Adam Allan

Solutions to Atiyah Macdonald

Chapter 1 : Rings and Ideals

1.1. Show that the sum of a nilpotent element and a unit is a unit.

If x is nilpotent, then $1-x$ is a unit with inverse $\sum_{i=0}^{\infty} x^{i}$. So if u is a unit and x is nilpotent, then $v=1-\left(-u^{-1} x\right)$ is a unit since $-u^{-1} x$ is nilpotent. Hence, $u+x=u v$ is a unit as well.
1.2. Let A be a ring with $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ in $A[x]$.
a. Show that f is a unit iff a_{0} is a unit and a_{1}, \ldots, a_{n} are nilpotent.

If a_{1}, \ldots, a_{n} are nilpotent in A, then $a_{1} x, \ldots, a_{n} x^{n}$ are nilpotent in $A[x]$. Since the sum of nilpotent elements is nilpotent, $a_{1} x+\cdots+a_{n} x^{n}$ is nilpotent. So $f=a_{0}+\left(a_{1} x+\cdots+a_{n} x^{n}\right)$ is a unit when a_{0} is a unit by exercise 1.1.

Now suppose that f is a unit in $A[x]$ and let $g=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ satisfy $f g=1$. Then $a_{0} b_{0}=1$, and so a_{0} is a unit in $A[x]$. Notice that $a_{n} b_{m}=0$, and suppose that $0 \leq r \leq m-1$ satisfies

$$
a_{n}^{r+1} b_{m-r}=a_{n}^{r} b_{m-r-1}=\cdots=a_{n} b_{m}=0
$$

Notice that

$$
0=f g=\sum_{i=0}^{m+n}\left(\sum_{j=0}^{i} a_{j} b_{i-j}\right) x^{i}=\sum_{i=0}^{m+n} c_{i} x^{i}
$$

where we define $a_{j}=0$ for $j>n$ and $b_{j}=0$ for $j>m$. This means that each $c_{i}=0$, and so

$$
0=a_{n}^{r+1} c_{m+n-r-1}=\sum_{j=0}^{n} a_{j} a_{n}^{r+1} b_{m+n-r-1-j}=a_{n}^{r+2} b_{m-r-1}
$$

since $m+n-r-1-j \geq m-r$ for $j \leq n-1$. So by induction $a_{n}^{m+1} b_{0}=0$. Since b_{0} is a unit, we conclude that a_{n} is nilpotent. This means that $f-a_{n} x^{n}$ is a unit since $a_{n} x^{n}$ is nilpotent and f is a unit. By induction, a_{1}, \ldots, a_{n} are all nilpotent.
b. Show that f is nilpotent iff a_{0}, \ldots, a_{n} are nilpotent.

Clearly $f=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ is nilpotent if a_{0}, \ldots, a_{n} are nilpotent. Assume f is nilpotent and that $f^{m}=0$ for $m \in \mathbb{N}$. Then in particular $\left(a_{n} x^{n}\right)^{m}=0$, and so $a_{n} x^{n}$ is nilpotent. Thus, $f-a_{n} x^{n}$ is nilpotent. By induction, $a_{k} x^{k}$ is nilpotent for all k. This means that a_{0}, \ldots, a_{n} are nilpotent.
c. Show that f is zero-divisor iff $b f=0$ for some $b \neq 0$.

If there is $b \neq 0$ for which $b f=0$, then f is clearly a zero-divisor. So suppose f is a zero-divisor and choose a nonzero $g=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ of minimal degree for which $f g=0$. Then in particular, $a_{n} b_{m}=0$. Since $a_{n} g \cdot f=0$ and $a_{n} g=a_{n} b_{0}+\cdots+a_{n} b_{m-1} x^{m-1}$, we conclude that $a_{n} g=0$ by minimality. Hence, $a_{n} b_{k}=0$ for all k. Suppose that

$$
a_{n-r} b_{k}=a_{n-r+1} b_{k}=\cdots=a_{n} b_{k}=0 \quad \text { for all } k
$$

Then as in part a we obtain the equation

$$
0=\sum_{j=0}^{m+n-r-1} a_{m+n-r-1-j} b_{j}=a_{n-r-1} b_{m}
$$

Again we conclude that $a_{n-r-1} g=0$. Hence, by induction $a_{j} b_{k}=0$ for all j, k. Choose k so that $b=b_{k} \neq 0$. Then $b f=0$ with $b \neq 0$.

d. Prove that f, g are primitive iff $f g$ is primitive.

Let h be any polynomial in $A[x]$. If h is not primitive then there is a maximal \mathfrak{m} in A containing the coefficients of h. Let k be the residue field of \mathfrak{m} and consider the natural map $\pi: A[x] \rightarrow k[x]$. Then $\pi(h)=0$. This condition is also sufficient for showing that h is not a primitive polynomial.

