load that may be carried if
r=20mmand L =2m.

Fig. 13-9

For simplicity, let us first find the fully plastic moment M,, for a solid circular cross section of radius
r. Above the neutral axis (N.A.) there is a uniform normal stress distribution equal to the yield point stress,
and the resultant of these stresses acts at the centroid, which is at a distance (4//37) above the N.A. A like
situation exists below the N.A ., where the normal stresses are oppositely directed from those above that

axis. Thus,
B ar?\ f4r\] _4r
M=2| 0 () (52) | =5
The fully plastic moment for the hollow circular cross section is now given by

4 12)? 12 7
M, = Tro}p _(2}[“}13 ‘H‘{J‘Z ) :4"('3{;)'}] = %"pp (1)

For our parameters,
M,, = }(0.02 m)*(200 X 10° N/m?) = 1867 N -m
and from Problem 13.5 we have

_20M, 2001867 N-m)
T 3L 32m)

Py =6225N

as the limit load.

The beam described in Problem 13.5 is a wide-flange section having the dimensions indicated
in Fig. 13-10. For this section, determine the limit load P,. The material is structural steel with
a yield point of 250 MPa and the length of the beam is 2 m.

i
[ ]
!
10mm
—a] fo— 5 mm
75 mm| S — —
10 rm
L J

I 75 mm J T

Fig. 13-10
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13.8.

As mentioned in Problem 8.29, for fully plastic action, the neutral axis divides the cross-scctional area
into two parts of equal area. Here, because of the symmetry, the ncutral axis coincides with the centerline
(C.L.) and the centroidal distances from that linc arc

_ (75)(10)(37.5 — 5) + (27.5) (5) (27.5/2)

N=r = (75) (10) + (27.5)(5) = 29.6mm

The fully plastic moment is thus
A —
M, = qr,,f(?u +3,) = 250[(75) (10) + (27.5)(5)] (296 + 29.6) = 13.13kN-m

The limit load from Problem 13.5 is

_20(13.13% 10%)

=43 8kN
3 2

Py

It is of intcrest to carry out an clastic analysis of this same becam. In this casc the outer fibers are taken
to be stressed to the yicld point and. of course, the stresses vary lincarly over the depth. being zero at the
neutral axis. The second moment of arca of the cross scction is found by the methods of Chap. 7 to be

I = 5(75) (75)* — 5(70)(55)* = 1.67 X 10¢ mm*
and the ouler fiber stresses arc found from

oo Mg MA31S)

"o 167X 10°

and thus the maximum clastic moment M, that the section can support is M, = 11.13 kN - m. From Problem
11.1 the bending moment at point A is found to be 0.116PL while that at point B is 0.159PL. Using the
Jatter value we can find the maximum load that the beam can support for entirely elastic action to be

0.159P,L = 11.13kN'm or P, =35kN

The load P,, corresponding to plastic collapse, cxceeds this value by 25 percent.

Determine the limit load of a clamped-end beam carrying a uniformly distributed load
(Fig. 13-11).
The collapse mechanism appcars in Fig. 13-12. wherc plastic hinges have formed at points A, B, and

C. By virtue of symmetry the shear is zero at the midpoint C; hence we may draw the free-body diagram
of the left half of thc beam as in Fig. 13-13. From statics,

Ly (L
o2, (L) (5) o

w Ib/unit length E wy Ib/unit length

$dl7

(o
(Ml
o | b

Fig, 13-11 Fig. 13-12
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LAY v =i _(f.l M,
2
R,
Fig. 13-13

The limit load is thus w, = IBM_,,.-‘L?. From considerations similar to Problem 11.6, the permissible load
based upon the outer fibers being at the yield point and all interior fibers acting in the elastic range of
action is w. = 12M./L* so that in this case the ratio of limit load w, to maximum elastic load w, is %MPIME.
Howcver. the ratio M, /M, itsclf may be significant. For a rcctangular cross section it has the value i as
indicated in Problem 8.25. For such a rcctangular bar we then have

w4 (3)

w, 3M, 3\2

indicating that in this particular casc, limit dcsign permits application of twice the load permitted by elastic
analysis. This rathcr large variation between the permissible loads is due partially to the indeterminate
nature of this beam. It should be noted that there are exceptional cases where the limit load and maximum
clastic load coincide cven for an indcterminate system.

The beam shown in Fig. 13-14 is clamped at the left end. simply supported at the right, and
subject to a uniformly distributed load. Determine the magnitude of this load corresponding to
plastic collapse of the beam.

w Jb/unit length

§ w; Ibfunit length
B
N C
§ Ml' AA M’
| La
L

| R,

Fig. 13-14 Fig. 13-15

This problem is somewhat analogous to Problem 13.5 because the beam cannot collapse plastically
through formation of a singlc plastic hinge but instead, two hinges must form. One of these is obviously
at the clamped cnd A but the location of the other is not immediately apparent. It of course occurs at the
position of relative maximum moment (excluding point A) but that point is not known. However, since
the shear is known to be zero at the point of maximum moment, we may draw the free-body diagram of
the left region of the beam of length La and rcgard a as an unknown. It thus appears as in Fig. 13-15, where
M, denotes the fully plastic moment at each of the two sections.

From statics,

2F,=Rs-wla=10 (1)
B 2.2
EMA=2MP—“L;H =0 )
Next, let us consider the free-body diagram of the entire beam, as in Fig. 13-16. From statics,
w, 12

EMB = _RAL+

+M,=0 (3
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s, Ib/unit length
wy Ib/unit length
A D
My 4
L
2—-vZIL By
B, Bg .
Fig. 13-16 Fig. 13-17

Solving (1), (2). and (3) simultaneously we arrive at the single equation
a@—4a+2=0

for determination of the point of relative maximum moment. Solving, we obtaina = 2 - V2, the other root

of the guadratic being of no physical significance.
Substituting this valuc in (2), we find

— M

as the limit load. The collapse mechanism appears in Fig. 13-17.

13.10. The clamped-end beam 1s subject to a concentrated force as shown in Fig. 13-18. Determine the
magnitude of this load corresponding to plastic collapse of the beam.

F P,

)
oz
8

e
=]
3
T
-
L

e R
TR
-
te

L

Fig. 13-18 Fig. 13-19

The only logical collapse mechanism 1s that of Fig. 13-19, where plastic hinges form at A, B, and C.
From the geometry of triangle ABC we have
at+pB=0 (1)
é b

— L =6 2
or e (2)

since the deflection & is still small compared to L. even though plastic collapse has occurred. Solving (2)
we obtain

a
8=6a|ll1——
( L) (3)
and from geometry we have

a=6(1-7)  B-7 &)
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This problem could be solved by usc of statics equations as cmployed in Problems 13.5 and 13.8.
However. let us introduce another technique which will be well suited to even more complex problems.
This involves a consideration of the work done by the load P, after plastic collapsc has occurred. If we
assume that the elastic deflection is very small compared to the plastic deflection, then the work done by
the load P, during plastic collapse is P, 8. It is to be carefully noted that the load assumes the value P,
at the start of the collapse through the deflection & and maintains this constant value throughout the
collapse process. During the collapse, the beam develops the fully plastic moment M,, at each of the hinge
points A, B, and C. The total cnergy dissipated at these hinges is provided by and is equal to the work done
by the load P,.

The work donc by the plastic hinge at A 1s given by M, o, at B it is given by M, 6 and at C by M.
Thus, equating work done by P, to the net work done by these three plastic moments, and using (4)

we have
Ba
PL5=M,,9(I—%)+M,,9+ M"(I) (5)
Substituting & from (3) wc have as the collapse load
2M, L
p, =—r—_
a(l —a)

13.11. A horizontal beam of rectangular cross section 50 mm X 120 mm is 1.5 m long and hinged at its
left end A as shown in Fig. 13-20. The right end C is supported by a vertical bar of the same
material, of cross-sectional area 3 cm’. The yield point of each material is 200 MPa. The beam
is subject to a vertical force P applied at B. Determine the limit load P;.

i ——1m L 05m —{
| l‘ T s
B C

E

120 mm

@ (b}

Fig. 13-20

It is not clear which vields first, the vertical bar or the horizontal beam AC. Let us assume that the
vertical bar is the first to yicld. The force in it is

F, = (200 % 10° N/m?) (3 cm?) (1 m/100 cm)’® = 6 X 10° N

The free-body diagram of the beam is shown in Fig. 13-21.

r r x 10°N
C
B

Al

[,

Fig. 13-21
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For equilibrium,
+1EM,=—-P(1m)+(6x10°N)(1.5m) =0
from which h
P, =9x10°N or 90kN

Next, assume that the beam develops a plastic hinge at B with the vertical bar still being entircly
elastic. The free-body diagram of the left portion of the beam between A and a point just slightly to the
left of B is shown in Fig. 13-22.

T
==
!

Fig. 13-22

For equilibrium of this portion of the beam,
+)EMy=M,—-A(Im)=0
For equilibrium of the entire beam AC about point C,
+D)EMc=P(05m)—A,(1m) =0

Solving,
P =3M,
But for a bar of rectangular cross section, the fully plastic moment (sce Problem 8.25) is given by
bh?
MP = G'WT
= (200 % 10° Nm?) 12 m}:O‘OS M) 15000N-m
Thus, P} =3(15000) = 45,000 N or  45kN

Since this load of 45 kN is reached before the load of %0 kN (causing yield of the vertical bar). it is
evident that the limit load is 45 kN, which will cause formation of a plastic hinge at B while the vertical
bar is still elastic.

13.12. Consider the rectangular frame with both bases clamped subject to the two equal loads shown
in Fig. 13-23. Determine the magnitude of the loads corresponding to plastic collapse of the
frame.

In this situation there are three possible plastic collapse mechanisms. These are shown in Fig. 13-24,
where Cases I and I correspond to individual actions of the applied loads and Case Il is a composite
mechanism formed as a combination of I and II so as to eliminate a plastic hinge at point B. We shall
determine the collapse loads of each of these three cases and then select the minimum of the threc loads
as the correct one.

Case I can be treated by the methods of Problem 13.1, so that we immediately have P, = 4M,/L.

Case II can be treated by the same methods, so for it we have P, = 4M,./L.
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IP
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£ > B .g- C
L
mm\tm@mmmmmwmm«%mw

Fig. 13-23

Fig. 13-24

For Case 111 there are plastic hinges at A, E. C. and D. with B constituting a rigid joint. Work-ecnergy
balance requires that

PiyBy+ Piaba = [M,6]4+ [M,26)]¢ + [M(26)]c + [M, 6]
or PL‘(LG) + PL].(LG} = ﬁMpe

from which P, ; = 3M_ /L.
Thus, the collapse load is P, = P53 = 3M,/L and collapse occurs as indicated by the sketch for
Case III

13.13. The continuous beam shown in Fig. 13-25(a) rests on three simple supports and is subject to the
single concentrated load indicated. Determine the magnitude of this load for plastic collapse of
the beam.
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13.14.

P
A B C D
- ") Y .|
l A | L L _.l
b | 2 2
(&)
A

(b)

Fig. 13-25

The plastic collapse of such a bcam usually occurs in only onc of the spans and. in this case, collapse
could occur by formation of a mechanism as indicated in Fig. 13-25(b), where plastic hinges form at points
B and C.

The work done by the load P, during plastic collapse is P, 6. The fully plastic moment M, develops
at each of the hinge points B and C. Work-energy balance requires that

P& = [M,b]s+ [M,(20)]
L
or P-L(—z_ﬁ)z:}MPB

from which the collapse load is P, = 6M /L.

A two-span continuous steel beam supports the concentrated forces indicated in Fig. 13-26(a).
The beam is of rectangular cross section, 2 in wide by 4 in high, with the yield point of the steel
being 38,000 1b/in’. Determine the value of P to cause plastic collapse.

Let us first assume that collapsc occurs in the span AC with the formation of the mechanism indicated
in Fig. 13-26(b). Fully plastic moments develop at B and C and the work-encrgy balance requires that

2P, (106) = [M(26)]5 + [M,.0]c or P, =

Next, consider the possibility of collapsc in the span CE with the formation of the mechanism shown
in Fig. 13-26(c). From the geometry of triangle CDE we have

b=a+f
But since « is small compared to the span CE, this becomes

5 &
Ly Ao

8 2 ¢
where 8, must of course be in consistent units (i.e., feet). Thus

5 =14

and from geometry
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2P 3P
A B C bY E
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Fig. 13-26

In this case fully plastic moments develop at C and D and work-energy balance requires that

M

r

3PL(80) = [Mp(t]u + [Mpa]{‘ or P‘r_ = T

Since this is larger than the P, found for collapse of the left span, evidently collapse occurs with the
formation of the mechanism shown for span AC.
Since the fully plastic moment for a rectangular cross section is given by

bh?
(%)

we find the collapse load to be

(2) (4}2

—=_(38,000) =1 = 3800 Ib

Fu= 20(12)

where the factor of 12 appears in the denominator to render the units consistent,

13.15. A simply supported beam of 50-mm X 75-mm rectangular cross section has a yield point stress
of 250 MPa and carries the loads indicated in Fig. 13-27(a). Use the limit design criterion to
determine the maximum load P.
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Fig. 13-27

From statics the reactions are R, = 3+ (P/4) kN and R, = 1 + (3P/4) kN.
Fully plastic action of this beam corresponds 10 a moment of

bh? (50) (75)

M_,, = qu = 250 2 = 17.6kN-m

In any problem involving several loads, the location of the first plastic hinge to form is usually not
apparent. Here. two possibilities exist. In the first [Fig. 13-27(b)]. thc maximum moment would occur
between points A and B. If this is the correct form of the moment diagram then the shcar must vanish at
some point for which x < 4. Thus, since

V=3+ IP —1x
we must find P {rom the equation
P P
O0=3+——x or x=3+—
4 4

Since x <4 in this consideration, this implies P < 4. A simple calculation indicates that P = 4 kN cannot
develop the fully plastic moment of 17.6 kN -m.

For the second possibility {Fig. 13-27(¢)]. the maximum moment occurs at point C. The presence of
a plastic hinge at C corresponds to a load P, given by

3
(1+TP)(2)=I7.6kN-m or P = 10.4kN

In this case the moment at B must be less than that at C. since the moment diagram must have a common
tangent to the two branches meeting at B. Hencee there is no need to investigate the moment at B. Thus
P = 104 kN is the peak load that may be applied according to the limit design criterion.
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Supplemetary Problems

13.16. In Problem 6.4 we considered the beam AD supported by knife-edge reactions at B and C as shown in Fig.
13-28(a). Loading was applied by end bending moments M, and M,/2 as indicated in that figure. The beam
has a T-shaped cross-section as shown in Fig. 13-28(b), which has previously been considered in Problem
8.32. If the material has a yield point of 39,000 Ib/in?, determine thc maximum value of applied load for
fully plastic action. Ans. M, = 360,7501b-in

. 4i !
Al %& ﬁ 3 x i :
e _,l, 7
4
R R 3in

(a} (b

lin

|~
Bt

|

Fig. 13-28

13.17. Consider again the beam AD and loading shown in Fig. 13-28. The cross section is now a hollow rectangular
shape as shown in Fig. 13-29. For a yield point of 39,000 Ib/in?, determine the maximum value of applied
load for fully plastic action. Ans. 546,0001b-in

lin

//

lin

M| —
5

Fig. 13-29
13.18. Determine the limit load P of the simply supported beam of Fig. 13-30. Ans. Pp=45M,/L

P

{

s
F

w|t=
w|R

Fig. 13-30
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13.19. The beam of Fig. 13-30 is of rectangular cross section, 25 mm X 50 mm. It is Hy-80 steel with a yield
strength of 500 MPa. The length of the beam is 1 m. Determine the limit load when the loading is applied
at the third peint as indicated. Ans. P, = 352kN

13.20. The beam of Problem 13.4 is 2 m long and of square cross section 50 mm X 50 mm. It is structural steel with
a yield stress of 250 MPa. Determine the limit load. Ans. w, =156kN/m

13.21. Determine the magnitude of the limit load P, for the beam clamped at one end and simply supported at
the other (Fig, 13-31).

L+x
Ans. Pp= Mpm

R

Fig. 13-31

il

13.22, In Problem 13.21 determine x so that P, is a minimum. Ans. x =041L, (Pp)ma = 5.64M,/L

13.23. The simply supported beam AC shown in Fig. 13-32 has a plastic moment M, and carries the two
concentrated loads shown. Determine the limit load P;. Ans. P, = M, 2L

I

%

e

Fig. 13-32
Determine the magnitude of the load for plastic collapse of the systems shown in Figs. 13-33 and 13-34.
13.24. See Fig. 13-33.

Ans. wp=(6+ 4\6}—

o w th/unit Iength " P P
LR R vl o]
. 2 2 2 2
= |y -
) 7 | i o A e
T

Fig. 13-33 Fig. 13-34
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13.25. See Fig, 13-34.
6M,

Ans. P, = T

13.26. The continuous bcam ABCD is loaded as indicated in Fig. 13-35. Find the ratio (w,)L/P,, so that the limit
load occurs in both AC and CD simultaneously. Ans. 2/3

13.27. The continuous beam shown in Fig. 13-36 rests on the three simple supports indicated. The span AC has
a fully plastic moment 3M, and the lighter span CD has a fully plastic moment M,. A concentrated vertical
force acts at the midpoint of AC. Find the limit load £;. Ans. P, =7TM,/L

P‘ w/Unit Length F
] L R ; & _"'*—_"‘“I
1
i B oten R

e ’c D B %};
| L L | 1 A ¢
r I4 fod .

e i.5L -]

&l
()
(]

Fig. 13-35 Fig. 13-36

13.28, Determine the magnitude of the load P for plastic collapse of the beam shown in Fig. 13-37.

6M
Ans. P, = L”
P P
L ¥ 1
¥ P t
.
l-#—{-‘-'l»'—‘—}’—‘--f‘-{
2 2 2 2 B i T
Fig. 13-37 Fig. 13-38

13.29. Determine the magnitude of P in Fig. 13-38 for plastic collapse of the rectangular frame having both bases
clamped. Ans. P, =12IM,/L

13.30. Determine the magnitude of P for plastic collapse of the rectangular frame having both bases pinned
(Fig. 13-39). Ans. P, =4M,3L

L 4L

N |
L
e



CHAP. 13} PLASTIC DEFORMATIONS OF BEAMS 355

13.31. Determine the magnitude of the force P for plastic collapse of the unsymmetric frame having both bases
pinnﬂd (ﬁg. 13"40'). Ans. .P;_ = Mp(hl + hz)f.h‘] h:

ez -

Fig. 13-40

13.32. See Fig. 13-41. Determine the value of P for plastic collapse of the system.

2M,

Ans. P;_ = L

t~
S

Baserr s o

A,

Fig. 13-41



Chapter 14

Columns

DEFINITION OF A COLUMN

A long slender bar subject to axial compression is called a column. The term “column” is
frequently used to describe a vertical member, whereas the word “'strut” is occasionally used in regard
to inclined bars.

Examples
Many aircraft structural components, structural connections between stages of boosters for space

vehicles, certain members in bridge trusses, and structural frameworks of buildings are common
examples of columns.

TYPE OF FAILURE OF A COLUMN

Failure of a column occurs by buckling, i.e., by lateral deflection of the bar. In comparison it is to
be noted that failure of a short compression member occurs by yielding of the material. Buckling, and
hence failure, of a column may occur even though the maximum stress in the bar is less than the yield
point of the material. Linkages in oscillating or reciprocating machines may also fail by buckling.

DEFINITION OF THE CRITICAL LOAD OF A COLUMN

The critical load of a slender bar subject to axial compression is that value of the axial force that
is just sufficient to keep the bar in a slightly deflected configuration. Figure 14-1 shows a pin-ended bar
in a buckled configuration due to the critical load P,,.

SLENDERNESS RATIO OF A COLUMN

The ratio of the length of the column to the minimum radius of gyration of the cross-sectional area
is termed the slenderness ratio of the bar. This ratio is of course dimensionless. The method of
determining the radius of gyration of an area was discussed in Chap. 7.

If the column is free to rotate at each end, then buckling takes place about that axis for which the
radius of gyration is a minimum.

356
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CRITICAL LOAD OF A LONG SLENDER COLUMN

If a long slender bar of constant cross section is pinned at each end and subject to axial
compression, the load P,, that will cause buckling is given by

o El
bom

where E denotes the modulus of elasticity, / the minimum second moment of area of the cross-sectional
area about an axis through the centroid, and L the length of the bar. The derivation of this formula
is presented in Problem 14.1.

This formula was first obtained by the Swiss mathematician Leonhard Euler (1707-1783) and the
load P, is called the Euler buckling load. As discussed in Problem 14.2, this expression is not
immediately applicable if the corresponding axial stress, found from the expression o, = P,/A, where
A represents the cross-sectional area of the bar, exceeds the proportional limit of the material. For
example, for a steel bar having a proportional limit of 210 MPa, the above formula is valid only for
columns whose slenderness ratio exceeds 100. The value of P, represented by this formula is a failure
load; consequently, a safety factor must be introduced to obtain a design load. Applications of this
expression may be found in Problems 14.5 through 14.7.

(4.1

INFLUENCE OF END CONDITIONS —EFFECTIVE LENGTH

Equation (14.1) may be modified to the form
_ mEl
r (KL)z
where KL is an effective length of the column. For a column pinned at both ends, K = 1. If both ends

are clamped, K = (0.5; for one end clamped and the other pinned, K = 0.7. For a column clamped at
one end and unsupported at the loaded end, K = 2. See Problems 14.1, 14.3. and 14.4.

(14.2)

DESIGN OF ECCENTRICALLY LOADED COLUMNS

The derivation of the expression leading to the Euler buckling load assumes that the column is
loaded perfectly concentrically. If the axial force P is applied with an eccentricity e, the peak
compressive stress in the bar occurs at the outer fibers at the midpoint of the length of the bar and is

given by
P ec L |P
=—|1+— = [— .3
T nax A[l jP2se<:(2 AE)] (14.3)
where c is the distance from the neutral axis to the outer fibers, r the radius of gyration, L the length
of the column, and A the cross-sectional area. This is the secanr formula for columns. It is discussed
in detail in Problem 14.22.

INELASTIC COLUMN BUCKLING

The expression for the Euler buckling load may be extended into the inelastic range of action
by replacing Young’s modulus by the tangent modulus E,. The resulting tangent-modulus formula
is then

_PEI

Po =17 (14.4)

See Problem 14.9.
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DESIGN FORMULAS FOR COLUMNS HAVING INTERMEDIATE SLENDERNESS RATIOS

The design of compression members having large values of the slenderness ratio proceeds
according to the Euler formula presented above together with an appropriate safety factor. For the
design of shorter compression members, it is customary to employ any one of the many semiempirical
formulas giving a relationship between the yield stress and the slenderness ratio of the bar.

