Adam Allan

Solutions to Atiyah Macdonald

Chapter 1 : Rings and Ideals

1.1. Show that the sum of a nilpotent element and a unit is a unit.

If x is nilpotent, then 1 - x is a unit with inverse $\sum_{i=0}^{\infty} x^i$. So if u is a unit and x is nilpotent, then $v = 1 - (-u^{-1}x)$ is a unit since $-u^{-1}x$ is nilpotent. Hence, u + x = uv is a unit as well.

- 1.2. Let A be a ring with $f = a_0 + a_1x + \cdots + a_nx^n$ in A[x].
 - a. Show that f is a unit iff a_0 is a unit and a_1, \ldots, a_n are nilpotent.

If a_1, \ldots, a_n are nilpotent in A, then a_1x, \ldots, a_nx^n are nilpotent in A[x]. Since the sum of nilpotent elements is nilpotent, $a_1x + \cdots + a_nx^n$ is nilpotent. So $f = a_0 + (a_1x + \cdots + a_nx^n)$ is a unit when a_0 is a unit by exercise 1.1.

Now suppose that f is a unit in A[x] and let $g = b_0 + b_1 x + \cdots + b_m x^m$ satisfy fg = 1. Then $a_0b_0 = 1$, and so a_0 is a unit in A[x]. Notice that $a_nb_m = 0$, and suppose that $0 \le r \le m - 1$ satisfies

$$a_n^{r+1}b_{m-r} = a_n^r b_{m-r-1} = \dots = a_n b_m = 0$$

Notice that

$$0 = fg = \sum_{i=0}^{m+n} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) x^i = \sum_{i=0}^{m+n} c_i x^i$$

where we define $a_j = 0$ for j > n and $b_j = 0$ for j > m. This means that each $c_i = 0$, and so

$$0 = a_n^{r+1}c_{m+n-r-1} = \sum_{j=0}^n a_j a_n^{r+1} b_{m+n-r-1-j} = a_n^{r+2} b_{m-r-1}$$

since $m + n - r - 1 - j \ge m - r$ for $j \le n - 1$. So by induction $a_n^{m+1}b_0 = 0$. Since b_0 is a unit, we conclude that a_n is nilpotent. This means that $f - a_n x^n$ is a unit since $a_n x^n$ is nilpotent and f is a unit. By induction, a_1, \ldots, a_n are all nilpotent.

b. Show that f is nilpotent iff a_0, \ldots, a_n are nilpotent.

Clearly $f = a_0 + a_1 x + \ldots + a_n x^n$ is nilpotent if a_0, \ldots, a_n are nilpotent. Assume f is nilpotent and that $f^m = 0$ for $m \in \mathbb{N}$. Then in particular $(a_n x^n)^m = 0$, and so $a_n x^n$ is nilpotent. Thus, $f - a_n x^n$ is nilpotent. By induction, $a_k x^k$ is nilpotent for all k. This means that a_0, \ldots, a_n are nilpotent.

c. Show that f is zero-divisor iff bf = 0 for some $b \neq 0$.

If there is $b \neq 0$ for which bf = 0, then f is clearly a zero-divisor. So suppose f is a zero-divisor and choose a nonzero $g = b_0 + b_1 x + \cdots + b_m x^m$ of minimal degree for which fg = 0. Then in particular, $a_n b_m = 0$. Since $a_n g \cdot f = 0$ and $a_n g = a_n b_0 + \cdots + a_n b_{m-1} x^{m-1}$, we conclude that $a_n g = 0$ by minimality. Hence, $a_n b_k = 0$ for all k. Suppose that

$$a_{n-r}b_k = a_{n-r+1}b_k = \dots = a_nb_k = 0$$
 for all k

Then as in part a we obtain the equation

$$0 = \sum_{j=0}^{m+n-r-1} a_{m+n-r-1-j} b_j = a_{n-r-1} b_m$$

Again we conclude that $a_{n-r-1}g = 0$. Hence, by induction $a_jb_k = 0$ for all j, k. Choose k so that $b = b_k \neq 0$. Then bf = 0 with $b \neq 0$.

d. Prove that f, g are primitive iff fg is primitive.

Let h be any polynomial in A[x]. If h is not primitive then there is a maximal \mathfrak{m} in A containing the coefficients of h. Let k be the residue field of \mathfrak{m} and consider the natural map $\pi : A[x] \to k[x]$. Then $\pi(h) = 0$. This condition is also sufficient for showing that h is not a primitive polynomial.

So if fg is not primitive, then $\pi(fg) = 0$ as above for some maximal \mathfrak{m} . But $\pi(fg) = \pi(f)\pi(g)$ and k[x] is an integral domain so that $\pi(f) = 0$ or $\pi(g) = 0$. In other words, either f is not primitive or g is not primitive. The converse follows similarly.

1.3. Generalize the results of exercise 2 to $A[x_1, \ldots, x_r]$ where $r \ge 2$.

Let $f \in A[x_1, \ldots, x_r]$. Use multi-index notation to write

$$f = \sum_{I \in \mathbb{N}^r} \alpha_I x^I \quad \text{where} \quad x^I = x_1^{I_1} \cdots x_r^{I_r}$$

We can also write

$$f = \sum_{i=0}^{n} g x_r^i \quad \text{where} \quad g \in A[x_1, \dots, x_{r-1}]$$

b. Show that f is nilpotent iff each α_I is nilpotent.

Suppose that f is nilpotent. Then g_0, \ldots, g_n are nilpotent polynomials in $A[x_1, \ldots, x_{r-1}]$ by exercise 1.2. So by induction each a_{α} is nilpotent. If each α_I is nilpotent then each $\alpha_I x^I$ is nilpotent, so that f is nilpotent.

a. Show that f is a unit iff the constant coefficient is a unit and each α_I is nilpotent for |I| > 0.

Suppose that f is a unit. Then in $A[x_1, \ldots, x_{r-1}]$ we know that g_0 is a unit and g_1, \ldots, g_n are nilpotent. So by part b we see that α_I is nilpotent whenever I(r) > 0. By symmetry α_I is nilpotent whenever |I| > 0. The constant coefficient is clearly a unit. On the other hand, if the constant coefficient is a unit and all other coefficients are nilpotent, then f is clearly a unit.

c. Show that f is a zero-divisor iff bf = 0 for some $b \neq 0$.

Let \mathfrak{a} be any ideal in $A[x_1, \ldots, x_n]$ and suppose $g\mathfrak{a} = 0$ for some non-zero $g \in A[x_1, \ldots, x_n]$. Since $A[x_1, \ldots, x_n] = A[x_1, \ldots, x_{n-1}][x_n]$, exercise 1.2 allows us to assume that $g \in A[x_1, \ldots, x_{n-1}]$. Now given $f \in \mathfrak{a}$ we can write $f = \sum f_i x_n^i$ where each $f_i \in A[x_1, \ldots, x_{n-1}]$. Let \mathfrak{b} be the subset of $A[x_1, \ldots, x_{n-1}]$ consisting of all such f_i , as f ranges across \mathfrak{a} . Then \mathfrak{b} is an ideal since \mathfrak{a} is an ideal, and $g\mathfrak{b} = 0$ since $g \in A[x_1, \ldots, x_{n-1}]$ by hypothesis. So by induction, there is $b \neq 0$ satisfying $b\mathfrak{b} = 0$, and hence $b\mathfrak{a} = 0$. Now we apply this result to $\mathfrak{a} = (f)$ to get the desired conclusion.

d. Show that f and g are primitive iff fg is primitive.

Let h be any polynomial in $A[x_1, \ldots, x_r]$. If h is not primitive then there is a maximal \mathfrak{m} in A containing the coefficients of h. Let k be the residue field of \mathfrak{m} and consider the natural map $\pi : A[x_1, \ldots, x_r] \to$

So if fg is not primitive, then $\pi(fg) = 0$ as above for some maximal \mathfrak{m} . But $\pi(fg) = \pi(f)\pi(g)$ and $k[x_1, \ldots, x_r]$ is an integral domain so that $\pi(f) = 0$ or $\pi(g) = 0$. In other words, either f is not primitive or g is not primitive. The converse is obvious.

1.4. Show that $\Re(A[x]) = \Re(A[x])$ for every ring A.

As with any ring $\mathfrak{N}(A[x]) \subseteq \mathfrak{R}(A[x])$. So suppose that $f \in \mathfrak{R}(A[x])$. Then 1-fx is a unit. If $f = a_0 + \ldots + a_n x^n$ this means that $1 - a_0 x - \ldots - a_n x^{n+1}$ is a unit, so that a_0, \ldots, a_n are nilpotent by exercise 1.2. By exercise 1.2 this means that f is nilpotent, and so $f \in \mathfrak{N}(A[x])$. Hence $\mathfrak{R}(A[x]) \subseteq \mathfrak{N}(A[x])$, giving the desired result.

1.5. Let A be a ring with $f = \sum_{0}^{\infty} a_n x^n$ in A[[x]].

a. Show that f is a unit iff a_0 is a unit.

Suppose f is a unit. Then there is $g(x) = \sum_{0}^{\infty} b_n x^n$ satisfying fg = 1. In particular, $a_0b_0 = 1$, implying that a_0 is a unit. Conversely, suppose that a_0 is a unit. We wish to find b_n for which fg = 1. This is equivalent to finding b_n satisfying $a_0b_0 = 1$ and

$$a_0b_n + \sum_{i=0}^{n-1} a_{n-i}b_i = 0$$
 for $n > 0$

So we define $b_0 = a_0^{-1}$ and

$$b_n = -a_0^{-1} \sum_{i=0}^{n-1} a_{n-i} b_i$$
 for $n > 0$

This constructively shows that f is a unit.

b. Show that each a_i is nilpotent if f is nilpotent, and that the converse is false.

Suppose that f is nilpotent and choose n > 0 for which $f^n = 0$. Then $a_0^n = 0$. Hence a_0 is nilpotent, as is $f - a_0$. Now by induction we see that every a_n is nilpotent. The converse need not be true though. We can define

$$A = \mathbb{Z}_4 \times \mathbb{Z}_8 \times \mathbb{Z}_{16} \times \cdots$$

and then let

$$a_0 = (2, 0, 0, \ldots)$$
 $a_1 = (0, 2, 0, \ldots)$ \ldots

Observe that $a_j a_k = 0$ for $j \neq k$, and so

$$f^n = a_0^n + a_1^n x^n + a_2^n x^{2n} + \cdots$$
 for all $n > 0$

Obviously each a_k is nilpotent, and yet f is not nilpotent. The problem here is that there is no N for which $a_k^N = 0$ for all k. This issue does not occur when $\mathfrak{N}(A)$ is a nilpotent ideal, as for instance when A is Noetherian.

c. Show that $f \in \mathfrak{R}(A[[x]])$ iff $a_0 \in \mathfrak{R}(A)$.

Assume $a_0 \in \mathfrak{R}(A)$ and suppose $g \in A[[x]]$ with constant coefficient b_0 . Then there is $h \in A[[x]]$ satisfying $1 - fg = 1 - a_0b_0 + hx$. Since $1 - a_0b_0$ is a unit in A, we see by part a that 1 - fg is a unit in A[[x]], so that $f \in \mathfrak{R}(A[[x]])$. On the other hand, if $f \in \mathfrak{R}(A[[x]])$ and $b \in A$, then 1 - fb is a unit in A[[x]]. Again by part a this means that $1 - a_0b$ is a unit in A, so that $a_0 \in \mathfrak{R}(A)$.

d. Show that the contraction of a maximal ideal \mathfrak{m} of A[[x]] is a maximal ideal of A, and that \mathfrak{m} is generated by \mathfrak{m}^c and x.

By part c we have $(x) \subseteq \mathfrak{R}(A[x]) \subseteq \mathfrak{m}$ since $0 \in \mathfrak{R}(A)$. Now if f = a + gx is in \mathfrak{m} then $a = f - gx \in \mathfrak{m}$ since $x \in \mathfrak{m}$, so that $a \in \mathfrak{m} \cap A$. In other words, \mathfrak{m} is generated by \mathfrak{m}^c and x.

Notice that $\mathfrak{m}^c = \mathfrak{m} \cap A$, and that A/\mathfrak{m}^c naturally embeds into $A[[x]]/\mathfrak{m}$ via the map $a + \mathfrak{m}^c \mapsto a + \mathfrak{m}$. I claim that A/\mathfrak{m}^c is a subfield of the field $A[[x]]/\mathfrak{m}$. So suppose that $a + \mathfrak{m}^c \neq \mathfrak{m}^c$ and choose $f \in A[[x]]$ for which $(a + \mathfrak{m})(f + \mathfrak{m}) = 1 + \mathfrak{m}$, so that $af - 1 \in \mathfrak{m}$. Write $f = a_0 + gx$ for some $g \in A[[x]]$ and observe that $af - 1 = aa_0 - 1 + agx \in \mathfrak{m}$, implying that $aa_0 - 1 \in \mathfrak{m}$ since $x \in \mathfrak{m}$. So we see that $aa_0 - 1 \in \mathfrak{m}^c$, and hence $a + \mathfrak{m}^c$ has the inverse $a_0 + \mathfrak{m}^c$. This means that A/\mathfrak{m}^c is a subfield of $A[[x]]/\mathfrak{m}$, and hence \mathfrak{m}^c is a maximal ideal in A.

e. Show that every prime ideal \mathfrak{p} of A is the contraction of a prime ideal \mathfrak{q} of A[[x]].

Let \mathfrak{q} be the ideal in A[[x]] consisting of all $\sum a_k x^k$ for which $a_0 \in \mathfrak{p}$. If $fg \in \mathfrak{q}$ with $f = \sum a_k x^k$ and $g = \sum b_k x^k$, then $a_0 b_0 \in \mathfrak{p} zz$. Hence, $a_0 \in \mathfrak{p}$ or $b_0 \in \mathfrak{p}$, implying that $f \in \mathfrak{q}$ or $g \in \mathfrak{q}$. So \mathfrak{q} is a prime ideal in A[[x]] and $\mathfrak{p} = A \cap \mathfrak{q}$, so that \mathfrak{p} is the contraction of \mathfrak{q} .

1.6. Let A be a ring such that every ideal not contained in $\mathfrak{N}(A)$ contains a nonzero nilpotent. Show that $\mathfrak{N}(A) = \mathfrak{R}(A)$.

As always $\mathfrak{N}(A) \subseteq \mathfrak{R}(A)$. Now suppose that $\mathfrak{N}(A) \subsetneq \mathfrak{R}(A)$. By hypothesis, there is an idempotent $e \neq 0$ in $\mathfrak{R}(A)$. Now $(1-e)e = e - e^2 = 0$. Since $e \in \mathfrak{R}(A)$ we know that 1 - e is a unit in A, so that e = 0. But this contradicts our choice of e, showing that $\mathfrak{N}(A) = \mathfrak{R}(A)$.

1.7. Let A be a ring such that every $x \in A$ satisfies $x^n = x$ for some n > 1. Show that every prime ideal \mathfrak{p} in A is maximal.

For $x \in A$ choose n > 1 satisfying $x^n = x$. Then $\bar{x}(\bar{x}^{n-1} - \bar{1}) = \bar{0}$ in A/\mathfrak{p} . Since A/\mathfrak{p} is an integral domain we have $\bar{x} = \bar{0}$ or $\bar{x}^{n-1} = \bar{1}$. In the second case \bar{x} is a unit in A/\mathfrak{p} since n > 1. This shows that A/\mathfrak{p} is a field, so that \mathfrak{p} is in fact a maximal ideal.

1.8. Let $A \neq 0$ be a ring. Show that the set of prime ideals of A has minimal elements with respect to inclusion.

Suppose that \mathfrak{p}_{α} are prime ideals for $\alpha \in I$. Suppose further that I has a linear ordering \prec for which $\mathfrak{p}_{\alpha} \supset \mathfrak{p}_{\beta}$ whenever $\alpha \prec \beta$. Define $\mathfrak{p} = \bigcap_{\alpha \in I} \mathfrak{p}_{\alpha}$, and suppose that \mathfrak{p} is not prime. Then there are x, y for which $xy \in \mathfrak{p}$, and yet $x, y \notin \mathfrak{p}$. Hence, there are α, β for which $x \notin \mathfrak{p}_{\alpha}$ and $y \notin \mathfrak{p}_{\beta}$. But either $\alpha \prec \beta$ or $\beta \prec \alpha$, implying that $x \notin \mathfrak{p}_{\beta}$ or $y \notin \mathfrak{p}_{\alpha}$. Either case leads to a contradiction as \mathfrak{p}_{α} and \mathfrak{p}_{β} are prime ideals containing xy. So \mathfrak{p} is a prime ideal, contained in every \mathfrak{p}_{α} . This means, by Zorn's Lemma, that the set of prime ideals in A has minimal elements.

1.9. Let $a \neq (1)$ be an ideal in A. Show that a = r(a) if and only if a is the intersection of a collection of prime ideals.

Suppose $\mathfrak{a} = \bigcap_I \mathfrak{p}_{\alpha}$ is the intersection of prime ideals. Notice that we always have $\mathfrak{a} \subseteq r(\mathfrak{a})$. Now if $x \in r(\mathfrak{a})$, then $x^n \in \mathfrak{a}$ for some n, and so $x^n \in \mathfrak{p}_{\alpha}$ for all α . Therefore, $x \in \mathfrak{p}_{\alpha}$ by the definition of prime ideals, implying that $x \in \mathfrak{a}$. Hence $\mathfrak{a} = r(\mathfrak{a})$. The converse is trivial.

1.10. Show that the following are equivalent for any ring A.

- a. A has exactly one prime ideal.
- b. Every element of A is either a unit or nilpotent.
- c. $A/\mathfrak{N}(A)$ is a field.

 $(a \Rightarrow b)$ Suppose that $x \in A$ is neither nilpotent nor invertible. Let \mathfrak{m} be a maximal ideal in A containing x. Then $\mathfrak{N}(A) \subseteq \mathfrak{m}$. But \mathfrak{m} is a prime ideal, so that A has more than one prime ideal.

 $(b \Rightarrow c)$ By hypothesis x is a unit in A whenever $x \notin \mathfrak{N}(A)$. This shows that $A/\mathfrak{N}(A)$ is a field.

 $(c \Rightarrow a)$ If $A/\mathfrak{N}(A)$ is a field, then $\mathfrak{N}(A)$ is a maximal ideal. But $\mathfrak{N}(A)$ is contained in every prime ideal in A, and prime ideals are proper by definition. So $\mathfrak{N}(A)$ is the only prime ideal in A.

1.11. Prove the following about a Boolean ring A.

a. 2x = 0 for every $x \in A$.

Notice that $2x = (2x)^2 = 4x^2 = 4x = 2x + 2x$, so that 2x = 0 for every $x \in A$.

b. For every prime ideal p, A/p is a field with two elements.

If $x \notin p$ then from the equation $(x + p)^2 = x + p$ we conclude that x + p = 1 + p. Hence, A/p is the field with two elements. This means in particular that every prime ideal in A is maximal.

c. Every finitely generated ideal in A is principal.

Suppose $x_1, x_2 \in A$ and define $y = x_1 + x_2 + x_1 x_2$. Notice that

$$x_1y = x_1 + x_1x_2 + x_1x_2 = x_1 + 2x_1x_2 = x_1$$

Similarly $x_2y = x_2$. This shows that

$$(y) = (x_1, x_2) = (x_1) + (x_2)$$

The result now follows by induction.

1.12. Show that a local ring contains no idempotents $\neq 0$ or 1.

Suppose $e \in A$ is idempotent, so that e(1-e) = 0. If $e \neq 0$ or 1, then e and 1-e are nonunits. Since A is a local ring, the nonunits form an ideal. But this means that e + (1-e) = 1 is a nonunit, a contradiction.

1.13. Given a field K construct an algebraic closure of K.

Suppose that K is a field so that K[x] is factorial. Let Σ consist of all irreducible polynomials in K[x]. Define A to be the polynomial ring generated by indeterminates x_f over K, one for each $f \in \Sigma$. Also define **a** to be the ideal in A generated by $f(x_f)$ for $f \in \Sigma$. Suppose that $\mathbf{a} = A$. Then there are $f_1, \ldots, f_n \in \Sigma$ and $g_1, \ldots, g_n \in A$ for which

Let K' be a field containing K and roots α_i of f_i , noting that each f_i is a non-constant polynomial. Letting $x_{f_i} = \alpha_i$ yields 0 = 1 in K', an impossibility. Therefore, \mathfrak{a} is a proper ideal of A. Let \mathfrak{m} be a maximal ideal in A containing \mathfrak{a} . Define $K_1 = A/\mathfrak{m}$. Then K_1 is an extension field of K. For $g \in K[x]$ let $f \in \Sigma$ be an irreducible factor of g. Then $f(x_f + \mathfrak{m}) = f(x_f) + \mathfrak{m} = \mathfrak{m}$, implying that f, and hence g, has a root in K_1 . Hence, every polynomial over K has a root in K_1 .

Now given the field K_n , choose an extension field K_{n+1} of K_n so that every polynomial over K_n has a root in K_{n+1} . Proceed in this way to obtain K_n for all $n \in \mathbb{N}^+$, and let $L = \bigcup_{n=1}^{\infty} K_n$. Then L is an extension field of K and every polynomial over Σ of degree m splits completely over K_m , and hence splits completely over L. Finally, let \overline{L} be the set of all elements in L that are algebraic over K. Then \overline{L} is algebraic over Kand every monic polynomial over K can be written as $g = \prod_{k=1}^{\deg(g)} (x - \alpha_i)$, where α_i are the roots of g in L. But then each α_i is algebraic over K and hence lies in \overline{L} . So g has roots in \overline{L} . This means that \overline{L} is an algebraic closure of K.

1.14. In a ring A, let Σ be the set of all ideals in which every element is a zero-divisor. Show that Σ has maximal elements and that every maximal element of Σ is a prime ideal. Hence, the set D of zero-divisors in A is a union of prime ideals.

It is clear by Σ is chain complete. Hence, Zorn's Lemma tells us that Σ has maximal elements. Suppose that $\mathfrak{a} \in \Sigma$ is not a prime ideal. Let $x, y \in A - \mathfrak{a}$ satisfy $xy \in \mathfrak{a}$ so that $\mathfrak{a} \subsetneq (\mathfrak{a} : x)$. If $(\mathfrak{a} : x) \notin \Sigma$ then there is $z \in (\mathfrak{a} : x)$ so that z is not a zero-divisor. I now claim that $(\mathfrak{a} : z) \in \Sigma$. If $w \in (\mathfrak{a} : z)$ then $wz \in \mathfrak{a}$, so that vwz = 0 for some $v \neq 0$. Since z is not a zero-divisor $vz \neq 0$, and hence w is a zero-divisor. Thus $\mathfrak{a} \subsetneq (\mathfrak{a} : z) \in \Sigma$ since $x \in (\mathfrak{a} : z) - \mathfrak{a}$. This means that \mathfrak{a} is not a maximal element in Σ . So maximal elements in Σ are indeed prime ideals.

Now if D is the set of zero-divisors in A and $x \in D$ then $(x) \subseteq D$, and hence $(x) \in \Sigma$. It is clear from Zorn's Lemma that there is a maximal $\mathfrak{a} \in \Sigma$ containing (x), so that $x \in \mathfrak{a} \subseteq D$. This means that D is the union of some of the prime ideals of A.

1.15. Suppose A is a ring and let Spec(A) be the set of all prime ideals of A. For each $E \subseteq A$, let $V(E) \subseteq \text{Spec}(A)$ consist of all prime ideals containing E. Prove the following.

a. If $\mathfrak{a} = \langle E \rangle$ then $V(E) = V(\mathfrak{a}) = V(r(\mathfrak{a}))$.

Since $E \subseteq \mathfrak{a} \subseteq r(\mathfrak{a})$ we have

$$V(r(\mathfrak{a})) \subseteq V(\mathfrak{a}) \subseteq V(E)$$

Suppose $\mathfrak{p} \in V(E)$ so that $E \subseteq \mathfrak{p}$. Then $\mathfrak{a} = AE \subseteq A\mathfrak{p} = \mathfrak{p}$ and $r(\mathfrak{a}) \subseteq r(\mathfrak{p}) = \mathfrak{p}$. So we have $V(r(\mathfrak{a})) \subseteq V(E)$. We are finished.

b. $V(0) = \operatorname{Spec}(A)$ and $V(1) = \emptyset$.

Every prime ideal contains 0, and so V(0) = Spec(A). Also, no prime ideal equals all of A, by definition, and so $V(1) = \emptyset$.

c. If $(E_i)_{i \in I}$ is a family of subsets of A then $V(\bigcup E_i) = \bigcup V(E_i)$.

Any ideal contains $\bigcup E_i$ iff it contains each E_i .

d. For ideals \mathfrak{a} , \mathfrak{b} we have $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$.

By part a we have

$$V(\mathfrak{a} \cap \mathfrak{b}) = V(r(\mathfrak{a} \cap \mathfrak{b})) = V(r(\mathfrak{a} \mathfrak{b})) = V(\mathfrak{a} \mathfrak{b})$$

Clearly $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{p}$ whenever $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$. The converse holds since \mathfrak{p} is a prime ideal. So $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$.

1.16? Describe the following

a. $\operatorname{Spec}(\mathbb{Z})$

It is not hard to see that $\operatorname{Spec}(\mathbb{Z}) = \{(0)\} \cup \{(p) : p > 1 \text{ prime}\}.$

b. $\operatorname{Spec}(\mathbb{R})$

Since \mathbb{R} is a field, it has precisely one prime ideal, namely (0).

c. $\operatorname{Spec}(\mathbb{C}[x])$

Since \mathbb{C} is a field, $\mathbb{C}[x]$ is a PID, and so its nonzero prime ideals are of the form (p) for some monic irreducible polynomial p. The only monic polynomials that are irreducible over \mathbb{C} are of the form p = x - c for some $c \in \mathbb{C}$. Of course, the zero ideal is prime as well.

d. $\operatorname{Spec}(\mathbb{R}[x])$

Since \mathbb{R} is a field, $\mathbb{R}[x]$ is a PID, and so its nonzero prime ideals are of the form (p) for some monic irreducible polynomial p. Since every odd polynomial has a root, no polynomial of odd degree at least three is irreducible. Suppose p is a monic irreducible polynomial of even degree 2d > 2. In $\mathbb{C}[x]$ write $p(z) = \prod_{i=1}^{2d} (z - \alpha_i)$. Letting α_i^* be the complex conjugate of α_i , we see that $p(\alpha_i^*) = p(\alpha_i)^* = 0$ since $p \in \mathbb{R}[x]$. This means that $p = \prod_{i=1}^{2d} (z - \alpha_i^*)$. So there is $\sigma \in \Sigma_{2d}$ so that $\alpha_i^* = \alpha_{\sigma(i)}$ for every i. Since p has no real roots, we cannot have $\sigma(i) = i$ for any i. Also, $\alpha_{\sigma(i)}^* = \alpha_i$ so that $\sigma^2 = id$, and hence σ is a product of 2-cycles. Thus

$$p(z) = \prod_{i=1}^{d} (z - \alpha_i)(z - \alpha_{\sigma(i)}) = \prod_{i=1}^{d} (z - \alpha_i)(z - \alpha_i^*) = \prod_{i=1}^{d} (z^2 - 2\Re(\alpha_i)z + |\alpha_i|^2)$$

Since each of these quadratics is in $\mathbb{R}[x]$, we see that p is reducible in $\mathbb{R}[x]$, a contradiction. Consequently, the irreducible elements in $\mathbb{R}[x]$ are of the form x - a and $x^2 + bx + c$ where $b^2 - 4c < 0$. These elements correspond bijectively with the non-zero prime ideals in $\mathbb{R}[x]$.

e. $\operatorname{Spec}(\mathbb{Z}[X])$

Notice that $\mathbb{Z}[x]$ is factorial. If p is an irreducible polynomial over \mathbb{Z} then (p) is a prime ideal in $\mathbb{Z}[x]$. Since $\mathbb{Z}[x]$ is an integral domain we see that (0) is a prime ideal in $\mathbb{Z}[x]$ as well. Suppose \mathfrak{p} is a non-zero prime ideal in $\mathbb{Z}[x]$ that is not principal. Suppose \mathfrak{p} has the property that, given $f, g \in \mathfrak{p}$, either $(f) \subseteq (g)$ or $(g) \subseteq (f)$. From this I will derive a contradiction. Let $f_1 \in \mathfrak{p}$ and choose $f_2 \in \mathfrak{p} - (f_1)$, making use of the fact that \mathfrak{p} is not principal. Then $(f_1) \subsetneq (f_2)$. We can choose $f_3 \in \mathfrak{p} - (f_2)$. Then $(f_2) \subsetneq (f_3)$. We proceed in this way to get a properly ascending sequence of ideals in \mathfrak{p} . This is impossible since Hilbert's Theorem tells us that $\mathbb{Z}[x]$ is Noetherian. Therefore, there are nonzero $f, g \in \mathfrak{p}$ with $(f) \not\subseteq (g)$ and $(g) \not\subseteq (f)$.

We can consider f and g as elements of $\mathbb{Q}[x]$. Suppose, for the sake of contradiction, that f = f'h and g = g'h for some $f', g', h \in \mathbb{Q}[x]$ with $\deg(h) \geq 1$. We can write f' = af'' with $a \in \mathbb{Q}$ and $f'' \in \mathbb{Z}[x]$ so that the coefficients of f'' have no prime number in common. Similarly write g' = bg'' and h = ch'. We see that f'', g'', and h' are all primitive elements of $\mathbb{Z}[x]$. Exercise 1.2 tells us that f''h' and g''h' are primitive elements of $\mathbb{Z}[x]$. But f = (ac)(f''h') so that $ac \in \mathbb{Z}$. Similarly, g = (bc)(g''h') so that $bc \in \mathbb{Z}$. This means that h' is a common factor of f and g in $\mathbb{Z}[x]$; our sought after contradiction. Therefore, f and g have no common factor in $\mathbb{Q}[x]$.

Now $\mathbb{Q}[x]$ is a PID since \mathbb{Q} is a field. So there are $j, k \in \mathbb{Q}[x]$ satisfying jf + kg = 1. Clearing the denominators in this equation we get a $0 \neq c \in \mathbb{Z}$ such that (cj)f + (ck)g = c, with $cj, ck \in \mathbb{Z}[x]$. This means that $(f,g) \cap \mathbb{Z} \neq (0)$, and hence $\mathfrak{p} \cap \mathbb{Z} = (p)$ is a non-zero prime ideal in \mathbb{Z} . But every nonzero prime ideal of \mathbb{Z} is a maximal ideal. Choose $d \in \mathfrak{p} - p\mathbb{Z}[x]$.

1.17. For $f \in A$ let $X_f = \operatorname{Spec}(A) - V(f)$. Show that $\{X_f : f \in A\}$ forms a basis of $X = \operatorname{Spec}(A)$.

Each X_f is clearly open. Now if X - V(E) is a general open set then

$$X - V(E) = X - V\left(\bigcup_{f \in E} \{f\}\right) = X - \bigcap_{f \in E} V(f) = \bigcup_{f \in E} X_f$$

We conclude that $\{X_f : f \in X\}$ is a basis for Spec(X).

a. Show that $X_f \cap X_g = X_{fg}$ for all f, g.

The equalities

$$X - V(fg) = X - V((f) \cap (g)) = X - V((f)) \cup V((g)) = (X - V(f)) \cap (X - V(g))$$

give us the result immediately.

b. Show that $X_f = \emptyset$ iff f is nilpotent.

 $X_f = \emptyset$ precisely when f is contained in every prime ideal in A. This occurs precisely when f is in the nilradical of A, and hence precisely when f is nilpotent.

c. Show that $X_f = X$ iff f is a unit in A.

If f is a unit, then f is not contained in any prime ideal, and so $X_f = X$. If f is a nonunit, then f is contained in some maximal ideal, and hence $X_f \neq X$.

d. Show that $X_f = X_g$ iff r(f) = r(g).

If r(f) = r(g) then V(f) = V(r(f)) = V(r(g)) = V(g) so that $X_f = X_g$. Suppose that $X_f = X_g$. Then every prime ideal containing f contains g, and vice versa. But r(f) is the intersection of all prime ideals containing f, and similarly for g. So r(f) = r(g).

e. Show that Spec(A) is compact.

Suppose $X = \bigcup U_{\alpha}$ with each U_{α} open, and write $U_{\alpha} = \bigcup_{\beta \in J_{\alpha}} X_{f_{\alpha,\beta}}$. Then $X = \bigcup X_{f_{\alpha,\beta}}$ so that $\emptyset = \bigcap V(f_{\alpha,\beta}) = V(\bigcup f_{\alpha,\beta})$. This means that $\{f_{\alpha,\beta}\}$ generates A. So we can write $1 = \sum a_{\alpha,\beta} f_{\alpha,\beta}$ with cofinitely many of the $a_{\alpha,\beta}$ non-zero. Working backwards, we see that X is the union of the $X_{f_{\alpha,\beta}}$ for which $a_{\alpha,\beta} \neq 0$. So in turn, X is the union of finitely many U_{α} . Thus, X is compact.

f. Show that each X_f is compact.

Suppose that $X_f \subseteq \bigcup U_{\alpha}$ and write $U_{\alpha} = \bigcup_{\beta \in J_{\alpha}} X_{g_{\alpha,\beta}}$. Then $X_f \subseteq \bigcup X_{g_{\alpha,\beta}}$. This gives us $V(\bigcup g_{\alpha,\beta}) \subseteq V(f)$. Suppose \mathfrak{a} is the ideal generated by the $g_{\alpha,\beta}$. Then $f \in r(\mathfrak{a})$, so that there is an equation $f^n = \sum a_{\alpha,\beta}g_{\alpha,\beta}$ with cofinitely many of the $a_{\alpha,\beta}$ non-zero. Let g_1, \ldots, g_n be the $g_{\alpha,\beta}$ with $a_{\alpha,\beta} \neq 0$. Then $V(\bigcup_1^n g_i) \subseteq V(f^n) = V(f)$ so that $X_f \subseteq \bigcup_1^n X_{g_i}$. It follows that X_f is the union of finitely many U_{α} . Thus, X_f is compact.

g. Show that an open subspace of X is compact if and only if it is the union of finitely many of the basic open sets X_f .

Clearly, the union of finitely many X_f is open and compact. So suppose \mathcal{U} is compact and open. Then since \mathcal{U} is the union of some X_f , it is the union of finitely many X_f .

1.18. Show the following about X = Spec(A).

a. The set $\{p\}$ is closed iff p is a maximal ideal.

If \mathfrak{p} is a maximal ideal, then $V(\mathfrak{p}) = \{\mathfrak{p}\}$, and so $\{\mathfrak{p}\}$ is closed. If $\{\mathfrak{p}\}$ is closed then $\{\mathfrak{p}\} = V(E)$ for some $E \subsetneq A$. Let \mathfrak{m} be a maximal ideal containing \mathfrak{p} so that $\mathfrak{m} \in V(E)$. Then $\mathfrak{m} = \mathfrak{p}$, so that \mathfrak{p} is a maximal ideal.

b. $\mathbf{Cl}(\{\mathfrak{p}\}) = V(\mathfrak{p})$

Notice that $\operatorname{Cl}(\mathfrak{p}) \subseteq V(\mathfrak{p})$ since $V(\mathfrak{p})$ is a closed set containing \mathfrak{p} and $\operatorname{Cl}(\mathfrak{p})$ is the intersection of all closed sets containing \mathfrak{p} . Conversely, suppose that \mathfrak{q} is a prime ideal not in $\operatorname{Cl}(\mathfrak{p})$, and choose a neighborhood U of \mathfrak{q} that does not intersect $\{\mathfrak{p}\}$. Then there is $E \subset A$ for which X - U = V(E). Consequently, $\mathfrak{p} \in V(E)$ and $\mathfrak{q} \notin V(E)$. Since \mathfrak{p} contains E and \mathfrak{q} does not, we conclude in particular that \mathfrak{q} does not contain \mathfrak{p} . This means that $\mathfrak{q} \notin V(\mathfrak{p})$. So $\operatorname{Cl}(\mathfrak{p}) = V(\mathfrak{p})$.

c. $q \in \mathbf{Cl}(\{p\})$ if and only if $p \subseteq q$.

Obvious from part b.

d. X is a T_0 space.

Suppose that $\mathfrak{p} \neq \mathfrak{q}$. If $\mathfrak{p} \subsetneq \mathfrak{q}$ then $X - V(\mathfrak{q})$ is an open set containing \mathfrak{p} but not containing \mathfrak{q} ; otherwise $\mathfrak{p} \not\subseteq \mathfrak{q}$ and hence $X - V(\mathfrak{p})$ is an open set containing \mathfrak{q} but not containing \mathfrak{p} .

1.19. Show that Spec(A) is an irreducible topological space iff $\mathfrak{N}(A)$ is a prime ideal in A.

Suppose that $\mathfrak{N}(A)$ is not a prime ideal. Then there are $f, g \in A$ for which $fg \in \mathfrak{N}(A)$ and yet $f, g \notin \mathfrak{N}(A)$. Since f and g are not nilpotent, we see that X_f and X_g are nonempty open sets. But $X_f \cap X_g = X_{fg} = \emptyset$ since fg is nilpotent. Hence, $\operatorname{Spec}(A)$ is not irreducible.

Suppose that Spec(A) is not irreducible. Choose nonempty open U, V for which $U \cap V = \emptyset$. Then there are f, g for which $\emptyset \neq X_f \subseteq U$ and $\emptyset \neq X_g \subseteq V$. So fg is nilpotent since $X_{fg} = X_f \cap X_g = \emptyset$. But neither f nor g is nilpotent. This means that $\mathfrak{N}(A)$ is not a prime ideal.

1.20. Let X be a general topological space. Prove the following.

a. If Y is an irreducible subspace of X, then the closure \overline{Y} of Y in X is irreducible.

Suppose U and V are open in X, and that $U \cap \overline{Y}$ and $V \cap \overline{Y}$ are nonempty. Choose $x \in U \cap \overline{Y}$. Since U is a neighborhood of x, and since $x \in \overline{Y}$, we see that U intersects Y nontrivially. So $U \cap Y$, and similarly $V \cap Y$, are nonempty. Since Y is irreducible, $U \cap Y$ intersects $V \cap Y$ nontrivially, and therefore $U \cap \overline{Y}$ intersects $V \cap \overline{Y}$ nontrivially. Hence, \overline{Y} is irreducible as well.

b. Every irreducible subspace of X is contained in a maximal irreducible subspace.

Suppose that Σ consists of all irreducible subspaces of X and that Σ is partially ordered by inclusion. Let $C = \{Y_{\alpha} : \alpha \in I\}$ be an ascending chain in Σ . Define $Y = \bigcup_{\alpha \in I} Y_{\alpha}$, and suppose that U, V open in X are such that $U \cap Y$ and $V \cap Y$ are nonempty. There are α, β for which $U \cap Y_{\alpha}$ and $V \cap Y_{\beta}$ are nonempty. We may assume that $\alpha \leq \beta$. Notice then that $U \cap Y_{\beta} \supseteq U \cap Y_{\alpha}$ is nonempty. Since Y_{β} is irreducible, we conclude that $U \cap Y_{\beta}$ and $V \cap Y_{\beta}$ intersect nontrivially. But then $U \cap Y$ and $V \cap Y$ intersect nontrivially. That is, Y is irreducible. So by Zorn's Lemma, Σ has maximal elements. Thus, every irreducible subspace of X is contained in a maximal irreducible subspace of X.

c. The maximal irreducible subspaces of X are closed and cover X. What are the irreducible components of a Hausdorff space?

If Y is a maximal irreducible subspace of X, then $Y = \overline{Y}$ since \overline{Y} is irreducible. In other words, Y is closed. If $x \in X$, then $\{x\}$ is irreducible, and so x is contained in some maximal irreducible subspace of X. This means that X is covered by the irreducible components.

If X is a Hausdorff space and $Y \subseteq X$ contains two distinct points x and y, then we can choose disjoint open U and V for which $x \in U$ and $y \in V$. Then $U \cap Y$ and $V \cap Y$ are nonempty disjoint open sets in Y, implying that Y is not irreducible. So the irreducible components of a Hausdorff space are precisely the one point sets.

d. The irreducible components of Spec(A) are of the form $V(\mathfrak{p})$ for some minimal prime ideal \mathfrak{p} .

Let \mathfrak{p} be a prime ideal and suppose $f \in A$. Then $X_f \cap V(\mathfrak{p}) \neq \emptyset$ if and only if $f \notin \mathfrak{q}$ for some prime ideal $\mathfrak{q} \supseteq \mathfrak{p}$, and this occurs if and only if $f \notin \mathfrak{p}$. Now assume that $X_f \cap V(\mathfrak{p})$ and $X_g \cap V(\mathfrak{p})$ are nonempty open subsets of $V(\mathfrak{p})$. Then $f, g \notin \mathfrak{p}$ so that $fg \notin \mathfrak{p}$, and hence

$$\mathfrak{p} \in X_{fq} \cap V(\mathfrak{p}) = (X_f \cap V(\mathfrak{p})) \cap (X_q \cap V(\mathfrak{p}))$$

This means that $V(\mathfrak{p})$ is an irreducible subspace of $\operatorname{Spec}(A)$. Now any irreducible subspace of $\operatorname{Spec}(A)$ is of the form $V(r(\mathfrak{a}))$ for some ideal \mathfrak{a} . Suppose $r(\mathfrak{a})$ is not prime. Then there are $f, g \notin r(\mathfrak{a})$ for which $fg \in r(\mathfrak{a})$. So there is $\mathfrak{p} \in V(\mathfrak{a})$ not containing f and there is $\mathfrak{q} \in V(\mathfrak{a})$ not containing g. This means that $X_f \cap V(r(\mathfrak{a}))$ and $X_g \cap V(r(\mathfrak{a}))$ are nonempty. But $X_{fg} \cap V(r(\mathfrak{a})) = \emptyset$ since every prime ideal containing $r(\mathfrak{a})$ contains fg. Hence, $V(r(\mathfrak{a}))$ is not irreducible. So the irreducible subspaces of X are precisely of the form $V(\mathfrak{p})$ for some prime ideal \mathfrak{p} . Further, $V(\mathfrak{p})$ is maximal among all sets of the form $V(\mathfrak{q})$, where \mathfrak{q} is prime, if and only if \mathfrak{p} is a minimal prime ideal. So we are done.

1.21. Let $\phi : A \to B$ be a ring homomorphism, with X = Spec(A) and Y = Spec(B). Define $\phi^* : Y \to X$ by $\phi^*(\mathfrak{q}) = \phi^{-1}(\mathfrak{q})$. Prove the following.

a. If $f \in A$ then $\phi^{*-1}(X_f) = Y_{\phi(f)}$ and so ϕ^* is continuous.

Notice that $\phi^{*-1}(X_f)$ consists of all $\mathfrak{q} \in Y$ for which $f \notin \phi^{-1}(\mathfrak{q})$. Also, $Y_{\phi(f)}$ consists of all $\mathfrak{q} \in Y$ for which $\phi(f) \notin \mathfrak{q}$. But $\phi(f) \in \mathfrak{q}$ if and only if $f \in \phi^{-1}(\mathfrak{q})$, and so $\phi^{*-1}(X_f) = Y_{\phi(f)}$. In turn, this implies that ϕ^* is continuous since $\{X_f | f \in A\}$ is a basis of X and $\phi^{*-1}(X_f)$ is open for every $f \in A$.

b. If a is an ideal in A and then $\phi^{*-1}(V(\mathfrak{a})) = V(\mathfrak{a}^e)$.

The following long chain of equalities

$$\phi^{*-1}(V(\mathfrak{a})) = \phi^{*-1}(V(\bigcup_{x \in \mathfrak{a}} \{x\}))$$

$$= \phi^{*-1}(\bigcap_{x \in \mathfrak{a}} V(x))$$

$$= \bigcap_{x \in \mathfrak{a}} \phi^{*-1}(V(x))$$

$$= \bigcap_{x \in \mathfrak{a}} \phi^{*-1}(X - X_x)$$

$$= \bigcap_{x \in \mathfrak{a}} [Y - \phi^{*-1}(X_x)]$$

$$= \bigcap_{x \in \mathfrak{a}} [Y - Y_{\phi(x)}]$$

$$= \bigcap_{x \in \mathfrak{a}} V(\phi(x))$$

$$= V(\phi(\mathfrak{a}))$$

$$= V(\mathfrak{a}^e)$$

gives us the desired result.

c. If \mathfrak{b} is an ideal in B then $\operatorname{Cl}(\phi^*(V(\mathfrak{b}))) = V(\mathfrak{b}^c)$.

Any $\mathfrak{p} \in \phi^*(V(\mathfrak{b}))$ is of the form \mathfrak{q}^c for some $\mathfrak{q} \supseteq \mathfrak{b}$. Then $\mathfrak{p} \supseteq \mathfrak{b}^c$, so that $\phi^*(V(\mathfrak{b})) \subseteq V(\mathfrak{b}^c)$, and hence

$$\operatorname{Cl}(\phi^*(V(\mathfrak{b}))) \subseteq \operatorname{Cl}(V(\mathfrak{b}^c)) = V(\mathfrak{b}^c)$$

On the other hand, suppose $\mathfrak{p} \in V(\mathfrak{b}^c)$ and that X_f is a basic open set in X containing \mathfrak{p} . Then $\mathfrak{b}^c \subseteq \mathfrak{p}$ and $f \notin \mathfrak{p}$ so that $f \notin r(\mathfrak{b}^c) = r(\mathfrak{b})^c$. Hence, $\phi(f) \notin r(\mathfrak{b})$, implying the existence of a prime ideal $\mathfrak{q} \in V(\mathfrak{b})$ for which $\phi(f) \notin \mathfrak{q}$. Then $f \notin \phi^*(\mathfrak{q})$ and so $\phi^*(\mathfrak{q}) \in X_f$. This means that $\phi^*(V(\mathfrak{b})) \cap X_f \neq \emptyset$, so that $\mathfrak{p} \in \operatorname{Cl}(\phi^*(V(\mathfrak{b})))$. Thus $\operatorname{Cl}(\phi^*(V(\mathfrak{b}))) = V(\mathfrak{b}^c)$.

d. If ϕ is surjective then ϕ^* is a homeomorphism of Y onto the closed subset $V(\text{Ker}(\phi))$ of X. In particular, Spec(A) and $\text{Spec}(A/\mathfrak{N}(A))$ are naturally isomorphic.

If $\mathfrak{q} \in Y$, then $\phi^*(\mathfrak{q})$ contains $\operatorname{Ker}(\phi)$. If $\mathfrak{p} \in V(\operatorname{Ker}(\phi))$ then $\mathfrak{p}/\operatorname{Ker}(\phi)$ is isomorphic with a prime ideal \mathfrak{q} of Y, under the isomorphism $\overline{\phi} : A/\operatorname{Ker}(\phi) \to B$. Thus, $\mathfrak{p} = \phi^*(\mathfrak{q})$ so that ϕ^* maps Y onto $V(\operatorname{Ker}(\phi))$. Now if $\phi^*(\mathfrak{p}) = \phi^*(\mathfrak{q})$, then $\phi^{-1}(\mathfrak{p}) = \phi^{-1}(\mathfrak{q})$, and so $\mathfrak{p} = \mathfrak{q}$ since ϕ is surjective. So ϕ^* is injective. We already know by part a that ϕ^* is continuous. To show that ϕ^* is a homeomorphism it suffices to show that ϕ^{-1} is continuous. To do this, it suffices to show that ϕ^* is a closed map. By part \mathfrak{c} we know that $\phi^*(V(\mathfrak{b})) \subseteq V(\mathfrak{b}^c)$ for any ideal \mathfrak{b} in Y. If $\mathfrak{p} \in V(\mathfrak{b}^c)$ then $\phi(\mathfrak{p}) \supseteq \phi(\mathfrak{b}^c) = \mathfrak{b}$ by surjectivity of ϕ , and $\phi(\mathfrak{p}) \in Y$. But then $\mathfrak{p} = \phi^*(\phi(\mathfrak{p})) \in \phi^*(V(\mathfrak{b}))$. So $\phi^*(V(\mathfrak{b})) = V(\mathfrak{b}^c) = \operatorname{Cl}(\phi^*(V(\mathfrak{b})))$ by part \mathfrak{c} . Hence, ϕ^* is indeed a closed map. So ϕ^* is a homeomorphism between Y and $V(\operatorname{Ker}(\phi))$.

Finally, the natural homomorphism $A \to A/\mathfrak{N}(A)$ is surjective with kernel $\mathfrak{N}(A)$. Therefore, $\operatorname{Spec}(A/\mathfrak{N}(A))$ is homeomorphic with $V(\mathfrak{N}(A)) = \operatorname{Spec}(A)$.

e. The image $\phi^*(Y)$ of Y is dense in X if and only if $Ker(\phi) \subseteq \mathfrak{N}(A)$.

Notice that $\operatorname{Cl}(\phi^*(Y)) = \operatorname{Cl}(\phi^*(V(0))) = V(0^c) = V(\operatorname{Ker}(\phi))$. Consequently, $\phi^*(Y)$ is dense in X if and only if $V(\operatorname{Ker} \phi) = X$, and this occurs precisely when $\operatorname{Ker}(\phi) \subseteq \mathfrak{N}(A)$, and in particular when ϕ is 1-1.

f. Let $\psi: B \to C$ be another ring homomorphism. Show that $(\psi \circ \phi)^* = \phi^* \circ \psi^*$.

We have $(\psi \circ \phi)^*(\mathfrak{r}) = (\psi \circ \phi)^{-1}(\mathfrak{r}) = \phi^{-1}(\psi^{-1}(\mathfrak{r})) = \phi^*(\psi^*(\mathfrak{r}))$ for every $\mathfrak{r} \in \operatorname{Spec}(C)$.

g. Let A be an integral domain with only one nonzero prime ideal \mathfrak{p} , and suppose that K is the field of fractions of A. Define $B = (A/\mathfrak{p}) \times K$ and let $\phi : A \to B$ by $\phi(x) = (\bar{x}, x)$. Show that ϕ^* is bijective but not a homeomorphism.