So if $f g$ is not primitive, then $\pi(f g)=0$ as above for some maximal \mathfrak{m}. But $\pi(f g)=\pi(f) \pi(g)$ and $k[x]$ is an integral domain so that $\pi(f)=0$ or $\pi(g)=0$. In other words, either f is not primitive or g is not primitive. The converse follows similarly.
1.3. Generalize the results of exercise 2 to $A\left[x_{1}, \ldots, x_{r}\right]$ where $r \geq 2$.

Let $f \in A\left[x_{1}, \ldots, x_{r}\right]$. Use multi-index notation to write

$$
f=\sum_{I \in \mathbb{N}^{r}} \alpha_{I} x^{I} \quad \text { where } \quad x^{I}=x_{1}^{I_{1}} \cdots x_{r}^{I_{r}}
$$

We can also write

$$
f=\sum_{i=0}^{n} g x_{r}^{i} \quad \text { where } \quad g \in A\left[x_{1}, \ldots, x_{r-1}\right]
$$

b. Show that f is nilpotent iff each α_{I} is nilpotent.

Suppose that f is nilpotent. Then g_{0}, \ldots, g_{n} are nilpotent polynomials in $A\left[x_{1}, \ldots, x_{r-1}\right]$ by exercise 1.2. So by induction each a_{α} is nilpotent. If each α_{I} is nilpotent then each $\alpha_{I} x^{I}$ is nilpotent, so that f is nilpotent.
a. Show that f is a unit iff the constant coefficient is a unit and each α_{I} is nilpotent for $|I|>0$.

Suppose that f is a unit. Then in $A\left[x_{1}, \ldots, x_{r-1}\right]$ we know that g_{0} is a unit and g_{1}, \ldots, g_{n} are nilpotent. So by part b we see that α_{I} is nilpotent whenever $I(r)>0$. By symmetry α_{I} is nilpotent whenever $|I|>0$. The constant coefficient is clearly a unit. On the other hand, if the constant coefficient is a unit and all other coefficients are nilpotent, then f is clearly a unit.
c. Show that f is a zero-divisor iff $b f=0$ for some $b \neq 0$.

Let \mathfrak{a} be any ideal in $A\left[x_{1}, \ldots, x_{n}\right]$ and suppose $g \mathfrak{a}=0$ for some non-zero $g \in A\left[x_{1}, \ldots, x_{n}\right]$. Since $A\left[x_{1}, \ldots, x_{n}\right]=A\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]$, exercise 1.2 allows us to assume that $g \in A\left[x_{1}, \ldots, x_{n-1}\right]$. Now given $f \in \mathfrak{a}$ we can write $f=\sum f_{i} x_{n}^{i}$ where each $f_{i} \in A\left[x_{1}, \ldots, x_{n-1}\right]$. Let \mathfrak{b} be the subset of $A\left[x_{1}, \ldots, x_{n-1}\right]$ consisting of all such f_{i}, as f ranges across \mathfrak{a}. Then \mathfrak{b} is an ideal since \mathfrak{a} is an ideal, and $g \mathfrak{b}=0$ since $g \in A\left[x_{1}, \ldots, x_{n-1}\right]$ by hypothesis. So by induction, there is $b \neq 0$ satisfying $b \mathfrak{b}=0$, and hence $b \mathfrak{a}=0$. Now we apply this result to $\mathfrak{a}=(f)$ to get the desired conclusion.
d. Show that f and g are primitive iff $f g$ is primitive.

Let h be any polynomial in $A\left[x_{1}, \ldots, x_{r}\right]$. If h is not primitive then there is a maximal \mathfrak{m} in A containing the coefficients of h. Let k be the residue field of \mathfrak{m} and consider the natural map $\pi: A\left[x_{1}, \ldots, x_{r}\right] \rightarrow$
$k\left[x_{1}, \ldots, x_{r}\right]$. Then $\pi(h)=0$ in $k\left[x_{1}, \ldots, x_{r}\right]$. This condition is also sufficient for showing that h is not a primitive polynomial.

So if $f g$ is not primitive, then $\pi(f g)=0$ as above for some maximal \mathfrak{m}. But $\pi(f g)=\pi(f) \pi(g)$ and $k\left[x_{1}, \ldots, x_{r}\right]$ is an integral domain so that $\pi(f)=0$ or $\pi(g)=0$. In other words, either f is not primitive or g is not primitive. The converse is obvious.

1.4. Show that $\mathfrak{R}(A[x])=\mathfrak{N}(A[x])$ for every ring A.

As with any ring $\mathfrak{N}(A[x]) \subseteq \mathfrak{R}(A[x])$. So suppose that $f \in \mathfrak{R}(A[x])$. Then $1-f x$ is a unit. If $f=a_{0}+\ldots+a_{n} x^{n}$ this means that $1-a_{0} x-\ldots-a_{n} x^{n+1}$ is a unit, so that a_{0}, \ldots, a_{n} are nilpotent by exercise 1.2. By exercise 1.2 this means that f is nilpotent, and so $f \in \mathfrak{N}(A[x])$. Hence $\mathfrak{R}(A[x]) \subseteq \mathfrak{N}(A[x])$, giving the desired result.
1.5. Let A be a ring with $f=\sum_{0}^{\infty} a_{n} x^{n}$ in $A[[x]]$.

a. Show that f is a unit iff a_{0} is a unit.