For steel columns, one commonly employed design expression is that due to the American Institute
of Steel Construction (AISC), which states that the allowable (working) axial stress on a steel column
having slenderness ratio L/r is

1 (KL ey, KL
“Ts | 3(KLIn) _(KLAY for ==<C
3 8C 8C”
. (14.5)
o, = &KL for T> C,
c - [2mE (14.6)
O\

where a,,, is the yield point of the material and E is Young's modulus. See Problems 14.11.14.12. 14.13.
and 14.14.

Another approach is in the use of the Structural Stability Research Council’s (SSRC) equations
which give mean axial compressive stress o, immediately prior to collapse:

o, = Oy for 0 <A <015
o, = 0,,(1.035 — 0.202A - 0.2221%) for0.15 =sA<1.0
0. = 0,(—0.111 + 0.636A"' + 00871 %) for LO=A=20 (14.7)
o, = 0,,(0.009 + 0.877A %) for20=A<3.6
o, = 0,17’ (Euler’s curve) for A=3.6
where A= [Zr (14.8)
ar \ E

No safety factor is present in these equations but of course one must be introduced by the designer.
See Problem 14.15.

COMPUTER IMPLEMENTATION

The design expression advanced by the AISC for allowable (working) stress on a steel column as
well as the SSRC’s equations giving mean axial compressive stress just prior to collapse are well suited
to computer implementation. Problems 14.17 and 14.20, respectively, give FORTRAN programs for
each of these recommendations. It is only necessary to input into the self-prompting programs the
geometric and materials parameters of the column to obtain its resistance as indicated by each of these
sets of relations. For application see Problems 14.18, 14.19, and 14.21.

BEAM-COLUMNS

Bars subjected to simultaneous axial compression and lateral loading are termed beam-columns.
An example is given in Problem 14.25.
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BUCKLING OF RIGID SPRING-SUPPORTED BARS

The columns discussed above are flexible members, i.e., capable of undergoing lateral bending
immediately after buckling. A related type of buckling involves one or more rigid bars pinned to fixed
supports or to each other and supported by one or more transverse springs. In certain cases the applied
loads may cause the bar system to move suddenly to an alternate equilibrium position. This too is a
form of instability of the system. See Problem 14.26.

Solved Problems

14.1. Determine the critical load for a long slender pin-ended bar loaded by an axial compressive
force at each end. The line of action of the forces passes through the centroid of the cross section
of the bar.

Fig. 142

The critical load is defined to be that axial force that is just sufficient to hold the bar in a slightly
deformed configuration. Under the action of the load P the bar has the deflected shape shown in
Fig. 14-2.

It is of course necessary that one end of the bar be able to move axially with respect to the other end
in order that the lateral deflection may take place. The differential equation of the deflection curve is the
same as that presented in Chap. 9, namely,

d’y
El e M )
Here the bending moment at the point A having coordinates (x,y) is merely the moment of the force P
applied at the left end of the bar about an axis through the point A and perpendicular to the plane of the
page. It is to be carefully noted that this force produces curvature of the bar that is concave downward,
which, according to the sign convention of Chap. 6, constitutes negative bending. Hence the bending
moment is M = —Py. Thus we have

E 3—3}= —Py 2)
If we set
§= 'S 3)
(2) becomes
%+k2y=0 )

This equation is readily solved by any one of several standard techniques discussed in works on
differential equations. However, the solution is almost immediately apparent. We need merely find a
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function which when differentiated twice and added to itself (times a constant) is equal to zero. Evidently
either sin kx or cos kx possesses this property. In fact, a combination of these terms in the form

y = Csinkx + D cos kx (5)

may also be taken to be a solution of (). This may be readily checked by substitution of y as given by (5)
into {4).

Having obtained y in the form given in (5), it is next necessary to determine C and D. At the left end
of the bar, y = 0 when x = 0. Substituting these values in (5), we obtain

0=0+D or D=0
At the right end of the bar. y = 0 when x = L. Substituting these values in (5) with D = 0. we obtain
0= CsinkL

Evidently either C = 0 or sinkL = 0. But if C = 0 then y is everywhere zero and we have only the trivial
case of a straight bar which is the configuration prior to the occurrence of buckling. Since we are not
interested in the solution, then we must take

sinkL =0 (6)
For this to be true, we must have
kL =nwmradians (n =1,2,3,...) (7)
Substituting k* = P/EI in (7). we find

2
,/%qu or P="’;E’ (8)

The smallest value of this load P evidently occurs when n = 1. Then we have the so-called first mode
of buckling where the critical load is given by

w El

Po= "1

)

This is called Eulers buckling load for a pin-ended cofumn. The deflection shape corresponding to this

load is
y= C'sin( \/gx) (10)

Substituting in this equation from (%), we obtain

X
= Csin— 11
y = Csin 3 (11)
Thus the deflected shape is in a sine curve. Because of the approximations introduced in the derivation of
(1), it is not possible to obtain the amplitude of the buckled shape, denoted by C in (11).
As may be seen from (9), buckling of the bar will take place about that axis in the cross section for

which 7 assumes a minimum value,
Equation (9) may be modified to the form

_mEl
“ " (KLY

where KL is an effective length of the column. defined to be a portion of the deflected bar between points
corresponding to zero curvature. For example, for a column pinned at both ends, K = 1. If both ends are
rigidly clamped, K = 0.5. For one end clamped and the other pinned, K = 0.7. In the case of a
cantilever-type column loaded at its free end, K = 2.

(12)
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14.2. Determine the axial stress in the column considered in Problem 14.1.
In the derivation of the equation EI(d?y/dx?) = M used to determine the critical load in Problem 14.1,
it was assumed that there is a linear relationship between stress and strain (see Chap. 9). Thus the critical
load indicated by (9) of Problem 14.1 is correct only if the proportional limit of the material has not been

exceeded.
The axial stress in the bar immediately prior to the instant when the bar assumes its buckled

configuration is given by
Oy =— ()

where A represents the cross-sectional area of the bar. Substituting for P, its value as given by (9) of
Problem 14.1, we find

w El

SCTE 2)

But from Chap. 7 we know that we may write
1=Ar 3)
where r represents the radius of gyration of the cross-sectional area. Substituting this value in (2), we find

P EAP ry\?
= = —_ 4
00 =" = 7E(T) @)
TE

or O = Wt )

The ratio L/r is called the slenderness ratio of the column.

Let us consider a steel column having a proportional limit of 210 MPa and E = 200 GPa. The stress
of 210 MPa marks the upper limit of stress for which (5) may be used. To find the value of L/r
corresponding to these constants, we substitute in (5) and obtain
(200 % 10°) L
W or ? 100
Thus for this material the buckling load as given by (9) of Problem 14.1 and the axial stress as given by
(5) are valid only for those columns having L/r = 100. For those columns having L/r < 100, the compressive
stress exceeds the proportional limit before elastic buckling takes place and the above equations are not
valid.

Equation (5) may be plotted as shown in Fig. 14-3. For the particular values of proportional limit and
modulus of elasticity assumed above, the portion of the curve to the left of L/r = 100 is not valid. Thus
for this material, point A marks the upper limit of applicability of the curve.

210X 108 =

arr '
MPa .i.
\ L L L
20 - - . A " ‘ ‘ —r- -1Ma
: P_g
]
Fig. 14-3 Fig. 14-4

14.3. Determine the critical load of a long, slender bar clamped at each end and subject to axial thrust
as shown in Fig. 14-4.
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Let us introduce the x-y coordinate system shown in Fig. 14-4 and let (x, y) represent the coordinates
of an arbitrary point on the bar. The bending moment at this point is found as the sum of the moments
of the forces to the left of this section about an axis through this point and perpendicular to the plane of
the page. Hence at this point we have M = — Py + M,,. The differential equation for the bending of the bar
is then Eld” vidx® = — Pv + M, or

dly P _ M
d EIY T EI

()

As discussed in texts on differential equations, the solution to (1) consists of two parts. The first part is
merely the solution of the so-called homogeneous equation obtained by setting the right-hand side of (/)
equal to zero. We must then solve the equation

gy =0 @

But the solution to this equation has already been found in Problem 14.1 to be

y=eos([Brx)+ Bsin( J2x) @

The second part of the solution of () is given by a so-called particular solution, i.e.. any function
satisfying (7). Evidently one such function is given by

y= %{= constant) (4)

The general solution of (1) is given by the sum of the solutions represented by (3) and (4), or

B [P [P M,

y—A]cos( IE{x+B,.s.m Efx)+ P (5)
bl oo ol 5
--—=-—A — — -+ — —
dx NE VEY) B VE m( El” ©)

At the left end of the bar we have y = 0 when x = 0. Substituting these values in (5), we find
0=A, + M,Mlso, at the left end of the bar we have dy/dx = () when x = 0; substituting in (6). we obtain
0=0+B,VFPIEIl or B, = 0.

At the right end of the bar we have dy/dx = 0 when x = L; substituting in (6), with B, =0,

we find
/P . fP
0= —-A, ESI“( EIL)

But A, = —My/P and since this ratio is not zero, then sin(VP/EIL) = 0. This occurs only when
VPIEIL = nmwhere n = 1.2, 3, .. .. Consequcntly
n*mEl
P, = T (7)
For the so-called first mode of buckling illustrated in Fig. 14-4, the deflection curve of the bent bar
has a horizontal tangent at x = L/2; that is, dy/dx = 0 there. Equation (6) now takes the form
My (mm)  nom

o P A\L/™MTL )

Consequently

and since dy/dx = 0 at x = L/2, we find

_My(nm\ . nmw
0= (L)sm2
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144.

14.5.

14.6.

The only manner in which this equation may be satisfied is for # to assume even values: that is. n = 2. 4,
6,....
Thus for the smallest possible value of n = 2, Eq. (7) becomes
_47El
or Lz

Determine the critical load for a long slender bar clamped at one end. free at the other. and
loaded by an axial compressive force applied at the free end.

A P
P % f
— L .
Fig. 14-5

The critical load is that axial compressive force P that is just sufficient to keep the bar in a slightly
deformed configuration, as shown in Fig. 14-5. The moment M, reprcsents the cffect of the support in
preventing any angular rotation of the left end of the bar.

Inspection of the above deflection curve for the buckled column indicates that the entire bar
corresponds to one-half of the deflected pin-ended bar discussed in Problem 14.1, Thus for the column
under consideration, the length L corresponds to L2 for the pin-ended column. Hence the critical load
for the present column may be found from Eq. (9), Problem 14.1. by replacing L bv 21.. This viclds

_@El_7El
To@Ly 4L

A steel bar of rectangular cross section 40 mm % 50 mm and pinned at each end is subject to
axial compression. If the proportional limit of the material is 230 MPa and FE = 200 GPa.
determine the minimum length for which Euler’s equation may be used to determine the
buckling load.

The minimum second moment of area is [ = Lbh* = 5(50)(40)* = 2.67 x 10° mm®. Hence the least

radius of gyration is
’_\ﬁ‘ {2.67><10‘_|Hmm
A (40)(50) )

The axial stress for such an axially loaded bar was found in Problem 14.2 to be
_ 7TE
(Liry

The minimum length for which Euler’s equation may be applied is found by placing the critical stress in
the above formula equal to 230 MPa. Doing this, we obtain
(200 % 10°)

2305(106=W or L=1065m

Ter

Consider again a rectangular steel bar 40 mm X 50 mm in cross section, pinned at each end and
subject to axial compression. The bar is 2 m long and E = 200 GPa. Determine the buckling load
using Euler’s formula.
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The minimum second moment of area of this cross section was found in Problem 14.5 1o be
2,67 x 10° mm", Applying the expression for buckling load given in (9) of Problem 14.1, we find

p - TEL _ 700X 10°(10 ) (267X 107

or Lz (2 - lﬂ")z = ]32 kN
The axial stress corresponding to this load is
P, 132x10°
== ———— = 66 MP:
T4 T 40)(50) ?

Determine the critical load for a W10 X 21 section acting as a pinned end column. The bar is
12 ft long and E = 30 x 10° Ib/in®. Use Euler’s theory.

From Table 81 of Chap. 8 we find the minimum moment of inertia to be 9.7 in*. Thus,
o El

Po=—7
_ (30 X 10° Ib/in?) (9.7 in*)
(144 in)?

= 138,0001b

A long thin bar of length L and rigidity EI is pinned at end A, and at the end B rotation is
resisted by a restoring moment of magmtude A per radian of rotation at that end. Derive the
equation for the axial buckling load P. Neither A nor B can displace laterally. but A is free to
approach B.

Fig. 14-6

The buckled bar is shown in Fig. 14-6, where M, represents the restoring moment. The differential
equation of the buckled bar is

d’y
EIZ%5 = Vx =Py
dy P _V
or X2 E1Y T EIT
Let o = P/EL. Then
2 N e Vx
YT E

The general solution of this equation is easily found to be

v
}'=Asinax+Bcosax+Fx (1)
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14.9.

‘d
= )
A

As the first boundary condition, when x = 0, y = 0; hence B = 0. As the second boundary condition. when
x =L, y = 0; hence from (J) we obtain

VL Vv A
D=AsinaL+—j; or F=——smaL

L
Thus y=4A [sinax—-:—'sincrL] (2)
From (2) the slopc at x = L is found to be
dy 1
—_— = _ — ‘i
[dx],;,_ A[aoosal. LsmaL] (K]

The restoring moment at end B is thus
1
M,,=A.l[aoosaL—IsinaL] 4

Also, since in general M = El(d?yi/dx?), from (2) we have
M, = —Ad’Elsinal. (5)

Equating expressions (4) and (5) after carefully noting that as M, increases dy/dx at that point decreases
(necessitating the insertion of a negative sign), we have

—Ad’Elsinal. = — [AhamsaL—AThsinaLl (6)
Simplifying, the equation for determination of the buckling load P becomes
%—aLcmaL+l=0 (7)

This equation would have to be solved numerically for specific values of El, 1., and A.

Discuss column behavior when the average applied axial stress in the bar exceeds the
proportional limit of the material.

A Inclastic behavior
Linear, elastic behavior

Fig. 14-7

The Euler buckling load determined in Problem 14.1 is based upon the assumption that the column
everywhere is acting within the linear elastic range of action of the material, shown as OA in Fig. 14-7. In
this range the modulus E is the slope of the straight line OA. When the stress-strain curve ceases to be
linear, i.e., 1o the right of point A, the slope of the curve is called the tangent modulus E, and it varies with
strain. This parameter must be determined by materials tests. Under these conditions it is necessary to
consider inelastic buckling. One of the earliest approaches to this. still used occasionally, is due to the
German engineer Engesser who, in 1889, suggested replacing E in Euler’s expression, Eq. (9) of Problem
14.1, by the tangent modulus E,. In this case the axial stress immediately prior to buckling is given by

__ T
“ (LI
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L
i
1 -
L
r
® ® ©
Compression Inelastic Euler-1ype
yielding buckling buckling
Fig. 14-8

‘This is the tangent modulus formula and the load P, = Ag,, is called the Engesser load. This approach is
simple and easy to use—see Problem 14.10—and indicates a load only slightly less than the inelastic
buckling load found experimentally. The theory has certain inconsistencics that will not be discussed here
so it is not the best approach to rational column design.

Test results on axially compressed bars usually can be exhibited by the plot shown in Fig. 14-8. where
the mean axial stress o just before buckling (divided by the yield point of the material) is shown as a
function of the slendcrness ratio L/r. Experimental results indicate wide scatter, as shown by data points
between the two solid curves. The scatter is due to initial geometric deviations from straightness of the bar
as well as residual stresses incurred during fabrication. The plot indicates three modes of failure. depending
on the value of Lir. The first is @. compressive yiclding for very short columns: the second is (©. inelastic
buckling for intermediate length bars (which comprise many engineering applications); and the third is ©,
Euler-type buckling of very long slender bars. Failures of type @ have been discussed in Chap. 1 and Euler
column behavior was treated in Problems 14,1 through 14.7. The rational design of columns corresponding
to condition () is based upon any one of a number of semiempirical approachcs discussed in the following
problems.

A pinned end column is 275 mm long and has a solid circular cross section. If it must support
an axial load of 250 kN, determine the required radius of the rod if the tangent modulus theory
is employed and the experimentally determined curve relating tangent modulus to axial stress
is that shown in Fig. 14-9.

From Problem 14.9 the load, according to the tangent modulus theory, is given by

mE, mE|l
= = I
PU‘ [A) (Ur};’ LI ( )
For the solid circular cross section of radius R, we have [ = 7R%4 so that () becomes
(250000 N)(0.275m)* 2439 R
E, = = 2
' w(aR*4) g m @)
For any assumed radius R it is easily possible to find the axial stress:
P 250,000
= — = = 3
7 A wRk" )

and for any value of o from Fig. 14-9 we can ascertain the corresponding experimentally determincd value
of E,. Thus, we can solve Eqs. (2) and (3) by trial and crror.
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E, (GPa)

i \

100

800
o (MPa)

Fig. 149

Let us try R = 0.012 m. From Eq. (3)

250,000

e — P
o 0012 m)? 553 MPa

For this value of o from Fig. 14-9, we have E, = 175 GPa. However, from Eq. (2) it is

2439

= —(0012 my’ =117GPa

E,

Clearly these values of E, do not agree and the assumed radius is too large.
Next, let us try R = 0.011 m. From Eq. (3}

250,000

= =00 658 MP
(0,011 m)° 4

o

For this value of o from Fig. 14-9, we have E, = 125 GPa. However, from Eq. (2) it is

2439
* (0.011 m)*

It is instructive to plot these values as shown in Fig. 14-10. Clearly an acceptable value of radius lies
between 0.011 and 0.012 m. Let us try R = 0.0112m. From Eq. (3) we have

= 167 GPa

250,000

=200 634 MP
7= 00112y MPa
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Eq. (2)
200 GPa "__..-
100 GPa |- 0“'"

[} ] e

A 0011 m 0.012m R
Fig. 14-10

and the corresponding value of E, from Fig. 14-10 is 152 GPa. The value found from Eq. (2) is

2439
= ————— =155
E (0.0112 m)* 155 GPa
These two values of E, are sufficiently close that we may regard the radius of 0.0112 m as acceptable, that

is, 11.2 mm.

14.11. Discuss design criteria for structural steel columns.

In one approach, advocated by the ALSC, the allowable axial compressive stress o, on a stecl column
of length L. minimum radius of gyration of cross section r, matcrial yield point o,,. and Young'’s modulus
E is given by the semiempirical relations

l | KLI ]
2z [T

= f KL <, (!
o [ 5 XKL (KLY or— =& )
3 8C, 8C?
TF KL
Uﬂ—w fOI‘T.'?(‘. (2)
fZ 'E
where C, = :: (3)

wp
Here K is the end fixity coefficient introduced in Problem 14.1. These equations may be used with either
the SI or USCS systems of units. In Egs. (7) and (2) the denominators represent safety factors which clearly
increase with increasing values of the slenderness ratio Lir.

The second approach, which is perhaps in best agreement with experimental evidence, is due to R.
Bjorhovde* who, in 1971, analyzed the behavior of a large number of full-scale test columns all having
measured initial imperfections from perfect straightness as well as residual (fabrication) stresses. These
columns were relatively light- or medium-weight hot-rolled wide-flange W sections having flange
thicknesses less than 2in (508 mm) and material yield points less than approximately 49.000 Ib/in
(335 MPa). He found that the mean (over the cross section) axial compressive stress o, just prior 10
collapse is given by the expressions

O, = Oy

o, = 0,,(1.035 — 0.202A — 0.222)%)

= 0,,(—0.111 + 0.636A ' +0.087A °)
0, = 0,,(0.009 + 08774 )

S
I

0, = o,,A * (Euler's curve)

for 0 <A <0.15
for0.15=A=<10
for L0=A=20 (4)
for20=Xx <36

for A=3.6

*R. Bjorhovde and L. Tall, “Minimum Column Strength and Multiple Column Curve Concept,” Report 337.29, Lehigh
University, Fritz Eng. Lab, Bethlehem, PA. 1971. R. Bjorhovde, “Deterministic and Probabilistic Approaches to the Strength of
Steel Columns,” Ph.D. dissertation. Lehigh University. Bethlchem, PA, 1972
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_L o, (5)

where ar N E

These results, known in graphical form as the Structural Stability Research Council Curve No. 2,
represent prototype behavior of steel columns in region ® of Fig. 14-8. The equations may be used with
either the SI or USCS systems of units. Since the stress o, in Eqgs. (4) is that existing just prior to collapse,
no safety factor is present but instead must be introduced by the designer. Two comparable sets of
equations were given by Bjorhovde for other types of steel sections.

14.12, Use the AISC design recommendation discussed in Problem 14.11 to determine the allowable
axial load on a W8 X 19 section 10 ft long. The ends are pinned. the yield point is 36,000 Ib/in?,
and E = 30 X 10° Ib/in.

From Table 8-1 Chap. 8 we have the properties of the cross section as
Lo = 7.9in° A = 559in?
The radius of gyration is found by the method of Chap. 7 to be

7.9in* i
r= ,S.Sginz = L189in
L _ (10)(12) _
r LI89

From Problem 14.11 we have from Eq. (3)

C - sz.-.lz—: a JZ::"(S(}X 10° Ib/in®)
‘ B 36,000 Ib/in’

Thus, 100.9

= 128.26

Ty

For both ends pinned, K = 1 and thus K(L/r) < C, so that the allowable axial stress is given by Eq. (1) of

Problem 14.11 to be
_ (KUr}z] [ (1009 ]
- [1 a7 L= 3128267 | 26000
*T5, AKLI _ (KL’ 3(100.9)  (100.0)°
3 8C, 8C 8(128.26) 8(128.26)°
= 13,100 Ib/in?

The allowable axial load is

5
=+
3

P, = (5.59in?)(13.100 Ibfin?) = 73,100 Ib

14.13. Reconsider the column of Problem 14.12 but now with a length of 15 ft. Use the AISC design
recommendation to determine the allowable axial load. Both ends are pinned.

Now we have L/r = (15)(12)/1.189 = 151.4. Thus the increased length (in comparison to that of
Problem 14.12) leads to

K% (= 151.4) > C(= 128.26)

so that we must compute the allowable axial stress from Eq. (2) of Problem 14.11:

L __127E
"~ 23(KLir):
_ 127730 X 10° Ibin?)
23(151.4)

= 6740 Ib/in’
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The allowable axial load is thus

P, = (5.59in?) (6740 Ib/in?) = 37,670 1b

14.14. Use the AISC recommendation to determine the allowable axial load on a W203 X< 28 section
3 m long. The ends are pinned. The material yield point is 250 MPa and E = 200 GPa.

From Table 8-2 of Chap. 8 we have the sectional properties as
Lin = 3.28 X 10° mm* A = 3600 mm?
The radius of gyration is found to be

{. x 4
r= %ﬂiﬁ=m.18mm

L 3000mm

Thus =994

30.18mm

,
From Problem 14.11, Eq. (3). we have

c - Jzaﬂz - Jzn?(zm x 10° N/m®)
‘ 250 % 10° N/m?

