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Abstract

In this paper, a type-2 fuzzy rule based expert system is developed for stock price analysis. Interval type-2 fuzzy logic system permits
us to model rule uncertainties and every membership value of an element is interval itself. The proposed type-2 fuzzy model applies the
technical and fundamental indexes as the input variables. This model is tested on stock price prediction of an automotive manufactory in
Asia. Through the intensive experimental tests, the model has successfully forecasted the price variation for stocks from different sectors.
The results are very encouraging and can be implemented in a real-time trading system for stock price prediction during the trading
period.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Two common analytical approaches to stock market
analysis are fundamental and technical analysis. A funda-
mental analysis relies on the statistics of the macroeconom-
ics data such as interest rates, money supply, inflationary
rates, and foreign exchange rates, as well as the basic
financial status of a company. After taking all these factors
into account, the analyst can then make a decision to sell or
buy a stock. A technical analysis is based on the historical
financial time-series data. However, financial time series
exhibit quite complicated patterns (for example, trends,
abrupt changes, and volatility clustering) and such series
are often nonstationary, whereby a variable has no clear
tendency to move to a fixed value or a linear trend.

During the last decade, stocks and future traders
have come to rely upon various types of intelligent systems
to make trading decisions. Lately, artificial neural networks
0957-4174/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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(ANNs) have been applied to this area (Aiken &
Bsat, 1999; Chang, Wang, & Yang, 2004; Chi, Chen, &
Cheng, 1999; Kimoto & Asakawa, 1990; Lee, 2001; Yao
& Poh, 1995; Yoon & Swales, 1991). These models, how-
ever, have their own limitations owing to the tremendous
noise and complex dimensionality of stock price data and
besides, the quantity of data itself and the input variables
may also interfere with each other. Therefore, the result
may not be convincing.

Other soft computing methods are also applied in the
prediction of stock price. These approaches are to use
quantitative inputs, like technical indices, and qualitative
factors, like political effects, to automate stock market
forecasting and trend analysis. Kuo, Chen, and Hwang
(2001) used a genetic algorithm base fuzzy neural network
to measure the qualitative effects on the stock price. They
applied their system to the Taiwan stock market. Aiken
and Bsat (1999) used a FNN trained by a genetic algorithm
(GA) to forecast three-month US Treasury Bill rates. They
concluded that a neural network (NN) can be used to accu-
rately predict these rates. Thammano (1999) used a neuro-
fuzzy model to predict future values of Thailand’s largest
government-owned bank. The inputs of the model are the
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closing prices for the current and prior three months, and
the profitability ratios. The output of the model was the
stock prices for the following three months. He concluded
that the neuro-fuzzy architecture was able to recognize the
general characteristics of the stock market faster and more
accurately than the basic back propagation algorithm.
Also, it could predict investment opportunities during the
economic crisis when statistical approaches did not yield
satisfactory results. Tansel et al. (1999) compared the abil-
ity of linear optimization, ANNs, and GAs to model time
series data using the criteria of modeling accuracy, conve-
nience and computational time. They found that linear
optimization methods gave the best estimates, although
the GAs could provide the same values if the boundaries
of the parameters and the resolution are selected appropri-
ately, but that the NNs resulted in the worst estimations.
However, they noted that non-linearity could be accommo-
dated by both the GAs and the NNs and that the latter
required minimal theoretical background. Baba, Inoue,
and Asakawa (2000) used NNs and GAs to construct an
intelligent decision support system (DSS) for analyzing
the Tokyo Stock Exchange Prices Indexes (TOPIX). The
essential feature of their DSS is that it can project the high
and low TOPIX values four weeks into the future and sug-
gest buy and sell decisions based on the average projected
value and the then-current value of the TOPIX. Kim and
Han (2000) used a NN modified by a GA to predict the
stock price index. In this instance, the GA was used to
reduce the complexity of the feature space, by optimizing
the thresholds for feature discretization, and to optimize
the connection weights between layers. They concluded
that the GA approach outperforms the conventional
models.

Abraham, Baikunth, and Mahanti (2001) investigated
hybridized soft computing techniques for automated stock
market forecasting and trend analysis. They used principal
component analysis to preprocess the input data, a NN for
one-dayahead stock forecasting, and a neuro-fuzzy system
for analyzing the trend of the predicted stock values. Abra-
ham, Philip, and Saratchandran (2003) investigated how
the seemingly chaotic behavior of stock markets could be
well represented using several connectionist paradigms
and soft computing techniques. To demonstrate the pro-
posed technique, they analyzed the 7 year’s Nasdaq-100
main index and 4 year’s NIFTY index values. They con-
cluded that all the connectionist paradigms considered
could represent the stock indices behavior very accurately.