Suppose f is a unit. Then there is $g(x)=\sum_{0}^{\infty} b_{n} x^{n}$ satisfying $f g=1$. In particular, $a_{0} b_{0}=1$, implying that a_{0} is a unit. Conversely, suppose that a_{0} is a unit. We wish to find b_{n} for which $f g=1$. This is equivalent to finding b_{n} satisfying $a_{0} b_{0}=1$ and

$$
a_{0} b_{n}+\sum_{i=0}^{n-1} a_{n-i} b_{i}=0 \quad \text { for } n>0
$$

So we define $b_{0}=a_{0}^{-1}$ and

$$
b_{n}=-a_{0}^{-1} \sum_{i=0}^{n-1} a_{n-i} b_{i} \quad \text { for } n>0
$$

This constructively shows that f is a unit.
b. Show that each a_{i} is nilpotent if f is nilpotent, and that the converse is false.

Suppose that f is nilpotent and choose $n>0$ for which $f^{n}=0$. Then $a_{0}^{n}=0$. Hence a_{0} is nilpotent, as is $f-a_{0}$. Now by induction we see that every a_{n} is nilpotent. The converse need not be true though. We can define

$$
A=\mathbb{Z}_{4} \times \mathbb{Z}_{8} \times \mathbb{Z}_{16} \times \cdots
$$

and then let

$$
a_{0}=(2,0,0, \ldots) \quad a_{1}=(0,2,0, \ldots) \quad \ldots
$$

Observe that $a_{j} a_{k}=0$ for $j \neq k$, and so

$$
f^{n}=a_{0}^{n}+a_{1}^{n} x^{n}+a_{2}^{n} x^{2 n}+\cdots \quad \text { for all } n>0
$$

Obviously each a_{k} is nilpotent, and yet f is not nilpotent. The problem here is that there is no N for which $a_{k}^{N}=0$ for all k. This issue does not occur when $\mathfrak{N}(A)$ is a nilpotent ideal, as for instance when A is Noetherian.
c. Show that $f \in \mathfrak{R}(A[[x]])$ iff $a_{0} \in \mathfrak{R}(A)$.

Assume $a_{0} \in \mathfrak{R}(A)$ and suppose $g \in A[[x]]$ with constant coefficient b_{0}. Then there is $h \in A[[x]]$ satisfying $1-f g=1-a_{0} b_{0}+h x$. Since $1-a_{0} b_{0}$ is a unit in A, we see by part a that $1-f g$ is a unit in $A[[x]]$, so that $f \in \mathfrak{R}(A[[x]])$. On the other hand, if $f \in \mathfrak{R}(A[[x]])$ and $b \in A$, then $1-f b$ is a unit in $A[[x]]$. Again by part a this means that $1-a_{0} b$ is a unit in A, so that $a_{0} \in \mathfrak{R}(A)$.
d. Show that the contraction of a maximal ideal \mathfrak{m} of $A[[x]]$ is a maximal ideal of A, and that \mathfrak{m} is generated by \mathfrak{m}^{c} and x.

By part c we have $(x) \subseteq \mathfrak{R}(A[x]) \subseteq \mathfrak{m}$ since $0 \in \mathfrak{R}(A)$. Now if $f=a+g x$ is in \mathfrak{m} then $a=f-g x \in \mathfrak{m}$ since $x \in \mathfrak{m}$, so that $a \in \mathfrak{m} \cap A$. In other words, \mathfrak{m} is generated by \mathfrak{m}^{c} and x.

Notice that $\mathfrak{m}^{c}=\mathfrak{m} \cap A$, and that A / \mathfrak{m}^{c} naturally embeds into $A[[x]] / \mathfrak{m}$ via the map $a+\mathfrak{m}^{c} \mapsto a+\mathfrak{m}$. I claim that A / \mathfrak{m}^{c} is a subfield of the field $A[[x]] / \mathfrak{m}$. So suppose that $a+\mathfrak{m}^{c} \neq \mathfrak{m}^{c}$ and choose $f \in A[[x]]$ for which $(a+\mathfrak{m})(f+\mathfrak{m})=1+\mathfrak{m}$, so that $a f-1 \in \mathfrak{m}$. Write $f=a_{0}+g x$ for some $g \in A[[x]]$ and observe that $a f-1=a a_{0}-1+a g x \in \mathfrak{m}$, implying that $a a_{0}-1 \in \mathfrak{m}$ since $x \in \mathfrak{m}$. So we see that $a a_{0}-1 \in \mathfrak{m}^{c}$, and hence $a+\mathfrak{m}^{c}$ has the inverse $a_{0}+\mathfrak{m}^{c}$. This means that A / \mathfrak{m}^{c} is a subfield of $A[[x]] / \mathfrak{m}$, and hence \mathfrak{m}^{c} is a maximal ideal in A.
e. Show that every prime ideal \mathfrak{p} of A is the contraction of a prime ideal \mathfrak{q} of $A[[x]]$.