=125.7

Typ

For both ends pinned, K = 1 and thus K(L/r} < C, so that the allowable axial stress is given by Eq. (/) of
Problem 14.11 to be

_ (KLiry (%94) ,
[, [ 2 Tasox o m
“"‘§+3(1<Lfr)_(xur)3' 5,3(994)  (94)
3 8C. 8C3 3 8(1257) 8(125.7)
= 90.35 MPa

The allowable axial load is

2
P = (3600 mm?) ( ) (90.35 % 10° N/m?)

10° mm
= 325,000 N or 325kN

14.15. Reconsider the column of Problem 14.12 but now use the SSRC recommendation discussed in
Problem 14.11 to estimate the maximum load-carrying capacity of the column.

As discussed in Problem 14.11, we must first compute the parameter

A= _@.._}_ _(_TZT,
r wV E
(1)(10f) (12inft) 1 [ 36,000 Ib/in?
. - a L3
Here A (1.189) 7V 30 X 10° Ib/in?

From Problem 14.11, for this value of A we must determine the ultimate (peak) axial stress in the
column from the semiempirical relation

o, = a,,,[—ﬂ.lll +M+ 0'028?]
: A A

0.636 0.087
— ¢ in?) | —0.111 + —— +
(%,ODOIb!m)[ 0. L.113  (1.113)*

] = 19,000 Ib/in’
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The axial load corresponding to this stress is
Prax = (5.59 in) (19,000 Ib/in?) = 106.200 Ib

This load represents the average of actual test values of peak loads that columns of this type were found
to carry. It is 1o be noted that no safety factor is incorporated into these computations, so that the design
load for this member is less than the 106,600 Ib.

14.16. Select a wide-flange section from Table 8-2 of Chap. 8 to carry an axial compressive load of
750 kN. The column is 3.5 m long with a yield point of 250 MPa and a modulus of 200 GPa. Use
the AISC specifications. The bar is pinned at each end.

To get a first approximation, let us merely use P = Ac, from which we have

750,000 N

-_———-—— 2 2
250 % 10° Nim? 0.0030 m or 3000 mm

This tells us that any wide-flange section having an area smaller than 3000 mm is unacceptable.
Next, let us try the W203 x 28 section. From Table 82 we find area = 3600mm’ and /,,, =
3.28 X 10° mm". The minimum radius of gyration is thus

f3.28>< 10° mm*
r= _H_m”l'ld‘lz_ = 30.2 mm

from which the slenderness ratio is L/r = 3500/30.2 = 116.
From Problem 14.11, (Eq. (3)), we have

G 2
.- sz.-.?(zm X10°Nm?) _ oo

250 x 10°* N/m?

Thus, since K = 1 for both ends pinned,
L
K—r-(= 116) < C.(= 125.6)

So, we must employ Eq. (1) of Problem 14.11. This leads to

= = 74.95
o, [§+ 316 (116 ] 74.95 MPa
3 8§(1256) 8(125.6)°
2
from which P,=(3600mm2)( m )(?4.95:(10“me2}=270‘0001~1 or  270kN
10° mm)

which indicates that this is far too light a section.
Next, let us try the section W254 X 72 having an area of 9280 mm’ and f,,,, = 38.6 X 10° mm*. The
minimum radius of gyration is found to be

38.6 X 10° mm*
= N omomme o+ mm
from which the slenderness ratio is 3500/64.5 = 54.26. Again we have

x%(= 54.26) < C.(= 125.6)
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so that we must again use Eq. (1) of Problem 14.11 to find the allowable stress which is
(54.26)
_ [1 21256y |20
a [§ | 3(5426) (5426
3 8(1256) 8(125.6)°

= 124.6 MPa

1

10" mm

This section is rather heavy, so let us investigale the W254 X 54. Here, the area is 7010 mm® and
Loin = 17.5 X 10° mm*. So, the minimum radius of gyration is found to be 50.0 mm and the slenderness ratio
is 3500/50 = 70. Again using Eq. (/) of Problem 14.11 we find o, = 114 MPa, from which the allowable
load is P, = 799 kN.

Investigation of the next lighter section, W254 X 43, by the above method indicates that it can carry
only 478 kN.

Thus, the desired section is the W254 % 54, which can carry an axial load of 799 kN, which is in excess
of the 750 kN required. A more complete table of structural shapes might well indicate a slightly lighter
section than the W254 x 54,

2
for which P, = (9280 mm?) ( ) (1246 X 10°N/m?) = LISX10°N  or  1150kN

Develop a FORTRAN program to represent the AISC value of allowable axial load on a steel
column as discussed in Problem 14.11.
The symbols are defined in Problem 14.11 and Eqgs. (7) and (2) of that problem indicate allowable axial

compressive stress for values of KL/r less than or greater than the dimensionless parameter C.. The
program listing is

QO0LO* AR ARARAAAARNAARKARARARARRAARAARRAARARARAARRARRAARARARARRAAAAARAAARAAA

00020 PROGRAM STEELCL (INPUT,OQUTPUT)

00030* (AMERICAN INSTITUTE OF STEEL CONSTRUCTION)
OO0Q0*ARRARAAARRAARRRRARRARRARARARRRRARARAARARAR AR RARRNARARRAAAARRAARARAAAR
00050*

00060* AUTHOR: KATHLEEN DERWIN

00070* DATE : JANUARY 24, 1989

00080*

00090* BRIEF DESCRIPTION:

00100* ONE APPROACH TO CONSIDERING DESIGN CRITERIA FOR STRUCTURAL

00110* STEEL COLUMNS IS GIVEN BY THE A.I.S.C. (AMERICAN INSTITUTE OF
00120* STEEL CONSTRUCTION). THIS PROGRAM DETERMINES THE ALLOWABLE AXIAL
00130* COMPRESSIVE STRESS AND LOADING OF A STEEL COLUMN USING THE RELATIO
00140* DEVELOPED AND ACCEPTED BY THE A.I.S.C.

00150*
00160* INPUT:
00170* THE USER IS FIRST ASKED IF USCS OR SI UNITS WILL BE USED. THEN,

00180* THE COLUMN LENGTH, THE MINIMUM MOMENT OF INERTIA AND AREA OF THE
00190* COLUMN CROSS SECTION, THE MATERIAL YIELD POINT, AND YOUNG'S MODULUS
00200* ARE INPUTTED. ALSO, THE END FIXITY COEFFICIENT IS ENTERED.

00210*

00220* OUTPUT:

00230* THE ALLOWABLE AXIAL COMPRESSIVE STRESS AND LOADING OF THE COLUMN
00240* IS DETERMINED.

00250*

00260* VARIABLES:

00270* ANS - DENOTES IF USCS OR SI UNITS ARE DESIRED

00280* L,I,A —-—- LENGTH, MIN.MOMENT OF INERTIA, AREA OF COLUMN X-SECT
00290* SIGYP,E -—- YIELD POINT, YOUNG'S MODULUS OF THE MATERIAL

00300* R - MIN. RADIUS OF GYRATION AS CALCULATED FROM THE
00310* CROSS-SECTIONAL AREAR AND MOMENT OF INERTIA

00320* cc - CRITICAL CONSTANT OF THE COLUMN.,.A FUNCTION OF ITS
00330* PHYSICAL AND MATERIAL PROPERTIES

00340%* CHECK - THE COLUMN CONSTANT AS CALCULATED FOR THE SPECIFIC
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00350+ CASE CONSIDERED. THIS IS COMPARED TO THE CRITICAL
00360* CONSTANT TO DETERMINE WHICH OF TWO RELATIONS TO USE
00370* K - END FIXITY COEFFICIENT OF THE COLUMN

00380* HOLD1,HOLD2--- PARTIAL CALCULATIONS OF THE MORE COMPLICATED FUNCTIO
00350* (USED FOR EASE IN PROGRAMMING)

00400* SIGA ——- ALLOWABLE AXIAL COMPRESSIVE STRESS

00410* LOADA --—- ALLOWABLE AXIAL LOAD

00420* PI - 3.14159%

00430*
OOQAQARARRARAARARARRAARRAARRARARAAAARRRRRARARARARRARRARRRARARARRRRARRRARARRRR
Q0450*hAkka MAIN PROGRAM Rk RA
OO0AEORARARARARARARARRAARARRAARARRRARARARRARRRRRRRARAARRAARARARRARARRRRRARRR AR
00470%*

00480* VARIABLE DECLARATIONS

00450%

00500 REAL L,I,A,SIGYP,E,R,CHECK,CC,K,SIGA,LOADA, PI,HOLD]1, HOLD2

00510 INTEGER ANS

00520*

00530 PI = 3.14159%

00540*

00550* USER INPUT

00560*

00570 PRINT*, 'PLEASE INDICATE YOUR CHOICE OF UNITS:'

00580 PRINT*,'l1 - USCS'

00590 PRINT*,'2 - SI'

00600 PRINT*,"' '

00610 PRINT*, 'ENTER 1,2'

00620 READ* ,ANS

00630 IF (ANS.EQ.l) THEN

00640 PRINT#*, 'PLEASE INPUT ALL DATA IN UNITS OF POUND AND/OR INCH...'
00650 ELSE

00660 PRINT*, 'PLEASE INPUT ALL DATA IN UNITS OF NEWTON AND/OR METER..
00670 ENDIF

00680 PRINT*,' '

00690 PRINT*, 'ENTER COLUMN LENGTH:'

00700 READ*,L

00710 PRINT*, 'ENTER THE CROSS-SECTIONAL PROPERTIES...'

00720 PRINT*, 'MOMENT OF INERTIA, I:'

00730 READ*, I

00740 PRINT*, 'AREA:"'

00750 READ* A

00760 PRINT#*, 'ENTER THE MATERIAL YIELD POINT:'

00770 READ* ,SIGYP

00780 PRINT*, 'ENTER THE VALUE FOR YOUNG'S MODULUS:'

00790 READ* E

00800 PRINT#*, 'FINALLY, ENTER THE F '

00810 READ* , K r END FIXITY COEFFICIENT, K:

00820*

00830% END USER INPUT

00B40*

00850*

00BEORAAARR CALCULATIONS ARARAA

00870*

00880* MINIMUM RADIUS OF GYRATION

00890

00900 R = (I/A)*#%0,5

00910*

ggggg: CRITICAL CONSTANT FOR THIS COLUMN SPECIFICATION

00940 CHECK = (L *K

00950* /R)

ggggg: THE CRITICAL CONSTANT FOR ALL COLUMNS OF THIS MATERIAL

00S80 CC = 2 * [(PI**2) * B ) § ARQ,

00990# ( ( ) 1/SIGYP)**(,5

01000%* COMPARE CC AND CHECK TO DETERMINE WHICH RELATION TO USE

01010%*
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01020 IF (CHECK.LT.CC) THEN

01030 HOLDL = (1 - ((CHECK**2)/(2*(CC**2))))*SIGYP

01040 HOLD2 = ((5./3)+((3*CHECK)/(B*CC)) - ((CHECK*#3)/(8%(CC**3))))
01050 ELSE

01060 HOLD]1 = (PIA*2)*E

01070 HOLD2 = (23./12)*(CHECK#*#2)

01080 ENDIF

01090*

giigg: THE ALLOWABLE AXIAL STRESS AND LOADING

01120 SIGA = HOLD1/BOLD2

01130 LOADA = SIGA*A

0l140*

OLl1S0AAAAKA PRINTING OUTPUT fadalolo bl

01160%*

01170 PRINT*,' °*

01180 PRINT#*,' °*

01190 PRINT*, ‘AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) STANDARDS:'
01200 PRINT#*,' '

01210 IF (ANS.EQ.l) THEN

01220 PRINT 10,SIGA,'PSI.'

01230 PRINT 20,LOADA, 'LB.'

01240 ELSE

01250 SIGA=SIGA/1000000.0

01260 PRINT 10,SIGA, 'MPA.'

01270 PRINT 20,LOADA,'NEWTONS.'

01280 ENDIF

01290*

01300* FORMAT STATEMENTS

01310%

01320 10 FORMAT(2X,'THE ALLOWABLE AXIAL COMPRESSIVE STRESS IS',F10.1,
01330+ 1X,Ad)

81338*20 FORMAT(2X, 'THE ALLOWABLE AXIAL LOAD IS',F10.1,1X,A)

01360 STOP

01370 END

14.18. A pinned end W8 X 19 steel column has a yield point of 33,000 1b/in? and a modulus of

30 X 10° Ib/in’. The length of the column is 15 ft. Use the FORTRAN program of Problem 14.17
to determine the allowable axial stress and also the load based on AISC specifications.

From Table 8-1 of Chap. 8 we find /., = 7.9in* and A = 5.59in’. The self-prompting program and
compuler run is

run
PLEASE INDICATE YOUR CHOICE OF UNITS:

1 - USCS
2 - 51

ENTER 1,2

71
PLEASE INPUT ALL DATA IN UNITS OF POUND AND/OR INCH...

ENTER COLUMN LENGTH:

? 180

ENTER THE CROSS-SECTIONAL PROPERTIES...
MOMENT OF INERTIA, I:

? 7.9

AREA:

? 5.59

ENTER THE MATERIAL YIELD POINT:

7 33000
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ENTER THE VALUE FOR YOUNG’S MODULUS:

? 30E+6
FINALLY, ENTER THE END FIXITY COEFFICIENT, K:

71

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) STANDARDS:

THE ALLOWABLE AXIAL COMPRESSIVE STRESS IS 6738.2 PSI.
THE ALLOWABLE AXIAL LOAD IS 37666.5 LB.

SRU 0.780 UNTS.

14.19. Consider a pin-ended W305 % 37 column made of steel having a yield point of 270 MPa and a
modulus of 200 GPa. The length of the column is 10 m. From Table 8-2 of Chap. 8 we find
I, =6.02x10 °m* and A = 4760 x 10"® m’. Use the FORTRAN program of Problem 14.17
to determine the allowable axial stress and load based on AISC specifications.

Using these input data, the computer run is

run

PLEASE INDICATE YOUR CHOICE OF UNITS:
1 - UsCs

2 - 8I

ENTER 1,2
? 2
PLEASE INPUT ALL DATA IN UNITS OF NEWTON AND/OR METER...

ENTER COLUMN LENGTH:

? 10

ENTER THE CROSS-SECTIONAL PROPERTIES...
MOMENT OF INERTIA, I:

? 6.02E-6

AREA:

2 4760E-6

ENTER THE MATERIAL YIELD POINT:

7 270E+6

ENTER THE VALUE FOR YOUNG'S MODULUS:

? 200E+9

FINALLY, ENTER THE END FIXITY COEFFICIENT, K:
? 1

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) STANDARDS:

THE ALLOWABLE AXIAL COMPRESSIVE STRESS IS 13.0 MPA.
THE ALLOWABLE AXIAL LOAD IS 61998.2 NEWTONS.

SRU 0.777 UNTS.

14.20. Develop a FORTRAN program to represent the SSRC values of mean axial compressive stress
just prior to collapse as discussed in Problem 14.11.

The symbols are defined in Problem 14.11 and the Eqs. (¢) of that problem indicate axial stress just
prior to collapse for various values of A given by Eq. (5). The program listing is



376 COLUMNS [CHAP. 14

00010*‘**********t**l*ttﬁtt*l*t*t**tt**ttl*tt**l’*tﬁt*‘*l*ttﬁ*ﬁﬁ*tﬁt******

00020 PROGRAM STEELCL (INPUT,OUTPUT)

00030* (BJORHOVDE, STRUCTURAL STABILITY RESEARCH COUNCIL)
L L L L o Lt It
00050%*

00060* AUTHOR: KATHLEEN DERWIN

00070* DATE : JANUARY 24, 1989

ooo80*

00090* BRIEF DESCRIPTION:

00100* ONE APPROACH TO CONSIDERING DESIGN CRITERIA FOR STRUCTURAL

00110* STEEL COLUMNS WAS DEVELOPED BY R. BJORHOVDE, AND IS POSSIBLY
00120* IN THE BEST AGREEMENT WITH EXPERIMENTAL EVIDENCE. THE MEAN AXIAL
00130* COMPRESSIVE STRESS JUST PRIOR TO COLLAPSE CAN BE OBTAINED FOR THE
00140* SPECIFIC COLUMN BY FIRST CALCULATING THE 'COLUMN CONSTANT' AND THEN
00150* DETERMINING THE MEAN STRESS AT FAILURE FROM THE APPROPRIATE RELATION.
00160*

00170*% 1INPUT:

00180* THE USER IS FIRST ASKED IF USCS OR SI UNITS WILL BE USED. THEN,
00190* THE COLUMN LENGTH, THE MINIMUM MOMENT OF INERTIA AND AREA OF THE
00200* COLUMN CROSS SECTION, THE MATERIAL YIELD POINT, AND YOUNG'S MODULUS
00210%* ARE INPUTTED. ALSC, THE END FIXITY COEFFICIENT IS ENTERED.

00220*

00230 OQUTPUT:

00240* THE MEAN (OVER THE CROSS SECTION) AXIAL COMPRESSIVE STRESS AND
00250 THE MEAN PEAK LOADING CONDITIONS ARE DETERMINED.

00260*

00270* VARIABLES:

00280* ANS — DENOTES IF USCS OR SI UNITS ARE DESIRED

00290* L,I,A - LENGTH, MIN.MOMENT OF INERTIA, AREA OF COLUMN X-SECT
00300* SIGYP,E --- YIELD POINT, YOUNG'S MODULUS OF THE MATERIAL

00310* R - MIN. RADIUS OF GYRATION AS CALCULATED FRCM THE
00320* X-SECTIONAL AREA AND MOMENT OF INERTIA

00330* LAMDA - CRITICAL CONSTANT OF THE COLUMN...A FUNCTION OF ITS
00340* PHYSICAL AND MATERIAL PROPERTIES

00350% K - END FIXITY COEFFICIENT OF THE COLUMN

00360* SIGU - MEAN AXIAL COMPRESSIVE STRESS AT FAILURE

00370* LOADU - MEAN AXIAL LOAD AT FAILURE

00380* PI - 3.14159

00390*

D0Q00A Ak hhkhhhkhhRkARARAARARRRERRERRRRERARRR AR RR R RN KA R R R R AR AR R AR R R AR AR R AR AN
00410***axx MAIN PROGRAM hhhka

D0420* AR R AR AR AR AR R AR AR AR R RR AR R R AR R R R R A AR R AR AR RN R R AR AN RN AN R RN R

00430*

00440+ VARIABLE DECLARATIONS

00450*

00460 REAL L,I,A,SIGYP,E,R,LAMDA,K,SIGU,LOADU,PI
00470 INTEGER ANS

00480#*

00490 PI = 3.14159

00500%

00510#* USER INPUT

00520%

00530 PRINT*, 'PLEASE INDICATE YOUR CHOICE OF UNITS:'
00540 PRINT*,'l - USCS'

00550 PRINT*,'2 - SI'

00560 PRINT*,"' °

00570 PRINT*, 'ENTER 1,2°

00580 READ* , ANS

00590 IF (ANS.EQ.1) THEN

00600 PRINT*, 'PLEASE INPUT ALL DATA IN UNITS OF POUND AND/OR INCH...'
00610 ELSE

00620 PRINT*, ' PLEASE INPUT ALL DATA IN UNITS OF NEWTON AND/OR METER..
00630 ENDIF

00640 PRINT*,"' '

00650 PRINT*, 'ENTER COLUMN LENGTH:'

00660 READ* ,L
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00670 PRINT*, 'ENTER THE CROSS-SECTIONAL PROPERTIES...'
00680 PRINT*, 'MOMENT OF INERTIA, I:'
00690 READ*, I
00700 PRINT*, 'AREA:"'
00710 READ* ,A
00720 PRINT*, 'ENTER THE MATERIAL YIELD POINT:'
00730 READ* ,SIGYP
00740 PRINT*, 'ENTER THE VALUE FOR YOUNG'S MODULUS:'
00750 READ* ,E
00760 PRINT*, 'FINALLY, ENTER THE END FIXITY COEFFICIENT, K:'
00770 READ* ,K
00780
00790* END USER INPUT
00800~
00810*
00820%*kaknk CALCULATIONS AERKEK
00830+
00840 MINIMUM RADIUS OF GYRATION
00B850*
00860 R = (I/A)**0.5
00870*
gosao* CRITICAL CONSTANT FOR THIS COLUMN SPECIFICATION
0890*
32903 LAMDA = ((K*L)/(R*PI))*((SIGYP/E)**0.5)
910#*
ggsgg* MEAN AXIAL COMPRESSIVE STRESS AND LOADING
9 *
00940 IF (LAMDA.LT.0.15) THEN
00950 SIGU = SIGYP
00960 ELSEIF (LAMDA.GE.0.15 .AND. LAMDA.LT.1.0) THEN
00970 SIGU = SIGYP*(1.035 - 0.202*LAMDA - 0.222*(LAMDA**2))
00980 ELSEIF (LAMDA.GE.1.0 .AND. LAMDA.LT.2.0) THEN
00990 SIGU = SIGYP*(-0.111 + 0.636/LAMDA + 0.0872/(LAMDA**2))
01000 ELSEIF (LAMDA.GE.2.0 .AND. LAMDA.LT.3.6) THEN
01010 SIGU = SIGYP*{0.009 + 0.877/(LAMDA**2))
01020 ELSEIF (LAMDA.GE.3.6) THEN
01030 SIGU = SIGYP/(LAMDA**2)
01040 ENDIF
01050*
01060 LOADU = SIGU*A
01070*
01080**kkax* PRINTING OUTFUT LA L
01090#
01100 PRINT*,' '
01110 PRINT*,' '
01120 PRINT*, 'STRUCTURAL STABILITY RESEARCH COUNCIL (BJORHOVDE)} STANDARDS
01130 PRINT*,' °'
01140 IF (ANS.EQ.1l) THEN
01150 PRINT 10,SIGU, 'PSI’'
01160 PRINT 20,LOADU, 'LB'
01170 ELSE
01180 SIGU=SIGU/1000000.0
01190 PRINT 10,SIGU, 'MPA'
01200 PRINT 20,LOADU, 'NEWTONS'
01210 ENDIF
01220%*
01230* FORMAT STATEMENTS
01240*
01250 10 FORMAT(2X,'THE MEAN AXIAL COMPRESSIVE STRESS AT FAILURE IS',Fl10.1,
01260+ 1X,A3
01270 20 FORHAT(ZX,‘T%E MEAN AXIAL LOAD AT FAILURE IS',F10.1,1X,A)
01280*
01290 STOP

01300 END
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14.21. Consider a 3.5-m-long pinned end steel column of wide-flange type W254 X 79. The material has
a yield point of 250 MPa and a modulus of 200 GPa. Use the FORTRAN program of Problem
14.20 to determine the mean axial compressive stress just prior to collapse as indicated by the
SSRC relations.

The constants of this cross section are found from Table 8-2 of Chap. 8 to be I = 43.1 X 10°° m* and
A =10.200 % 10 “m’. Using these values, together with the designated length, yield point, and modulus,
the self-prompting program prints as follows:

run
PLEASE INDICATE YOUR CHOICE OF UNITS:
1 - UsCs
2 - 85I

ENTER 1,2
? 2
PLEASE INPUT ALL DATA IN UNITS OF NEWTON AND/OR METER...

