

Classical Logic	shavandı(U	Dsharif.ed
Proposition Logic		
Definition (Proposition) As in our ordinary informative "sentence" is used in the logic. Especially, a sentence only "true (1)" or "false (0)" as its truth value is call "proposition"	al languaç e having ed	ge,
Example 8.1 The following sentences are propositions.		
Example 8.1 The following sentences are propositions. Smith hits 30 home runs in one season. 2+4=7	(true) (false)	
Example 8.1 The following sentences are propositions. Smith hits 30 home runs in one season. 2 + 4 = 7 For every x, if $f(x) = \sin x$, then $f'(x) = \cos x$.	(true) (false) (true)	

ble 8.2. Tr	ruth table o	f conjunction	Table 8.3. 7	ruth table of	disjunction
a	b	a∧b	a	. b	a∨b
1	1	1	1	1	1
1	0	0	1	0	1
0	1	0	0	1	1
0	0	0	0	0	0

Fuzzy Sets. Chapter 6- Fuzzy Logic				shavandi@sharif.edu
Classical	Logic			
	Table 8.4. Tru	th table of in	plication	
	a	b	$a \rightarrow b$	
	1	1	1	
	1	0	0	
	0	1	1	
	0	0	1	
i) a - ii) a - iii) a - iv) a -	$\rightarrow b \text{ where}$ $\rightarrow b \text{ where}$ $\rightarrow b \text{ where}$ $\rightarrow b \text{ where}$	a: 2 + 2 = a: 2 + 2 = a: 2 + 2 = a: 2 + 2 =	= 4, b: 3 + 3 = 0 = 4, b: 3+3 = 7 = 5, b: 3 + 3 = 0 = 5, b: 3 + 3 = 7	6 6 7
we can see that t	he above p	propositio	ons are true exc	ept for the second.
Sharif University of Technology				Industrial Engineering Dept.

Fuzzy Sets. Chapter 6- Fuzzy Logic	Table 8.5. Properties of classical	logic	shavandi@sharif.edu
	(1) Involution	$\overline{\overline{a}} = a$	
	(2) Commutativity	$a \wedge b = b \wedge a$	-
		$a \lor b = b \lor a$	
	(3) Associativity	$(a \wedge b) \wedge c = a \wedge (b \wedge c)$	
		$(a \lor b) \lor c = a \lor (b \lor c)$	
	(4) Distributivity	$a \lor (b \land c) = (a \lor b) \land (a \lor c)$	
		$a \wedge (b \lor c) = (a \land b) \lor (a \land b)$	
	(5) Idempotency	$a \wedge a = a$	
		$a \lor a = a$	
	(6) Absorption	$a \lor (a \land b) = a$	
		$a \land (a \lor b) = a$	
	(7) Absorption by 0 and 1	$a \wedge 0 = 0$	
		$a \lor 1 = 1$	
	(8) Identity	$a \wedge 1 = a$	
		$a \lor 0 = a$	
	(9) De Morgan's law	$\overline{a \wedge b} = \overline{a} \vee \overline{b}$	
		$\overline{a \lor b} = \overline{a} \land \overline{b}$	
	(10) Absorption of complement	$a \lor (\overline{a} \land b) = a \lor b$	
		$a \wedge (\overline{a} \vee b) = a \wedge b$	
	(11) Law of contradiction	$a \wedge \overline{a} = 0$	
	(12) Law of excluded middle	$a \lor \overline{a} = 1$	
Sharif University of Technology			Industrial Engineering Dept.

Fuzzy Sets. Chapter 6- Fuzzy Logic	shavandi@sharif.edu
Classical Logic	
Tautology and Inference Rule	
Definition (Tautology) A "tautology" is a logic formulalways true regardless of its logic variables. A "contwhich is always false.	la whose value is tradiction" is one
Example 8.5 Consider the following logic formula.	
$\overline{(a \to b)} \to \overline{b}$	
This proposition means that if the value of $(a \rightarrow b)$ false. Let's evaluate its value with different values of and b in (Table 8.6.)	is false then b is logic variables a
Sharif University of Technology	Industrial Engineering Dept.

Tauto	ology a	n <mark>d Inferen</mark>	ce Rule		
able 8.	6. Truth	value of tau	tology $\overline{(a \rightarrow a)}$	$\overline{(b)} \rightarrow \overline{b}$	
a	b	$a \rightarrow b$	$\overline{(a \to b)}$	\overline{b}	$\overline{(a \to b)} \to \overline{b}$
1	1	1	0	0	1
1	0	0	1	1	1
0	1	1	0	0	1
	0	1	0	1	1

vandi@sharif.e	shavan		oaic	^{gic} cal L	assi	Sets. Chapte
		Rule	Inference	av and	utolog	D Ta
values	in (Table 8.7.) egardless of the va ists."	ther example. $(a \rightarrow b)) \rightarrow b$ sition are evaluation has also true values that that then b is true." or b) is true, then b $(a \wedge (a \rightarrow b)) \rightarrow b$	consider and (a) of this proposition tology mean $\rightarrow b$) is true, t relation (a- value of tautol	.6 Let's that this that this taute and (a^2) and the 8.7. Truth	mple 8 he truth can see and b. 7 is true 7 exists Table 3	Exa T we c of a "If c
	$\wedge (a \rightarrow b)) \rightarrow b$	$(a \land (a \rightarrow b))$	$(a \rightarrow b)$	b	a	
	1	1	1	1	1	
	1	0	0	0	1	
	1	0	1	1	0	
10	1	0	1	0	0	
	1 Industria	0	1	0	0 Technology	University of