Let \mathfrak{q} be the ideal in $A[[x]]$ consisting of all $\sum a_{k} x^{k}$ for which $a_{0} \in \mathfrak{p}$. If $f g \in \mathfrak{q}$ with $f=\sum a_{k} x^{k}$ and $g=\sum b_{k} x^{k}$, then $a_{0} b_{0} \in \mathfrak{p} z z$. Hence, $a_{0} \in \mathfrak{p}$ or $b_{0} \in \mathfrak{p}$, implying that $f \in \mathfrak{q}$ or $g \in \mathfrak{q}$. So \mathfrak{q} is a prime ideal in $A[[x]]$ and $\mathfrak{p}=A \cap \mathfrak{q}$, so that \mathfrak{p} is the contraction of \mathfrak{q}.
1.6. Let A be a ring such that every ideal not contained in $\mathfrak{N}(A)$ contains a nonzero nilpotent. Show that $\mathfrak{N}(A)=\mathfrak{R}(A)$.

As always $\mathfrak{N}(A) \subseteq \mathfrak{R}(A)$. Now suppose that $\mathfrak{N}(A) \subsetneq \mathfrak{R}(A)$. By hypothesis, there is an idempotent $e \neq 0$ in $\mathfrak{R}(A)$. Now $(1-e) e=e-e^{2}=0$. Since $e \in \mathfrak{R}(A)$ we know that $1-e$ is a unit in A, so that $e=0$. But this contradicts our choice of e, showing that $\mathfrak{N}(A)=\mathfrak{R}(A)$.
1.7. Let A be a ring such that every $x \in A$ satisfies $x^{n}=x$ for some $n>1$. Show that every prime ideal \mathfrak{p} in A is maximal.

For $x \in A$ choose $n>1$ satisfying $x^{n}=x$. Then $\bar{x}\left(\bar{x}^{n-1}-\overline{1}\right)=\overline{0}$ in A / \mathfrak{p}. Since A / \mathfrak{p} is an integral domain we have $\bar{x}=\overline{0}$ or $\bar{x}^{n-1}=\overline{1}$. In the second case \bar{x} is a unit in A / \mathfrak{p} since $n>1$. This shows that A / \mathfrak{p} is a field, so that \mathfrak{p} is in fact a maximal ideal.
1.8. Let $A \neq 0$ be a ring. Show that the set of prime ideals of A has minimal elements with respect to inclusion.

Suppose that \mathfrak{p}_{α} are prime ideals for $\alpha \in I$. Suppose further that I has a linear ordering \prec for which $\mathfrak{p}_{\alpha} \supset \mathfrak{p}_{\beta}$ whenever $\alpha \prec \beta$. Define $\mathfrak{p}=\bigcap_{\alpha \in I} \mathfrak{p}_{\alpha}$, and suppose that \mathfrak{p} is not prime. Then there are x, y for which $x y \in \mathfrak{p}$, and yet $x, y \notin \mathfrak{p}$. Hence, there are α, β for which $x \notin \mathfrak{p}_{\alpha}$ and $y \notin \mathfrak{p}_{\beta}$. But either $\alpha \prec \beta$ or $\beta \prec \alpha$, implying that $x \notin \mathfrak{p}_{\beta}$ or $y \notin \mathfrak{p}_{\alpha}$. Either case leads to a contradiction as \mathfrak{p}_{α} and \mathfrak{p}_{β} are prime ideals containing $x y$. So \mathfrak{p} is a prime ideal, contained in every \mathfrak{p}_{α}. This means, by Zorn's Lemma, that the set of prime ideals in A has minimal elements.
1.9. Let $\mathfrak{a} \neq(1)$ be an ideal in A. Show that $\mathfrak{a}=r(\mathfrak{a})$ if and only if \mathfrak{a} is the intersection of a collection of prime ideals.