ENTER COLUMN LENGTH:

? 3.5

ENTER THE CROSS-SECTIONAL PROPERTIES...
MOMENT OF INERTIA, I:

? 43.1E-6

AREA:

? 10200E-6

ENTER THE MATERIAL YIELD POINT:

? 250E+6

ENTER THE VALUE FOR YOUNG'S MODULUS:

? 200E+9

FINALLY, ENTER THE END FIXITY COEFFICIENT, K:
71

STRUCTURAL STABILITY RESEARCH COUNCIL (BJORHOVDE) STANDARDS:

THE MEAN AXIAL COMPRESSIVE STRESS AT FAILURE IS 207.8 MPA
THE MEAN AXIAL LOAD AT FAILURE IS 2119270.2 NEWTONS

SRU 0.786 UNTS.

14.22. Consider an initially straight, pin-ended column subject to an axial compressive force applied
with known eccentricity e (see Fig. 14-11). Determine the maximum compressive stress in the

column.

Fig. 14-11
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The differential equation of the bar in its deflected configuration is

d!
EIK}; =—Py

which has the standard solution

y=cosin JEx) + cocon  [2o0)

Since y = ¢ at each of the ends x = —L/2 and x = L/2, the values of the two constants of integration are
readily found to be

CL=D G =
(Vzi3)
cos —_——

Thus, the deflection curve of the bent bar is

Eenatcy

The maximum value of deflection occurs at x = 0, by symmetry, and is

- /f_E)
Yemax = eseC( 3

Introducing the value of the eritical load P, as given by (9) of Problem 14.1, this becomes

- em(f i)
e 2VP,
Evidently the maximum deflection, which occurs at the center of the bar, becomes very great as the load
P approaches the critical value. The phenomenon is one of gradually increasing lateral deflections, not
buckling. The maximum compressive stress occurs on the concave side of the bar at C and is given by

M_.c P Pec (-rr P)
= e e —

I A 1 \2Vp,

where ¢ denotes the distance from the neutral axis to the outer fibers of the bar. If we now introduce the
radius of gyration r of the cross section, this becomes

o _f[“Em(i /i”
A r? 2r VAE
This is the secant formula for an eccentrically loaded long column. In it, P/A is the average
compressive stress. If the maximum stress is specified to be the yield point of the material, then the
corresponding average compressive stress which will first produce yielding may be found from the
equation

Omas = 2+
™A

ec L [P
€ ool [Do
1+ m(Zr AE)

For any designated value of the ratio ec/r?, this equation may be solved by trial and error and a curve of
PIA versus Lir plotted to indicate the value of P/A at which yielding first begins in the extreme fibers.

14.23. Obtain the load-deflection relation for a pin-ended column subject to axial compression and
undergoing finite lateral displacements.

The treatment presented in Problem 14.1 is restricted to extremely small lateral deflections because
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Fig. 14-13 Fig. 14-14

this was the assumption made in deriving Eq. (/), the Euler-Bernoulli equation. To obtain a more general
representation let vs introduce the angular coordinate 6 and arc length s, in addition to the x- and
y-coordinates (see Fig. 14-12).

An enlarged view of the deformed bar illustrates the angular coordinates more clearly (Fig. 14-13).
Note that d6 is negative. Let us now examine an element of arc length ds bounded by two adjacent cross
sections of the bar. Prior to loading these cross sections are parallel to each other but after the bar has
deflected laterally they have the appearance shown in Fig. 14-14 in which they subtend a central angle d6.
In a manner similar to that used in Problem 8.1, we may determine the normal strain of a fiber a distance
y from the neutral surface to be

ydé

E=-—~I—=

5

mis

where o is the longitudinal stress acting on this fiber. But from Problem 8.1 we have o = My/l. Thus

ydo _My
ds EI

or, since M = — Py for the bar,

de Py

= -z 1

ds El o
If we let a* = P/E] then

dé

—=—a’y 2)
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from which

dy .
—_—= —_—= - 3
5 o 2 o*sin 6 &)}

This equation is valid for large, finite lateral deflections of the bar in contrast to (5) of Problem 9.1 which
is limited to very small values of deflection. To solve (3), let us multiply through by the integrating factor

2(d6/ds):
dede de
—_—— = — M — 4
2 T 42 2¢7(sin 6) I (4)
Integrating,
dey?
(9}) = 26’ cos6+C, 5)
When x = 0, 8 = 6, (the initial slope) and at this same point y = 0; hence dé/ds = 0 from (2). Thus,
from (2),
0 = 2a’cos b+ C,
so that
js—a=— 2aVeos 6 —cos by (6)

where the negative square root is taken because d6 is always negative. This may be transformed to
dé ’ ., 08 . ,6
o 2a  fsin’ 5 T sino (7)
We next introduce the change of variables
. 6 .
sin> = ksing (8)
where ¢ is a parameter assuming the value 7/2 when x = 0 and the value 0 when x = L/2, from which

k= sin% (9)

Then # = 2 arcsin(k sin ¢)
2k cos pde

and de= m (10)

From (7), (8), (9), and (10) we have

d
ViFm T an

Integrating the last equation and remembering the definition of ¢ at its endpoint values,
Li2 0
d
CI'J. ds = — T-?;‘_?‘
A o V11— Ksin’

or LY 12)
“2 L Vi- Ksin ¢ (

The right-hand side of (12) is termed the complete elliptic integral of the first kind with modulus k and
argument ¢. Tabulated values of the integral for any specified value of k are readily available; see for
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example B. O. Peirce, A Short Table of Iniegrals, 4th ed., Ginn, 1957. To employ these tables we must select
a value of 6, thus fixing k from Eq. (9). Then (12} may be rewritten in the form

_“_E"[ m__d¢ : 13
A L Vi-Ksinlé )

to determine the axial load P corresponding to this assumed value of 6,. To find the maximum deflection
occurring at x = L/2, we have from geometry

js—y=sinﬂ = 2singcosg (14)

From (11) this becomes

dy __ adyV1-Ksin’¢

ds dé (75)
Equating the right sides of (14) and (15),
- V1 — Ksin? _
ady :Rb KSI'® _ gk(sin ) VI~ Ksiné
or ady = —2ksin¢dd (I6)
Integrating,
ay =2kcos ¢+ C;
When y = 0, ¢ = #/2 from which C; = 0. When x = L/2, ¢ =0 and y = ypa, = A. Thus aA = 2k or
2k 2k kL
. P = dé (17)
;Ef A ;1—kzsin2¢

The procedure is as follows:

1. Select a value of 6, and determine k from Eq. (9).

2
d
2. Ascertain the value of I 7 kd; a from tabulated values in, for example, B. O. Peirce, and
— k*sin

then calculate the axial force P corresponding to this value of 6, from Eq. (13).
3. Calculate the central deflection A from Eq. (7).
Results of this computation for selected values appear in Table 14-1 in which the starred value 9.87 (= #*)

indicates that the simple theory of Problem 14.1 actually gives an exact result if it is assumed that the end
slopes are zero.

Table 14-1

6, f"” d¢ PL’ A
degrees k N Ty — -

& A 1- Ksin’¢ El L

0 0 72 9.87 (= 7)*| 0

40 0.342 1.6200 10.50 0.211

80 0.643 1.7868 12.75 0.360

120 0.866 2.1565 18.56 0.403

160 0.985 3.1534 39.76 0.313

From the above the progressive states of deformation of the bar are as shown in Fig. 14-15.
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0, = 120°; % = 0.408

P "w=20 P
(straight bar)

# = 160°; T = 0313

'.=W;-E=0.Sll

m

Fig. 14-15

.
~

This problem was first investigated by L. Euler in 1744 and the shape of the elastic curve is termed
the elastica. It is only through use of this more exact finite-deflection theory that the amplitude of the
lateral deflection may be determined. The approximate small-deflection treatment of Problem 14.1 does

not permit determination of this quantity.

14.24. A problem that arises in insertion of a fiber-optic cable in a surrounding rigid conduit is that
the cable buckles under certain axial “pushing” forces. This situation is represented in Fig.
14-16(a) by a long slender bar (the cable) having simply supported ends (and represented by
a line element) with a clearance A between the bar and the inside of the surrounding rectangular
conduit. Assume that the behavior of the cable in this conduit is two-dimensional and determine
the behavior of the cable under increasing axial compressive forces P.*

From Problem 14.1 when the axial force P = EJ/L?, the bar buckles and touches the conduit walls in
the central region which is of unknown length L,. For equilibrium of the left region of length L,, there is
a concentrated force R acting at the pin, as well as another at x = L, as indicated in Fig. 14-16(b). The
differential equation of the deformed bar in the region x <L, is

2

EI%+P)' = Rx

where the transverse force R must be considered to be exerted on the bar by the pin at A. The solution
of this equation is found as the sum of the general solution to the homogeneous equation plus a particular
solution to the nonhomogeneous equation, as in Problem 14.3. Thus we have

y=Asinm+Bcosax+% n

where ¢ = P/EI. The boundary conditions for the region of length L, are (a) when x = 0, y = 0; (b) when
x = L,, y=A; and (c) when x = L,, dy/dx = 0. From (a) we have B = 0. From (b) and (c) we get

R
Asinal, + —P;Ll =A (2)
R
AacosaL,+;=0 (3)

Since the region of the deformed bar betweenx = L, and x < (L, + L,) is in contact with the rigid conduit,

*The author is indebted to Professor V. L. Feodosyev of the Moscow Higher Technical School for suggesting this problem and
for his discussions concerning it.



COLUMNS

e e
(e)
P T N TS Y
@)
Fig. 14-16

[CHAP. 14

the cable is straight in this region, and from Eq. (5) of Problem 9.1 the bending moment in that region is
zero. Thus the Euler-Bernoulli equation of the beam in this central region of length L, becomes

PA+Rx+R(x~L)=0

from which we have

From Eq. (2) we now have
Asinal, +A=A
and thus al, = 7 from which e = @/4 or L, = =/2. Substituting (5) and (6) in (2), we obtain

w

or = —

)

)

(6)

(7)

8)

When only the midpoint of the bar of length L is in contact with the interior wall of the conduit, i.e.,

when L, = L/2, Eq. (8) becomes

_4wEl

I B

%)
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This indicates that for values of axial force lying between

7 El 417 El
K < P<—Lz

(10)

the flexibie fiber-optic cable touches the rigid wall only at the midpoint of the length of the conduit, i.e.,
at x = L/2. Only for values of P> 4#% EI/L? is the flexible cable in contact with the conduit interior for a
finite length. This is indicated in Fig. 14-16(b).

Next, the central region of length L, may buckle for sufficiently large values of compressive force P.
The central portion obviously behaves as a clamped end column as shown in Problem 14.3, and it buckles

at the load
477 El
= 1
into the configuration shown in Fig. 14-16(c). But from Fig. 14-16(b), we have
20, +L,=L
so from Eq. (5) we have
L=L-2 (E) (12)
o
If we now equate from the values of P from (8) and (12), we find L, = /4, and from (8) we find for this
value of L;
1672 El
P= I (13)

By analyses such as the above, it can be shown that increases in axial force P over that given by Eq.
(13) lead to the value L, = L/6, and that configuration is retained until the axial load is

362Kl

P e

(14

Still greater values of axial load will lead to the configuration indicated in Fig. 14-16(d). Thus, simple
buckling theory has led to the plausible configurations indicated in Fig. 14-16.

14.25. Determine the deflection curve of a pin-ended bar subject to combined axial compression P
together with a uniform normal loading as shown in Fig. 14-17.

One convenient coerdinate system to designate points on the deflected bar is shown in Fig, 14-17.
There, the origin is situated at the point of maximum deflection. The bending moment at an arbitrary point
(x,y) on the deflected bar is written most easily as the sum of the moment of all forces to the right of (x,y)

¥

Fig. 14-17
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and with algebraic signs consistent with the definitions of positive and negative bending introduced in
Chap. 6.
The bending moment is thus

L_
e t(hed) (4 )

so that the differential equation of the deflected bar is

dl 2
Ef~—’—’=PA—Py+%(-L—~x*) )

dx? 4
n= |2
EI

we have the nonhomogeneous differential equation of the bar

If we introduce the notation

dy _w L2, 2 A2
dx2+"y_2E!(4 x)+nA

The solution is given by the usual methods of differential equations as the sum of (@) the solution of
the corresponding homogeneous equation, and (b) any particular solution of the entire nonhomogeneous
equation. Thus we may write the solution as

1? 2
y = Acosnx +Bsinn.r-%(T—xz) +2n_:P+ A
where A and B are constants of integration. These are easily found by realizing that, because of symmetry
of the bent bar, the deflection is A at x = L/2 and also the bar has a horizontal tangent at x = 0. This
leads to

= A+ (sec"—'[icosnx—l)—n’(-f'i—;—-z)]
Y nP 2 8 2

as the solution of the nonhomogeneous equation. The peak deflection occurs at the midpoint of the bar
(the origin of our coordinate system) and is given by

w nl nr?
= — __'l —_—
a n’P[(secZ ) 8 ]

14.26. Two identical rigid bars AB and BC are pinned at B and C and supported at A by a pin in a
frictionless roller that can only displace vertically. A spring of constant k is attached to bar BC,
as shown in Fig. 14-18(a). Determine the critical load of the system.

A free-body diagram of the entire system of two rigid bars is shown in Fig. 14-18(b). The system is
shown in a slightly deflected configuration characterized by the angle A8 corresponding to its buckled
shape. Ends A and C are pinned so it is necessary to show two components of pin reaction at each of these
points. The spring elongates an amount a(A68) and consequently exerts a force ka(A#6) on bar BC. The pin
at B is internal to this free body; hence no pin forces should be shown. From statics,

+13 M, = C,(4a) — ka(A6) (3a) = 0

_ 3ka(A6)

C, 2
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Fig. 14-18

Next, consider the free-body diagram of the lower bar BC shown in Fig. 14-18(c). Now the pin forces
at B become external to this free body, and from statics we have

3ka(A6

(2a) — P,,a(2a A8) — [ka(A6)]a = O

ka
Pcr_T

It is impossible to determine (A6) by this approach.

Supplementary Problems

14.27. A steel bar of solid circular cross section is 50 mm in diameter. The
bar is pinned at each end and subject to axial compression. If the
proportional limit of the material is 210 MPa and E = 200 GPa,
determine the minimum length for which Euler’s formula is valid.
Also, determine the value of the Euler buckling load if the column has
this minimum length. Ans. 1.21m, 412kN

14.28. The column shown in Fig. 14-19 is pinned at both ends and is free to
expand into the opening at the upper end. The bar is steel. is 25 mm
in diameter, and occupies the position shown at 16 °C. Determine the
temperature to which the column may be heated before it will buckle.
Take a = 12X 107%°C and E = 200 GPa. Neglect the weight of the
column. Ans. 293°C

14.29. A ilong slender bar AB is clamped at A and supported at B in such a
way that transverse displacement is impossible as in Fig. 14-20, but the Fig. 14-19
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14.30.

14.31.

14.32.

14.33.
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Fig. 14-20

end of the bar at B is capable of rotating about B. Determine the differential equation governing the
buckled shape of the bar.  Ans. tannL = nl where n* = PIE]

A bar of length L is clamped at its lower end and subject to both vertical and horizontal forces at the upper
end, as shown in Fig. 14-21. The vertical force P is equal to one-fourth of the Euler load for this bar.
Determine the lateral displacement of the upper end of the bar.  Ans. 16(4 — m)RLY 7 El

Fig. 14-21

A bar of length L and flexural rigidity £l has pinned ends. An axial compressive force

7 El
412
is applied to the beam and a bending moment M is applied at one end. Determine the rotational stiffness,
i.e.. applied moment per radian of rotation at that end of the bar. Rework the problem for the case of an
axial tensile force of the same numerical value.
247EI 347E1
L ' L

P=

Ans.

An initially straight bar AC is pinned at each end and supported at the midpoint B by a spring which resists
any lateral movement & of B with a lateral force (kE/L*)8. The bar is of length 2L and least flexural rigidity
El Equal and opposite thrusts P are applied at the end C as well as at the centroid of the bar at 8. In any
deflected form the line of action of the thrust applied at B remains parallel to the chord AC. Determine
the minimum buckling load of the system.

E
Ans. P,=p rﬁ where g is the smallest positive root of the equation

B 3k+(9+kpg-p
tanf 3k — )

A long thin bar of length L and rigidity EJ is supported at each end in an elastic medium which exerts a
restoring moment of magnitude A per radian of angular rotation at the end. Determine the first buckling
load of the bar.

al. P
Ans. lan?— Y where o =

o~
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14.34.

14.35.

14.36.

14.37.

14.38.

14.39.

14.40.

1441

14.42.

A long thin bar is pinned at each end and is embedded in an elastic packing which exerts a transverse force
on the bar when it deflects laterally. When the transverse deflection at any point is given by y, the packing
exerts a transverse force per unit length of the bar equal to ky. Determine the axial force required to buckle

the bar.

7 El kL?
Ans. P, = ( 2

I + e EI) where n is the integer for which P, is minimum
Use the AISC formula to determine the allowable axial load on a W10 X 54 column that is 22 ft long. The
yield point of the material is 34,000 Ib/in” and the modulus is 30 X 10°1b/in>.  Ans.  197,2501b

Use the AISC formula to determine the allowable axial load on a W254 X 79 column that is 14 m long. The
yield point of the material is 250 MPa and the modulus is 200 GPa. Ans. 226500N

A W12 X 25 pin-ended column made of steel having a yield point of 36,0001b/in’ and a modulus of
30 % 10°Ibfin? is 30 ft long. Use the FORTRAN program of Problem 14.17 to determine the allowable axial
stress and load based on AISC specifications. Ans. 2340 1b/in%, 17,280 1b

A W254 X 79 pin-ended column made of steel having a yield point of 250 MPa and a modulus of 200 GPa
is 14 m long. Use the FORTRAN program of Problem 14.17 to determine the allowable axial stress and
load based on AISC specifications. Ans. 222 MPa, 226 kN

Consider a pinned end column 9 m long of wide flange designation W203 X 28. The yield point of the
material is 250 MPa and the modulus is 200 GPa. Use the FORTRAN program of Problem 14.20 to
determine the mean axial compressive stress as well as axial load just prior to collapse as indicated by the
SSRC equations.  Ans. 21.7 MPa, 78.2kN

Consider a pinned end column 22 ft long of wide flange designation W10 X 54. The yield point of the steel
is 34,000 Ib/in? and the modulus is 30 X 10°1b/in>. Use the FORTRAN program of Problem 14.20 to
determine the mean axial compressive stress as well as load just prior to collapse as indicated by the SSRC
equations.  Ans. 18,200 Ib/in?, 289,000 b

Determine the deflection curve of a pin-ended bar subject to axial compression together with a central
transverse force as shown in Fig. 14-22.

_ Qsinnx _2 _ P
Ans. y——"L ZPI where n £l
2Pncos—
2
|
g *.») %
3
P | | P x
[ L L |
2 o] 2
Fig. 14-22

A pin-ended bar of flexural rigidity EI is subject to the two transverse loads indicated in Fig. 14-23, each
being one quarter of the Euler axial buckling load of the bar and simultaneously the axial ioads each being
half the Euler buckling load of the bar. Determine the peak transverse deflection of the bar.

Ans.  0.008L
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14.43. The system of two rigid vertical bars A8 and BC shown in Fig. 14-24 is pinned at the base C and restrained
against lateral motion at the top A, but is free to rotate there. The bars are also pinned at B. The midpoint
B is partially restrained against lateral displacement by the two linear springs, each offering k1b of

resistance per inch of lateral movement. The springs are load free prior to application of P. Determine the
buckling load P.,. Ans. P, =12k

Fig. 14-24

14.44. The rigid bar OA in Fig. 14-25 is pinned at O and supports a vertical force P at the upper end A. Point
A is tied back to the ground by a spring of constant k. The spring is load free when the rod OA is vertical.

Weights of all members are to be neglected. Determine the load P at which the system becomes
unstable. Ans. kL2

P
A—
=
=3
o
5
5
k L
-
o
)
K
~ 0
i L |

Fig. 14-25
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14.45. The guyed steel mast AB in Fig. 14-26 is pinned at A and braced by a planar system of two thin wires BC
and BD, as shown in Fig. 14-26. The moment of inertia of the mast is 3.00in® and its height is 50in. Its
modulus of elasticity is 30 X 10° Ib/in®. The wires are each of aluminum having modulus of 10 X 10° Ib/in?
and cross-sectional area 0.10in%. The mast is subject to a vertical force P applied at B. Determine the
magnitude of the buckling load. (Hint: It is necessary to consider rigid-body rotation of the mast about
A to the configuration AB' as well as independently computing the Euler-type buckling load of the mast
into one loop of a sine curve.) Ans. P =350,0001b




Chapter 15

Strain Energy Methods

Thus far in this book various techniques have been discussed for finding deformations and
determining values of indeterminate reactions. These techniques have essentially been based upon
geometric considerations. There are, however, many types of problems that can be solved more
efficiently through techniques based upon relations between the work done by the external forces and
the internal strain energy stored within the body during the deformation process. The present chapter
will discuss these techniques, which are somewhat more general and more powerful than the various
geometric approaches.

INTERNAL STRAIN ENERGY

When an external force acts upon an elastic body and deforms it, the work done by the force is
stored within the body in the form of strain energy. The strain energy is always a scalar quantity. For
a straight bar subject to a tensile force P, the internal strain energy U is given by

P’L
U=24E
where L represents the length of the bar, A is its cross-sectional area, and F is Young’s modulus. This
expression is derived in Problem 15.1.
For a circular bar of length L subject to a torque T, the internal strain energy U is given by

_T:L
2GJ
where G is the modulus of elasticity in shear and J is the polar moment of inertia of the cross-sectional
area. This expression is derived in Problem 15.2.
For a bar of length L subject to a bending moment M, the internal strain energy U is given by
ML
2E1

U=

where I is the moment of inertia of the cross-sectional area about the neutral axis. This is derived in
Problem 15.3.

Note that in each of these expressions the external load always occurs in the form of a squared
magnitude, hence each of these energy expressions is always a positive scalar quantity.

SIGN CONVENTIONS

Strain energy methods are particularly well suited to problems involving several structural
members at various angles to one another. The fact that the members may be curved in their planes
presents no additional difficulties. One of the great advantages of strain energy methods is that
independent coordinate systems may be established for each member without regard for consistency
of positive directions of the various coordinate systems. This advantage is essentially due to the fact
that the strain energy is always a positive scalar quantity, and hence algebraic signs of external forces
need be consistent only within each structural member.

392
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CASTIGLIANO’S THEOREM

This theorem is extremely useful for finding displacements of elastic bodies subject to axial loads,
torsion, bending, or any combination of these loadings. The theorem states that the partial derivative
of the total internal strain energy with respect to any external applied force yields the displacement
under the point of application of that force in the direction of that force. Here, the terms force and
displacement are used in their generalized sense and could either indicate a usual force and its linear
displacement, or a couple and the corresponding angular displacement. In equation form the
displacement under the point of application of the force P, is given according to this theorem by

aU
P,

8n=

This theorem is derived in Problem 15.8.