First, A/\mathfrak{p} is a field since \mathfrak{p} is a maximal ideal in A. Now let \mathfrak{q}_1 consist of all $(\bar{x}, 0) \in B$ and let \mathfrak{q}_2 consist of all $(0, x) \in B$. Then \mathfrak{q}_1 and \mathfrak{q}_2 are maximal ideals in B since $B/\mathfrak{q}_1 \cong K$ and $B/\mathfrak{q}_2 \cong A/\mathfrak{p}$. If \mathfrak{q} is another prime ideal of B, then $\mathfrak{q}_1\mathfrak{q}_2 = 0$ is contained in \mathfrak{q} , and so $\mathfrak{q}_1 \subseteq \mathfrak{q}$ or $\mathfrak{q}_2 \subseteq \mathfrak{q}$. So \mathfrak{q}_1 and \mathfrak{q}_2 are the only prime ideals of B. Hence, $\operatorname{Spec}(A) = \{0, \mathfrak{p}\}$ and $\operatorname{Spec}(B) = \{\mathfrak{q}_1, \mathfrak{q}_2\}$ are two-point spaces. It is easy to see that $\phi^*(\mathfrak{q}_1) = 0$ and $\phi^*(\mathfrak{q}_2) = \mathfrak{p}$, so that ϕ^* is a bijection. But ϕ^* is not a homeomorphism. After all, $\operatorname{Spec}(B)$ is Hausdorff since all prime ideals are maximal, but $\operatorname{Spec}(A)$ is not Hausdorff since 0 is a non-maximal prime ideal.

1.22. Suppose that A_1, \ldots, A_n are rings and $A = \prod_{j=1}^n A_j$. Show that Spec(A) is the disjoint union of open (and closed) subspaces X_j , where X_j is canonically homeomorphic with $\text{Spec}(A_j)$.

Let $\pi_j : A \to A_j$ and $i_j : A_j \to A$ be the canonical maps. If \mathfrak{q} is a prime ideal in A_j , then $\pi_j^{-1}(\mathfrak{q})$ is a prime ideal in A. Conversely, suppose \mathfrak{p} is a prime ideal in A. Define $e_j = i_j(1_{A_j})$ so that $\sum_{1}^{n} e_j = 1_A$ and $e_j e_k = 0$ if $j \neq k$. Some $e_{j^*} \notin \mathfrak{p}$ since $\mathfrak{p} \neq A$. For $j \neq j^*$ we have $e_j e_{j^*} = 0 \in \mathfrak{p}$ so that $e_j \in \mathfrak{p}$. From this we see that $\mathfrak{p} = \pi_{j^*}^{-1}(\mathfrak{q})$ for some ideal \mathfrak{q} in A_{j^*} , and it is easy to see that \mathfrak{q} is a prime ideal in A_{j^*} .

Therefore, $\operatorname{Spec}(A)$ is the disjoint union of the subsets X_j , where X_j is the set of all $\pi_j^{-1}(\mathfrak{q})$, where \mathfrak{q} is a prime ideal in A_j . Notice that each X_j is closed since $X_j = V(\pi_j^{-1}(0))$. This also shows that each X_j is open since $X_j = \bigcap_{k \neq j} X_k^c$. Since π_j is surjective, exercise 1.22 tells us that $\pi_j^* : \operatorname{Spec}(A_j) \to \operatorname{Spec}(A)$ is a homeomorphism of $\operatorname{Spec}(A_i)$ onto $V(\operatorname{Ker}(\pi_j)) = V(\pi_j^{-1}(0)) = X_j$. In particular, X_j and $\operatorname{Spec}(A_j)$ are canonically homeomorphic.

Conversely, prove that the following are equivalent for any ring A. Deduce that the spectrum of a local ring is always connected.

- a. X = Spec(A) is disconnected.
- b. $A \cong A_1 \times A_2$ where A_1 and A_2 are nonzero rings.
- c. A has an idempotent $e \neq 0, 1$.
- $(a \Rightarrow c)$ We can write $X = V(\mathfrak{a}) \coprod V(\mathfrak{b})$ where \mathfrak{a} and \mathfrak{b} are ideals in A. Then $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b}) = X$ implying that $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{N}(A)$. Also, $\emptyset = V(\mathfrak{a}) \cap V(\mathfrak{b}) = V(\mathfrak{a} \cup \mathfrak{b})$, implying that $A = \langle \mathfrak{a} \cup \mathfrak{b} \rangle$, and hence $A = \mathfrak{a} + \mathfrak{b}$. Now write 1 = a + b with $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$. Notice that $ab \in \mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{N}(A)$ so that $(ab)^n = 0$ for some n > 0. Now $1 = (a + b)^n = a^n + b^n + abx$ for some $x \in A$. Since $abx \in \mathfrak{N}(A)$ we conclude that $a^n + b^n$ is a unit in A. Let u be the inverse of $a^n + b^n$ and notice that $ua^n b^n = 0$ so that $ua^n = ua^n(u(a^n + b^n)) = (ua^n)^2$ and similarly $ub^n = (ub^n)^2$. If $ua^n = 0$ then $a^n = 0$ and $1 = b(b^{-1} + ax) \in \mathfrak{b}$, which is not possible since $V(\mathfrak{b}) \neq \emptyset$. So ua^n and ub^n are nonzero. On the other hand, if $1 = ua^n = ub^n$ then $1 = u(a^n + b^n) = 2$ so that 1 = 0. Hence, one of ua^n, ub^n is a nontrivial idempotent.
- $(b \Rightarrow a)$ We already know that $X = X_1 \coprod X_2$ where $X_i = \text{Spec}(A_i)$ is a non-empty open subset of X, since $A_i \neq 0$. So X is disconnected.

 $(b \Rightarrow c)$ Take e = (0, 1) or e = (1, 0).

 $(c \Rightarrow b)$ Define non-zero subrings of A by $A_1 = (e)$ and $A_2 = (1-e)$. Then $A = A_1 + A_2$ since a = ae + a(1-e) for any $a \in A$. If $x \in A_1 \cap A_2$, then x = ae and x = b(1-e) for some a and b. But ae = aee = b(1-e)e = 0, and so x = 0. Therefore, $A \cong A_1 \times A_2$.

Exercise 1.12 shows that a local ring A has no idempotent $e \neq 0$ or 1, so that Spec(A) is always connected by the above.

1.23. Let A be a Boolean ring. Prove the following.

a. For each $f \in A$, the set X_f is open and closed in Spec(A).

By definition, $X_f = V(f)^c$ is open. If \mathfrak{p} is a prime ideal, then $f \in \mathfrak{p}$ or $1 - f \in \mathfrak{p}$ since f(1 - f) = 0. It follows from this that $X_f = V(1 - f)$, so that X_f is closed in Spec(A).

b. If $f_1, \ldots, f_n \in A$ then $X_{f_1} \cup \cdots \cup X_{f_n} = X_f$ for some $f \in A$.

Choose f, as in exercise 1.11, so that $(f_1, \ldots, f_n) = (f)$. Then $V(f) = V(\bigcup_1^n (f_j)) = \bigcap_1^n V(f_j)$, implying that $X_f = \bigcup_1^n X_{f_j}$.

c. If Y is both open and closed, then $Y = X_f$ for some $f \in A$.

Since Y is closed in the compact space Spec(A), we see that Y itself is compact. Exercise 1.17 now says that Y is the union of finitely many sets of the form X_f . We now apply part b.

d. Spec(A) is a compact Hausdorff space.

Suppose that $\mathfrak{p}, \mathfrak{q}$ are distinct prime ideals in X. We may suppose that there is $f \in \mathfrak{p} - \mathfrak{q}$. Then $1 - f \in \mathfrak{q} - \mathfrak{p}$ since f(1 - f) = 0. So X_{1-f} and X_f are open sets containing \mathfrak{p} and \mathfrak{q} , respectively. These sets are disjoint since $X_{1-f} \cap X_f = X_{(1-f)f} = X_0 = \emptyset$. Therefore, X is compact Hausdorff.

1.24. Show that every Boolean lattice becomes a Boolean ring, and that every Boolean ring becomes a Boolean lattice. Deduce that Boolean lattices and Boolean rings are equivalent.

A lattice L is a partially ordered set such that, if a and b are in L, then there is an element $a \wedge b$ that is the largest element in the non-empty set $\{c \in L : c \leq a \text{ and } c \leq b\}$, and there is an element $a \vee b$ that is the smallest element in the non-empty set $\{c \in L : c \geq a \text{ and } c \geq b\}$. We say that L is Boolean provided that the following hold.

- a. There is a smallest element 0 in L, and a largest element 1.
- b. For $a, b, c \in L$ we have $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$ and also $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$. In other words, we have distribution.
- c. For each a there is a unique a' such that $a \wedge a' = 1$ and $a \vee a' = 0$.

Lets make a few observations about \wedge and \vee . We first have

 $a \wedge 0 = 0 \qquad a \vee 0 = a \qquad a \wedge 1 = a \qquad a \vee 1 = 1$

This implies that 0' = 1 and 1' = 0. Clearly a'' = a. We also have

 $a \wedge b = b \wedge a$ $a \vee b = b \vee a$ $a \wedge a = a$ $a \vee a = a$

We have the associativity relations

$$(a \land b) \land c = a \land (b \land c) \qquad (a \lor b) \lor c = a \lor (b \lor c)$$

We also have DeMorgan's Laws

$$(a \wedge b)' = a' \vee b' \qquad (a \vee b)' = a' \wedge b'$$

To prove the first of DeMorgan's Laws we note that

$$(a \land b) \land (a' \lor b') = (a \land b \land a') \lor (a \land b \land b') = 0 \lor 0 = 0$$

and also

$$(a \land b) \lor (a' \lor b') = (a \lor a' \lor b') \land (b \lor a' \lor b') = 1 \land 1 = 1$$

The first of Demorgan's Laws now follows from the uniqueness in b. The second of DeMorgan's Laws follows very similarly. Now for $a, b \in L$ we define operations of addition and multiplication by

$$a + b = (a \wedge b') \vee (a' \wedge b)$$
 and $a \cdot b = a \wedge b$

Notice that $a+0 = (a \wedge 1) \lor (a' \wedge 0) = a \lor 0 = a$ so that 0 is the additive identity in L. Addition is commutative since

$$b + a = (b \land a') \lor (b' \land a)$$

= $(b' \land a) \lor (b \land a')$
= $(a \land b') \lor (a' \land b) = a + b$

Every $a \in L$ has an additive inverse since $a + a' = (a \wedge a') \vee (a' \wedge a) = a \wedge a' = 0$ by definition of a'. Lastly, addition is associative. This is tedious to check, so I will not include that calculation. Notice that $a \cdot 1 = a \wedge 1 = a$ so that 1 is the multiplicative identity. Clearly, multiplication is commutative and associative. Lastly, multiplication distributes over addition since

$$a \cdot c + b \cdot c = (a \wedge c) + (b \wedge c)$$
$$= ((a \wedge c) \wedge (b \wedge c)') \vee ((a \wedge c)' \wedge (b \wedge c))$$

Summarizing, we see that L has a ring structure. L is a boolean ring since $a \cdot a = a \wedge a = a$. Now suppose that A is a Boolean ring. Define an ordering on A by $a \leq b$ if and only if a = ab. Then \leq is reflexive since $a = a^2$. If $a \leq b$ and $b \leq a$ then a = ab = ba = b, so that \leq is anti-symmetric. If $a \leq b$ and $b \leq c$ then a = ab = abc = ac so that $a \leq c$, and hence \leq is transitive. So A is partially ordered.

Now let a and b be arbitrary elements of A, and notice that $a, b \le a+b+ab$ since a(a+b+ab) = a+ab+ab = aand b(a+b+ab) = ab+b+ab = b. If $a \le c$ and $b \le c$, then a = ac and b = bc, so that (a+b+ab)c = a+b+aband hence $a+b+ab \le c$. This means that $\{c \in A : a, b \le c\}$ is a non-empty set with a+b+ab as its smallest element. So define $a \lor b = a+b+ab$.

Again let a and b be arbitrary elements of A, and notice that $ab \leq a$ and $ab \leq b$. If $c \leq a$ and $c \leq b$, then c = ac and c = bc, so that (ab)c = ac = c and hence $c \leq ab$. This means that $\{c \in A : c \leq a, b\}$ is a non-empty set with ab as its largest element. So define $a \lor b = a + b + ab$. Now that A is seen to be a lattice, I claim that A is a Boolean lattice. Notice that $0 \leq a \leq 1$ for every $a \in L$ since 0 = a0 and a = a1. We see that \lor and \land distribute over one another since

$$a \lor (b \land c) = a + (b \land c) + a(b \land c)$$

= $a + bc + abc$
= $(a + 2ac) + (ab + bc + abc) + (ab + 2abc)$
= $a(a + c + ac) + b(a + c + ac) + ab(a + c + ac)$
= $(a + b + ab)(a + c + ac)$
= $(a \lor b)(a \lor c)$
= $(a \lor b) \land (a \lor c)$

and similarly $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$. Now define a' = 1 - a so that $a \wedge a' = a(1 - a) = 0$ and $a \vee a' = a + (1 - a) + a(1 - a) = 1$. If $b \in A$ satisfies $0 = a \wedge b$ and $1 = a \vee b = a + b + ab = a + b$, then b = 1 - a = a'. So a' is unique. Thus, A is indeed a Boolean lattice.

Now suppose that we started with a Boolean lattice (L, \leq) and made it into a Boolean ring $(L, +, \cdot)$, then made this ring into a new Boolean lattice (L, \preccurlyeq) . If $a \leq b$ then $ab = a \wedge b = a$, so that $a \preccurlyeq b$. If $a \preccurlyeq b$ then $a = ab = a \wedge b$, so that $a \leq b$. Hence, (L, \leq) and (L, \preccurlyeq) are isomorphic Boolean lattices under the identity map id : $L \rightarrow L$.

On the other hand, suppose we started with a ring $(A, +, \cdot)$ and made it into a Boolean lattice (A, \leq) , then made this Boolean lattice into a new Boolean ring $(A, +, \times)$. Then $a \times b = a \wedge b = a \cdot b$ and

$$\begin{aligned} a + b &= (a \wedge b') \lor (a' \wedge b) \\ &= (a \wedge (1 - b)) \lor ((1 - a) \wedge b) \\ &= a(1 - b) \lor (1 - a)b \\ &= a(1 - b) + (1 - a)b + a(1 - b)(1 - a)b \\ &= a + b \end{aligned}$$

Therefore, $(A, +, \cdot)$ and $(A, +, \times)$ are isomorphic rings Boolean rings under the identity map id : $A \to A$. Suppose $f: A \to B$ is a ring isomorphism of Boolean rings. Let (A, \leq) and (B, \preccurlyeq) be the resulting Boolean lattices. The bijection f is order-preserving since $a \leq b$ implies that a = ab, and hence f(a) = f(a)f(b), implying that $f(a) \preccurlyeq f(b)$. This means that the two resulting lattices are isomorphic.

On the other hand, if (L, \leq) and (\bar{L}, \preccurlyeq) are two Boolean lattices, isomorphic under $f: L \to \bar{L}$, then let $(L, +, \cdot)$ and $(\bar{L}, +, \cdot)$ be the resulting Boolean rings. Notice that $f^{-1}: \bar{L} \to L$ is order-preserving as well. It follows easily that $f(a \land b) = f(a) \bar{\land} f(b)$ and $f(a \lor b) = f(a) \lor f(b)$. So f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b). In other words, $(L, +, \cdot)$ and $(\bar{L}, +, \cdot)$ are isomorphic Boolean rings. Summarizing, there is a bijective correspondence between (isomorphism classes of) Boolean rings and (isomorphism classes of) Boolean lattices.

1.25. Deduce Stone's Theorem, that every Boolean lattice is isomorphic to the lattice of open-andclosed subsets of some compact Hausdorff topological space.

Suppose L is a Boolean lattice and make L into a Boolean ring A as in exercise 1.24. Then $X = \operatorname{Spec}(A)$ is a compact Hausdorff space. Let \mathscr{L} consist of all subsets of X that are both open and closed. We order \mathscr{L} by set-theoretic inclusion. \mathscr{L} is clearly a partially ordered set. If $Y, Y' \in \mathscr{L}$ then $Y \cup Y', Y \cap Y' \in \mathscr{L}$ so that \mathscr{L} is a lattice. The emptyset \emptyset is the smallest element in \mathscr{L} and full space X is the largest element of \mathscr{L} . Also, if $Y \in \mathscr{L}$ then Y c is an open and closed subset of X, with $Y \cap Y^c = \emptyset$ and $Y \cup Y^c = X$, with Y^c uniquely determined by these equations. This means that \mathscr{L} is in fact a Boolean lattice. Exercise 1.23 tells us that $Y \in \mathscr{L}$ if and only if $Y = X_f$ for some $f \in L$. So we have a surjective map $\psi : L \to \mathscr{L}$ given by $\psi(f) = X_f$. If $f \leq g$ then f = fg so that $X_f = X_f \cap X_g$ and hence $X_f \subseteq X_g$. This means that ψ is an order-preserving map. On the other hand, if $X_f = X_g$ then

$$\emptyset = X_{1-f} \cap X_f = X_{1-f} \cap X_g = X_{(1-f)g}$$

so that $(1-f)g \in \mathfrak{N}(A)$. But then $0 = [(1-f)g]^n$ for some n > 0 so that (1-f)g = 0, and hence g = fg. Similarly, f = fg and hence f = g. This shows that ψ is an isomorphism of lattices.

1.26. Let X be a compact Hausdorff space, let C(X) consists of all continuous real-valued functions defined on X, and define \tilde{X} as the set of all maximal ideals in C(X). We have a map $\mu: X \to \tilde{X}$ given by $x \mapsto \mathfrak{m}_x$, where \mathfrak{m}_x consists of all $f \in C(X)$ that vanish at the point x. Prove the following.

a. The map μ is surjective.

Suppose that \mathfrak{m} is a maximal ideal in C(X). Let V consist of all $x \in X$ such that f(x) = 0 whenever $f \in \mathfrak{m}$. If V is nonempty and $x \in V$, then $\mathfrak{m} \subseteq \mathfrak{m}_x$, and so $\mathfrak{m} = \mathfrak{m}_x = \mu(x)$ by maximality. So assume that V is empty. Then given $x \in X$ there is $f \in \mathfrak{m}$ for which $f(x) \neq 0$. By continuity, there is a neighborhood U_x of x on which f_x is nonzero. These neighborhoods cover X since $V = \emptyset$, and so by compactness there are $\{x_i\}_1^n$ so that $X = \bigcup_1^n U_{x_i}$. Let $f = \sum_{i=1}^n f_{x_i}^2$ and notice that f is a continuous function that is everywhere positive. But then f is a unit in C(X), having multiplicative inverse 1/f, and so $\mathfrak{m} = C(X)$; a contradiction. Therefore, V is nonempty and $\mathfrak{m} = \mu(x)$ for some $x \in V$.

b. The map μ is injective.

Recall that every compact Hausdorff space is normal. Let x, y be distinct points of X. Since $\{x\}$ and $\{y\}$ are disjoint closed sets, we can apply Urysohn's Lemma to deduce the existence of an $f \in C(X)$ for which f(x) = 0 and f(y) = 1. Then $f \in \mathfrak{m}_x$ and $f \notin \mathfrak{m}_y$. So $\mathfrak{m}_x \neq \mathfrak{m}_y$. This shows that μ is injective.

c. The bijection μ is a homeomorphism when \tilde{X} is given the subspace topology of Spec(C(X)).

Suppose $f \in C(X)$ and define $U_f = f^{-1}(\mathbf{R}^*)$ and $\tilde{U}_f = \{\mathfrak{m} \in \tilde{X} : f \notin \mathfrak{m}\}$. Every $\mathfrak{m} \in \tilde{X}$ is of the form \mathfrak{m}_x for a unique $x \in X$. So $f \in \mathfrak{m}$ if and only if f(x) = 0. It follows that $\mu(U_f) = \tilde{U}_f$.

Now U_f is open in X since f is continuous. So suppose that $U \subseteq X$ is open and that $x \in U$. By normality there is a neighborhood V of x such that $\operatorname{Cl}(V) \subseteq U$. By Urysohn's Lemma there is $f \in C(X)$ such that $f(\operatorname{Cl}(V)) = \{1\}$ and $f(X \setminus U) = \{0\}$. But then $U_f \subseteq \operatorname{Cl}(V) \subseteq U$. This shows that $\{U_f\}_{f \in C(X)}$ is a basis for the topology on X.

Notice that $\tilde{U}_f = \tilde{X} \cap X_f$ is open in subspace topology. This also shows that $\{\tilde{U}_f\}_{f \in C(X)}$ is a basis for the topology of \tilde{X} since $\{X_f\}_{f \in C(X)}$ is a basis for the topology of Spec(X) by exercise 1.17.

Now the fact that μ takes basis elements to basis elements shows that μ is a homeomorphism. Consequently, X and \tilde{X} are homeomorphic topological spaces.

1.27. Let k be an algebraically closed field and X an affine variety in k^n . Show that there is a natural bijection between the elements of X and the maximal ideals of P(X), where $P(X) = k[t_1, \ldots, t_n]/I(X)$ is the coordinate ring of X.

Let $x \in X$ and consider the map $k[t_1, \ldots, t_n] \to k$ given by $f \mapsto f(x)$. That is, consider the map given by evaluation at x. This map is surjective since $k[t_1, \ldots, t_n]$ contains all of the constant functions. If $f - g \in I(X)$ then f(x) = g(x) since $x \in X$, and so the map $k[t_1, \ldots, t_n] \to k$ induces a surjective map $P(X) \to k$. The kernel of this map is a maximal ideal, denoted by \mathfrak{m}_x . We now have a map $\mu : X \to \operatorname{Max}(P(X))$ given by $\mu(x) = \mathfrak{m}_x$. If $\mathfrak{m}_x = \mathfrak{m}_y$ and $x = (x_1, \ldots, x_n)$ while $y = (y_1, \ldots, y_n)$, then $t_i - x_i \in \mathfrak{m}_y$ for every i as

 $t_i - x_i \in \mathfrak{m}_x$ for every *i*. But this means that $y_i - x_i = 0$ and so $y_i = x_i$ for all *i*, so that x = y. In other words, μ is injective. The less trivial part of this exercise is showing that μ is surjective. So let \mathfrak{m} be a maximal ideal in P(X). Then $\mathfrak{m} = \mathfrak{n}/I(X)$ where \mathfrak{n} is a maximal ideal in $k[t_1, \ldots, t_n]$ containing I(X). Since *k* is algebraically closed, the Weak Nullstellensatz implies that $\mathfrak{n} = (x_1 - a_1, \ldots, x_n - a_n)$ for some $a_i \in k$. Suppose $(a_1, \ldots, a_n) \notin X$. Since *X* is an affine variety, we can easily verify that $x \in X$ if and only if f(x) = 0 for every $f \in I(X)$. So there is some $f \in I(X)$ for which $f(a_1, \ldots, a_n) \neq 0$. Since every $g \in \mathfrak{n}$ satisfies $g(a_1, \ldots, a_n) = 0$, we see that $f \notin \mathfrak{n}$; a contradiction. Therefore, $(a_1, \ldots, a_n) \in X$ and thus $\mathfrak{m} = \mu(a_1, \ldots, a_n)$, showing that μ is surjective. Hence, μ is a bijection between X and Max(P(X)).

1.28? Let X and Y be affine varieties in k^n and k^m . Show that there is a bijective correspondence Ψ between the regular mappings $X \to Y$ and the k-algebra homomorphisms $P(Y) \to P(X)$.

By definition, P(X) consists of all polynomial maps $X \to k$. There is a natural multiplication on P(X) that makes P(X) into a k-algebra. Suppose that $\phi : X \to Y$ is a regular mapping and that $\eta \in P(Y)$ so that $\eta \circ \phi \in P(X)$. Then $\eta \mapsto \eta \circ \phi$ is a k-linear map $P(Y) \to P(X)$. If $\eta, \theta \in P(Y)$ then

$$((\eta \circ \phi) \cdot (\theta \circ \phi))(x) = \eta(\phi(x))\theta(\phi(x)) = (\eta \cdot \theta)(\phi(x)) = ((\eta \cdot \theta) \circ \phi)(x)$$

This means that the map $P(Y) \to P(X)$ induced by ϕ is a k-algebra homomorphism. Now suppose that ϕ' induces the same k-algebra homomorphism $P(Y) \to P(X)$ as ϕ . Let $\eta_i : Y \to k$ be the ith coordinate function on Y, so that $\eta_i \circ (\phi - \phi') = 0$ for all i. Then $\phi(x) = \phi'(x)$ for all $x \in X$. So Ψ is an injective map. Now suppose that $f : P(Y) \to P(X)$ is a k-algebra homomorphism. Define $f_i : X \to k$ by $f_i = f(\eta_i)$ where η_i is ith coordinate function on Y, and let $\phi : X \to k^m$ by $\phi = (f_1, \ldots, f_m)$.

Chapter 2 : Modules

2.1. Show that $\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n$ is the zero ring if gcd(m, n) = 1.

Choose integers s and t for which sm + tn = 1. Then the identity element of $\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n$ satisfies

$$[1]_m \otimes [1]_n = [sm + tn]_m \otimes [1]_n = [tn]_m \otimes [1]_n = tn \cdot [1]_m \otimes [1]_n = [1]_m \otimes tn \cdot [1]_n = 0$$

Therefore our whole ring $\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n = 0$.

2.2. Let A be a ring with ideal a and A-module M. Show that $A/\mathfrak{a} \otimes_A M \cong M/\mathfrak{a}M$.

Tensoring the short exact sequence of A-modules

$$0 \longrightarrow \mathfrak{a} \xrightarrow{j} A \xrightarrow{\pi} A/\mathfrak{a} \longrightarrow 0$$

with M yields the exact sequence of A-modules

$$\mathfrak{a} \otimes_A M \xrightarrow{j \otimes 1} A \otimes_A M \xrightarrow{\pi \otimes 1} A/\mathfrak{a} \otimes_A M \longrightarrow 0$$

Since the map $f : A \otimes M \to M$ given by $f(a \otimes m) = am$ is an isomorphism of A-modules, we can define $g = (\pi \otimes 1) \circ f^{-1} : M \to A/\mathfrak{a} \otimes M$. Then $\operatorname{Im}(g) = \operatorname{Im}(\pi \otimes 1) = A/\mathfrak{a} \otimes M$ and $\operatorname{Ker}(g) = f(\operatorname{Ker}(\pi \otimes 1)) = f(\operatorname{Im}(j \otimes 1)) = \mathfrak{a}M$. So we have an isomorphism $\overline{g} : M/\mathfrak{a}M \to A/\mathfrak{a} \otimes M$ of A-modules.

2.3. Let (A, \mathfrak{m}, k) be a local ring. Show that, if M and N are finitely generated A-modules satisfying $M \otimes_A N = 0$, then M = 0 or N = 0.

For every A-module P define a k-vector space $P_k = k \otimes_A P$. Then P_k and $P/\mathfrak{m}P$ are isomorphic by exercise 2.2. Now suppose that M and N are finitely generated A-modules for which $M \otimes N = 0$, so that $(M \otimes N)_k = 0$. Then

$$M_k \otimes_k N_k = (M \otimes_A k) \otimes_k (N \otimes_A k)$$

$$\cong M \otimes_A (k \otimes_k (N \otimes_A k))$$

$$\cong M \otimes_A (k \otimes_k (k \otimes_A N))$$

$$\cong M \otimes_A ((k \otimes_k k) \otimes_A N) \cong (M \otimes_A N)_k$$

Therefore $M_k \otimes_k N_k = 0$. Since M_k and N_k are k-vector spaces, we see that $M_k = 0$ or $N_k = 0$. So either $\mathfrak{m}M = M$ or $\mathfrak{m}N = N$. By Nakayama's lemma, either M = 0 or N = 0.

2.4. Suppose M_i are A-modules and let $M = \bigoplus_i M_i$. Prove that M is flat iff each M_i is flat.

I claim that, for every A-module N, the A-modules $N \otimes \bigoplus M_i$ and $\bigoplus (N \otimes M_i)$ are isomorphic. Define $\phi: N \times M \to \bigoplus (N \otimes M_i)$ by $\phi(n, (x_i)) = (n \otimes x_i)$. Then ϕ is A-bilinear and so induces a homomorphism $\Phi: N \otimes M \to \bigoplus (N \otimes M_i)$ for which $\Phi(n \otimes (x_i)) = (n \otimes x_i)$. Suppose now that $j_i: M_i \to M$ corresponds to canonical injection. The map $n \otimes x_i \mapsto n \otimes j_i(x_i)$ is a homomorphism of $N \otimes M_i$ into $N \otimes M$. Consequently, $\Psi: \bigoplus (N \otimes M_i) \to N \otimes M$ by $\Psi((n_i \otimes x_i)) = \sum n_i \otimes j_i(x_i)$ is a homomorphism. It is easy to show that Φ and Ψ are inverse to one another, and so are isomorphisms.

Suppose now that $f: N' \to N$ is injective and consider the mapping $f \otimes 1: N' \otimes M \to N \otimes M$. As above, $N' \otimes M$ is isomorphic with $\bigoplus (N' \otimes M_i)$ under Ψ' , and $\bigoplus (N \otimes M_i)$ is isomorphic with $N \otimes M$ under Φ .

Therefore, $f \otimes 1$ is injective if and only if the induced map $g = \Phi \circ (f \otimes 1_M) \circ \Psi'$ from $\bigoplus (N' \otimes M_i)$ to $\bigoplus (N \otimes M_i)$ is injective.

Notice that $g((n_{\alpha} \otimes x_{\alpha})) = (f(n_{\alpha}) \otimes x_{\alpha})$. Put differently $g = (f \otimes 1_{\alpha})$ where 1_{α} is identity on M_{α} . Therefore, g is injective if and only if each of its coordinate functions $f \otimes 1_{\alpha}$ is injective. Hence, M is flat if and only if each M_{α} is flat.

2.5. Prove that A[x] is a flat A-module for every ring A.

Let M_i be the A-submodule of A[x] generated by x^k . Then $M_i = Ax^i \cong A$ so that M_i is flat. Consequently, A[x] is a flat A-module since $A[x] = \bigoplus_{i=1}^{\infty} M_i$.

2.6. For any A-module M, let M[x] denote the set of all polynomials in x with coefficients in M. Then M[x] is an A[x]-module. Show that $M[x] \cong A[x] \otimes_A M$ as A[x]-modules.

It is clear that as A-modules $A[x] \cong \bigoplus_{i=0}^{\infty} Ax^i$. Therefore, we have the isomorphism of A-modules

$$A[x] \otimes_A M \cong \bigoplus_{i=0}^{\infty} (Ax^i \otimes_A M) \cong \bigoplus_{i=0}^{\infty} Mx^i = M[x]$$

Here the isomorphism θ is given by $\theta(\sum a_i x^i \otimes m) = \sum (a_i m) x^i$. All we have to do now is verify that θ is A[x]-linear. Omitting indices we compute

$$\theta \Big(\sum a'_i x_i \cdot \Big(\sum a_i x^i \otimes m \Big) \Big) = \theta \Big(\Big(\sum a'_i x_i \cdot \sum a_i x^i \Big) \otimes m \Big)$$
$$= \theta \Big(\sum x^n \sum a_i a'_{n-i} \otimes m \Big)$$
$$= \sum \Big(\sum a_i a'_{n-i} m \Big) x^n$$
$$= \sum a'_i x^i \cdot \sum (a_i m) x^i$$
$$= \sum a'_i x^i \cdot \theta \Big(\sum a_i x^i \otimes m \Big)$$

Hence, θ is an isomorphism of A[x]-modules.

2.7. Let \mathfrak{p} be a prime ideal in A and show that $\mathfrak{p}[x]$ is a prime ideal in A[x]. If \mathfrak{m} is a maximal ideal in A, must $\mathfrak{m}[x]$ be a maximal ideal in A[x]?

Is $\pi : A \to A/\mathfrak{p}$ denotes the natural map, then π induces a map $A[x] \to (A/\mathfrak{p})[x]$ given by $\sum a_k x^k \mapsto \sum \pi(a_k)x^k$. This map is surjective and has kernel $\mathfrak{p}[x]$. So $A[x]/\mathfrak{p}[x] \cong (A/\mathfrak{p})[x]$. But $(A/\mathfrak{p})[x]$ is an integral domain since A/\mathfrak{p} is an integral domain. So $\mathfrak{p}[x]$ is a prime ideal in A[x]. If \mathfrak{m} is a maximal ideal in A, then $A[x]/\mathfrak{m}[x] \cong (A/\mathfrak{m})[x]$ with A/\mathfrak{m} a non-zero field. So $(A/\mathfrak{m})[x]$ is not a field, implying that $\mathfrak{m}[x]$ is not a maximal ideal in A[x].

2.8. Suppose that M and N are flat A-modules. Show that $M \otimes_A N$ is a flat A-module.

Let S_0 be an exact sequence. We may tensor S_0 with M to get an exact sequence S_1 , and we may tensor S_1 with N to get an exact sequence S_2 . But the tensor product is associative, and so the sequence S_2 is

the same one as would have been obtained had we tensored S_0 with $M \otimes_A N$. This shows that $M \otimes_A N$ is flat.

Let B be a flat A-algebra and N a flat B-module. Show that N is a flat A-module.

Let S_0 be an exact sequence of A-modules. We may tensor S_0 with B to get an exact sequence S_1 of A-modules. This is an exact sequence of B-modules, since B is an (A, B)-bimodule. Tensoring this sequence with N yields an exact sequence S_2 of B-modules. Also, S_2 is an exact sequence of A-modules. So N is a flat A-module.

2.9. Suppose we have the short exact sequence of A-modules

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$$

with M' and M'' finitely generated. Show that M is finitely generated as well.

Suppose that M' is generated by $\{x_i\}$ and M'' is generated by $\{z_i\}$. Clearly $\operatorname{Im}(f)$ is generated by $\{f(x_i)\}$. Since g is surjective, there are $y_i \in M$ for which $g(y_i) = z_i$. Let N be the submodule of M generated by $\{y_i\}$, so that g(N) = M''. So for $y \in M$ there is $y' \in N$ with g(y) = g(y'), and hence y = y' + (y - y') where $y - y' \in \operatorname{Ker}(g) = \operatorname{Im}(f)$. We conclude that M is generated by $\{f(x_i)\} \cup \{y_i\}$.

2.10. Let A be a ring with the ideal $\mathfrak{a} \subseteq \mathfrak{R}(A)$. Suppose M is an A-module and N is a finitely generated A-module, with $u: M \to N$ a homomorphism. Show that u is surjective provided the induced homomorphism $\overline{u}: M/\mathfrak{a}M \to N/\mathfrak{a}N$ is surjective.

We define \bar{u} by $\bar{u}(\bar{m}) = \overline{u(m)}$. We have the commutative diagram

$$\begin{array}{c} A/\mathfrak{a} \otimes M & \xrightarrow{\overline{a} \otimes m \mapsto \overline{a} \otimes u(m)} & A/\mathfrak{a} \otimes N \\ \\ \overline{a} \otimes m \mapsto \overline{am} & & \downarrow \\ \\ \overline{a} \otimes m \mapsto \overline{am} & & \downarrow \\ \hline M/\mathfrak{a} M & \xrightarrow{\overline{m} \mapsto \overline{u(m)}} & N/\mathfrak{a} N \end{array}$$

Define L = N/Im(u). We have an exact sequence $M \to N \to L \to 0$. We can tensor this with A/\mathfrak{a} to get an exact sequence. Using the canonical isomorphism above we get the exact sequence

$$M/\mathfrak{a}M \xrightarrow{\overline{\mathfrak{a}}} N/\mathfrak{a}N \xrightarrow{\overline{\pi}} L/\mathfrak{a}L \longrightarrow 0$$

But \bar{u} is surjective so that $\bar{\pi}$ is the zero map, and hence $L/\mathfrak{a}L = 0$. Nakayama's lemma yields L = 0. In other words, u is surjective, as claimed.

2.11. Suppose A is a nonzero ring. Show that m = n if A^m and A^n are isomorphic A-modules. Show that $m \ge n$ if A^n is a homomorphic image of A^m . Must $m \le n$ if there is an injective homomorphism $A^m \to A^n$ of A-modules?

Let \mathfrak{m} be a maximal ideal in A with residue field $k = A/\mathfrak{m}$. If $\phi : A^m \to A^n$ is an isomorphism of A-modules, then $1 \otimes \phi : k \otimes_A A^m \to k \otimes_A A^n$ is an isomorphism of A-modules, and so is an isomorphism of k-vector spaces. These vector spaces have dimension m and n, respectively. We conclude that m = n. We prove similarly that $m \ge n$ if there is a surjection $A^m \to A^n$, and that $m \le n$ if there is an injection $A^m \to A^n$.

2.12. Let M be a finitely generated A-module and $\phi: M \to A^n$ a surjective A-module homomorphism. Show that $\text{Ker}(\phi)$ is finitely generated.

Let A^n be free on $\{e_1, \ldots, e_n\}$, and choose $u_i \in M$ so that $\phi(u_i) = e_i$. Then for $x \in M$ there are $a_i \in A$ satisfying $\phi(x) = \phi(\sum_{i=1}^{n} a_i u_i)$, and hence $x - \sum_{i=1}^{n} a_i u_i \in \operatorname{Ker}(\phi)$. So if we let N be the submodule of M generated by $\{u_i\}$, then $M = N + \operatorname{Ker}(\phi)$. Obviously $N \cap \operatorname{Ker}(\phi) = 0$ since $0 = \phi(\sum_{i=1}^{n} a_i u_i) = \sum_{i=1}^{n} a_i e_i$ implies that each $a_i = 0$, and hence $\sum_{i=1}^{n} a_i u_i = 0$. Therefore, $M = N \oplus \operatorname{Ker}(\phi)$. Now $\operatorname{Ker}(\phi)$ is isomorphic with M/N, so that $\operatorname{Ker}(\phi)$ is finitely generated.

2.13. Let $f: A \to B$ be a ring homomorphism, and let N be a B-module. Regarding N as an A-module by restriction of scalars, form the B-module $N_B = B \otimes_A N$. Define $g: N \to N_B$ by $g(n) = 1 \otimes n$. Show that g is an injective homomorphism and that g(N) is a direct summand of N_B .

In general, the map $M \to M_B$ need not be injective. So we are proving that it is injective in the special case where A acts on M by restriction of scalars. Now (presumably) the action of B on N_B is given by

$$b' \cdot (b \otimes n) = b'b \otimes n$$

Of course the action of A on N is given by $a.n = f(a) \cdot n$. Define $p' : B \times N \to N$ by $p'(b, n) = b \cdot n$. Obviously p' is additive in both variables. Also, p' is A-bilinear since

$$p'(a.b,n) = p'(f(a)b,n) = f(a)b \cdot n = f(a) \cdot (b \cdot n) = a.(b \cdot n) = a.p'(b,n)$$

$$p'(b,a.n) = b \cdot (a.n) = b \cdot (f(a) \cdot n) = f(a) \cdot (b \cdot n) = a.(b \cdot n) = a.p'(b,n)$$

So there is a unique A-linear map $p: B \otimes_A N \to N$ satisfying $p(b \otimes n) = b \cdot n$. Since p is A-linear we see that p is a A-submodule of N_B , and since g is A-linear, we see that $\operatorname{Im}(g)$ is an A-submodule of N_B . Now g is injective since $p \circ g = 1_N$. If $y \in \operatorname{Im}(g) \cap \operatorname{Ker}(p)$ with y = g(x) then x = p(g(x)) = p(y) = 0, so that y = 0. In other words, $\operatorname{Im}(g) \cap \operatorname{Ker}(p) = 0$. On the other hand, for $x \in N_B$

$$x = g(p(x)) + (x - g(p(x)))$$

where $g(p(x)) \in \text{Im}(g)$ and $x - g(p(x)) \in \text{Ker}(p)$ since

$$p(x - g(p(x))) = p(x) - p(g(p(x))) = 0$$

Therefore, $N_B = \text{Im}(g) \oplus \text{Ker}(p)$ as an A-module. On the other hand, if we define the action of B on N_B by $b' \cdot (b \otimes n) = b \otimes b' \cdot n$ then p and g are both B-linear so that $N_B = \text{Im}(g) \oplus \text{Ker}(p)$ as a B-module.

2.15. Use the notation of exercise 14 to show the following.

a. Every element in M is of the form $\mu_j(x_j)$ for some $j \in I$.

The general element of M is of the form $\sum_{i \in F} x_i + C$, where $x_i \in M_i$ and F is a finite subset of I. Choose $j \in I$ so that $i \leq j$ whenever $i \in F$. By definition of C we have $\sum_{i \in F} x_i + C = \sum_{i \in F} \mu_{ij}(x_i) + C$. But $\sum_{i \in F} \mu_{ij}(x_i) \in M_j$ since each $\mu_{ij} : M_i \to M_j$. So elements in M are of the form $x_j + C = \mu_j(x_j)$ for some $j \in I$ and $x_j \in M_j$.

b. If $\mu_i(x_i) = 0$ then $\mu_{il}(x_i) = 0$ for some $l \ge i$.

Notice that $x_i \in C$ since $\mu_i(x_i) = 0$. So write

$$x_i = \sum_{j \in I} \sum_{k \ge j} (x_{jk} - \mu_{jk}(x_{jk}))$$

Where $x_{jk} \in M_j$ equals 0 for all but finitely many j, k. We can choose $l \ge i$ so that $x_{jk} = 0$ if j > l or k > l. I claim that $\mu_{il}(x_i) = 0$. Now we play with indices to get

$$\begin{split} \iota_{il}(x_i) &= ((-x_i) - \mu_{il}(-x_i)) + x_i \\ &= ((-x_i) - \mu_{il}(-x_i)) + \sum_{j \le l} \sum_{j \le k \le l} (x_{jk} - \mu_{jk}(x_{jk})) \\ &= \sum_{j \le l} \sum_{j \le k \le l} (x'_{jk} - \mu_{jk}(x'_{jk})) \\ &= \sum_{j \le l} \sum_{j \le k \le l} \left[(x'_{jk} - \mu_{jl}(x'_{jk})) + (\mu_{jl}(x'_{jk}) - \mu_{jk}(x'_{jk})) \right] \\ &= \sum_{j \le l} \sum_{j \le k \le l} \left[(x'_{jk} - \mu_{jl}(x'_{jk})) + (\mu_{kl}(\mu_{jk}(x'_{jk})) - \mu_{jk}(x'_{jk})) \right] \\ &= \sum_{j \le l} \sum_{j \le k \le l} (x''_{jk} - \mu_{jl}(x''_{jk})) \\ &= \sum_{j \le l} \left[\left(\sum_{j \le k \le l} x''_{jk} \right) - \mu_{jl} \left(\sum_{j \le k \le l} x''_{jk} \right) \right] \\ &= \sum_{j \le l} (x'''_{j} - \mu_{jl}(x'''_{j})) \\ &= \sum_{j \le l} (x'''_{j} - \mu_{jl}(x'''_{j})) + (x'''_{j} - \mu_{ll}(x''_{j})) \\ &= \sum_{j \le l} (x'''_{j} - \mu_{jl}(x'''_{j})) \end{split}$$

since μ_{ll} is the identity. Since this identity holds in $\bigoplus_j M_j$, we see that $x_j'' = 0$ for all j < l. This implies that $\mu_{il}(x_i) = 0$, as desired.

2.16. Suppose that N is an A-module paired with A-module homomorphisms $\alpha_i : M_i \to N$, indexed by I, with the property that $\alpha_i = \alpha_j \circ \mu_{ij}$ whenever $i \leq j$. Define a A-module homomorphism $\phi : \bigoplus_{i \in I} M_i \to N$ by $\phi(\sum x_i) = \sum \alpha_i(x_i)$. Notice that $\phi(x_i - \mu_{ij}(x_i)) = \alpha_i(x_i) - \alpha_j(\mu_{ij}(x_i)) = 0$ for every j > i, and of course $\phi(x_i - \mu_{ii}(x_i)) = \phi(0) = 0$. So ϕ is identically zero on the submodule generated by $\{x_i - \mu_{ij}(x_i) : j \geq i\}$. This means that ϕ induces an A-module homomorphism Φ on $\lim_{i \to i} M_i$ for which $\Phi(\sum x_i + C) = \sum \alpha_i(x_i)$. Obviously $\Phi \circ \mu_i = \alpha_i$ for all $i \in I$. If Φ' were a homomorphism on M for which $\Phi' \circ \mu_i = \alpha_i$, then we would have $\Phi'(\sum x_i + C) = \sum \Phi'(\mu_i(x_i)) = \sum \alpha_i(x_i) = \Phi(\sum x_i = C)$, so that $\Phi' = \Phi$. Therefore, M has the desired universal mapping property.

Suppose that M is an A-module and $\nu_i : M_i \to M$ are A-module homomorphisms for which $\nu_i = \nu_j \circ \mu_{ij}$ whenever $j \geq i$. Suppose also that whenever N is an A-module and $\alpha_i : M_i \to N$ are A-module homomorphisms for which $\alpha_i = \alpha_j \circ \mu_{ij}$ for every $j \geq i$, then there is a unique A-module homomorphism $\Psi : M \to N$ such that $\Psi \circ \nu_i = \alpha_i$ holds for every $i \in I$. It is easy to show that M and $\lim_{i \to I} M_i$ are isomorphic as A-modules. After all, choose $\Psi : M \to \lim_{i \to I} M_i$ so that $\Psi \circ \nu_i = \mu_i$ for every i. Also, choose $\Phi : \lim_{i \to I} M_i \to M$ so that $\Phi \circ \mu_i = \nu_i$ for every i. Then $\Phi \circ \Psi : M \to M$ is an A-module homomorphism for which $(\Phi \circ \Psi) \circ \nu_i = \nu_i$. But i_M is another map from M to M with this property. So by uniqueness $\Phi \circ \Psi = i_M$. Similarly $\Psi \circ \Phi$ is identity on $\lim_{i \to I} M_i$. Therefore, Φ and Ψ are inverse isomorphisms.

2.17. Let $(M_i)_{i \in I}$ be a family of submodules of an A-module, such that for every i, j there is k for which $M_i + M_j \subseteq M_k$. Define $i \leq j$ if $M_i \subseteq M_j$, and in this case let μ_{ij} correspond to inclusion. Notice that I is a directed set under this ordering. So we may speak of $\lim M_i$.

Consider the submodule $\bigcup M_i$. Let N be an A-module and $\alpha_i : M_i \to N$ an A-module homomorphism for which $\alpha_i = \alpha_j \circ \mu_{ij}$ whenever $i \leq j$. Define $\alpha : \bigcup M_i \to N$ by $\alpha(x) = \alpha_i(x)$, where $x \in M_i$. If $x \in M_i$ and $x \in M_j$ then choose k for which $i \leq k$ and $j \leq k$. Then $\alpha_k(x) = \alpha_i(x)$ and $\alpha_k(x) = \alpha_j(x)$ since μ_{ik} and μ_{ij} correspond to inclusion. Therefore, α is a well-defined map. It is an A-module homomorphism for which $\alpha \circ \mu_i = \alpha_i$. It is also the unique A-module homomorphism with this property. Therefore, $\bigcup M_i$ is isomorphic with $\lim M_i$. It is easy to see that $\bigcup M_i = \sum M_i$.

Suppose M is an arbitrary A-module. Let \mathcal{F} consist of all finitely generated submodules of M. If M_1 and M_2 are finitely generated then so is $M_1 + M_2$. So we can consider the direct limit of the elements of \mathcal{F} . Also, if $x \in M$ then $Ax \in \mathcal{F}$. Consequently M equals the union of all the finitely generated submodules of M. The previous paragraph shows that M is isomorphic with the direct limit of its finitely generated submodules.

- 2.18. Let $\mathbf{M} = (M_i, \mu_{ij})$ and $\mathbf{N} = (N_i, \nu_{ij})$ be direct systems of A-modules over the same directed set I. Suppose that $\phi_i : M_i \to N_i$ are A-module homomorphisms such that $\phi_j \circ \mu_{ij} = \nu_{ij} \circ \phi_i$ whenever $i \leq j$. Let M and N be the direct limits of \mathbf{M} and \mathbf{N} , with associated homomorphisms μ_i and ν_i . Define $\alpha_i : M_i \to N$ by $\alpha_i = \nu_i \circ \phi_i$. Notice that $\alpha_j \circ \mu_{ij} = \nu_j \circ \nu_{ij} \circ \phi_i = \nu_i \circ \phi_i = \alpha_i$ whenever $i \leq j$. By exercise 17 there is an A-module homomorphism $\phi : M \to N$ for which $\phi \circ \mu_i = \alpha_i = \nu_i \circ \phi_i$ for every i. So ϕ is the desired homomorphism. By exercise 16 we see that Φ is the unique A-module homomorphism with this property.
- 2.19. The sequence $\mathbf{M} \to \mathbf{N} \to \mathbf{P}$ of direct systems over the same directed set I is said to be exact provided that the corresponding sequence of modules and module homomorphisms is exact for every $i \in I$. Let M, N, Pbe the direct limits of these directed systems and let $\phi : M \to N$ and $\psi : N \to P$ be the homomorphisms induced by the homomorphisms of the directed systems. For all $i \leq j$ we have the commutative diagram

Suppose that $x \in M$. Choose j and $x_j \in M_j$ for which $x = \mu_j(x_j)$. Then $\psi(\phi(x)) = \psi(\phi(\mu_j(x_j))) = \xi_j(\psi_j(\phi_j(x_j))) = \xi_j(0) = 0$ since $\operatorname{Im}(\phi_j) = \operatorname{Ker}(\psi_j)$. Thus $\operatorname{Im}(\phi) \subseteq \operatorname{Ker}(\psi)$.