Suppose $\mathfrak{a}=\bigcap_{I} \mathfrak{p}_{\alpha}$ is the intersection of prime ideals. Notice that we always have $\mathfrak{a} \subseteq r(\mathfrak{a})$. Now if $x \in r(\mathfrak{a})$, then $x^{n} \in \mathfrak{a}$ for some n, and so $x^{n} \in \mathfrak{p}_{\alpha}$ for all α. Therefore, $x \in \mathfrak{p}_{\alpha}$ by the definition of prime ideals, implying that $x \in \mathfrak{a}$. Hence $\mathfrak{a}=r(\mathfrak{a})$. The converse is trivial.
1.10. Show that the following are equivalent for any ring A.
a. A has exactly one prime ideal.
b. Every element of A is either a unit or nilpotent.
c. $A / \mathfrak{N}(A)$ is a field.
($\mathrm{a} \Rightarrow \mathrm{b}$) Suppose that $x \in A$ is neither nilpotent nor invertible. Let \mathfrak{m} be a maximal ideal in A containing x. Then $\mathfrak{N}(A) \subsetneq \mathfrak{m}$. But \mathfrak{m} is a prime ideal, so that A has more than one prime ideal.
($\mathrm{b} \Rightarrow \mathrm{c}$) By hypothesis x is a unit in A whenever $x \notin \mathfrak{N}(A)$. This shows that $A / \mathfrak{N}(A)$ is a field.
(c \Rightarrow a) If $A / \mathfrak{N}(A)$ is a field, then $\mathfrak{N}(A)$ is a maximal ideal. But $\mathfrak{N}(A)$ is contained in every prime ideal in A, and prime ideals are proper by definition. So $\mathfrak{N}(A)$ is the only prime ideal in A.

1.11. Prove the following about a Boolean ring A.

a. $2 x=0$ for every $x \in A$.

Notice that $2 x=(2 x)^{2}=4 x^{2}=4 x=2 x+2 x$, so that $2 x=0$ for every $x \in A$.
b. For every prime ideal $\mathfrak{p}, A / \mathfrak{p}$ is a field with two elements.

If $x \notin \mathfrak{p}$ then from the equation $(x+\mathfrak{p})^{2}=x+\mathfrak{p}$ we conclude that $x+\mathfrak{p}=1+\mathfrak{p}$. Hence, A / \mathfrak{p} is the field with two elements. This means in particular that every prime ideal in A is maximal.
c. Every finitely generated ideal in A is principal.

Suppose $x_{1}, x_{2} \in A$ and define $y=x_{1}+x_{2}+x_{1} x_{2}$. Notice that

$$
x_{1} y=x_{1}+x_{1} x_{2}+x_{1} x_{2}=x_{1}+2 x_{1} x_{2}=x_{1}
$$

Similarly $x_{2} y=x_{2}$. This shows that

$$
(y)=\left(x_{1}, x_{2}\right)=\left(x_{1}\right)+\left(x_{2}\right)
$$

The result now follows by induction.
1.12. Show that a local ring contains no idempotents $\neq 0$ or 1 .

Suppose $e \in A$ is idempotent, so that $e(1-e)=0$. If $e \neq 0$ or 1 , then e and $1-e$ are nonunits. Since A is a local ring, the nonunits form an ideal. But this means that $e+(1-e)=1$ is a nonunit, a contradiction.
1.13. Given a field K construct an algebraic closure of K.

Suppose that K is a field so that $K[x]$ is factorial. Let Σ consist of all irreducible polynomials in $K[x]$. Define A to be the polynomial ring generated by indeterminates x_{f} over K, one for each $f \in \Sigma$. Also define \mathfrak{a} to be the ideal in A generated by $f\left(x_{f}\right)$ for $f \in \Sigma$. Suppose that $\mathfrak{a}=A$. Then there are $f_{1}, \ldots, f_{n} \in \Sigma$ and $g_{1}, \ldots, g_{n} \in A$ for which

$$
g_{1} f_{1}\left(x_{f_{1}}\right)+\cdots+g_{n} f_{n}\left(x_{f_{n}}\right)=1
$$

Let K^{\prime} be a field containing K and roots α_{i} of f_{i}, noting that each f_{i} is a non-constant polynomial. Letting $x_{f_{i}}=\alpha_{i}$ yields $0=1$ in K^{\prime}, an impossibility. Therefore, \mathfrak{a} is a proper ideal of A. Let \mathfrak{m} be a maximal ideal in A containing \mathfrak{a}. Define $K_{1}=A / \mathfrak{m}$. Then K_{1} is an extension field of K. For $g \in K[x]$ let $f \in \Sigma$ be an irreducible factor of g. Then $f\left(x_{f}+\mathfrak{m}\right)=f\left(x_{f}\right)+\mathfrak{m}=\mathfrak{m}$, implying that f, and hence g, has a root in K_{1}. Hence, every polynomial over K has a root in K_{1}.

Now given the field K_{n}, choose an extension field K_{n+1} of K_{n} so that every polynomial over K_{n} has a root in K_{n+1}. Proceed in this way to obtain K_{n} for all $n \in \mathbb{N}^{+}$, and let $L=\bigcup_{n=1}^{\infty} K_{n}$. Then L is an extension field of K and every polynomial over Σ of degree m splits completely over K_{m}, and hence splits completely over L. Finally, let \bar{L} be the set of all elements in L that are algebraic over K. Then \bar{L} is algebraic over K and every monic polynomial over K can be written as $g=\prod_{k=1}^{\operatorname{deg}(g)}\left(x-\alpha_{i}\right)$, where α_{i} are the roots of g in L. But then each α_{i} is algebraic over K and hence lies in \bar{L}. So g has roots in \bar{L}. This means that \bar{L} is an algebraic closure of K.
1.14. In a ring A, let Σ be the set of all ideals in which every element is a zero-divisor. Show that Σ has maximal elements and that every maximal element of Σ is a prime ideal. Hence, the set D of zero-divisors in A is a union of prime ideals.