APPLICATION TO STATICALLY DETERMINATE PROBLEMS

In such problems all external reactions can be found by application of the equations of statics.
After this has been done, the deflection under the point of application of any external applied force
can be found directly by use of Castigliano’s theorem. This is illustrated in Problems 15.9 and 15.10.
If the deflection is desired at some point where there is no applied force, then it is necessary to
introduce an auxiliary (i.e., fictitious) force at that point and, treating that force just as one of the real
ones, use Castigliano’s theorem to determine the deflection at that point. At the end of the problem
the auxiliary force is set equal to zero. This is illustrated in Problems 15.9, 15.12, 15.13, and 15.19.

APPLICATION TO STATICALLY INDETERMINATE PROBLEMS

Castigliano’s theorem is extremely useful for determining the indeterminate reactions in such
problems. This is because the theorem can be applied to each reaction, and the displacement
corresponding to each reaction is known beforehand and is usually zero. In this manner it is possible
to establish as many equations as there are redundant reactions, and these equations together with
those found from statics yield the solution for all reactions. After the values of all reactions have been
found, the deflection at any desired point can be found by direct use of Castigliano’s theorem. This is
illustrated in Problems 15.16 through 15.18.

ASSUMPTIONS AND LIMITATIONS

Throughout this chapter it is assumed that the material is a linear elastic one obeying Hooke’s
law. Further, it is necessary that the entire system obey the law of superposition. This implies that
certain unusual systems, such as that discussed in Problem 1.17, cannot be treated by the techniques
discussed here.

Solved Problems

15.1. Determine the internal strain energy stored within an elastic bar subject to an axial tensile
force P.

For such a bar the elongation A has been found in Problem 1.1 to be A = PL/AE, where A represents
the cross-sectional area, L is the length, and E is Young’s modulus. The force-elongation diagram will
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Lol ! )

(7]

(a) ()

Fig. 15-1

consequently be linear, as shown in Fig. 15-1(b). For any specific value of the force P, such as that
corresponding to point B in the force-elongation diagram, the force will have done positive work indicated
by the shaded area OBA. This triangular area is given by ; PA. Replacing A by the value given above, this
becomes P’ LI2AE. This is the work done by the external force and the work is stored within the bar in
the form of internal strain energy, denoted by U. Hence

PL
v 2AE
Essentially, the elastic bar is acting as a spring to store this energy. The same expression for internal strain
energy applies if the load 1s compressive, since the axial force appears as a squared quantity and hence the
final resuit is the same for either a positive or negative force.
If the axial force P varies along the length of the bar, then in an elemental length dx of the bar the
strain energy is

P?dx
dau =
2AE
and the energy in the entire bar is found by integrating over the length:
L Pldx
U= 7aE

Determine the internal strain energy stored within an elastic bar subject to a torque T as shown
in Fig. 15-2(a).

T .8

(a) (4
Fig. 15-2

In Problem 5.3, the angle of twist § has been found to be 8 = TL/GJ, where G is the modulus of
elasticity in shear, L is the length, and J is the polar moment of inertia of the cross-sectionai area. According
to this expression, the relation between torque and angle of twist is a linear one, as shown in Fig. 15-2(b).
When the torque has reached a specific value such as that indicated by point B, it will have done positive
work indicated by the shaded area OBA. This triangular area is given by 376, or 72 L/2GJ. This work done
by the external torque is stored within the bar as internal strain energy, denoted by U. Hence

_T°L
267
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15.3.

154.

If the torque T varies along the length of the bar, then in an elemental length dx the strain
energy is

T2dx
=51
and in the entire bar it is
U= LT dx
A 2GJ

Determine the internal strain energy stored within an elastic bar subject to a pure bending
moment M.

In Problem 8.1 is shown an initially straight bar subject to the pure bending moment M which deforms
it into a circular arc of radius of curvature p. In Eq. (7) of that problem it was shown that M = El/p,
where / denotes the moment of inertia of the cross-sectional area about the neutral axis. But the length
of the bar, L, is equal to the product of the central angle 6 subtended by the circular arc and the radius
p. Thus

M 1 6 g = ML

Et p L El
According to this the relation between moment and angle subtended is a linear one, and this is illustrated
in Fig. 15-3. When the moment has reached a specific value M, such as that indicated by point B, it will

have done work indicated by the shaded area OAB. This area is given by }M6. or M* L/2E . This work done
by the external moment is stored within the bar as internal strain cnergy. denoted by U. Hence

Fig. 15-3

If the bending moment M varies along the length of the bar, then in an clemental length dx the strain
energy is

Mdx
U=k
and in the entire bar it is
L M2 dx
U= 2m

0

Consider the two simply supported beams shown in Fig. 15-4. Both are of rectangular cross
section and of equal width. The materials are identical. The first beam has constant height along
the length, the second has a small groove in the center which reduces the height by one-fifth.
The length of the groove along the axis is negligible. The maximum stress in each bar due to
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the action of the central force P is the elastic limit of the material. Neglecting the effect of stress
concentrations, determine the ratio of internal strain energies in the two bars.

For the first bar, the section modulus is

1 bk )
zZ= < 05k 0.167hib
For the second bar, in the grooved region the section modulus is
I {b(0.8h,) 3
=-="——""=0107h:b
c 0.4k, -
and in the thicker region of depth h; the section modulus is
I _ bk :
=—==—==0.16Th:b
£ 0sm MO

In general. for bending we have the bending stress at the outer fibers of a bar given by the relation
o = MIZ. Sincc the maximum stresses in each bar are equal, we have

0.167hib =0107h3b  or  h, = 1.25h,
The strain energy in the first bar is
ML M’L
2E1  2E(LbhY)

U]=

The strain energy in the second bar, since the groove is of negligible length, is
_ ML
2E[5(125m)]

The loadings and lengths are identical. hence we need not calculate M?L to obtain the desired ratio,
which is

U,

U,:U, =0.512

This indicates that a grooved bar is very ineffective in storing internal strain energy. This is an important
consideration in the design of bars to withstand dynamic loadings.

15.5. Consider a vertical bar of uniform cross section with a flange at the lower end (Fig. 15-5). A

weight W is released from the top of the bar and falls freely along the bar until it strikes the
flange. Determine the maximum elongation of the bar and also the maximum stress.

To solve this problem we shall introduce several simplifying assumptions: (a) the weight of the vertical
bar is very small compared to W. (b) there are no losses of energy due to friction or local distortion, and
(c) the stress-strain diagram of the material of the bar is the same for dynamic loading as for static.
Actually, a more sophisticated treatment would take strain wave propagation in the bar into account, but
that is beyond the scope of the present study.
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Fig. 15-5

The weight W falls through the distance L and after striking the flange extends the bar an unknown
amount A. At this maximum extension the tension in the bar is maximum and the equation relating work
done by W and the internal strain energy of extension at this instant of maximum deformation is

PL
W(L+A4)= m (1)
But A = PL/IAE, and substituting for P in (1), we get
AEN?
W(L+4)= 2L 2)

The static extension of the bar due to the weight W would be A, = WL/AE. If the value of W from this
expression is introduced in the above ¢quation and the resulting quadratic equation solved for the

unknown extension A. we get
A,
A=A+ fA},+?v1 3)

where g is the acceleration due to gravity and v = V2gL is the velocity with which W strikes the flange.
If the length of the bar, L, is very large compared to A,, then the above expression becomes

approximately
14,
A= [—4? (4)
4
In this case the axial stress is given by

P _AE E |A, v wy? 2E
A L LVNg V28 AL
It is of interest 1o note that in the dynamic case the stress depends upon the length L as well as the Young's

modulus E. The corresponding static stress does not involve either of these factors.
For the special case of a suddenly applied load W acting on the flange, the length L through which

the weight falls may be set equal to zero in (3) to obtain
A=2A, (6)

Thus, for this particular problem, a suddenly applied load produces a deflection twice as great as would
be produced by a gradually applied load.

)

A cantilever beam is struck at its tip by a body of weight W falling freely through a height A
above the beam, as shown in Fig. 15-6. Neglecting the weight of the beam, determine the total
deflection at the tip.



398

15.7.

STRAIN ENERGY METHODS [CHAPF 15

W%{__
o _k

Fig. 156

rl"'

By the time the weight has deflected the tip of the beam to its maximum value, the weight will have
done an amount of work given by

W(h + A) ()

If we let P denote the force exerted by the weight on the beam at the time of peak deflection, then
at this moment the strain energy in the beam is given by PA/2. Thus, once the work done by the external
force is stored within the beam as internal strain energy we have

Wh+4) = % @
or = g;i(h +4) (K))

But from Problem 9.2 we know that if this force P acts at the tip of a cantilever beam the deflection at
that point is

2w L}
A= l_ﬂ_(h +A}:|§E ()

where I is the moment of inertia of the cross section about the neutral axis through the centroid. However,
the deflection due to the weight W, if it were statically applied, is

L (5)
and hence (4) becomes
A?—2A,A-2hA, =0 (6)
Solving,
A=A,+Val+2mA, (7)

where the positive square root is taken so as to obtain the maximum defiection. For the special case of a
suddenly applied load at the tip, # = 0, and (7) yields A = 2A,,. Just as in Problem 15.5, a load suddenly
applied produces twice the deflection it would if it were applied gradually.

A simply supported beam is struck at its midpoint by a weight W = 1 kN falling freely from a
height of & = 100 mm above the top of the beam. The beam is 5 m long and of circular cross
section 100 mm in diameter. Take E = 200 GPa. Determine the maximum deflection of the
beam.

The work done by the falling weight in producing the maximum central defiection A is
Wk + A) )
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15.8.

If P denotes the force exerted by the weight on the beam during the moment of maximum deflection, then
the strain energy in the beam is PA/2. Thus

% = W(h +4) (2)
2W(h +
A
But the central defliection of a centrally loaded, simply supported beam is given in Problem 9.12 as
pPL?
- 48El “)
Substituting the above value of P, this becomes
C2W(h+A) L}
ATTTR T wmE @)
But the static deflection corresponding to W is A, = WL48EI, and hence (5) can be written in the form
A —280,A-2hA, =0 (6)
Solving,
A=A+ VAL+2hA, (7)
For the beam under mnsideratibn,
4
I= ™ _ 4.9 x 10°* mm*

The maximum deflection is found from (7) as

A = (1000) (5) (10°)*
* 48(200 % 10° X 107%) (4.9 % 10%)

Thus, A = 2.66 + V(2.66)* + 2(100) (2.66) = 25.9 mm

= 2.66 mm

Derive Castigliano’s theorem.

Let us consider a general three-dimensional elastic body loaded by the forces Py, P,, etc. (Fig. 15-7).
These would include forces exerted on the body by the various supports. We shall denote the displacement
under P, in the direction of P, by A,, that under P, in the direction of P, by A, etc. If we assume that all

Py
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forces are applied simultaneously and gradually increased from zero to their final values given by Py, P,,
etc., then the work done by the totality of forces will be

P P, P
U=?‘a.+?az+423.a,+--- )

This work is stored within the body as elastic strain energy.
Let us now increase the nth force by an amount dP,. This changes both the state of deformation and
also the intcrnal strain energy slightly. The increase in the latter is given by

au
TP,,JP" (2)

Thus, the total strain energy after the increase in the nth force is

Y ap 3)

-+
v apP, "

Let us reconsider this problem by first applying a very small force dP, alone to the elastic body. Then,
we apply the same forces as before, namely, P,, P;, P;, etc. Due to the application of #P, there is a
displacement in the direction of dP, which is infinitesimal and may be denoted by dA,,. Now. when P, P,,
Py, etc., are applied, their effect on the body will not be changed by the presence of dP, and the internal
strain energy arising from application of P,. P,, P,, elc., will be that indicated in (/). But as these forces
are being applied the small force 4P, goes through the additional displacement A, caused by the forces
Py, P,, Py, etc. Thus. it gives rise to additional work (dP,)A, which is stored as internal strain energy and
hence the total strain energy in this case is

U+ (dP,)A, (4)

Since the final strain energy must be independent of the order in which the forces are applied, we may
equate (3) and (4):

alu
+— = U+
U+ 5P, = U+ (dP)A,
aU
or A, = E’; (5 )

This is Castigliano's theorem; i.c., the displacement of an elastic body under the point of application
of any force, in the direction of that force, is given by the partial derivative of the total interpal strain
energy with respect to that force. Equations for U are given in Problems 15.1, 15.2, and 15.3 for axial,
torsional, and bending loadings, respectively. However, instead of using the integral forms of the equations
in those problems, it is usually more convenient to differentiate through the integral signs. and thus for a
body subject to combined axial. torsional, and bending effects, we have for the displacement A, under the
force P,

A = P(APIaP,)ds . T(aTIaP,) ds N M(oM{oP,)ds
" J AE f GJ j El
For a body composed of a finite number of elastic subbodies, these integrals are replaced by finite
summations, as shown in Problem 15.9.

The term “force" here is used in its most general sense and implies either a true force or a couple,
For the case of a couple, Castigliano’s theorem gives the angular rotation under the point of application
of the couple in the sense of rotation of the couple.

It is important to observe that the above derivation required that we be able to vary the nth force,
P, independently of the other forces. Thus, P, must be statically independent of the other external forces,
implying that the energy U must always be expressed in terms of the statically independent forces of the
system. Obviously, reactions that can be determined by statics cannot be considered as independemt
forces.
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15.9. The bars AB and CB of Fig. 15-8 are pinned at A, C, and B and subject to the horizontal applied
load P acting at B. Use Castigliano’s theorem to determine the horizontal and vertical
components of displacement of pin B.

In order to use Castigliano’s theorem, we must have a force at B acting in each of the directions in
which we seck the displacement. Since the real force P acts horizontally, we must consider that force as
well as an auxiliary force Q that we introduce in the vertical direction at B. Thus, the free-body diagram
of the pin at B appears as shown in Fig. 15-9.

Fig. 15-8

For equilibrium we have

SF,=P—F,sin45°=0  and therefore ~ F, = P\/2 )
ZF,=F,— Q- F,cos45°=0 and therefore F,=P+Q 2)
Castigliano's theorem applied to a bar system states that
F(oFI9P)L, F{aF13Q)L;
= —_— A = —_— 3
8= 2 F =27 AE, &

For our bar forces we have

Fi=P\V?2 = V2 =0
aF; dF,
= + — _—
FR=P+Q P 1 > 1

Now that we have taken the partial derivatives with respect to P and Q, we may set Q = 0.
Substituting in (3),

A - PVDOVDL ()L, _2PL, PL,

) AE; AE, AE, AE,
A - EVDOL,  PO)L, _ PL,
¥ A]El AQ.E: AIEz

which agree with the results found using a geometric approach in Problem 1.12.

15.10. The system shown in Fig. 15-10 consists of a horizontal bar CDF of bending rigidity EI, and
torsional rigidity GJ, which is rigidly welded at D to bar DB of bending nigidity EI,. At point
B the horizontal bar DB is attached to the vertical bar AB of cross-sectional area A and Young’s
modulus E. The support at C permits only rotation in the x-y plane about the z-axis and the end
F is restrained against angular rotation about the x-axis and can deflect only vertically.
Determine the vertical deflection at F due to the application of the load P acting parallel to the
y-axis.
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Fig. 15-10 Fig. 15-11

A free-body diagram of the bars CDF and DB is shown in Fig. 15-11, where R is the vertical reaction
at C and S is the axial force in bar AB. For equilibrium about the z,-axis, we have

M, = 8S(LY-(25L)P=0
§=25P
and for equilibrium in the y-direction
-Rc—P+5=0
R- = 1.5P

Let us introduce the variables u, v, and w as shown in Fig. 15-11 to denote positions of points in regions
FD, CD, and BD of the system. The bending and twisting moments are then given by

aM
In FD: M= Pu ;F =u
aM
In CD: M= Rcv = 15Pv — = L.5v
aP
3 3 15 ar 15
. = — = (25 - = — —_—=
In CDF T 5(4:.) @ .P)(4L) > pL =l
oM
In BD: M =Sw=(2.5P)w P = 2.5w

Castigliano’s theorem gives the deflection at F as the partial derivative of the total internal strain
encrgy with respect to F. As indicated by the bending moments in FD, CD, and BD, as well as the twisting
moment in CDF, and the axial force in AB, this becomes

® @ e

N [M(&Mf&P)ds , T(TIaP) (25L) | S(aSI9P) (%L)]
FToap T j El GJ AE

where s is a coordinate of length used as a variable of integration over the appropriate variable in each
of the bars indicated by the circled bar designators above the integrals. The twisting moment is constant
in CDF and the axial force is constant in AB, so there is no need to integrate to obtain the strain energy
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corresponding to these loads. Substituting the above values of bending and twisting moments and axial

force, we find
© @

Ao [P | (LSPY) (LSv)dy | (OO (25Pw) (2.5w)dw
F = J; -Efl A EII o Elz

@

, (BPLY(RL)25L) 4+ 25P) 2.5 GL)

GJ, AE
pPL? PL? PL} PL
= 1.875 +0.879 +8.79—+3.13—
ElL 087 EnL 7 GJ, 3 AE

15.11. The pin-connected framework shown in Fig. 15-12 consists of two identical upper rods AB and
AC, two shorter, lower rods BD and DC, together with a rigid horizontal brace BC. All bars
have cross-sectional area A and modulus of elasticity E. Determine the vertical displacement
of point D due to the action of the vertical load applied there.

This problem was considered by an approach involving the geometry of displacement in Problem 1.11.

Let us consider it now using Castigliano’s approach. We have already used statics to find bar forces in
Problem 1.11, and these are

PV2
Fpg = Fpc = “2_
P+ ( 2 ) L
V5)?
Fag=Fac= —7‘_‘
3
The deflection of D in the direction of P is given by Castigliano’s theorem as

o )

AE
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Substituting, we have

@@

2|5 () ()
AE

pL

gL’
=1 +1.333°—
Ap=1942-—+ 1333 —

which agrees with the result found by the geometric approach in Problem 1.11.

15.12. A structure is in the form of one quadrant of a thin circular ring of radius R. One end is clamped
and the other end is loaded by a vertical force P (see Fig. 15-13). Determine the vertical
displacement under the point of application of the force P. Consider only strain energy of
bending.

From statics, the reactions at the clamped end consist of a vertical force P and a couple PR. The
bending moment at the section in the ring located by the angle 6 is given by

M =PR—-P(R—Rcosb) = PRcos®  from which %=Rcos6
Castigliano's theorem states that the vertical deflection at A is given by
A = U _ (™ M(3MIdP)Rd6 _ (™ (PRcos6) (Rcos)RdO _ PmR’
P El A EI 4El

P P

Fig. 15-13 Fig. 15-14

15.13. Determine the horizontal displacement of point A in Problem 15.12.

Since there is no horizontal force applied at A, we must temporarily introduce an auxiliary force Q
shown in Fig. 15-14 in order to be able to use Castigliano’s theorem. This time, let us measure 8 from the
vertical, making it unnecessary to determine teactions at B. Thus, at the section denoted by 6 the bending
moment is

M = PRsin@+ Q(R— Rcos0) from which %= R—-Rcos@
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The horizontal displacement at A is given by
_aU _ ™2 M(aMIaQ)R d6
aQ o El

Now that the partial derivative has been taken, O may be set equal to zero, yielding

A,

A = ™ (PRsin 8) (R — Rcos6)Rd6 _ PR’
" EI 2E1

15.14. A thin circular ring in the form of one quadrant OA of a circle lies in the x-z plane and has
rigidly attached to it at the point A a straight bar AB also in the x-z plane. Both the ring and
the bar have bending rigidity E7 and torsional rigidity GJ. The unsupported end B is loaded by
a twisting moment represented by the vector T directed parallel to the x-axis as shown in Fig.
15-15. Determine the y-component of displacement of point B.

Fig. 15-15 Fig. 15-16

To utilize Castigliano’s theorem, we must introduce an auxiliary force Q in the direction of the desired
displacement; that is, Q must be directed downward and parallel to the y-axis. The view of the system
looking from the positive end of the y-axis toward the x-z plane appears as in Fig. 15-16. where n-n and
i-1 denote axes normal and tangential, respectively, to the ring at an arbitrary location denoted by the angle
0. In that figure the applied twisting moment T is shown, along with its components oriented in the n-n
and r-1 directions. The auxiliary force Q is represented by the tail of its vector representation at B to denote
its downward direction.

From Fig. 15-16 we have in the straight bar BA

M
M= Qu —=u

aQ

aT
T=T3 -3—Q_=0

In the quadramt AO from the geometry of the figure

M= Tﬂcose-i-Q(gsinG]

— =—3sinb

aQ 2
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R
and 7= Tﬂsin6+Q(R—Ecosﬂ)
ar R
+—-g =R —Ecosﬂ

Using Castigliano's theorem, we find when we set Q = 0 after taking the partial derivatives

A - [M(aMIdQ)ds [ T(3TI6Q) ds
. f El J GJ

@ @ @

2 .
~0 + 0 + J (75 cos ) [(R/2) sin 6]R d&
0

El

@

. J‘*’? (Tpsin 6)[R — (R/2) cos O]R dO
V]

GJ

_ TeR® Ty
=Er T 2q ™D

(CHAP. 15

15.15. A structure consists of a quadrant of a circular ring OA, to which is rigidly attached a bar BA
which in turn is welded to bar CB. These bars all lie in the horizontal plane x-z, as shown in Fig.
15-17, and all have bending rigidity ET and torsional rigidity GJ. Determine the vertical

deflection of point C due to the load P applied vertically there.

r&

Fig. 15-17 Fig. 15-18

It is first necessary to determine the bending and twisting moments at an arbitrary point in the
quadrant OA. Let us introduce the coordinate system shown in Fig. 15-18, where 6 denotes the angular
coordinate of this arbitrary point. The axes n-n and -t represent normal and tangential directions to the
circular ring at the point represented by the angle 8. From the geometry of Fig. 15-18, we have the bending

moment about n-n 10 be

M=M,..= P(Eﬁ) = P(gcos9+§sin B)
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and the twisting moment about r-r to be

R R .
T=T,,= P[(R——msﬁ)+-55m6]

2

From these equations we thus have in the ring OA

aM R .

