

Fuzzy Sets. Chapter 6- Fuzzy Logic shavandi@sharif.edu **Fuzzy Rules and Implication** Fuzzy Implications Based on the interpretations of the Cartesian product and various t-norm and t-conorm operators, a number of qualified methods can be formulated to calculate the fuzzy relation $R = A \rightarrow B$ R can be viewed as a fuzzy set with a two-dimensional membership function $\mu_{\rm R}(x, y) = f(\mu_{\rm A}(x), \mu_{\rm B}(y))$ where the function f, called the "fuzzy implication function", performs the task of transforming the membership degrees of x in A and y in B into those of (x, y) in A \times B. We introduce here two well known fuzzy implication functions. harif University of Technology Industrial Engineering Dept

Fuzzy Rules and ImplicationImplicationsTable 9.6. Membership of A in T (temperature) t 20 30 40 $\mu_A(t)$ 0.1 0.5 0.9 Table 9.7. Membership degrees of B in H (humidity)h 20 50 70 $\mu_B(h)$ 0.2 0.6 0.7 1	Sets. Chapter 6- Fuzzy La	gic					shavandi@sharif.e
Table 9.6. Membership of A in T (temperature) t 20 30 40 $\mu_{\Lambda}(t)$ 0.1 0.5 0.9 Table 9.7. Membership degrees of B in H (humidity) h 20 50 70 90 $\mu_{B}(h)$ 0.2 0.6 0.7 1	Fuzzy	Rules	and Im	plicat	ion		
Table 9.6. Membership of A in T (temperature) t 20 30 40 $\mu_{\Lambda}(t)$ 0.1 0.5 0.9 Table 9.7. Membership degrees of B in H (humidity) h 20 50 70 90 $\mu_{B}(h)$ 0.2 0.6 0.7 1							
t 20 30 40 $\mu_A(t)$ 0.1 0.5 0.9 Table 9.7. Membership degrees of B in H (humidity) h 20 50 70 90 $\mu_B(h)$ 0.2 0.6 0.7 1	🗆 Examp	le of Fuzz	y Im <mark>plica</mark>	tions			
t 20 30 40 $\mu_A(t)$ 0.1 0.5 0.9 Table 9.7. Membership degrees of B in H (humidity) h 20 50 70 90 $\mu_B(h)$ 0.2 0.6 0.7 1							
t 20 30 40 $\mu_A(t)$ 0.1 0.5 0.9 Table 9.7. Membership degrees of B in H (humidity) h 20 50 70 90 $\mu_B(h)$ 0.2 0.6 0.7 1	Table 9.6 M	mbership of A	in T (temper	ature)			
$\mu_A(t)$ 0.1 0.5 0.9 Table 9.7. Membership degrees of B in H (humidity) h 20 50 70 90 $\mu_B(h)$ 0.2 0.6 0.7 1	-		2.15				
Table 9.7. Membership degrees of B in H (humidity) h 20 50 70 90 $\mu_B(h)$ 0.2 0.6 0.7 1							
h 20 50 70 90 μ _B (h) 0.2 0.6 0.7 1	$\mu_A(t)$	0.1	0.5	0.9			
h 20 50 70 90 μ _B (h) 0.2 0.6 0.7 1							
μ _B (h) 0.2 0.6 0.7 1	Table 9.7.	Membershij	p degrees of	f B in H (h	umidi	ity)	
PD/m/	h	20	50		70	90	
	μ _B (h)	0.2	0.6	().7	1	
	University of Technology						Industrial Engineering D

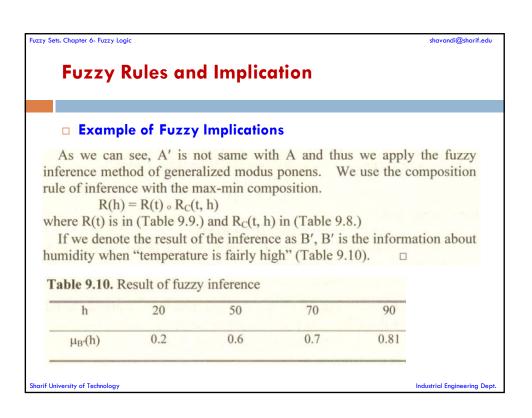
Fuzzy Sets. Chapter 6- Fuzzy Logic

shavandi@sharif.edu

Industrial Engineering Dept

Fuzzy Rules and Implication

Example of Fuzzy Implications


In order to get the relation for the implication in the above fuzzy rule, we have to select an implication function between A and B. For simplicity, let's take the min operation of Mamdani in the previous section. $R_C(t, h) = A \times B$