Suppose that $\psi(y) = 0$ where $y \in N$. Choose *i* and $y_i \in N_i$ for which $y = \nu_i(y_i)$. Then $0 = \psi(\nu_i(x_i)) = \xi_i(\psi_i(y_i))$. But then there is $j \ge i$ for which $\xi_{ij}(\psi_i(y_i)) = 0$. Then $\psi_j(\nu_{ij}(y_i)) = 0$, implying the existence of $x_j \in M_j$ for which $\nu_{ij}(y_i) = \phi_j(x_j)$. Now notice that $y = \nu_i(y_i) = \nu_j(\nu_{ij}(y_i)) = \nu_j(\phi_j(x_j)) = \phi(\mu_j(x_j))$. Thus $\operatorname{Ker}(\psi) \subseteq \operatorname{Im}(\psi)$ and hence $\operatorname{Ker}(\psi) = \operatorname{Im}(\psi)$. We conclude that $M \to N \to P$ is an exact sequence.

2.20. Let M be a directed system of A-modules and N an A-module. $\{(M_i \otimes N, \mu_{ij} \otimes 1) : i \in I\}$ is a directed system of A-modules; let P be its direct limit with associated homomorphisms ν_i . For each $i \in I$ we have a homomorphism $\mu_i \otimes 1 : M_i \otimes N \to M \otimes N$. Clearly $\mu_i \otimes 1 = (\mu_j \otimes 1) \circ (\mu_{ij} \otimes 1)$. So there is a unique homomorphism $\psi : P \to M \otimes N$ satisfying $\psi \circ \nu_i = \mu_i \otimes 1$. Show ψ is an isomorphism.

Assume $(m, n) \in M \times N$ and write $m = \mu_i(m_i)$. Define $g(m, n) = \nu_i(m_i \otimes n)$. I claim that g is welldefined. So suppose that $\mu_i(m_i) = \mu_j(m_j)$ with $j \ge i$. Then $\mu_i(m_i) = \mu_j(\mu_{ij}(m_i))$ so that

2.21. Let (A_i, α_{ij}) be a directed system of \mathbb{Z} -modules so that each A_i is a ring and each α_{ij} is a ring homomorphism. Show that $A = \lim_{i \to i} A_i$ inherits a ring structure so that each associated homomorphism α_i is a ring homomorphism. In case A = 0, show that some $A_i = 0$.

Let ξ and η be elements of A. We can write $\xi = \mu_i(x)$ and $\eta = \mu_j(y)$. Choose $k \ge i, j$ and notice that $\xi = \mu_k(\mu_{ik}(x))$ and $\eta = \mu_k(\mu_{jk}(y))$. Define $\xi * \eta = \mu_k(\mu_{ik}(x)\mu_{jk}(y))$. I claim that this defines a multiplication

of A that makes A into a ring and each μ_i into a ring homomorphism. The hardest part of this is to show that $\xi * \eta$ is actually well-defined. Suppose first that $l \ge i, j$ and $m \ge l, k$. Then

$$\mu_{k}(\mu_{jk}(x)\mu_{ik}(y)) = \mu_{m}(\mu_{km}(\mu_{jk}(x)\mu_{jk}(y)))$$

= $\mu_{m}(\mu_{km}(\mu_{ik}(x))\mu_{km}(\mu_{jk}(y)))$
= $\mu_{m}(\mu_{im}(x)\mu_{jm}(y))$
= $\mu_{m}(\mu_{lm}(\mu_{il}(x))\mu_{lm}(\mu_{jl}(y)))$
= $\mu_{m}(\mu_{lm}(\mu_{jl}(x)\mu_{jl}(y)))$
= $\mu_{l}(\mu_{jl}(x)\mu_{il}(y))$

This shows that $\xi * \eta$ is independent of k. Now suppose that $\xi = \mu_{i'}(x')$ and $\eta = \mu_{j'}(y')$. Choose $k \ge i, i', j, j'$ and observe that

$$\mu_k(\mu_{ik}(x) - \mu_{i'k}(x')) = 0$$
 and $\mu_k(\mu_{jk}(y) - \mu_{j'k}(y')) = 0$

By exercise 15 part b we can choose $l \ge k$ for which

$$\mu_{kl}(\mu_{ik}(x) - \mu_{i'k}(x')) = 0$$
 and $\mu_{kl}(\mu_{ik}(y) - \mu_{j'k}(y')) = 0$

But this means that $\mu_{il}(x) = \mu_{i'l}(x')$ and $\mu_{jl}(y) = \mu_{j'l}(y')$. Hence

$$\mu_l(\mu_{il}(x)\mu_{jl}(y)) = \mu_l(\mu_{i'l}(x')\mu_{j'l}(y'))$$

This shows that $\xi * \eta$ is well-defined. It is clear that the multiplication is associative, commutative, and unital. Lastly, multiplication distributes over addition : suppose $i, j, k \leq m$ and notice that

$$(\mu_i(x) + \mu_j(y)) * \mu_k(z) = (\mu_m(\mu_{im}(x)) + \mu_m(\mu_{jm}(y))) * \mu_k(z)$$

= $\mu_m(\mu_{im}(x) + \mu_{jk}(y)) * \mu_k(z)$
= $\mu_m((\mu_{im}(x) + \mu_{jk}(y))\mu_{km}(z))$
= $\mu_m(\mu_{im}(x)\mu_{km}(z)) + \mu_m(\mu_{jm}(y)\mu_{km}(z))$
= $\mu_i(x) * \mu_k(z) + \mu_j(y) * \mu_k(z)$

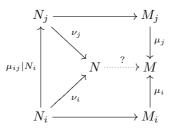
Further, each μ_i is a ring homomorphism since

$$\mu_i(x) * \mu_i(y) = \mu_i(\mu_{ii}(x)\mu_{ii}(y)) = \mu_i(xy)$$

So A is indeed a ring and each μ_i is a map of rings. Now suppose that A = 0. Let the zero and identity elements in A_i be represented by 0_i and 1_i respectively. Since $\alpha_i(1_i) = 0_A$, exercise 15 part b tells us that there is $j \ge i$ for which $0_j = \alpha_{ij}(1_i) = 1_j$. This forces $A_j = 0$.

2.22. Suppose (A_i, α_{ij}) is a directed system of rings and let \mathfrak{N}_i be the nilradical of A_i . Show that $\lim \mathfrak{N}_i$ is the nilradical of $\lim A_i$.

Lets work in the general setting for the moment. Assume that (M_i, μ_{ij}) is a direct system of A-modules, with direct limit M and maps $\mu_i : M_i \to M$. Suppose that for each $i \in I$ there is a submodule N_i of M_i , and that $\mu_{ij}(N_i) \subseteq N_j$. Then $(N_i, \mu_{ij}|N_i)$ is a direct system as well. Let N be the direct limit with maps $\nu_i : N_i \to N$. Now we have a commutative diagram



By exercise 16 there is a unique $\alpha : N \to M$ that makes the diagram commute with $? = \alpha$. Notice that $\alpha(x+C') = x+C$ if we construct $N = \bigoplus N_i/C'$ and $M = \bigoplus N_i/C$ as in exercise 14. This means that there is a natural way of considering N as a submodule of M. Now lets return to the specific case given in the problem statement. It is clear that $\mathfrak{N}(M_i)$ is a \mathbb{Z} -submodule of A_i and that $\mu_{ij}(\mathfrak{N}(A_i)) \subseteq \mathfrak{N}(A_j)$ for $i \leq j$ since μ_{ij} is a ring homomorphism. Write

$$N = \lim_{\longrightarrow} \mathfrak{N}(A_i) = \bigoplus \mathfrak{N}(A_i)/C'$$
 and $A = \lim_{\longrightarrow} A_i = \bigoplus A_i/C$

as in exercise 14. Let $\nu_i : \mathfrak{N}(A_i) \to N$ and $\mu_i : A_i \to A$ be the natural maps and let $\alpha : N \to A$ as above. Giving N the obvious ring structure I claim that α is a ring homomorphism and that $\mathfrak{N}(A) = \alpha(N)$. So suppose that $\nu_i(x), \nu_j(y) \in N$ and that $k \geq i, j$. Then

$$\begin{aligned} \alpha(\nu_i(x)) * \alpha(\nu_j(y)) &= \mu_i(x) * \mu_j(y) \\ &= \mu_k(\mu_{ik}(x)\mu_{jk}(y)) \\ &= \alpha(\nu_k(\mu_{ik}(x)\mu_{jk}(y))) \\ &= \alpha(\nu_k(\nu_{ik}(x)\nu_{jk}(y))) \\ &= \alpha(\nu_i(x) * \nu_j(y)) \end{aligned}$$

Consequently, α is a ring homomorphism. Now every element of N is of the form $\nu_i(x)$ for some $x \in N_i$. So every element of N is nilpotent (since every element of N_i is nilpotent by definition). Since α is a ring homomorphism we conclude that $\alpha(N) \subseteq A$. On the other hand suppose that $\mu_i(x) \in \mathfrak{N}(A)$. Then $\mu_i(x)^n = 0$ for some n > 0, so that $\mu_i(x^n) = 0$. There is some $j \ge i$ satisfying $\mu_{ij}(x^n) = 0$; implying that $\mu_{ij}(x) \in N_j$. This means that $\mu_i(x) = \mu_j(\mu_{ij}(x)) = \alpha(\nu_j(\mu_{ij}(x))) \in \alpha(N)$. Thus, $\alpha(N) = \mathfrak{N}(A)$ as claimed. This has can be written more suggestively as

$$\lim \mathfrak{N}_i = \mathfrak{N}(\lim A_i)$$

2.23. Let B_{λ} be a collection of A-algebras for $\lambda \in \Lambda$. When J is a finite subset of Λ , let B_J denote the tensor product of the B_{λ} for $\lambda \in J$. Then B_J is an A-algebra and if $J \subset J'$ are finite sets, then there is a canonical map $B_J \to B_{J'}$. Let B denote the direct limit of the B_J as J ranges over the finite subsets of Λ . Show that B has an A-algebra structure for which the maps $B_J \to B$ are A-algebra homomorphisms.

Suppose J is a finite subset with n elements $\lambda_1, \ldots, \lambda_n$. Then the A-algebra structure of A on $B_J = \bigotimes_A B_{\lambda_i}$ is given by

$$a \cdot (b_1 \otimes \cdots \otimes b_n) = a \cdot b_1 \otimes b_2 \otimes \cdots \otimes b_n$$

If $J \subset J'$ are finite, then let $\mu_{JJ'} : B_J \to B_{J'}$ be the obvious inclusion map. Notice that $\{J \subset \Lambda : J \text{ is finite}\}$ is a directed set under inclusion, and that $\mu_{JJ''} = \mu_{J'J''} \circ \mu_{JJ'}$ whenever $J \subset J' \subset J''$. Clearly $\mu_{JJ} = \text{id}$. This means that we can define the direct limit B and the maps $\mu_J : B_J \to B$. Moreover, B has a natural ring structure so that each μ_J is a ring homomorphism. Now suppose that $f_{\lambda} : A \to B_{\lambda}$ gives the A-algebra

structure of B_{λ} . Define $f : A \to B$ by $f = \mu_{\lambda} \circ f_{\lambda}$ for any $\lambda \in \Lambda$. This is well-defined: let $J_1 = \{\lambda_1\}, J_2 = \{\lambda_2\}$, and $J = \{\lambda_1, \lambda_2\}$. Then

$$\mu_{J_1}(f_{\lambda_1}(a)) = \mu_J(\mu_{J_1J})(f_{\lambda_1}(a)) = \mu_J(f_{\lambda_1}(a) \otimes 1) = \mu_J(1 \otimes f_{\lambda_2}(a)) = \mu_J(\mu_{J_2J}(f_{\lambda_2}(a))) = \mu_{J_2}(f_{\lambda_2}(a))$$

So B has a natural A-algebra structure. Lastly, each μ_i is a map of A-algebra since we have (for each λ) the commutative diagram

2.24. Let M an A-module and show that TFAE

- a. M is flat.
- b. $\operatorname{Tor}_n^A(M, N) = 0$ for every A-module N and every n > 0.
- c. $\operatorname{Tor}_{1}^{A}(M, N) = 0$ for every A-module N.
- $(a \Rightarrow b)$ Take a projective resolution $P \xrightarrow{\varepsilon} N$ of N. Since M is flat, $P \otimes_A M$ is exact in degree n, for n > 0. But $\operatorname{Tor}_n^A(M, N)$ is defined as the nth homology group of $P \otimes_A M$, so that $\operatorname{Tor}_n^A(M, N) = 0$ for n > 0.

 $(b \Rightarrow c)$ O.K.

 $(c \Rightarrow a)$ Assume that we have an exact sequence

$$0 \longrightarrow N' \longrightarrow N \longrightarrow N'' \longrightarrow 0$$

Then we have the exact sequence

$$\operatorname{Tor}_{1}^{A}(M, N'') \longrightarrow M \otimes N' \longrightarrow M \otimes N \longrightarrow M \otimes N'' \longrightarrow 0$$

But $\operatorname{Tor}_1^A(M, N'') = 0$ so that we have the exact sequence

$$0 \longrightarrow M \otimes N' \longrightarrow M \otimes N \longrightarrow M \otimes N'' \longrightarrow 0$$

This shows that M is a flat A-module.

2.25. Suppose we have an exact sequence of A-modules

 $0 \longrightarrow N' \longrightarrow N \longrightarrow N'' \longrightarrow 0$

with N'' flat. Show that N' is flat iff N is flat.

Let M be an A-module. Since N'' is flat, we can take a projective resolution of M, and argue as above to get

$$\operatorname{Tor}_2^A(M, N'') = \operatorname{Tor}_1^A(M, N'') = 0$$

So we have the short exact sequence

$$0 \longrightarrow \operatorname{Tor}_{1}^{A}(M, N') \longrightarrow \operatorname{Tor}_{1}^{A}(M, N) \longrightarrow 0$$

Now $\operatorname{Tor}_1^A(M, N') = 0$ if and only if $\operatorname{Tor}_1^A(M, N) = 0$. Since this holds for every A-module M, we are done. I have used here the fact that in computing Tor we can take a projective resolution in either variable. This seemed like a reasonably elementary fact to assume.

2.26. Let N be an A-module. Show that N is flat if and only if $\operatorname{Tor}_1^A(A/\mathfrak{a}, N) = 0$ whenever \mathfrak{a} is a finitely generated ideal in A.

We already know that $\operatorname{Tor}_1(A/\mathfrak{a}, N) = 0$ when N is flat. We prove the converse through a series of reductions. So suppose that $\operatorname{Tor}_1(M, N) = 0$ whenever M is a finitely generated A-module. Let $f: M' \to M$ be injective with M and M' finitely generated A-modules. Then we have the short exact sequence

$$0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{\pi} M/f(M') \longrightarrow 0$$

So we have the exact sequence

$$\operatorname{Tor}_1(M/f(M'), N) \longrightarrow M' \otimes_A N \xrightarrow{f \otimes \operatorname{id}} M \otimes_A N$$

But M/f(M') is finitely generated so that $\operatorname{Tor}_1(M/f(M'), N) = 0$. This means that $f \otimes \operatorname{id}$ is injective. Proposition 2.19 now tells us that N is flat. Now suppose that $\operatorname{Tor}_1(M, N) = 0$ whenever M is generated by a single element, and let M be an arbitrary finitely generated A-module. Assume x_1, \ldots, x_n generate M and let M' be the submodule of M generated by x_1, \ldots, x_{n-1} . We have the short exact sequence

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M/M' \longrightarrow 0$$

This yields the exact sequence

$$\operatorname{Tor}_1(M', N) \longrightarrow \operatorname{Tor}_1(M, N) \longrightarrow \operatorname{Tor}_1(M/M', N)$$

But M/M' is generated by a single element so that $\operatorname{Tor}_1(M/M', N) = 0$. By induction on n we see that $\operatorname{Tor}_1(M', N) = 0$. Hence $\operatorname{Tor}_1(M, N) = 0$. Now assume that $\operatorname{Tor}_1(A/\mathfrak{a}, N) = 0$ whenever \mathfrak{a} is any ideal in A. If M is an A-module generated by the element x, then M and $A/\operatorname{Ann}(x)$ are isomorphic, so that $\operatorname{Tor}_1(M, N) = \operatorname{Tor}_1(A/\operatorname{Ann}(x), N) = 0$. Now suppose that $\operatorname{Tor}_1(A/\mathfrak{a}, N) = 0$ whenever \mathfrak{a} is a finitely generated ideal in A. Let \mathfrak{b} be an arbitrary ideal in A. If \mathfrak{a} is a finitely generated ideal of A contained in \mathfrak{b} , then we have the short exact sequence

$$0 \longrightarrow \mathfrak{a} \longrightarrow A \longrightarrow A/\mathfrak{a} \longrightarrow 0$$

From this we get the long exact sequence

$$\operatorname{Tor}_1(A/\mathfrak{a}, N) \longrightarrow \mathfrak{a} \otimes_A N \longrightarrow A \otimes_A N \longrightarrow A/\mathfrak{a} \otimes_A N \longrightarrow 0$$

Since $\operatorname{Tor}_1(A/\mathfrak{a}, N) = 0$, we conclude that the map $\mathfrak{a} \otimes_A N \to A \otimes_A N$ is injective. Analysing the proof to Proposition 2.19, we see that more is proved than is stated. In particular, it is demonstrated that $\mathfrak{b} \otimes_A N \to A \otimes_A N$ is injective since $\mathfrak{a} \otimes_A N \to A \otimes_A N$ is injective for every finitely generated ideal \mathfrak{a} contained in \mathfrak{b} . So from the short exact sequence

$$0 \longrightarrow \mathfrak{b} \longrightarrow A \longrightarrow A/\mathfrak{b} \longrightarrow 0$$

we get the long exact sequence

 $\operatorname{Tor}_1(A,N) \longrightarrow \operatorname{Tor}_1(A/\mathfrak{b},N) \longrightarrow \mathfrak{b} \otimes_A N \longrightarrow A \otimes_A N \longrightarrow A/\mathfrak{b} \otimes_A N \longrightarrow 0$

with $\operatorname{Tor}_1(A, N) = 0$ since A = A/0 with 0 a finitely generated ideal, and the map $\mathfrak{b} \otimes_A N \to A \otimes_A N$ injective. These two observations imply that $\operatorname{Tor}_1(A/\mathfrak{b}, N) = 0$. Summarizing, we have shown that N is flat provided $\operatorname{Tor}_1(A/\mathfrak{a}, N) = 0$ whenever \mathfrak{a} is a finitely generated ideal in A.

2.27. Show that the following conditions are equivalent for a ring ${\cal A}$

- a. A is absolutely flat (i.e. every A-module is flat).
- b. Every principal ideal in A is idempotent.
- c. Every finitely generated ideal in A is a direct summand of A.
- $(a \Rightarrow b)$ Let (x) be a principal ideal in A so that A/(x) is a flat A-module. Then from the inclusion $(x) \to A$ we get an inclusion $(x) \otimes_A A/(x) \to A \otimes_A A/(x)$. But this map is the zero map since $x \otimes \overline{1} \mapsto x \otimes \overline{1} = 1 \otimes x \cdot \overline{1} = 0$. Hence $(x) \otimes_A A/(x) = 0$, so that $(x)/(x^2) \cong A/(x) \otimes_A (x) = 0$ by exercise 2.2. This shows that $(x) = (x^2) = (x)^2$, as desired.
- $(b \Rightarrow c)$ Let \mathfrak{a} be a finitely generated ideal in A and write $\mathfrak{a} = (x_1, \ldots, x_n)$. For each i there is $a_i \in A$ for which $x_i = a_i x_i^2$. But then $e_i = a_i x_i$ satisfies $e_i^2 = a_i (a_i x_i^2) = a_i x_i = e_i$. That is, each e_i is idempotent and $(e_i) = (x_i)$. Now $(x_1, \ldots, x_n) = (x_1) + \cdots + (x_n) = (e_1) + \cdots + (e_n) = (e_1, \ldots, e_n)$. In general, if e and f are idempotent elements then $(e + f ef) \subseteq (e, f)$, and also $(e, f) \subseteq (e + f ef)$ since e = e(e + f ef) and f = f(e + f ef). Hence, (e, f) = (e + f ef). By induction on n there is an idempotent element e^* for which $(e_1, \ldots, e_n) = (e^*)$. Finally, $A = (e^*) + (1 e^*)$ for every idempotent element e^* , as was shown in exercise 1.22, or as can be seen directly.
- $(c \Rightarrow a)$ Let M be an A-module and suppose \mathfrak{a} is a finitely generated ideal of A. Choose an ideal \mathfrak{b} of A so that $A = \mathfrak{a} \oplus \mathfrak{b}$. Then in particular \mathfrak{b} is a projective A-module. Thus $\operatorname{Tor}_1^A(A/\mathfrak{a}, M) = \operatorname{Tor}_1^A(\mathfrak{b}, M) = 0$. So M is flat by exercise 1.26. Hence, A is an absolutely flat ring.

2.28. Establish the following.

Every Boolean ring A is absolutely flat.

If (x) is a principal ideal in A, then $(x)^2 = (x^2) = (x)$ since $x^2 = x$. So A is absolutely flat by exercise 1.27.

The ring A is absolutely flat if, for every $x \in A$, there is n > 1 for which $x^n = x$.

Let (x) be an arbitrary principal ideal in A. Write $x^n = x$ for some n > 1. Then $(x^n) = (x)$. But $(x^n) \subseteq (x^2) \subseteq (x)$ since $n \ge 2$. We conclude that $(x) = (x^2) = (x)^2$ so that A is absolutely flat.

If A is absolutely flat and $f: A \to B$ is surjective, then B is absolutely flat.

A principal ideal of B has the form (f(a)) for some $a \in A$. Clearly $(f(a))^2 \subseteq (f(a))$. On the other hand, if bf(a) is an arbitrary element of (f(a)) and choose $\tilde{a} \in A$ satisfying $a = \tilde{a}a^2$. Such an \tilde{a} exists since $(a^2) = (a)$. Then $bf(a) = bf(\tilde{a})f(a)^2 \in (f(a))^2$. Hence, $(f(a)) = (f(a))^2$ so that B is absolutely flat.

If a local ring A is absolutely flat, then A is a field.

Since A is absolutely flat, every principal ideal is generated by an idempotent element, as demonstrated in the course of establishing exercise 2.27. But in a nonzero local ring, there are precisely two idempotents, namely 0 and 1. So the only principal ideals in A are 0 and A, implying that A is a field.

If A is an absolutely flat ring and $x \in A$, then x is a zero-divisor or x is a unit.

Choose $a \in A$ for which $x = ax^2$. Then x(ax - 1) = 0. If ax - 1 = 0, then x is a unit. Otherwise, $ax - 1 \neq 0$, and hence x is a zero-divisor.

Chapter 3 : Rings and Modules of Fractions

3.1. Let *M* be a finitely generated *A*-module and *S* a multiplicatively closed subset of *A*. Show that $S^{-1}M = 0$ iff sM = 0 for some *s*.

Suppose x_1, \ldots, x_n generate M. If $S^{-1}M = 0$ then $s_i x_i = 0$ for some $s_i \in S$. Defining $s = s_1 \cdots s_n$ yields an element $s \in S$ such that $sx_i = 0$ for each i, and hence sM = 0. The converse is obvious.

3.2. Let a be an ideal in A and let $S = 1 + \mathfrak{a}$. Show that $S^{-1}\mathfrak{a} \subseteq \mathfrak{R}(S^{-1}A)$.

Clearly S is a multiplicatively closed subset of A since

$$(1+a)(1+a') = 1 + (a+a'+aa') \in 1 + \mathfrak{a}$$

We also have $S^{-1}\mathfrak{a} \subseteq \mathfrak{R}(S^{-1}A)$ since

$$1 - \frac{a_1}{1 + a_2} \cdot \frac{x}{1 + a_3} = \frac{1 + a_2 + a_3 + a_2 a_3 - a_1 x}{(1 + a_2)(1 + a_3)} = \frac{1 + a_4}{(1 + a_2)(1 + a_3)}$$

is a unit in $S^{-1}A$ for all $a_1, a_2, a_3 \in \mathfrak{a}$ and $x \in A$.

Use this result and Nakayama's Lemma to give a different proof of Proposition 2.5

Now suppose that M is a finitely generated A-module for which $\mathfrak{a}M = M$ with $\mathfrak{a} \subseteq \mathfrak{R}(A)$. Then $(S^{-1}\mathfrak{a})(S^{-1}M) = S^{-1}M$ where again $S = 1 + \mathfrak{a}$. After all, given $m/s \in S^{-1}M$ there is $a \in \mathfrak{a}$ and $m' \in M$ for which am' = m, implying that (a/1)(m'/s) = m/s, and hence showing that $S^{-1}M \subseteq (S^{-1}\mathfrak{a})(S^{-1}M)$. Since $S^{-1}\mathfrak{a} \subseteq \mathfrak{R}(S^{-1}A)$ and since $S^{-1}M$ is a finitely generated $S^{-1}A$ -module, Nakayama's Lemma yields $S^{-1}M = 0$. By exercise 3.1 there is $a \in \mathfrak{a}$ satisfying (1 + a)M = 0.

3.3. Let A be a ring with multiplicatively closed subsets S and T. Define U to be the image of T in $S^{-1}A$. Show that $(ST)^{-1}A$ and $U^{-1}(S^{-1}A)$ are isomorphic rings.

Notice that ST is a multiplicatively closed subset of A. Now we apply the universal mapping property for the ring of fractions three times.

Define a map from A to $(ST)^{-1}A$ by $a \mapsto a/1$. Since this is a homomorphism and since the image s/1 of s in S has the inverse 1/s, we conclude that there is a homomorphism from $S^{-1}A$ to $(ST)^{-1}A$ sending a/s to a/s. But this map sends t/s to t/s, which has inverse s/t in $(ST)^{-1}A$. So there is a homomorphism $F: U^{-1}(S^{-1}A) \to (ST)^{-1}A$ satisfying F((a/s)/(t/s')) = as'/st.

Similarly, the map from A into $U^{-1}(S^{-1}A)$ given by $a \mapsto (a/1)/(1/1)$ is such that the image (st/1)/(1/1) of st has inverse (1/s)/(t/1). So there is a homomorphism $G: (ST)^{-1}A \to U^{-1}(S^{-1}A)$ satisfying G(a/st) = (a/s)/(t/1).

It is straightforward to check that $F \circ G$ is the identity map for $(ST)^{-1}A$ and that $G \circ F$ is the identity map for $U^{-1}(S^{-1}A)$. So F and G are isomorphisms, and hence $U^{-1}(S^{-1}A)$ and $(ST)^{-1}A$ are isomorphic rings.

3.4. Let $f: A \to B$ be a ring homomorphism, suppose that S is a multiplicatively closed subset of A, and define T = f(S). Show that $S^{-1}B$ and $T^{-1}B$ are isomorphic as $S^{-1}A$ -modules.

First, it is clear that T is a multiplicatively closed subset of B since 1 = f(1) and f(s)f(s') = f(ss'). We make $T^{-1}B$ into an $S^{-1}A$ -module by defining $a/s \cdot b/f(s') = f(a)b/f(s)f(s')$. Now define $\Phi: S^{-1}B \to T^{-1}B$

by $\Phi(b/s) = b/f(s)$. I claim that Φ is an isomorphism. First, suppose that b/s = b'/s' in $S^{-1}B$. Then for some $s'' \in S$ we have

$$0 = s'' \cdot (s' \cdot b - s \cdot b') = f(s'')(f(s')b - f(s)b')$$

so that b/f(s) = b'/f(s') in $T^{-1}B$. Hence, Φ is well-defined. Notice that

$$\Phi(b/s + b'/s') = \Phi((s' \cdot b + s \cdot b')/ss')$$

= $\Phi((f(s')b + f(s)b')/ss')$
= $(f(s')b + f(s)b')/f(ss')$
= $(f(s')b + f(s)b')/f(s)f(s')$
= $b/f(s) + b'/f(s')$
= $\Phi(b/s) + \Phi(b'/s')$

We also have the relation

$$\Phi(a/s \cdot b/s') = \Phi(f(a)b/ss') = f(a)b/f(ss') = f(a)b/f(s)f(s') = a/s \cdot b/f(s') = a/s \cdot \Phi(b/s') = a/s \cdot \Phi(b/s'$$

So Φ is a homomorphism of $S^{-1}A$ -modules. Clearly Φ is surjective. Now if $\Phi(b/s) = \Phi(b'/s')$ then for some $t \in T$ we have

$$t(f(s')b - f(s)b') = 0$$

Choose $s'' \in S$ satisfying t = f(s''). Then

$$s'' \cdot (s' \cdot b - s \cdot b') = 0$$

This means that b/s = b'/s' in $S^{-1}A$. So Φ is injective as well. Thus, Φ is an isomorphism of $S^{-1}A$ -modules, as claimed.

3.5. Suppose that for each prime ideal \mathfrak{p} , the ring $A_{\mathfrak{p}}$ has no nilpotent element $\neq 0$. Show that A has no nilpotent element $\neq 0$.

For every prime ideal \mathfrak{p} we have $\mathfrak{N}(A)_{\mathfrak{p}} = \mathfrak{N}(A_{\mathfrak{p}}) = 0$, so that $\mathfrak{N}(A) = 0$.

Must A be an integral domain if $A_{\mathfrak{p}}$ is an integral domain for every prime ideal \mathfrak{p} ?

Let $A = k \times k$ where k is an field. Obviously A is not an integral domain. From exercise 1.23 we know that $\mathfrak{p} = 0 \times k$ and $\mathfrak{q} = k \times 0$ are the prime ideals of A. Since $(1,0) \in A - \mathfrak{p}$ and $(1,0)\mathfrak{p} = 0$ we see that $\mathfrak{p}_{\mathfrak{p}} = 0$. But $\mathfrak{p}_{\mathfrak{p}}$ is a prime ideal in $A_{\mathfrak{p}}$, so that $A_{\mathfrak{p}}$ is an integral domain. Similarly, $A_{\mathfrak{q}}$ is an integral domain as well. Thus, the property of being an integral domain is not a local property.

3.6. Let A be a nonzero ring and let Σ be the set of all multiplicatively closed subsets S of A for which $0 \notin S$. Show that Σ has maximal elements and that $S \in \Sigma$ is maximal if and only if A - S is a minimal prime ideal of A.

That Σ has maximal elements follows from a straightforward application of Zorn's Lemma since Σ is chain complete. Now suppose that $S \in \Sigma$ is maximal. Since $0 \notin S$ we know that $1/1 \neq 0/1$ in $S^{-1}A$. So $S^{-1}A$ is a nonzero ring, and hence has a maximal ideal, which is of course a prime ideal. But this prime ideal corresponds to a prime ideal \mathfrak{p} in A that does not meet S. In other words, there is \mathfrak{p} for which $S \subseteq A - \mathfrak{p}$. But $A - \mathfrak{p}$ is in Σ , so that $S = A - \mathfrak{p}$ by maximality. Further, if $\mathfrak{q} \subseteq \mathfrak{p}$ is a prime ideal, then $A - \mathfrak{p} \subseteq A - \mathfrak{q}$ and $A - \mathfrak{q}$ is in Σ , so that $S = A - \mathfrak{q}$ again by maximality. This means that $\mathfrak{p} = \mathfrak{q}$, so that \mathfrak{p} is a minimal prime ideal in A.

On the other hand, if \mathfrak{p} is a minimal prime ideal in A, then $S = A - \mathfrak{p}$ is an element of Σ . Choose a maximal $S' \in \Sigma$ for which $S \subseteq S'$. By the above A - S' is a minimal prime ideal in A. But $A - S' \subseteq \mathfrak{p}$, implying that $A - S' = \mathfrak{p}$, since \mathfrak{p} is minimal. So S = S', showing that $A - \mathfrak{p}$ is a maximal element of Σ whenever \mathfrak{p} is a minimal prime ideal in A.

3.7. A multiplicatively closed subset S in A is called saturated if x and y are in S whenever xy is in S. Prove the following.

a. S is saturated iff A - S is a union of prime ideals of A.

Suppose that $A - S = \bigcup \mathfrak{p}$ is a union of prime ideals of A. If $xy \notin S$ then xy is in some \mathfrak{p} , implying that $x \in \mathfrak{p}$ or $y \in \mathfrak{p}$, so that $x \notin S$ or $y \notin S$. If $x \notin S$ or $y \notin S$, then $xy \notin S$ since A - S is a union of ideals. So S is a saturated multiplicatively closed subset of A.

Now suppose S is a saturated multiplicatively closed subset of A. It suffices to show that every $x \in A-S$ is contained in a prime ideal that does not intersect S. If $x \in A-S$, then $(x) \cap S = \emptyset$ since S is saturated. But then $(x)^e \neq (1)$ in $S^{-1}A$, so that x/1 is not a unit in $S^{-1}A$ and $S^{-1}A \neq 0$. So there is a maximal ideal \mathfrak{m} in $S^{-1}A$ containing x/1. We can choose a prime ideal \mathfrak{p} that does not meet S and is such that $\mathfrak{p}^e = \mathfrak{m}$. Then $x \in \mathfrak{p}$ since $\mathfrak{p} = \mathfrak{m}^c$. So A - S is indeed a union of prime ideals.

b. If S is any multiplicatively closed subset of A then there is a unique smallest saturated multiplicatively closed subset S^* of A containing S. S^* is the complement in A of the union of the prime ideals in A that do not intersect S.

Let Σ consist of all saturated multiplicatively closed subsets of A containing S. Then $\Sigma \neq \emptyset$ since $A \in \Sigma$. Let $S^* = \bigcap_{S' \in \Sigma} S'$, and notice that S^* is the desired set. We can choose prime ideals $\mathfrak{p}_{\alpha,S'}$ so that $A - S' = \bigcup \mathfrak{p}_{\alpha,S'}$ for each $S' \in \Sigma$. Then $S^* = A - \bigcup_{S' \in \Sigma} \bigcup \mathfrak{p}_{\alpha,S'}$. So clearly each $\mathfrak{p}_{\alpha,S'}$ has empty intersection with S. Further, if \mathfrak{p} is a prime ideal that does not meet S, then $A - \mathfrak{p} \in \Sigma$, so that $\mathfrak{p} \subseteq A - S^*$. Hence, S^* is the complement in A of the prime ideals that do not intersect S.

c. Find S^* if $S = 1 + \mathfrak{a}$ for some ideal \mathfrak{a} .

If \mathfrak{p} meets S then $1 + a \in \mathfrak{p}$ for some $a \in \mathfrak{a}$, and hence $1 \in \mathfrak{p} + \mathfrak{a}$. Conversely, if $1 \in \mathfrak{p} + \mathfrak{a}$ then \mathfrak{p} meets S. Therefore $S^* = A - \bigcup_{\mathfrak{p}: 1 \notin \mathfrak{p} + \mathfrak{a}} \mathfrak{p}$. If \mathfrak{m} is a maximal ideal containing \mathfrak{a} , then \mathfrak{m} is a prime ideal satisfying $1 \notin \mathfrak{m} + \mathfrak{a}$. Conversely, if \mathfrak{p} is a prime ideal satisfying $1 \notin \mathfrak{p} + \mathfrak{a}$, then there is a maximal (and hence prime) ideal \mathfrak{m} containing $\mathfrak{p} + \mathfrak{a}$, so that $1 \notin \mathfrak{m} + \mathfrak{a}$. These two observations give us $S^* = A - \bigcup_{\mathfrak{m} \supset \mathfrak{a}} \mathfrak{m}$.

- 3.8. Let S and T be multiplicatively closed subsets of A such that $S \subseteq T$. Let $\phi : S^{-1}A \to T^{-1}A$ be the obvious inclusion. Show that the following conditions are equivalent.
 - a. ϕ is bijective
 - b. For each $t \in T$ the element t/1 is a unit in $S^{-1}A$.
 - c. For each $t \in T$ there is $x \in A$ for which $xt \in S$.
 - d. T is contained in the saturation of S.
 - e. Every prime ideal which meets T also meets S.

Notice that the map $a \mapsto a/1$ from A to $T^{-1}A$ is a homomorphism such that the image s/1 of $s \in S$ has inverse 1/s (since $s \in T$). Thus, there is a unique homomorphism $\phi : S^{-1}A \to T^{-1}A$ for which $\phi(a/s) = a/s$ whenever $a \in A$ and $s \in S$.

(a \Rightarrow b) As always, t/1 is a unit in $T^{-1}A$. So if ϕ is bijective, then ϕ is a ring isomorphism, so that $t/1 = \phi^{-1}(t/1)$ is a unit in $S^{-1}A$.

 $(b \Rightarrow c)$ Choose $a \in A$ and $s \in S$ so that $t/1 \cdot a/s = 1/1$. Then s'(at - s) = 0 for some $s' \in S$. But then $(as')t = ss' \in S$.

 $(c \Rightarrow d)$ For $t \in T$ choose $x \in A$ so that $xt \in S \subseteq S^*$. Then $x \in S^*$ and $t \in S^*$, and hence $T \subseteq S^*$.

 $(d \Rightarrow e)$ If \mathfrak{p} is a prime ideal in A that does not meet S, then \mathfrak{p} does not meet S^* by exercise 3.7. Therefore, \mathfrak{p} does not meet T. So every prime ideal in A that meets T also meets S.

 $(e \Rightarrow c)$ If b does not hold then $(t) \cap S = \emptyset$ for some $t \in T$. But then there is a prime ideal \mathfrak{p} containing (t) such that $\mathfrak{p} \cap S = \emptyset$. Since $t \in \mathfrak{p} \cap T$ we see that e does not hold.

 $(c \Rightarrow b)$ Let $t \in T$ and choose $x \in A$ satisfying $xt \in S$. Then t/1 has inverse x/xt in $S^{-1}A$.

(b \Rightarrow a) Suppose that $\phi(a/s) = \phi(a'/s')$ in $T^{-1}A$ so that t(as' - a's) = 0 for some $t \in T$. Choose $x \in A$ for which $xt \in S$. Then (xt)(as' - a's) = 0, so that a/s = a'/s' in $S^{-1}A$. In other words, ϕ is injective. Now let $t \in T$ and choose $a \in A$ and $s \in S$ for which $t/1 \cdot a/s = 1/1$ in $S^{-1}A$. Then s'(at - s) = 0 for some $s' \in S$. But $S \subseteq T$ so that 1/t = a/s in $T^{-1}A$. In other words, $1/t = \phi(a/s) \in \text{Im}(\phi)$, so that ϕ is surjective. Thus, ϕ is a bijection.

3.9. For $A \neq 0$ let S_0 consist of all regular elements of A. Show that S_0 is a saturated multiplicatively closed subset of A and that every minimal prime ideal of A is contained in $D = A - S_0$. The ring $S_0^{-1}A$ is called the total ring of fractions of A. Prove assertions a,b, and c below.

Suppose $x \notin S_0$ or $y \notin S_0$. Then there is $z \neq 0$ such that xz = 0 or yz = 0. But then xyz = 0 so that $xy \notin S_0$. On the other hand, if $xy \notin S_0$ then there is $z \neq 0$ satisfying xyz = 0. If yz = 0 then $y \notin S_0$, and if $yz \neq 0$ then $x \notin S_0$. Thus, S_0 is a saturated multiplicatively closed subset of A.

Now let \mathfrak{p} be a prime ideal in A and suppose that $x \in \mathfrak{p}$ is regular. We see that $\{x^i y : y \in A - \mathfrak{p} \text{ and } i \in \mathbb{N}\}$ is a multiplicatively closed subset of A properly containing $A - \mathfrak{p}$. This subset of A does not contain 0 since x is not a zero-divisor. Therefore, $A - \mathfrak{p}$ is not maximal in Σ , and hence \mathfrak{p} is not a minimal prime ideal. In other words, every minimal prime ideal in A consists entirely of zero-divisors and so is contained in D. From this it follows easily that D is the union of the minimal prime ideals in A.

a. S_0 is the largest multiplicatively closed subset S of A so that the map $A \to S^{-1}A$ is 1-1.

Suppose that a/1 = 0/1 in $S_0^{-1}A$. Then ax = 0 for some $x \in S_0$. But x is not a zero-divisor, and so a = 0. So the natural map is 1-1. Now assume that S is a multiplicatively closed subset of A with this property. Suppose that $x \in S$ and $a \in A$ satisfy ax = 0. Then a/1 = 0/1 in $S^{-1}A$ so that a = 0. In other words x is a regular element, and so $S \subseteq S_0$.

b. Every element in $S_0^{-1}A$ is a unit or a zero-divisor.

Suppose that $x/y \in S_0^{-1}A$. If $x \in S_0$ then x/y is a unit in $S_0^{-1}A$ with inverse y/x. If $x \notin S_0$, then there is $z \neq 0$ satisfying xz = 0, implying that (x/y)(z/1) = 0/1. Since $z/1 \neq 0/1$ we see that x/y is a zero-divisor in $S_0^{-1}A$. So we are done.

c. If every element in A is a unit or a zero-divisor then the natural map $f: A \to S_0^{-1}A$ is an isomorphism.

We already know that f is injective. Now if $x \in S_0$ then x is a unit. So f is surjective since $a/x = ax^{-1}/(xx^{-1}) = ax^{-1}/1 = f(ax^{-1})$ for $a \in A$ and $x \in S_0$. Thus, f is bijective, and hence an isomorphism.

3.10. Show that $S^{-1}A$ is an absolutely flat ring if A is an absolutely flat ring.

Suppose that M is an $S^{-1}A$ -module. Let N = M, where we consider N as an A-module with $a.m = a/1 \cdot m$. Then $S^{-1}N$ is an $S^{-1}A$ -module. I claim that $S^{-1}N$ and M are isomorphic as $S^{-1}A$ -modules. Assuming this, we see that N is a flat A-module since A is absolutely flat, and so $S^{-1}N$ is a flat $S^{-1}A$ -module. This means that M is a flat $S^{-1}A$ -module, and so $S^{-1}A$ is absolutely flat. Now we finish the stickier part of this exercise by defining $f: S^{-1}N \to M$ by $f(m/s) = 1/s \cdot m$. Notice first that f is additive since

$$f(m/s + m'/s') = f((s'.m + s.m')/ss') = 1/ss' \cdot (s'/1 \cdot m + s/1 \cdot m') = f(m/s) + f(m'/s')$$

Further, f preserves the action of $S^{-1}A$ since

$$f(a/s \cdot m/t) = f(a.m/st) = 1/st \cdot a.m = 1/st \cdot a/1 \cdot m = a/s \cdot 1/t \cdot m = a/s \cdot f(m/t)$$

So f will be a homomorphism provided that f is well-defined. Suppose m/s = 0/1 in $S^{-1}N$. Then t.m = 0 for some $t \in S$, so that $t/1 \cdot m = 0$. But now m = 0 since t/1 is a unit in $S^{-1}A$. Hence, f is well-defined and thus is a homomorphism. Clearly f is surjective with f(m/1) = m. Lastly, suppose that f(m/s) = f(m'/s'). Then $1/s \cdot m = 1/s' \cdot m'$ so that $s'/1 \cdot m = s/1 \cdot m'$, implying that 1.(s'.m - s.m') = 0. In other words, m/s = m'/s' in $S^{-1}N$. Consequently, f is an isomorphism of $S^{-1}A$ -modules.

Show that A is an absolutely flat ring if and only if A_m is a field for every maximal m.

If A is absolutely flat and \mathfrak{m} is a maximal ideal in A, then $A_{\mathfrak{m}}$ is absolutely flat by the above. But $A_{\mathfrak{m}}$ is a local ring so that $A_{\mathfrak{m}}$ is a field by exercise 2.28. So suppose that $A_{\mathfrak{m}}$ is a field whenever \mathfrak{m} is a maximal ideal in A. Let M be an A-module so that $M_{\mathfrak{m}}$ is an $A_{\mathfrak{m}}$ -module. This means that $M_{\mathfrak{m}}$ is an $A_{\mathfrak{m}}$ -vector space. But now $M_{\mathfrak{m}}$ is flat as an $A_{\mathfrak{m}}$ -module. Hence, M is flat as an A-module, implying that A is absolutely flat.

3.11. Let A be a ring. Show that the following are equivalent.

- a. $A/\mathfrak{N}(A)$ is absolutely flat.
- b. Every prime ideal in A is a maximal ideal.
- c. In Spec(A) every one point set is closed.
- d. Spec(A) is Hausdorff.
- $(a \Rightarrow b)$ Let \mathfrak{p} be a prime ideal in A. Since $\mathfrak{N}(A) \subseteq \mathfrak{p}$ we have a surjective homomorphism $A/\mathfrak{N}(A) \to A/\mathfrak{p}$. In other words, A/\mathfrak{p} is the homomorphic image of an absolutely flat ring, and so is an absolutely flat ring. But then every non-unit in A/\mathfrak{p} is a zero-divisor by exercise 2.28. Since A/\mathfrak{p} is an integral domain, this means that A/\mathfrak{p} is a field, and so \mathfrak{p} is a maximal ideal in A.
- (b \Rightarrow a) A maximal ideal \mathfrak{q} in $A/\mathfrak{N}(A)$ is of the form $\mathfrak{q} = \mathfrak{p}/\mathfrak{N}(A)$ for some prime ideal \mathfrak{p} in A. Now $A/\mathfrak{N}(A)$ is a reduced ring. Since localization commutes with taking the nilradical, we see that $(A/\mathfrak{N}(A))_{\mathfrak{q}}$ is a reduced ring as well. But $\operatorname{Spec}((A/\mathfrak{N}(A))_{\mathfrak{q}}) \cong V(\mathfrak{q})$ and $V(\mathfrak{q}) = \{\mathfrak{q}\}$ since prime ideals in $A/\mathfrak{N}(A)$ are maximal. So $\mathfrak{q}_{\mathfrak{q}} = 0$, and hence $(A/\mathfrak{N}(A))_{\mathfrak{q}}$ is a field. Exercise 3.10 now implies that $A/\mathfrak{N}(A)$ is absolutely flat.

- (b \Leftrightarrow c) If \mathfrak{p} is maximal then $\{\mathfrak{p}\} = V(\mathfrak{p})$ so that $\{\mathfrak{p}\}$ is a closed set. If $\{\mathfrak{p}\}$ is closed then $\{\mathfrak{p}\} = V(E)$ for some $E \subseteq A$. Clearly $\mathfrak{p} \supseteq E$ and no other prime ideal in A contains E. In particular, no prime ideal in A strictly contains \mathfrak{p} . So \mathfrak{p} is a maximal ideal in A.
- $(d \Rightarrow c)$ This is elementary point-set topology.
- $(b \Rightarrow d)$ Suppose that \mathfrak{p} and \mathfrak{q} are distinct elements of $\operatorname{Spec}(A)$.

If these conditions hold, show that Spec(A) is compact Hausdorff and totally disconnected.

It is always true that Spec(A) is compact, and by hypothesis Spec(A) is Hausdorff.

3.12. Let M be an A-module and A an integral domain. Show that the set of all $x \in M$ for which $Ann(x) \neq 0$ forms an A-submodule of M, denoted T(M). An element $x \in T(M)$ is called a torsion element. Prove assertions a-d.

Suppose that $x, y \in T(M)$ and $a, a' \neq 0$ satisfy ax = a'y = 0. Then aa'(x - y) = 0 and $aa' \neq 0$ since A has no zero-divisors. Therefore, $x - y \in T(M)$. Also, if $a'' \neq 0$, then $a''x \in T(M)$ since a(a''x) = 0 and $aa'' \neq 0$. Therefore T(M) is a submodule of M.

a. M/T(M) is torsion free.

Suppose that \bar{x} is a torsion element in M/T(M). Choose $a \neq 0$ for which $0 = a\bar{x} = \bar{ax}$, so that $ax \in T(M)$. Then there is $a' \neq 0$ for which a'ax = 0. But $a'a \neq 0$, and hence $x \in T(M)$, so that $\bar{x} = 0$.

b. $f(T(M)) \subseteq T(N)$ if $f: M \to N$ is an A-module homomorphism.

If $x \in T(M)$ and $a \neq 0$ satisfies ax = 0, then af(x) = f(ax) = 0, so that $f(x) \in T(N)$.

c. Suppose we have an exact sequence

$$0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

of A-modules. Then we get a new exact sequence obtained by restricting f and g

$$0 \longrightarrow T(M') \xrightarrow{f} T(M) \xrightarrow{g} T(M'')$$

This sequence is clearly exact at T(M'). Suppose that $m \in T(M)$ and g(m) = 0. Choose $m' \in M'$ for which f(m') = m, and suppose $a \neq 0$ satisfies am = 0. Then 0 = am = af(m') = f(am'). By injectivity of f we conclude that am' = 0, and hence $m' \in T(M')$. This means that $\text{Ker}(g|_{T(M)}) \subseteq \text{Im}(f|_{T(M')})$. The oppositive inclusion follows from $g \circ f = 0$. Therefore, the resulting sequence is exact at T(M), and hence is exact.

d. T(M) is the kernel of the A-module homomorphism $x \mapsto 1 \otimes x$ of M into $K \otimes_A M$, where K is the field of fractions of A.

Let $S = A - \{0\}$ so that $K = S^{-1}A$. Recall that the mapping $a/s \otimes m \mapsto am/s$ of $S^{-1}A \otimes_A M$ into $S^{-1}M$ is an isomorphism. So the kernel of the map $M \to K \otimes_A M$ is precisely the kernel of the canonical map $M \to S^{-1}M$ given by $x \mapsto x/1$. Now x/1 = 0/1 in $S^{-1}M$ precisely when there is $s \in S$ for which sx = 0. Since $S = A - \{0\}$, this occurs precisely when $x \in T(M)$.