—_—— +

PYI (sin 8+ cos 8)

drf R .

a—P-—E(I +sin @ COSG}

Next, in bar CB from Fig. 15-18 we have the bending moment at an arbitrary point represented by
u to be
oM
M= Pu SO F =u

and the twisting moment T in this bar is zero.
In bar BA the bending moment from Fig. 15-18 is M = Pv and the twisting moment is 7 = PR/2. Thus,
for BA

M_ TR
aP aP 2

By Castigliano’s theorem, the deflection of point C due to the force P is

I M(aM/aP) ds J‘ T(aT/aP) ds
AC = El +

Gl
1 J"ﬂ PR’
=— (sin 8+ cos Y Rd@
El A 4
1 (™ PR? J’m (Pu)u du
0

+— — (1 +sin6- ‘Rdo+
Gi) "4 (1+sin6—cos6)*Rde El

@
. R2 (Py)y dv R (PRi2)(RI2) (RI2)
[ & Gi

Therefore

A _E(£+£)+P_f"’(,,_l)
T qEI\2 3] 4Gy 2

15.16. A thin semicircular ring is hinged at each end and loaded by a central concentrated force P, as
shown in Fig. 15-19. Determine the horizontal reaction at each hinge.
A free-body diagram of this ring, Fig. 15-20, indicates that the desired reaction H is statically
indeterminate. We may formulate the bending moment in the right half of the ring as follows:
oM

I & ™
= - — —_ i —_— - 1 < < —
M 5 (R— Rcos@)— HRsin# and Rsin @ for 0<8 2
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Fig. 15-19 Fig. 15-20
According to Castigliano’s theorem, the horizontal displacement at the pin is given by
au
A, = —
" aH

But we know that this displacement is zero. Taking zdvantage of the symmetry about the centerline, we
may now write

0=8u=7y=2 El EI

1]

U ™2 M(oMIGH)R d6 _ J"“'? [(Pr2)(R — Rcos 8) — HRsin 6](—Rsin 8)R d6
1]

Solving for the unknown H: H = Pix.

15.17. In Problem 15.16, determine the vertical displacement under the point of application of the
central force P.

In almost all statically indeterminate problems it is necessary first to determine the redundant
reactions before any displacements can be found. For the present ring this has already been done in
Problem 15.16.

In the right half of the ring, the bending moment is

P P_ . Ll
M——E(R—Rmse)—;RsmB for 0{8{5
aM 1

R .
and T?};_E(R Rcos 6) 1_‘rsmtil

By Castigliano’s theorem, the vertical displacement under the point of application of P is

U _, [™ M(@MIaP)Rdo
I

A=
El

where we have taken advantage of symmetry. Thus

Ao "’*'[(P)‘Z)(R-Rcosﬂ)~(PR!w)sin6][§{R~Rcosﬁ)—(R!w)sinB]Rdﬂ_E(3_1r+_3__1
‘J; El T EI'\8  2m )

15.18. A structure in the form of a thin semicircular ring lies in a horizontal plane, has both ends
clamped, and is subjected to a central vertical force P, as shown in Fig. 15-21. Determine the
various reactions.

The vertical force reactions at A and C are each P/2 and the bending moment exerted by the support
on the ring at each of these points is found from statics to be PR/2. There is also another component of
reaction exerted by the support on the ring, i.e., a twisting moment T, acting at each of the points A and
C. These two types of moment reaction are best illustrated by the vector representation of moment in Fig.
15-22, where a double-headed arrow indicates a moment in the usual sense of the right-hand rule for vector
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To
PR
2
e -
]
s\
a./ d ~b
Fig. 15-21 Fig. 15-22

representation of moment. A segment of the ring to the arbitrary point represented by 6 (0 <6< m/2) is
shown and at this cross section given by 8 there is a bending moment about the oa-axis given by

P
M=—Rsinf- -EECOSG— T,siné
2 2
There is a twisting moment about the ob-axis given by

P PR
T= E(R—Rcosﬂ) —-—fsin9+ Tocos @

From these,

aM . ar
o sin 8 T, cos#é
Since the ring is completely restrained at points A and C. we may write (taking advantage of

symmetry)

i w2
0= = b =2 J‘ M(amxgnmde o J‘ T(ﬁTmG}‘j,)R do
n

o
where ¢ is used to denote angular rotation of an arbitrary point of the bar. and ¢, and &, are the zero
values of this quantity at the points A and C. Substituting,

PR PR
——sinf—-—cos H— ﬂ,sinﬁ){—sin 6)R do

o
U=j 2 2
1]

P PR
2 [E(R_ R cos ) — > sin@+ T,cos 6 ](cosGJRdG
+
j GJ
(4]

PR(2+ﬂ+2—1r
=t ar)

(1_1)
EI" GJ

15.19. The thin rod shown in Fig. 15-23 consists of the straight bar GFD attached to semicircular end
bars BCD and GHJ. together with two more straight bars JK and AB as indicated. There exists
a very small gap 24, between points A and K. Determine the magnitude of this gap when the
forces Q are applied.

El

Solving,
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R R
F D
R
7 Yo
KA IB
= l}—2a,
Fig. 15-23

Because of the symmetry of both structure and loading about a centerline extending through F. it is
possible to examine the structural behavior of only one half of the system, say the right-hand half as shown
in Fig. 15-23. Because of the symmetry, point F in Fig. 15-23 behaves as if it were clamped. The real load
on this half is . and to determine displacement at the gap we introduce an auxiliary force P as shown in

Fig. 15-24.
{ wu

T

F D
§ |

]
_— —_ —_—
‘ C Q
P > | |B
Fig. 15-24

Considering only bending action, in the entire system we have the bending moment in the various
regions given by

oM
In BC: M = P(R — Rsin ¢); F = R(1 —sin¢)
In CD: M= P(R+ Rsin6)+ QRsin®
ﬂ= R+ Rsinb
aP
oM
in DF M =2PR+ QR; E;#LR

The deflection at A in the direction of P is given by Castigliano’s theorem as

a

()
A=V _ [P
T EI



CHAP. 15] STRAIN ENERGY METHODS 411

Substituting, we have

2

2 P(R — Rsin $)R(1 —sin $)R d¢

+J'"’2 [P(R + Rsin ) + QR sin 6](R + R sin 6)R d6
El
1]

. [F PR+ OR) (du)
I El

This integrates to
b= T X R (2) s prgu e () s 07| 2R 200

Now that the integration has been carried out, we may set P = 0 to find

QR Q7R  20R

= +
A4 El  AEI El

The gap at A is twice this because of the deformation of the left half of the system, so that the gap is

oF’
YT A

15.20. The elastic beam FDCG of bending rigidity EI shown in Fig, 15-25 is supported by pinned elastic
bars AB, BC, and BD, each of extensional rigidity AE. These bars are incapable of resisting
bending effects. The load on the system consists of a single concentrated force P applied at the
free end F. Determine the vertical displacement of F.

B
P
§,G C D \I3
) s 2 o AV Wi A
Y ; |
I 1T T ¢
Fig. 15-25

This solution is best carried out by Castigliano’s method since both bending as well as extensional
energies are involved. We must first determine external reactions. A free-body diagram of the system is
shown in Fig. 15-26. There is no vertical reaction at A since bar AB is not able to resist transverse (bending)
loads. From statics,

SM,=G/(L)-P(4L)=0 ..G,=4P
SF,=—A,+4P =0 A, =4P
SF,=G,-FP=0 LG, =P

Thus, bar AB carries a tensile force 4P.
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4P

45°
BC BD

Fig. 15-27

Next, we show in Fig. 15-27 a free-body diagram of the system where a section has been passed
through the three bars and axial forces are represented by BD and BC in those bars. From statics,

2Fy = —4P+ BDsind5° =0
2Fy= ~BC— BDcos45° =0
Consequently, the axial forces in the three bars are
AB = 4P
BC = —4P
BD =4V2P

From Problem 15.8 we may determine the deflection at F due to axial loading (only) in these three
bars to be
as
)L

A= ES—(_&F

AE

®@ ®

_wp@ern) (4 (=49d)

AE AE
, 4V2P) (aV2) (LV2) 0
AE
PL PL
=—Fle 32V2] = 69.2 i (2)

Finally, we determine the deflection at F due only to the bending effects in beam FDCG. This was
shown in Problem 15.8 to be

A, = f op @)
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AP 4F 4V2P }
IS l \ i
G t C D

i & }/ v i

X
Y

Y

-

4p
Fig. 15-28

Figure 15-28 shows a free-body diagram of the beam with all forces acting upon it. Coordinates « and x
are introduced to permit evaluation of the integral in (3). The bending moments are given by

FD: M=pP; M
. = rx, aP =X
DC: M=P -(4\/5.0)(—' ){x— Ly= 3P, +4PL; Mo _3cvar
. X '\,6 x » P
aM
GC: M = Pu; "5;'- =u

Thus, for bending effects only, (3) becomes

@

J" (Px) (x)dx r- (—3Px + 4PL) (—3x + 4L)dx
A, = B
x=l b

El El

©

= f “I (Pu) (u) du

=L

EI
=)
PL?
= 3.67
Ei
The true deflection at F is the sum of A, and A;:
PL pPL?
.= 69.2—+ 3.

Ar= 69 AE 67 £l

Supplementary Problems

15.21. A solid conical bar of circular cross section (Fig. 15-29) hangs vertically, subjected only to its own
weight, which is -y per unit volume. Determine the strain energy stored within the bar.
Ans. U= wD?L*y*360E

15.22. The two bars AB and CB of Fig. 15-30 are pinned at each end and subject to a single vertical force P. The
geometric and elastic constants of each bar are as indicated. Use Castigliano’s theorem to determine the
horizontal and vertical components of displacement of pin B.

PLI + P LZ P L] P Lz

A’IS' sz_ Rl ;= +
V3AE, V3A,E, ° 3A,E, 3A,E,
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Fig. 1529 Fig. 15-30

15.23. The pin-connected truss shown in Fig. 15-31 is composed of five bars, each of area A and modulus of
elasticity £. Determine the vertical displacement of point B due to the load Q by equating the work done
by Q to the internal strain energy. Ans. A =29140L/AE

DPPPrrTR e,

|

| I

Fig. 15-31 Fig, 15-32

15.24. Determine the maximum weight W that can be dropped 10 in onto the flange at the end of the steel bar
shown in Fig, 15-32. The baris 1 in X 2 in in cross section and 6 ft in length, The axial stress is not to exceed
20,000 Ib/in®. Take E = 30> 10° Ibfin’. Ans. W=961lb

3.
y

Fig. 15-33 Fig. 15-34

15.25. A cantilever beam is loaded by a moment M, applied at the tip (Fig. 15-33). Determine by Castigliano’s
theorem the deflection of the tip.  Ans, M, L12EQ

15.26. A simply supported beam is loaded by a moment M, at the left end, as shown in Fig. 15-34. Use
Castigliano’s theorem to determine the deflection at the midpoint of the bar. Ans. M, L*16EI
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15.27.

15.28.

15.29.

15.30.

A W203 X 28 steel wide-flange section is used as a cantilever beam of length 4 m. A weight W of 1 kN falls
freely through a distance of 150 mm before striking the tip of the beam. Find the maximum deflection of
the beam. Take E = 200 GPa. Use beam parameters given in Table 82 of Chap. 8. Ans. 388mm

A structure lies in a vertical plane and is in the form of three quadrants of a thin ring (see Fig. 15-35). One
end is clamped, the other is loaded by a vertical force P. Determine the horizontal displacement of point A.
Consider only bending energy. Ans. PRREI

Fig. 15-35 Fig. 15-36

A structure is in the form of one quadrant of a thin circular ring of radius R. One end is clamped and the
other is subject to a couple M;, as shown in Fig. 15-36. Determine the angular rotation, as well as the
vertical and horizontal components of displacement of point A.

Ans = TR El

The two-sided framework shown in Fig. 15-37 is loaded by a uniformly distributed load g per unit length
in region AB together with a couple M, at the midpoint of BC. Determine the vertical displacement of
point A.

ql? N 2qLPH MyLH

Ans e Y T3ET T 2E

L
¢/ Unst length

B!Hll

{

EY

Fig. 15-37
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15.31. The straight bar AC of Fig. 15-38 is rigidly attached at its midpoint B to another rod BD which has end
D unsupported but subject to a vertical force P. The flexural rigidity of each bar is EI and the torsional
rigidity is GJ. Bar AC is rigidly clamped at ends A and C, and AC and BD lie in a horizontal plane.
Determine the deflection under the load P.

3PL? 4 pL?

8El 4GJ

Ans.

Fig. 15-38

15.32. Figure 15-39 shows a thin ring in the form of one quadrant of a circle. One end is fixed, the other is free,
and the system is loaded by a moment at the midpoint. Determine the vertical component of displacement

of point A.
MyR?
Ans ———
V2EI
A
M(ﬁ
|
wn
st
& ]
Fig. 15-39

15.33. ‘The beam of Fig. 15-40 is supported at the left end, clamped at the right end and subject to a concentrated
load. Determine the reaction at the left support by Castigliano’s theorem. Ans. PP(2L +a)i2L?

P

Y

15 ek ! T

o
v

| Lyl

Fig. 15-40
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15.34, A thin ring forms one quadrant of a circle and is loaded as shown in Fig. 15-41. One end is fixed and the
other is pinned so as to prevent horizontal and vertical displacements. Find the components of reaction
at the pin. Ans. B, =019My/R, B, = 112My/R

Fig. 1541

15.35. A thin ring in the form of one quadrant of a circle lies in a vertical plane and is subject to uniform radial
loading, as shown in Fig. 15-42. One end, A, is rigidly clamped and the other end, C, is unsupported.
Determine the horizontal and vertical components of displacement of point C.

LS ar’

Ans. A, =0.500—— =0
ns. A, Ef'ﬁ’ .36 £l

g/ Unit

Fig. 15-42 Fig. 15-43

15.36. A thin semicircular ring (see Fig. 15-43) of bending rigidity EI lies in a vertical plane, is clamped at end
A, and may move in a horizontal, frictionless guide at end B. The load is P, applied horizontally at end
B. Determine the horizontal displacement of end B of the ring. Also, determine the vertical displacement
due to the same load at B if the guide is removed.

PR* =~ 2PR’

Ans. .ﬁ,g' =0.14 1’ ﬁgy El

15.37. The structure of Fig. 15-44 is in the form of one quadrant
of a thin circular ring AB together with a straight bar BC
rigidly joined at B so that AB is tangent to the ring. A
load P acts parallel to the y-axis at B. The end C is
unsupported. Determine the y-component of displace-
ment of point C. The bending rigidity of both regions is
EI and the torsional rigidity is GJ.

Ell 4

1 [{3w PRL
+-(-_;'}-|i(-1— —Z)PRJ‘ 5 ]

1 1
Ans Ao = —[EPR’+§PR2L]
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15.38. The balcony-like structure of Fig. 15-45 is in the form of a semicircular ring, lies in a horizontal plane, and
is subject to a twisting moment T} at its midpoint. Determine the reactive twisting moment at each end
A and C. Ans. Tgl9w

Fig. 15-45

15.39. A thin ring is subjected to the equal and opposite diametral forces indicated in Fig. 15-46. Determine the
bending moment at A and also the increase in diameter of the ring along the diameter CD.

PR {m~—2 PR®
Ans. M, = T(———). A —0.149—5-;
P
R
A B
P
Fig. 15-46

15.40. A thin ring is loaded by forces which are uniformly distributed along the horizontal projection of the ring
(see Fig, 15-47). Determine the decrease in the vertical diameter.  Ans. wRY6E]

Fig. 15-47
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15.41. A thin semicircular ring shown in Fig. 15-48 of bending rigidity E7 lies in a vertical plane; it is clamped at
end A and unsupported at B. It is loaded by a horizontal force P at end B. Determine horizontal and
vertical components of displacement of end B of the ring.

PR*zm 2PR?

El

Ans ﬁs' = ﬁ' B, =

Fig. 15-48

15.42. A structure in the form of a thin three-sided rectangular frame lies in a horizontal plane, has both ends
clamped, and is subject to a central vertical force P, as shown in Fig. 15-49. Determine the reactive torque
at each support. The frame is of constant cross section throughout.

PYE]
b,8
El GI

Ans.

Fig. 15-49 Fig. 15-50

15.43. A thin structure in the form of one quadrant of a circle (Fig. 15-50) lies in a horizontal plane and is subject
to a torque 7, at the free end. The other end is clamped. Determine the vertical displacement of the
free end.

S 7 Fid 1)
_.—-—+_.—.-.—_
Ans. ToR (451 iGJ  GJ



Chapter 16

Combined Stresses

INTRODUCTION

Previously in this book we have considered stresses arising in bars subject to axial loading, shafts
subject to torsion, and beams subject to bending, as well as several cases involving thin-walled pressure
vessels. It is to be noted that we have considered a bar, for example, to be subject to only one loading
at a time, such as bending. But frequently such bars are simultaneously subject to several of the
previously mentioned loadings, and it is required to determine the state of stress under these
conditions. Since normal and shearing stress are vector quantities, considerable care must be exercised
in combining the stresses given by the expressions for single loadings as derived in previous chapters.
It is the purpose of this chapter to investigate the state of stress on an arbitrary plane through an
element in a body subject to several simultaneous loadings.

GENERAL CASE OF TWO-DIMENSIONAL STRESS

In general if a plane element is removed from a body it will be subject to the normal stresses o,
and o, together with the shearing stress 7,,, as shown in Fig. 16-1.

SIGN CONVENTION

For normal stresses, tensile stresses are considered to be positive, compressive stress negative. For
shearing stresses, the positive sense is that illustrated in Fig. 16-1.

v v
i
Ty
i — )_ -
Try - - F) Ty E
Oy o 3 x
f Txy
Ty
i
Ty
Yoy
Fig. 16-1 Fig. 16-2

STRESSES ON AN INCLINED PLANE

We shall assume that the stresses o, o,, and 7, are known. (Their determination will be discussed
in Chap. 17.) Frequently it is desirable to investigate the state of stress on a plane inclined at an angle

420
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6 to the x-axis, as shown in Fig. 16-1. The normal and shearing stresses on such a plane are denoted
by o and 7 and appear as in Fig. 16-2. In Problem 16.13 it is shown that

o, to, o —
2 2
Ty

T= %ﬂysin 20+ 1,,cos26 (16.2)

% c0s 26+ 7., 5in 26 (16.1)

a

Thus, for any value of 8, o and rmay be obtained from these expressions. For applications see Problems
16.15. 16.17, and 16.18.

PRINCIPAL STRESSES

There are certain values of the angle 8 that lead to maximum and minimum values of o for a given
set of stresses o, 0,, and 7,,. These maximum and minimum values that o may assume are termed
principal stresses and are given by

_ ?
Oy =2 ’2' 2 /(“ > "5‘) + (15, (16.3)

— Z
s = m;a,, N J(o’, . cr,) () (16.4)

These expressions are derived in Problem 16.13. For applications see Problems 16.15 and 16.18.

DIRECTIONS OF PRINCIPAL STRESSES; PRINCIPAL PLANES

The angles designated as 6, between the x-axis and the planes on which the principal stresses occur
are given by the equation

tan26, = — (16.5)
x y
(*)

This expression also is derived in Problem 16.13. For applications see Problems 16.15 and 16.18. As
shown there, we always have two values of 6, satisfying this equation. The stress oy,.x Occurs on one
of these planes, and the stress o, occurs on the other. The planes defined by the angles 6, are known
as principal planes.

COMPUTER IMPLEMENTATION

For this two-dimensional situation, a simple FORTRAN program may be written to indicate the
values of the principal stresses indicated by Eqs. (16.3) and (16.4) as well as directions of these stresses
as given by Eq. (16.5). Such a program is developed in Problem 16.20 and an application is found in
Problem 16.21.

SHEARING STRESSES ON PRINCIPAL PLANES

In Problem 16.13 it is demonstrated that the shearing stresses on the planes on which 0., and o,
occur are always zero, regardless of the values of o,, o,, and 7,,. Thus, an element oriented along the
principal planes and subject to the principal stresses appears as in Fig. 16-3.
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Principal Stress

Principal Stress

Fig. 16-3

MAXIMUM SHEARING STRESSES

There are certain values of the angle @ that lead to a maximum value of 7 for a given set of stresses
0y, 0y, and 7,,. The maximum and minimum values of the shearing stress are given by

Tonas = i\/ ( = )z + (7, (16.6)

min

This expression is derived in Problem 16.13. For applications see Problems 16.3, 16.10, 16.18, and
16.19.

DIRECTIONS OF MAXIMUM SHEARING STRESS

The angles 6, between the x-axis and the planes on which the maximum shearing stresses occur are
given by the equation

o, — oy,

tan 26, = 2 (16.7)

Txy

This expression also is derived in Problem 16.13. For applications see Problems 16.3, 16.10, 16.18, and
16.19. There are always two values of f, satisfying this equation. The shearing stress corresponding to
the positive square root given above occurs on one of the planes designated by 6,, while the shearing
stress corresponding to the negative square root occurs on the other plane.

NORMAL STRESSES ON PLANES OF MAXIMUM SHEARING STRESS

In Problem 16.13, it is demonstrated that the normal stress on each of the planes of maximum
shearing stress (which are of course 90° apart) is given by

o, t+ 0,

T3

Thus an element oriented along the planes of maximum shearing stress appears as in Fig. 16-4. This
is illustrated in Problems 16.7, 16.9, and 16.15.
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$lor + o)

i'("’: +0,)

"{ux + "'}

Fig. 16-4

MOHR’S CIRCLE

All the information contained in the above equations may be presented in a convenient graphical
form known as Mohr’s circle. In this representation normal stresses are plotted along the horizontal
axis and shearing stresses along the vertical axis. The stresses o, 0,, and ,, are plotted to scale and
a circle is drawn through these points having its center on the horizontal axis. Figure 16-5 shows Mohr’s
circle for an element subject to the general case of plane stress. For applications see Problems 16.4, 16.5,
16.8, 16.10, 16.12, 16.14, 16.16, 16.17, and 16.19.

HShurlng Stress

S—

l . k nlh Normal Stress
N ] B -

- =

T

f l Ty

!

Fig. 16-5

SIGN CONVENTIONS USED WITH MOHR’S CIRCLE

Tensile stresses are considered to be positive and compressive stresses negative. Thus tensile
stresses are plotted to the right of the origin in Fig. 16-5 and compressive stresses to the left. With
regard to shearing stresses it is to be carefully noted that a different sign convention exists than is used
in connection with the above-mentioned equations. We shall refer to a plane element subject to
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shearing siresses and appearing as in Fig. 16-6. We shall say that shearing stresses are positive if they
tend to rotate the element clockwise, negative if they tend to rotate it counterclockwise. Thus for the
above element the shearing stresses on the vertical faces are positive, those on the horizontal faces are
negative.

Ty

T

Try

Fig. 16-6

DETERMINATION OF PRINCIPAL STRESSES BY MEANS OF MOHR'’S CIRCLE

When Mohr’s circle has been drawn as in Fig. 16-5, the principal stresses are represented by the
line segments og and oh. These may either be scaled from the diagram or determined from the
geometry of the figure. This is explained in detail in Problem 16.14. For application see Problems 16.4,
16.5, 16.8, 16.10, 16.12, 16.14, 16.16, 16.17, and 16.19.

DETERMINATION OF STRESSES ON AN ARBITRARY PLANE BY MEANS OF
MOHR’S CIRCLE

To determine the normal and shearing stresses on a plane inclined at a counterclockwise angle 6
with the x-axis, we measure a counterclockwise angle equal to 26 from the diameter bd of Mohr’s circle
shown in Fig. 16-5. The endpoints of this diameter bd represent the stress conditions in the original x-y
directions; i.e., they represent the stresses o;, 0y, and 7,,. The angle 20 corresponds to the diameter ef.
The coordinates of point f represent the normal and shearing stresses on the plane at an angle 6 to the
x-axis. That is, the normal stress o is represented by the abscissa on and the shearing stress is
represented by the ordinate nf. This is discussed in detail in Problem 16.14. For applications see
Problems 16.4, 16.5, 16.6, 16.8, 16.14, and 16.17.