$$= \int \mu_{\rm A}(t) \wedge \mu_{\rm B}(h) / (t, h)$$

when we apply the min operation on the Cartesian product $A \times B$, we obtain the relation R_C as shown in (Table 9.8.) This membership of R_C represents the fuzzy rule. Note that $\mu_{R_c}(20, 50) = 0.1$ is obtained by the min between $\mu_A(20) = 0.1$ and $\mu_B(50) = 0.6$. Similarly, $\mu_{R_c}(30, 20) = 0.2$ from $\mu_A(30) = 0.5$ and $\mu_B(20) = 0.2$.

Sharif University of Technology

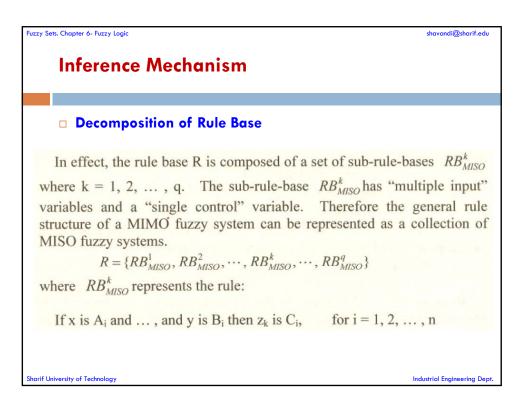
Fu	er 6- Fuzzy Lo	·	es an	d Im	plicati	on		shavandi@sharif.edu
	xamp	ole of F	uzzy li	mplicat	tions			
when the	nere is fact is	the folle rewritte R(t):	owing j "Ten en as : "t is A	premise peratur	where A'	temperat high" = "fairly	ure. / high"	e humidity
where	the fuz	LZY tem	_					
		$rac{1}{50}$		90	Table 9.9. M	lembership fi	unction of A'	in T (temperatur
Table 9.8. N	1embership	o of rule R _C =	= A × B	90 0.1	Table 9.9. N	1embership fi 20	unction of A'	in T (temperatur 40
Fable 9.8. M	1embership 20	o of rule R _c =	= A × B 70	20	Table 9.9. Μ t μ _A ·(t)			<u> </u>

shavandi@sharif.edu

Industrial Engineering Dep

Fuzzy Sets. Chapter 6- Fuzzy Logic

Inference Mechanism


Decomposition of Rule Base

The antecedent of R_{MIMO}^i forms a fuzzy set $A_i \times ... \times B_i$ in the "product space" $U \times ... \times V$. The consequence is the "union" of q independent control actions $(z_1 + z_2 + ... + z_q)$. Thus the ith rule R_{MIMO}^i may be represented as a fuzzy implication.

 R^{i}_{MIMO} : $(A_i \times ... \times B_i) \rightarrow (z_1 + ... + z_q)$

Sharif University of Technology

First State Chapter 2- Fuzzy Logit Inference Mechanism Decomposition of Rule Base From the above statement, it follows that the rule base R may be represented as the union $R = \{\bigcup_{i=1}^{n} R_{MIMO}^{i}\}$ $= \{\bigcup_{i=1}^{n} [(A_{i} \times \dots \times B_{i}) \rightarrow (z_{1} + \dots + z_{q})]\}$ $= \{\bigcup_{i=1}^{n} [(A_{i} \times \dots \times B_{i}) \rightarrow z_{1}], \qquad = \{\bigcup_{k=1}^{q} \prod_{i=1}^{n} [(A_{i} \times \dots \times B_{i}) \rightarrow z_{k}]\}$ $\prod_{l=1}^{n} [(A_{i} \times \dots \times B_{i}) \rightarrow z_{2}], \dots, \qquad = \{\bigcup_{k=1}^{q} RB_{MISO}^{k}\} \quad where RB_{MISO}^{k} = \bigcup_{l=1}^{n} [(A_{i} \times \dots \times B_{i}) \rightarrow z_{i}]$ $= \{RB_{MISO}^{1}, RB_{MISO}^{2}, \dots, RB_{MISO}^{k}, \dots, RB_{MISO}^{k}\}$ where Define the term of the term of the term of the term of ter