Chang, Liu, and Wang (2006) developed a hybrid model
by integrating Self Organization Map (SOM) neural net-
work, genetic algorithms (GA), and fuzzy rule base
(FRB) to forecast the future sales of a printed circuit board
factory. Chang and Wang (2006) combined fuzzy theory
and back-propagation network into a hybrid system, which
can be applied in the sales forecasting of printed circuit
board (PCB) industries. Chang and Liu (2006) developed
Takagi–Sugeno–Kang (TSK) type fuzzy rule based system
for stock price prediction. Their TSK fuzzy model applied
the technical index as input variables and consequent part
is a linear combination of the input variables. The fuzzy
rule based model is tested on the Taiwan Electronic Shares
from the Taiwan Stock Exchange.

Quite often, the knowledge that is used to construct the
rules in a fuzzy logic system (FLS) is uncertain. Three ways
in which such rule uncertainty can occur are: (1) the words
that are used in antecedents and consequents of rules can
mean different things to different people; (2) consequents
obtained by polling a group of experts will often be differ-
ent for the same rule because the experts will not necessar-
ily be in agreement; and (3) noisy training data (Liang &
Mendel, 2000). Antecedent or consequent uncertainties
translate into uncertain antecedent or consequent member-
ship functions. Type-1 FLSs, whose membership functions
are type-1 fuzzy sets, are unable to directly handle rule
uncertainties. Type-2 FLSs, the subject of this paper, in
which antecedent or consequent membership functions
are type-2 fuzzy sets, can handle rule uncertainties.

It should be noted that type-2 fuzzy sets can model and
minimize the effects of uncertainties in rule-based fuzzy
logic systems. The effects of uncertainties can be minimized
by optimizing the parameters of the type-2 fuzzy sets dur-
ing a training process. The additional parameters of type-2
fuzzy sets over those in type-1 fuzzy sets provide the former
with additional design degrees of freedom that make it pos-
sible to minimize the effects of uncertainties. Type-2 fuzzy
logic is very useful when it is difficult to determine the exact
membership functions of fuzzy sets.

The aim of this research is to develop a fuzzy modeling
mechanism which is capable of implementing four
objectives:

• generating a rule base automatically from numeric data,
• finding the optimal number of rules and fuzzy sets,
• optimizing the parameters of fuzzy membership func-

tions, and
• increasing the robustness of the system.

To achieve these objectives, this paper proposes a fuzzy
modeling paradigm by incorporating a fuzzy GK (Gustaf-
son and Kessel, 1979) clustering associated with a proposed
cluster validity measure, and a genetic algorithm is interval
type-2 fuzzy sets domain.

The rest of the paper is organized as follows: Section 2
reviews the type-2 fuzzy sets and systems and their associ-
ated terminologies. In Section 3 the design approach of
interval type-2 fuzzy logic system is presented. Section 4
presents the proposed interval type-2 fuzzy system for pre-
diction of single stock price of an automotive manufactory
in Asia. Finally, conclusions and comments on further
research are appeared in Section 5.

2. Type-2 fuzzy logic systems

This section reviews the different aspects of a type-2
fuzzy logic system (FLS) that are needed in this research.
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Fig. 1. The structure of type-2 fuzzy logic system (Mendel, 2007).
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2.1. Type-2 fuzzy sets (T2FS)

A type-2 fuzzy set, eA denoted, is characterized by a type-
2 membership function, leAðx; uÞ, where, x 2 X and
u 2 Jx � [0,1] (Mendel & John, 2002):

eA ¼ fððx; uÞ; leAðx; uÞÞj 8x 2 X ; 8u 2 J x # ½0; 1�g ð1Þ

in which 0 6 leAðx; uÞ 6 1. Here, eA can also be expressed as

eA ¼ Z
x2X

Z
u2Jx

leAðx; uÞ=ðx; uÞ J x # ½0; 1� ð2Þ

where, �� denotes union over all admissible x and u.
Jx is called primary membership of eA, where Jx � [0, 1]

for x 2 X. The uncertainty in the primary memberships
of a type-2 fuzzy set eA, consists of a bounded region that
is called the footprint of uncertainty (FOU).

When all leAðx; uÞ ¼ 1 in definition of a type-2 fuzzy seteA, then we have an interval type-2 fuzzy set (IT2 FS).
Although the third dimension of the general T2 FS is no
longer needed because it conveys no new information
about the IT2 FS, the IT2 FS can still be expressed as a
special case of the general T2 FS in (1), as

eA ¼ Z
x2X

Z
u2Jx

1=ðx; uÞ; J x # ½0; 1�: ð3Þ

The upper membership function (UMF) and lower mem-
bership function (LMF) of eA are two T1 MFs that bound
the FOU. The UMF is associated with the upper bound of
FOUðeAÞ and is denoted �leAðxÞ 8x 2 X , and the LMF is
associated with the lower bound of FOUðeAÞ and is denoted
leAðxÞ 8x 2 X (Mendel & John, 2002). That is:

�leAðxÞ � FOUðeAÞ 8x 2 X

leAðxÞ � FOUðeAÞ 8x 2 X
ð4Þ
2.1.1. Operations in type-2 fuzzy sets
Recall that the membership grades of type-2 sets are

type-1 sets; therefore, in order to perform operations like
union and intersection on type-2 sets, we need to be able
to perform t-conorm and t-norm operations between
type-1 sets. This is done by using Zadeh’s Extension Prin-
ciple. This leads to the following definitions (Mendel, John,
& Liu, 2006):