Solved Problems

16.1. Let us consider a straight bar of uniform cross section loaded in axial tension. Determine the
normal and shearing stress intensities on a plane inclined at an angle 6 to the axis of the bar.
Also, determine the magnitude and direction of the maximum shearing stress in the bar.

This is the same elastic body that was considered in Chap. 1, but there the stresses studied were normal
stresses in the direction of the axial force acting on the bar. In Fig. 16-7(a), P denotes the axial force acting
on the bar, A the area of the cross section perpendicular to the axis of the bar, and from Chap. 1 the normal
stress o, is given by o, = P/A.

Suppose now that instead of using a cutting plane which is perpendicular to the axis of the bar, we
pass a plane through the bar at an angle 6 with the axis of the bar. Such a plane mn is shown in Fig. 16-7(b).
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16.2.

(a) ()
Fig. 16-7

Since we must still have equilibrium of the bar in the horizontal direction, there must evidently be
distributed horizontal stresses acting over this inclined plane as shown. Let us designate the magnitude of
these stresses by o'. Evidently the area of the inclined cross section is A/sin 8 and for equilibrium of forces
in the horizontal direction we have

A Psin @
a'(sin_ﬂ)_P or o= A

il

In Fig. 16-8, we consider only a single stress vector o’ and resolve it into two components, one normal
to the inclined plane mn and one tangential to this plane. We shall label the first of these components &
to denote a normal stress, and the second 7 to represent a shearing stress.

Fig. 16-8

Since the angle between ¢’ and 7 is 6, we immediately have the relations
r=o0'cosf and o=c'siné

But o’ = (Psin 6)/A. Substituting this value in the above equations, we obtain

;= psinfcosé . U*Psinzﬂ
A A

But o, = P/IA. Hence we may write these in the form
r=o0,sinfcos® and o =o,sin’6

Now, employing the trigonometric identities

sin26 = 2sin Bcos§  and sin’9=l—:-;is—z—o
we may write
= }0,5in26 ()
o = o (1 - cos26) 2)

These expressions give the normal and shearing stresses on a plane inclined at an angle 8 to the axis of
the bar.

A bar of cross section 850 mm? is acted upon by axial tensile forces of 60 kN applied at each end
of the bar. Determine the normal and shearing stresses on a plane inclined at 30° to the direction
of loading.
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16.3.

16.4.
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From Problem 16.1 the normal stress on a cross section perpendicular to the axis of the bar is

The normal stress on a plane at an angle 6 with the direction of loading was found in Problem 16.1 to be
o = }o,(1 — cos 26). For # = 30° this becomes

o = }(70.6) (1 - cos 60°) = 17.65 MPa

The shearing stress on a plane at an angle 6 with the direction of loading was found in Problem 16.1 to
be 7 = 1o, sin26. For 6 = 30° this becomes

7= }(70.6) (sin 60°) = 30.6 MPa
These stresses together with the axial load of 60 kN are represented in Fig. 16-9.

17.65 MPa

60 kN
30.6 MPa fm———

Fig. 16-9

Determine the maximum shearing stress in the axially loaded bar described in Problem 16.2.

The shearing stress on a plane at an angle 6 with the direction of the load was shown in Problem 16.1
to be 7= o, sin26. This is maximum when 26 = 90°, that is, when 8 = 45°. For this loading we have
. = 70.6 MPa and when 6 = 45° the shear stress is

7 = §(70,6) sin90° = 35.3 MPa

That is, the maximum shearing stress is equal to one-half of the maximum normal stress.
The normal stress on this 45° plane may be found from the expression

o = 3o,(1 - cos 26) = §(70.6) (1 — cos 90°) = 35.3 MPa

Discuss a graphical representation of Egs. (1) and (2) of Problem 16.1,

According to these equations the normal and shearing stresses on a plane inclined at an angle 6 to
the direction of loading are given by

oc=30(l—cos26) and = }o,sin26

To represent these relations graphically it is customary to introduce a rectangular cartesian coordinate
system, plotting normal stresses as abscissas and shearing stresses as ordinates.

Let us proceed by first laying off to some convenient scale the normal stress o, (taken to be tensile)
along the positive horizontal axis. The midpoint of this line segment, point ¢ in Fig. 16-10, serves as the
center of a circle whose diameter is o,. The radius of this circle, denoted by oc, ch, and cd, is }o,. The angle
26 is measured positive in a counterclockwise direction from the radial line oc. From the figure we
immediately have the relations

kd = = }o,sin26 ok = oc — ke = Yo, — Yo, c0826 = & = b (1 — cos 26)
It is to be noted that the scales used in the horizontal and vertical directions are equal.
Thus the abscissa and ordinate of point d represent, respectively, the normal stress and the shearing
stress acting on a plane at an angle 6 with the axis of the bar subject to tension. In plotting this diagram
tensile stresses are regarded as positive in algebraic sign and compressive stresses are taken to be negative.
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16.5.

Shesring Stress
k ¢ e k] Normal Stress
Al 2o
d o
' — - —
‘3 1 7
Fig. 16-10 Fig. 16-11

Let us return to Problem 16.1 and examine a free-body diagram (Fig. 16-11) of an element taken from the
surface of the inclined section on which the stresses o and 7act. We shall consider shearing stresses to be
positive if they tend to rotate the element clockwise, negative if they tend to rotate the clement
counterclockwise. This sign convention is used only in this graphical representation, not in the analytical
treatment of Problem 16.1. Since the shearing stresses found in Problem 16.1 were actually those acting
on face dc of the above clement, they should be regarded as negative. Hence in the circular diagram
representing normal and shearing stresses in Fig. 16-10, the shearing stress on plane dc appcars as an
ordinate kd plotted in the negative sense.

This diagram, termed Mohr’s circle as noted ecarlicr, was first presented by O. Mohr in 1882. It
represents the variation of normal and shearing stresses on all inclined planes passing through a given point
in the body. It is a convenient graphical representation of Egs. (/) and (2) of Problem 16.1.

Consider again the axially loaded bar discussed in Problem 16.2. Use Mohr’s circle to determine
the normal and shearing stresses on the 30° plane.

4§ Shearing Stress

k ‘ e h Normal Stress
60° -

o

d
e—— T0.6MPa  —

Fig. 16-12

In Fig. 16-12, the normal stress of 70.6 MPa is laid off along the horizontal axis to some convenient
scale and a circle is drawn with this linc as a diameter. The angle 26 = 2(30°) = &0° is measurcd
counterclockwise from oc. The coordinates of the point d are

kd = 7= —}(70.6)sin60° = — 30.6 MPa
ok = o = oc — ke = }(70.6) — }(70.6) cos 60° = 17.65 MPa

The negative sign accompanying the value of the shearing stress indicates that the shearing stress on
this 30° plane tends to rotate an element bounded by this plane in a counterclockwise direction. This is in
agreement with the direction of the shearing stress illustrated in Fig. 16-9.
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16.6. A bar of cross section 1.3 in” is acted upon by axial compressive forces of 15,000 Ib applied to

16.7.

each end of the bar. Using Mohr’s circle, find the normal and shearing stresses on a plane
inclined at 30° to the direction of loading. Neglect the possibility of buckling of the bar.

The normal stress on a cross-section perpendicular to the axis of the bar is

_P_-15000 ,
=TT T 11,500 Ibfin

We shall first lay off this compressive normal stess to some convenient scale along the negative end of the
horizontal axis. The midpoint of the linc segment, point ¢ in Fig. 16-13, serves as the center of a circle whose
diameter is 11.500 Ib/in’ to the scale chosen.

Shearing Stress

Normal Strems

-2

15,000 1>

o 11,600 Ib/in? ———e-d

Fig. 16-13 Fig. 16-14

The angle 26 = 2(30°) = 60° with the vertex at ¢ is measured counterclockwise from co as shown, The
abscissa of point d represents the normal stress and the ordinate the shearing stress on the desired 30°
plane. The coordinates of point d arc

kd = 7= %11.500)sin 60° = 4940 Ibfin?
ok = o = oc — ck = ¥(11,500) — }(11,500) cos 60° = 2870 Ib/in?

It is to be noted that line segment ok lies to the left of the origin of coordinates; hence this normal stress
is compressive.

The positive algebraic sign accompanying the shearing stress indicates that the shearing stress on the
30° plane tends to rotate an element (denoted by dashed lines in Fig. 16-14) bounded by this plane in a
clockwise direction. The directions of the normal and shearing stresses together with the axial load of
15,000 Ib are shown in the figure.

Consider a plane element removed from a stressed elastic body and subject to the normal and
shearing stresses o, and 7,,, respectively, as shown in Fig. 16-15. (a) Determine the normal and
shearing stress intensities on a plane inclined at an angle 6 to the normal stress ¢,. (b) Determine
the maximum and minimum values of the normal stress that may exist on inclined planes and
find the directions of these stresses. (¢) Determine the magnitude and direction of the maximum
shearing stress that may exist on an inclined plane.

(@) The desired normal and shearing stresses acting on an inclined plane are internal quantities with
respect to the element shown in Fig. 16-15. We shall follow the customary procedure of cutting this
clement with a plane in such a manner as to render the desired stresses external to the new body;
that is, we will cut the originally rectangular element along the plane inclined at an angle 6 with
the x-axis and thus obtain a triangular element as shown in Fig. 16-16. The normal and shearing
stresses, designated as ¢ and T, respectively, represent the effect of the remaining portion of the
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Txy

ﬁ

Txy

Fig. 16-15 Fig. 16-16

originally rectangular block that has been removed. Consequently, the problem reduces to finding
the unknown stresses o and 7 in terms of the known stresses o, and 7,,. It is to be observed that
in the free-body diagram of the triangular element, the vectors indicate stresses acting on the various
faces of the element and not forces. Each of these stresses is assumed to be uniformly distributed
over the area upon which it acts. The thickness of the element perpendicular to the plane of the
paper is denoted by &

Let us introduce N- and 7-axes normal and tangent to the inclined plane, as shown in Fig. 16-16.
First, we shall sum forces in the N-direction. For equilibrium we have

2 Fy = otds — o,tdysin0— 7,,tdycos 6 — 7, tdxsinf = 0

But dy = dssin 6, dx = dscos 6. Substituting these relations in the equilibrium cquation above,
we find

a(ds) = o,(ds) sin? 6 + 27,,(ds) sin 6cos 6
Next, employing the identities sin” 6 = 3(1 — cos 26) and sin26 = 2sin 6cos 6, we obtain
o = 30,(1 — cos26) + 1,,5in 20 = jo, — 30, c0s 26 + 7,,5in 20 (1)

Thus the normal stress o on any plane inclined at an angle 8 with the x-axis is known as a function
of o, 7,,, and 6.

Next we shall consider the equilibrium of the forces acting on the triangular element in the
T-direction. This leads to the equation

2Fr=1tds— o,tdycos 6+ 7,,tdysinf — 7, tdxcos 6§ = 0
Substituting dy = dssin 6 and dx = dscos 8, we obtain
7(ds) = +0,(ds) sin 6cos 6 — 7,,(ds) sin® 6 + 7,,(ds) cos?
Employing the identities cos 26 = cos’ 8 — sin’ § and sin26 = 2sin 6 cos 6, this becomes
7=10,sin26 + 1,,cos 26 (2)

Thus the shearing stress 7 on any plane inclined at an angle 6 with the x-axis is known as a function
of o,, 7,,, and 6.

To determine the maximum value that the normal stress o may assume as the angle 6 varies, we shall
differentiate Eq. (1) with respect to 8 and set this derivative equal to zero. Thus

d .
d—: = +0,5in26+ 27,,c0826 = 0

The values of @ leading to maximum and minimum values of the normal stress are consequently

tan26, = 2 3)

30y
The planes defined by the angles 6, are called principal planes. The normal stresses that exist on
these planes are designated as principal stresses. They are the maximum and minimum values that
the normal stress may assume in the element under consideration. The values of the principal stresses
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Case I Case I1

Fig. 16-17

may easily be found by interpreting Eq. (3) graphically, as in Fig. 16-17. Evidently the tangent of
either of the angles designated as 26, has the value given in (3). Thus there are two solutions to (3),
and consequently two values of 26, (differing by 180°) and also two values of 6,. These values of 6,
differ by 90°. It is to be noted that the triangles of Fig. 16-17 bear no direct relationship to the
triangular element whose free-body diagram was considered earlier.

The values of sin 26, and cos 26, as found from Fig. 16-17 may now be substituted in (/) to yield
the maximum and minimum values of the normal stresses. Observing that

+ Tey * %0"

i 29 = = 00528 = -‘rm==‘.
e ;(3'.0:)' + (1) " VGe ) + ()

where the upper signs pertain to Case | and the lower signs to Case 11, we obtain from (/)

1 2
!2 70, (Txr} 50_1 +\ /(lia )z + (T")z 4

Uy 4 - + =
Vo) + () V(o) +(7,)
The maximum normal stress is

+

1
T = 50,

Tax = lfa'x + v (io':)z + (1,”_)2 (5}
The minimum normal stress is
Omin = 30— V(o )* + (1,,) (6)

The stresses given by (5) and (6) are the principal stresses and they occur on the principal planes
defined by (3). By substituting one of the values of 6, from (3) into (/), one may readily determine
which of the two principal stresses is acting on that plane. The other principal stress naturally acts
on the other principal plane.

By substituting the values of the angles 26, as given by (3) and Fig. 16-17 into (2), it is readily
scen that the shearing stresses 7 on the principal planes are zero.

To determine the maximum value the shearing stress 7 may assume as the angle 6 varics. we shall
differcntiate Eq. (2) with respect to # and set this derivative equal to zero. Thus

dr )
16 = g,co820—27,,sin26 =0

The values of 6 leading to maximum values of the shearing stress are consequently

1
tan26, = 2= 7)

Txy

The planes defined by the two solutions to this equation are the planes of maximum shearing
stress.

Again, a graphical interpretation of (7) is convenient. The two values of the angle 26, satisfying
this equation may be represented as in Fig. 16-18. We see that

*T

+ia, 7,
(201} + (71'9) (ial) + (Txy}
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-\'\“'F
i 0%
4oz
2,
P
Case I Case II

Fig. 16-18

where the upper (positive) signs pertain to Case I and the lower (negative) signs apply to Case II.
Substituting these values in (2), we obtain

i
=l iszx -'L-T.TIP — + l 2 >
T R | Ve ey ey ) @

Here the positive sign represents the maximum shearing stress, the negative sign the minimum
shearing stress.

If we compare (3) and (7), it is evident that the angles 26, and 26, differ by 90°, since the tangents
of these angles are the negative reciprocals of one another. Hence the planes defined by the angles
6, and 6, differ from one another by 45°; that is, the planes of maximum shearing stress are oricnted
45° from the planes of maximum normal stress.

It is also of interest to determine the normal stresses on the plancs of maximum shearing stress.
These planes are defined by (7). If we now substitute these values of sin 26, and cos 26, in (1) for the
normal stress, we find

1
*30, )

T")V{%o})z + (Tu)z = fa; (9)

*T1,
1 2 2
To.l) + (T.n')
Thus on each plane of maximum shearing stress we have a normal stress of magnitude )o,.

+(

0=%ax_%ox.vr(

16.8. Discuss a graphical representation of the analysis presented in Problem 16.7,

1.

For given values of o, and 7,, proceed as follows:

Introduce a rectangular coordinate system in which normal stresses are represented along the
horizontal axis and shearing stresses along the vertical axis. The scales used on these two axes must

be equal.

With reference to the original rectangular element considered in Problem 16.7 and reproduced in Fig.
16-19, we shall introduce the sign convention that shearing stresses are positive if they tend to rotate
the element clockwise, negative if they tend to rotate it counterclockwise. Here the shearing stresses
on the vertical faces are positive, those on the horizontal faces are negative. Also, tensile stresses arc
considered to be positive and compressive stresses negative.

We first locate point b by laying out o, and 7,, to their given values. The shear stress 7,, on the vertical
faces on which o, acts is positive; hence this value is plotted as positive in Fig. 16-20. This is drawn on

'V
Txy l.
Txy il — - -
o 4 o ¢z
v dx Tay ]
——
Ty
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Shearing Stress

the assumption that ¢, is a tensile stress, although the treatment presented here is valid if o, is
COmpressive.

4. We next locate point 4 in a similar manner by laying off 7, on the negative side of the vertical axis.
Actually, this point d corresponds to the negative shearing stresses 7,, existing on the horizontal faces
of the clement together with a zero normal stress acting on those same faces.

5. Next, we draw line bd. locate the midpoint ¢, and draw a circle having its center at ¢ and radius equal
to cb. This is known as Mohr’s circle.

We shall first show that the points g and k along the horizontal diameter of the circle represent the
principal stresses. To do this we note that the point ¢ lies at a distance jo, from the origin of the coordinate
system. From the right-triangle relationship we have

(cd)’ = (o)’ +(0df  of  cd= V(o) +(7,)
Also. we have cd = ch = cg. Hence. the x-coordinate of point k is oc + ch or
10+ V(o) + (7))

But this expression is cxactly the maximum principal stress, as found in (5) of Problem 16.7. Likewise the
x-coordinate of point g is oc-cg. But this quantity is negative; hence og lies to the left of the origin, and
point g symbolizes a compressive stress. This stress becomes

%0-: - ¥ (ll'ﬂ'x)z + {Txy)z

But this expression is exactly the minimum principal stress, as found in (6) of Problem 16.7. Consequently
the points g and 4 represent the principal stresses existing in the original clement. We see that the tangent
of Locd 1s T,J(:O',) But from (3) of Problem 16.7, tan26, = —1-,,;'50,. and by comparison of these two
relations we sec that Zhed = 26, since tan(180° — 6) = —tan 6. Thus a counterclockwise rotation from the
diameter bd (corresponding to the stresses in the x- and y-directions) leads us to the diameter gh.
representing the principal planes, on which the principal stresses occur. The principal planes lie at an angle
6, from the x-direction.

Thus Moh’s circle is a convenicnt device for finding the principal stresses, since one can merely
cstablish the circle for a given set of stresses o, and 7,, then measure og and oh. These abscissas represent
the principal stresses to the same scale used in plotting o, and 7,,.

It is now apparent that the radius of Mohr’s circle, represented by cd = V( Go ) + (1) corresPonds
to the maximum shearing stress, as found in (8) of Problem 16.7. Actually, the shearing stress on any plane
is reprcsemed by the ordinate to Mohrs circle: hence we should consider the radial lines ¢f and ¢m as
representing the maximum shearing stresses. The angle dcl is evidently 26, and hence it is apparent that
the double angle between the planes of maximum normal stress and the planes of maximum shearing stress
(£Ich) is 90°: thus the planes of maximum shearing stress are oriented 45° from the planes of maximum
normal stress.



CHAP. 16] COMBINED STRESSES 433

16.9.

Evidently the endpoints of the diameter bd represent the stresses acting in the original x- and
y-directions. We shall now demonstrate that the endpoints of any other diameter, such as ef (at any angle
20 with bd), represent the stresses on a plane inclined at an angle 6 to the x-axis. To do this we note that

the abscissa of point fis given by
o = oc + cn = §o, + cfcos (26, — 26)
= 1o, + ¢f(cos 26,cos 26 + sin 26, 5in 26)
= lo, + V3o, + (1,,)? (c0s 26, cos 26+ sin 26, sin 26)
But from inspection of triangle cod appearing in Mohr’s circle it is evident that

. T —%O',
? (iox)z + (7xr)2 g Gax]z + (7x)r)z
Substituting the values of 7,, and o, from these two equations into the previous equation, we find

= }o, — 4o, €026 + 7,,5in 26

But this is exactly the normal stress on a plane inclined at an angle 8 to the x-axis as derived in (/) of
Problem 16.7.
Next we observe that the ordinate of point fis given by

= nf = cfsin (26, — 26)
= V{0, + (7,)’ (sin 28, cos 26 — cos 26, sin 26)
Again, substituting the values of 7,, and jo, from Egs. (1) into this equation, we find
r=1}0,5in26+ 7,,c0s20

But this is exactly the shearing stress on a plane inclined at an angle 8 to the x-axis as derived in (2) of
Problem 16.7.

Hence the coordinates of point f on Mohr’s circle represent the normal and shearing stresses on a
plane inclined at an angle 6 to the x-axis.

A plane element in a body is subjected to a normal stress in the x-direction of 12,000 Ib/in?, as
well as a shearing stress of 4000 Ib/in?, as shown in Fig. 16-21. (a) Determine the normal and
shearing stress intensities on a plane inclined at an angle of 3(0° to the normal stress. (b)
Determine the maximum and minimum values of the normal stress that may exist on inclined
planes and the directions of these stresses. (c¢) Determine the magnitude and direction of the
maximum shearing stress that may exist on an inclined plane.

(a) In accordance with the notation of Problem 16.7, we have o, = 12,000 1b/in’ and 7,, = 4000 Ib/in’.
From (1) of Problem 16.7, the normal stress on a plane inclined at an angle 6 to the x-axis is

o = lo, — }o,cos 26+ 7y, 5in 26

i
4000 1b/In®

4000 Ib/in®

12,000 lb/in®

Iu.ooo Mint o
> 4000 1b/int

12,000 1b/in?] | fm it

#
4000 1b/in?

Fig. 16-21
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Substituting the above values of o, and 7,,, when 6 = 30° this becomes
o = }(12,000) — 1(12,000) cos 60° + 4000sin 60° = 6470 Ib/in?
From (2) of Problem 16.7, the shearing stress on any plane inclined at an angle 8 to the x-axis 1s
r=lo,sin26+ 7,,COS 26
Substituting the above values of o, and 7,,, when 8 = 30° this becomes
7 = }(12,000) sin 60° + 4000 cos 60° = 5200 + 2000 = 7200 Ib/in?

The positive directions of the normal and shearing stresses on an inclined plane were illustrated in
Fig. 16-16. In accordance with this sign convention the stresses on the 30° plane appear as in Fig.
16-22.

The values of the principal stresses, that is, the maximum and minimum values of the normal stresses
existing in this element, were given by (5) and (6) of Problem 16.7. From (5) for the maximum normal
stress, we have

Ormax = 305+ V(30,) + 1,7 = 6000 + V(6000) + (4000)? = 13,220 Ibin?
From (6) for the minimum normal stress, we have

Toun = 30, — V(30,02 + (7,7 = 6000 — V(6000)2 + (4000)* = —1220 Ibfin?

The directions of the planes on which these principal stresses occur were found in (3) of Problem 16.7
to be

4000 2

6000 3

=

Xy

tan2g, = —

:a..

Since the tangent of the angle 26, is negative, the two values of 26, lie in the second and fourth
quadrants. In the second quadrant, 26, = 146°20’; in the fourth quadrant, 26, = 326°20’. Conse-
quently we have the principal planes defined by 6, = 73°10" and 6, = 163°10°. If 6, = 73°10’, together
with the given values of ¢, and 7,,, is now substituted in (/) of Problem 16.7, we find

o = 3o, — 30,08 26 + 1,,5in 26 = 6000 — 6000 cos 146°20" + 4000 sin 146°20’
= 6000 — 6000( —0.833) + 4000(0.554) = 13,220 ib/in?