Fuzzy Sets. Chapter 6- Fuzzy Logic	shavandi@sharif.edu
Inference Mechanism	
Two-Input/Single-Output Rule Base	
For simplicity, let's consider the general form of MISO f in the case of two-input/single-output systems. Input: u is A' and v is B' R ₁ : if u is A ₁ and v is B ₁ then is w is C ₁ else R ₂ : if u is A ₂ and v is B ₂ then is w is C ₂ else R _n : if u is A _n and v is B _n then is w is C _n	fuzzy control rules
consequence: w is C'	
Sharif University of Technology	Industrial Engineering Dept

Fuzzy Sets. Chapter 6- Fuzzy Logic

shavandi@sharif.edu

Inference Mechanism

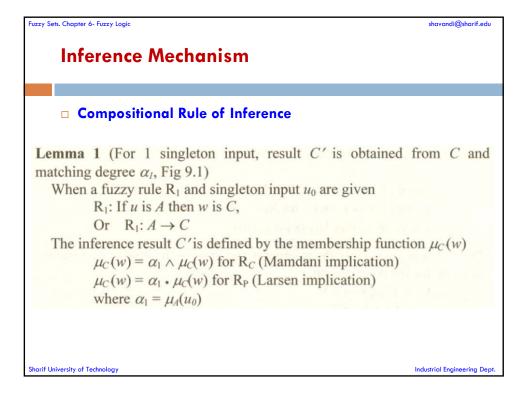
Two-Input/Single-Output Rule Base

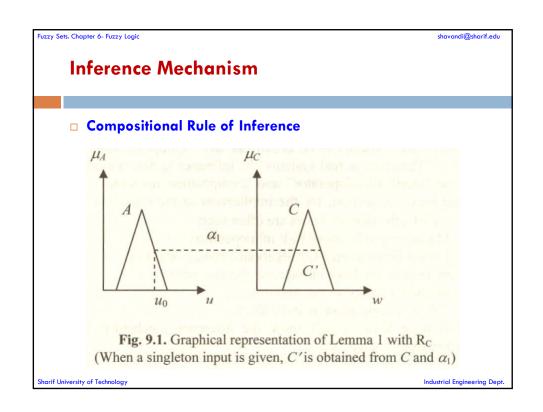
where u, v, and w are linguistic variables representing the process state variables and the control variables, respectively. A_i, B_i, and C_i are linguistic values of the linguistic variables u, v, and w in the universe of discourse U, V, and W respectively for i=1, 2, ..., n.

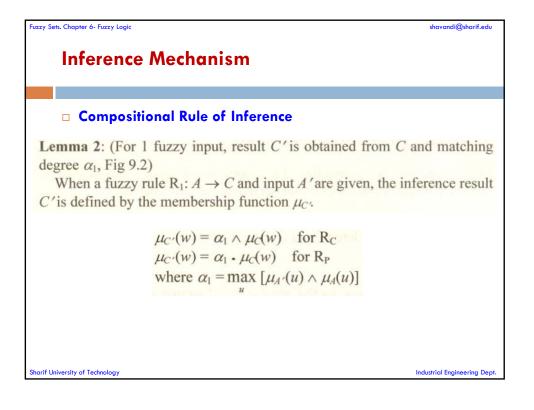
The fuzzy control rule

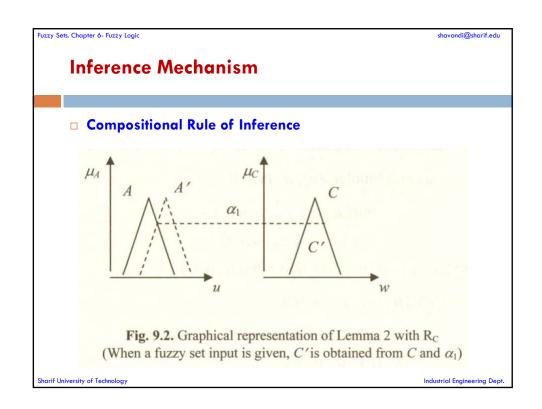
 R_i : If u is A_i and v is B_i then w is C_i