(a) The union of two T2 FSs, eA and eB ðleAðxÞ ¼R
u fxðuÞ=u and leBðxÞ ¼ Rw gxðwÞ=w; where u, w 2 Jx),

is
eA [ eB () leA[eBðxÞ ¼ leAðxÞa leBðxÞ
¼
Z

u

Z
w
ðfxðuÞ � gxðwÞÞ=ðu _ wÞ

ð5Þ
(b) The intersection of two T2 FSs, eA and eB, is
eA \ eB () leA\eBðxÞ ¼ leAðxÞY leBðxÞ
¼
Z

u

Z
w
ðfxðuÞ � gxðwÞÞ=ðu � wÞ

ð6Þ
(c) The complement of IT2 FS, eA, eA is
eA () leAðxÞ ¼ :leAðxÞ ¼
Z

u
fxðuÞ=1� u ð7Þ
2.2. Type-2 fuzzy logic system (FLS)

The conventional fuzzy rule-base structures employ
type-1 fuzzy sets both/either in antecedent and/or conse-
quent parts of the rules. However, recent studies shows that
the uncertainty can he captured in a better way by using
higher order fuzzy sets, such as type-2 fuzzy sets, which
encapsulate more information granules.

Fig. 1 shows the structure of a type-2 fuzzy logic system
(FLS). It is very similar to the structure of a type-1 FLS.
For a type-1 FLS, the output processing block only contains
the defuzzifier. When an input is applied to a type-1 FLS, the
inference engine computes the type-1 output set correspond-
ing to each rule. The defuzzifer then computes a crisp output
from these rule output sets. For a type-2 FLS, the antecedent
and/or consequent sets are type-2, so that each rule output
set is type-2. ‘‘Extended’’ versions of type-1 defuzzification
methods yield a type-1 set from the type-2 rule output sets.
This process is called type-reduction rather than defuzzifica-
tion, and the resulting type-1 set, the type-reduced set. The
defuzzifier in the type-2 FLS can, then, defuzzify the type-
reduced set to obtain a crisp output for the type-2 FLS.
The fuzzifier maps the crisp input into a fuzzy set. This fuzzy
set can, in general, be a type-2 set; however, in this paper, we
consider only singleton fuzzification, for which the input
fuzzy set has only a single point of nonzero membership
(Karnik & Mendel, 1998; Mendel, 2007).

3. Designing the type-2 FLS

There are two very different approaches for selecting the
parameters of a type-2 FLS (Mendel, 2001). One is the par-
tially dependent approach, where a best possible type-1
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FLS is designed first, and then used to initialize the param-
eters of a type-2 FLS. The other method is a totally inde-
pendent approach, where all the parameters of the type-2
FLS are tuned from scratch without the aid of an existing
type-1 design.

One advantage offered by the partially dependent
approach is smart initialization of the parameters of the
type-2 FLS. Since the baseline type-1 fuzzy sets impose
constraints on the type-2 sets, fewer parameters need to
be tuned and the search space for each variable is smaller.
Therefore, the computational cost is less than the totally
independent approach. So design flexibility is traded for a
lower computational burden. Type-2 FLSs designed via
the partially dependent approach are able to outperform
the corresponding type-1 FLSs (Wu & Tan, 2004),
although both the FLSs have the same number of MFs
(resolution). However, the type-2 FLS has a larger number
of degrees of freedom because the fuzzy set is more com-
plex. The additional mathematical dimension provided by
the type-2 fuzzy set enables a type-2 FLS to produce more
complex input–output map without the need to increase
the resolution.

Our purposed approach is based on partially dependent
approach. First, we design a type-1 fuzzy system and then,
for increasing the robustness of the system, we create a
type-2 fuzzy rule base with uncertain mean and interval
secondary membership functions. It uses the same number
of fuzzy sets and the same rules as the type-1 FLS. The only
difference now is that the antecedent and consequent sets
are type-2.

3.1. Procedures of development of type-2 fuzzy system

The procedures of development of the proposed system
are as follows:

• Determination of input and output variables of the
system.

• Clustering the output space and determination of the
number of rules.

• Variable selection.
• Projection of membership values of the output onto the

input spaces to generate the membership values of the
inputs.

• Tuning the parameters of membership function of input
and output variables by using genetic algorithm (GA).

• Transforming type-1 fuzzy rule base to interval type-2
fuzzy rule base.

• Tuning the parameters of interval type-2 membership
function of the input and output variables.
3.1.1. Determination of input and output variables of the

system

The first step in system modeling is the identification of
input and output variables. This task is usually done by
studying the problem domain and by the negotiation with
the domain experts. Of course there are an infinite number
of possible candidates which should be restricted to certain
numbers. In this step, the designers and experts try to
determine the most relevant input and output variables.

3.1.2. Clustering the output space and determination of the

number of rules
In this paper, first, the output data is clustered and the

primary membership grades of the output clusters are gen-
erated. For this purpose, Sugeno and Yasukawa (1993)
method is used. We first partition the output space and
then obtain the input space clusters by ‘‘projecting’’ the
output space partition onto each input variable space,
separately.

