

shavandi@sharif.edu

strial Engineering Dep

Fuzzy Sets. Chapter 6- Fuzzy Logic

Neuro Fuzzy Systems

(4) Fourth layer of the network(Consequent parts)

This layer represents the consequent parts of fuzzy rules. Like in the second layer, a node in this layer represents a linguistic term of output variable. For example, node T_t has two inputs from R_2 and R_r . It represents two rules whose consequent part is T_t :

"if the antecedent part is R_2 then Y is T_1 "

and "if the antecedent part is R_{r} , then Y is T_{r} "

The output of the node is the maximum matching degree of an input to the rules which are represented by the node. For example, the output of the node T_t is the maximum output of nodes R_2 and R_r . The weights between the third and fourth layers are used as the importance degree of rules, or fixed to 1.00.

 $f_i^4(x_1, x_2, \dots, x_q) = \max_{i=1}^q \{w_{ii}x_i\}$

where w_{ji} is the weight between node *j* in the fourth layer and node *i* in the third.

harif University of Technology

Fuzzy Sets. Chapter 6- Fuzzy Logic shavandi@sharif.edu Identifying Fuzzy Systems with Genetic Algorithms (1) Tuning an existing fuzzy system □ To modify the fuzzy rules, their consequent parts are usually encoded. For example, there are four fuzzy rules: IF X is I_1 THEN Y is O_1 IF X is I_2 THEN Y is O_2 IF X is I_3 THEN Y is O_3 IF X is I_4 THEN Y is O_4 then, these are encoded as a string of linguistic terms like $O_1 O_2 O_3 O_4$. The genetic operators will change the linguistic terms, but not their membership functions. For example O1O2O3O4 may be changed into $O_1O_3O_4O_1$ after genetic operations. This represents the following fuzzy rules: IF X is I_1 THEN Y is O_1 IF X is I_2 THEN Y is O_3 IF X is I_3 THEN Y is O_4 IF X is I_4 THEN Y is O_1 if University of Technolo ndustrial Enair