is implemented as a fuzzy implication relation R_i and is defined as

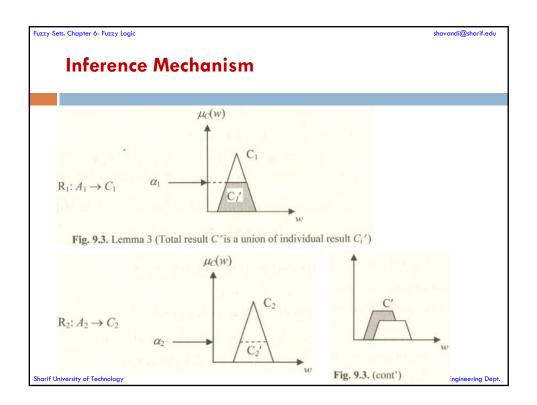

 $R_i: (A_i \text{ and } B_i) \rightarrow C_i \quad \text{ or }$

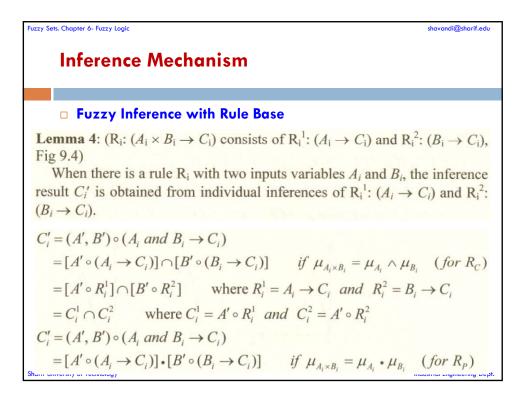

 $\mu_{R_i} = \mu_{(A_i \text{ and } B_i \to C_i)}(u, v, w)$

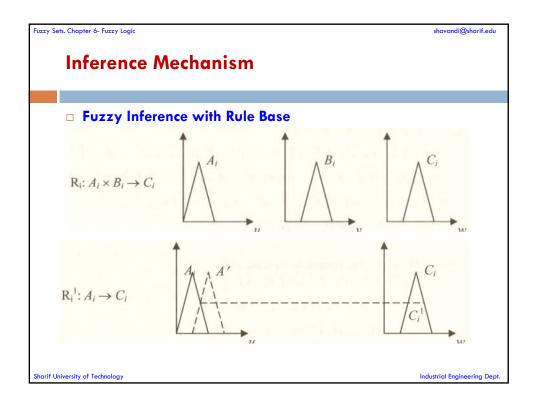

 $= [\mu_{A_i}(u) \text{ and } \mu_{B_i}(v)] \rightarrow \mu_{C_i}(w)$

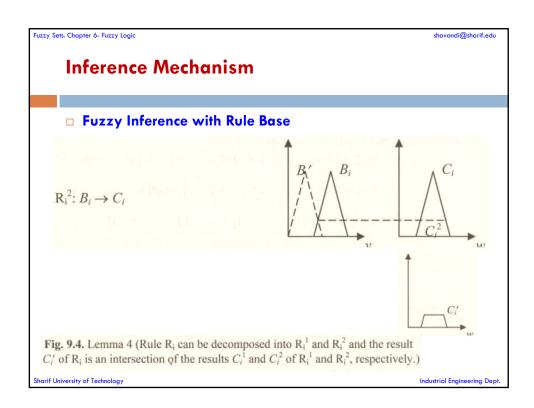

where " A_i and B_i " is a fuzzy set $A_i \times B_i$ in U × V.

 R_i : (A_i and B_i) \rightarrow C_i is a fuzzy implication relation in U × V × W, and \rightarrow denotes a fuzzy implication function.