It is clear by Σ is chain complete. Hence, Zorn's Lemma tells us that Σ has maximal elements. Suppose that $\mathfrak{a} \in \Sigma$ is not a prime ideal. Let $x, y \in A-\mathfrak{a}$ satisfy $x y \in \mathfrak{a}$ so that $\mathfrak{a} \subsetneq(\mathfrak{a}: x)$. If $(\mathfrak{a}: x) \notin \Sigma$ then there is $z \in(\mathfrak{a}: x)$ so that z is not a zero-divisor. I now claim that $(\mathfrak{a}: z) \in \Sigma$. If $w \in(\mathfrak{a}: z)$ then $w z \in \mathfrak{a}$, so that $v w z=0$ for some $v \neq 0$. Since z is not a zero-divisor $v z \neq 0$, and hence w is a zero-divisor. Thus $\mathfrak{a} \subsetneq(\mathfrak{a}: z) \in \Sigma$ since $x \in(\mathfrak{a}: z)-\mathfrak{a}$. This means that \mathfrak{a} is not a maximal element in Σ. So maximal elements in Σ are indeed prime ideals.

Now if D is the set of zero-divisors in A and $x \in D$ then $(x) \subseteq D$, and hence $(x) \in \Sigma$. It is clear from Zorn's Lemma that there is a maximal $\mathfrak{a} \in \Sigma$ containing (x), so that $x \in \mathfrak{a} \subseteq D$. This means that D is the union of some of the prime ideals of A.
1.15. Suppose A is a ring and let $\operatorname{Spec}(A)$ be the set of all prime ideals of A. For each $E \subseteq A$, let $V(E) \subseteq \operatorname{Spec}(A)$ consist of all prime ideals containing E. Prove the following.
a. If $\mathfrak{a}=\langle E\rangle$ then $V(E)=V(\mathfrak{a})=V(r(\mathfrak{a}))$.

Since $E \subseteq \mathfrak{a} \subseteq r(\mathfrak{a})$ we have

$$
V(r(\mathfrak{a})) \subseteq V(\mathfrak{a}) \subseteq V(E)
$$

Suppose $\mathfrak{p} \in V(E)$ so that $E \subseteq \mathfrak{p}$. Then $\mathfrak{a}=A E \subseteq A \mathfrak{p}=\mathfrak{p}$ and $r(\mathfrak{a}) \subseteq r(\mathfrak{p})=\mathfrak{p}$. So we have $V(r(\mathfrak{a})) \subseteq V(E)$. We are finished.
b. $V(0)=\operatorname{Spec}(A)$ and $V(1)=\emptyset$.

Every prime ideal contains 0 , and so $V(0)=\operatorname{Spec}(A)$. Also, no prime ideal equals all of A, by definition, and so $V(1)=\emptyset$.
c. If $\left(E_{i}\right)_{i \in I}$ is a family of subsets of A then $V\left(\bigcup E_{i}\right)=\bigcup V\left(E_{i}\right)$.

Any ideal contains $\bigcup E_{i}$ iff it contains each E_{i}.
d. For ideals $\mathfrak{a}, \mathfrak{b}$ we have $V(\mathfrak{a} \cap \mathfrak{b})=V(\mathfrak{a b})=V(\mathfrak{a}) \cup V(\mathfrak{b})$.

By part a we have

$$
V(\mathfrak{a} \cap \mathfrak{b})=V(r(\mathfrak{a} \cap \mathfrak{b}))=V(r(\mathfrak{a} \mathfrak{b}))=V(\mathfrak{a} \mathfrak{b})
$$

Clearly $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{p}$ whenever $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$. The converse holds since \mathfrak{p} is a prime ideal. So $V(\mathfrak{a} \cap \mathfrak{b})=$ $V(\mathfrak{a}) \cup V(\mathfrak{b})$.