3.13. Let A be an integral domain with a multiplicatively closed subset S, and let M be an A-module. Show that $T(S^{-1}M) = S^{-1}(TM)$.

We may assume that $0 \notin S$ since otherwise $S^{-1}M = S^{-1}(TM) = 0$. If $m/s \in T(S^{-1}M)$, then there is $a/s' \neq 0/1$ in $S^{-1}A$ so that 0/1 = (a/s')(m/s) = am/(ss'). But then there is $s'' \in S$ for which s''am = 0. Now $s''a \neq 0$ since $s'', a \neq 0$. So $m \in T(M)$, and hence $m/s \in S^{-1}(TM)$. In other words, $T(S^{-1}M) \subseteq S^{-1}(TM)$.

On the other hand, if $m \in TM$ then there is $a \neq 0$ for which am = 0. Then $a/1 \neq 0/1$ since $0 \notin S$. Since (a/1)(m/s) = 0/1 for any $s \in S$, we see that $m/s \in T(S^{-1}M)$. In other words, $S^{-1}(TM) \subseteq T(S^{-1}M)$.

Deduce that the following conditions are equivalent.

- a. M is torsion free.
- b. $M_{\mathfrak{p}}$ is torsion free for all prime ideals \mathfrak{p} .
- c. $M_{\mathfrak{m}}$ is torsion free for all maximal ideals \mathfrak{m} .
- $(a \Rightarrow b) T(M_{\mathfrak{p}}) = (TM)_{\mathfrak{p}}$ by the above, and $(TM)_{\mathfrak{p}} = 0$ when TM = 0.
- $(b \Rightarrow c) O.K.$
- $(c \Rightarrow a)$ $(TM)_{\mathfrak{m}} = T(M_{\mathfrak{m}})$ by the above, and $T(M_{\mathfrak{m}}) = 0$ by hypothesis. Therefore TM = 0.
- 3.14. Let M be an A-module and a an ideal of A. Suppose that $M_{\mathfrak{m}} = 0$ for all maximal ideals $\mathfrak{m} \supseteq \mathfrak{a}$. Prove that $M = \mathfrak{a}M$.

If $M \neq \mathfrak{a}M$, then there is $x \in M - \mathfrak{a}M$. Define an ideal $\mathfrak{b} = (\mathfrak{a}M : x)$. Then $\mathfrak{a} \subseteq \mathfrak{b} \subsetneq A$ since $1 \notin \mathfrak{b}$. So we can choose a maximal \mathfrak{m} that contains \mathfrak{b} . By hypothesis $M_{\mathfrak{m}} = 0$, and so x/1 = 0/1 in $M_{\mathfrak{m}}$. So there is $a \in A - \mathfrak{m}$ for which ax = 0. But $0 \in \mathfrak{a}M$ so that $a \in \mathfrak{b} \subseteq \mathfrak{m}$. This contradiction shows that $M = \mathfrak{a}M$, as claimed.

3.15. Let A be a ring and let $F = A^n$. Show that every set of n generators of F is a basis of F. Deduce that every set of generators of F has at least n elements.

Suppose $\{x_i\}_{1}^{n}$ generates F and let $\{e_i\}_{1}^{n}$ be the standard basis. Choose b_{ij} and c_{ij} in A for which

$$x_i = \sum_{j=1}^n b_{ij} e_j \qquad e_i = \sum_{j=1}^n c_{ij} x_j$$

Define matrices $B = (b_{ij})$ and $C = (c_{ij})$. Notice that

$$e_{i} = \sum_{j=1}^{n} \sum_{k=1}^{n} c_{ij} b_{jk} e_{k} = \sum_{k=1}^{n} e_{k} \cdot \sum_{j=1}^{n} c_{ij} b_{jk}$$

Since $\{e_1, \ldots, e_n\}$ is linearly independent we conclude that

$$\sum_{j=1}^{n} c_{ij} b_{jk} = \delta_{ik}$$

This means that CB = I, so that $\det(C) \det(B) = 1$. But now $\det(B)$ is a unit in A, so that B (and hence B^T) is an invertible matrix. So suppose that $\sum_{i=1}^n \lambda_i x_i = 0$ for some λ_i . Then

$$0 = \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i b_{ij} e_j = \sum_{j=1}^{n} e_j \cdot \sum_{i=1}^{n} b_{ij} \lambda_i$$

We see that each $\sum_{i=1}^{n} b_{ij}\lambda_i = 0$, so that $B^T\lambda = 0$. But now $\lambda = 0$ since B^T is invertible. This means that $\{x_i\}_1^n$ is linearly independent set, and hence is a basis. Further, if F is generated by m elements x_1, \ldots, x_m with m < n, then F is generated by the n elements $\{x_1, \ldots, x_m, 0, \ldots, 0\}$ and this is a basis by the above; a contradiction. So F is generated by no fewer than n elements.

- 3.16. Let $f : A \to B$ be a ring homomorphism and assume that B is flat as an A-algebra. Show that the following are equivalent.
 - a. $\mathfrak{a}^{ec} = \mathfrak{a}$ for all ideals \mathfrak{a} in A.
 - b. $f^* : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is surjective.
 - c. For every maximal ideal \mathfrak{m} in A we have $\mathfrak{m}^e \neq (1)$.
 - d. If M is a nonzero A-module then M_B is nonzero as well.
 - e. For every A-module M the natural map $M \to M_B$ is injective.
 - $(a \Rightarrow b)$ Assume that $\mathfrak{p} \in \operatorname{Spec}(A)$. Then \mathfrak{p} is the contraction of a prime ideal in B by Proposition 3.16. This means that \mathfrak{p} is in the image of f^* . In particular $\mathfrak{p} = f^*(\mathfrak{p}^e)$.
 - (b \Rightarrow c) Since \mathfrak{m} is maximal and since f^* is surjective we know that $\mathfrak{m} = \mathfrak{q}^c$ for some $\mathfrak{q} \in \operatorname{Spec}(B)$. But then $\mathfrak{m}^{ec} = \mathfrak{q}^{cec} = \mathfrak{q}^c = \mathfrak{m}$. So $\mathfrak{m}^e = (1)$ implies that $\mathfrak{m} = \mathfrak{m}^{ec} = B^c = A$, a contradiction.
 - $(c \Rightarrow d)$ Let $0 \neq x \in M$ so that M' = Ax is a nonzero submodule of M. Then the sequence

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M/M' \longrightarrow 0$$

is exact. Since B is flat as an A-module we have the exact sequence

$$0 \longrightarrow M'_B \longrightarrow M_B \longrightarrow (M/M')_B \longrightarrow 0$$

Since the map $M'_B \to M_B$ is injective, $M_B \neq 0$ provided that $M'_B \neq 0$. Now $M' \cong A/\operatorname{Ann}(x)$ where $\operatorname{Ann}(x) \neq A$ since $1 \notin \operatorname{Ann}(x)$. Choose a maximal ideal \mathfrak{m} containing $\operatorname{Ann}(x)$. Then $\operatorname{Ann}(x)^e \subseteq \mathfrak{m}^e \subsetneq B$. Now $M'_B \cong A/\operatorname{Ann}(x) \otimes_A B \cong B/\operatorname{Ann}(x)^e \neq 0$, as claimed.

 $(d \Rightarrow e)$ Let M' be the kernel of the natural map $M \to M_B$ given by $x \mapsto 1 \otimes x$. The sequence

 $0 \longrightarrow M' \longrightarrow M \longrightarrow M_B \longrightarrow 0$

is exact. Since B is flat as an A-module we have an exact sequence

$$0 \longrightarrow M'_B \longrightarrow M_B \longrightarrow (M_B)_B \longrightarrow 0$$

Now the map $M_B \to (M_B)_B$ is injective by 2.13. So the image of the map $M'_B \to M_B$ is trivial. Since this map is injective, we see that $M'_B = 0$, so that M' = 0 by hypothesis. In other words, the natural map $M \to M_B$ is injective.

(e \Rightarrow a) Let \mathfrak{a} be an ideal in A. The natural map $A/\mathfrak{a} \to A/\mathfrak{a} \otimes_A B$ is injective by hypothesis. Suppose $x \in \mathfrak{a}^{ec} \subseteq A$ so that $f(x) = \sum f(a_i)b_i$ for some $a_i \in \mathfrak{a}$. Then in $A/\mathfrak{a} \otimes_A B$ we have

$$\bar{x} \otimes 1 = x \cdot \bar{1} \otimes 1 = \bar{1} \otimes x \cdot 1 = \bar{1} \otimes f(x)$$

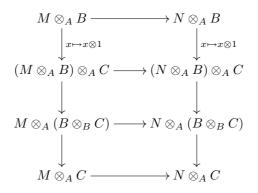
and from this we get

$$\bar{x} \otimes 1 = \bar{1} \otimes \sum f(a_i)b_i = \sum \bar{a_i} \otimes b_i = 0$$

since each $a_i \in \mathfrak{a}$. By injectivity $\bar{x} = \bar{0}$, so that $x \in \mathfrak{a}$. Therefore $\mathfrak{a}^{ec} \subseteq \mathfrak{a}$, and hence $\mathfrak{a} = \mathfrak{a}^{ec}$.

3.17. Let $f: A \to B$ and $g: B \to C$ be ring homomorphisms. Suppose that $g \circ f$ is flat and g is faithfully flat. Show that f is flat.

Let $M \to N$ be an injection of A-modules. Then we have the commutative diagram



where the last four vertical maps are natural isomorphisms, and the top two vertical maps are injections since g is faithfully flat. Finally, horizontal map on the bottom row is injective since $g \circ f$ is flat. This shows that the horizontal map on the top row is injective as well. This means that f is flat.

3.18. Suppose $f : A \to B$ is a flat ring homomorphism. If \mathfrak{q} is a prime ideal in B let $\mathfrak{p} = \mathfrak{q}^c$. Show that $f^* : \operatorname{Spec}(B_{\mathfrak{q}}) \to \operatorname{Spec}(A_{\mathfrak{p}})$ is onto.

Since B is a flat A-module, we know that $B_{\mathfrak{p}}$ is a flat $A_{\mathfrak{p}}$ -module. In fact, $B_{\mathfrak{p}}$ is a flat $A_{\mathfrak{p}}$ -algebra since $B_{\mathfrak{p}}$ has the obvious multiplicative structure. Since $f(A-\mathfrak{p})$ is a multiplicatively closed subset of B that does not meet \mathfrak{q} , we see that $B_{\mathfrak{q}}$ is a localization of $B_{\mathfrak{p}}$, so that $B_{\mathfrak{q}}$ is a flat $B_{\mathfrak{p}}$ -algebra. Now exercise 2.8 tells us that $B_{\mathfrak{q}}$ is a flat $A_{\mathfrak{p}}$ -algebra. The only maximal ideal of $A_{\mathfrak{p}}$ is $\mathfrak{p}_{\mathfrak{p}}$ whose contraction to $B_{\mathfrak{q}}$ is $\mathfrak{q}_{\mathfrak{q}} \neq B_{\mathfrak{q}}$. It follows that the map $f: A_{\mathfrak{p}} \to B_{\mathfrak{q}}$ is faithfully flat, and so the induced map $f^*: \operatorname{Spec}(B_{\mathfrak{q}}) \to \operatorname{Spec}(A_{\mathfrak{p}})$ is onto.

- 3.19. Suppose M is an A-module and define $\text{Supp}(M) = \{\mathfrak{p} \in \text{Spec}(A) : M_{\mathfrak{p}} \neq 0\}$. Show the following.
 - a. Supp $(M) \neq \emptyset$ if $M \neq 0$

If $M_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(A)$ then M = 0.

b. $V(\mathfrak{a}) = \operatorname{Supp}(A/\mathfrak{a})$

Notice that $(A/\mathfrak{a})_{\mathfrak{p}} = 0$ iff $\overline{1}/1 = \overline{0}/1$ in $(A/\mathfrak{a})_{\mathfrak{p}}$. This occurs precisely when there is $x \in A - \mathfrak{p}$ satisfying $\overline{0} = x\overline{1} = \overline{x}$. But this occurs precisely when $(A - \mathfrak{p}) \cap \mathfrak{a} \neq \emptyset$. This is equivalent to $\mathfrak{a} \not\subseteq \mathfrak{p}$. Hence, $(A/\mathfrak{a})_{\mathfrak{p}} \neq 0$ if and only if $\mathfrak{a} \subseteq \mathfrak{p}$.

c. Suppose we have an exact sequence

 $0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$

and show that $\operatorname{Supp}(M) = \operatorname{Supp}(M') \cup \operatorname{Supp}(M'').$

We have the exact sequence

$$0 \longrightarrow M'_{\mathfrak{p}} \xrightarrow{f_{\mathfrak{p}}} M_{\mathfrak{p}} \xrightarrow{g_{\mathfrak{p}}} M''_{\mathfrak{p}} \longrightarrow 0$$

If $M_{\mathfrak{p}} = 0$ then $M'_{\mathfrak{p}} = 0$ since $f_{\mathfrak{p}}$ is injective, and $M''_{\mathfrak{p}} = 0$ since $g_{\mathfrak{p}}$ is surjective. If $M'_{\mathfrak{p}} = 0$ and $M''_{\mathfrak{p}} = 0$ then $0 = \operatorname{Im}(f_{\mathfrak{p}})$ and $\operatorname{Ker}(g_{\mathfrak{p}}) = M_{\mathfrak{p}} = 0$, implying that $M_{\mathfrak{p}} = 0$. Therefore $M_{\mathfrak{p}} \neq 0$ iff $M'_{\mathfrak{p}} \neq 0$ or $M''_{\mathfrak{p}} \neq 0$. This gives $\operatorname{Supp}(M) = \operatorname{Supp}(M') \cup \operatorname{Supp}(M'')$.

d. If $M = \sum M_i$ then $\text{Supp}(M) = \bigcup \text{Supp}(M_i)$.

Suppose that $M_{\mathfrak{p}} = 0$ and that $m_i/s \in (M_i)_{\mathfrak{p}}$. Since m_i/s is zero in $M_{\mathfrak{p}}$, there is $x \notin \mathfrak{p}$ for which $xm_i = 0$. But then m_i/s is zero in $(M_i)_{\mathfrak{p}}$. In other words each $(M_i)_{\mathfrak{p}} = 0$. Now suppose that each $(M_i)_{\mathfrak{p}} = 0$. If $(\sum m_i)/s \in M_{\mathfrak{p}}$, then there are $x_i \notin \mathfrak{p}$ for which $x_im_i = 0$, so that $(\prod x_i) \sum m_i = 0$. In other words $M_{\mathfrak{p}} = 0$. So $M_{\mathfrak{p}} = 0$ iff each $(M_i)_{\mathfrak{p}} = 0$. This yields $\operatorname{Supp}(M) = \bigcup \operatorname{Supp}(M_i)$.

e. If M is finitely generated then Supp(M) = V(Ann(M)).

Since M is finitely generated $(A - \mathfrak{p})^{-1}M = 0$ iff xM = 0 for some $x \in A - \mathfrak{p}$. This occurs iff $(A - \mathfrak{p}) \cap \operatorname{Ann}(M) \neq \emptyset$, or equivalently iff $\operatorname{Ann}(M) \notin \mathfrak{p}$. So $M_{\mathfrak{p}} \neq 0$ iff $\operatorname{Ann}(M) \subseteq \mathfrak{p}$.

f. If M and N are finitely generated then $\text{Supp}(M \otimes_A N) = \text{Supp}(M) \cap \text{Supp}(N)$.

Recall that $(M \otimes_A N)_{\mathfrak{p}}$ and $M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} N_{\mathfrak{p}}$ are isomorphic as $A_{\mathfrak{p}}$ -modules. Since M, N are finitely generated A-modules we see that $M_{\mathfrak{p}}, N_{\mathfrak{p}}$ are finitely generated $A_{\mathfrak{p}}$ -modules. So exercise 2.3 tells us that $M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} N_{\mathfrak{p}} = 0$ iff $M_{\mathfrak{p}} = 0$ or $N_{\mathfrak{p}} = 0$.

g. If M is finitely generated and a is an ideal in A, then $\operatorname{Supp}(M/\mathfrak{a}M) = V(\mathfrak{a} + \operatorname{Ann}(M))$.

Since M is finitely generated, $M/\mathfrak{a}M$ and $A/\mathfrak{a} \otimes_A M$ are isomorphic as A-modules by exercise 2.2. Further, A/\mathfrak{a} is generated by the single element $1 + \mathfrak{a}$ as an A-module. So

$$\begin{aligned} \operatorname{Supp}(M/\mathfrak{a}M) &= \operatorname{Supp}(A/\mathfrak{a} \otimes_A M) \\ &= \operatorname{Supp}(A/\mathfrak{a}) \cap \operatorname{Supp}(M) \\ &= V(\mathfrak{a}) \cap V(\operatorname{Ann}(M)) \\ &= V(\mathfrak{a} + \operatorname{Ann}(M)) \end{aligned}$$

h. If $f : A \to B$ is a ring homomorphism and if M is a finitely generated A-module, then $\operatorname{Supp}(B \otimes_A M) = f^{*-1}(\operatorname{Supp}(M)).$

Since M is a finitely generated A-module we have $\operatorname{Supp}(M) = V(\operatorname{Ann}(M))$, and since M_B is a finitely generated B-module we have $\operatorname{Supp}(M_B) = V(\operatorname{Ann}(M_B))$. So we need to prove that a prime ideal \mathfrak{q} in B contains $\operatorname{Ann}(M_B)$ if and only if $f^{-1}(\mathfrak{q})$ contains $\operatorname{Ann}(M)$. Suppose $\mathfrak{q} \supseteq \operatorname{Ann}(M_B)$ and $a \in \operatorname{Ann}(M)$ so that $a \cdot m = 0$ for every $m \in M$. Then f(a) annihilates M_B since $f(a)(b \otimes m) = f(a)b \otimes m = a \cdot b \otimes m = b \otimes a \cdot m = 0$ for all $b \in B$ and $m \in M$. By hypothesis, $f(a) \in \mathfrak{q}$. This means that $\operatorname{Ann}(M) \subseteq f^{-1}(\mathfrak{q})$. Now suppose that $\operatorname{Ann}(M) \subseteq f^{-1}(\mathfrak{q})$ and let $b \in \operatorname{Ann}(M_B)$.

- 3.20. Let $f: A \to B$ be a ring homomorphism. Show the following.
 - a. Every prime ideal in A is a contracted ideal $\Leftrightarrow f^*$ is onto.

Suppose \mathfrak{p} is a prime ideal in A. Proposition 1.17 and 3.16 yield: \mathfrak{p} is a contracted ideal in A iff \mathfrak{p} satisfies $\mathfrak{p}^{ec} = \mathfrak{p}$ iff \mathfrak{p} is the contraction of a prime ideal in B iff \mathfrak{p} lies in the image of f^* .

b. Every prime ideal in B is an extended ideal $\Rightarrow f^*$ is 1-1.

Assume that every prime ideal in B is an extended ideal. Suppose that $f^*(\mathfrak{p}) = f^*(\mathfrak{q})$, so that $\mathfrak{p}^c = \mathfrak{q}^c$. Then $\mathfrak{p} = \mathfrak{p}^{ce} = \mathfrak{q}^{ce} = \mathfrak{q}$ by Proposition 1.17. But this means that f^* is 1-1.

c. Is the converse to part b true?

The converse to part b is false. Let $j : \mathbb{Z} \to \mathbb{Z}[i]$ be the natural inclusion map. If p is a prime congruent to 3 modulo 4, then (p) is a prime ideal in $\mathbb{Z}[i]$. If p is a prime congruent to 1 modulo 4, then there are unique a, b > 0 such that $a^2 + b^2 = p$, and (a + bi) is a prime ideal in $\mathbb{Z}[i]$. Also, (1 + i) is a prime ideal in $\mathbb{Z}[i]$. These are all of the prime ideals in $\mathbb{Z}[i]$. Now the contraction of (p) equals (p), the contraction of (a + bi) equals $(a^2 + b^2)$, and the contraction of (1 + i) equals (2). This means that j^* is an injective map. However, the extension of (2) and (p) are not prime ideals, for p a prime congruent to 1 modulo 4. Also, the extension of (p) equals (p), for p a prime congruent to 3 modulo 4. This means that (1 + i) and prime ideals of the form (a + bi) are not extended ideals in $\mathbb{Z}[i]$.

- 3.21. Throughout, $f : A \to B$ is a ring homomorphism, X = Spec(A), Y = Spec(B), S is a multiplicatively closed subset of A, and $\phi_A : A \to S^{-1}A$ is the canonical homomorphism. Establish the following facts.
 - a. $\phi^* : \operatorname{Spec}(S^{-1}A) \to X$ is a homeomorphism onto its image, which we denote by $S^{-1}X$.

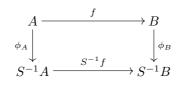
Notice that $S^{-1}X$ consists of all prime ideals in A that have empty intersection with S. Now every ideal in $S^{-1}A$ is an extended ideal so that ϕ^* is 1-1 by exercise 2.20. As always, ϕ^* is continuous. I claim that ϕ^* is a closed map. Let \mathfrak{a} be an ideal in A and notice that

$$\phi^*(V(S^{-1}\mathfrak{a})) = S^{-1}X \cap V(\mathfrak{a}^{ec})$$

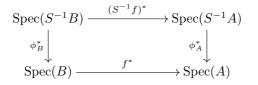
After all, if $\mathfrak{p} \in \phi^*(V(S^{-1}\mathfrak{a}))$ then $\mathfrak{p} \cap S = \emptyset$ and $S^{-1}\mathfrak{a} \subseteq S^{-1}\mathfrak{p}$ so that $\mathfrak{a}^{ec} \subset \mathfrak{p}^{ec} = \mathfrak{p}$. Conversely, if $\mathfrak{p} \in S^{-1}X \cap V(\mathfrak{a}^{ec})$ then $\mathfrak{p} \cap S = \emptyset$ and $\mathfrak{a} = S^{-1}\mathfrak{a}^{ec} \subseteq S^{-1}\mathfrak{p}$. So ϕ is a homeomorphism onto its image.

b. Identify $\operatorname{Spec}(S^{-1}A)$ with its image $S^{-1}X$, and identify $\operatorname{Spec}(S^{-1}B)$ with its image $S^{-1}Y$. Then $(S^{-1}f)^*$ is the restriction of f^* to $S^{-1}Y$, and $S^{-1}Y = f^{*-1}(S^{-1}X)$.

Notice that $S^{-1}B = f(S)^{-1}B$ as in exercise 3.4 and that $S^{-1}f(a/s) = f(a)/f(s)$. So we have the commutative diagram



This yields the commutative diagram



as desired. Now obviously $S^{-1}Y \subseteq f^{*-1}(S^{-1}X)$. So suppose that $\mathfrak{q} \in Y$ and $f^*(\mathfrak{q}) \in S^{-1}X$. Then $f^{-1}\mathfrak{q}$ is a prime ideal in A that has empty intersection with f(S). If $x \in \mathfrak{q} \cap f(S)$ with x = f(s) then $s \in f^{-1}(\mathfrak{q}) \cap S$, which is not possible. So $\mathfrak{q} \cap f(S) = \emptyset$, implying that $\mathfrak{q} \in S^{-1}Y$. Hence

$$S^{-1}Y = f^{*-1}(S^{-1}X).$$

c. Let a be an ideal in A and write $\mathfrak{b} = B\mathfrak{a}$. Then f induces a map $\overline{f} : A/\mathfrak{a} \to B/\mathfrak{b}$. If $\operatorname{Spec}(A/\mathfrak{a})$ is identified with its image $V(\mathfrak{a})$ in X and $\operatorname{Spec}(B/\mathfrak{b})$ is identified with its image $V(\mathfrak{b})$ in Y, then \overline{f}^* is the restriction of f^* to $V(\mathfrak{a})$.

We have the commutative diagram

$$\begin{array}{ccc} A & \xrightarrow{f} & B \\ & & & \\ \downarrow \pi_A & & & \pi_B \\ \downarrow & & & \bar{f} & & \\ A/\mathfrak{a} & \xrightarrow{\bar{f}} & & B/\mathfrak{b} \end{array}$$

This yields the commutative diagram

$$\begin{array}{ccc} \operatorname{Spec}(B/\mathfrak{b}) & & & \overline{f^*} & & \operatorname{Spec}(A/\mathfrak{a}) \\ & & & \downarrow \pi^*_B & & & \pi^*_A \\ & & & & & f^* & \\ & & & & & \operatorname{Spec}(B) & & & & \\ \end{array}$$

Now exercise 1.21 tells us that π_B^* maps $\operatorname{Spec}(B/\mathfrak{b})$ homeomorphically onto $V(\operatorname{Ker}(\pi_B)) = V(\mathfrak{b})$, and π_A^* maps $\operatorname{Spec}(A/\mathfrak{a})$ homeomorphically onto $V(\operatorname{Ker}(\pi_A)) = V(\mathfrak{a})$. We are done.

d. Let \mathfrak{p} be a prime ideal in A and define $S = A - \mathfrak{p}$. Then the subspace $f^{*-1}(\mathfrak{p})$ of Y is homeomorphic with $\operatorname{Spec}(B_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}}B_{\mathfrak{p}}) = \operatorname{Spec}(k(\mathfrak{p}) \otimes_A B)$, where $k(\mathfrak{p})$ is the residue field of $A_{\mathfrak{p}}$.

We use part c with $\mathfrak{a} = \mathfrak{p}_{\mathfrak{p}}$ and $\mathfrak{b} = \mathfrak{p}_{\mathfrak{p}}^{e} = \mathfrak{p}_{\mathfrak{p}}B_{\mathfrak{p}} = (\mathfrak{p}B)_{\mathfrak{p}}$ to get the commutative diagram

$$\operatorname{Spec}(B_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}}B_{\mathfrak{p}}) \xrightarrow{\overline{f_{\mathfrak{p}}}^{*}} \operatorname{Spec}(A_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}})$$

$$\downarrow \pi_{B}^{*} \qquad \pi_{A}^{*} \downarrow$$

$$\operatorname{Spec}(B_{\mathfrak{p}}) \xrightarrow{(f_{\mathfrak{p}})^{*}} \operatorname{Spec}(A_{\mathfrak{p}})$$

$$\downarrow \phi_{B}^{*} \qquad \phi_{A}^{*} \downarrow$$

$$\operatorname{Spec}(B) \xrightarrow{f^{*}} \operatorname{Spec}(A)$$

Now $\operatorname{Spec}(B_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}}B_{\mathfrak{p}})$ is homeomorphic with $V((\mathfrak{p}B)_{\mathfrak{p}})$, which is homeomorphic with $\phi_B^*(V((\mathfrak{p}B)_{\mathfrak{p}}))$. I claim that $\phi_B^*(V((\mathfrak{p}B)_{\mathfrak{p}})) = f^{*-1}(\mathfrak{p})$, establishing the first result. So suppose that $\mathfrak{q} \in f^{*-1}(\mathfrak{p})$. Since $\mathfrak{p} \in \operatorname{Im}(\phi_A^*)$ we see that $\mathfrak{q} \in \operatorname{Im}(\phi_B^*)$. Also, $\mathfrak{p} = f^{-1}(\mathfrak{q})$, so that $f(\mathfrak{p}) \subseteq \mathfrak{q}$, and hence $\mathfrak{p}B \subseteq \mathfrak{q}$. But now $\mathfrak{q}_{\mathfrak{p}}$ is a prime ideal in $B_{\mathfrak{p}}$ containing the ideal $(\mathfrak{p}B)_{\mathfrak{p}}$. Conversely, assume that $\mathfrak{q} \in \phi_B^*(V((\mathfrak{p}B)_{\mathfrak{p}}))$. Then $(\mathfrak{p}B)_{\mathfrak{p}} \subseteq \mathfrak{q}_{\mathfrak{p}}$ so that $\mathfrak{p}B \subseteq \mathfrak{q}_{\mathfrak{p}}^c = \mathfrak{q}$, and hence $f(\mathfrak{p}) \subseteq \mathfrak{q}$. So we see that $\mathfrak{p} \subseteq f^{-1}(\mathfrak{q})$. On the other hand, it is trivial to check that $f^{-1}(\mathfrak{q}) \subseteq \mathfrak{p}$ since $\mathfrak{q} \cap f(A - \mathfrak{p}) = \emptyset$. So the claim is established. Now we have a chain of isomorphisms between $A_{\mathfrak{p}}$ -modules

$$B_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}}B_{\mathfrak{p}} = B_{\mathfrak{p}}/(\mathfrak{p}B)_{\mathfrak{p}}$$

$$\cong (B/\mathfrak{p}B)_{\mathfrak{p}}$$

$$\cong A_{\mathfrak{p}} \otimes_{A} B/\mathfrak{p}B$$

$$\cong A_{\mathfrak{p}} \otimes_{A} (A/\mathfrak{p} \otimes_{A} B)$$

$$\cong (A/\mathfrak{p} \otimes_{A} A_{\mathfrak{p}}) \otimes_{A} B$$

$$\cong A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \otimes_{A} B$$

$$= A_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}} \otimes_{A} B$$

$$= k(\mathfrak{p}) \otimes_{A} B$$

Specifically, the map is given by

$$b/f(x) + \mathfrak{p}_{\mathfrak{p}}B_{\mathfrak{p}} \mapsto (1/x + \mathfrak{p}_{\mathfrak{p}}) \otimes b$$

It is easy to see that this preserves the product structure of our rings. Consequently, $\operatorname{Spec}(B_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}}B_{\mathfrak{p}}) = \operatorname{Spec}(k(\mathfrak{p}) \otimes_A B)$.

3.22. Let A be a ring and p a prime ideal in A. Show that the canonical image $X_{\mathfrak{p}}$ of $\operatorname{Spec}(A_{\mathfrak{p}})$ in $X = \operatorname{Spec}(A)$ is equal to the intersection of all open neighborhoods of p in X.

As in 3.21, $X_{\mathfrak{p}}$ consists of all prime ideals in A that have empty intersection with $S = A - \mathfrak{p}$, that is, the prime ideals contained in \mathfrak{p} . Suppose $\mathfrak{q} \not\subseteq \mathfrak{p}$, so that $\mathfrak{p} \notin V(\mathfrak{q})$. Then $\mathfrak{q} \notin X - V(\mathfrak{q})$, even though $X - V(\mathfrak{q})$ is an open neighborhood of \mathfrak{p} in X. Conversely, if $\mathfrak{q} \subseteq \mathfrak{p}$, then $\mathfrak{p} \in X - V(E)$ implies that $E \not\subseteq \mathfrak{p}$, and consequently $E \not\subseteq \mathfrak{q}$, so that $\mathfrak{q} \in X - V(E)$. So we are done.

- 3.23? Let A be a ring with X = Spec(A) and assume that $U = X_f = A V(f)$ for some $f \in A$. Show the following.
 - a. The ring $A(U) := A_f$ is independent of f.

Suppose that $X_f = X_g$, so that $f \in r((g))$ and $g \in r((f))$, as according to exercise 1.17. Then $f^m = ag$ and $g^n = bf$ for some $a, b \in A$ and m, n > 0. Define

$$F: A_f \to A_q$$
 by $F(x/f^p) = xb^p/g^{np}$

and define

$$G: A_q \to A_f$$
 by $G(x/g^p) = xa^p/f^{mp}$

Notice that

$$\begin{split} G(F(x/f^p)) &= G(xb^p/g^{np}) \\ &= G(xb^pa^{np}/f^{mnp}) \\ &= xb^pa^{np}/a^{np}g^{np} \\ &= xb^p/b^pf^p \\ &= x/f^p \end{split}$$

Similarly, $F(G(x/g^p)) = x/g^p$. Thus, F and G are bijections and inverse to one another. Another tedious calculation reveals that F is additive since

$$F(x/f^{p} + x'/f^{q}) = F((f^{q}x + f^{p}x')/f^{p+q})$$

= $(f^{q}x + f^{p}x')b^{p+q}/g^{n(p+q)}$
= $(f^{q}x + f^{p}x')b^{p+q}/b^{p+q}f^{p+q}$
= $x/f^{p} + x'/f^{q}$

Clearly F and G respect the multiplication. Lastly, F and G are well-defined: suppose $x/f^p = 0/1$ in A_f so that $f^q x = 0$ for some q. Then clearly $b^p b^q f^q x = 0$, so that $g^{nq} x b^p = 0$, implying that $x b^p/g^{np} = 0/1$ in A_g . Hence, A_f and A_g are isomorphic, as desired.

b. Suppose $U' = X_g$ satisfies $U' \subseteq U$. There is a natural homomorphism $\rho : A(U) \to A(U')$ that is independent of f, g.

If $U' \subseteq U$ then $V(f) \subseteq V(g)$, so that any prime ideal containing f contains g. This means that $g \in r(f)$, so that $g^m = af$ for some m > 0 and some $a \in A$. As in part a, we define a map

$$\rho: A_f \to A_q$$
 by $\rho(x/f^r) = xa^r/g^{mr}$

This is a well-defined ring homomorphism. Now suppose $X_f = X_{f'}$ and $X_g = X_{g'}$. Then we have equations

$$(f')^n = bf \qquad (g')^p = cg \qquad (g')^q = df'$$

Define maps

$$F: X_f \to X_{f'}$$
 by $F(x/f^r) = xb^r/f'^{nr}$

and

$$G: X_q \to X_{q'}$$
 by $G(x/q^r) = xc^r/q'^{pr}$

we also need

$$\rho': X_{f'} \to X_{q'}$$
 by $\rho'(x/f'^r) = xd^r/g'^{qr}$

To say that ρ is independent of f and g is to say that $\rho' \circ F = G \circ \rho$. But $\rho'(F(x/f^r)) = xb^r d^{nr}/g'^{qnr}$ and $G(\rho_{fg}(x/f^r)) = xa^r c^{mr}/g'^{mpr}$. Using the equations above we see that

$$(b^r d^{nr})g'^{mpr} - (a^r c^{mr})g'^{qnr} = 0$$

So equality follows, showing that ρ is independent of f, g.

c. If
$$U' = U$$
 then $\rho = id$.

This follows from part b.

d. If $U'' \subseteq U' \subseteq U$ then ρ acts 'functorially'.

Write $U'' = X_h, U' = X_q, U = X_f$. We can write $g^m = af$ and $h^n = bg$.

e. If $\mathfrak{p} \in X$ then $\lim_{\mathfrak{p} \in U} A(U) \cong A_{\mathfrak{p}}$.

3.25. Let $f : A \to B$ and $g : A \to C$ be ring homomorphisms. Suppose $h : A \to B \otimes_A C$ is defined by $h(a) = f(a) \otimes 1 = 1 \otimes g(a)$. Define X, Y, Z, T to be the spectra of $A, B, C, B \otimes_A C$ respectively. Show that $h^*(T) = f^*(Y) \cap g^*(Z)$.

Let $\mathfrak{p} \in X$ and define $k = k(\mathfrak{p})$. We have a natural homeomorphism between $h^{*-1}(\mathfrak{p})$ and $\operatorname{Spec}((B \otimes_A C) \otimes_A k)$, and also

$$(B \otimes_A C) \otimes_A k \cong B \otimes_A k \otimes_A C$$
$$\cong B \otimes_A (k \otimes_k k) \otimes_A C$$
$$\cong B \otimes_A (k \otimes_k (k \otimes_A C))$$
$$\cong B \otimes_A (k \otimes_k (C \otimes_A k))$$
$$\cong (B \otimes_A k) \otimes_k (C \otimes_A k)$$

Now $\mathfrak{p} \in h^*(T)$ precisely when $h^{*-1}(\mathfrak{p}) \neq \emptyset$. By the natural homeomorphism this occurs precisely when Spec($(B \otimes_A C) \otimes_A k$) $\neq \emptyset$. Now the spectrum of any ring is nonempty if and only if that ring is nonzero. Since $B \otimes_A k$ and $C \otimes_A k$ are vector spaces over k, we see that $(B \otimes_A k) \otimes_k (C \otimes_A k) \neq 0$ if and only if $B \otimes_A k \neq 0$ and $C \otimes_A k \neq 0$. Again, this occurs precisely when $\mathfrak{p} \in f^*(Y)$ and $\mathfrak{p} \in g^*(Z)$. So we are done.

3.26. Let $(B_{\alpha}, g_{\alpha\beta})$ be a direct system of rings and B the direct limit. For each α let $f_{\alpha} : A \to B_{\alpha}$ be a ring homomorphism satisfying $g_{\alpha\beta} \circ f_{\alpha} = f_{\beta}$ whenever $\alpha \leq \beta$. Then there is an induced map $f : A \to B$. Show that

$$f^*(\operatorname{Spec}(B)) = \bigcap_{\alpha} f^*_{\alpha}(\operatorname{Spec}(B_{\alpha}))$$

Let $\mathfrak{p} \in \operatorname{Spec}(A)$. Then $\mathfrak{p} \notin f^*(\operatorname{Spec}(B))$ precisely when $f^*(\mathfrak{p}) = \emptyset$. This occurs precisely when $\operatorname{Spec}(B \otimes_A k(\mathfrak{p})) = \emptyset$. As in exercise 25, this happens if and only if $B \otimes_A k(\mathfrak{p}) = 0$. But we have the isomorphism

$$B \otimes_A k(\mathfrak{p}) \cong \lim(B_\alpha \otimes_A k(\mathfrak{p}))$$

since the direct limit commutes with tensor products. So $B \otimes_A k(\mathfrak{p}) = 0$ if and only if some $B_\alpha \otimes_A k(\mathfrak{p}) = 0$. Again, this occurs precisely when $\mathfrak{p} \notin f^*_\alpha(\operatorname{Spec}(B_\alpha))$ for some α . So we are done.

3.27? Prove the following.

a. Let $f_{\alpha}: A \to B_{\alpha}$ be any family of A-algebras and let $f: A \to B$ be their tensor product over A. Then

$$f^*(\operatorname{Spec}(B)) = \bigcap_{\alpha} f^*_{\alpha}(\operatorname{Spec}(B_{\alpha}))$$

b. Let $f_{\alpha} : A \to$

c.

d. The space X endowed with the constructible topology (denoted hereafter as X_C) is compact.

3.28? Prove the following results.

- a. X_g is open and closed in the constructible topology.
- b. Let C' denote the smallest topology on X for which the sets X_g are both open and closed, and let $X_{C'}$ denote the set X with this topology. Show that $X_{C'}$ is Hausdorff.

- c. Deduce that the identity map $X_C \to X_{C'}$ is a homeomorphism. Hence, a subset E of X is of the form $f^*(\text{Spec}(B))$ for some $f: A \to B$ if and only if it is closed in C'.
- d. X_C is compact Hausdorff and totally disconnected.
- 3.29? Show that, for $f : A \to B$, the map $f^* : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is a continuous and closed mapping, when $\operatorname{Spec}(A)$ and $\operatorname{Spec}(B)$ are given the constructible topology.
- 3.30? Show that the Zariski topology and the constructible topology on Spec(A) coincide iff $A/\mathfrak{N}(A)$ is absolutely flat.

If the two topologies coincide, then $\operatorname{Spec}(A)$ is Hausdorff in the Zariski topology, and so $A/\mathfrak{N}(A)$ is absolutely flat. Suppose then that $A/\mathfrak{N}(A)$ is absolutely flat. Let $f : A \to B$ be a ring homomorphism so that $f^*(\operatorname{Spec}(A))$ is closed in the constructible topology.

Chapter 4 : Primary Decomposition

4.1. If the ideal $\mathfrak a$ has a primary decomposition in A, then $\operatorname{Spec}(A/\mathfrak a)$ has finitely many irreducible components.

The minimal elements in the set of all prime ideals containing \mathfrak{a} is precisely the set of isolated primes belonging to \mathfrak{a} in any primary decomposition of \mathfrak{a} . But the isolated primes belonging to \mathfrak{a} are uniquely determined, so that there are finitely many minimal elements in the set of all prime ideals containing \mathfrak{a} . This means that there are finitely many minimal prime ideals in A/\mathfrak{a} . Also, the irreducible components of $\text{Spec}(A/\mathfrak{a})$ are of the form $V(\mathfrak{p})$, where \mathfrak{p} is a minimal prime ideal in A/\mathfrak{a} . So $\text{Spec}(A/\mathfrak{a})$ has finitely many irreducible components.

4.2. If a = r(a) then a has no embedded prime ideals.

Let Σ consist of all the prime ideals containing \mathfrak{a} , and let $\Sigma' \subseteq \Sigma$ consist of the minimal elements in Σ . Then

$$\mathfrak{a}=r(\mathfrak{a})=\bigcap_{\mathfrak{p}\in\Sigma}\mathfrak{p}=\bigcap_{\mathfrak{p}\in\Sigma'}\mathfrak{p}$$

Since \mathfrak{a} is decomposable, Σ' is finite. By using proposition 1.11 we see that \mathfrak{a} has the minimal primary decomposition

$$\mathfrak{a} = \bigcap_{\mathfrak{p} \in \Sigma'} \mathfrak{p}$$

But the first uniqueness theorem tells us that $\{\mathfrak{p} : \mathfrak{p} \in \Sigma'\}$ is uniquely determined by \mathfrak{a} . We conclude that \mathfrak{a} has no embedded prime ideals.

4.3. Every primary ideal in A is maximal if A is absolutely flat.

Let \mathfrak{q} be a \mathfrak{p} -primary ideal in A. If A is absolutely flat then so is $A/\mathfrak{N}(A)$, since it is a homomorphic image of A. This tells us that every prime ideal in A is maximal. In particular $A_{\mathfrak{p}}$ is a field. This means that (0) is the only primary ideal in $A_{\mathfrak{p}}$. Now the correspondence in Prop 4.8 tells us that $\mathfrak{q} = \mathfrak{p}$.

After all, if $\mathfrak{p}' \cap (A - \mathfrak{p}) = \emptyset$ with \mathfrak{p}' a prime ideal, then $\mathfrak{p}' \subseteq \mathfrak{p}$, so that $\mathfrak{p}' = \mathfrak{p}$. So the \mathfrak{p} -primary ideals are in a bijective correspondence with the primary ideals in $A_{\mathfrak{p}}$. But there is only one primary ideal in $A_{\mathfrak{p}}$, and we already know that \mathfrak{p} is a \mathfrak{p} -primary ideal since \mathfrak{p} is a maximal ideal. This forces us to conclude that $\mathfrak{q} = \mathfrak{p}$.

4.4. In the polynomial ring $\mathbb{Z}[t]$, the ideal $\mathfrak{m} = (2, t)$ is maximal and the ideal $\mathfrak{q} = (4, t)$ is m-primary, but \mathfrak{q} is not a power of \mathfrak{m} .

 \mathfrak{m} is a maximal ideal since $\mathbb{Z}[t]/\mathfrak{m} \cong \mathbb{Z}_2$ is a field. Clearly $\mathfrak{q} \subseteq \mathfrak{m} \subseteq r(\mathfrak{q})$. Since \mathfrak{m} is a prime ideal we have $\mathfrak{m} = r(\mathfrak{q})$. Since \mathfrak{m} is maximal we conclude that \mathfrak{q} is \mathfrak{m} -primary. Now $(4, 4t, t^2) = \mathfrak{m}^2 \subseteq \mathfrak{q} \subseteq \mathfrak{m}$. The first inclusion is strict since $t \in \mathfrak{q} - \mathfrak{m}^2$, and the second inclusion is strict since $2 \in \mathfrak{m} - \mathfrak{q}$. So \mathfrak{q} is not a power of \mathfrak{m} .

4.5. Let K be a field and A = K[x, y, z]. Write $\mathfrak{p}_1 = (x, y), \mathfrak{p}_2 = (x, z)$, and $\mathfrak{m} = (x, y, z)$, so that \mathfrak{p}_1 and \mathfrak{p}_2 are prime ideals, while \mathfrak{m} is maximal. Let $\mathfrak{a} = \mathfrak{p}_1 \mathfrak{p}_2$. Show that $\mathfrak{a} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ is a minimal primary decomposition of \mathfrak{a} . Which components are isolated and which are embedded?

Notice that $\mathfrak{a} = (x^2, xy, xz, yz)$ so that $\mathfrak{a} \subseteq \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ by inspection. Suppose that $p \in \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$. Since $p \in \mathfrak{m}^2$ we can write

$$p = ax^2 + by^2 + cz^2 + dxy + exz + fyz$$

where $a, b, \ldots \in A$. But c = 0 since $p \in \mathfrak{p}_1$ and b = 0 since $p \in \mathfrak{p}_2$. Hence

$$p = ax^2 + dxy + exz + fyz \in \mathfrak{a}$$

so that $\mathfrak{a} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$. Now we know by proposition 4.2 that \mathfrak{m}^2 is a primary ideal, as are all prime ideals. So $\mathfrak{a} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ is a primary decomposition of \mathfrak{a} . It satisfies the first condition for minimality since $r(\mathfrak{p}_i) = \mathfrak{p}_i$ and $r(\mathfrak{m}^2) = \mathfrak{m}$ are all distinct. The second condition is satisfied since

$$z^2 \in (\mathfrak{p}_2 \cap \mathfrak{m}^2) - \mathfrak{p}_1$$
 $y^2 \in (\mathfrak{p}_1 \cap \mathfrak{m}^2) - \mathfrak{p}_2$ $x \in (\mathfrak{p}_1 \cap \mathfrak{p}_2) - \mathfrak{m}^2$

Thus, the primary decomposition is indeed minimal. Lastly, \mathfrak{p}_1 and \mathfrak{p}_2 are the isolated components and \mathfrak{m}^2 is the embedded component.

4.6. Let X be an infinite compact Hausdorff space and C(X) the ring of all real-valued continuous functions on X. Is the zero ideal decomposable in this ring?

Let \mathfrak{m}_x consist of all $f \in C(X)$ for which f(x) = 0. Then \mathfrak{m}_x is a maximal ideal in X since $C(X)/\mathfrak{m}_x$ is isomorphic with \mathbb{R} under the map $f + \mathfrak{m}_x \mapsto f(x)$. If Σ_x is the set of all prime ideals in C(X) contained in \mathfrak{m}_x , then $\mathfrak{m}_x \in \Sigma_x$, and so Σ_x is nonempty. Let \mathfrak{p}_x be a minimal element in Σ_x . This exists by a straightforward application of Zorn's Lemma. If 0 is decomposable, then there are finitely many minimal prime ideals in C(X), by proposition 4.6. So to show that 0 is not decomposable it suffices to show that $\mathfrak{p}_x \neq \mathfrak{p}_{x'}$ whenever $x \neq x'$. Here we use the fact that X is infinite.

So assume that $x \neq x'$. Choose a neighborhood U of x not containing x'. Notice that X is normal since it is compact Hausdorff. Hence, there is a neighborhood V of x so that $\operatorname{Cl}(V) \subset U$. By Urysohn's Lemma there is $f \in C(X)$ so that f = 0 on $\operatorname{Cl}(V)$ and f(x') = 1. Similarly, there is $g \in C(X)$ so that g = 0 on X - V and g(x) = 1. Then $f \in \mathfrak{p}_x$ since $fg = 0 \in \mathfrak{p}_x$ and $g \notin \mathfrak{p}_x$. Since $f \notin \mathfrak{p}_{x'}$ we see that $\mathfrak{p}_x \neq \mathfrak{p}_{x'}$, as claimed.

- 4.7. If a is an ideal of the ring A, let $\mathfrak{a}[x]$ consist of all polynomials in A[x] with coefficients in a. Show the following.
 - a. The extension of a to A[x] equals $\mathfrak{a}[x]$.

By definition $\mathfrak{a}^e = \mathfrak{a}A[x]$. A moment's worth of thought though shows that $\mathfrak{a}A[x] = \mathfrak{a}[x]$.

b. If \mathfrak{p} is a prime ideal in A then $\mathfrak{p}[x]$ is a prime ideal in A[x].

Define a ring homomorphism

$$A[x] \to (A/\mathfrak{p})[x]$$
 by $\sum a_k x^k = \sum (a_k + \mathfrak{p}) x^k$

This is a surjective map with kernel $\mathfrak{p}[x]$. So $A[x]/\mathfrak{p}[x]$ is isomorphic with $(A/\mathfrak{p})[x]$. But $(A/\mathfrak{p})[x]$ is an integral domain since A/\mathfrak{p} is an integral domain. Therefore, $\mathfrak{p}[x]$ is a prime ideal in A[x].

c. If q is p-primary in A then q[x] is p[x]-primary in A[x].

First $A[x]/\mathfrak{q}[x] \neq 0$ since $1 \notin \mathfrak{q}[x]$. As above, $A[x]/\mathfrak{q}[x]$ is isomorphic with $(A/\mathfrak{q})[x]$. So if $\sum a_k x^k + \mathfrak{q}[x]$ is a zero-divisor in $A[x]/\mathfrak{q}[x]$, then $\sum (a_k + \mathfrak{q})x^k$ is a zero-divisor in $(A/\mathfrak{q})[x]$. Hence, there is $b \in A - \mathfrak{q}$ satisfying $\overline{b} \sum (a_k + \mathfrak{q})x^k = 0$. This means that $ba_k \in \mathfrak{q}$ for all k. So for every k there is n > 0 satisfying $a_k^n \in \mathfrak{q}$. This means that $a_k + \mathfrak{q}$ is nilpotent in A/\mathfrak{q} , and hence $\sum (a_k + \mathfrak{q})x^k$ is nilpotent in $(A/\mathfrak{q})[x]$ as well. Consequently, $\sum a_k x^k + \mathfrak{q}[x]$ is nilpotent in $A[x]/\mathfrak{q}[x]$. So every zero-divisor in $A[x]/\mathfrak{q}[x]$ is nilpotent, implying that $\mathfrak{q}[x]$ is primary.