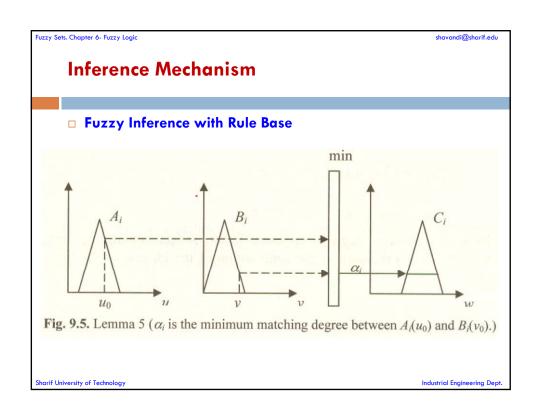






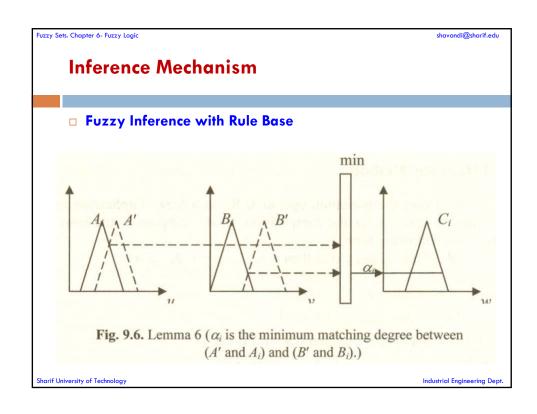

uzzy Sets. Chapter 6- Fuzzy Logic	shavandi@sharif.edu
Inference Mechanism	
Fuzzy Inference with Rule Base	
In this section, we generalize the rule of inference discussed in the	
such as $\mathbf{R}: \bigcup_{i=1}^{n} \mathbf{R}_{i}$	
$R_i: A_i \rightarrow C$	i
Lemma 3 (Total result C' is an aggreg 9.3)	sation of individual results C'_i , Fig
The result of inference C is an agg	regation of result C' derived from
individual rules.	
$C' = A' \circ \bigcup_{i=1}^n R_i = \bigcup_{i=1}^n A' \circ R_i = \bigcup_{i=1}^n A_i = \bigcup_{i=1}^n A_i$	$\int_{-1}^{1} C_{i}^{\prime}$
narif University of Technology	Industrial Engineering De

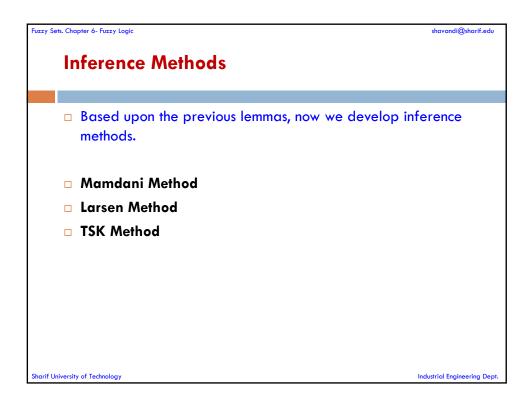
Fuzzy Sets. Chapter 6- Fuzzy Logic shavandi@sharif.edu
Inference Mechanism
Fuzzy Inference with Rule Base
Now, we generalize Lemma 3 to the case of multiple input variables such as $R: \bigcup_{i=1}^{n} R_{i}$ $R_{i}: A_{i} \text{ and } B_{i} \rightarrow C_{i}$
Colorally of Lemma 3 : (Lemma 3 in the case of multiple inputs) The result of inference <i>C</i> is an aggregation of result C'_i derived from individual rules. $C' = (A', B') \circ \bigcup_{i=1}^{n} R_i = \bigcup_{i=1}^{n} (A', B') \circ R_i = \bigcup_{i=1}^{n} C'_i$
Sharif University of Technology Industrial Engineering Dept



Fuzzy Sets. Chepter 6-Fuzzy Logit Inference Mechanism I Fuzzy Inference with Rule Base Lemma 5: (For singleton input, C'_i is determined by the minimum matching degree of A_i and B_i , Fig 9.5) If the inputs are fuzzy singletons, namely, A' = u0, B' = v0, the matching degree αi is the minimum value between $.\mu_{Ai}(u_0)$ and $\mu_{Bi}(v_0)$ from the lemma 1, the inference result can be derived by employing Mamdani's minimum operation rule R_c and Larsen's product operation rule R_P for the implication. $\mu_{C'_i}(w) = \alpha_i \land \mu_{C_i}(w) \quad for \ R_P$ $where \ \alpha_i = \mu_{A_i}(u_0) \land \mu_{B_i}(v_0) = \min[\mu_{A_i}(u_0), \mu_{B_i}(v_0)]$