1.16? Describe the following

a. $\operatorname{Spec}(\mathbb{Z})$

It is not hard to see that $\operatorname{Spec}(\mathbb{Z})=\{(0)\} \cup\{(p): p>1$ prime $\}$.
b. $\operatorname{Spec}(\mathbb{R})$

Since \mathbb{R} is a field, it has precisely one prime ideal, namely (0).
c. $\operatorname{Spec}(\mathbb{C}[x])$

Since \mathbb{C} is a field, $\mathbb{C}[x]$ is a PID, and so its nonzero prime ideals are of the form (p) for some monic irreducible polynomial p. The only monic polynomials that are irreducible over \mathbb{C} are of the form $p=x-c$ for some $c \in \mathbb{C}$. Of course, the zero ideal is prime as well.
d. $\operatorname{Spec}(\mathbb{R}[x])$

Since \mathbb{R} is a field, $\mathbb{R}[x]$ is a PID, and so its nonzero prime ideals are of the form (p) for some monic irreducible polynomial p. Since every odd polynomial has a root, no polynomial of odd degree at least three is irreducible. Suppose p is a monic irreducible polynomial of even degree $2 d>2$. In $\mathbb{C}[x]$ write $p(z)=\prod_{i=1}^{2 d}\left(z-\alpha_{i}\right)$. Letting α_{i}^{*} be the complex conjugate of α_{i}, we see that $p\left(\alpha_{i}^{*}\right)=p\left(\alpha_{i}\right)^{*}=0$ since $p \in \mathbb{R}[x]$. This means that $p=\prod_{i=1}^{2 d}\left(z-\alpha_{i}^{*}\right)$. So there is $\sigma \in \Sigma_{2 d}$ so that $\alpha_{i}^{*}=\alpha_{\sigma(i)}$ for every i. Since p has no real roots, we cannot have $\sigma(i)=i$ for any i. Also, $\alpha_{\sigma(i)}^{*}=\alpha_{i}$ so that $\sigma^{2}=\mathrm{id}$, and hence σ is a product of 2 -cycles. Thus

$$
p(z)=\prod_{i=1}^{d}\left(z-\alpha_{i}\right)\left(z-\alpha_{\sigma(i)}\right)=\prod_{i=1}^{d}\left(z-\alpha_{i}\right)\left(z-\alpha_{i}^{*}\right)=\prod_{i=1}^{d}\left(z^{2}-2 \mathfrak{R e}\left(\alpha_{i}\right) z+\left|\alpha_{i}\right|^{2}\right)
$$

Since each of these quadratics is in $\mathbb{R}[x]$, we see that p is reducible in $\mathbb{R}[x]$, a contradiction. Consequently, the irreducible elements in $\mathbb{R}[x]$ are of the form $x-a$ and $x^{2}+b x+c$ where $b^{2}-4 c<0$. These elements correspond bijectively with the non-zero prime ideals in $\mathbb{R}[x]$.
e. $\operatorname{Spec}(\mathbb{Z}[X])$

Notice that $\mathbb{Z}[x]$ is factorial. If p is an irreducible polynomial over \mathbb{Z} then (p) is a prime ideal in $\mathbb{Z}[x]$. Since $\mathbb{Z}[x]$ is an integral domain we see that (0) is a prime ideal in $\mathbb{Z}[x]$ as well. Suppose \mathfrak{p} is a non-zero prime ideal in $\mathbb{Z}[x]$ that is not principal. Suppose \mathfrak{p} has the property that, given $f, g \in \mathfrak{p}$, either $(f) \subseteq(g)$ or $(g) \subseteq(f)$. From this I will derive a contradiction. Let $f_{1} \in \mathfrak{p}$ and choose $f_{2} \in \mathfrak{p}-\left(f_{1}\right)$, making use of the fact that \mathfrak{p} is not principal. Then $\left(f_{1}\right) \subsetneq\left(f_{2}\right)$. We can choose $f_{3} \in \mathfrak{p}-\left(f_{2}\right)$. Then $\left(f_{2}\right) \subsetneq\left(f_{3}\right)$. We proceed in this way to get a properly ascending sequence of ideals in \mathfrak{p}. This is impossible since Hilbert's Theorem tells us that $\mathbb{Z}[x]$ is Noetherian. Therefore, there are nonzero $f, g \in \mathfrak{p}$ with $(f) \nsubseteq(g)$
and $(g) \nsubseteq(f)$.
We can consider f and g as elements of $\mathbb{Q}[x]$. Suppose, for the sake of contradiction, that $f=f^{\prime} h$ and $g=g^{\prime} h$ for some $f^{\prime}, g^{\prime}, h \in \mathbb{Q}[x]$ with $\operatorname{deg}(h) \geq 1$. We can write $f^{\prime}=a f^{\prime \prime}$ with $a \in \mathbb{Q}$ and $f^{\prime \prime} \in \mathbb{Z}[x]$ so that the coefficients of $f^{\prime \prime}$ have no prime number in common. Similarly write $g^{\prime}=b g^{\prime \prime}$ and $h=c h^{\prime}$. We see that $f^{\prime \prime}, g^{\prime \prime}$, and h^{\prime} are all primitive elements of $\mathbb{Z}[x]$. Exercise 1.2 tells us that $f^{\prime \prime} h^{\prime}$ and $g^{\prime \prime} h^{\prime}$ are primitive elements of $\mathbb{Z}[x]$. But $f=(a c)\left(f^{\prime \prime} h^{\prime}\right)$ so that $a c \in \mathbb{Z}$. Similarly, $g=(b c)\left(g^{\prime \prime} h^{\prime}\right)$ so that $b c \in \mathbb{Z}$. This means that h^{\prime} is a common factor of f and g in $\mathbb{Z}[x]$; our sought after contradiction. Therefore, f and g have no common factor in $\mathbb{Q}[x]$.