Fuzzy Sets. Chapter 6- Fuzzy Logic	shavandi@sharif.edu
Classical Logic	
Predicate Logic	
A "predicate" is a group of words like	
"is a man"	
"is green"	
"is less than"	
"belongs to"	
They can be applied to one or more names of individual	s (objects) to
yield meaningful sentences; for example,	
"Socrates is a man."	
"Two is less than four."	
"That hat belongs to me."	
"He is John."	
the names of the individuals are called individual constants.	
Sharif University of Technology	Industrial Engineering Dept.

shavandi@sharif.edu

Industrial Engineering Dept

Fuzzy Sets. Chapter 6- Fuzzy Logic

Fuzzy Logic

Fuzzy Expression

In the fuzzy expression(formula), a fuzzy proposition can have its truth value in the interval [0,1]. The fuzzy expression function is a mapping function from [0,1] to [0,1].

 $f:[0,1] \rightarrow [0,1]$

If we generalize the domain in n-dimension, the function becomes as follows:

 $f:[0,1]^n \to [0,1]$

Therefore we can interpret the fuzzy expression as an n-ary relation from n fuzzy sets to [0,1]. In the fuzzy logic, the operations such as negation (~ or \neg), conjunction (\land) and disjunction (\lor) are used as in the classical logic.

Sharif University of Technology

Fuzzy Logic
Fuzzy Expression
Pefinition (Fuzzy logic) Then the fuzzy logic is a logic represented by the fuzzy expression (formula) which satisfies the followings.

Truth values, 0 and 1, and variable x_i (∈[0,1], i = 1, 2, ..., n) are fuzzy expressions.
If f is a fuzzy expression, ~f is also a fuzzy expression.
If f and g are fuzzy expressions, f ∧ g and f ∨ g are also fuzzy expressions.

9

shavandi@sharif.edu

Industrial Engineering Dept

Fuzzy Sets. Chapter 6- Fuzzy Logic

Fuzzy Logic

Operators in Fuzzy Expression

There are some operators in the fuzzy expression such as \neg (negation), \land (conjunction), \lor (disjunction), and \rightarrow (implication). However the meaning of operators may be different according to the literature. If we follow Lukasiewicz's definition, the operators are defined as follows for a, $b \in [0,1]$.

- (1) Negation $\overline{a} = 1 a$
- (2) Conjunction $a \wedge b = Min(a, b)$
- (3) Disjunction $a \lor b = Max(a, b)$
- (4) Implication $a \rightarrow b = Min(1, 1+b-a)$ The properties of fuzzy operators are summarized in (Table 8.9.)

But we have to notice that the law of contradiction and law of excluded middle are not verified in the fuzzy logic.

Sharif University of Technology

uzzy Sets. Chapter 6- Fuzzy Logic shavandi@sharif.edu Table 8.9. The properties of fuzzy logic operators (1) Involution $\overline{\overline{a}} = a$ (2) Commutativity $a \wedge b = b \wedge a$ $a \lor b = b \lor a$ (3) Associativity $(a \wedge b) \wedge c = a \wedge (b \wedge c)$ $(a \lor b) \lor c = a \lor (b \lor c)$ (4) Distributivity $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ $a \land (b \lor c) = (a \land b) \lor (a \land c)$ (5) Idempotency $a \wedge a = a$ $a \lor a = a$ (6) Absorption $a \lor (a \land b) = a$ $a \wedge (a \vee b) = a$ (7) Absorption by 0 and 1 $a \wedge 0 = 0$ $a \vee 1 = 1$ (8) Identity $a \wedge 1 = a$ $a \lor 0 = a$ (9) De Morgan's law $\overline{a \wedge b} = \overline{a} \vee \overline{b}$ $\overline{a \lor b} = \overline{a} \land \overline{b}$ harif University of Technology Industrial Engineering Dept

Fuzzy Sets. Chapter 6- Fuzzy Logic	shavandi@sharif.edu
Fuzzy Logic	
Fuzzy Predicate	
Definition (Fuzzy predicate) .A fuzzy predicate is a predicate definition contains ambiguity	whose
Example 8.16 For example, "z is expensive." "w is young." The terms "expensive" and "young" are fuzzy terms. There sets "expensive(z)" and "young(w)" are fuzzy sets. □	fore the
When a fuzzy predicate " x is P" is given, we can interpret it ways.	in two
(1) $P(x)$ is a fuzzy set. The membership degree of x in the set defined by the membership function $\mu_{P(x)}$.	set P is
(2) $\mu_{P(x)}$ is the satisfactory degree of x for the property P. Therefore truth value of the fuzzy predicate is defined by the mem function. Truth value = $\mu_{P(x)}$	fore, the ibership
Sharif University of Technology Indu	ustrial Engineering Dept.