Thus the principal stress of 13,220 Ib/in’ occurs on the principal plane oriented at 73°10’ to the x-axis.
The principal stresses thus appear as in Fig. 16-23. As stated in Problem 16.7, the shearing stresses
on these principal planes are zero.

The values of the maximum and minimum shearing stresses were found in (8) of Problem 16.7
to be

Toax = V(G007 + (1,)2 = £ V(6000) + (4000)7 = +7220 Ibfin?

min

1220 Ibfint
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The directions of the planes on which these maximum shearing stresses occur were found in (7)
of Problem 16.7 to be given by

1
_29: 6000 _3
tan26, 2

Txy

The angles 26, are consequently in the first and third quadrants, since the tangent is positive. Thus
we have 28, = 56°20° and 28, = 23620/, or 6, = 28°10’ and ¢, = 118°10’. The shearing stress on any
plane inclined at an angle 6 with the x-axis was found in (2) of Problem 16.7 to be

T= !a,sin28 + 7, cos 26
Substituting o, = 12,000 Ib/in’, 7,, = 40001b/in?, and 6 = 28°10", we find
7 = §(12,000) sin 56°20" + 4000 cos 56°20’ = +7220 Ib/in’

Thus the shearing stress on the 28°10’ plane is positive. The positive sense of shearing stress was
shown in Fig. 16-6.

The normal stresses on the planes of maximum shearing stress are found from (9) of Problem
16.7 to be

o = o, = §(12,000) = 6000 Ib/in®

This normal stress acts on each of the planes of maximum shearing stress, as shown in Fig. 16-24.

16.10. A plane element is subject to the stresses shown in Fig. 16-25. Using Mohr’s circle, determine
(a) the principal stresses and their directions and (b) the maximum shearing stresses and the
directions of the planes on which they occur.

v Shearing Stresa
I 12,000 1bfin®
4000 Ib/in® .
12,000 lb!m’J
12,000 Iind Y000 1b/ine
——— 4000 1b/in?
Fig. 16-2§ Fig. 16-26

Following the procedure for the construction of Mohr's circle outlined in Problem 16.8, we realize that
the shearing stress on the vertical faces of the given element are positive, whereas those on the horizontal
faces are negative. Thus the stress condition of o, = 12,0001b/in?, 7,, = 4000 Ib/in? existing on the vertical
faces of the element plots as point b in Fig. 16-26. The stress condition of 7,, = —4000 1b/in? together with
a zero normal stress on the horizontal faces plots as point d. Line bd is drawn, its midpoint ¢ is located,
and a circle of radius cb = cd is drawn with ¢ as a center. This is Mohr’s circle. The endpoints of the
diameter bd represent the stress conditions existing in the element if it has the original orientation shown
above.

(a) The principal stresses are represented by points g and h, as shown in Problem 16.8. The principal
siresses may be determined either by direct measurement from Fig. 16-26 or by realizing that the
coordinate of ¢ is 6000, and that cd = V/(6000)* + (4000)> = 7220. Therefore the minimum principal
stress is

Oumin = 0 = OC — cg = 6000 — 7200 = —1220 Ib/in’
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16.11. A plane element in a body is subject to a normal compressive stress in the x-direction of
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Also, the maximum principal stress is
Omax = OB = 0C + ch = 6000 + 7220 = 13,220 Ibfin®
The angle 26, designated above is given by

tan26, = ———=—-- or 6, =T7310

This value could also be obtained by measurement of Zdch in Mohr’s circle. From this it is readily
seen that the principal stress represented by point / acts on a plane oriented 73°10” from the original
x-axis. The principal stresses thus appear as in Fig. 16-27(a). It is evident from Mohr’s circle that the
shearing stresses on these planes are zero, since points g and h lie on the horizontal axis of Mohr's
circle.

1220 Ib/in?

Fig. 16-27

The maximum shearing stress is represented by ¢f in Mohr's circle. This radius has already been found
to be equal to 7220 Ib/in®. The angle 26, may be found either by direct measurement from Fig. 16-26
or simply by subtracting 90° from the angle 26,, which has already been determined. This leads to
26, = 56°20" and 6, = 28°10’. The shearing stress represented by point [ is negative; hence on this
28°10’ plane the shearing stress tends to rotate the element in a counterclockwise direction. Also,
from Mohr’s circle the abscissa of point [ is 6000 Ib/in? and this represents the normal stress occurring
on the planes of maximum shearing stress. The maximum shearing stresses thus appear as in Fig,
16-27(b).

12,000 Ib/in? as well as a shearing stress of 4000 Ib/in’, as shown in Fig. 16-28. (a) Determine the
normal and shearing stress intensities on a plane inclined at an angle of 30° to the normal stress.
(b) Determine the maximum and minimum values of the normal stress that may exist on

'U

2,000 b/int f) z

| 12,000 1b/In®

4000 1b/in® <fm— ’ 4000 Ib/in®

Fig. 16-28 Fig. 16-29
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inclined planes and the direction of these stresses. (c¢) Find the magnitude and direction of the
maximum shearing stress that may exist on an inclined plane.

(a) By the sign convention for normal and shearing stresses adopted in Problem 16.7, we have here
o, = —12,000b/in?, 7,, = —40001b/in>. From (I) of Problem 16.7, the normal stress on the 30°
plane is

o= —12,000/2 - (—12,000/2) cos 60° — 40005in 60° = —6470 Ib/in’
From (2) of Problem 16.7, the shearing stress on the 30° plane is
= }(—12,000) sin 60° — 4000 cos 60° = —7200 Ib/in’

The positive directions of the normal and shearing stresses on an inclined plane were illustrated in
Fig. 16-16. By this sign convention the stresses on the 30° plane appear as in Fig. 16-29.

(b) The values of the principal stresses were given by (5) and (6) of Problem 16.7. From (5),
= =12,00012 + V(~12.000/2)" + (—4000)° = 1220 Ib/in?

Trnax

From (6),

= —12,00012 — V(—12.00022)° + (—4000)° = —13.220 Ib/in’

amn

The tensile principal stress is usually referred to as the maximum. even though its absolute value is
smaller than that of the compressive stress.
The directions of the planes on which these principal stresses occur are given by (3) of Problem

16.7 to be
7 — 4000
= - = — — = — 3
an26 = "1, = " "oz 2

The angles defined by 26, lie in the second and fourth quadrants since the tangent is negative.
Hence 26, = 146°20° and 26, = 326°20’. Thus the principal planes are defined by 6, = 73°10° and
g, = 163°10". If 8, = 73°10’. together with the given values of ¢, and 7,,. is now substituted in (/) of
Problem 16.7, we find

o =lo, - lo.cos 26+ T,, SN 28

= —12,000/2 = (—12,000/2) cos 146°20" — 4000sin 146°20" = —13.220 lbfin’

Thus the principal stress of —13,220 Ib/in” occurs on the principal plane oriented at 73°10' to the
x-axis. The principal stresses are shown in Fig. 16-30. The shearing stresses on these principal planes
are zero.

() The value of the maximum shearing stress is found from (&) of Problem 16.7 to be
Toax = TV(30)? + (7,,)* = £ V(-12,00012)° + (—4000)? = +7220 Ib/in
min

1220 Jbfin?
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The directions of the planes on which these shearing stresses occur was found in (7) of Problem 16.7
to be

Thus 26, = 56°20" and 26, = 236°20": or 6, = 28°10" and 6, = 118°10’. From (2) of Problem 16.7, the
shearing stress on any plane inclined at an angle 6 with the x-axis is

T = 30,5in 26 + 7,,€05 26 = }(—12,000)sin 56°20" — 4000 cos 56°20" = —7220 1b/in’

Thus the shearing stress on the 28°10" plane is negative. The positive sense of shearing stress was
shown in Fig. 16-16.
The normal stresses on the planes of maximum shearing stress were found in (9) of Problem 16.7

to be
o= %a; = —12,000/2 = —6000 Ib/in®

This normal stress acts on each of the planes of maximum shearing stress, as shown in Fig. 16-31.

Fig. 16-31

16.12. A plane element is subject to the stresses shown in Fig. 16-32. Using Mohr’s circle, determine

(a) the principal stresses and their directions and (b) the maximum shearing stresses and the
directions of the planes on which they occur.

The procedure for the construction of Mohr's circle was outlined in Problem 16.8. Following the
instructions there, the shearing stresses on the vertical faces of the above element are negative, those on
the horizontal faces are positive. Thus the stress condition of ¢, = -12,0001b/in?, 7,, = —4000 Ib/in’
existing on the vertical faces of the element plots as point b in Fig. 16-33. The stress condition of
7., = 4000 1b/in’, together with a zero normal stress on the horizontal faces, plots as point d. Line bd is
drawn, its midpoint ¢ is located, and a circle of radius cb = cd is drawn with ¢ as a center. This is Mohr’s
circle. The endpoints of the diameter bd represent the stress conditions existing in the element if it has the
original orientation shown in Fig. 16-32.

lﬂ
e 4000 1b/in®

12,000 1b/in? _z
12,000 Ib/in?

4000 ]bﬁn'#

Fig. 16-32
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Shearing Stress

d
\ !

4000 Ib/in?
h {

/ Normal Stress
bL
12,000 Ib/in? —

Fig. 16-33

(a) The principal stresses are represented by points g and k& (Fig. 16-33), as demonstrated in Problem 16.8.
They may be determined either by direct measurement from the above diagram or by realizing that
the coordinate of ¢ is ~6000, and that cd = V(6000) + (4000)* = 7220. Thus the minimum principal
stress is

Opin = 0g = +(0¢ + cg) = —6000 — 7220 = —13,220 Ib/in?
The maximum principal stress is
Tmax = Oh = ch — co = 7220 — 6000 = 1220 Ibfin’

The angle 26, designated above is given by tan26, = —4000/6000 = —2/3 since tan(180° — @) =
—tan 6. Hence 26, = 146°20", and 6, = 73°10". This valuc could of course have been obtained by
direct measurement of angle dcg in Mohr's circle. Thus the principal stress of —13,220 Ib/in?
represented by point g acts on a plane oriented 73°10’ from the original x-axis. The principal stresses
thus appear as in Fig. 16-34. It is evident from Mohr’s circle that the shearing stresses on these planes
are zero, since points g and A lie on the horizontal axis of Mohr's circle.

1220 1b/in?

Fig. 16-34 Fig. 16-35

(b) The maximum shearing stress is represented by ¢/ in Mohr's circle. This radius has already been found
to be equal to 72201b/in’. The angle 26, may be found either by direct measurement from Mohr’s
circle or simply by subtracting 90° from the above value of 26, This leads to 6, = 28°10". The shearing
stress represented by point [ is positive; hence on this 28°10" plane the shcaring stress tends to rotate
the element in a clockwise direction. Also, from Mohr’s circle the abscissa of point { is —6000 1bfin?
and this represents the normal stress occurring on the planes of maximum shearing stresses, as shown
in Fig. 16-35.
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16.13. Consider a plane element removed from a stressed elastic member. In general such an element
will be subject to normal stresses in each of two perpendicular directions, as well as shearing
stresses. Let these stresses be denoted by o, g,, and 7,, and have the positive directions shown
in Fig. 16-36. (a) Determine the magnitudes of the normal and shearing stresses on a plane
inclined at an angle 6 to the x-axis. (b) Also determine the maximum and minimum values of
the normal stress that may exist on inclined planes and the directions of these stresses. (c)
Finally, find the magnitude and direction of the maximum shearing stress that may exist on an
inclined plane.

N v
tv \ |
*‘. L 4
T IY — T l-‘i i X
. Try — --'"]‘ as dy ' -
z x x ] dx Ty
Tey !.1-/ | s
s\ Try
i T 2y a ' “
¥ '\(
Yoy e
Fig. 16-36 Fig. 16-37

(a) Evidently the desired stresses acting on the inclined planes are internal quantities with respect to the
element shown in Fig. 16-36. Following the usual procedure of introducing a cutting plane so as to
render the desired quantities external to the new section, we cut the originally rectangular element
along the plane inclined at the angle 6 to the x-axis and thus obtain the triangular element shown in
Fig. 16-37. Since we have removed half of the material in the rectangular element, we must replace
it by the effect that it exerted upon the remaining lower triangle shown and this effect in general
consists of both normal and shearing forces acting along the inclined plane. We shall designate the
magnitudes of the normal and shearing stresses corresponding to these forces by ¢ and 7. respectively.
Thus our problem reduces to finding the unknown stresses ¢ and 7 in terms of the known stresses
o,, ,. and 7,,. Chapter 17 illustrates the manner of determination of the stresses a,, o,. and 7,,. It
is to be carefully noted that the free-body diagram, Fig. 16-37, indicates stresses acting on the various
faces of the element, and not forces. Each of these stresses is assumed to be uniformly distributed
over the area on which it acts.

We shall introduce the N- and T-axes normal and tangential to the inclined plane as shown. Let
t denote the thickness of the element perpendicular to the plane of the page. Let us begin, by
summing forces in the N-direction. For equilibrium we have

ZFy = otds— o,tdysin 8 — 7, tdycos 8 — o, tdxcos 8~ 7, tdxsin8 = 0
Substituting dy = dssin 6, dx = dscos 8 in the equilibrium equation,
ods = o,dssin’ 6 + g, ds cos® 6+ 27,, dssin 6cos §
Introducing the identities sin’ # = (1 — cos26), cos® 6 = 3(1 + cos 26), sin26 = 2sin Hcos 6, we find
o = jo(1 — cos260) + jo,(1 + cos 26) + 7,,5in 26
or o= Yo, + 7))~ }(o, — 0,) cos 26 + 7,,5in 20 1))

Thus the normal stress o on any plane inclined at an angle 6 with the x-axis is known as a function
of @, o, 7, and 6.
Next, summing forces acting on the element in the T-direction, we find

2 Fr=nds— o.tdycos 6+ 7, tdysin 6 — 7,,tdxcos 0 + o,tdxsinf = 0
Substituting for dx and dy as before, we get

Tds = g,dssin #cos 6 — 7;,dssin28+ rx,dscoszﬂ-o,dssin fcos b
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Introducing the previous identities and the relation cos26 = cos’#—sin?#, this last equation
becomes

T= il-(o'x—o'_‘.)sin26+ T“COSZB (2)
Thus the shearing stress 7 on any plane inclined at an angle 6 with the x-axis is known as a function
Of Oy O'),, 71).1 and 6.

To determine the maximum value that the normal stress ¢ may assume as the angle 6 varies. we shall
differentiate Eq. (/) with respect to 6 and set this derivative equal to zero. Thus

% = (o, — ,)sin28 + 27,,c0s 26 = 0
Hence the values of 8 leading to maximum and minimum values of the normal stress are given by
Try
tan2f, = - —— 3)
v :_15(0’, n U\)

The planes defined by the angles 6, are called principal planes. The normal stresses that exist on these
planes are designated as principal stresses. They are the maximum and minimum values that the
normal stress may assume in the element under consideration. The values of the principal stresses
may easily be found by considering the graphical interpretation of (3) given in Fig. 16-38. Evidently
the tangent of either of the angles designated as 26, has the value given in (3). Thus there are two
solutions of (3), and consequently two values of 26, (differing by 180°) and also two values of 6,
(differing by 90°). It is to be noted that Fig. 16-38 bears no direct relationship to the triangular element
whose free-body diagram was given in Fig. 16-37.

Fig. 16-38

The values of sin26, and cos 26, as found from the above two diagrams may now be substituted
in (/) to yield the maximum and minimum values of the normal stresses. Observing that

I‘J‘,,, I{',(o'x —oy)
\'/H(U': - "'-"'y)]2 + (7:,7)2 \/[%(UA - gy )']I + (7,:_\-)2
where the upper signs pertain to Case I and the lower to Case II, we obtain from (1)
o =Yor+ 0,) = V[i(o, — )] + (r,)? )
The maximum normal stress is

Traxy = !‘(0‘, + ay) + V[%(Ux = 0'-)']2 +(7, )2 (3)

sin28, = cos26, =

The minimum normal stress is
Tmin = 30y + 0,) = Vi (0, — 0 ) + (7,.) (©)

The stresses given by (5) and (6) are the principal stresses and they occur on the principal planes
defined by (3). By substituting one of the values of 6, from (3) into Eq. (/). one may readily
determine which of the two principal stresses is acting on that plane. The other principal stress
naturally acts on the other principal plane.
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By substituting the values of the angle 26, as given by (3) or by Fig. 16-38 into (2), it is readily
seen that the shearing stresses 7 on the principal planes are zero.

To determine the maximum value that the shearing stress + may assume as the angle 0 varies, we shall
differentiatc Eq. (2) with respect to 6 and set this derivative equal to zero. Thus

dr .
% = (o, — 0,)c0s 20 — 27,,5in26 = 0
The values of 8 leading to the maximum values of the shearing stress are thus
Yo -
tan 26, = i"*T"_r) (7)
xy

The planes defined by the two solutions to this equation are the planes of maximum shearing
sLress.

Again, a graphical interpretation of (7) is convenient. The two values of the angle 26, satisfying
this equation may be represented as in Fig. 16-39. From these diagrams we have

Ii(o', - a,) - *7,,
\/[%(D} - ""'y)]2 + (1) cos26, V[%(ox —q) + (1)

where the upper (positive) sign refers to Case I and the lower (negative) sign applies to Case II.
Substituting these values in (2) we find

Tax = = Vi, — 0,)F + (7,)° 8)

min

sin 26, =

Here the positive sign represents the maximum shearing stress, the negative sign the minimum
shearing stress.

- i('x - o'y)

Fig. 16-39

If we compare (3) and (7). it is evident that the angles 26, and 26, differ by 90°, since the tangents
of these angles are the negative reciprocals of one another. Hence the planes defined by the angles
6, and 6, differ by 45° that is, the planes of maximum shearing stress are oriented 45° from the planes
of maximum normal stress.

It is also of interest to determine the normal stresses on the planes of maximum shearing stress.
These planes are defined by (7). If we now substitute the values of sin 26, and cos 26, in Eq. (/) for
normal stress, we find

o= %(o', +o,) %)

Thus on each of the planes of maximum shearing stress is a normal stress of magnitude (o, + o,).

16.14. Discuss a graphical representation of the analysis presented in Problem 16.13.

1.

For given values of o,, o,, and 7,, we proceed this way:

Introduce a rectangular coordinate system in which normal stresses are represented along the
horizontal axis and shearing stresses along the vertical axis. The scales used on these two axes must
be equal.
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"a_”t.dy } Ca
dx Try

Fig. 16-40

2. With reference to the original rectangular element considered in Problem 16.13 and reproduced in Fig.
16-40, we shall introduce the sign convention that shearing stresses are positive if they tend to rotate
the element clockwise, and negative if they tend to rotate it counterclockwise. Here the shearing
stresses on the vertical faces are positive, those on the horizontal faces are negative. Also, tensile
normal stresses are considered to be positive, compressive stresses negative.

3. We first locate point b by laying out ¢, and 7,, to their given values. The shear stress 7., on the vertical
faces on which o, acts is positive; hence this value is plotted as positive in Fig. 16-41.

| Shearing Stress

Fig. 16-41

4. We next locate point d in a similar manner by laying off ¢, and 7,, to their given values. Figure 16-41
is drawn on the assumption that o, > o, although the treatment presented here holds if o, < o,. The
shear stress 7,, on the horizontal faces on which o, acts is negative; hence this value is plotted below
the reference axis.

5. Next, we draw line bd, locate midpoint c, and draw a circle having its center at ¢ and radius equal to
cb. This is known as Mohr's circle.

We shall first show that the points g and h along the horizontal diameter of the circle represent the
principal stresses. To do this we note that the point ¢ lies at a distance }(o, + ¢,) from the origin of the



COMBINED STRESSES [CHAP 16

coordinate system. Also, the line segment jk is of length o, — o,; hence ck is of length }(o, — @,). From the
right triangle relationship we have

(cdy’ = (ck)* + (kd}’  or  cd = V[i(o. - 0,) + (1,,)?

Also. €g = ch = cd. Hence the x-coordinate of point h is oc + ch or

%(0‘,( + O',.) + vl%(ﬂ'r - ,v)F + (Txy)z

But this expression is exactly the maximum principal stress, as found in (5) of Problem 16.13. Likewise the
x-coordinate of point g is oc — ge or

o+ 0,) - V(0. — 0,)F + (7,

and this expression is exactly the minimum principal stress. as found in (6) of Problem 16.13. Consequently
the points g and h represenl the principal stresses existing in the original element. We see that the tangent
of Lked = dkick = 7./5(o, — o). But from (3) of Problem 16.13 we had

.
tan26, = — ——2—

_({'.", - D',}

and by comparison of these two relations we see that Zkcd = 26,; that is, a counterclockwise rotation from
the diameter bd (corresponding to the stresses in the x- and y-directions) leads us to the diameter gh.
representing the principal planes, on which the principal stresses occur. The principal planes lie at an angle
6, from the x-direction.

Thus Mohr’s circle is a convenient device for finding the principal stresses, since one can merely
establish the circle for a given set of stresses o,, o,, 7,,, then measure og and oh. These abscissas represent
the principal stresses to the same scale used in plotting o, a,. 7,,.

It is now apparent that the radius of Mohr’s circle,

od = V[io, - 0) + (7,

corresponds to the maximum shearing stress as found in (8) of Problem 16.13. Actually, the shearing stress
on any plane is represented by the ordinate to Mohr’s circle; hence we should consider the radial lines ¢l
and ¢m as representing the maximum shearing stress. The angle dcl is evidently 26, and hence it is apparent
that the double angle between the planes of maximum normal stress and the planes of maximum shearing
stress (£ kcl) is 90° hence the planes of maximum shearing stress are oriented 45° from the planes of
maximum normal stress.

Evidently the endpoints of the diameter bd represent the stresses acting in the original x- and
y-directions. We shall now demonstrate that the endpoints of any other diameter such as ef (at an angle
26 with bd) represent the stresses on a plane inclined at an angle 6 to the x-axis. To do this we note that
the abscissa of point f is given by

o = oc +cn = S0+ 0,) + cfcos (26, — 26)
= (o, + @,) + cf(cos 26, cos 26 + sin 28, sin 26)

= Yo. + a,) + V[i(o, - 0,))’ + (1,,)’ (c0s 26, cos 28 + sin 28, 5in 26)

But from an inspection of triangle ckd in Mohr’s circle it is evident that

1
Txy cos? 3 iﬂ' a,)

sin26, = \/[%(0'1 o)+ () \/[i_“ —a,)F + (1,

(1)

Substituting the values of 7,, and 5(0',‘ — ¢,) from these last two equations into the previous equation.
we find

o =0, +0,) - 30, - 7,)c0s28 + 7,,5in 20

But this is exactly the normal stress on a plane inclined at an angle 6 to the x-axis as derived in (1) of
Problem 16.13.