Sharif University of Technology

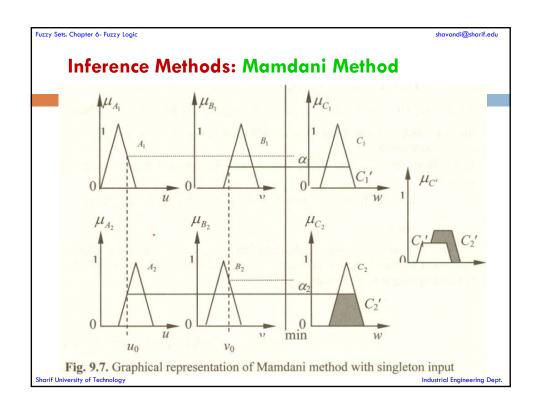

Industrial Engineering Dept

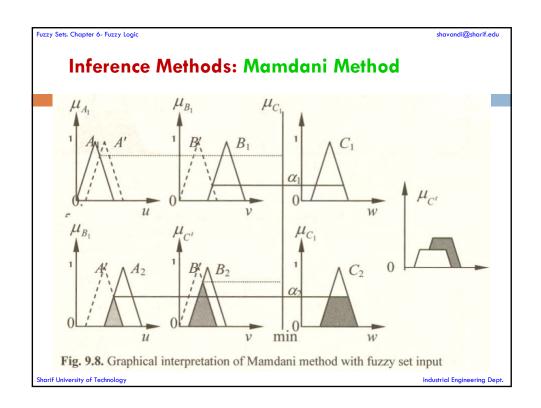


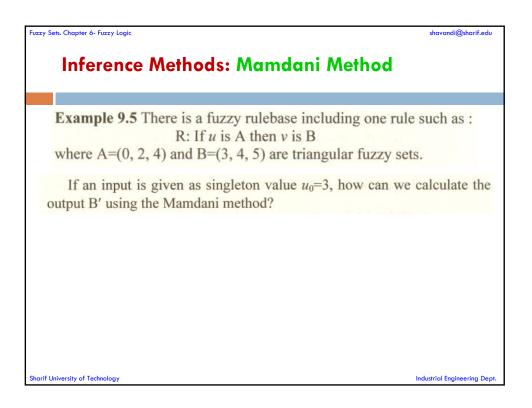
Fuzzy Sets. Chapter 6- Fuzzy Logic shavandi@sharif.edu **Inference Mechanism** Fuzzy Inference with Rule Base Lemma 6: (For fuzzy input, C'_i is determined by the minimum matching degree of $(A' \text{ and } A_i)$ and $(B' \text{ and } B_i)$, Fig 9.6) If the inputs are given as fuzzy sets A' and B', the matching degree α_i is determined by the minimum between $(A' \text{ and } A_i)$ and $(B' \text{ and } B_i)$. From the lemma 2, the results can be derived by employing the min operation for R_{C} and the product operation for R_{P} . $\mu_{C'_i}(w) = \alpha_i \wedge \mu_{C_i}(w) \quad for \ R_C$ $\mu_{C'_i}(w) = \alpha_i \cdot \mu_{C_i}(w) \quad for \ R_P$ where $\alpha_i = \min[\max_{u}(\mu_{A'}(u) \land \mu_{A_i}(u)), \max_{v}(\mu_{B'}(v) \land \mu_{B_i}(v))]$ harif University of Technology

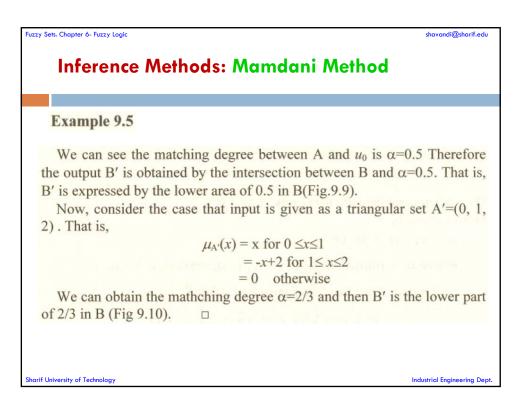
15

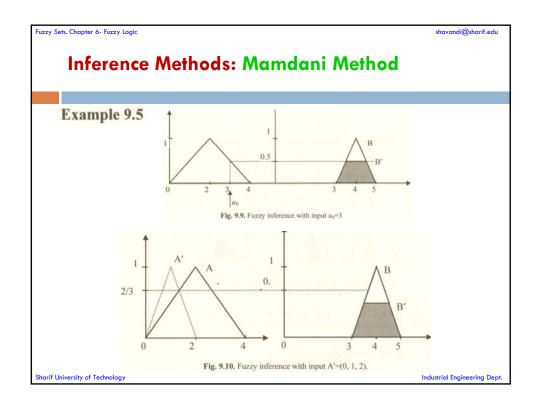
Industrial Engineering Dept



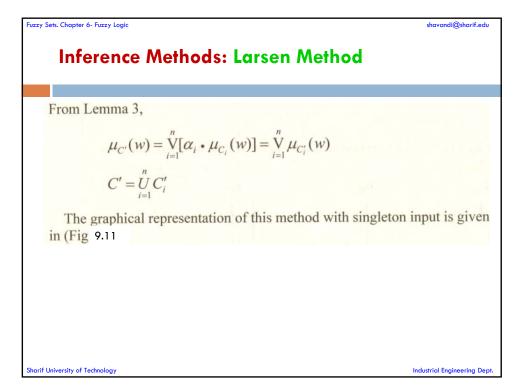

Therefore in general, from Lemma 3, $\mu_{C'}(w) = \prod_{i=1}^{n} C'_{i}$ $\mu_{C'}(w) = \prod_{i=1}^{n} C'_{i}$ where the inferred consequence of the sequence of the