Fuzzy Sets. Chapter 6- Fuzzy Logic		shavandi@sharif.edu
Fuzzy Logic		
Fuzzy Truth Qualifier		
 Fuzzy Truth Values 		
$\mu_{\rm true}(v) = v$	$\nu \in [0,1]$	
$\mu_{\text{very true}}(v) = (\mu_{\text{true}}(v))^2$	$v \in [0,1]$	
$\mu_{\text{fairly true}}(v) = (\mu_{\text{true}}(v))^{1/2}$	$v \in [0,1]$	
$\mu_{\text{false}}(v) = 1 - \mu_{\text{true}}(v)$	$\nu \in [0,1]$	
$\mu_{\text{very false}}(v) = (\mu_{\text{false}}(v))^2$	$v \in [0,1]$	
$\mu_{\text{fairly false}}(v) = (\mu_{\text{false}}(v))^{1/2}$	$v \in [0,1]$	
$\int 1$	for $v = 1$	
$\mu_{\text{absolutely true}}(\mathbf{v}) = \int_{0} 0$	otherwise	
() - <u></u>	for $v = 0$	
$\mu_{\text{absolutely false}}(v) = \begin{cases} 0 \\ 0 \end{cases}$	otherwise	
Sharif University of Technology	Ir	ndustrial Engineering Dept.

	shavandi@sharif.ed
Representation of Fuzzy Rule	
Representation of Fuzzy Predicate by Fuzzy Relation	on
We saw that a fuzzy predicate is considered as a fuzzy section, we will see how the fuzzy predicate is used in fu When there is a fuzzy predicate proposition such that " represented by fuzzy set $P(x)$ and whose membership f $\mu_{P(x)}(x)$. We know also a fuzzy relation is one type of fuzzy we can represent a predicate by using a relation. " $R(x) = P$ " P is a fuzzy set and $R(x)$ is a relation that consists of a The membership function of the predicate is represented by shows the membership degree of x in P. The predicate represented	set. In this zzy inference. x is P", it is unction is by sets, and thus elements in P. $\mu_{P(x)}(x)$ which presented by a

Sharif University of Technology

Industrial Engineering Dept

Fuzzy Sets. Chapter 6- Fuzzy Logic	shavandi@sharif.edu					
Representation of Fuzzy	y Rule					
Kepresentation of Fuzzy Kule						
If there are a rule and facts involving types of reasoning. (1) Generalized modus ponens (GMP)	fuzzy sets, we can execute two					
Fact: x is A'	$: \mathbf{R}(x)$					
Rule: If x is A then y is B	$: \mathbf{R}(x, y)$					
Result: v is B'	$: \mathbf{R}(y) = \mathbf{R}(x) \circ \mathbf{R}(x, y)$					
(2) Generalized modus tollens (GMT)						
Fact: y is B'	$: \mathbf{R}(\mathbf{y})$					
Rule: If x is A then y is B	$: \mathbf{R}(x, y)$					
Result: x is A'	$: \mathbf{R}(x) = \mathbf{R}(y) \circ \mathbf{R}(x, y)$					
In the above reasoning, we see that the	facts (A' and B') are not exactly					
same with the antecedents (A and B) in th	ne rules; the results may be also					
different from the consequents. Therefore	e, we call this kind of inference					
as "fuzzy (approximate) reasoning or infere	ence".					
Sharif University of Technology	Industrial Engineering Dept.					

Fuzzy Sets. Chapter 6- Fuzzy Logic shavandi@sharif.edu	J.
Representation of Fuzzy Rule	
Representation of Fuzzy Rule	
Example 8.20 We have knowledge such as : If x is A then y is B x is A' From the above knowledge, how can we apply the inference procedure to get new information about y ?	
i) We apply the implication operator to get implication relation $R(x,y) = A \times B$. Here, the cartesian product $A \times B$ is used. $R(x, y): A(x) \rightarrow B(y)$	
ii) We manipulate the fact into the form R(x) and then apply the generalized modus ponens	
$R(y) = R(x) \circ R(x, y)$ In this step, composition operator " \circ " is used. Therefore, there are two issues in the fuzzy reasoning: determination of the "implication relation" $R(x,y)$ and selection of the "composition operatior". These issues will be discussed in the next chapter.	
Sharif University of Technology Industrial Engineering Dep	pt.