Notice that $\sum (a_k + \mathfrak{q})x^k \in (A/\mathfrak{q})[x]$ is nilpotent iff each $a_k + \mathfrak{q}$ is nilpotent in A/\mathfrak{q} . This occurs precisely when $a_k \in \mathfrak{p}$. So $\mathfrak{N}((A/\mathfrak{q})[x]) = (\mathfrak{p}/\mathfrak{q})[x]$, and hence $\mathfrak{N}(A[x]/\mathfrak{q}[x]) = \mathfrak{p}[x]/\mathfrak{q}[x]$. This means that

$$r(\mathfrak{q}[x]) = \pi^{-1}(\mathfrak{N}(A[x]/\mathfrak{q}[x])) = \pi^{-1}(\mathfrak{p}[x]/\mathfrak{q}[x]) = \mathfrak{p}[x]$$

d. If $\mathfrak{a} = \bigcap_{i=1}^{n} \mathfrak{q}_i$ is a minimal primary decomposition in A then $\mathfrak{a}[x] = \bigcap_{i=1}^{n} \mathfrak{q}_i[x]$ is a minimal primary decomposition in A[x].

Notice that $\mathfrak{a}[x] = \mathfrak{a}^e \subseteq \bigcap_1^n \mathfrak{q}_k^e = \bigcap_1^n \mathfrak{q}_k[x]$. On the other hand, if $\sum a_k x^k \notin \mathfrak{a}[x]$, then some $a_k \notin \mathfrak{a}$, and so $a_k \notin \mathfrak{q}_j$ for some j. But then $\sum a_k x^k \notin \mathfrak{q}_j[x]$. Therefore, $\mathfrak{a}[x] = \bigcap_1^n \mathfrak{q}_k[x]$ is a primary decomposition of $\mathfrak{a}[x]$. Notice that $\mathfrak{p}_k[x] \neq \mathfrak{p}_j[x]$ whenever $\mathfrak{p}_k \neq \mathfrak{p}_j$. Also, $\mathfrak{q}_k[x] \supseteq \bigcap_{j \neq k} \mathfrak{q}_j[x]$ would imply that

$$\mathfrak{q}_k = \mathfrak{q}_k[x]^c \supseteq \left(\bigcap_{j \neq k} \mathfrak{q}_j[x]\right)^c = \bigcap_{j \neq k} \mathfrak{q}_j[x]^c = \bigcap_{j \neq k} \mathfrak{q}_j$$

Thus, the primary decomposition for $\mathfrak{a}[x]$ is minimal.

e. If p is a minimal prime ideal of a, then p[x] is a minimal prime ideal of a[x].

Obviously $\mathfrak{p}[x]$ is a prime ideal contained in $\mathfrak{a}[x]$. So suppose that \mathfrak{q} is a prime ideal for which $\mathfrak{q} \subseteq \mathfrak{p}[x]$. Then $\mathfrak{q}^c \subseteq \mathfrak{p}$ and \mathfrak{q}^c is a prime ideal, so that $\mathfrak{q}^c = \mathfrak{p}$. But now $\mathfrak{p}[x] = \mathfrak{p}^e = \mathfrak{q}^{ce} \subseteq \mathfrak{q} \subseteq \mathfrak{p}[x]$, and hence $\mathfrak{q} = \mathfrak{p}[x]$. Thus, $\mathfrak{p}[x]$ is a minimal prime ideal of $\mathfrak{a}[x]$.

4.8? Let k be a field. Show that in $k[x_1, \ldots, x_n]$ the ideals $\mathfrak{p}_i = (x_1, \ldots, x_i)$ are prime and that all their powers are primary.

Write $A_n = k[x_1, \ldots, x_n]$. Each \mathfrak{p}_i is a prime ideal since $A_n/\mathfrak{p}_i \cong A_{n-i}$ is an integral domain. Now since (x) is maximal in k[x], every power of (x) is primary in k[x]. So the result holds for A_1 . We proceed by induction by assuming the result holds for A_n . Every power of \mathfrak{p}_{n+1} is primary in A_{n+1} since \mathfrak{p}_{n+1} is maximal in A_{n+1} . If i < n+1 then every power of \mathfrak{p}_i is primary in A_n by induction.

4.9. In a ring A, let D(A) consist of all prime ideals p that satisfy the following condition: there is $a \in A$ so that p is minimal in the set of prime ideals containing Ann(a). Show the following.

Notice that Ann(a) is a proper ideal in A for $a \neq 0$ (and $A \neq 0$) since $1 \notin Ann(a)$. So there is a maximal ideal containing Ann(a), implying that the set of all prime ideals containing Ann(a) is non-empty. If we order this set by reverse inclusion, then it is clearly chain complete. So Zorn's Lemma yields minimal elements.

a. x is a zero-divisor iff $x \in \mathfrak{p}$ for some $\mathfrak{p} \in D(A)$.

Suppose xy = 0 with $y \neq 0$. Then $x \in (0 : y) \subseteq \mathfrak{p}$ for some $\mathfrak{p} \in D(A)$. Conversely, suppose $\mathfrak{p} \in D(A)$. We have to show that \mathfrak{p} consists of zero-divisors.

b. After identifications, $D(S^{-1}A) = D(A) \cap \operatorname{Spec}(S^{-1}A)$.

Let $\mathfrak{p} \in D(A) \cap \operatorname{Spec}(S^{-1}A)$ so that \mathfrak{p} is a minimal element in the set of all prime ideals containing (0:a) for some $a \in A$, and $\mathfrak{p} \cap S = \emptyset$. Define a prime ideal $\mathfrak{q} = S^{-1}\mathfrak{p}$ in $S^{-1}A$ and notice that $(0:a/1) \subseteq \mathfrak{q}$. Suppose $(0:a/1) \subseteq S^{-1}\mathfrak{r} \subseteq \mathfrak{q}$, with \mathfrak{r} a prime ideal in A that does not meet S. Then $(0:a) \subseteq (0:a/1)^c \subseteq \mathfrak{r} \subseteq \mathfrak{p}$ so that $\mathfrak{r} = \mathfrak{p}$, and hence $S^{-1}\mathfrak{r} = \mathfrak{q}$. It follows that \mathfrak{q} is minimal in the set of prime ideals in $S^{-1}A$ containing (0:a/1), and hence $\mathfrak{q} \in D(S^{-1}A)$. Thus $D(A) \cap \operatorname{Spec}(S^{-1}A) \subseteq D(S^{-1}A)$. Conversely, suppose that $\mathfrak{q} \in D(S^{-1}A)$ so that \mathfrak{q} is a minimal element in the set of prime ideals in $S^{-1}A$ containing (0:a/s). Write $\mathfrak{q} = S^{-1}\mathfrak{p}$ with \mathfrak{p} a prime ideal in A that does not meet S. Since (0:a/1) = (0:a/s) we have $(0:a) \subseteq (0:a/1)^c \subseteq \mathfrak{p}$. Suppose $(0:a) \subseteq \mathfrak{r} \subseteq \mathfrak{p}$

with \mathfrak{r} a prime ideal in A. Then \mathfrak{r} does not meet S, and hence $(0 : a/1) \subseteq S^{-1}\mathfrak{r} \subseteq \mathfrak{q}$. After all, if $a/1 \cdot b/t = 0/1$ so that abu = 0 for some $u \in S$, then $bu \in (0 : a) \subseteq \mathfrak{r}$, and hence $b/t = bu/tu \in S^{-1}\mathfrak{r}$. Thus, $S^{-1}\mathfrak{r} = \mathfrak{q}$, implying that $\mathfrak{r} = \mathfrak{p}$; showing that \mathfrak{p} is minimal in the set of all prime ideals containing (0 : a). Therefore, $\mathfrak{q} \in D(A) \cap \operatorname{Spec}(S^{-1}A)$. Hence, $D(S^{-1}A) = D(A) \cap \operatorname{Spec}(S^{-1}A)$ after our identifications.

c. If the zero ideal has a primary decomposition, then D(A) is the set of all prime ideals belonging to 0.

Suppose \mathfrak{p} is a prime ideal belonging to 0 so that \mathfrak{p} is a minimal element in the set of all prime ideals containing 0 = (0:1). Then \mathfrak{p} is an element of D(A). Conversely, suppose $\mathfrak{p} \in D(A)$ and \mathfrak{p} is minimal in the set of all prime ideals containing (0:a).

4.10. For any prime \mathfrak{p} , let $S_{\mathfrak{p}}(0) = \operatorname{Ker}(A \to A_{\mathfrak{p}})$. Prove the following.

a. We have the containment $S_{\mathfrak{p}}(0) \subseteq \mathfrak{p}$.

If a is in $S_{\mathfrak{p}}(0)$, then a/1 = 0 in $A_{\mathfrak{p}}$. So there is $s \in A - \mathfrak{p}$ for which $as = 0 \in \mathfrak{p}$. But then $a \in \mathfrak{p}$ since $s \notin \mathfrak{p}$. Thus, $S_{\mathfrak{p}}(0) \subseteq \mathfrak{p}$.

b. $r(S_{\mathfrak{p}}(0)) = \mathfrak{p}$ if and only if \mathfrak{p} is a minimal prime ideal in A.

The prime ideals of $A_{\mathfrak{p}}$ are in a bijective correspondence with the prime ideals that don't meet $S = A - \mathfrak{p}$. That is, they correspond bijectively with prime ideals contained in \mathfrak{p} . When \mathfrak{p} is minimal, we see that $A_{\mathfrak{p}}$ has precisely one prime ideal, namely $\mathfrak{p}_{\mathfrak{p}}$. Hence, $\mathfrak{p}_{\mathfrak{p}}$ is the nilradical of $A_{\mathfrak{p}}$. So if $a \in \mathfrak{p}$ then $(a/1)^n = 0$ in $A_{\mathfrak{p}}$ for some n > 0, and therefore $a^n \in S_{\mathfrak{p}}(0)$. Hence $\mathfrak{p} \subseteq r(S_{\mathfrak{p}}(0))$. On the other hand, $r(S_{\mathfrak{p}}(0)) \subseteq r(\mathfrak{p}) = \mathfrak{p}$. Hence $\mathfrak{p} = r(S_{\mathfrak{p}}(0))$.

Suppose that \mathfrak{p} is not minimal. Then there is prime $\mathfrak{q} \subsetneq \mathfrak{p}$. So by the correspondence in the above paragraph, $\mathfrak{N}(A_{\mathfrak{p}}) \subsetneq \mathfrak{p}_{\mathfrak{p}}$. There is thus $a \in \mathfrak{p}$ for which $(a/1)^n \neq 0$ in $A_{\mathfrak{p}}$ for any n > 0. This means that $a \notin r(S_{\mathfrak{p}}(0))$, and so $\mathfrak{p} \neq r(S_{\mathfrak{p}}(0))$.

c. If $\mathfrak{p}' \subseteq \mathfrak{p}$ are prime ideals, then $S_{\mathfrak{p}}(0) \subseteq S_{\mathfrak{p}'}(0)$.

If $a \in S_{\mathfrak{p}}(0)$ then as = 0 for some $s \in A - \mathfrak{p} \subseteq A - \mathfrak{p}'$, and hence $a \in S_{\mathfrak{p}'}(0)$. Therefore $S_{\mathfrak{p}}(0) \subseteq S_{\mathfrak{p}'}(0)$.

d. The intersection $\bigcap_{\mathfrak{p}\in D(\mathfrak{a})} S_{\mathfrak{p}}(0)$ equals 0.

Suppose that $x \neq 0$ and notice that $(0:x) \neq (1)$. So there is a minimal \mathfrak{p} in the set of prime ideals containing (0:x). If $x \in S_{\mathfrak{p}}(0)$, then for some $s \in A - \mathfrak{p}$ we have sx = 0. This contradicts the equation $(0:x) \subseteq \mathfrak{p}$. Therefore, $x \notin S_{\mathfrak{p}}(0)$; and hence $\bigcap_{\mathfrak{p} \in D(A)} S_{\mathfrak{p}}(0) = 0$.

4.11. If \mathfrak{p} is a minimal prime ideal in A, show that $S_{\mathfrak{p}}(0)$ is the smallest \mathfrak{p} -primary ideal. Let \mathfrak{a} be the intersection of the ideals $S_{\mathfrak{p}}(0)$ as \mathfrak{p} runs through the minimal prime ideals in A. Show that $\mathfrak{a} \subseteq \mathfrak{N}(A)$. Suppose that the zero ideal is decomposable. Prove that $\mathfrak{a} = 0$ iff every prime ideal of $\mathbf{0}$ is isolated.

As above $r(S_{\mathfrak{p}}(0)) = \mathfrak{p}$ whenever \mathfrak{p} is a minimal prime ideal in A. Now suppose that $xy \in S_{\mathfrak{p}}(0)$ with $x \notin S_{\mathfrak{p}}(0)$. Choose $s \in A - \mathfrak{p}$ with sxy = 0. Then $sy \in \mathfrak{p}$ (for otherwise $x \in S_{\mathfrak{p}}(0)$), and so $y \in \mathfrak{p} = r(S_{\mathfrak{p}}(0))$. This means that $y^n \in S_{\mathfrak{p}}(0)$ for some n > 0. Hence, $S_{\mathfrak{p}}(0)$ is \mathfrak{p} -primary.

Now let \mathfrak{q} be any \mathfrak{p} -primary ideal, with \mathfrak{p} a minimal prime ideal. If $x \in S_{\mathfrak{p}}(0)$ then $0 = sx \in \mathfrak{q}$ for some $s \in A - \mathfrak{p}$. If $x \notin \mathfrak{q}$ then $s^n \in \mathfrak{q}$ for some n > 0. But this is impossible since $A - \mathfrak{p}$ is multiplicatively closed. Therefore $S_{\mathfrak{p}}(0) \subseteq \mathfrak{q}$.

It is clear that $\mathfrak{a} \subseteq \mathfrak{N}(A)$ since we always have $S_{\mathfrak{p}}(0) \subseteq \mathfrak{p}$ and since $\mathfrak{N}(A)$ is the intersection of all the minimal prime ideals in A.

Suppose that the zero ideal is decomposable and that $\mathfrak{a} = 0$. Then there are finitely many minimal prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ in A. Notice that $0 = \mathfrak{a} = \bigcap_{i=1}^n S_{\mathfrak{p}_i}(0)$ is a primary decomposition since each $S_{\mathfrak{p}_i}(0)$ is a \mathfrak{p}_i -primary ideal. From this we see that the prime ideals belonging to 0 are all isolated.

Suppose that the zero ideal is decomposable and that every prime ideal belonging to 0 is isolated. Write $0 = \bigcap_{i=1}^{n} \mathfrak{q}_i$ and let $\mathfrak{p}_i = r(\mathfrak{q}_i)$. Then each \mathfrak{p}_i is a minimal prime ideal in A. Therefore $S_{\mathfrak{p}_i}(0) \subseteq \mathfrak{q}_i$ so that $\mathfrak{a} = 0$.

4.12? Let S be a multiplicatively closed subset of A. For any ideal \mathfrak{a} , let $S(\mathfrak{a})$ denote the contraction of $S^{-1}\mathfrak{a}$ in A. The ideal $S(\mathfrak{a})$ is called the saturation of \mathfrak{a} with respect to S. Prove the following.

a. $S(\mathfrak{a}) \cap S(\mathfrak{b}) = S(\mathfrak{a} \cap \mathfrak{b})$

This follows directly from proposition 1.18.

b. $S(r(\mathfrak{a})) = r(S(\mathfrak{a}))$

This follows directly from proposition 1.18.

c. $S(\mathfrak{a}) = (1)$ iff \mathfrak{a} meets S.

This follows directly from proposition 3.11.

d. $S_1(S_2(\mathfrak{a})) = (S_1S_2)(\mathfrak{a})$

Notice that S_1S_2 is a multiplicatively closed subset of A. Suppose $x \in S_1(S_2(\mathfrak{a}))$ so that $x/1 = y/s_1$ for some $y \in S_2(\mathfrak{a})$ and $y/1 = a/s_2$ for some $a \in A$. Choose s'_1, s'_2 with $s'_1(xs_1 - y) = 0$ and $s'_2(ys_2 - a) = 0$. Then $s'_1s'_2(s_1s_2x - a) = s'_1s_2s'_2y - s'_1s'_2a = 0$ so that $x/1 = a/s_1s_2$ and hence $x \in (S_1S_2)(\mathfrak{a})$. Conversely, if $x/1 = a/s_1s_2$ then ????

e. If a is decomposable then the set of S(a) is finite.

4.13. Let A be a ring and p a prime ideal in A. Define the nth symbolic power $\mathfrak{p}^{(n)}$ of p by $\mathfrak{p}^{(n)} = S_{\mathfrak{p}}(\mathfrak{p}^n)$. Prove the following.

a. $\mathfrak{p}^{(n)}$ is a p-primary ideal.

Notice first that $r(S_{\mathfrak{p}}(\mathfrak{p}^n)) = S_{\mathfrak{p}}(r(\mathfrak{p}^n)) = S_{\mathfrak{p}}(\mathfrak{p}) = \mathfrak{p}$. Now $r((\mathfrak{p}^n)_{\mathfrak{p}}) = (r(\mathfrak{p}^n))_{\mathfrak{p}} = \mathfrak{p}_{\mathfrak{p}}$ is the maximal ideal in $A_{\mathfrak{p}}$ so that $(\mathfrak{p}^n)_{\mathfrak{p}}$ is primary in $A_{\mathfrak{p}}$. This means that its contraction (i.e. $\mathfrak{p}^{(n)}$) is primary in A, and hence is \mathfrak{p} -primary.

b. If p^n has a primary decomposition, then $p^{(n)}$ is its p-component.

Suppose $\mathfrak{p}^n = \bigcap_{i=1}^m \mathfrak{q}_i$ is a minimal primary decomposition of \mathfrak{p}^n , and write $\mathfrak{p}_i = r(\mathfrak{q}_i)$. Assume that \mathfrak{p}_i does not meet $A - \mathfrak{p}$ for $1 \leq i \leq n$ and that \mathfrak{p}_i meets $S - \mathfrak{p}$ for $n < i \leq m$. Then $\mathfrak{p}^{(n)} = \bigcap_{i=1}^n \mathfrak{q}_i$ is a primary decomposition of $\mathfrak{p}^{(n)}$. Now $\mathfrak{p} = r(\mathfrak{p}^{(n)}) = \bigcap_{i=1}^n \mathfrak{p}_i$. But $\mathfrak{p}_i \subseteq \mathfrak{p}$ for $1 \leq i \leq n$, and $\mathfrak{p}_i \neq \mathfrak{p}_j$ for $i \neq j$. Therefore, n = 1 and $\mathfrak{p}_1 = \mathfrak{p}$. This means that $\mathfrak{q}_1 = \mathfrak{p}^{(n)}$. In other words, $\mathfrak{p}^{(n)}$ is the \mathfrak{p} -component of \mathfrak{a} , as claimed.

c. If $\mathfrak{p}^{(m)}\mathfrak{p}^{(n)}$ has a primary decomposition, then $\mathfrak{p}^{(m+n)}$ is its \mathfrak{p} -primary component.

Let $\mathfrak{p}^{(m)}\mathfrak{p}^{(n)} = \bigcap_{i=1}^{m} \mathfrak{q}_i$ be a minimal primary decomposition, and write $\mathfrak{p}_i = r(\mathfrak{q}_i)$. Assume that \mathfrak{p}_i does not meet $A - \mathfrak{p}$ for $1 \leq i \leq n$ and that \mathfrak{p}_i meets $S - \mathfrak{p}$ for $n < i \leq m$. Then $S_{\mathfrak{p}}(\mathfrak{p}^{(m)}\mathfrak{p}^{(n)}) = \bigcap_{i=1}^{n} \mathfrak{q}_i$ so that $\bigcap_{i=1}^{n} \mathfrak{p}_i = r(S_{\mathfrak{p}}(\mathfrak{p}^{(m)}\mathfrak{p}^{(n)})) = S_{\mathfrak{p}}(r(\mathfrak{p}^{(m)}\mathfrak{p}^{(n)})) = S_{\mathfrak{p}}(\mathfrak{p}) = \mathfrak{p}$. So again, n = 1 and $\mathfrak{p}_1 = \mathfrak{p}$. Using Proposition 1.18 we see that $S_{\mathfrak{p}}(\mathfrak{p}^{(m)}\mathfrak{p}^{(n)}) = \mathfrak{p}^{(m+n)}$. So $\mathfrak{q}_1 = \mathfrak{p}^{(m+n)}$, showing that $\mathfrak{p}^{(m+n)}$ is the \mathfrak{p} -primary component of $\mathfrak{p}^{(m)}\mathfrak{p}^{(n)}$.

d. $\mathfrak{p}^{(n)} = \mathfrak{p}^n$ if and only if \mathfrak{p}^n is \mathfrak{p} -primary.

If $\mathfrak{p}^{(n)} = \mathfrak{p}^n$ then \mathfrak{p}^n is \mathfrak{p} -primary by part a. Assume \mathfrak{p}^n is \mathfrak{p} -primary so that $\mathfrak{p}^n = \mathfrak{p}^n$ is a minimal primary decomposition of \mathfrak{p}^n , implying that $\mathfrak{p}^n = \mathfrak{p}^{(n)}$ by part c.

4.14. Let \mathfrak{a} be a decomposable ideal in the ring A and let \mathfrak{p} be a maximal element in $\Sigma = \{(\mathfrak{a} : x) : x \notin \mathfrak{a}\}$. Show that \mathfrak{p} is a prime ideal belonging to \mathfrak{a} .

Let $\mathfrak{p} = (\mathfrak{a} : x)$ be a maximal element in Σ . Suppose $ab \in \mathfrak{p}$ and $b \notin \mathfrak{p}$, so that $abx \in \mathfrak{a}$ and $bx \notin \mathfrak{a}$. Then $(\mathfrak{a} : x) \subseteq (\mathfrak{a} : bx) \in \Sigma$ so that $(\mathfrak{a} : x) = (\mathfrak{a} : bx)$ by maximality. Then $a \in (\mathfrak{a} : bx) = (\mathfrak{a} : x) = \mathfrak{p}$. Therefore, \mathfrak{p} is a prime ideal in A. Also, $\mathfrak{p} = r(\mathfrak{p}) = r(\mathfrak{a} : x)$ is a prime ideal in the set $\{r(\mathfrak{a} : x) | x \in A\}$. Since \mathfrak{a} is a decomposable ideal, the first uniqueness theorem tells us that \mathfrak{p} belongs to \mathfrak{a} .

4.15? Let a be a decomposable ideal, Σ an isolated set of prime ideals belonging to a, and q_{Σ} the intersection of the corresponding primary components. Suppose f is an element of A such that, if \mathfrak{p} belongs to a, then $f \in \mathfrak{p}$ if and only if $\mathfrak{p} \notin \Sigma$. Show that $q_{\Sigma} = S_f(\mathfrak{a}) = (\mathfrak{a} : f^n)$ for all large n.

If \mathfrak{p} belongs to A, then \mathfrak{p} meets $S_f = \{1, f, f^2, \ldots\}$ if and only if $\mathfrak{p} \notin \Sigma$. Therefore, $S_f(\mathfrak{a}) = \bigcap_{\mathfrak{p} \cap S_f = \emptyset} \mathfrak{q} = \mathfrak{q}_{\Sigma}$. Now $S_f(\mathfrak{a}) = \mathfrak{a}^{ec} = \bigcup_{0 \le n} (\mathfrak{a} : f^n)$ so that $(\mathfrak{a} : f^n) \subseteq S_f(\mathfrak{a})$ for all n.

4.16. Suppose A is a ring in which every proper ideal has a primary decomposition. Show that the same holds for $S^{-1}A$.

This follows from proposition 4.9 and the fact that every proper ideal in $S^{-1}A$ is of the form $S^{-1}\mathfrak{a}$ for some proper ideal \mathfrak{a} in A.

4.17? Let A be a ring satisfying (L1) For every proper ideal a and every prime ideal \mathfrak{p} , there exists $x \notin \mathfrak{p}$ such that $S_{\mathfrak{p}}(\mathfrak{a}) = (\mathfrak{a} : x)$. Show that every proper ideal a in A is an intersection of (perhaps infinitely many) primary ideals.

Let \mathfrak{p}_1 be a minimal element in the set of all prime ideals containing \mathfrak{a} . Then $\mathfrak{q}_1 = S_{\mathfrak{p}_1}(\mathfrak{a})$ is \mathfrak{p}_1 -primary. By hypothesis, $\mathfrak{q}_1 = (\mathfrak{a} : x)$ for some $x \notin \mathfrak{p}_1$.

4.18? Show that every proper ideal in A has a primary decomposition if and only if A satisfies the following two conditions.

L1. If a is a proper ideal and p is a prime ideal, then there exists $x \notin p$ such that $S_p(\mathfrak{a}) = (\mathfrak{a} : x)$.

L2. If a is a proper ideal and $S_1 \supseteq S_2 \supseteq \ldots$ is a descending sequence of multiplicatively closed subsets of A, then there exists an N such that $S_n(\mathfrak{a}) = S_N(\mathfrak{a})$ for all $n \ge N$.

Suppose that every proper ideal in A has a primary decomposition. Let \mathfrak{a} be a proper ideal in A, so that \mathfrak{a} has a primary decomposition, and hence the saturations of \mathfrak{a} in A form a finite set by exercise 4.12. This shows that L2 holds for \mathfrak{a} . Let \mathfrak{p} a prime ideal.

4.19? Show that every p-primary ideal contains $S_{\mathfrak{p}}(0)$. Suppose that A satisfies the following condition: for every prime ideal \mathfrak{p} , the intersection of all p-primary ideals equals $S_{\mathfrak{p}}(0)$. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be distinct non-minimal prime ideals in A. Show that there is an ideal \mathfrak{a} whose associated prime ideals are $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$.

Suppose that \mathfrak{p} is a prime ideal in A. Let \mathfrak{q} be a \mathfrak{p} -primary ideal and suppose $a \in S_{\mathfrak{p}}(0)$. Then a/1 = 0/1 so that ab = 0 for some $b \notin \mathfrak{p}$. Since $b^n \notin \mathfrak{q}$ for any n > 0, we see that $a \in \mathfrak{q}$. In other words, $S_{\mathfrak{p}}(0) \subseteq \mathfrak{q}$, as claimed.

Now let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be distinct prime ideals in A, where A satisfies the hypothesis as in the problem statement. If n = 1 then we can take $\mathfrak{a} = \mathfrak{p}_1$. Suppose then that n > 1, and assume \mathfrak{p}_n is a maximal element in $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$. By induction, there is an ideal \mathfrak{b} and a minimal primary decomposition $\mathfrak{b} = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_{n-1}$ with each \mathfrak{q}_i a \mathfrak{p}_i -primary ideal. Suppose for the sake of contradiction that $\mathfrak{b} \subseteq S_{\mathfrak{p}_n}(0)$. Let \mathfrak{p} be a minimal prime ideal in A contained in \mathfrak{p}_n so that $S_{\mathfrak{p}_n}(0) \subseteq S_{\mathfrak{p}}(0)$ by exercise 4.10. Then $\mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_{n-1} = r(\mathfrak{b}) \subseteq r(S_{\mathfrak{p}}(0)) = \mathfrak{p}$ so that $\mathfrak{p}_i \subseteq \mathfrak{p}$ for some i. By minimality, $\mathfrak{p}_i = \mathfrak{p}$ is a minimal prime ideal; a contradiction. Therefore, $\mathfrak{b} \not\subseteq S_{\mathfrak{p}_n}(0)$. Since $S_{\mathfrak{p}_n}(0)$ is the intersection of all \mathfrak{p}_n -primary ideals in A, there is a \mathfrak{p}_n -primary ideal \mathfrak{q}_n such that $\mathfrak{b} \not\subseteq \mathfrak{q}_n$. Now define $\mathfrak{a} = \mathfrak{b} \cap \mathfrak{q}_n$. Obviously $\mathfrak{a} = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$ is a primary decomposition of \mathfrak{a} . We know that $r(\mathfrak{q}_i) = \mathfrak{p}_i \neq \mathfrak{p}_j = r(\mathfrak{q}_j)$ for $i \neq j$, and that $\mathfrak{q}_n \not\supseteq \bigcap_{i \neq n} \mathfrak{q}_i = \mathfrak{b}$. Suppose then that $\mathfrak{q}_i \supseteq \bigcap_{j \neq i} \mathfrak{q}_j$ for $1 \leq i < n$.

Taking radicals we see that $\bigcap_{j \neq i,n} \mathfrak{p}_j \cap \mathfrak{p}_n \subseteq \mathfrak{p}_i$. Either $\bigcap_{j \neq i,n} \mathfrak{p}_j \subseteq \mathfrak{p}_i$ or $\mathfrak{p}_n \subseteq \mathfrak{p}_i$. In the latter case, $\mathfrak{p}_n = \mathfrak{p}_i$ since \mathfrak{p}_n is a maximal element in $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$. But $\mathfrak{p}_n \neq \mathfrak{p}_i$, so that $\bigcap_{j \neq i,n} \mathfrak{p}_j \subseteq \mathfrak{p}_i$.

4.20. Let M be a fixed A-module with submodules N and N'. The radical $r_M(N)$ of N in M is defined to be the set of all $x \in A$ so that $x^q M \subseteq N$ for some q > 0. Establish the following.

a. $r_M(N) = r(N:M) = r(\text{Ann}(M/N))$

It is clear that $r_M(N) = r(N : M)$ so that $r_M(N)$ is an ideal in A. We also know that (N : M) = Ann((N + M)/N) = Ann(M/N) so that the last equality holds as well.

b. $r(r_M(N)) = r_M(N)$

We have $r(r_M(N)) = r(r(N:M)) = r(N:M) = r_M(N)$.

c. $r_M(N \cap N') = r_M(N) \cap r_M(N')$

This follows from

$$r_M(N \cap N') = r(N \cap N' : M)$$

= $r((N : M) \cap (N' : M))$
= $r(N : M) \cap r(N' : M)$
= $r_M(N) \cap r_M(N')$

d. $r_M(N) = A$ if and only if N = M.

Since $r_M(N)$ is an ideal, $r_M(N) = A$ iff $1 \in r_M(N)$ iff M = N.

e. $r_M(N+N') \supseteq r(r_M(N)+r_M(N'))$

Suppose that $x^n \in r_M(N) + r_M(N')$. Write $x^n = y + y'$ with $y^q M \subseteq N$ and $y'^r M \subseteq N'$. Then $x^{n(q+r)}M \subseteq y^q M + y'^r M \subseteq N + N'$ so that $x \in r_M(N+N')$.

- 4.21. Each $a \in A$ defines an endomorphism $\phi_a : M \to M$. a is called a zero-divisor if ϕ_a is not injective, and a is called nilpotent if ϕ_a is nilpotent. A submodule $Q \neq M$ is called primary if every zero-divisor in M/Q is nilpotent. Prove the following.
 - a. If Q is primary in M then (Q:M) is a primary ideal.

Suppose that $ab \in (Q : M)$ with $a \notin (Q : M)$. Choose $x \in M$ with $ax \notin Q$ so that the image of ax in M/Q is nonzero. Then $b(ax) \in Q$ since $abM \subseteq Q$. Since Q is primary, we see that $b^qM \subseteq Q$ for some q > 0. This means that $b^q \in (Q : M)$. Therefore, (Q : M) is a primary ideal in A.

b. If Q_1, \ldots, Q_n are p-primary in M then so is $Q = \bigcap_{i=1}^{n} Q_i$.

We know that $r(Q) = \bigcap_{1}^{n} r(Q_i) = \mathfrak{p}$. Suppose $a \in A$ satisfies $ax \in Q$ for some $x \in M$. If $a^q Q \neq Q$ for any q, then $a \notin r_M(Q) = \mathfrak{p}$. Since Q_i is \mathfrak{p} -primary and $ax \in Q_i$, we conclude that $x \in Q_i$. Thus, $x \in \bigcap_{1}^{n} Q_i = Q$. This means that Q is a primary ideal in A.

c. If Q is p-primary and $x \notin Q$ then (Q:x) is p-primary.

Suppose $a \in (Q:x)$ so $ax \in Q$. Hence, $a^q M \subseteq Q$ for some q > 0. This means that $a \in r_M(Q) = \mathfrak{p}$. So $(Q:M) \subseteq (Q:x) \subseteq \mathfrak{p}$, and hence $r(Q:x) = \mathfrak{p}$, after taking radicals. Now let $ab \in (Q:x)$. If $a \notin \mathfrak{p}$ then $bx \in Q$. After all, $a(bx) \in Q$ and if $bx \notin Q$ then $a \in r(Q:M) = \mathfrak{p}$ since Q is a primary submodule. Thus, either $a \in \mathfrak{p} = r(Q:x)$ or $b \in (Q:x)$. This means that (Q:x) is a \mathfrak{p} -primary ideal in A.

4.22. Let N be a submodule of M. We say that N is decomposable if $N = \bigcap_{i=1}^{n} Q_i$ where each Q_i is a primary submodule of Q. This decomposition is said to be minimal if $r_M(Q_i) \neq r_M(Q_j)$ for $i \neq j$ and if every i we have $Q_i \not\supseteq \bigcap_{j \neq i} Q_j$. Supposing N is a decomposable submodule, show that the primes belonging to N are uniquely determined, and that they are the primes belonging to 0 in M/N.

Let $N = \bigcap_{i=1}^{n} Q_i$ be a minimal primary decomposition. For $x \in M$

$$(N:x) = (\bigcap Q_i:x) = \bigcap (Q_i:x)$$

Taking radicals yields

$$r(N:x) = \bigcap r(Q_i:x) = \bigcap_{x \not\in Q_i} r(Q_i:x) = \bigcap_{x \not\in Q_i} \mathfrak{p}_i$$

where $\mathfrak{p}_i = r_M(Q_i)$. So if r(N:x) is a prime ideal, then $r(N:x) = \mathfrak{p}_i$ for some *i*. Conversely, choose $x_i \in \bigcap_{j \neq i} Q_j - Q_i$ and notice that $r(N:x_i) = \mathfrak{p}_i$. Therefore, the \mathfrak{p}_i are precisely the prime ideals in the set of all r(N:x) as *x* ranges over *M*. This means that the primes belonging to *N* are unique, defined independently of the particular primary decomposition of \mathfrak{a} . Notice that $N \subseteq Q_i$ for each *i*, and so $0 = \bigcap_1^n Q_i/N$ is a primary decomposition of 0 in M/N. This is clearly a minimal primary decomposition with $r_{M/N}(Q_i/N) = r_M(Q_i)$. So the primes belonging to *N* are precisely the primes belonging to 0 in M/N, by the uniqueness theorem proved above.

4.23. Prove analogues of Propositions 4.6 to 4.11.

Let N be a decomposable submodule of M, with minimal primary decomposition $N = \bigcap Q_i$. Write $\mathfrak{p}_i = r(Q_i : M)$ and notice that $(N : M) = \bigcap (Q_i : M) \subseteq (Q_i : M) \subseteq \mathfrak{p}_i$ for every *i*. Suppose \mathfrak{p} be a prime ideal in A containing (N : M). Then $\mathfrak{p} \supseteq r(N : M) = \bigcap r(Q_i : M) = \bigcap \mathfrak{p}_i$ so that $\mathfrak{p}_i \subseteq \mathfrak{p}$ for some *i*. This means that the minimal elements in the set of all prime ideals containing (N : M) are precisely the minimal elements in the set of prime ideals belonging to N.

Suppose that 0 is a decomposable submodule with minimal primary decomposition $0 = \bigcap Q_i$ and $\mathfrak{p}_i = r_M(Q_i)$. Notice that $a \in A$ is a zero-divisor in M iff $a \in \bigcup_{0 \neq x \in M} \operatorname{Ann}(x)$. The set D(M) of $a \in A$ that are zero-divisors clearly satisfies r(D(M)) = D(M) so that $D(M) = \bigcup_{0 \neq x \in M} r(0:x)$. From the work done in exercise 4.22, we know that $r(0:x) = \bigcap_{x \notin Q_i} \mathfrak{p}_i$, and hence $r(0:x) \subseteq \mathfrak{p}_j$ for some j, since x is assumed to be nonzero. Therefore, $D(M) \subseteq \bigcup_1^n \mathfrak{p}_i$. We have $\bigcup_1^n \mathfrak{p}_i \subseteq D(M)$ since $\mathfrak{p}_i = r(0:x)$ for some $x \neq 0$. Thus, we have the equality $\bigcup_1^n \mathfrak{p}_i = D(M)$.

Let S be a multiplicatively closed subset of A. Suppose Q is a p-primary submodule of M. Assume p meets S at s, so that $s^n M \subseteq Q$ for some n. Then $S^{-1}Q$ contains $m/t = (s^n m)/(s^n t)$ for every $m \in M$ and $t \in S$. This means that $S^{-1}Q = S^{-1}M$. On the other hand, assume that $\mathfrak{p} \cap S = \emptyset$. Then $S^{-1}Q$ is an $S^{-1}\mathfrak{p}$ -primary submodule of $S^{-1}M$. We have the canonical map $f: M \to S^{-1}M$ that is a homomorphism of A-modules. Then $f^{-1}(S^{-1}Q) = Q$.

Let N be a decomposable submodule of M, with minimal primary decomposition $N = \bigcap_{1}^{n} Q_{i}$. Suppose S is a multiplicatively closed subset of A. Write $\mathfrak{p}_{i} = r_{M}(Q_{i})$ and assume that $\mathfrak{p}_{i} \cap S = \emptyset$ for $1 \leq i \leq m$, and that \mathfrak{p}_{i} meets S for $m < i \leq n$. By the above paragraph, $S^{-1}N = \bigcap_{1}^{n} S^{-1}Q_{i} = \bigcap_{1}^{m} S^{-1}Q_{i}$ is a primary decomposition of $S^{-1}N$ in $S^{-1}M$. Since the \mathfrak{p}_{i} are distinct, so are the $S^{-1}\mathfrak{p}_{i}$ for $1 \leq i \leq m$. If $S^{-1}Q_{m} \supseteq \bigcap_{1 \leq i < m} S^{-1}Q_{i} = S^{-1}(\bigcap_{1 \leq i < m} Q_{i})$ then $Q_{m} = (S^{-1}Q_{m})^{c} \supseteq (S^{-1}\bigcap_{1 \leq i < m} Q_{i})^{c} \supseteq \bigcap_{1 \leq i < m} Q_{i}$. So $S^{-1}N = \bigcap_{1}^{m} S^{-1}Q_{i}$ is a minimal primary decomposition. Contracting this, we get $S(N) = (S^{-1}N)^{c} = \bigcap_{1}^{m} (S^{-1}Q_{i})^{c} = \bigcap_{1}^{m} Q_{i}$. This is a minimal primary decomposition of S(N) in M.

Let N be a decomposable submodule of M, with minimal primary decomposition $N = \bigcap_{1}^{n} Q_{i}$. Suppose Σ is an isolated set of prime ideals belonging to N, where we write $\mathfrak{p}_{i} = r_{M}(Q_{i})$ as usual. Define $Q_{\Sigma} = \bigcap_{\mathfrak{p}_{i} \in \Sigma} Q_{i}$. Clearly, $S = A - \bigcup_{\mathfrak{p}_{i} \in \Sigma}$ is a multiplicatively closed subset of A. Then $Q_{\Sigma} = S(N)$ depends only on Σ , and is independent of the minimal primary decomposition of N. In particular, the isolated components of N are uniquely determined.

Chapter 5 : Integral Dependence and Valuations

5.1. Let $f: A \to B$ be an integral homomorphism of rings. Show that f^* is a closed map.

Let \mathfrak{q} be a prime ideal in B. I claim that $f^*(V(\mathfrak{q})) = V(f^*(\mathfrak{q}))$. Clearly $f^*(V(\mathfrak{q})) \subseteq V(f^*(\mathfrak{q}))$. Now if $\mathfrak{p} \in V(f^*(\mathfrak{q}))$ then $\operatorname{Ker}(f) \subseteq f^*(\mathfrak{q}) \subseteq \mathfrak{p}$ so that $f(f^*(\mathfrak{q})) \subseteq f(\mathfrak{p})$ is a chain of prime ideals in f(A). Observe that $\mathfrak{q} \cap f(A) = f(f^{-1}(\mathfrak{q})) = f(f^*(\mathfrak{q}))$. Since B is integral over f(A), there is a prime ideal \mathfrak{r} in B containing \mathfrak{q} with $\mathfrak{r} \cap f(A) = f(\mathfrak{p})$. So $\mathfrak{p} = f^{-1}(f(\mathfrak{p})) = f^{-1}(\mathfrak{r} \cap f(A)) = f^{-1}(\mathfrak{r}) = f^*(\mathfrak{r})$ with $\mathfrak{r} \in V(\mathfrak{q})$. This means that f^* is a surjective map, and hence $f^*(V(\mathfrak{q})) = V(f^*(\mathfrak{q}))$, showing that f^* is a closed map.

5.2. Let A be a subring of B so that B is integral over A, and let $f : A \to \Omega$ be a homomorphism of A into an algebraically closed field Ω . Show that f can be extended to a map $B \to \Omega$.

By a straightforward application of Zorn's Lemma there is a subring C of B containing A so that f can be extended to a map $C \to \Omega$ but such that f cannot be extended to a map defined on a subring of B properly containing C. So assume that $C \neq B$ so that we can derive a contradiction. If $b \notin C$ then p(b) = 0 for some monic $p \in C[x]$, where x is an indeterminate. Assume that p is chosen to have minimal degree, so that p is an irreducible polynomial. Since Ω is algebraically closed, p has a root ξ in Ω . Now define $\overline{f}: C[x] \to \Omega$ by $\overline{f}(\sum c_i x^i) = \sum f(c_i)\xi^i$. Then \overline{f} is a ring homomorphism whose kernel contains (p). Hence, \overline{f} induces a ring homomorphism $C[x]/(p) \to \Omega$ given by $\sum c_i x^i + (p) \to \sum f(c_i)\xi^i$. But C[b] and C[x]/(p) are isomorphic rings, so that there is a ring homomorphism $C[b] \to \Omega$ given by $\sum c_i b^i \mapsto \sum f(c_i)\xi^i$. This map extends f to the subring C[b] of B that properly contains C; a contradiction. Hence, f can indeed be extended to a map $B \to \Omega$.

5.3. Let $f: B \to B'$ be a homomorphism of A-algebras, and let C be an A-algebra. If f is integral, prove that $f \otimes 1: B \otimes A \to B' \otimes C$ is integral.

Let $b' \otimes c$ be a generator of $B' \otimes C$. It suffices to show that $b' \otimes c$ is integral over $(f \otimes 1)(B \otimes C)$. Suppose b' is a root of the polynomial $p(x) = \sum_{i=0}^{n} f(b_i)x^i$. Define a polynomial $q(x) = \sum_{i=0}^{n} (f \otimes 1)(b_i \otimes c^{n-i})x^i$. Then $q(b' \otimes c) = p(b') \otimes c^n = 0$. So we are done.

5.4. Suppose $A \subseteq B$ are rings with B integral over A. Let n be a maximal ideal of B and let $\mathfrak{m} = A \cap \mathfrak{n}$ be the corresponding maximal ideal of A. Must B_n be integral over A_m ?

Let k be a field and consider the subring $k[x^2 - 1]$ of k[x]. Since the polynomial x - 1 is irreducible over k, and since k[x] is a principal ideal domain, the ideal $\mathfrak{n} = (x - 1)$ is maximal in k[x]. Thus, $\mathfrak{m} = k[x^2 - 1] \cap \mathfrak{n} = (\text{l.c.m.}\{x^2 - 1, x - 1\}) = (x^2 - 1)$ is a maximal ideal in $k[x^2 - 1]$.

Notice that $x \in k[x]$ is integral over $k[x^2 - 1]$ since x is a root of the polynomial $p(\xi) = \xi^2 - [(x^2 - 1) + 1]$. Since the set of all elements integral over $k[x^2 - 1]$ form a subring of k[x], and since x is integral over $k[x^2 - 1]$, we see that k[x] is indeed integral over $k[x^2 - 1]$.

For the sake of deriving a contradiction, suppose $k[x]_n$ is integral over $k[x^2-1]_m$. Then in particular, 1/(x+1) is integral over $k[x^2-1]_m$ since $x+1 \in k[x]-n$. This means that there are polynomials $p_1, \ldots, p_n \in k[x^2-1]$ and polynomials $q_1, \ldots, q_n \in k[x^2-1] - m$ for which

$$(x+1)^{-n} + (x+1)^{-(n-1)}\frac{p_{n-1}}{q_{n-1}} + \dots + (x+1)^{-1}\frac{p_1}{q_1} + \frac{p_0}{q_0} = 0$$

Define $\hat{q}_i = \prod_{j \neq i} q_j$ and $q = \prod_{j=1}^n q_j$. Clearing the denominators in the above equation yields

$$(x+1)^n p_0 \hat{q}_0 + (x+1)^{n-1} p_1 \hat{q}_1 + \dots + (x+1) p_{n-1} \hat{q}_{n-1} + q = 0$$

This shows that x + 1 divides q. Since $q \in k[x^2 - 1]$, we can choose scalars $r_0, \ldots, r_m \in k$ satisfying

$$q = r_0 + r_1(x^2 - 1) + \dots + r_m(x^2 - 1)^{2m}$$

5.5. Let $A \subseteq B$ be rings with B integral over A. Prove the following.

a. If $x \in A$ is a unit in B then x is a unit in A.

Since $x^{-1} \in B$ we have an equation of the form

$$x^{-n} + a_{n-1}x^{-n+1} + \dots + a_1x^{-1} + a_0 =$$

with n > 0 and each $a_i \in A$. Then

$$x^{-1} = -(a_0 x^{n-1} + a_1 x^{n-2} + \dots + a_{n-1}) \in A$$

since $x \in A$. That is, x is invertible in A.

b. $\Re(A) = A \cap \Re(B)$.

If \mathfrak{m} is a maximal ideal in B then $\mathfrak{m} \cap A$ is a maximal ideal in A. If \mathfrak{n} is a maximal ideal in A, then \mathfrak{n} is a prime ideal in A, so that $\mathfrak{n} = A \cap \mathfrak{m}$ for some prime ideal \mathfrak{m} in B. But now \mathfrak{m} is a maximal ideal in B. So

$$\mathfrak{R}(A) = \bigcap \mathfrak{m} = \bigcap (\mathfrak{m} \cap A) = \bigcap \mathfrak{m} \cap A = \mathfrak{R}(B) \cap A$$

where the first intersection is taken over all maximal ideals in A and the last intersection is taken over all maximal ideals in B.

5.6. Let B_1, \ldots, B_n be integral A-algebras. Show that $B = \prod_{i=1}^n B_i$ is an integral A-algebra as well.

It suffices to assume n = 2. If B_i is given the A-algebra structure induced by $f_i : A \to B_i$, then B is given the A-algebra structure induced by $f : A \to B$ with $f(a) = (f_1(a), f_2(a))$. Suppose $(b_1, b_2) \in B$ so that b_1 is integral over $f_1(A)$. Choose a monic polynomial

$$p(x) = x^m + \sum_{i=0}^{m-1} f_1(a_i) x^i$$
 such that $p(b_1) = 0$

Then define a new monic polynomial with coefficients in f(A) by

$$p'(x) = x^m + \sum_{i=0}^{m-1} f(a_i)x^i$$

so that $p'(b_1, b_2) = (0, b'_2)$ for some $b'_2 \in B$. Choose a monic polynomial

$$q(x) = x^n + \sum_{i=0}^{n-1} f_2(a'_i)x^i$$
 such that $q(b'_2) = 0$

Then define a new monic polynomial with coefficients in f(A) by

$$q'(x) = x^n + \sum_{i=0}^{n-1} f(a'_i) x^i$$

so that $q'(0, b'_2) = (f(a'_0), 0)$. Now define a monic polynomial r with coefficients in f(A) by the equation

$$r(x) = x^{2} + (-f(a'_{0}), -f(a'_{0}))x$$

so that $r(f(a'_0), 0) = (0, 0)$. To summarize, (b_1, b_2) is integral over $f(A)[(0, b'_2), (f(a'_0), 0)]$, the element $(0, b'_2)$ is integral over $f(A)[(f(a'_0), 0)]$, and lastly $(f(a'_0), 0)$ is integral over f(A). Working backwards reveals that (b_1, b_2) is integral over f(A). Hence, $B_1 \times B_2$ is integral over A.

5.7. Let $A \subset B$ be rings so that B - A is closed under multiplication. Show that A is integrally closed in B.

Let C be the integral closure of A in B and suppose that $A \subsetneq C$. Define

 $n = \min\{d : \text{the irreducible polynomial of some } x \in C - A \text{ has degree } d\}$

Clearly n > 1. Suppose $x \in C - A$ has the irreducible polynomial

$$x^{n} + a_{1}x^{n-1} + \dots + a_{n} = 0$$

Then by minimality $x^{n-1} + a_1 x^{n-2} + \cdots + a_{n-1} \notin A$. But

$$x(x^{n-1} + a_1x^{n-2} + \dots + a_{n-1}) = -a_n \in A$$

showing that B - A is not closed under multiplication.

5.8. Suppose $A \subseteq B$ are rings and let C be the integral closure of A in B. Let f, g be monic polynomials in B[x] so that $fg \in C[x]$. Show that $f, g \in C[x]$.

Suppose for the moment that there is a ring D containing B over which f and g split completely into linear factors. Then we can write $f = \prod (x - a_j)$ and $g = \prod (x - b_j)$ for appropriate a_j, b_j in D. Notice that a_j, b_j are roots of fg in D. Since fg is a monic polynomial in C[x], this means that the a_j, b_j are integral over C. Now the coefficients of f and g are polynomials in terms of the a_j, b_j . So these coefficients are themselves integral over C, and are hence integral over A. Since the coefficients of f and g lie in B, they are in C by definition of C. In other words, f and g are in C[x].