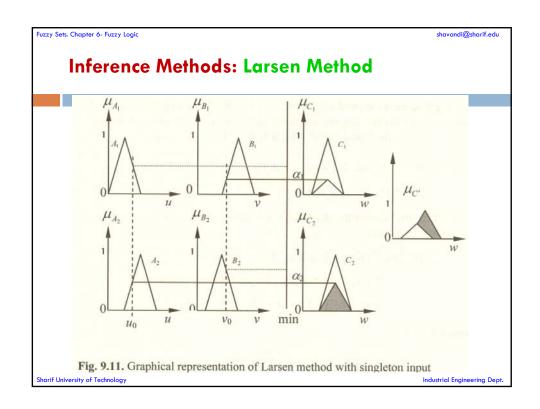

Sharif University of Technology

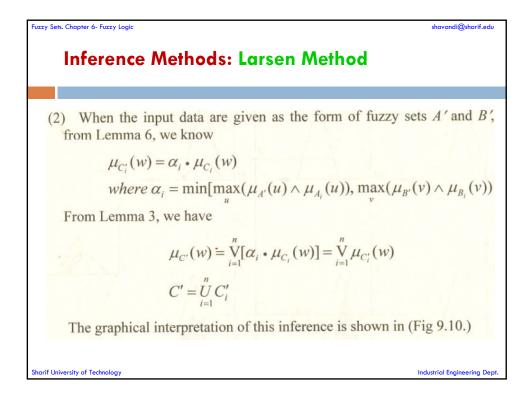

Industrial Engineering Dept.

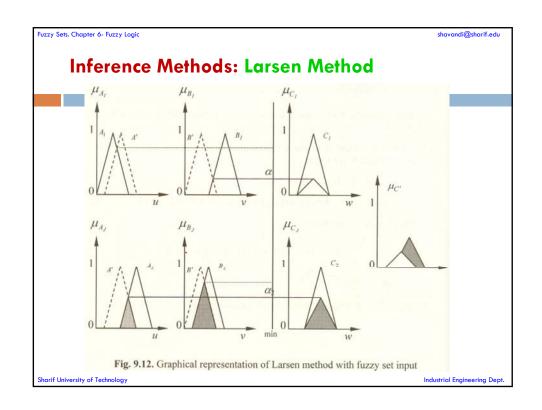


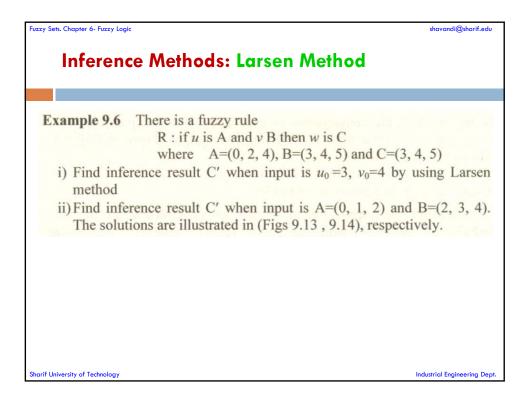
Fuzzy Sets. Chapter 6- Fuzzy Logic shavandi@sharif.edu Inference Methods: Mamdani Method (2) When input data are fuzzy sets, A' and B'From Lemma 6, $\mu_{C_i}(w) = \alpha_i \wedge \mu_{C_i}(w)$ where $\alpha_i = \min[\max_u(\mu_{A'}(u) \land \mu_{A_i}(u)), \max_v(\mu_{B'}(v) \land \mu_{B_i}(v))]$ From Lemma 3, we have the aggregated result $\mu_{C'}(w) = \bigvee_{i=1}^{n} [\alpha_i \wedge \mu_{C_i}(w)] = \bigvee_{i=1}^{n} \mu_{C'_i}(w)$ $C' = \bigcup_{i=1}^{n} C'_i$ The graphical interpretation of this inference is given in Fig 9.8. The result C' is a fuzzy set and thus if we want to obtain a deterministic control action, a defuzzification method is used which will be discussed in the next chapter. arif University of Technology Industrial Engineering Dept