In order to carry out the process of encoding the output
space, we consider one of the most applicable and traceable
fuzzy clustering algorithms, i.e., GK clustering.

It is required to obtain a cluster validity criterion in
order to determine the optimal number of clusters pre-
sented in a data set. In the case of the GK algorithm, there
are only a few validation indices found in the literature
(Baduska, 1995; Gath & Geva, 1989) with poor perfor-
mance, and most validation indices proposed for the
FCM cannot be applied to the GK clustering directly
because they highly depend on the centroid information
of the clusters and they do not use the covariance informa-
tion of the clusters. Most of the validity indices proposed
for the FCM (Bezdek, 1975, 1981; Kim, Lee, & Lee,
2003; Razaee, Lelieveldt, & Reiber, 1998) measure intra-
cluster compactness and inter cluster separation using clus-
ter centroids. However, interpretation of inter cluster sepa-
ration of these indices is problematic because such indices
quantify cluster separation based on only the distance
between cluster centroids. Thus, they are not appropriate
for the clusters found by the GK algorithms which are
often in the shape of hyper ellipsoids of different orienta-
tion and shapes.

Most validity indices focus only on the compactness
and the variation of the intra-cluster distance (Fukuyama
& Sugeno, 1989; Kwon, 1998; Razaee et al., 1998; Xie &
Beni, 1991). Fuzzy hyper volume and density criteria use
the hyper volume to assess the density of the resulting clus-
ters measuring mainly compactness of the given fuzzy par-
tition (Baduska, 1998). Some indices, for example Xie and
Beni (1991) and Kwon (1998), use the strength of separa-
tion between clusters; however, interpretation of these
indices is problematic because they quantify cluster separa-
tion based only on the distance between cluster centriods.
Since the GK clustering involves Mahalanobis distance
norm for each cluster, validity indices like Xie and Beni
(1991) and Kwon (1998), cannot discriminate the separa-
tion of two different pairs of clusters with different clusters
and with different orientation. This is shown in the Fig. 2.
In this figure even though the pair (U(a),V(a)) provides a
better partitioning than the pair (U(b),V(b)), this cannot
be reflected properly in VXB and VK because they calculate
the separation between clusters using only centroid
distances.



Fig. 2. Two different fuzzy partitions ðU ðaÞ; V ðaÞÞ and ðU ðbÞ; V ðbÞÞ with the
same distance between cluster centroids with different orientations for the
same data.
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3.1.3. The proposed cluster validity based on fuzzy similarity

Let Ap and Aq be two fuzzy clusters belonging to a fuzzy
partition (U,V) and c be the number of clusters.

Definition 1. The relative similarity between two fuzzy sets
Ap and Aq at xj is defined as

Srelðxj : Ap;AqÞ

¼ f ðxj : Ap \ AqÞ
f ðxj : Ap \ AqÞ þ f ðxj : Ap � AqÞ þ f ðxj : Aq � ApÞ

ð8Þ
In (8)

f ðxj : Ap \ AqÞ ¼ uAP ðxjÞ ^ uAqðxjÞ ð9Þ
where, ^ is minimum operator. Moreover:

f ðxj : Ap � AqÞ ¼Maxð0; uAP ðxjÞ � uAqðxjÞÞ ð10Þ
and

f ðxj : Aq � ApÞ ¼Maxð0; uAqðxjÞ � uApðxjÞÞ ð11Þ
Definition 2. The relative similarity between two fuzzy sets
Ap and Aq is defined as

SrelðAp;AqÞ ¼
Xn

j¼1

Srelðxj : Ap;AqÞhðxjÞ ð12Þ

where,

hðxjÞ ¼ �
Xc

p¼1

uApðxjÞ logðuApðxjÞÞ ð13Þ

Here, h(xj) is the entropy of datum xj and uApðxjÞ is the
membership value with which xj belongs to the cluster
Ap. In (12), h(xj) measures how vaguely (unclearly) the
datum xj is classified over c different clusters. h(xj) is intro-
duced to assign a weight for vague data. Vague data are gi-
ven more weights than clearly classified one. h(xj) also
reflects the dependency of uApðxjÞ with respect to different
c values. This approach makes it possible to focus more
on the highly-overlapped data in the computation of the
validity index than other indices do.
Definition 3. The proposed validity index is as follows:

V FNTðU ; V ; X Þ ¼ 2

cðc� 1Þ
Xc

p–q

SrelðAp;AqÞ ð14Þ

The optimal number of the clusters is obtained by min-
imizing VFNT (U,V;X)over the range of c values: 2, . . . ,
cmax.

Thus, VFNT is defined as the average value of the relative
similarity between c(c � 1)/2 pairs of clusters, where the
relative similarity between each cluster pair is defined as
the weighted sum of the relative similarity at xjbetween
two clusters in the pair. Hence, the less overlap in a fuzzy
partition, and the less vague the data points in that overlap,
the lower the value of VFNT(U,V;X) is resulted.