So now it suffices to prove that for every ring B and every $f \in B[x]$, there is a ring D containing B over which f splits completely into linear factors. Of course we proceed by induction on $\deg(f) > 0$. Let D' = B[x]/(f), and consider the natural map $B \to B[x] \to B[x]/(f) = D'$. This map is injective since f is monic and has degree greater than 0. Hence, we can consider B as being a subring of D', and we can consider f as being an element of D'[x]. As such, f has the root x + (f). Denote this root by a. Notice that we can choose a monic $q \in D'[x]$ satisfying f(x) = q(x)(x - a) and $\deg(q) = \deg(f) - 1$. By induction there is a ring D containing D' over which q splits completely into linear factors. Now B is a subring of D and f splits completely over D into linear factors. So we are done.

5.9. Suppose $A \subseteq B$ are rings with C the integral closure of A in B. Show that C[x] is the integral closure of A[x] in B[x].

Let $cx^m \in C[x]$ and suppose that c is a root of the polynomial $\sum_{i=0}^n a_i \xi^i \in A[\xi]$. Then cx^m is a root of the polynomial $\sum_{i=0}^n (a_i x^{mn-im})\xi^i \in A[x][\xi]$ so that cx^m is integral over A[x]. Consequently, C[x] is contained in the integral closure of A[x] in B[x]. Now suppose that $f \in B[x]$ is integral over A[x] and choose $g_0, \ldots, g_m \in A[x]$ satisfying

$$f^m + g_{m-1}f^{m-1} + \dots + g_1f + g_0 = 0$$

Let r be an integer that is greater than m and every $\deg(g_i)$. Define

$$\tilde{f} = f - x^{\prime}$$

Of course $-\tilde{f}$ is a monic polynomial in B[x] of degree r and

$$(\tilde{f} + x^r)^m + g_{m-1}(\tilde{f} + x^r)^{m-1} + \dots + g_1(\tilde{f} + x^r) + g_0 = 0$$

We can rewrite this as

$$\tilde{f}^m + h_{m-1}\tilde{f}^{m-1} + \dots + h_1\tilde{f} + h_0 = 0$$

for appropriate $h_i \in B[x]$. Observe that

$$(-\tilde{f})(\tilde{f}^{m-1}+h_{m-1}\tilde{f}^{m-2}+\cdots+h_1)=h_0$$

But $h_0 = x^{rm} + g_{m-1}x^{r(m-1)} + \dots + g_1x^r + g_0 \in A[x] \subseteq C[x]$ and $\deg(h_0) = rm$ with leading coefficient equal to 1. After all

$$\deg(g_i x^{ri}) = \deg(g_i) + ri < r(i+1) \le rm \quad \text{for } 0 \le i \le m-1$$

So h is a monic polynomial. This implies that

$$\tilde{f}^{m-1} + h_{m-1}\tilde{f}^{m-2} + \dots + h_1$$

is monic as well. Now exercise 5.8 tells us that $-\tilde{f} \in C[x]$. Since $x^r \in C[x]$ we see that $f \in C[x]$. So we are done.

5.10. Consider the following conditions and show that $a \Rightarrow b \Leftrightarrow c$.

- a. The map f^* is closed.
- b. The map f has the going-up property.
- c. The map $f^* : \operatorname{Spec}(B/\mathfrak{q}) \to \operatorname{Spec}(A/\mathfrak{p})$ is onto whenever \mathfrak{q} is a prime ideal in B and $\mathfrak{p} = f^*(\mathfrak{q})$.
- $(a \Rightarrow b)$ Suppose that $\mathfrak{p}_1 \subseteq \mathfrak{p}_2$ is a chain of prime ideals in f(A) with $\mathfrak{p}_1 = f(A) \cap \mathfrak{q}_1$, where \mathfrak{q}_1 is a prime ideal in B. Then $f^{-1}(\mathfrak{p}_2) \in V(f^*(\mathfrak{q}_1))$ since $f^*(\mathfrak{q}_1) = f^{-1}(\mathfrak{p}_1) \subseteq f^{-1}(\mathfrak{p}_2)$. Since $f^*(V(\mathfrak{q}_1)) = V(f^*(\mathfrak{q}_1))$ there is a prime ideal \mathfrak{q}_2 in B containing \mathfrak{q}_1 such that $f^{-1}(\mathfrak{p}_2) = f^*(\mathfrak{q}_2) = f^{-1}(f(A) \cap \mathfrak{q}_2)$. This means that $\mathfrak{p}_2 = f(A) \cap \mathfrak{q}_2$. Therefore, B and f(A) satisfy the conclusions of the going-up theorem, showing that f has the going-up property.
- $(b \Rightarrow c)$ Let \mathfrak{q} be a prime ideal in B and write $\mathfrak{p} = \mathfrak{q}^c$. We have to show that the map $f^* : V(\mathfrak{q}) \to V(\mathfrak{p})$ is surjective. If $\mathfrak{p}' \in V(\mathfrak{p})$ then $\operatorname{Ker}(f) \subseteq \mathfrak{p} \subseteq \mathfrak{p}'$ so that $f(\mathfrak{p}) \subseteq f(\mathfrak{p}')$ is a chain of prime ideals in f(A) with $\mathfrak{q} \cap f(A) = f(\mathfrak{p})$. Since f has the going-up property, there is a prime ideal \mathfrak{q}' in B containing \mathfrak{q} so that $\mathfrak{q}' \cap f(A) = f(\mathfrak{p}')$. Now $f^*(\mathfrak{q}') = f^{-1}(f(\mathfrak{p}')) = \mathfrak{p}'$. This means that f^* is surjective.

 $(c \Rightarrow b)$ Let \mathfrak{p} be a prime ideal in f(A) so that $f^{-1}(\mathfrak{p})$ is a prime ideal in A.

5.10'. Consider the following conditions and show that $a \Rightarrow b \Leftrightarrow c$.

- a. The map f^* is open.
- b. The map f has the going-down property.
- c. The map $f^* : \operatorname{Spec}(B_{\mathfrak{q}}) \to \operatorname{Spec}(A\mathfrak{p})$ is onto whenever \mathfrak{q} is a prime ideal in B and $\mathfrak{p} = f^*(\mathfrak{q})$.

$$(a \Rightarrow b)$$

- $(b \Rightarrow c)$
- $(c \Rightarrow b)$
- 5.11. Let $f: A \to B$ be a flat homomorphism of rings. Then f has the going-down property. By exercise 3.18 we know that $f^* : \operatorname{Spec}(B_{\mathfrak{q}}) \to \operatorname{Spec}(A_{\mathfrak{p}})$ is a closed map whenever \mathfrak{q} is a prime ideal of B and $\mathfrak{p} = \mathfrak{q}^c$. But now exercise 3.10 tells us that f has the going-down property.
- 5.12. Let G be a finite group of automorphisms of the ring A. Prove that A is integral over A^G . Let S be a multiplicatively closed subset of A such that $\sigma(S) = S$ for every $\sigma \in G$. Define $S^G = S \cap A^G$. Show that the action of G on A extends to an action on $S^{-1}A$, and that $(S^G)^{-1}A^G \cong (S^{-1}A)^G$.

It is clear that A^G is a subring of A. Let $a \in A$ and consider

$$p(x) = \prod_{\sigma \in G} (x - \sigma(a))$$

Notice that p(a) = 0 since 1_G induces the identity autmorphism on A. Label the elements of G as $\sigma_1, \ldots, \sigma_n$ assuming that σ_1 is the identity map of A, and observe that $p(x) = x^n - a_1 x^{n-1} + \cdots + (-1)^{n-1} a_{n-1} x + (-1)^n a_n$ where

$$a_k = \sum_{i_1 < \dots < i_k} \sigma_{i_1}(a) \cdots \sigma_{i_k}(a)$$

It follows that $\tau(a_k) = a_k$ for any $\tau \in G$. In other words, the coefficients of p are elements of A^G . Consequently, A is integral over A^G .

Clearly $S^G = \{s \in S : \sigma(s) = s \text{ for every } \sigma \in G\}$ is a multiplicatively closed subset of A. Now given $\sigma \in G$ and $a/s \in S^{-1}A$, define $\sigma(a/s) = \sigma(a)/\sigma(s)$. Suppose that a/s = a'/s' in $S^{-1}A$ so that s''(as' - a's) = 0 for some $s'' \in S$. Then $\sigma(s'')(\sigma(a)\sigma(s') - \sigma(a')\sigma(s))$ and $\sigma(s'') \in S$ so that $\sigma(a)/\sigma(s) = \sigma(a')/\sigma(s')$ in $S^{-1}A$. This means that σ extends to a well-defined map $S^{-1}A \to S^{-1}A$. Clearly this extension is a surjective homomorphism of rings. Now suppose that $0/1 = \sigma(a/s) = \sigma(a)/\sigma(s)$ so that $s'\sigma(a) = 0$ for some $s' \in S$. Now $\sigma(S) = S$ so that $s' = \sigma(s'')$ for some $s'' \in S$, implying that $\sigma(s''a) = 0$ and hence s''a = 0. This means that a/s = 0/1 in $S^{-1}A$. In other words, σ extends to an automorphism of $S^{-1}A$. It is also clear that the extension of the composition equals the composition of the extensions, so that G is a group of automorphisms of $S^{-1}A$.

Since the natural map $A^G \to S^{-1}A$ sends elements of S^G to units of $S^{-1}A$, there is a map $(S^G)^{-1}A^G \to S^{-1}A$ given by $a/s \mapsto a/s$. I claim that this map is injective. If $a \in A^G$ and $s \in S^G$ are such that a/s = 0/1 in $S^{-1}A$ then ta = 0 for some $t \in S$. In particular, $t \prod_{\sigma \in G^*} \sigma(t)a = 0$ where $t \prod_{\sigma \in G^*} \sigma(t) \in S^G$. So a/s = 0/1 in $(S^G)^{-1}A^G$. This means that the map $(S^G)^{-1}A^G \to S^{-1}A$ is injective. Clearly $\sigma(a/s) = a/s$ whenever $a \in A^G$ and $s \in S^G$, and hence the image of $(S^G)^{-1}A^G$ in $S^{-1}A$ is contained in $(S^{-1}A)^G$.

Now suppose that $x = a/s \in (S^{-1}A)^G$. Notice that a/s = as'/ss' with $s' = \prod_{\sigma \neq \sigma_1} s$, and that $\sigma(ss') = ss'$ for every $\sigma \in G$. We still have x = as'/ss'. Since

$$as'/ss' = x = \sigma(x) = \sigma(as')/\sigma(ss') = \sigma(as')/ss'$$

there is, for every $\sigma \in G$, an element $u_{\sigma} \in S$ satisfying

$$u_{\sigma}(as'ss' - \sigma(as')ss') = 0$$

Defining $u = \prod_{\sigma \in G} u_{\sigma}$ we see that

$$uss'(as' - \sigma(as')) = 0$$
 for every $\sigma \in G$

Define $v = \prod_{\sigma \neq \sigma_1} \sigma(u)$ so that

$$uvss'(as' - \sigma(as')) = 0$$
 and $uvss' \in S^G$

Then $\sigma(as'uvss') = as'uvss'$ for all $\sigma \in G$. This means that $as'uvss' \in A^G$. Since

$$x = as'uvss'/uvss'ss$$

with $as'uvss' \in A^G$ and $uvss'ss' \in S^G$ we conclude that x is in the image of the map $(S^G)^{-1}A^G \to S^{-1}A$. So we have the desired isomorphism $(S^G)^{-1}A^G \cong S^{-1}A$.

5.13. In the situation above, let \mathfrak{p} be a prime ideal in A^G and define P as the set of prime ideals in A whose contraction is \mathfrak{p} . Show that G acts transitively on P. In particular, P is finite.

Suppose $\mathbf{q} \in P$ and $\sigma \in G$ so that $\sigma(\mathbf{q})$ is a prime ideal in A. It is easy to check that $\sigma(\mathbf{q}) \cap A^G = \mathbf{p}$. After all, if $a \in \sigma(\mathbf{q}) \cap A^G$ with $a = \sigma(a')$ and $a' \in \mathbf{q}$, then $a' = \sigma^{-1}(a) = a$ so that $a \in \mathbf{q} \cap A^G = \mathbf{p}$. Similarly, if $a \in \mathbf{p} = \mathbf{q} \cap A^G$ then $a = \sigma(a)$ so that $a \in \sigma(\mathbf{q}) \cap A^G$. This means that G acts on P.

Now let \mathfrak{q}_1 and \mathfrak{q}_2 be elements in P. Suppose $x \in \mathfrak{q}_1$ and consider $y = \prod_{\sigma \in G} \sigma(x)$. Clearly $y \in A^G$ and $y \in \mathfrak{q}_1$ since 1_G induces the identity automorphism of A. Therefore, $y \in \mathfrak{q}_1 \cap A^G = \mathfrak{p} \subseteq \mathfrak{q}_2$. Since \mathfrak{q}_2 is a prime ideal, we see that $\sigma(x) \in \mathfrak{q}_2$ for some $\sigma \in G$. This means that $\mathfrak{q}_2 \subseteq \bigcup_{\sigma \in G} \sigma(\mathfrak{q}_1)$. Now $\sigma(\mathfrak{q}_1)$ is a prime ideal for each $\sigma \in G$, allowing us to conclude that $\mathfrak{q}_2 \subseteq \sigma(\mathfrak{q}_1)$ for some $\sigma \in G$. Since A is integral over A^G and $\sigma(\mathfrak{q}_1) \cap A^G = \mathfrak{p} = \mathfrak{q}_2 \cap A^G$, we see by Corollary 5.9 that $\sigma(\mathfrak{q}_1) = \mathfrak{q}_2$. In other words, G acts transitively on P. Finally, P is a finite set since G is finite and acts transitively on P.

5.14. Let A be an integrally closed domain, K its field of fractions, and L a finite normal separable extension of K. Let G be the Galois group of L over K, and let B be the integral closure of A in L. Show that $\sigma(B) = B$ for every $\sigma \in G$, and that $A = B^G$.

Suppose that $b \in B$, let b satisfy the integral dependence relation $b^n + \sum_{i=0}^{n-1} a_i b^i = 0$ where each $a_i \in A$, and let $\sigma \in G$. Then $\sigma(b)$ satisfies the integral dependence relation $\sigma(b)^n + \sum_{i=0}^{n-1} a_i \sigma(b)^i = 0$ since σ fixes K and $A \subseteq K$. This means that $\sigma(B) \subseteq B$. Similarly, $\sigma^{-1}(B) \subseteq B$ so that $B \subseteq \sigma(B)$, and hence $\sigma(B) = B$ for every $\sigma \in G$. Now A is clearly contained in B^G , and $B^G \subseteq L^G = K$. But elements in B^G are integral over A, and A is algebraically closed in K, implying that $B^G = A$.

5.15. Let A be an integrally closed domain, K its field of fractions, L a finite extension field of K, and B the integral closure of A in L. Show that, if \mathfrak{p} is any prime ideal in A, then the set of prime ideals \mathfrak{q} in B that contract to \mathfrak{p} is finite.

Suppose for the moment that we can establish this result in the case that L/K is a separable extension or in the case that L/K is a purely inseparable extension. We know from field theory that there is an intermediate field $K \subset J \subset L$ so that J/K is a finite separable extension and L/J is a finite purely inseparable extension. Let C be the integral closure of A in J and notice that B is the integral closure of C in L. So by hypothesis, if \mathfrak{p} is any prime ideal in A then there are finitely many prime ideals in C that contract to \mathfrak{p} , label these $\mathfrak{q}_1, \ldots, \mathfrak{q}_n$. Again by hypothesis, for each i there are finitely many prime ideals in B that contract to \mathfrak{q}_i .

These are precisely the prime ideals of B that contract to \mathfrak{p} , and so finitely many prime ideals in B contract to \mathfrak{p} , establishing the claim. So it suffices to tackle the problem in the two special cases.

So suppose first that L is a finite separable extension of K. If x_1, \ldots, x_n generate L over K, then let p_1, \ldots, p_n be the minimal polynomials of x_i over K. Assuming L is embedded in its algebraic closure \overline{L} , let L' be the subfield of \overline{L} generated by K and all of the roots of p_1, \ldots, p_n . Then L' is an extension of L, L' is a finite extension over K since each root of p_1, \ldots, p_n is algebraic over K, and L' is a normal extension of K since it is generated over K by roots of irreducible polynomials. Further, since L is a separable extension of K, we know that each p_i is a separable polynomial, and so L' is separable over K as well. Now define G to be the Galois group of L' over K so that $L'^G = K$. Define B' to be the integral closure of A in L'. Exercise 5.14 tells us that the set of prime ideals P of B' lying over \mathfrak{p} is finite. By the Going Up Theorem, if there is a prime ideal \mathfrak{q} in B that lies over \mathfrak{p} , then there is a prime ideal \mathfrak{r} in P that contracts to \mathfrak{q} . This means that there are finitely many prime ideals in B that contract to \mathfrak{p} .

Now assume that L is a finite purely inseparable extension of A. Let \mathfrak{q} be a prime ideal of B that contracts to A, where B is the integral closure of A in L. As we may assume that $L \neq K$ we conclude that $\operatorname{char}(K)$ is a prime p. If $x^{p^m} \in \mathfrak{p}$ for some $m \geq 0$, then $x^{p^m} \in \mathfrak{q}$ so that $x \in \mathfrak{q}$. On the other hand, if $x \in \mathfrak{q}$ then $x^{p^m} \in K$ for some $m \geq 0$ since L/K is purely inseparable. But now $x^{p^m} \in K \cap \mathfrak{q} = \mathfrak{p}$. This means that \mathfrak{q} consists of all $x \in L$ satisfying $x^{p^m} \in \mathfrak{p}$ for some $m \geq 0$. Hence, there is precisely one prime ideal of B lying over \mathfrak{p} . So we are done.

5.16. Suppose k is an infinite field and A a finitely generated k-algebra. Show that there exist $y_1, \ldots, y_s \in A$ algebraically independent over k such that A is integral over $k[y_1, \ldots, y_r]$.

Suppose A is generated by x_1, \ldots, x_n as a k-algebra. Renumber the $\{x_i\}$ and choose $r \ge 0$ so that x_1, \ldots, x_r are algebraically independent and each x_i is algebraic over $k[x_1, \ldots, x_r]$ for $r < i \le n$. Proceed by induction on n-r. If n-r=0 then there is nothing to show. So suppose n-r > 0 and choose a non-trivial algebraic dependence relation $f(x_1, \ldots, x_n) = 0$. Let F be the homogeneous part of highest degree in f. Since k is infinite, there exist $\lambda_1, \ldots, \lambda_{n-1} \in k$ such that $\mu := F(\lambda_1, \ldots, \lambda_{n-1}, 1) \ne 0$. After all, $F(\cdot, \ldots, \cdot, 1)$ is a non-zero polynomial in n-1 variables, and so it cannot induce the zero function on k^{n-1} when k is infinite. Now define $x'_i = x_i - \lambda_i x_n$ for $1 \le i < n$, and let $A' = k[x'_1, \ldots, x'_{n-1}]$. I claim that x_n is integral over A'. Let $d = \deg(F)$ and choose polynomials G_j in n-1 variables so that

$$F(\xi_1, \dots, \xi_n) = \sum_{j=0}^d \xi_n^j G_j(\xi_1, \dots, \xi_{n-1})$$

Notice that each G_j is a homogeneous polynomial of degree d-j. Now let $\xi'_i = \xi_i - \lambda_i \xi_n$ and compute

$$F(\xi_1, \dots, \xi_n) = \sum_{j=0}^d \xi_n^j G_j(\xi_1' + \lambda_1 \xi_n, \dots, \xi_{n-1}' + \lambda_{n-1} \xi_n)$$

= $\sum_{j=0}^d \xi_n^j \left[\xi_n^{d-j} G_j(\lambda_1, \dots, \lambda_{n-1}, 1) + H_j(\xi_1', \dots, \xi_{n-1}', \xi_n) \right]$
= $\xi_n^d F(\lambda_1, \dots, \lambda_{n-1}, 1) + \sum_{j=0}^d \xi_n^j H_j(\xi_1', \dots, \xi_{n-1}', \xi_n)$

where each H_j is a polynomial in the variables $\xi'_1, \ldots, \xi'_{n-1}, \xi_n$ with degree strictly less than d-j in ξ_n , and with coefficients in k. Define a new polynomial \tilde{F} by

$$\tilde{F}(\xi) = \xi^d + \frac{1}{\mu} \sum_{j=0}^d \xi^j H_j(x'_1, \dots, x'_{n-1}, \xi_n)$$

Then \tilde{F} is a monic polynomial in ξ with coefficients in A' and such that $\tilde{F}(x_n) = F(x_1, \ldots, x_{n-1}, x_n) = 0$. Therefore, x_n is indeed integral over A'. This means that $A = k[x_1, \ldots, x_n] = k[x'_1, \ldots, x'_{n-1}, x_n]$ is integral over A'. By the induction hypothesis, there are $y_1, \ldots, y_s \in A'$ algebraically independent over k such that A'is integral over $A'[y_1, \ldots, y_s]$. Now $y_1, \ldots, y_s \in A$ are algebraically independent over k and A is integral over $A[y_1, \ldots, y_s]$. We are finished.

- 5.16.' Suppose that k is an algebraically closed field and that X is an affine algebraic variety in k^n with coordinate ring $A \neq 0$. Show that there is a linear subspace L of dimension r in k^n and a linear mapping of k^n onto L that maps X onto L.
- 5.17. Let k be algebraically closed. Show that, if $a \neq (1)$ is an ideal in $A = k[t_1, \ldots, t_n]$, then $V(a) \neq \emptyset$. Deduce that every maximal ideal in A is of the form $(t_1 - a_1, \ldots, t_n - a_n)$ for some $a_i \in k$.

Let \mathfrak{m} be a maximal ideal in A containing \mathfrak{a} . Then $A/\mathfrak{m} \neq 0$ is a finitely generated k-algebra, since it is generated by $t_1 + \mathfrak{m}, \ldots, t_n + \mathfrak{m}$ as a k-algebra. By Noether's Normalization Lemma, there are $y_1, \ldots, y_s \in A/\mathfrak{m}$ algebraically independent over k such that A/\mathfrak{m} is integral over $k[y_1, \ldots, y_s]$. But A/\mathfrak{m} is a field, so that $k[y_1, \ldots, y_s]$ is a field by Proposition 5.7. Since $k[y_1, \ldots, y_s]$ is a polynomial ring over k, we must have s = 0and $k[y_1, \ldots, y_s] \cong k$. So A/\mathfrak{m} is a finite algebraic extension of k. Since k is algebraically closed, we conclude that $A/\mathfrak{m} = k$. More precisely, A/\mathfrak{m} is generated by $1 + \mathfrak{m}$ as a k-vector space. Now let a_i be the unique element in k satisfying $a_i + \mathfrak{m} = t_i + \mathfrak{m}$, so that $t_i - a_i \in \mathfrak{m}$. Then $\mathfrak{n} = (t_1 - a_1, \ldots, t_n - a_n) \subseteq \mathfrak{m}$. But $A/\mathfrak{n} \cong k$ so that \mathfrak{n} is a maximal ideal, and hence $\mathfrak{n} = \mathfrak{m}$. Now $(a_1, \ldots, a_n) \in V(\mathfrak{m}) \subseteq V(\mathfrak{a})$. In particular, this means that $V(\mathfrak{a}) \neq \emptyset$.

5.18. Let k be a field and B a finitely generated k-algebra. Suppose B is a field. Show that B is a finite algebra extension of k.

Assume B is generated by x_1, \ldots, x_n as a k-algebra. If n = 1 and $x_1 \neq 0$, then $x_1^{-1} = p(x_1)$ where p is some polynomial with coefficients in k, so that $x_1p(x_1) = 1$. If $d = \deg(p)$ then we can write x_1^{d+1} as a k-linear combination of $\{1, x_1, \ldots, x_1^d\}$ so that B is finitely generated as a k-vetor space, and hence B is a finite algebraic extension of k.

Therefore, assume that n > 1. Define an integral subdomain $A = k[x_1]$ of B, and $K = k(x_1)$ as the field of fractions of A, contained in B since B is a field. Now B is a K-algebra generated by $\{x_2, \ldots, x_n\}$. By induction, B is a finite algebraic extension of K. In particular, x_2, \ldots, x_n satisfy monic polynomial equations with coefficients in K. Coefficients in K are of the form a/b for $a, b \in A$. Let f be the product of the denominators of all these coefficients. Then the coefficients a/b are elements of A_f when we consider $A \subset A_f \subset K \subset B$. So x_2, \ldots, x_n are integral over A_f . Since B is an A_f -algebra generated by $\{x_2, \ldots, x_n\}$, we see that B is integral over A_f , and hence that K is integral over A_f .

For the sake of deriving a contradiction, suppose that x_1 is trascendental over k. Then A is a Euclidean domain since k is a field, and so A is a unique factorization domain. As such, A is integrally closed in K. By 5.12 this means that A_f is integrally closed in $K_f = K$. By the above, integral closure of A_f in K equals K, implying that $A_f = K$. In other words, $k[x]_f = k(x)$ for some $f \in k[x]$. This is impossible: let $p \in k[x]$ be irreducible, then $1/p = g/f^n$ for some $n \in \mathbb{N}$ and some $g \in k[x]$ having no factor in common with f, implying that p is a factor of f, and in particular implying that k[x] has finitely many irreducible elements. But an adaptation of Euclid's proof shows that k[x] has infinitely many irreducible elements.

Therefore, x_1 is algebraic over k. As a result, $K = k(x_1)$ is a finite algebraic extension of k. As B is a finite algebraic extension of K, we conclude that B is a finite algebraic extension of k, as claimed.

5.19. Deduce the result of exercise 17 from exercise 18.

Choose a maximal ideal \mathfrak{m} in A containing \mathfrak{a} . Notice that A/\mathfrak{m} is a finitely generated k-algebra, which is itself a field. So A/\mathfrak{m} is a finite algebraic extension of k by Corollary 5.24. But k is algebraically closed, so that A/\mathfrak{m} is generated by $1 + \mathfrak{m}$ as a k-vector space. Let a_i be the unique element in k satisfying $a_i + \mathfrak{m} = t_i + \mathfrak{m}$, so that $t_i - a_i \in \mathfrak{m}$. Then $\mathfrak{n} = (t_1 - a_1, \ldots, t_n - a_n) \subseteq \mathfrak{m}$. But $A/\mathfrak{n} \cong k$ so that \mathfrak{n} is a maximal ideal, and hence $\mathfrak{n} = \mathfrak{m}$. Now $(a_1, \ldots, a_n) \in V(\mathfrak{m}) \subseteq V(\mathfrak{a})$. In particular, this means that $V(\mathfrak{a}) \neq \emptyset$. Let F be the field of fractions of B, let $S = A - \{0\}$, and define $K \subset F$ by $K = S^{-1}A$ so that K is the field of fractions of A. Supposing that B is generated by $\{z_1, \ldots, z_m\}$ as an A-algebra, we easily see that $S^{-1}B$ is generated by $\{z_1, \ldots, z_m\}$ as a K-algebra. Hence, we can apply Noether's Normalization Lemma to deduce the existence of $y_1/s_1, \ldots, y_n/s_n \in S^{-1}B$ algebraically independent over K and such that $S^{-1}B$ is integral over $K[y_1/s_1, \ldots, y_n/s_n] = K[y_1, \ldots, y_n]$. If s is any element in S, then we have a commutative diagram as below.

Now suppose p is some polyonial in n indeterminates with coefficients in A such that $p(y_1, \ldots, y_n) = 0$. We can write

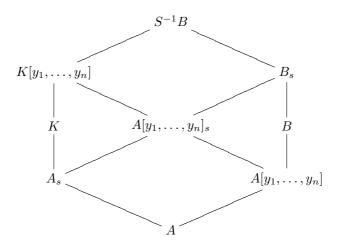
$$p(\xi_1, \dots, \xi_n) = \sum_{\alpha: \{1, \dots, n\} \to A} a_\alpha \xi_1^{\alpha(1)} \cdots \xi_n^{\alpha(n)} \quad \text{with } a_\alpha \in A$$

Define a polynomial \tilde{p} in *n* indeterminates with coefficients in *K* by

$$\tilde{p}(\xi_1,\ldots,\xi_n) = \sum_{\alpha:\{1,\cdots,n\}\to A} (a_\alpha s_1^{\alpha(1)}\cdots s_n^{\alpha(n)})\xi_1^{\alpha(1)}\cdots \xi_n^{\alpha(n)}$$

Then $\tilde{p}(y_1/s_1, \ldots, y_n/s_n) = p(y_1, \ldots, y_n) = 0$. Since $y_1/s_1, \ldots, y_n/s_n$ are algebraically independent over K, we see that $\tilde{p} = 0$ and so $a_{\alpha}s_1^{\alpha(1)} \cdots s_n^{\alpha(n)} = 0$ for all α . But every $s_i \in S = A - \{0\}$ so that each $a_{\alpha} = 0$. This means that p = 0, and hence y_1, \ldots, y_n are algebraically independent over A.

Now z_1, \ldots, z_m satisfy integral dependence relations $q_i(z_i) = 0$ with coefficients from $K[y_1, \ldots, y_n]$. Define $d_i = \deg(q_i)$. Clearing denominators in all of the q_i simultaneously gives us an $s \in S$ and polynomials r_i with coefficients from $A[y_1, \ldots, y_n]$ so that $z_i^{d_i} + r_i(z_i)/s = 0$ and $\deg(r_i) < d_i$ for every *i*. In particular, each z_i is integral over $(B')_s$. Consequently, B_s is integral over $(B')_s$ since $B_s = (B')_s[z_1, \ldots, z_m]$.



5.21. Let A and B be as in exercise 5.20. Show that there is $0 \neq s \in A$ such that, if Ω is an algebraically closed field and $f: A \to \Omega$ is a homomorphism satisfying $f(s) \neq 0$, then f can be extended to a homomorphisms $B \to \Omega$.

We use the same notation as in exercise 2. Since y_1, \ldots, y_n are algebraically independent over A, we have an extension $f: A[y_1, \ldots, y_n] \to \Omega$ induced by defining $f(y_i) = 0$ for every i. Now f(s) is a unit in Ω since $f(s) \neq 0$. By the Universal Mapping Property for $A[y_1, \ldots, y_n]_s$, we have an extension $f: A[y_1, \ldots, y_n] \to \Omega$. Since B_s is integral over $A[y_1, \ldots, y_n]_s$ and since Ω is algebraically closed, exercise 5.2 tells us that we have an extension $f: B_s \to \Omega$. Now restriction yields a map $f: B \to \Omega$ that is an extension of the original map $A \to \Omega$.

5.22. Let A and B be as in exercise 5.20. Show that the Jacobson radical $\Re(B)$ of B equals zero if $\Re(A) = 0$.

Let $0 \neq v \in B$ and notice that A is a subring of the integral domain B_v . By exercise 5.21 there is $0 \neq s \in A$ such that, if Ω is an algebraically closed field and $f : A \to \Omega$ is a homomorphism satisfying $f(s) \neq 0$, then f can be extended to a homomorphism $B \to \Omega$. Let \mathfrak{m} be a maximal ideal of A not containing s. This exists since $s \notin \mathfrak{R}(A) = 0$. Write $k = A/\mathfrak{m}$ and embed k in its algebraic closure Ω . Then the composition of the maps $A \to k \to \Omega$ is a homomorphism not sending s to 0. So we can extend this to a map $g : B_v \to \Omega$. Clearly $g(v) \neq 0$ since v = v/1 is a unit in B_v with inverse 1/v. Hence, $v \notin \operatorname{Ker}(g) \cap B$.

- 5.23. Show that the following are equivalent for a ring A.
 - a. Each prime ideal in A is an intersection of maximal ideals.
 - b In each homomorphic image of A, the nilradical equals the Jacobson radical.
 - c. Each non-maximal prime ideal in A equals the intersection of the prime ideals that strictly contain it.
 - $(a \Rightarrow b)$ Let \mathfrak{a} be a proper ideal in A. Every prime ideal in A/\mathfrak{a} is of the form $\mathfrak{p}/\mathfrak{a}$ where \mathfrak{p} is a prime ideal in A. By hypothesis, \mathfrak{p} is an intersection of maximal ideals (containing \mathfrak{p}). These maximal ideals correspond to maximal ideals in A/\mathfrak{a} . So every prime ideal in A/\mathfrak{a} is an intersection of maximal ideals. Hence, it suffices to show that $\mathfrak{N}(A) = \mathfrak{R}(A)$. As always $\mathfrak{N}(A) \subseteq \mathfrak{R}(A)$. Now every prime ideal in A contains $\mathfrak{R}(A)$ so that $\mathfrak{N}(A) \supseteq \mathfrak{R}(A)$, and therefore $\mathfrak{N}(A) = \mathfrak{R}(A)$.
 - $(a \Rightarrow c)$ Let \mathfrak{p} be a non-maximal prime ideal. By hypothesis, \mathfrak{p} is the intersection of all maximal ideals containing \mathfrak{p} . But these ideals strictly contain \mathfrak{p} since \mathfrak{p} is not a maximal ideal. Therefore, \mathfrak{p} equals the intersection of all prime ideals strictly containing \mathfrak{p} .
 - $(b \Rightarrow c)$ Let \mathfrak{p} be a non-maximal prime ideal in A so that A/\mathfrak{p} is an integral domain that is not a field. Then 0 is not a maximal ideal in A/\mathfrak{p} . Since $0 = \mathfrak{N}(A/\mathfrak{p}) = \mathfrak{R}(A/\mathfrak{p})$ we see that 0 is the intersection of all maximal ideals in A/\mathfrak{p} . This means that \mathfrak{p} is the intersection of all maximal ideals in A containing \mathfrak{p} , and hence is the intersection of all the prime ideals in A strictly containing \mathfrak{p} .
 - $(c \Rightarrow b)$ If b does not hold, then a does not hold, so that there is a prime ideal \mathfrak{p} that is properly contained in the intersection I of all maximal ideals in A containing \mathfrak{p} . Choose $f \in I \mathfrak{p}$ and notice that $A_f \neq 0$, since 1/1 = 0/1 in A_f implies that $f^n = 0 \in \mathfrak{p}$ for some $n \ge 0$. Also, \mathfrak{p} does not meet $\{1, f, f^2, \ldots\}$ so that $\mathfrak{p}_f \neq A_f$. Let \mathfrak{m} be a maximal ideal in A_f containing \mathfrak{p}_f , so that \mathfrak{m}^c is a prime ideal \mathfrak{q} in A containing \mathfrak{p} . Observe that $f \in \mathfrak{q}$ implies that $f/1 \in \mathfrak{m}$ and hence \mathfrak{m} contains a unit in A_f . Thus, $f \notin \mathfrak{q}$. If \mathfrak{q} were a maximal ideal, then $f \in \mathfrak{q}$ since $f \in I$, but this is not the case. Suppose that $\mathfrak{r} \supseteq \mathfrak{q}$ is another prime ideal in A not containing f, so that \mathfrak{r} does not meet $\{1, f, f^2, \ldots\}$, and hence $A_f \neq \mathfrak{r}_f \supseteq \mathfrak{q}_f = \mathfrak{m}$. Then $\mathfrak{r}_f = \mathfrak{m}$, and hence $\mathfrak{r} = \mathfrak{q}$. So if \mathfrak{r} is a prime ideal strictly containing \mathfrak{q} , then $f \in \mathfrak{r}$. Hence, \mathfrak{q} is not the intersection of the prime ideals in A strictly containing \mathfrak{q} , since this intersection contains $f \notin \mathfrak{q}$. Therefore, \mathfrak{c} does not hold when b does not hold.
- 5.24. Let A be a Jacobson ring (as in exercise 5.23) and B an A-algebra. Show that if B is either integral over A or finitely generated as an A-algebra, then B is a Jacobson ring as well.

Suppose that B is integral over A. Let \mathfrak{p} be a prime ideal in B so that $A \cap \mathfrak{p}$ is a prime ideal in A. For every maximal ideal \mathfrak{q} in A containing $A \cap \mathfrak{p}$, choose a maximal ideal \mathfrak{r} in B with $A \cap \mathfrak{r} = \mathfrak{q}$. Then $A \cap \mathfrak{p} = \bigcap_{A \cap \mathfrak{p} \subseteq \mathfrak{q}} \mathfrak{q} = A \cap \bigcap_{A \cap \mathfrak{p} \subseteq \mathfrak{q}} \mathfrak{r}$ so that

Suppose that B is finitely generated as an A-algebra. Let \mathfrak{p} be a prime ideal in B so that $\mathfrak{q} = A \cap \mathfrak{p}$ is a prime ideal in A, and A/\mathfrak{q} is a subring of the integral domain B/\mathfrak{p} . Then B/\mathfrak{p} is finitely generated over A/\mathfrak{q} . Since A is a Jacobson ring, $\mathfrak{R}(A/\mathfrak{q}) = \mathfrak{N}(A/\mathfrak{q}) = 0$. By exercise 5.22, $\mathfrak{R}(B/\mathfrak{p}) = 0$ as well, implying that \mathfrak{q} is the intersection of all the maximal ideals in B containing \mathfrak{q} . Therefore, B is Jacobson.

- 5.25? Show that A is a Jacobson ring if and only if every finitely generated A-algebra B which is a field is finite over A.
- 5.26? Show that the following are equivalent for a ring A.
 - a. A is a Jacobson ring.
 - b The maximal ideals are very dense in Spec(A).
 - c. A singleton set in Spec(A) is closed if it's locally closed.
 - $(a \Rightarrow b)$
 - $(b \Rightarrow c)$
 - $(c \Rightarrow a)$
- 5.27. We say that the local ring (B, \mathfrak{n}) dominates the local ring (A, \mathfrak{m}) if $A \subseteq B$ and $\mathfrak{m} = A \cap \mathfrak{n}$. Let K be a field and let Σ consist of all local rings (A, \mathfrak{m}) of K, partially ordered by the above relation. Show that Σ has maximal elements and that (A, \mathfrak{m}) is a maximal element of Σ iff A is a valuation ring of K.

Let $C = \{A_{\alpha} : \alpha \in I\}$ be a chain in Σ . Define $A = \bigcup_{\alpha \in I} A_{\alpha}$ and $\mathfrak{m} = \bigcup_{\alpha \in I} \mathfrak{m}_{\alpha}$. As usual, A is a ring with ideal \mathfrak{m} . If $x \in A \setminus \mathfrak{m}$, then $x \in A_{\alpha} \setminus \mathfrak{m}_{\alpha}$ for some α , and so x is a unit in A_{α} . But then x is a unit in A. Thus, (A, \mathfrak{m}) is a local ring dominating each $(A_{\alpha}, \mathfrak{m}_{\alpha})$. Therefore, Σ is chain complete, and so Σ has maximal elements.

Suppose that $(A, \mathfrak{m}) \in \Sigma$ is a maximal element. Let Ω be the algebraic closure of A/\mathfrak{m} and $\eta : A \to \Omega$ the canonical map. Denote Σ' as the set of all (B, f) with B a subring of K and f a map $B \to \Omega$. We order Σ' in the obvious way. Choose $(B, f) \in \Sigma'$ as a maximal element dominating (A, η) . Then B is a local ring with maximal ideal $\mathfrak{n} = \operatorname{Ker}(f)$. Now $\mathfrak{m} = \operatorname{Ker}(\eta) = A \cap \operatorname{Ker}(f) = A \cap \mathfrak{n}$ so that $(B, \mathfrak{n}) \in \Sigma$ dominates (A, \mathfrak{m}) . Therefore, A = B by maximality. Consequently, Theorem 5.21 tells us that A is a valuation ring of K.

Suppose (A, \mathfrak{m}) is a valuation ring of K strictly dominated by (B, \mathfrak{n}) . Choose $x \in B \setminus A$ so that $x^{-1} \in A$. Then $x^{-1} \in \mathfrak{m}$ since x^{-1} is a non-unit in A. But $x^{-1} \notin \mathfrak{n}$ since x^{-1} is invertible in B. This contradicts $\mathfrak{m} \subseteq \mathfrak{n}$. Thus, every valuation ring of K is maximal in Σ .

5.28. Let K be the field of fractions of the integral domain A. Show that A is a valuation ring of K if and only if the ideals of A are totally ordered by inclusion. Deduce that, if A is a valuation ring and if \mathfrak{p} is a prime ideal in A, then $A_{\mathfrak{p}}$ and A/\mathfrak{p} are valuation rings in their field of fractions.

Assume A is a valuation ring of K. Let \mathfrak{a} and \mathfrak{b} be two ideals in A. Suppose there is $x \in \mathfrak{a} - \mathfrak{b}$ and let $0 \neq y \in \mathfrak{b}$. Then $x/y \notin A$ since \mathfrak{b} is an ideal. So we have $y/x \in A$, and hence $y \in \mathfrak{a}$. In other words $\mathfrak{b} \subseteq \mathfrak{a}$.

Now assume that $\mathfrak{a} \subseteq \mathfrak{b}$ or $\mathfrak{b} \subseteq \mathfrak{a}$ whenever \mathfrak{a} and \mathfrak{b} are ideals in A. Suppose that $a, b \in A$ with $b \neq 0$ are such that $a/b \in K - A$. Then $a \neq 0$. Define ideals in A by $\mathfrak{a} = (a)$ and $\mathfrak{b} = (b)$. If $\mathfrak{a} \subseteq \mathfrak{b}$ then there is $c \in A$ with bc = a so that $a/b = c \in A$; a contradiction. Thus, $\mathfrak{b} \subseteq \mathfrak{a}$, implying the existence of $c \in A$ with ac = b, so that $b/a = c \in A$. Hence, A is a valuation ring of K.

Now let \mathfrak{p} be a prime ideal in A. Any two ideals in $A_{\mathfrak{p}}$ are of the form $\mathfrak{a}_{\mathfrak{p}}$ and $\mathfrak{b}_{\mathfrak{p}}$, where \mathfrak{a} and \mathfrak{b} are ideals in A. Either $\mathfrak{a} \subseteq \mathfrak{b}$ or $\mathfrak{b} \subseteq \mathfrak{a}$ so that $\mathfrak{a}_{\mathfrak{p}} \subseteq \mathfrak{b}_{\mathfrak{p}}$ or $\mathfrak{b}_{\mathfrak{p}} \subseteq \mathfrak{a}_{\mathfrak{p}}$. This means that $A_{\mathfrak{p}}$ is a valuation ring in its field of fractions. Any two ideals in A/\mathfrak{p} are of the form $\mathfrak{a}/\mathfrak{p}$ and $\mathfrak{b}/\mathfrak{p}$, where \mathfrak{a} and \mathfrak{b} are two ideals in A containing \mathfrak{p} . Either $\mathfrak{a} \subseteq \mathfrak{b}$ or $\mathfrak{b} \subseteq \mathfrak{a}$ so that $\mathfrak{a}/\mathfrak{p} \subseteq \mathfrak{b}/\mathfrak{p}$ or $\mathfrak{b}/\mathfrak{p} \subseteq \mathfrak{a}/\mathfrak{p}$. This means that A/\mathfrak{p} is a valuation ring in its field of fractions.

5.29? Let A be a valuation ring of the field K. Show that every subring B of K containing A is local. What is the problem asking?

5.30. Let A be a valuation ring of the field K. Assign to (A, K) a valuation $v : K \to \Gamma$ of K with values in Γ .

Notice that $K^* = K - \{0\}$ is an abelian group under multiplication, and that the set U of units in A is a subgroup of K^* . Define an abelian group $\Gamma = K^*/U$. For $xU, yU \in \Gamma$, we say that $xU \ge yU$ provided $xy^{-1} \in A$. If xU = x'U and yU = y'U so that $xx'^{-1} \in U$ and $y^{-1}y' \in U$, then $xy^{-1} = x'y'^{-1} \cdot xx'^{-1}y^{-1}y' \in A$, and hence $xy^{-1} \in A$ if and only if $x'y'^{-1} \in A$. This means that our relation \ge is well-defined. Clearly $xU \ge xU$ since $xx^{-1} \in A$. So \ge is a reflexive relation. If $xU \ge yU \ge zU$ then $xy^{-1} \in A$ and $yz^{-1} \in A$, so that $xz^{-1} \in A$, and hence $xU \ge zU$. So \ge is a transitive relation. Suppose $xU \ge yU$ and $yU \ge xU$, so that $xy^{-1} \in A$ and $yx^{-1} \in A$, implying that $xy^{-1} \in U$, and hence xU = yU. So \ge is an antisymmetric relation. If $xU, yU \in \Gamma$ then $xy^{-1} \in A$ or $yx^{-1} \in A$, so that $xU \ge yU$ or $yU \ge xU$. So any two elements of Γ are comparable. All of these observations imply that \ge is a total order on Γ . If $xU \ge yU$ and $zU \in \Gamma$, then $(xz)(yz)^{-1} = xy^{-1} \in A$ so that $xU + zU \ge yU + zU$. This means that Γ is a totally ordered abelian group. Define $v: K^* \to \Gamma$ and notice finally that $v(x + y) \ge \min\{v(x), v(y)\}$ since. This means that v is a valuation of K. Lastly, suppose x and y are non-zero elements such that $x \ne -y$. Either $xy^{-1} \in A$ or $yx^{-1} \in A$, so that either $(x + y)y^{-1} = 1 + xy^{-1} \in A$ or $(x + y)x^{-1} = 1 + yx^{-1} \in A$, and hence either $v(x + y) \ge v(x)$ or $v(x + y) \ge v(x)$. This means that $v(x + y) \ge \min\{v(x), v(y)\}$ for $x \ne y \in K^*$.

5.31. Let $v: K^* \to \Gamma$ be a valuation. Show that K has the valuation ring $A = \{x \in K^* : v(x) \ge 0\} \cup \{0\}$. Thus, the concepts of valuation ring and valuations are equivalent.

Lets make a few observations. Notice that v(1)+v(1) = v(1) so that v(1) = 0. Suppose that v(-1) < 0 = v(1) so that v(-1) = v(1) + v(-1) > v(-1) + v(-1) = v(1), a contradiction. Thus, $v(-1) \ge v(1) = 0$. Finally, if $x \in K^*$ then $0 = v(1) = v(xx^{-1}) = v(x) + v(x^{-1})$.

From the above $1, -1 \in A$. If $x, y \in A - \{0\}$ then $v(xy) = v(x) + v(y) \ge v(x) + v(1) \ge v(1) + v(1) = 0$ so that $xy \in A$. Hence, A is closed under multiplication. If $x \ne y \in A$ then $x + y \in A$ since $v(x + y) \ge \min\{v(x), v(y)\} \ge 0$. So A is closed under addition. Finally, A is closed under additive inversion since $-1 \in A$ and A is closed under multiplication. These remarks show that A is a subring of K.

Now suppose that $x, x^{-1} \in K - A$ for some $x \neq 0$. Then $v(x), v(x^{-1}) < 0$ so that $v(x), v(x^{-1}) < v(1)$. Thus $0 = v(x) + v(x^{-1}) < v(1) + v(x^{-1}) < v(1) + v(1) = 0$. So all of these inequalities are equalities, implying that $v(x^{-1}) = 0 = v(x)$, a contradiction. We conclude that A is a valuation ring in K.

Now to show how these two concepts are equivalent in a precise manner. If we start with a field K and a valuation ring A, lets assign the valuation $v: K^* \to \Gamma = K^*/U$ as in exercise 5.20. Then $0 \neq x \in A$ if and only if $v(x) \geq v(1)$. But v(1) = 0 since $1 \in A$. Therefore, A equals the valuation ring of K assigned to v.

Conversely, suppose we start with a valuation $v: K^* \to \Gamma$ of the field K. Let A be the valuation ring of K consisting of 0 and all $x \in K^*$ such that $v(x) \ge 0$. Define $\Gamma' = K^*/U$ where U is the group of units in A, and let $v': K^* \to \Gamma'$ by v'(x) = xU. Suppose that v(x) = 0 so that $0 = v(x) + v(x^{-1}) = v(x^{-1})$. Conversely, suppose that $x \in U$ so that $x^{-1} \in U$, and hence $v(x), v(x^{-1}) \ge 0$. Then $0 = v(x) + v(x^{-1}) = \min\{v(x), v(x^{-1})\}$, implying that v(x) = 0 or $v(x^{-1}) = 0$, and hence $v(x) = v(x^{-1}) = 0$. Combining these two remarks reveals that $U = \{x \in K^* : v(x) = 0\}$. Obviously $U = \{x \in K^* : v'(x) = 0\}$. Now define a map $f: \Gamma' \to \Gamma$ by f(v'(x)) = v(x). If v'(x) = v'(y) so that $xy^{-1} \in U$, then $v(xy^{-1}) = 0$, and hence $0 = v(x) + v(y^{-1}) = v(x) - v(y)$, implying that v(x) = v(y). Therefore, ψ is well-defined. Similarly, ψ is injective. Obviously $\psi \circ v' = v$. Lastly, $\operatorname{Im}(v)$ is a totally order subgroup of Γ , and $\psi: \Gamma \to \operatorname{Im}(v)$ is an isomorphism of totally ordered groups.

- 5.32? Suppose A is a valuation ring of K with value group Γ . Show that, if \mathfrak{p} is a prime ideal in A, then there is an isolated subgroup Δ of Γ such that $v(A \mathfrak{p})$ consists of all $\xi \in \Gamma$ with $v(\xi) \ge 0$. Show that this defines a bijective correspondence between $\operatorname{Spec}(A)$ and the set of all isolated subgroups of Γ . If \mathfrak{p} is prime, then describe the values groups of A/\mathfrak{p} and $A_\mathfrak{p}$.
- 5.33. Let Γ be a totally ordered abelian group. Construct a field K and a valuation v of K with Γ as

the value group.