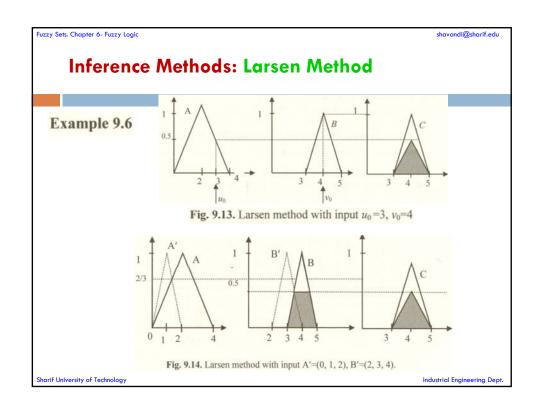


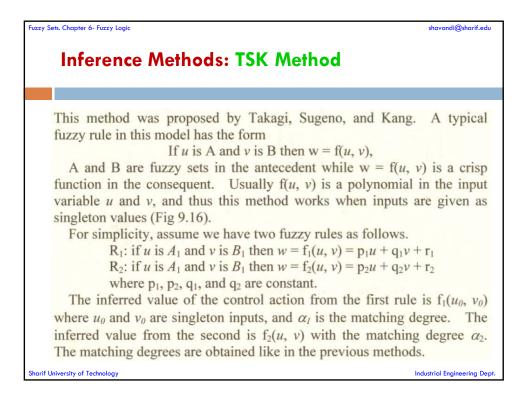







Fuzzy Sets. Chapter 6- Fuzzy Logic shavandi@sharif.edu **Inference Methods: Larsen Method** This method uses the product operator RP for the fuzzy implication and the max-product operator for the composition. For the following rule base, R_i : if u is A_i and v is B_i then w is C_i , i = 1, 2, ..., n then $R_i = (A_i \text{ and } B_i) \rightarrow C_i$ is defined by $\mu_{R_i} = \mu_{(A_i \text{ and } B_i \to C_i)}(u, v, w)$ (1) When the singleton input data are given as $u = u_0$, $v = v_0$, from Lemma 5 we have $\mu_{C'_i}(w) = [\mu_{A_i}(u_0) \text{ and } \mu_{B_i}(v_0)] \rightarrow \mu_{C_i}(w)$ $= [\mu_{A_i}(u_0) \wedge \mu_{B_i}(v_0)] \cdot \mu_{C_i}(w)$ $= \alpha_i \cdot \mu_{C_i}(w)$ where $\alpha_i = \mu_{A_i}(u_0) \wedge \mu_{B_i}(v_0)$ arif University of Technology Industrial Engineering Dep



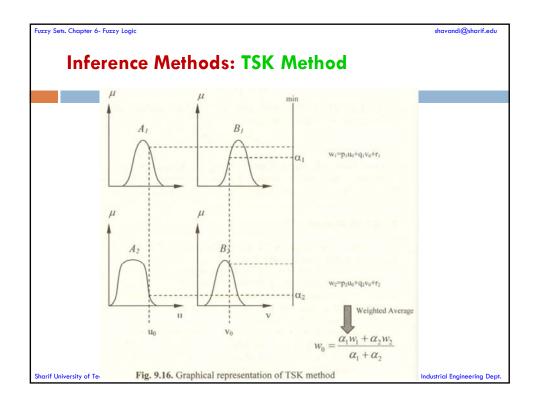


Fuzzy Sets. Chapter 6- Fuzzy Logic

Inference Methods: TSK Method

 $\alpha_i = \mu_{A_i}(u_0) \wedge \mu_{B_i}(v_0)$

They are all crisp values. The aggregated result is given by the weighted average.


$$w_{0} = \frac{\alpha_{1}f_{1}(u_{0}, v_{0}) + \alpha_{2}f_{2}(u_{0}, v_{0})}{\alpha_{1} + \alpha_{2}}$$
$$= \frac{\alpha_{1}w_{1} + \alpha_{2}w_{2}}{\alpha_{1} + \alpha_{2}}$$

This method also saves the defuzzification time because the final result w_0 is a crisp value.

Sharif University of Technology

Industrial Engineering Dept.

shavandi@sharif.edu