To demonstrate the effectiveness of the proposed index,
we compared it with some other well known indexes on a
number of widely used data sets. These indices are as
follows:

• Partition coefficient (Bezdek, 1974)

V PCðUÞ ¼
Pn

k¼1

Pc
i¼1u2

ik

n
ð15Þ

• Partition entropy (Bezdek, 1975)

V PEðUÞ ¼ �
1

n

Xn

k¼1

Xc

i¼1

½uiklogaðuikÞ�
 !

ð16Þ

• Xie and Beni (1991)

V XBðU ; V ; X Þ ¼
Pc

i¼1

Pn
k¼1u2

ikkxi � vkk2

n min|{z}
i–j

fkvi � vjk2g

0@ 1A ð17Þ

• Zahid et al. (1999)

V SCðU ; V ; X Þ ¼
1
c

Pc
i¼1kvi � �vk2Pc

i¼1ð
Pn

k¼1um
ikkxk � vik2

=niÞ

�
Pc�1

i¼1

Pc�i
r¼1ð
Pn

k¼1 minðuik; urkÞ2=nikÞPn
k¼1maxiu2

ik=
Pn

k¼1maxiuik

ð18Þ
• Kwon (1998),
V kðU ; V ; X Þ ¼

Pn
k¼1

Pc
i¼1

u2
ikkxk � vik2 þ 1

c

Pc
i¼1kvi � �vk2

min|{z}
i–k

ðkvk � vik2Þ

ð19Þ
VXB, VK and VSC are modified to accommodate Mahalan-
obis distance norm instead of Euclidean one in calculating
the distance from each data point to the cluster centers.
The parameters of the GK algorithm are set as follows: ter-
mination criterion e = 10�5, weighting exponent m = 2,
cmax = 12 and the initial cluster centers are selected by
the FCM.
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Figs. 3–9 show scatter plots of the seven artificially gen-
erated data sets used in the experiments.

Table 1 summarizes the optimal cluster numbers identi-
fied by each validity index. For example for Data set 7 all
validity indicesVPC, VPE, VSC, VXB, and VK incorrectly
have identified the optimal cluster number and only VFNT

identifies it correctly. The optimal number of clusters is
obtained by minimizing the proposed validity index. This
result indicates that the proposed validity index is more
reliable.
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Fig. 5. Data set 3 (optimal cluster number is 5).
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Fig. 6. Data set 4 (optimal cluster number is 6).
3.1.4. Variable selection

The phase of input selection in system identification is to
find the most dominant input variables which affect the
output among a finite number of input candidates. Theo-
retically, this problem belongs to a more general field of
data analysis, i.e., dimension reduction. In the analysis of
multivariate data, it is common practice to look for the
dimension reduction via linear combinations of the initial
variables. Classical techniques, such as principal compo-
nents (Duda & Hart, 1973), discriminant analysis (Fried-
man & Rubin, 1996), and canonical correlation (Jain &
Dubes, 1980) are examples of this approach. From a prac-
tical point of view, another type of dimension reduction is
selecting a subset of the variables. The main advantage of
-100
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Fig. 3. Data set 1 (optimal cluster number is 3).
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Fig. 4. Data set 2 (optimal cluster number is 2).

0

100

200

300

400

500

600

700

0 200 400 600 800

Fig. 7. Data set 5 (optimal cluster number is 6).
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Fig. 8. Data set 6 (optimal cluster number is 4).
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this approach is that there is an actual reduction in the
number of the measured variables. In this way, we can
avoid the interpretational difficulties which could arise in
looking at linear combinations of very different kinds of
variables. Although it is a common practice to check the
weights of variables in a linear combination and to discard
those that have ‘‘negligible’’ weights, this is not always easy
to do nor are negligible weights always guaranteed.

For variables selection, the Sugeno and Yasukawa
(1993) method (the variable selection algorithm) is used.
Sugeno and Yasukawa (1993) proposed a combinatorial
approach in which al1 possible combinations of input can-
didates are considered. For each combination, they build
two fuzzy models based on two separated sets of data
and calculate a performance index called ‘‘Regularity Cri-
terion’’ (RC) based on a method of analyzing two groups
of data in an attempt to cause data independence in model
formation after that a combination of input variables is
chosen which has the minimum value of the performance
index.
3.1.5. Projection of membership functions of output onto
input spaces

After selection of the significant input variables, suitable
membership functions should be determined for them. One
simple approach is to set the membership grade of each
sample input equal to its corresponding output member-
ship grade, obtained from the output data clustering pro-
cess (Sugeno & Yasukawa, 1993). Therefore, for each
output datum, all the corresponding input variables will
have the same membership grade. The problem with this
technique is that the membership functions assigned in this
way are not convex and further approximation is required
to shape the convex membership functions. Moreover,
there is no reason for the input membership grades to be
the same and equal to the output membership grade at
each sample point.