First let k be any field and $A = k[\Gamma]$ the group algebra of Γ over k. I claim that A is an integral domain. So suppose that $x = \sum_{\alpha \in S} a_{\alpha} \alpha$ and $y = \sum_{\beta \in T} b_{\beta} \beta$ are nonzero elements in $k[\Gamma]$, where S and T are finite subsets of Γ . Let $\alpha_1 < \cdots < \alpha_m$ be the elements of S, and $\beta_1 < \cdots < \beta_n$ be the elements of T, where we can assume that each a_{α_i} and b_{β_i} is nonzero. The smallest coefficient xy is $a_{\alpha_1}b_{\beta_1}(\alpha_1 + \beta_1)$, which is non-zero since k is a field. Therefore, $xy \neq 0$, and hence A is an integral domain.

Now letting x and y be as before, define $v_0 : A - \{0\} \to \Gamma$ by $v_0(x) = \alpha_1$. Notice that $v_0(xy) = \alpha_1 + \beta_1 = v_0(x) + v_0(y)$ and $v_0(x+y) = 0$.

5.34. Let A be a valuation ring in its field of fractions K. Suppose $f : A \to B$ is such that f^* is a closed map. Show that, if $g : B \to K$ is a map of A-algebras, then g(B) = A.

Since g is a map of A-algebras, $g \circ f = i$ where $i : A \to K$ is the inclusion map. Define C = g(B) so that $A = g(f(A)) \subset g(B) = C$. Let **n** be a maximal ideal in C, and define $\mathfrak{q} = g^{-1}(\mathfrak{n})$, so that **q** is maximal in B. Since f^* is a closed map, $f^* : \operatorname{Spec}(B/\mathfrak{q}) \to \operatorname{Spec}(A/\mathfrak{p})$ is surjective, where $\mathfrak{p} = f^{-1}(\mathfrak{q})$. But 0 is the only prime ideal in B/\mathfrak{q} , so that A/\mathfrak{p} is an integral domain with precisely one prime ideal. This means that A/\mathfrak{p} is a field, and hence \mathfrak{p} is a maximal ideal in A. Now we have $A \subset C \subset C_\mathfrak{n} \subset K$ with $(C_\mathfrak{n}, \mathfrak{n})$ a local ring. We also have $\mathfrak{p} = f^{-1}(\mathfrak{q}) = f^{-1}(g^{-1}(\mathfrak{n})) = i^{-1}(\mathfrak{n}) = A \cap \mathfrak{n}$ showing that (C, \mathfrak{n}) dominates (A, \mathfrak{p}) . But A is a valuation ring in K, so that A = C by exercise 5.27. In other words, g(B) = A, as claimed.

5.35? Let B be an integral domain and f a map $A \to B$ such that $(f \otimes 1)^* : \operatorname{Spec}(B \otimes_A C) \to \operatorname{Spec}(A \otimes_A C)$ is a closed map for every A-algebra C. Show that f is an integral mapping.

Chapter 6 : Chain Conditions

6.1. Let M be an A-module and $u \in \text{End}_A(M)$. Show the following.

a. If M is Noetherian and u is surjective then u is injective.

Clearly $\operatorname{Ker}(u) \subseteq \operatorname{Ker}(u^2) \subseteq \ldots$ is a chain of submodules in M. So there is n > 0 with $\operatorname{Ker}(u^{n+1}) = \operatorname{Ker}(u^n)$. Suppose that $x \in \operatorname{Ker}(u)$. Since u is surjective, we can choose x' for which $u^n(x') = x$. Then $u^{n+1}(x') = u(x) = 0$ so that $u^n(x') = 0$. But now x = 0, and hence u is injective.

b. If M is Artinian and u is injective then u is surjective.

Clearly $\operatorname{Im}(u) \supseteq \operatorname{Im}(u^2) \supseteq \ldots$ is a chain of submodules in M. So there is n > 0 with $\operatorname{Im}(u^{n+1}) = \operatorname{Im}(u^n)$. Suppose that $x \in M$ and choose y for which $u^n(x) = u^{n+1}(y) = u^n(u(y))$. Since u is injective, we see that u(y) = x. This means that u is surjective.

6.2. Let M be an A-module. If every non-empty set of finitely generated submodules of M has a maximal element, then M is Noetherian.

Suppose that N is a submodule of M that is not finitely generated. Then given $x_1, \ldots, x_n \in N$ there is $x_{n+1} \in N$ not lying in the submodule N_n of N generated by x_1, \ldots, x_n . But then $N_1 \subset N_2 \subset \ldots$ is a strictly increasing sequence of finitely generated submodules of M, which has no maximal element. This contradiction shows that every submodule of M is finitely generated, and so M is Noetherian.

6.3. Let M be an A-module, and let N_1, N_2 be submodules of M. If M/N_1 and M/N_2 are Noetherian, then so is $M/(N_1 \cap N_2)$. Similarly with Artinian in place of Noetherian.

Define $\varphi : M/(N_1 \cap N_2) \to M/N_1 \oplus M/N_2$ by $\varphi(x + N_1 \cap N_2) = (x + N_1, x + N_2)$. This yields a well-defined *A*-module monomorphism. Now if $M/N_1, M/N_2$ are Noetherian (Artinian) then is $M/N_1 \oplus M/N_2$, and hence so is every submodule of $M/N_1 \oplus M/N_2$. Since φ is injective, this means that $M/(N_1 \cap N_2)$ is Noetherian (Artinian) as well.

6.4. Let M be a Noetherian A-module and let \mathfrak{a} be the annihilator of M in A. Prove that A/\mathfrak{a} is Noetherian. Does a similar result hold with Artinian in place of Noetherian?

Let M be Noetherian and suppose M is generated as an A-module by $\{x_1, \ldots, x_n\}$. Notice that $M^n = \bigoplus_{1}^{n} M$ is a Noetherian A-module and that the map $A \to M^n$ given by $a \mapsto (ax_1, \ldots, ax_n)$ is a homomorphism of A-modules. Clearly $\mathfrak{a} = \operatorname{Ann}(M)$ is precisely the kernel of this map. So A/\mathfrak{a} is isomorphic with a submodule of M^n . From this we conclude that A/\mathfrak{a} is a Noetherian A-module, and so is a Noetherian A/\mathfrak{a} -module, and is therefore a Noetherian ring.

This result does not hold with Artinian in place of Noetherian. As a counterexample, let p be a fixed prime number, take $A = \mathbb{Z}$, and define G as the subgroup of \mathbb{Q} / \mathbb{Z} consisting of all [a/b] with b a power of p. Then the subgroups of G are generated by $[1/p^n]$ for some $n \in \mathbb{N}$. Hence, G is an Artinian \mathbb{Z} -module. Now suppose that $n \in \mathbb{Z}$ annihilates G. Then $n/p^m \in \mathbb{Z}$ for every $m \ge 0$. This means that n = 0, and thus Ann(G) = 0. But $\mathbb{Z} / Ann(G) = \mathbb{Z}$ is not Artinian. So we have a counterexample.

6.5. Show that every subspace Y of a Noetherian topological space X is Noetherian, and that X is compact.

Let $U_1 \subseteq U_2 \subseteq \ldots$ be open sets in Y. Choose V_k open in X such that $U_k = V_k \cap Y$. Define $W_k = \bigcup_{1 \le i \le k} V_i$, and note that $W_k \cap Y = \bigcup_{1 \le i \le k} U_i = U_k$. Since $W_1 \subseteq W_2 \subseteq \ldots$ we deduce the existence of an N for which $W_n = W_N$ whenever $n \ge N$. But then $U_n = U_N$ whenever $n \ge N$. Therefore, Y is itself Noetherian. Let \mathcal{C} be a collection of closed subsets of X such that any intersection of finitely many members of \mathcal{C} is non-empty. Let \mathcal{I} denote the set of all intersections of finitely many members of \mathcal{C} so that \mathcal{I} is a collection of closed subsets of X. Then \mathcal{I} has minimal elements. Since \mathcal{I} is closed under finite intersections, it must be that \mathcal{I} has a minimum element. Since this element is non-empty, we see that $\bigcap \mathcal{C}$ is non-empty. This implies that X is compact.

6.6. Let X be a topological space. Show that X is Noetherian if and only if every open subspace is compact, and that this occurs if and only if every subspace of X is compact.

Suppose that X is Noetherian. Then every subspace of X is Noetherian in the subspace topology, and so every subspace of X is compact.

If every subspace of X is compact then so is every open subspace.

Suppose that every open subspace of X is compact. Let $U_1 \subseteq U_2 \subseteq ...$ be a sequence of open subsets of X. Then $\{U_i\}_1^\infty$ is an open cover of $U = \bigcup_1^\infty U_i$. Since U is compact, $\{U_i\}_1^\infty$ has a finite subcover. This means that our sequence of open sets becomes stationary. Therefore, X is a Noetherian topological space.

6.7. Show that a Noetherian topological space X is a union of finitely many irreducible closed subspaces. Conclude that X has finitely many irreducible components.

Suppose that X is not the union of finitely many closed irreducible subspaces. Let Σ be the collection of all closed subsets of X that cannot be written as the union of finitely many closed irreducible subspaces of X. By hypothesis, $X \in \Sigma$ and so Σ is non-empty. Since X is Noetherian, Σ has a minimal element Y. Now Y is not irreducible, so Y is the union of two proper closed subsets, each of these being closed in X since Y is closed in X. By minimality of Y, each of these closed subsets can be written as the union of finitely many closed irreducible subspaces of X. This means that $Y \notin \Sigma$, a contradiction. Therefore, X is the union of finitely many irreducible closed subspaces.

This means that X is the union of finitely many irreducible components, say Y_1, \ldots, Y_n . If Y is an irreducible component of X, then $Y \subseteq \bigcup_{i=1}^{n} Y_i$. I claim that $Y \subseteq Y_i$ for some i. Otherwise, there is a set $S \subseteq \{1, \ldots, n\}$ minimal with respect to the property that $Y \subseteq \bigcup_{i \in S} Y_i$, with $|S| \ge 2$. But then $Y = \bigcup_{i \in S} Y \cap Y_i$ with each $Y \cap Y_i$ a proper closed subset of Y, contradicting the assumption that Y is irreducible. Therefore, $Y \subseteq Y_i$ for some i, and hence $Y = Y_i$ for some i. This means that X has finitely many irreducible components.

6.8. Show that Spec(A) is a Noetherian topological space whenever A is a Noetherian ring. Is the converse true?

Let A be a Noetherian ring. Suppose we have a descending sequence of closed subsets of Spec(A). This sequence has the form $V(\mathfrak{a}_1) \supseteq V(\mathfrak{a}_2) \supseteq \ldots$ for some ideals \mathfrak{a}_i in A. The relation $V(\mathfrak{a}_i) \supseteq V(\mathfrak{a}_{i+1})$ implies that $r(\mathfrak{a}_i) \subseteq r(\mathfrak{a}_{i+1})$. This means that $r(\mathfrak{a}_1) \subseteq r(\mathfrak{a}_2) \subseteq \ldots$ is an increasing sequence of ideals in A. So we can choose N satisfying $r(\mathfrak{a}_n) = r(\mathfrak{a}_N)$ for all $n \ge N$. Then $V(\mathfrak{a}_n) = V(r(\mathfrak{a}_n)) = V(r(\mathfrak{a}_N)) = V(\mathfrak{a}_n)$ for all $n \ge N$. Therefore, Spec(A) is Noetherian.

It is not true that A needs to be a Noetherian ring when $\operatorname{Spec}(A)$ is a Noetherian topological space. As a counterexample, let $B = k[x_1, x_2, \ldots]$ be the polynomial ring in countably many variables, suppose we have the ideal $\mathfrak{a} = (x_1, x_2^2, x_3^3, \ldots)$ in B, and define $A = B/\mathfrak{a}$. Also define an ideal $\mathfrak{b} = (x_1, x_2, x_3, \ldots)$ in B. Then \mathfrak{b} is a maximal ideal in B containing \mathfrak{a} , so that $\mathfrak{b}/\mathfrak{a}$ is a maximal ideal in A. But $\mathfrak{b}/\mathfrak{a} \subseteq \mathfrak{N}(A) \subset A$ so that $\mathfrak{N}(A) = \mathfrak{b}/\mathfrak{a}$. Therefore, A has exactly one prime ideal. This means that $\operatorname{Spec}(A)$ is a one-point space, and hence is trivially Noetherian. But A is not Noetherian since there is no $k \in \mathbb{N}$ satisfying $\mathfrak{N}(A)^k = 0$. After all, such a k would yield $\mathfrak{b}^k \subseteq \mathfrak{a}$, which cannot hold since $x_{k+1}^k \in \mathfrak{b}^k - \mathfrak{a}$ by inspection.

6.9. Deduce from exercise 6.8 that a Noetherian ring A has finitely many minimal prime ideals.

Since A is Noetherian, Spec(A) is Noetherian, and so Spec(A) has finitely many irreducible components. But the minimal prime ideals of A and the irreducible components of Spec(A) are in a bijective correspondence under the map $\mathfrak{p} \mapsto V(\mathfrak{p})$. So A has finitely many minimal prime ideals.

6.10. Let M be a Noetherian A-module. Show that Supp(M) is a closed Noetherian subspace of Spec(A).

Since M is finitely generated, Supp(M) = V(Ann(M)). Therefore Supp(M) is closed in Spec(A). Also, V(Ann(M)) is homeomorphic with Spec(A/Ann(M)) as topological spaces. Exercise 6.4 shows that A/Ann(M) is a Noetherian ring, so that Supp(M) is a Noetherian space.

6.11. Let $f : A \to B$ be a ring homomorphism and suppose that Spec(B) is Noetherian. Prove that $f^* : \text{Spec}(B) \to \text{Spec}(A)$ is a closed mapping if and only if f has the going-up property.

Suppose that f^* is a closed mapping. Let $\mathfrak{p}_1 \subseteq \mathfrak{p}_2$ be a chain of prime ideals in f(A) with $\mathfrak{p}_1 = f(A) \cap \mathfrak{q}_1$, where \mathfrak{q}_1 is a prime ideal in B. Then $f^{-1}(\mathfrak{p}_2) \in V(f^*(\mathfrak{q}_1))$ since $f^*(\mathfrak{q}_1) = f^{-1}(\mathfrak{p}_1) \subseteq f^{-1}(\mathfrak{p}_2)$. Since $f^*(V(\mathfrak{q}_1)) = V(f^*(\mathfrak{q}_1))$ there is a prime ideal \mathfrak{q}_2 in B containing \mathfrak{q}_1 such that $f^{-1}(\mathfrak{p}_2) = f^*(\mathfrak{q}_2) = f^{-1}(f(A) \cap \mathfrak{q}_2)$. This means that $\mathfrak{p}_2 = f(A) \cap \mathfrak{q}_2$. Therefore, B and f(A) satisfy the conclusions of the going-up theorem, showing that f has the going-up property.

Now suppose that f has the going up-property. Notice that $\operatorname{Spec}(B/\mathfrak{b})$ is homeomorphic with $V(\mathfrak{b})$. So $V(\mathfrak{b})$ a Noetherian space, since it is a subspace of the Noetherian space $\operatorname{Spec}(B)$. Exercise 6.9 tells us that there are finitely many prime ideals in B containing \mathfrak{b} minimal with respect to inclusion. Label these primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ and write $\mathfrak{q}_i = \mathfrak{p}_i^c$. If $\mathfrak{r} \in f^*(V(\mathfrak{b}))$ then $\mathfrak{r} = \mathfrak{p}^c$ for some \mathfrak{p} containing \mathfrak{b} , so that $\mathfrak{r} = \mathfrak{p}_i$ for some i. In other words, $f^*(V(\mathfrak{b})) \subseteq \bigcup_{i=1}^n V(\mathfrak{q}_i)$. Now suppose that $\mathfrak{r} \in V(\mathfrak{q}_i)$ for some i. Then $f(\mathfrak{q}_i) \subseteq f(\mathfrak{r})$ is a chain of prime ideals in f(A) with $f(A) \cap \mathfrak{p}_i = f(\mathfrak{q}_i)$. So we can choose a prime ideal \mathfrak{p} containing \mathfrak{p}_i so that $f(A) \cap \mathfrak{p} = f(\mathfrak{r})$. But now $\mathfrak{r} = f^{-1}(\mathfrak{p})$ with $\mathfrak{p} \in V(\mathfrak{b})$, so that $\mathfrak{r} \in f^*(V(\mathfrak{b}))$. Thus, $f^*(V(\mathfrak{b})) = \bigcup_{i=1}^n V(\mathfrak{q}_i)$ is a closed set, so that f^* is a closed mapping.

6.12. Let A be a ring such that Spec(A) is a Noetherian space. Show that the set of prime ideals of A satisfies the ascending chain condition. Is the converse true?

Let $\mathfrak{p}_1 \subseteq \mathfrak{p}_2 \subseteq \ldots$ be an ascending sequence of prime ideals in A. Then $V(\mathfrak{p}_1) \supseteq V(\mathfrak{p}_2) \supseteq \ldots$ is a descending sequence of closed subset in Spec(A). Choose N with $V(\mathfrak{p}_n) = V(\mathfrak{p}_N)$ for all $n \ge N$. It follows immediately that $\mathfrak{p}_n = \mathfrak{p}_N$ for all $n \ge N$.

The converse does not hold. As a counterexample, take $A = \prod_{i=0}^{\infty} \mathbb{Z}_2(e_i)$. Suppose $\mathfrak{p} \subsetneq \mathfrak{q}$ are prime ideals in A, and let $x \in \mathfrak{q} - \mathfrak{p}$. Then $x^2 = x$ so that $x(1-x) = 0 \in \mathfrak{p}$, and hence $1-x \in \mathfrak{p}$. But then $1-x \in \mathfrak{q}$ so that $1 \in \mathfrak{q}$, a contradiction. This means that every prime ideal in A is maximal, so that the prime ideals in A satisfy the ascending chain condition. Now define an ideal \mathfrak{a}_n in A by $\mathfrak{a}_n = \prod_{i=1}^n \mathbb{Z}_2(e_i)$ so that $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \ldots$ and hence $V(\mathfrak{a}_1) \supseteq V(\mathfrak{a}_2) \supseteq \ldots$ is a descending sequence of closed subsets of $\operatorname{Spec}(A)$. Now $\prod_{j \neq n+1} \mathbb{Z}_2(e_i)$ is a prime ideal in A containing \mathfrak{a}_n but not containing \mathfrak{a}_{n+1} so that $V(\mathfrak{a}_n) \supseteq V(\mathfrak{a}_{n+1})$ for all n. This shows that $\operatorname{Spec}(A)$ is not a Noetherian space.

Chapter 7 : Noetherian Rings

7.1. Suppose A is a non-Noetherian ring and let Σ consist of all ideals in A that are not finitely generated, so that $\Sigma \neq \emptyset$. Show that Σ has maximal elements and that every maximal element is a prime ideal. So if every prime ideal is finitely generated, then A is Noetherian.

A straightforward application of Zorn's Lemma tells us that Σ has maximal elements since Σ is chain complete. Let \mathfrak{a} be a maximal element in Σ and suppose that there are $x, y \notin \mathfrak{a}$ for which $xy \in \mathfrak{a}$. Then $\mathfrak{a} \subsetneq \mathfrak{a} + (x)$. By maximality, $\mathfrak{a} + (x)$ is finitely generated, by elements of the form $a_i + b_i x$, where a_i are elements of \mathfrak{a} and b_i are elements of A. Let \mathfrak{a}_0 be the ideal of \mathfrak{a} generated by the a_i . Clearly $\mathfrak{a}_0 + (x) = \mathfrak{a} + (x)$. Also clear is that $\mathfrak{a}_0 + x(\mathfrak{a}:x) \subseteq \mathfrak{a}$. So suppose that $a \in \mathfrak{a}$. Then $a + x = \sum c_i(a_i + b_i x)$ for appropriate $c_i \in A$. Hence, $a = \sum c_i a_i + x(\sum b_i c_i - 1)$ where $\sum b_i c_i - 1$ is in $(\mathfrak{a}:x)$. Consequently $\mathfrak{a} = \mathfrak{a}_0 + x(\mathfrak{a}:x)$. Observe that $(\mathfrak{a}:x)$ strictly contains \mathfrak{a} since $y \in (\mathfrak{a}:x) - \mathfrak{a}$. By maximality of \mathfrak{a} we see that $(\mathfrak{a}:x)$ is finitely generated. But then $\mathfrak{a} = \mathfrak{a}_0 + x(\mathfrak{a}:x)$ is itself finitely generated; a contradiction. So every maximal element in Σ is prime. Therefore, a ring in which every prime ideal is finitely generated must be Noetherian.

7.2. Suppose A is a Noetherian ring and let $f = \sum_{i=0}^{\infty} a_i x^i \in A[[x]]$. Show that f is nilpotent if and only if each a_i is nilpotent.

From exercise 1.5 each a_i is nilpotent if f is nilpotent. So suppose that each a_i is nilpotent. Then each $a_i \in \mathfrak{N}(A)$. Since A is Noetherian there is n > 0 for which $\mathfrak{N}(A)^n = 0$. By induction each coefficient of f^n is an element of $\mathfrak{N}(A)^n$, so that $f^n = 0$. Hence, f is nilpotent.

- 7.3. Let \mathfrak{a} be a proper irreducible ideal in a ring A. Prove that the following are equivalent.
 - a. The ideal $\mathfrak a$ is $\mathfrak p\text{-primary}$ for some prime ideal $\mathfrak p.$
 - b. For every S the saturation $S(\mathfrak{a}) = (\mathfrak{a}: s)$ for some $s \in S$.
 - c. The sequence $(\mathfrak{a}: x^n)$ is stationary for every $x \in A$.
- $(a \Rightarrow b)$ If it occurs that $r(\mathfrak{a}) \cap S = \emptyset$, then since $r(\mathfrak{a})$ is a prime ideal, we can deduce that $S(\mathfrak{a}) = \mathfrak{a}$ with of course $\mathfrak{a} = (\mathfrak{a}: 1)$. So suppose then that $s \in r(\mathfrak{a}) \cap S$. Choose n > 0 for which $s^n \in \mathfrak{a}$. Then $S(\mathfrak{a}) = (1)$ and $\mathfrak{a} = (\mathfrak{a}: s^n)$ with $s^n \in S$. So we are done.
- (b \Rightarrow c) Let $x \in A$ and define $S = \{1, x, x^2, \ldots\}$. Then $\bigcup_{n=0}^{\infty} (\mathfrak{a} : x^n) = S(\mathfrak{a}) = (\mathfrak{a} : x^N)$ for some N. Thus $(\mathfrak{a} : x^N) = (\mathfrak{a} : x^n)$ for $n \ge N$.
- $(c \Rightarrow a)$ We can imitate the proof of Lemma 7.12, noting that the ascending chain of ideals becomes stationary by hypothesis (instead of assuming that the ring A is Noetherian).

7.4. Which of the following rings A are Noetherian?

a. The ring A of rational functions having no pole on S^1 .

Let S be the set of all $f \in \mathbb{C}[z]$ so that f has no zero on S^1 . It is clear that S is a multiplicatively closed subset of $\mathbb{C}[z]$, and that $A = S^{-1} \mathbb{C}[z]$. Since $\mathbb{C}[z]$ is a Noetherian ring, we see that A is a Noetherian ring.

b. The ring A of powers series in z with a positive radius of convergence.

Notice that A is the ring of germs of functions defined at 0. Let \mathfrak{a} be an ideal in A. If $0 \neq f \in \mathfrak{a}$ then write $f(z) = \sum_{i=n}^{\infty} a_i z^i$ with $n \geq 0$ and $a_n \neq 0$. Define $g(z) = \sum_{i=0}^{\infty} a_{i+n} z^i$ so that $f(z) = z^n g(z)$ and $g(0) = a_n \neq 0$. Complex analysis tells us that $g \in A$ and $1/g \in A$, so that g is invertible in A. In particular, $z^n = f \cdot 1/g \in \mathfrak{a}$. Assume n is the smallest number satisfying $z^n \in \mathfrak{a}$. From what we have shown, $\mathfrak{a} = (z^n)$. So the ideals in A are $A \supset (z) \supset (z^2) \supset \ldots \supset (0)$. We see that A is Noetherian.

c. The ring A of power series in z with an infinite radius of convergence.

Notice that A is the same as the ring of entire functions on \mathbb{C} . More precisely, an element of A yields an entire function on \mathbb{C} via evaluation, and every entire function on \mathbb{C} yields an element of A by taking the Taylor expansion of the function at the origin. Now by Weierstrass' Theorem for complex analysis, there is, for every $n \in \mathbb{N}$, an entire function f_n defined on \mathbb{C} having simple zeros precisely at $n, n+1, n+2, \ldots$ and no zeros elsewhere. Suppose that g is an entire function with zeros at $n, n+1, n+2, \ldots$. Then g/f_n is an entire function, so that $g \in (f_n)$ and hence (f_n) is the set of all entire functions that vanish at $n, n+1, n+2, \ldots$. Defining $\mathfrak{a}_n = (f_n)$, we have $\mathfrak{a}_0 \subsetneq \mathfrak{a}_1 \subsetneq \mathfrak{a}_2 \subsetneq \ldots$ is a properly ascending sequence of ideals in A, showing that A is non-Noetherian.

d. The ring A of polynomials in z whose first k derivatives vanish at the origin, where k is a fixed natural number.

It is easy to see that A is the set of all polynomials $c + z^{k+1}p(z)$ where $c \in \mathbb{C}$ and $p \in \mathbb{C}[z]$. Therefore, A is generated over \mathbb{C} by $\{1, z^{k+1}, z^{k+2}, \dots, z^{2k+1}\}$. In other words, A is finitely generated over the Noetherian ring \mathbb{C} , and therefore A is itself Noetherian.

e. The ring A of polynomials in z and w all of whose partial derivatives with respect to w vanish at z = 0.

Define $B = \mathbb{C}[z, zw, zw^2, zw^3, \ldots]$ so that B is a subring of $\mathbb{C}[z, w]$. It is clear that $zw^i \in A$ for every $i \geq 0$. Since A is a ring containing \mathbb{C} , we see that $B \subseteq A$. On the other hand, let p be a general element of A. We can choose $n \in \mathbb{N}$ and $p_0, \ldots, p_n \in \mathbb{C}[z]$ satisfying

$$p(z,w) = p_0(z) + p_1(z)w + p_2(z)w^2 + \dots + p_n(z)w^n$$

Notice that

$$\frac{\partial p}{\partial w}(z,w) = p_1(z) + 2p_2(z)w + \dots + np_n(z)w^{n-1}$$

Our condition on p is that

$$p_1(0) + 2p_2(0)w + \dots + np_n(0)w^{n-1} = 0$$

Since this holds for all $w \in \mathbb{C}$ we conclude that $p_1(0) = p_2(0) = \ldots = p_n(0) = 0$. In other words, $z \mid p_i(z)$ for $1 \leq i \leq n$. From this we see that $p \in B$, and hence B = A. Now let I_n be the ideal generated by $z, zw, zw^2, \ldots, zw^n$. Then $I_1 \subseteq I_2 \subseteq \ldots$ is a sequence of ideals in A. Suppose, for the sake of contradiction, that $zw^{n+1} \in I_n$. Then we can write

$$zw^{n+1} = \sum_{j=0}^n \lambda_j(z,w) zw^j$$
 for some $\lambda_j(z,w) \in B$

Now we can write

$$\lambda_j(z,w) = q_0(z) + zr_0(z)t_0(w)$$

Combining these relations yields

$$zw^{n+1} = \sum_{j=0}^{n} q_0(z)zw^j + z^2 \sum_{j=0}^{n} r_0(z)t_0(w)w^j$$

This equality is impossible by inspection. So $I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \ldots$ is a properly ascending sequence of ideals in A. This means that A is non-Noetherian.

7.5. Let A be a Noetherian ring, B a finitely generated A-algebra, and G a finite group of Aautomorphisms of B. Show that B^G is a finitely generated A-algebra as well.

Suppose $f : A \to B$ induces the A-algebra structure of B. Notice that B^G is an A-subalgebra of B containing f(A). By exercise 5.12 we know that B is integral over B^G . So we have the sequence $f(A) \subseteq B^G \subseteq B$ with f(A) a Noetherian ring, B a finitely generated f(A)-algebra, and B integral over B^G . So proposition 7.8 tells us that B^G is finitely generated as an f(A)-algebra, and hence as an A-algebra, as desired.

7.6. Show that a finitely generated field K is finite.

Suppose that $\operatorname{char}(K) = 0$ so that $\mathbb{Z} \subset \mathbb{Q} \subseteq K$. Then K is finitely generated over \mathbb{Q} since K is finitely generated over \mathbb{Z} by hypothesis. So K is finitely generated as a \mathbb{Q} -module by proposition 7.9. Since \mathbb{Z} is Noetherian, proposition 7.8 tells us that \mathbb{Q} is finitely generated over \mathbb{Z} , say by $\{a_1/b_1, \ldots, a_n/b_n\}$. But if p is a prime number not dividing any b_i , then 1/p is not in $\mathbb{Z}[a_1/b_1, \ldots, a_n/b_n] \subseteq \mathbb{Z}[1/b_1 \cdots b_n]$. Hence, the characteristic of K is a prime number p. Again, proposition 7.9 tells us that K is finitely generated as an \mathbb{F}_p -module, so that K is a finite field.

7.7. Suppose k is an algebraically closed field and I an ideal of $k[x_1, \ldots, x_n]$. Let $X \subset k^n$ consist of all x so that f(x) = 0 for every $f \in I$. Show that there is a finite subset $I_0 \subset I$ so that $x \in X$ if and only if f(x) = 0 for every $x \in I_0$.

Obviously k is Noetherian, so that $k[x_1, \ldots, x_n]$ is Noetherian. Hence, I is a finitely generated ideal. Suppose I is generated by f_1, \ldots, f_n . If $x \in X$ then $f_i(x) = 0$ for every i. Conversely, let $f \in I$ and write $f = \sum_{i=1}^{n} g_i f_i$ with $g_i \in k[x_1, \ldots, x_n]$. Then f(x) = 0 provided that $f_i(x) = 0$ for every i. Hence, $I_0 = \{f_i\}_1^n$ is the desired subset of I.

7.8. If A[x] is Noetherian, must A be Noetherian as well?

Define a ring homomorphism $A[x] \to A$ by $\sum_{0}^{n} a_k x^k \mapsto a_0$. Since this map is surjective, A is Noetherian.

- 7.9. Show that the ring A is Noetherian if the following hold
 - a. For each maximal ideal \mathfrak{m} , the ring $A_{\mathfrak{m}}$ is Noetherian.
 - b. For each $x \neq 0$ in A, there are finitely many maximal ideals in A containing x.

Let $\mathfrak{a} \neq 0$ be any ideal in A and suppose $\mathfrak{m}_1, \ldots, \mathfrak{m}_r$ are the maximal ideals in A containing \mathfrak{a} . Suppose $x_0 \in \mathfrak{a}$ is nonzero and let $\mathfrak{m}_1, \ldots, \mathfrak{m}_r, \ldots, \mathfrak{m}_{r+s}$ be the maximal ideals in A containing x. Since $\mathfrak{a} \not\subseteq \mathfrak{m}_{r+j}$ for j > 0 there is $x_j \in \mathfrak{a} - \mathfrak{m}_{r+j}$. Now $\mathfrak{a} = \mathfrak{a}_{\mathfrak{m}_i}^c$ for $1 \leq i \leq r$ since $\mathfrak{a} \cap (A - \mathfrak{m}_i) = \emptyset$. But each $\mathfrak{a}_{\mathfrak{m}_i}$ is an ideal in $A_{\mathfrak{m}_i}$ and so is finitely generated, since $A_{\mathfrak{m}_i}$ is Noetherian. If $\mathfrak{a}_{\mathfrak{m}_i}$ is generated by $\xi_1^{(i)}, \ldots, \xi_q^{(i)}$ then we can choose $a_1^{(i)}, \ldots, a_q^{(i)} \in \mathfrak{a}$ with $a_j^{(i)}/1 = \xi_i^{(j)}$ so that $\mathfrak{a}_{\mathfrak{m}_i}$ is generated by the images of $a_1^{(i)}, \ldots, a_q^{(i)}$ in $A_{\mathfrak{m}_i}$. Now choose some t > 0 and some $x_{s+1}, \ldots, x_t \in \mathfrak{a}$ so that

$$\{x_{s+1}, \dots, x_t\} = \{\xi_i^{(i)} | 1 \le j \le q \text{ and } 1 \le i \le r\}$$

So the images of x_{s+1}, \ldots, x_t in $A_{\mathfrak{m}_i}$ generate $\mathfrak{a}_{\mathfrak{m}_i}$ for every $1 \leq i \leq r$. Now define $\mathfrak{b} = (x_0, x_1, \ldots, x_t)$. We have the inclusion map $\phi: \mathfrak{b} \to \mathfrak{a}$. To show that $\mathfrak{b} = \mathfrak{a}$ it is enough to show that ϕ is surjective. So it suffices to show that $\phi_{\mathfrak{m}} : \mathfrak{b}_{\mathfrak{m}} \to \mathfrak{a}_{\mathfrak{m}}$ is surjective whenever \mathfrak{m} is a maximal ideal in A. That is, it suffices to show that $\mathfrak{b}_{\mathfrak{m}} = \mathfrak{a}_{\mathfrak{m}}$. We already know this to be true when \mathfrak{m} contains \mathfrak{a} . So suppose that $\mathfrak{a} \not\subseteq \mathfrak{m}$. If $x_0 \in \mathfrak{m}$ then $\mathfrak{m} = \mathfrak{m}_{r+i}$ for some i > 0 so that $\mathfrak{b}_{\mathfrak{m}} = A_{\mathfrak{m}}$ (since $x_i/1 \in \mathfrak{b}_{\mathfrak{m}}$ is a unit in $A_{\mathfrak{m}}$) and hence $\mathfrak{b}_{\mathfrak{m}} = \mathfrak{a}_{\mathfrak{m}}$. If $x_0 \notin \mathfrak{m}$ then $\mathfrak{b}_{\mathfrak{m}} = A_{\mathfrak{m}}$ (since $x_0/1 \in \mathfrak{b}_{\mathfrak{m}}$ is a unit in $A_{\mathfrak{m}}$) so that $\mathfrak{b}_{\mathfrak{m}} = \mathfrak{a}_{\mathfrak{m}}$. Therefore, $\mathfrak{a} = \mathfrak{b}$ is finitely generated, proving that A is a Noetherian ring.

7.10. Let M be a Noetherian A-module. Show that M[x] is a Noetherian A[x]-module.

Suppose N is an A[x]-submodule of M[x]. For $n \ge 0$, let M_n be the set of all $m \in M$ so that $mx^n + p \in N$ where $p \in M[x]$ is some polynomial of degree at most n-1. Then M_n is an A-submodule of M, so that $M_0 \subseteq M_1 \subseteq \ldots$ is an ascending sequence of submodules. Since M is a Noetherian A-module, there is N^* such that $M_n = M_{N^*}$ for all $n \ge N^*$. Again since M is Noetherian, there are $m_{i,j} \in M_i$ such that $\{m_{i,1}, \ldots, m_{i,r}\}$ generates M_i for $1 \le i \le N$. Clearly, $\{m_{N^*,1}, \ldots, m_{N^*,r}\}$ generates M_n for $n \ge N^*$. For each i, j choose $p_{i,j}$ of degree at most i-1 so that $m_{i,j}x^i + p_{i,j} \in N$ and define $q_{i,j} = m_{i,j}x^i + p_{i,j}$.

Assume $0 \neq p \in N$ has degree d and let m be the leading coefficient of p. Suppose $d > N^*$, and let $m = \sum_{i=1}^{r} a_i m_{N^*,i}$ with $a_i \in A$. Then defining $p' = p - \sum_{i=1}^{r} a_i x^{d-N^*} q_{N^*,i}$ yields $p' \in N$ with p' having degree less than d. By induction, there is $p' \in N$ with $\deg(p-p') \leq N^*$. Now we proceed analogously to write p - p' as an A-linear sum of the $q_{i,j}$. So p is an A[x]-linear sum of the $q_{i,j}$. This means that $\{q_{i,j}\}$ generates N as an A[x]-module, and hence N is finitely generated. Consequently, M[x] is a Noetherian A[x]-module.

7.11. Let A be a ring such that each local ring $A_{\mathfrak{p}}$ is Noetherian. Must A itself be Noetherian?

Define A to be the internal direct product $A = \prod_{k=1}^{\infty} \mathbb{Z}_2(e_k)$. Let \mathfrak{a}_n be the ideal generated by $e_1, \ldots, e_n \in A$. Then A is not Noetherian since we have a countable properly increasing sequence of ideals in A

$$\mathfrak{a}_1 \subsetneq \mathfrak{a}_2 \subsetneq \mathfrak{a}_3 \subsetneq$$

Let \mathfrak{p} be any prime ideal in A. Suppose $x \in \mathfrak{p}$ so that $1 - x \notin \mathfrak{p}$, for otherwise $1 \in \mathfrak{p}$. Then x/1 = 0/1 in $A_{\mathfrak{p}}$ since $(1 - x)x = x - x^2 = 0$. Therefore, $A_{\mathfrak{p}}$ is a local ring whose maximal ideal $\mathfrak{p}_{\mathfrak{p}} = 0$. This means that $A_{\mathfrak{p}}$ is a field, and is hence Noetherian. This shows that A need not be Noetherian even if each of its localizations is Noetherian, so that being Noetherian is not a local property.

7.12. Let A be a ring and B a faithfully flat A-algebra. If B is Noetherian, show that A is Noetherian.

Suppose that $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \ldots$ is an ascending chain of ideals in A. Since extension is order preserving, $\mathfrak{a}_1^e \subseteq \mathfrak{a}_2^e \subseteq \ldots$ is an ascending chain of ideals in B. But then there is N for which $\mathfrak{a}_n^e = \mathfrak{a}_N^e$ whenever $n \geq N$. Because B is faithfully flat we see that $\mathfrak{a}_n = \mathfrak{a}_n^{ec} = \mathfrak{a}_N^{ec} = \mathfrak{a}_N$ whenever $n \geq N$. Hence, A is Noetherian as well.

7.13. Let $f: A \to B$ be a ring homomorphism of finite type. Show that the fibers of f^* are Noetherian subspaces of B.

Let \mathfrak{p} be a prime ideal in B. By hypothesis, B is a finitely generated A-algebra. So $B \otimes_A k(\mathfrak{p})$ is a finitely generated $k(\mathfrak{p})$ -algebra. But this means that $B \otimes_A k(\mathfrak{p})$ is a Noetherian ring since $k(\mathfrak{p})$ is a field. Hence, $\operatorname{Spec}(B \otimes_A k(\mathfrak{p}))$ is a Noetherian topological space by exercise 6.8. So we are done.

7.14. Suppose k is an algebraically closed field and a is an ideal in the ring $A = k[t_1, \ldots, t_n]$. Show that $I(V(\mathfrak{a})) = r(\mathfrak{a})$.

Suppose that $f \in r(\mathfrak{a})$ so that $f^n \in \mathfrak{a}$ for some n > 0. If $x \in V(\mathfrak{a})$ then $0 = f^n(x) = f(x)^n$, so that f(x) = 0. We see that $f \in I(V(\mathfrak{a}))$, and hence $r(\mathfrak{a}) \subseteq I(V(\mathfrak{a}))$.

Now suppose that $f \notin r(\mathfrak{a})$ and choose a prime ideal \mathfrak{p} containing \mathfrak{a} so that $f \notin \mathfrak{p}$. Let $\overline{f} \neq 0$ be the image of f in $B = A/\mathfrak{p}$, and define $C = B_{\overline{f}}$. Notice that $C \neq 0$ since B is an integral domain and $\overline{f} \neq 0$. Let \mathfrak{m} be a maximal ideal in C. Now A is generated as a k-algebra by $\{t_1, \ldots, t_n\}$ so that B is generated as a k-algebra by $\{\overline{t_1}, \ldots, \overline{t_n}\}$. We see that C is generated as a k-algebra by $\{\overline{1}/\overline{f}, \overline{t_1}/\overline{1}, \ldots, \overline{t_n}/\overline{1}\}$. In particular, C is a finitely generated k-algebra. Since k is algebraically closed, we have $C/\mathfrak{m} \cong k$. More precisely, $1 + \mathfrak{m}$ generates C/\mathfrak{m} as a k-vector space. Now we have a series of maps

$$A \xrightarrow{\pi_A} B \xrightarrow{\varphi} C \xrightarrow{\pi_C} C/\mathfrak{m} \cong k$$

Let ψ denote the composition of these maps, and let $x_i = \psi(t_i)$. Then we can consider $x = (x_1, \ldots, x_n)$ as being a point in k^n . More precisely, we choose x_i to be the unique point in k satisfying $x_i + \mathfrak{m} = \psi(t_i)$. Let gbe any element in A, so that $\psi(g)$ can be considered as a point in k^n as well. I claim that $\psi(g) = g(x)$. This holds for each of $t_1, \ldots, t_n \in A$ and so it holds for any $g \in A$ since all maps involved are maps of k-algebras, including valuation at the point x.

Now let g be any element of \mathfrak{a} . Then $g \in \mathfrak{p}$ so that $\pi_A(g) = 0$, and hence $g(x) = \psi(g) = 0$. This means that $x \in V(\mathfrak{a})$. On the other hand, $\varphi(\pi_A(f)) = \overline{f}/\overline{1}$ is a unit in C so that $\varphi(\pi_A(f)) \notin \mathfrak{m}$, and hence $\psi(f) \neq 0$. This means that $f(x) \neq 0$, and hence $f \notin I(V(\mathfrak{a}))$. Consequently, $I(V(\mathfrak{a})) \subseteq r(\mathfrak{a})$, and therefore $I(V(\mathfrak{a})) = r(\mathfrak{a})$.

7.15. Let (A, \mathfrak{m}, k) be a Noetherian local ring and M a finitely generated A-module. Show that the following four conditions on M are equivalent

- a. M is free.
- b. M is flat.
- c. The map $\mathfrak{m} \otimes_A M \to A \otimes_A M$ is injective.
- d. $\mathbf{Tor}_{1}^{A}(k, M) = 0.$
- $(a \Rightarrow b)$ O.K.
- $(b \Rightarrow c)$ O.K.
- $(c \Rightarrow d)$ From the short exact sequence

 $0 \longrightarrow \mathfrak{m} \stackrel{i}{\longrightarrow} A \longrightarrow k \longrightarrow 0$

we get the long exact sequence

$$\operatorname{Tor}_{1}^{A}(A,M) \longrightarrow \operatorname{Tor}_{1}^{A}(k,M) \longrightarrow \mathfrak{m} \otimes_{A} M \xrightarrow{i \otimes \operatorname{Id}} A \otimes_{A} M$$

. . . .

But $\operatorname{Tor}_1^A(A, M) = 0$ and so $\operatorname{Tor}_1^A(k, M)$ is isomorphic with $\operatorname{Ker}(i \otimes \operatorname{Id}) = 0$. Hence, d holds.

 $(d \Rightarrow a)$ Since M is finitely generated, $M/\mathfrak{m}M$ is finitely generated as an A-module, and thus finite dimensional as a k-vector space. Let $\{x_1, \ldots, x_n\}$ be a basis of $M/\mathfrak{m}M$. Then M is generated by $\{x_1, \ldots, x_n\}$ and $k \otimes_A M \cong M/\mathfrak{m}M$ is an n-dimensional vector space over k. Now let F be the free A-module of rank nwith basis $\{e_1, \ldots, e_n\}$ and define a map $\phi : F \to M$ by $\phi(e_i) = x_i$. If E is the kernel of this map, then we have a short exact sequence

$$0 \longrightarrow E \longrightarrow F \stackrel{\phi}{\longrightarrow} M \longrightarrow 0$$

Since $\operatorname{Tor}_{1}^{A}(k, M) = 0$, we have the short exact sequence

$$0 \longrightarrow k \otimes_A E \longrightarrow k \otimes_A F \xrightarrow{\operatorname{id} \otimes \phi} k \otimes_A M \longrightarrow 0$$

But $k \otimes_A F \cong \bigoplus_{i=1}^n k$ is an *n*-dimensional *k*-vector space. Since $\mathrm{id} \otimes \phi$ is surjective, we see that $\mathrm{id} \otimes \phi$ is an isomorphism. Therefore, $k \otimes_A E = 0$. Since *A* is a Noetherian ring, *E* is a finitely generated *A*-module. Exercise 2.3 now tells us that E = 0. This means that $F \cong M$ and so *M* is a free *A*-module.

- 7.16. Let A be a Noetherian ring and M a finitely generated A-module. Show that the following are equivalent
 - a. M is flat.
 - b. $M_{\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$ -module whenever \mathfrak{p} is a prime ideal.
 - c. $M_{\mathfrak{m}}$ is a free $A_{\mathfrak{m}}$ -module whenever \mathfrak{m} is a maximal ideal.

Notice that $S^{-1}M$ is a finitely generated $S^{-1}A$ -module for every multiplicatively closed subset S of A, since M is a finitely generated A-module. Also, $A_{\mathfrak{p}}$ is a local Noethering ring for every prime ideal \mathfrak{p} in A. Finally, Proposition 3.10 tells us that flatness is a local condition.

 $(a \Rightarrow b)$ Each M_p is a flat A_p -module and so is a free A_p -module by exercise 7.15.

 $(b \Rightarrow c)$ O.K.

 $(c \Rightarrow a)$ Each $M_{\mathfrak{m}}$ is a flat $A_{\mathfrak{m}}$ -module by exercise 5.15, and so M is a flat A-module.

7.17. Let A be a ring and M a Noetherian A-module. Show that every submodule $N \neq M$ of M has a primary decomposition.

A submodule P of M is said to be irreducible if it cannot be expressed as the intersection of two submodules of M properly containing P. Since M is Noetherian, every submodule of M is the intersection of finitely many irreducible submodules (the proof of 7.11 easily carries over to modules). So it suffices to show that every proper irreducible submodule of M is primary.

Let $Q \neq M$ be an irreducible submodule. Then 0 is an irreducible submodule of M/Q. If 0 is primary in M/Q, then Q is primary in M. So we may take Q = 0. Suppose ax = 0 with $0 \neq x \in M$. Let M_n consist of all $y \in M$ so that $a^n y = 0$. Then $M_1 \subseteq M_2 \subseteq \ldots$ is a chain of submodules in M. Since M is Noetherian, we can choose N such that $M_n = M_N$ for $n \geq N$. Now suppose that $y \in a^N M \cap Ax$. Then ay = 0 since $y \in Ax$, and $y = a^N x'$ for some $x' \in M$, so that $0 = ay = a^{N+1}x'$. Since $x' \in M_{N+1} = M_N$, we must have $0 = a^N x' = y$. In other words, $a^N M \cap Ax = 0$. Since $Ax \neq 0$ and 0 is an irreducible submodule of M, we conclude that $a^N M = 0$, so that a is nilpotent. This shows that 0 is primary in M.

7.18. Let A be a Noetherian ring, p a prime ideal of A, and M a finitely generated A-module. Show that the following are equivalent

- a. The ideal p belongs to 0 in M.
- b. There exists $x \in M$ so that $Ann(x) = \mathfrak{p}$.
- c. There exists a submodule N of M isomorphic with A/\mathfrak{p} .
- $(a \Rightarrow b)$ Let $\bigcap_{i=1}^{n} Q_i = 0$ be a minimal primary decomposition of 0. We may assume that Q_1 is \mathfrak{p} -primary, and we can choose a nonzero $x \in \bigcap_{i=2}^{n} Q_i$. Then clearly $\operatorname{Ann}(x) = (Q_1 : x)$. But $(Q_1 : M)$ is a \mathfrak{p} -primary ideal in A, and so $\mathfrak{p}^n M \subseteq Q_1$ for some n > 0. This implies that $\mathfrak{p}^n x = 0$. Take $n \ge 0$ to be such that $\mathfrak{p}^{n+1} x = 0$ and $\mathfrak{p}^n x \ne 0$, and choose $y \in \mathfrak{p}^n x$. Then $\mathfrak{p} \subseteq \operatorname{Ann}(y)$ and $y \notin Q_1$ since $y \in \bigcap_{i=2}^{n} Q_i$. Now if $a \in \operatorname{Ann}(y)$ then a annihilates $0 \ne y + Q_1 \in M/Q_1$ so that $a \in \mathfrak{p}$. This means that $\mathfrak{p} = \operatorname{Ann}(y)$.

 $(b \Rightarrow c)$ The submodule Ax of M is isomorphic with $A/\operatorname{Ann}(x) \cong A/\mathfrak{p}$.

 $(c \Rightarrow b)$ Let $x \in N$ correspond with $1_{A/\mathfrak{p}} = 1 + \mathfrak{p} \in A/\mathfrak{p}$. Then $\operatorname{Ann}(x) = \operatorname{Ann}(1_{A/\mathfrak{p}}) = \mathfrak{p}$.

Deduce that there exists a chain of submodules $0 = M_0 \subset M_1 \subset \ldots \subset M_n = M$ of M with each M_{i+1}/M_i isomorphic with A/\mathfrak{p}_i , for some prime ideal \mathfrak{p}_i in A.

 $⁽b \Rightarrow a)$

7.19? Let \mathfrak{a} be an ideal in the Noetherian ring A. Let

$$\mathfrak{a} = \bigcap_{i=1}^r \mathfrak{b}_i = \bigcap_{i=1}^s \mathfrak{c}_i$$

be two minimal decompositions of a as intersections of irreducible ideals. Prove that r = s and that $r(\mathfrak{b}_i) = r(\mathfrak{c}_i)$ after reindexing. State and prove analogous results for modules.

- 7.20. Let X be a topological space and let \mathcal{F} be the smallest collection of subsets of X which contains all open subsets of X and is closed with respect to the formation of finite intersections and complements. Show the following.
 - a. A subset E of X belongs to \mathcal{F} iff E is a finite union of sets of the form $U \cap C$, where U is open and C is closed.