With respect to the proposed approach of Fazel Zarandi
(1998) that is shown in Fig. 10, first, the ranges in which
input variable membership functions that adapt value 1
are determined. Then, the data points are classified, using
GK by given m and c, which were determined in the pervi-
ous stage, as follows:

First determine the interval in which input membership
functions adopt value 1 (i.e., V 1V 2 Fig. 10). Then, the opti-
mum value of V �1 and V �2 are determined by searching
through the reliable region and analyzing the objective
function of classification algorithm, where:

JðUj;X jÞ ¼
Xn

k¼1

Xc

i¼1

ðuj
ikÞ

mDðxjk; V 1V 2Þ ð20Þ

In this search, a suitable fV �1; V �2g that minimizes the Eq.
(20) is determined, where n is number of data, c is number
of clusters (we use m and c that are obtained from output
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variable clustering stage), Xj and Uj are the jth input data
set and their partition matrix, respectively, and D is the dis-
tance function obtain from Eq. (21):

Dðxjk; V 1V 2Þ ¼

V 1 � xjk if xjk < V 1

0 if V 1 < xjk 6 V 2

xjk � V 2 if xjk > V 2

8>>><>>>:
uj

ik ¼ 1Pc

l¼1
ðDj

ik=D
j
lkÞ

2=ðm�1Þ

V 01 6 V 1; V 2 6 V 02

ð21Þ

Now, Uj matrix can be derived from

uj
ik ¼

1Pc
l¼1ðD

j
ik=D

j
lkÞ

2=ðm�1Þ For 1 6 i 6 c; 1 6 k 6 n

ð22Þ
3.1.6. Tuning the parameters of membership function of input

and output variables

In this research we implement genetic algorithms (GAs)
for tuning the main parameters of the system. GA is a gen-
eral-purpose search algorithm that uses principles inspired
by natural population genetics to evolve solutions to the
problems. It was first proposed by Holland (1975). GAs
are theoretically and empirically proven to provide a
robust search in complex spaces, thereby offering a valid
approach to problems requiring efficient and effective
searches (Goldberg, 1989; Sakawa, 2002).

Fig. 11 contains the flow chart of a basic GA. First, a
chromosome population is randomly generated. Each
Initialize population 
Gen=1

Evaluate population

Output results 
Selection

Crossover

Mutation

Output results 

Gen >MaxGen 
No

Yes

Fig. 11. The flow chart of a basic GA.
chromosome encodes a candidate solution of the optimiza-
tion problem. The fitness of all individuals with respect to
the optimization task is then evaluated by a scalar objective
function (fitness function). According to Darwin’s princi-
ple, highly fit individuals are more likely to be selected to
reproduce offspring. Genetic operators such as crossover
and mutation are applied to the parents in order to pro-
duce a new generation of candidate solutions. As a result
of this evolutionary cycle of selection, crossover and muta-
tion, more and more suitable solutions to the optimization
problem emerge within the population.

In GA, first a population of chromosomes is formed.
Each chromosome represents a possible solution to the
problem. The population will undergo operations similar
to genetic evolution, namely reproduction, crossover, and
mutation. In many researches, GAs have been successfully
used to tune and design the membership functions (MFs)
and the rules of type-1 FLSs. GAs optimize these parame-
ters representing the MFs and the rules of type-1 FLSs in
the direction having better performance.

For applying genetic algorithms, the feature parameters
of a type-1 FLS have to be encoded into a form of a chro-
mosome. In encoding schemes for a type-1 FLS, a type-1
MF is represented as a mean and a standard deviation
(std) in a Gaussian.

Many GA-based FLS designing processes have been
used to represent the rule table as genes. In other way, they
described a rule to a order set of fuzzy sets for each vari-
ables. In this paper, we use in latter approach. Each type-
1 rule can be represented as shown in (23). Using the above
encoding scheme for a type-1 MFs, each MF is encoded
together with each rule:

Rl : IF x1 is F l
1 and x2 is F l

2 and . . . and xp is F l
p;

THEN y is Gl00 () ðml
x1
; rl

x1
Þðml

x2
; rl

x2
Þ . . . ðml

xp
; rl

xp
Þðml

y ; r
l
yÞ
ð23Þ

For encoded type-1 FLSs, genetic operations such as cross-
over and mutation, are performed to evaluate and optimize
chromosomes. These crossover and mutation operators are
closely related to the encoding scheme of MFs and rules.
So, according to encoding scheme, effective genetic opera-
tors have to be proposed and used. In this paper, we only
consider the type-1 FLSs with the fixed number of rules
and a complete rule set. Therefore, the length of chromo-
somes is the same and the meaning of each gene according
to its position is also the same. We easily use simple one-
point or two-point crossover. The mutation plays a role
in fine tuning near local points rather for introducing rad-
ically different chromosomes into the population.

In GA, evaluation is performed to select and rank chro-
mosomes in a population. Fitness function for evaluation is
one of the most important factors to determine the perfor-
mance of solutions and to control the speed of evolution.

In the genetic based FLSs, it is not so easy to evaluate
the performances of the FLSs. In most cases, the results
of executions are evaluated as a performance measure after
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simulating a designed FLS for given situations or for
certain time interval. Therefore, the fitness function uses
Table 2
Variables of the system

Variable name Variable description

Demand index (DI) It become from combination of volume and pri
pressure is more than sell pressure DI is positive

Moving average
divergence convergence
(MACD)

It uses two different exponential smoothing mov
lines and helps us determining price trends

Moving average MACD
(MA-MACD)

It uses exponential smoothing moving average l
to MACD

Relative strength index
(RSI)

It measures increase or decrease in close price for
period

Positive directional
movement index (DI+)

It shows power of up moving trend

Negative directional
movement index (DI�)

It shows power of down moving trend

Moving average (MA) It is sum of single period close prices dividend o
periods

R-squared (R2) It shows trend power
Linear regression slop

(LRS)
It shows trend general movement

Average true range (ATR) It measures price fluctuation

Price channel (top) It is maximum of price in last four week period
Price channel (bottom) It is minimum of price in last four week period
Price per earning per share

(P/E)
It shows the payback period or its inversion sho
rate of return

Volume (vol) It shows how much money transact in trading
Open price (open) It shows the open price which is most of the time

day close price
Range (R) It is the range of price in one specific day
Changes It is the difference between today close and the
Cose price (close) It shows the close price of the day
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Fig. 12. Behavior of RC in auto
the difference or errors between desired and simulated
outputs.
Variable

ce. If purchase
and vice versa

–

ing average MACD = exponential smoothing average 12 days
(weeks) � exponential smoothing average 26 days
(weeks)

ine in contrast MA-MACD = exponential smoothing average 9 days
(weeks)

a specific time RS ¼
P

X days’ up closesP
X days’ down closes

RSI ¼ 100
1þRs

If DI+ > DI� then you should buy else
you should sell

n numbers of MAðnÞ ¼
Pn

i¼1
close prices of i th period

n

–
–

TRi ¼MAX
ðdayiMax Price-dayi Min PriceÞ;
ðdayiMax Price-dayi�1 Min PriceÞ;
ðjdayi�1 close Price-dayi Min PricejÞ

8<:
9=;

ATR ¼
Pn

i¼1
TRi

n
often n = 1

Max{close price of last four week}
Min{close price of last four week}

ws the stock P=E ¼ Price
EPS

EPS ¼ Firm Earning
Number of shares

–
is equal to last –

Ranges = Maximum Price �Minimum Price
last day Changesi = dayi Price � dayi�1 Price

–

4 6

tage
5

motive manufactory model.
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3.1.7. Transformation type-1 to interval type-2 membership

functions

For transforming type-1 fuzzy set to an interval type-2
fuzzy set with uncertain mean, we consider the case of a
Gaussian primary MF having a fixed standard deviation
rl

k and an uncertain mean that takes on values in
½ml

k1;m
l
k2� (Mendel, 2000), i.e.,

ul
kðxkÞ ¼ exp � 1

2

xk � ml
k

rl
k

� �� �
; ml

k 2 ml
kl;m

l
k2

� �
ð24Þ

where, k = 1, . . . ,p; p is number of antecedents;
l = 1, . . . ,M; and M is number of rules. The upper MF is

�ul
kðxkÞ ¼

N ml
k1; r

l
k; xk

� 	
; xk < ml

k1

1; ml
k1 6 xk 6 ml

k2

N ml
k2; r

l
k; xk

� 	
; xk > ml

k2

8><>: ð25Þ

where

N ml
k1; r

l
k; xk

� 	
ffi exp � 1

2

xk � ml
k1

rl
k

� �2
 !

ð26Þ

The lower MF is

ul
kðxkÞ ¼

Nðml
k2; r

l
k; xkÞ; xk 6

ml
k1
þml

k2

2

Nðml
k1; r

l
k; xkÞ; xk >

ml
k1
þml

k2

2

8<: ð27Þ
3.1.8. Tuning the parameters of interval type-2 membership

functions
Given an input–output training pair (x(t),y(t)), x(t) 2 Rp

and y(t) 2 R, we now wish to design an interval singleton
type-2 FLS with output f(xt) such that the following error
function is minimized:

eðtÞ ¼ 1

2
½f ðxðtÞÞ � yðtÞ�2 t ¼ 1; . . . ;N ð28Þ

Based on the analysis by Liang and Mendel (2000), only the
upper and lower MFs and the two end-points of the cen-
troid of the consequent set determine f(x(t)). So, we want
to tune the upper and lower MFs and the consequent
parameters Y i ¼ ½yi

l; y
i
r�. Since an interval type-2 FLS can

be characterized by two FBF expansions that generate the
points yr and yl, respectively, we can focus on tuning the
parameters of just these two type-1 FLSs. They are all tuned
using a steepest descent method (Liang & Mendel, 2000).

4. Implementation of the proposed model in stock price

forecasting

In this section, we present a type-2 fuzzy model for data
analysis of stock price of an automotive manufacturing in
Asia. The input and output candidates of the system are
shown in Table 2. In this table, close price is the output
variables.