Let \mathbb{F} consist of all sets expressible as the finite union of sets of the form $U \cap C$, where U is open and C is closed. By DeMorgan's Law \mathcal{F} is closed under finite unions. As the complement of an open set is closed, and as \mathcal{F} contains all open sets, we see that \mathcal{F} contains all closed sets. So \mathcal{F} contains all sets that are finite unions of sets of the form $U \cap C$, where U is open and C is closed. Hence, $\mathbb{F} \subseteq \mathcal{F}$. Now \mathbb{F} contains all open sets since $U \cap X = U$ and X. \mathbb{F} is closed under complements since

$$\left[\bigcup_{k=1}^n (U_k \cap C_k)\right]^c = \bigcap_{k=1}^n (U_k^c \cup C_k^c) = \bigcup_{s+t=n} \left[\bigcap_{i_1,\dots,i_s} C_{i_k}^c \cap \bigcap_{j_1,\dots,j_t} U_{j_k}^c\right]^c$$

It is obvious that \mathbb{F} is closed under finite unions, and so \mathbb{F} is also closed under finite intersections. Therefore $\mathbb{F} = \mathcal{F}$.

b. If X is irreducible and $E \in \mathcal{F}$, then E is dense in X if and only if E contains a non-empty open subset of X.

If E contains a non-empty open subset of X, then E is dense in X since X is irreducible. So suppose that $E = \bigcup_{i=1}^{n} (U_i \cap C_i)$ satisfies $\operatorname{Cl}(E) = X$. Then $\operatorname{Cl}(E) = \bigcup_{i=1}^{n} \operatorname{Cl}(U_i \cap C_i) = X$ so that $\operatorname{Cl}(U_i \cap C_i) = X$ for some i, since X is irreducible. But then $X = \operatorname{Cl}(U_i \cap C_i) \subseteq \operatorname{Cl}(U_i) \cap \operatorname{Cl}(C_i) = C_i$ so that $U_i \cap C_i = U_i$ is open in X. Thus, E contains a non-empty open subset of X.

7.21. Let X be a Noetherian space and $E \subseteq X$. Show that $E \in \mathcal{F}$ iff, for each irreducible closed $X_0 \subseteq X$, either $\operatorname{Cl}(E \cap X_0) \neq X_0$ or $E \cap X_0$ contains a non-empty open subset of X_0 .

Suppose that $E \in \mathcal{F}$ and let X_0 be a closed irreducible subspace of X such that $\operatorname{Cl}(E \cap X_0) = X_0$. Notice that $E \cap X_0$ is a union of locally closed subspaces of X_0 . So by exercise 7.21, we conclude that $E \cap X_0$ contains a non-empty open subset of X_0 .

Now suppose that $E \notin \mathcal{F}$. Define Σ as the set of all closed subsets X' of X such that $E \cap X' \notin \mathcal{F}$. Then Σ is non-empty since $X \in \Sigma$. Since X is a Noetherian space, there is a minimal element X_0 of Σ . Suppose, for the sake of contradiction, that X_0 is reducible, with $X_0 = C_1 \cup C_2$ and each C_i a proper closed subset of X_0 . Then $E \cap C_i \in \mathcal{F}$ so that $E \cap X_0 = (E \cap C_1) \cup (E \cap C_2)$ is an element of \mathcal{F} ; a contradiction. This means that X_0 is a closed irreducible subspace of X. Now suppose that $\mathrm{Cl}(E \cap X_0) = X_0$.

7.22. Let X be a Noetherian space and E a subset of X. Show that E is open in X iff, for each irreducible closed X_0 in X, either $E \cap X_0 = \emptyset$ or $E \cap X_0$ contains a non-empty open subset of X_0 .

Suppose E is open in X and let X_0 be an irreducible closed subset of X. Either $E \cap X_0 = \emptyset$ or $E \cap X_0$ is a non-empty open subset of X_0 . Now suppose that E is not an open subspace of X. Then the collection Σ of

all closed $X' \subseteq X$ such that $E \cap X'$ is not open in X' is non-empty, since $X \in \Sigma$. Since X is a Noetherian space, we can choose a minimal $X_0 \in \Sigma$. Suppose $X_0 = C_1 \cup C_2$ where each C_i is a proper closed subset of X_0 . Then $E \cap X_0 = (E \cap C_1) \cup (E \cap C_2)$ is open in X_0 by minimality; a contradiction.

7.23? Let A be a Noetherian ring and $f : A \to B$ a homomorphism of finite type. Show that $f^* : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ maps constructible sets into constructible sets.

We can write $E = \bigcup_{i=1}^{n} (U_i \cap C_i)$ so that $f^*(E) = \bigcup_{i=1}^{n} f^*(U_i \cap C_i)$. If each $f^*(U_i \cap C_i)$ is a constructible subset of Spec(A), then $f^*(E)$ is a constructible subset of Spec(A). So assume that $E = U \cap C$.

- 7.24? Let A be a Noetherian ring and $f: A \to B$ be a homomorphism of finite type. Show that f^* is an open mapping if and only if f^* has the going-down property.
- 7.25? Let A be a Noetherian ring and $f : A \to B$ a flat homomorphism of finite type. Show that $f^* : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is an open mapping.
- 7.26. Suppose A is Noetherian and let F(A) denote the set of all isomorphism classes of finitely generated A-modules. Let C be the free abelian group generated by F(A). With each short exact sequence of finitely generated A-modules

 $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$

we associate the element [M'] - [M] + [M''] of C. Let D be the subgroup of C generated by these elements. The quotient group C/D is called the Grothendieck group of A, and is denoted by K(A). If M is a finitely generated A-module, let $\gamma_A(M)$ or $\gamma(M)$ denote the image of [M] in K(A). Prove the following concerning K(A).

a. For each additive function λ defined on F(A) with values in the abelian group G, there is a unique homomorphism $\lambda_0 : K(A) \to G$ satisfying $\lambda_0 \circ \gamma = \lambda$.

We can obviously extend $\lambda : F(A) \to G$ to a map $\lambda : C \to G$ of abelian groups in the obvious way. Since λ is additive, we know that $D \subseteq \text{Ker}(\lambda)$. So λ induces a map $\lambda_0 : C/D \to G$ satisfying $\lambda_0 \circ \gamma = \lambda$. Clearly this λ_0 is unique since K(A) is generated by $\gamma(F(A))$ as an abelian group.

b. The elements $\gamma(A/\mathfrak{p})$ with \mathfrak{p} a prime ideal generate K(A).

Let M be a finitely generated A-module and choose a chain of submodules

$$0 = M_0 \subset M_1 \subset \ldots \subset M_r = M$$

so that M_{i+1}/M_i is isomorphic with A/\mathfrak{p}_i for some prime ideal \mathfrak{p}_i . Then we have the short exact sequence

 $0 \longrightarrow M_{r-1} \longrightarrow M \longrightarrow M/M_{r-1} \longrightarrow 0$

of finitely generated A-modules, so that $[M] = [M_{r-1}] + [A/\mathfrak{p}_r]$. By induction $[M] = \sum_{i=1}^r [A/\mathfrak{p}_i]$. Applying γ yields $\gamma(M) = \sum_{i=1}^r \gamma(A/\mathfrak{p}_i)$. So we are done.

c. If $A \neq 0$ is a principal ideal domain, then $K(A) \cong \mathbb{Z}$.

Let $\mathfrak{p} = (a)$ be a non-zero prime ideal in A. Define $f : A \to \mathfrak{p}$ by f(b) = ab. Then f is a surjective homomorphism of A-modules. If f(b) = 0 then a = 0 or b = 0, so that b = 0 since $\mathfrak{p} \neq 0$. This means that f is an isomorphism of A-modules. From the short exact sequence

$$0 \longrightarrow \mathfrak{p} \longrightarrow A \longrightarrow A/\mathfrak{p} \longrightarrow 0$$

we see that $[A/\mathfrak{p}] = [A] - [\mathfrak{p}] = 0$. The only other prime ideal of A is 0, with [A/0] = [A]. So C is the abelian group generated by [A], and hence $C \cong \mathbb{Z}$. Since [A] has infinite order, we get $K(A) \cong \mathbb{Z}$.

d. Let $f: A \to B$ be a finite ring homomorphism. The restriction of scalars yields a homomorphism $f_!: K(B) \to K(A)$ such that $f_!(\gamma_B(N)) = \gamma_A(N)$ for every finitely generated *B*-module N. If $g: B \to C$ is another finite ring homomorphism, then $(g \circ f)_! = f_! \circ g_!$.

Let N be a finitely generated B-module so that N is a finitely generated A-module. If N and N' are isomorphic B-modules, then $f_!(N)$ and $f_!(N')$ are isomorphic as well. Also, a short exact sequence of B-modules turns into a short exact sequence of A-modules under restriction. Therefore, there is a map $f_!: K(B) \to K(A)$ satisfying $f_!(\gamma_B(N)) = \gamma_A(N)$. Suppose $g: B \to C$ is another finite ring homomorphism and let P be a finitely generated C-module. The pullback of P along $g \circ f$ is the same as the pullback of N along f, where N is the pullback of P along g. From this it follows that $(g \circ f)_! = f_! \circ g_!$.

- 7.27? Let A be a Noetherian ring and let $F_1(A)$ denote the set of all isomorphism classes of finitely generated flat A-modules. Repeating the construction of exercise 7.26, we obtain a group $K_1(A)$. Let $\gamma_1(M)$ denote the image (M) in $K_1(A)$, when M is a finitely generated flat A-module. Prove the following concerning $K_1(A)$.
 - a. The tensor product induces a commutative ring structure on $K_1(A)$ such that $\gamma_1(M) \cdot \gamma_1(N) = \gamma_1(M \otimes_A N)$. The identity element is $\gamma_1(A)$.

The tensor product of two finitely generated flat A-modules is clearly a finitely generated flat A-module. The tensor product is commutative, associative, respects direct sums, and has identity A. We get a multiplicative structure on $F_1(A)$ since $M \cong M'$ and $N \cong N'$ implies that $M \otimes_A N \cong M' \otimes_A N'$. By linearity we get a multiplicative structure on $C_1(A)$, where $C_1(A)$ is the free abelian group generated by $F_1(A)$. Let $D_1(A)$ be the subgroup of $C_1(A)$ generated by all elements of the form (M) - (M') - (M'') where M', M, and M'' fit into the obvious short exact sequence. To get a multiplicative structure on $K_1(A)$, we need to verify that $x \cdot y = x' \cdot y'$ whenever $x - x', y - y' \in D_1(A)$. By linearity, we simply need to check that $(N) \cdot ((M) - (M') - (M'')) \in D_1(A)$ whenever $(N) \in C_1(A)$ and $(M) - (M') - (M'') \in D_1(A)$. But this is immediate since N is a flat A-module. So $K_1(A)$ is a commutative ring, with identity $\gamma_1(A)$, and γ_1 satisfies the desired relation.

b. Show that the tensor product induces a $K_1(A)$ -module structure on K(A) such that $\gamma_1(M) \cdot \gamma(N) = \gamma(M \otimes N)$.

We see that C(A) has a $K_1(A)$ -module structure induced from the tensor product. Also, $K_1(A)$ annihilates D(A) since all modules in $F_1(A)$ are flat over A. So $K_1(A)$ induces the desired module structure on K(A).

- c. If (A, \mathfrak{m}) is a Noetherian local ring, then $K_1(A) \cong \mathbb{Z}$.
- d. Let $f: A \to B$ be a ring homomorphism with B Noetherian. Prove that extension of scalars gives rise to a ring homomorphism $f^!: K_1(A) \to K_1(B)$ such that $f^!(\gamma_1(M)) = \gamma_1(M \otimes_A B)$. If $g: B \to C$ with C Noetherian, then $(g \circ f)^! = g^! \circ f^!$.

If M is a finitely generated flat A-module, then $M_B = M \otimes_A B$ is a finitely generated flat B-module. Also, if $M \cong N$ then $M_B \cong N_B$. So there is a map $F_1(A) \to F_1(B)$ that extends to a group homomorphism $C_1(A) \to C_1(B)$. In fact, this is a ring homomorphism since $M_B \cdot N_B = (M \otimes_A B) \otimes_B (N \otimes_A B) \cong$ $(M \otimes_A N) \otimes_B B = (M \cdot N)_B$.

e. If $f: A \to B$ is a finite ring homomorphism then $f_!(f^!(x)y) = xf_!(y)$ for $x \in K_1(A)$ and $y \in K(B)$.

Chapter 8 : Artin Rings

8.1. Assume A is Noetherian and that 0 has the minimal primary decomposition $0 = \bigcap_{i=1}^{n} \mathfrak{q}_i$, with $\mathfrak{p}_i = r(\mathfrak{q}_i)$. Show that for every *i* there is $r_i > 0$ with $\mathfrak{p}_i^{(r_i)} \subseteq \mathfrak{q}_i$. Suppose \mathfrak{q}_i is an isolated primary component. Show that $A_{\mathfrak{p}_i}$ is a local Artin ring, and that if \mathfrak{m}_i is the maximal ideal of $A_{\mathfrak{p}_i}$, then $\mathfrak{m}_i^r = 0$ for some *r*. Also prove that $\mathfrak{q}_i = \mathfrak{p}_i^{(r)}$ for all large *r*.

Let \mathfrak{q} be any \mathfrak{p} -primary ideal. Since A is Noetherian, there is r > 0 with $\mathfrak{p}^r \subseteq \mathfrak{q}$. Then $(\mathfrak{p}^r)_{\mathfrak{p}} \subseteq \mathfrak{q}_{\mathfrak{p}}$ so that $\mathfrak{p}^{(r)} = (\mathfrak{p}^r)_{\mathfrak{p}}^c \subseteq \mathfrak{q}_{\mathfrak{p}}^c = \mathfrak{q}$ (after all, $\mathfrak{p} \cap S_{\mathfrak{p}} = \emptyset$). This holds in particular with $\mathfrak{q} = \mathfrak{q}_i$ for some i. Now suppose that \mathfrak{q}_i is one of the isolated primary components of 0. Clearly $A_{\mathfrak{p}_i}$ is a Noetherian ring. Any prime ideal in $A_{\mathfrak{p}_i}$ is of the form $\mathfrak{p}_{\mathfrak{p}_i}$ where \mathfrak{p} is a prime ideal in A contained in \mathfrak{p}_i . But \mathfrak{p}_i is a minimal element in the set of all prime ideals in A. This means that $A_{\mathfrak{p}_i}$ has precisely one prime ideal, namely $\mathfrak{m}_i = (\mathfrak{p}_i)_{\mathfrak{p}_i}$. Therefore, $A_{\mathfrak{p}_i}$ is a local Artin ring. Since $\mathfrak{N}(A_{\mathfrak{p}_i}) = \mathfrak{m}_i$ we see that $\mathfrak{m}_i^r = 0$ for all sufficiently large r. Finally, $\mathfrak{p}_i^{(r)} \subseteq \mathfrak{q}_i$ for all large r, so that $0 = \mathfrak{p}_i^{(r)} \cap \bigcap_{j \neq i} \mathfrak{q}_j$. Since isolated components are uniquely determined, we see that $\mathfrak{p}_i^{(r)} = \mathfrak{q}_i$ for all large r.

8.2. Let A be Noetherian. Prove that the following are equivalent.

- a. A is Artinian.
- b. Spec(A) is discrete and finite.
- c. Spec(A) is discrete.
- $(a \Rightarrow b)$ Notice that Spec(A) is Hausdorff since each prime ideal in A is maximal. Also, Spec(A) is finite since there are finitely many maximal ideals in A. Hence, Spec(A) has the discrete topology.
- $(b \Rightarrow c)$ O.K.
- $(c \Rightarrow a)$ Each prime ideal in A is maximal since Spec(A) is discrete. Therefore, A has Krull dimension 0. Hence, A is Artinian.
- 8.3. Let k be a field and A a finitely generated k-algebra. Prove that the following two conditions are equivalent.

a. A is Artinian.

- b. A is a finite k-algebra.
- (a \Rightarrow b) Write $A = \prod_{j=1}^{n} A_j$, where each A_j is an Artin local ring, and let $\pi_j : A \to A_j$ be the canonical projection. Notice that there is a unique way to make each A_j into a k-algebra in such that a way that π_j is a homomorphism of k-algebras. Also observe that if A is finitely generated as a k-algebra by $\{x_i\}_{i=1}^{m}$ then A_j is finitely generated as a k-algebra by $\{\pi_j(x_i)\}_{i=1}^{m}$. So if we prove that the result holds for the local Artin rings A_j , then the result holds for A since $\dim_k(A) = \sum_{j=1}^{n} \dim_k(A_j)$.

So assume that (A, \mathfrak{m}) is an Artin local ring. Then A/\mathfrak{m} is a finite algebraic extension of k since A/\mathfrak{m} is a finitely generated field extension of k. Since A is Noetherian, we see that \mathfrak{m} is a finitely generated A-module, and since \mathfrak{m} is the only prime ideal in A, we know by exercise 7.18 that there is a chain of ideals

$$0 = \mathfrak{m}_0 \subset \mathfrak{m}_1 \subset \ldots \subset \mathfrak{m}_r = \mathfrak{m}$$

in A with each $\mathfrak{m}_{i+1}/\mathfrak{m}_i \cong A/\mathfrak{m}$. Since each $\mathfrak{m}_{i+1}/\mathfrak{m}_i$ is a finite-dimensional k-vector space, the same is true for \mathfrak{m} , and therefore the same can be said about A.

 $(b \Rightarrow a)$ If \mathfrak{a} is an ideal in A, then $k\mathfrak{a} \subseteq \mathfrak{a}$, where we identify k with its isomorphic image in A. So \mathfrak{a} is a k-vector subspace of A. Since A is finite dimensional as a k-vector space, the vector subspaces of A satisfy the d.c.c. This means that ideals in A satisfy the d.c.c. In other words, A is an Artin ring.

- 8.4. Let $f : A \to B$ be a ring homomorphism of finite type. Consider the following conditions and show that $a \Rightarrow b \Leftrightarrow c \Rightarrow d$. Also, if $f : A \to B$ is integral and the fibers of f^* are finite, is f finite?
 - a. The map f is finite.
 - b. The fibers of f^* are discrete subspaces of Spec(B).
 - c. For prime \mathfrak{p} in A, the ring $B \otimes_A k(\mathfrak{p})$ is a finite $k(\mathfrak{p})$ -algebra.
 - d. The fibers of f^* are finite.

By hypothesis, B is a finitely generated A-algebra, so that $B \otimes_A k(\mathfrak{p})$ is a finitely generated $k(\mathfrak{p})$ -algebra.

- (a \Rightarrow b) If B is generated as an A-module by $\{b_i\}_1^n$, then $B \otimes_A k(\mathfrak{p})$ is generated as a $k(\mathfrak{p})$ -vector space by $\{b_i \otimes 1\}_1^n$, and hence $B \otimes_A k(\mathfrak{p})$ is Artinian by exercise 8.3. So by exercise 8.2, $\operatorname{Spec}(B \otimes_A k(\mathfrak{p}))$ is discrete. This shows that every fiber of f^* is a discrete subspace of $\operatorname{Spec}(B)$.
- (b \Rightarrow c) We know that $B \otimes_A k(\mathfrak{p})$ is a finitely generated $k(\mathfrak{p})$ -algebra, so that $B \otimes_A k(\mathfrak{p})$ is a Noetherian ring. Now by hypothesis Spec $(B \otimes_A k(\mathfrak{p}))$ is discrete, and so exercise 8.2 tells us that $B \otimes_A k(\mathfrak{p})$ is an Artinian ring. But exercise 8.3 nows tells us that $B \otimes_A k(\mathfrak{p})$ is a finite $k(\mathfrak{p})$ -algebra.
- (c \Rightarrow b) Whenever \mathfrak{p} is a prime ideal in A, the ring $B \otimes_A k(\mathfrak{p})$ is Artinian by exercise 8.3. So by exercise 8.2, the fiber $\operatorname{Spec}(B \otimes_A k(\mathfrak{p}))$ of f^* over \mathfrak{p} is discrete.
- $(c \Rightarrow d)$ Whenever \mathfrak{p} is a prime ideal in A, the ring $B \otimes_A k(\mathfrak{p})$ is Artinian, again by exercise 8.3. So again by exercise 2, the fiber $\operatorname{Spec}(B \otimes_A k(\mathfrak{p}))$ of f^* over \mathfrak{p} is finite.
- 8.5? In exercise 5.16 show that X is a finite covering of L.
- 8.6? Let A be a Noetherian ring and q a p-primary ideal. Consider chains of primary ideals from q to p. Show that all such chains are of finite bounded length, and that all maximal chains have the same length.

If $q \subseteq \mathfrak{r} \subseteq \mathfrak{p}$ then $r(\mathfrak{r}) = \mathfrak{p}$. So we can restrict attention to chains of \mathfrak{p} -primary ideals from \mathfrak{q} to \mathfrak{p} . Clearly all such chains are of finite length since A is Noetherian.

Chapter 9 : Discrete Valuation Rings and Dedekind Domains

9.1. Let A be a Dedekind domain, S a multiplicatively closed subset of A not containing 0. Show that $S^{-1}A$ is either a Dedekind domain or the field of fractions K of A.

If $\mathfrak{p}_0 \subset \mathfrak{p}_1 \subset \ldots \subset \mathfrak{p}_n$ is a chain of prime ideals in $S^{-1}A$, then $\mathfrak{p}_0^c \subset \mathfrak{p}_1^c \subset \ldots \subset \mathfrak{p}_n^c$ is a chain of prime ideals in A. So in general, the Krull dimension of $S^{-1}A$ is less than or equal to the Krull dimension of A. Now Ahas dimension 1 since A is a Dedekind domain. Hence, $S^{-1}A$ has dimension equal to 1 or 0. Since A is an integral domain and $0 \notin S$, we can consider $A \subseteq S^{-1}A \subseteq K$. If $S^{-1}A$ has dimension 0, then $S^{-1}A$ is a field, and so $S^{-1}A = K$.

Now assume that $S^{-1}A$ has dimension 1. Clearly $S^{-1}A$ is Noetherian, and K is the field of fractions of $S^{-1}A$. Since the integral closure of A in K equals A, the integral closure of $S^{-1}A$ in $S^{-1}(K) = K$ is $S^{-1}A$. This means that $S^{-1}A$ is integrally closed as well. Therefore, $S^{-1}A$ is a Dedekind domain.

Suppose again that $0 \notin S$, and let H, H' be the ideal class groups of A and $S^{-1}A$ respectively. Show that extension of ideals induces a surjective homomorphism $H \to H'$.

Suppose that \mathfrak{a} is a non-zero fractional ideal of A. It is clear that $S^{-1}\mathfrak{a}$ is a non-zero ideal of $S^{-1}A$ since S has no zero-divisors. If $x \in A$ is such that $x\mathfrak{a} \subseteq A$, then $xS^{-1}\mathfrak{a} \subseteq S^{-1}A$. Hence $S^{-1}\mathfrak{a}$ is a fractional ideal of $S^{-1}A$. Therefore, if we let I be the group of non-zero fractional ideals of A, and I' the group of non-zero fractional ideals of $S^{-1}A$, then we have a map $I \to I'$ given by $\mathfrak{a} \mapsto S^{-1}\mathfrak{a}$. In other words, this map is given by extension. This map is a group homomorphism since localization commutes with taking finite products. Let P be the image of the canonical map $K^* \to I$, and P' the image of the canonical map $K^* \to I'$. If $x \in K^*$ then $S^{-1}(x) = (x)$, and hence the map $I \to I'$ carries P into P'. Consequently, the map $I \to I'$ induces a map $H \to H'$. If $\mathfrak{b}I' \in H'$ then there is $0 \neq x \in A$ satisfying $x\mathfrak{b} \subseteq S^{-1}A$. We can write $(x)\mathfrak{b} = S^{-1}\mathfrak{a}$ for some non-zero ideal \mathfrak{a} in A. Since \mathfrak{a} is an integral ideal, it is clearly a fractional ideal of A, and so is an element of I. This means that the map $H \to H'$ is surjective.

9.2. Let A be a Dedekind domain. If $f = a_0 + a_1x + \dots + a_nx^n$ then the content c(f) of f is defined by $c(f) = (a_0, \dots, a_n)$. Prove Gauss's Lemma that c(fg) = c(f)c(g) for all f, g.

Suppose that A is in fact a discrete valuation ring, with maximal ideal \mathfrak{m} , where $\mathfrak{m} = (y)$. Each a_i is of the form $u_i y^{v(a_i)}$ where u_i is a unit in A and v is the appropriate discrete valuation. Let $a \ge 0$ be the biggest a' so that $y^{a'}$ divides each a_i . Similarly, let $b \ge 0$ be the biggest b' so that $y^{b'}$ divides each coefficient of g. Then f/y^a and g/y^b are primitive polynomials since some coefficient of f and g is a unit. Exercise 1.2 tells us that fg/y^{a+b} is primitive as well. Now $c(fg) = (y^{a+b}) = (y^a)(y^b) = c(f)c(g)$ so that Gauss's Lemma holds for discrete valuation rings.

Now suppose that A is a general Dedekind domain. Let \mathfrak{m} be a maximal ideal in A so that $A_{\mathfrak{m}}$ is a discrete valuation ring. The canonical map $A \to A_{\mathfrak{m}}$ extends naturally to a map $A[x] \to A_{\mathfrak{m}}[x]$. Denote this map by $f \mapsto f_{\mathfrak{m}}$. It is clear that $c(f_{\mathfrak{m}}) = c(f)_{\mathfrak{m}}$. Now there is an inclusion map $j : c(fg) \to c(f)c(g)$. We see that the map $j_{\mathfrak{m}} : c(fg)_{\mathfrak{m}} \to (c(f)c(g))_{\mathfrak{m}} = c(f)_{\mathfrak{m}}c(g)_{\mathfrak{m}} = c(f_{\mathfrak{m}})c(g_{\mathfrak{m}})$ is the natural inclusion map. By the work done above, we see that $j_{\mathfrak{m}}$ is the identity, and in particular is surjective. This means that j is surjective, and hence c(fg) = c(f)c(g). This means that Gauss's Lemma holds for Dedekind domains.

9.3. Suppose that (A, \mathfrak{m}, K) is a valuation ring, with $A \neq K$. Show that A is Noetherian if and only if A is a discrete valuation ring.

If A is a DVR then A is clearly Noetherian. So suppose that A is Noetherian. If \mathfrak{a} is an ideal in A then we can write $\mathfrak{a} = (a_1, \ldots, a_n)$ for some a_i . Since A is a valuation ring, the ideals in A are totally ordered. So there is some i for which $(a_j) \subseteq (a_i)$ for all $1 \leq j \leq n$. This means that $\mathfrak{a} = (a_j)$, and so \mathfrak{a} is a principal ideal. This means that A is a PID. Now write $\mathfrak{m} = (x)$, where $x \neq 0$ since A is not a field. Let y be an arbitrary

non-zero element of $\mathfrak{m}.$

I claim that $y = ux^k$ for some unit u and some k > 0. If not, then for every i there is $a_i \in \mathfrak{m}$ satisfying $y = a_i x^i$. Notice that $a_i = a_{i+1}x$ since $x \neq 0$, and so $(a_i) \subseteq (a_{i+1})$. But if $(a_{i+1}) = (a_i)$ then there is b for which $a_{i+1} = ba_i$, and hence $y = a_{i+1}x^{i+1} = (xb)(a_ix^i)$ so that xb = 1, implying that x is a unit. Consequently, we have a properly ascending sequence of ideals $(a_1) \subset (a_2) \subset \ldots$ in the Noetherian ring A, a contradiction.

Now let \mathfrak{a} be any proper ideal in A. Choose y for which $\mathfrak{a} = (y)$ and notice that $y \in \mathfrak{m}$ since y is not a unit. Write $y = ux^k$ as above, so that $\mathfrak{a} = (x^k)$. Now we argue as in $(f \Rightarrow a)$ from Proposition 9.2 to conclude that A is a discrete valuation ring (noting that this portion of Proposition 9.2 does not require the assumption that A have dimension 1).

9.4. Let A be a local domain which is not a field. Suppose the non-zero maximal ideal $\mathfrak{m} = (x)$ of A is principal and satisfies $\bigcap_{i=1}^{\infty} \mathfrak{m}^i = 0$. Prove that A is a DVR.

If $0 \neq y \in \mathfrak{m}$ then I claim that $y = ux^k$ for some unit u and some k > 0. If not, then there are $a_i \in \mathfrak{m}$ satisfying $y = a_i x^i$ for all i. But then $y \in \bigcap_{i=1}^{\infty} \mathfrak{m}^i = 0$ so that y = 0, contrary to our assumption on y. Now let \mathfrak{a} be a proper non-zero ideal in A, so that $\mathfrak{a} \subseteq \mathfrak{m}$. For every nonzero $y \in \mathfrak{a}$ write $y = ux^k$ as above. Let k^* be the minimal k that arises in this fashion. Then clearly $\mathfrak{a} \subseteq (x^{k^*})$ since every nonzero $y \in \mathfrak{a}$ can be written as $y = ux^k$ for some unit u and some $k \ge k^*$. On the other hand, there is some unit u such that $ux^{k^*} \in \mathfrak{a}$, and hence $(x^{k^*}) = \mathfrak{a}$. Now we argue as in $(f \Rightarrow a)$ from Proposition 9.2 to conclude that A is a discrete valuation ring (noting that this portion of Proposition 9.2 only requires that $\mathfrak{m}^n \neq \mathfrak{m}^{n+1}$ for all n, and that this holds true since x is a non-unit in A).

9.5. Let M be a finitely generated module over a Dedekind domain A. Prove that M is flat if and only if M is torsion free.

Exercise 7.16 tells us that M is a flat A-module if and only if $M_{\mathfrak{m}}$ is a free $A_{\mathfrak{m}}$ -module whenever \mathfrak{m} is a maximal ideal in A. But $A_{\mathfrak{m}}$ is a principal ideal domain whenever \mathfrak{m} is a maximal ideal in A. So the structure theorem of finitely generated modules over a PID tells us that $M_{\mathfrak{m}}$ is a free $A_{\mathfrak{m}}$ -module if and only if $M_{\mathfrak{m}}$ is torsion free. Exercise 3.13 now tells us that each $M_{\mathfrak{m}}$ is torsion free if and only if M is torsion free. Summarizing, M is a flat A-module if and only if M is torsion free.

9.6? Let M be a finitely generated torsion module over the Dedekind domain A. Prove that M is uniquely representable as a finite direct sum of modules $A/\mathfrak{p}_i^{n_i}$ where \mathfrak{p}_i are non-zero prime ideals in A.

9.7? Let A be a Dedekind domain and $a \neq 0$ an ideal in A. Show that every ideal in A/a is principal. Deduce that every ideal in A can be generated by at most 2 elements.

Since A is a Dedekind domain we can write $\mathfrak{a} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_n^{e_n}$ where \mathfrak{p}_i are distinct prime ideals in A and each $e_i \ge 0$. Since each \mathfrak{p}_i is maximal, we know that \mathfrak{p}_i and \mathfrak{p}_j are coprime for $i \ne j$. Hence, $\mathfrak{p}_i^{e_i}$ and $\mathfrak{p}_j^{e_j}$ are coprime for $i \ne j$. This means that $A/\mathfrak{a} \cong \prod_{i=1}^n A/\mathfrak{p}_i^{e_i}$. I claim that every ideal in $A/\mathfrak{p}_i^{e_i}$ is principal. Suppose that \mathfrak{b} is an ideal in A/\mathfrak{a}

9.8. Let $\mathfrak{a}, \mathfrak{b}$, and \mathfrak{c} be ideals in the Dedekind domain A. Prove that

$$\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) = \mathfrak{a} \cap \mathfrak{b} + \mathfrak{a} \cap \mathfrak{c}$$
 and $\mathfrak{a} + \mathfrak{b} \cap \mathfrak{c} = (\mathfrak{a} + \mathfrak{b}) \cap (\mathfrak{a} + \mathfrak{c})$

Suppose first that A is in fact a discrete valuation ring. Let \mathfrak{m} be the maximal ideal in A and write $\mathfrak{m} = (x)$. If any of the three ideals are zero, then we clearly have equality. So we may suppose that all three ideals are non-

$$\max\{a, \min\{b, c\}\} = \min\{\max\{a, b\}, \max\{a, c\}\}$$
$$\min\{a, \max\{b, c\}\} = \max\{\min\{a, b\}, \min\{a, c\}\}$$

To do this requires a straightforward case-by-case analysis, and so is omitted. Now assume that A is a general Dedekind domain. We have an inclusion map $j: \mathfrak{a} \cap \mathfrak{b} + \mathfrak{a} \cap \mathfrak{c} \to \mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c})$. In the field of fractions of A we have the equality $(\mathfrak{a} \cap \mathfrak{b} + \mathfrak{a} \cap \mathfrak{c})_{\mathfrak{p}} = \mathfrak{a}_{\mathfrak{p}} \cap \mathfrak{b}_{\mathfrak{p}} + \mathfrak{a}_{\mathfrak{p}} \cap \mathfrak{c}_{\mathfrak{p}}$ of sets, and similarly $(\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}))_{\mathfrak{p}} = \mathfrak{a}_{\mathfrak{p}} \cap (\mathfrak{b}_{\mathfrak{p}} + \mathfrak{c}_{\mathfrak{p}})$. Further, the induced map $j_{\mathfrak{p}}$ corresponds to inclusion. Since $A_{\mathfrak{p}}$ is a PID, the work above shows that $j_{\mathfrak{p}}$ is surjective. Therefore, j is surjective, and hence $\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) = \mathfrak{a} \cap \mathfrak{b} + \mathfrak{a} \cap \mathfrak{c}$. The second equality follows analogously.

9.9. Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ be ideals and let x_1, \ldots, x_n be elements in the Dedekind domain A. Show that the system of congruences $x \equiv_{\mathfrak{a}_i} x_i$ has a solution x iff $x_i \equiv_{\mathfrak{a}_i + \mathfrak{a}_j} x_j$ whenever $i \neq j$.

Consider the following sequence

$$A \xrightarrow{\phi} \bigoplus_{i=1}^{n} A/\mathfrak{a}_{i} \xrightarrow{\psi} \bigoplus_{i < j} A/(\mathfrak{a}_{i} + \mathfrak{a}_{j})$$

where $\phi(x) = (x + \mathfrak{a}_1, \dots, x + \mathfrak{a}_n)$ and $\psi(x_1 + \mathfrak{a}_1, \dots, x_n + \mathfrak{a}_n)$ has (i, j) component $x_i - x_j + \mathfrak{a}_i + \mathfrak{a}_j$. Notice first that ψ is well-defined. Suppose that this sequence is exact, and let $x_1, \dots, x_n \in A$. If the system of congruences $x \equiv_{\mathfrak{a}_i} x_i$ has a solution x then $(x_1 + \mathfrak{a}_1, \dots, x_n + \mathfrak{a}_n) = \phi(x)$ so that $\psi(x_1 + \mathfrak{a}_1, \dots, x_n + \mathfrak{a}_n) = 0$. This means that $x_i \equiv_{\mathfrak{a}_i + \mathfrak{a}_j} x_j$ whenever $i \neq j$. Conversely, if this holds then $\psi(x_1 + \mathfrak{a}_1, \dots, x_n + \mathfrak{a}_n) = 0$ so that $(x_1 + \mathfrak{a}_1, \dots, x_n + \mathfrak{a}_n) = \phi(x)$ for some $x \in A$, and hence our system of congruences has a solution. So it suffices to demonstrate that the sequence is exact. To do this it suffices to show that the sequence is exact whenever it is localized at a maximal ideal \mathfrak{m} of A. Hence, we simply need to show that the sequence is exact in the special case that A is a discrete valuation ring. We may assume that the ideals are ordered by $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \ldots$. Clearly $\psi \circ \phi = 0$, so suppose that $\psi(x_1 + \mathfrak{a}_1, \dots, x_n + \mathfrak{a}_n) = 0$. Then $x_1 - x_i \in \mathfrak{a}_1 + \mathfrak{a}_i = \mathfrak{a}_i$ for 1 < i, and hence $x_i + \mathfrak{a}_i = x_1 + \mathfrak{a}_i$ for all i. But this means that $(x_1 + \mathfrak{a}_1, \dots, x_n + \mathfrak{a}_n) = \phi(x_1)$. Therefore, the sequence is indeed exact when A is a discrete valuation ring. Thus, we are done.

Chapter 10 : Completions

10.1. Let $\alpha_n : \mathbb{Z}_p \to \mathbb{Z}_{p^n}$ be the obvious injection, and let $\alpha : A \to B$ be the direct sum of all the α_n , where $A = \bigoplus_{n=1}^{\infty} \mathbb{Z}_p$ and $B = \bigoplus_{n=1}^{\infty} \mathbb{Z}_{p^n}$. Show that the p-adic completion of A is just A, but that the completion of A for the topology induced from the p-adic topology on B is $\prod_{n=1}^{\infty} \mathbb{Z}_p$. Deduce that the p-adic completion is not a right-exact functor on the category of all \mathbb{Z} -modules.

Let M be an arbitrary module with the filtration $M = M_0 \supseteq M_1 \supseteq \ldots$ Suppose that N satisfies $M_n = M_N$ for $n \ge N$. Then the maps $M/M_{n+1} \to M/M_n$ are the identity maps for $n \ge N$. So an element $\xi \in \hat{M} \subseteq \prod_{n=1}^{\infty} M/M_n$ is completely determined by ξ_N . This means that the canonical map $M \to \hat{M}$ given by $x \mapsto (x + M_0, x + M_1, \ldots)$ is surjective. Clearly, the kernel of this map is M_N . Therefore, \hat{M} and M/M_N are isomorphic.

Now if $A = \bigoplus_{n=1}^{\infty} \mathbb{Z}_p$ then pA = 0, and so the standard *p*-adic filtration of *A* is given by $A \supset 0 = 0 = \dots$ By the general considerations from above, we see that the *p*-adic completion \hat{A} of *A* is isomorphic with A/0 = A.

On the other hand, we have an injection $\alpha : A \to B$ and we have the *p*-adic filtration $B \supset pB \supset p^2B \supset \ldots$ of *B*. This gives a *p*-adic filtration $A \supset \alpha^{-1}(pB) \supset \alpha^{-1}(p^2B) \supset \ldots$ of *A*. Now $\alpha(x_1, x_2, x_3, \ldots) = (x_1, px_2, p^2x_3, \ldots)$ so that $(x_1, x_2, x_3, \ldots) \in \alpha^{-1}(p^nB)$ if and only if $x_i = 0$ for $1 \le i \le n$. We see that $A/\alpha^{-1}(p^nB) \cong \bigoplus_{i=1}^n \mathbb{Z}_p$ and that under these identifications the map $A/\alpha^{-1}(p^{n+1}B) \to A/\alpha^{-1}(p^nB)$ is given by $(x_1, \ldots, x_{n+1}) \mapsto (x_1, \ldots, x_n)$. Now the general element of $\prod_{n=1}^{\infty} A/\alpha^{-1}(p^nB)$ under these identifications is of the form

$$((x_{11}), (x_{12}, x_{22}), (x_{13}, x_{23}, x_{33}), (x_{14}, x_{24}, x_{34}, x_{44}), \ldots)$$

where x_{ij} are arbitrary elements of \mathbb{Z}_p . For this element to be in \hat{A} , it is necessary and sufficient that $x_{ij} = x_{ik}$ for any $k \ge j$. So \hat{A} can be identified with $\prod_{n=1}^{\infty} \mathbb{Z}_p$. Now *p*-adic completion is an exact functor on the category of all finitely generated \mathbb{Z} -modules, but A is not finitely generated. Now we have the short exact sequence of \mathbb{Z} -modules

$$0 \longrightarrow A \xrightarrow{\alpha} B \longrightarrow B/A \longrightarrow 0$$

10.2. In the notation of exercise 10.1 let $A_n = \alpha^{-1}(p^n B)$. Consider the short exact sequences

 $0 \longrightarrow A_n \longrightarrow A \longrightarrow A/A_n \longrightarrow 0$

to show that lim is not right exact, and compute $\lim^{1} A_{n}$.

We see that $\{A_n\}_1^\infty$ is an inverse system with inclusion as the map $A_m \to A_n$ for $m \ge n$. Clearly $\{A\}_1^\infty$ is an inverse system with identity $A \to A$. Finally, $\{A/A_n\}_1^\infty$ is an inverse system with the induced maps $A/A_m \to A/A_n$ for $m \ge n$. Now we have the commutative diagrams

with exact rows. So Proposition 10.2 gives us the exact sequence

$$0 \longrightarrow \varprojlim A_n \longrightarrow \varprojlim A \xrightarrow{f} \varprojlim A/A_n$$

I claim that f is not surjective. Using the identification from exercise 10.1 and the isomorphism $\lim_{\leftarrow} A/A_n \cong \prod_{n=1}^{\infty} \mathbb{Z}_p$ we see that f can be identified with the inclusion map $\bigoplus_{n=1}^{\infty} \mathbb{Z}_p \to \prod_{n=1}^{\infty} \mathbb{Z}_p$. So f is not surjective.

10.3. Let A be a Noetherian ring, \mathfrak{a} an ideal, and M a finitely generated A-module. Prove that

$$\bigcap_{n=1}^{\infty} \mathfrak{a}^n M = \bigcap_{\mathfrak{m} \supseteq \mathfrak{a}} \operatorname{Ker}(M \to M_{\mathfrak{m}})$$

By Krull's Theorem, the elements of $\bigcap_{n=1}^{\infty} \mathfrak{a}^n M$ are precisely the elements in M annihilated by some element of $1 + \mathfrak{a}$. So suppose first that $x \in M$ satisfies (1 + a)x = 0 for some $a \in \mathfrak{a}$. If \mathfrak{m} is a maximal ideal in A containing \mathfrak{a} , then $a \in \mathfrak{m}$ so that $1 + a \notin \mathfrak{m}$. Since (1 + a)x = 0 and $1 + a \in A - \mathfrak{m}$, we see that x/1 = 0/1 in $M_{\mathfrak{m}}$. This means that $\bigcap_{n=1}^{\infty} \mathfrak{a}^n M \subseteq \bigcap_{\mathfrak{m} \supseteq \mathfrak{a}} \operatorname{Ker}(M \to M_{\mathfrak{m}})$. Now let $x \in \bigcap_{\mathfrak{m} \supseteq \mathfrak{a}} \operatorname{Ker}(M \to M_{\mathfrak{m}})$ so that $(x)_{\mathfrak{m}} = 0$ whenever \mathfrak{m} is a maximal ideal containing \mathfrak{a} . Then exercise 3.14 tells us that $(x) = \mathfrak{a}(x)$. So in particular we can write x = -ax for some $a \in \mathfrak{a}$. This means that (1+a)x = 0, and hence $x \in \bigcap_{n=1}^{\infty} \mathfrak{a}^n M$. So we are done.

Deduce that $\hat{M} = 0$ if and only if $\text{Supp}(M) \cap V(\mathfrak{a}) = \emptyset$.

10.4. Let A be a Noetherian ring, a an ideal, and \hat{A} the a-adic completion. For any $x \in A$ let \hat{x} be the image of x in \hat{A} . Show that \hat{x} is not a zero-divisor in \hat{A} if x is not a zero-divisor in A. Does this imply that \hat{A} is an integral domain provided A is an integral domain?

If x is not a zero-divisor in A then we have a short exact sequence

$$0 \longrightarrow A \xrightarrow{x} A \longrightarrow A/xA \longrightarrow 0$$

Proposition 10.12 tells us that we have a new short exact sequence

$$0 \longrightarrow \hat{A} \xrightarrow{\hat{x}} \hat{A} \longrightarrow \hat{A} / \hat{x} \hat{A} \longrightarrow 0$$

This means that \hat{x} is not a zero-divisor in \hat{A} . Now $\mathbb{Z}_{(6)}$ is not an integral domain even though \mathbb{Z} is an integral domain.

10.5. Let A be Noetherian with ideals a and b. If M is an A-module, let $M^{\mathfrak{a}}, M^{\mathfrak{b}}$ denote the a-adic and b-adic completions of M. If M is finitely generated, prove that $(M^{\mathfrak{a}})^{\mathfrak{b}} \cong M^{\mathfrak{a}+\mathfrak{b}}$.

For every n we have a short exact sequence

$$0 \longrightarrow \mathfrak{b}^n M \longrightarrow M \longrightarrow M/\mathfrak{b}^n M \longrightarrow 0$$

Since M is finitely generated and A is Noetherian, all modules in this sequence are finitely generated. So we have a new short exact sequence

 $0 \longrightarrow (\mathfrak{b}^n M)^{\mathfrak{a}} \longrightarrow M^{\mathfrak{a}} \longrightarrow (M/\mathfrak{b}^n M)^{\mathfrak{a}} \longrightarrow 0$

10.6. Let A be a Noetherian ring and a an ideal in A. Prove that $a \subseteq \Re(A)$ if and only if every maximal ideal m in A is closed when A is given the a-adic topology.

Suppose that $\mathfrak{a} \subseteq \mathfrak{R}(A)$ and let \mathfrak{m} be a maximal ideal in A. Then the quotient topology of A/\mathfrak{m} is the same as the \mathfrak{a} -adic topology of A/\mathfrak{m} . Since A/\mathfrak{m} is a finite A-module, Corollary 10.19 tells us that the \mathfrak{a} -adic topology of A/\mathfrak{m} is Hausdorff. By the definition of the quotient topology, this means that \mathfrak{m} is closed in the \mathfrak{a} -adic topology on A.

Suppose now that \mathfrak{m} is closed in the \mathfrak{a} -adic topology on A whenever \mathfrak{m} is a maximal ideal in A. Then $\mathfrak{m} = \operatorname{Cl}(\mathfrak{m}) = \bigcap_{n=1}^{\infty} (\mathfrak{m} + \mathfrak{a}^n).$

10.7?

10.8?

10.9?

10.10? a.

- b.
- c.
- 10.11. Find a non-Noetherian local ring A with an ideal \mathfrak{a} such that the \mathfrak{a} -adic completion \hat{A} of A is a Noetherian ring that is finitely generated over A.

Let A be the ring of germs of C^{∞} functions of x at x = 0, and let \mathfrak{a} be the ideal of all germs that vanish at x = 0. Then A is a local ring with maximal ideal \mathfrak{a} . Now A is not Noetherian since we have the properly ascending sequence of ideals

$$(e^{-1/x^2}) \subset (e^{-1/x^2}/x) \subset (e^{-1/x^2}/x^2) \subset \dots$$

- 10.12? Assuming that A is Noetherian, show that $A[[x_1, \ldots, x_n]]$ is a faithfully flat A-algebra.
 - 1. Let $f \in k[x_1, ..., x_n]$ be an irreducible polynomial over the algebraically closed field k. A point P on the variety defined by (f) is said to be non-singular if not all derivatives $\partial f/\partial x_i$ vanish at P. Let $A = k[x_1, ..., x_n]/(f)$ and let m be the maximal ideal of A corresponding to the point P. Prove that P is non-singular if and only if A_m is a regular ring.

Write $P = (a_1, \ldots, a_n)$ and define $\mathfrak{n} = (x_1 - a_1, \ldots, x_n - a_n)$ so that $\mathfrak{m} = \mathfrak{n}/(f)$. Then $A_\mathfrak{m} \cong k[x_1, \ldots, x_n]_\mathfrak{n}/(f)_\mathfrak{n} = k[x_1, \ldots, x_n]_\mathfrak{n}/(f/1)$ as rings. Now f vanishes at P so that $f \in \mathfrak{n}$, and hence f/1 is in the (unique) maximal ideal $\mathfrak{n}_\mathfrak{n}$ of $k[x_1, \ldots, x_n]_\mathfrak{n}$. Also, f/1 is not a zero-divisor in $k[x_1, \ldots, x_n]_\mathfrak{n}$ since

2.

3.

- 4. Give an example of a Noetherian ring A that has infinite Krull dimension.
- 5. Reformulate the Hilbert-Serre Theorem in terms of the Grothendieck group $K(A_0)$.

Let γ be the map that sends a finitely generated A_0 -module M to its image in $K(A_0)$. The Hilbert-Serre Theorem states that if $\lambda : K(A_0) \to \mathbb{Z}$ is a homomorphism of groups then $P(M,t) := \sum_{n=0}^{\infty} \lambda(M_n) t^n$ is of the form $P(M,t) = f(t) \{\prod_{i=1}^{s} (1-t^{k_i})\}^{-1}$ for some $f(t) \in \mathbb{Z}[t]$.

6. Let A be a ring and prove that $1 + \dim(A) \le \dim A[x] \le 1 + 2\dim(A)$.

Let $\mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ be a chain of prime ideals in A. Then $\mathfrak{p}_i[x]$ is a prime ideal in A[x] since $A[x]/\mathfrak{p}_i[x] \cong (A/\mathfrak{p}_i)[x]$ is an integral domain. So we have a chain of prime ideals $\mathfrak{p}_0[x] \subseteq \cdots \subseteq \mathfrak{p}_n[x]$ in A. But $\mathfrak{p}_i[x] \neq \mathfrak{p}_{i+1}[x]$ since $\mathfrak{p}_i[x] \cap A = \mathfrak{p}_i$ for all i. Now $1 \notin \mathfrak{p}_n$ since $\mathfrak{p}_n \neq A$, and so $\mathfrak{p}_n[x] \subsetneq (\mathfrak{p}_n[x], x)$. Also, $(\mathfrak{p}_n[x], x)$ is a prime ideal in A[x] since $A[x]/(\mathfrak{p}_n[x], x) \cong A/\mathfrak{p}_n$. From this we see that dim $A[x] \ge \dim A + 1$.

7. Show that $\dim A[x] = \dim(A) + 1$ if A is Noetherian.

It suffices to show that $\dim A[x] \leq \dim(A) + 1$.