The data of the above automotive manufacturing’s
stock price is modeled into a multiple-input–single-output
(MISO) system.
The steps of the development of the MISO model are as
follows:

1. For variable selection, the Sugeno and Yasukawa (1993)
method (the variable selection algorithm) is used. In this
case, we begin with a fuzzy model with one input. We
generate 18 models: one model for one particular input
then RC of each model calculated and selected one
model to minimize RC from among the one input mod-
els. Next, we fix the one input selected above and add
another input to our fuzzy model from among the
remaining 17 candidates. At this stage our fuzzy model
has two inputs. The second input is selected in the first
step, according to the value of RC. The above process
is continued until the value of RC increases. The result
is shown in Figs. 12 and 13. As it is shown, open price

is selected at the first step, Price Channel (bottom) at
the second step, Changes at the third step, DI+ at the
fourth step and DI- at the fifth step. At the sixth step,
all of the values of RC for the sixth input are bigger than
the minimal RC at the fifth step. So the search is termi-
nated at this stage. Using this method, the variables
Open price, Price Channel (bottom), Changes, DI+,
DI�, are selected.

2. GK algorithm is implemented to cluster the stock price.
Then the proposed cluster validity index based on simi-
larity measure (VFNT) is implemented to determine the
most suitable number of clusters or rules (c). Here the
initial cluster centers were selected by the FCM. As
shown in Fig. 14, the best number of clusters based on
this cluster validity index is obtained by the minimum
value of the index. This result is 8 clusters. So, the
type-1 system contains of 8 rules.

3. The output space is projected onto the input spaces to
select the most critical inputs and the membership func-
tions of input and output are assigned by estimation,
using genetic algorithm. It is assumed that inputs and
output membership functions are Gaussian.

4. For generating interval type-2 fuzzy rule bases that the
antecedent and consequent sets are interval type-2 sets,
a Gaussian primary MF is implemented with uncertain
mean and fixed standard deviation.

In this research 365 data points have been selected
where, 265 data points are used for generating rules and
the rest for testing the model. After clustering, we find
the optimal number of the clusters to be 8. The number
of rules is 8, too Fig. 15.
4.1. Proposed type-2 fuzzy model

We create an interval type-2 FLS from the type-1 FLS.
Similar to the type-1 FLS the interval type-2 FLS uses sin-
gleton fuzzification, product t-norm, product inference,
and center-of-sets type-reduction. It also uses the same
number of fuzzy sets and the same rules as the type-1
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Fig. 14. Behaviour of FNT in automotive manufactory model.
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FLS. The only difference now is that the antecedent and
consequent sets are type-2 which has a fixed standard devi-
ation and an uncertain mean that takes on values in an
interval, i.e., (Mendel, 2000).

In Fig. 16 the interval type-2 rule base of automotive
manufactory is shown. As shown in this figure, there
are five inputs (Open Price, Price Channel (bottom),
Changes, DI+, and DI�), one output (close) and eight rules.

Fig. 17 shows the comparison between observed data
and the output of the proposed model. Also it can be
observed that the type reduction output which is lower
and upper bound of the output of the model and the crisp
output is the average of them.

For validation of system, we compare the result of the
proposed type-2 fuzzy model with the results of the follow-
ing models:

A. Multiple regressions
We have used the regression analysis with ‘‘Minitab’’.

The regression equation is:
y ¼ �0:000005� 0:000000x1 � 0:000000x2 þ 0:000010x3

þ 0:000000x4 þ 0:000003x5 � 0:000000x6 þ 0:000000x7

þ 0:000001x8 þ 0:000000x9 � 0:000000x10 þ 0:000000x11

� 0:000000x12 þ 0:000000x13 þ 1:00x14 þ 0:000000x15

� 0:000000x16 þ 0:000000x17 þ 1:00x18
After we have found a linear method for showing the rela-
tionship between these 19 parameters we must also look at
the residual plots to examine the formula. As it is observed
in the Fig. 18, the linear formula for this relationship is a
good estimation.

B. Type-1 fuzzy model

In type-1 fuzzy model we use Sugeno software and
obtain a fuzzy model with five rules, five inputs and one
output. The inputs are Open Price, Price Channel (bottom),
Changes, DI+ and DI� and the output is Close Price. We
use Mamdani-style inference, min–max, sum–product
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Fig. 16. Interval type-2 rule base of automotive manufactory.
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operators and some defuzzification methods such as cen-

troid, bisector, mom (middle of maximum), som (smallest

of maximum), lom (largest of maximum), or Custom, for
a custom operation.



Fig. 18. The residual plots.

Fig. 19. Type-1 FLS for automotive manufactory data.

Table 3
Comparing between models

Root mean square error
(RMSE)

Number of
rules

Multiple regression 309.17 –
Sugeno–Yasukawa’s

model
153.13 5

Proposed model 14.21 8
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The best result of this system is obtained by min–max
operators and som (smallest of maximum) defuzzification
method. The error of this model is 153.13. This rule based
system in is demonstrated Fig. 19.

The comparison of the proposed type-2 fuzzy model
with that of Sugeno and Yasukawa (1993) and multiple
regression approach is shown in Table 3. The Table shows
that while the root mean square error (RMSE) of multiple
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