Now $\mathbb{Q}[x]$ is a PID since \mathbb{Q} is a field. So there are $j, k \in \mathbb{Q}[x]$ satisfying $j f+k g=1$. Clearing the denominators in this equation we get a $0 \neq c \in \mathbb{Z}$ such that $(c j) f+(c k) g=c$, with $c j, c k \in \mathbb{Z}[x]$. This means that $(f, g) \cap \mathbb{Z} \neq(0)$, and hence $\mathfrak{p} \cap \mathbb{Z}=(p)$ is a non-zero prime ideal in \mathbb{Z}. But every nonzero prime ideal of \mathbb{Z} is a maximal ideal. Choose $d \in \mathfrak{p}-p \mathbb{Z}[x]$.
1.17. For $f \in A$ let $X_{f}=\operatorname{Spec}(A)-V(f)$. Show that $\left\{X_{f}: f \in A\right\}$ forms a basis of $X=\operatorname{Spec}(A)$.

Each X_{f} is clearly open. Now if $X-V(E)$ is a general open set then

$$
X-V(E)=X-V\left(\bigcup_{f \in E}\{f\}\right)=X-\bigcap_{f \in E} V(f)=\bigcup_{f \in E} X_{f}
$$

We conclude that $\left\{X_{f}: f \in X\right\}$ is a basis for $\operatorname{Spec}(X)$.
a. Show that $X_{f} \cap X_{g}=X_{f g}$ for all f, g.

The equalities

$$
X-V(f g)=X-V((f) \cap(g))=X-V((f)) \cup V((g))=(X-V(f)) \cap(X-V(g))
$$

give us the result immediately.
b. Show that $X_{f}=\emptyset$ iff f is nilpotent.
$X_{f}=\emptyset$ precisely when f is contained in every prime ideal in A. This occurs precisely when f is in the nilradical of A, and hence precisely when f is nilpotent.
c. Show that $X_{f}=X$ iff f is a unit in A.

If f is a unit, then f is not contained in any prime ideal, and so $X_{f}=X$. If f is a nonunit, then f is contained in some maximal ideal, and hence $X_{f} \neq X$.
d. Show that $X_{f}=X_{g}$ iff $r(f)=r(g)$.

If $r(f)=r(g)$ then $V(f)=V(r(f))=V(r(g))=V(g)$ so that $X_{f}=X_{g}$. Suppose that $X_{f}=X_{g}$. Then every prime ideal containing f contains g, and vice versa. But $r(f)$ is the intersection of all prime ideals containing f, and similarly for g. So $r(f)=r(g)$.
e. Show that $\operatorname{Spec}(A)$ is compact.

Suppose $X=\bigcup U_{\alpha}$ with each U_{α} open, and write $U_{\alpha}=\bigcup_{\beta \in J_{\alpha}} X_{f_{\alpha, \beta}}$. Then $X=\bigcup X_{f_{\alpha, \beta}}$ so that $\emptyset=\bigcap V\left(f_{\alpha, \beta}\right)=V\left(\bigcup f_{\alpha, \beta}\right)$. This means that $\left\{f_{\alpha, \beta}\right\}$ generates A. So we can write $1=\sum a_{\alpha, \beta} f_{\alpha, \beta}$ with cofinitely many of the $a_{\alpha, \beta}$ non-zero. Working backwards, we see that X is the union of the $X_{f_{\alpha, \beta}}$ for which $a_{\alpha, \beta} \neq 0$. So in turn, X is the union of finitely many U_{α}. Thus, X is compact.
f. Show that each X_{f} is compact.

Suppose that $X_{f} \subseteq \bigcup U_{\alpha}$ and write $U_{\alpha}=\bigcup_{\beta \in J_{\alpha}} X_{g_{\alpha, \beta}}$. Then $X_{f} \subseteq \bigcup X_{g_{\alpha, \beta}}$. This gives us $V\left(\bigcup g_{\alpha, \beta}\right) \subseteq$ $V(f)$. Suppose \mathfrak{a} is the ideal generated by the $g_{\alpha, \beta}$. Then $f \in r(\mathfrak{a})$, so that there is an equation $f^{n}=\sum a_{\alpha, \beta} g_{\alpha, \beta}$ with cofinitely many of the $a_{\alpha, \beta}$ non-zero. Let g_{1}, \ldots, g_{n} be the $g_{\alpha, \beta}$ with $a_{\alpha, \beta} \neq 0$. Then $V\left(\bigcup_{1}^{n} g_{i}\right) \subseteq V\left(f^{n}\right)=V(f)$ so that $X_{f} \subseteq \bigcup_{1}^{n} X_{g_{i}}$. It follows that X_{f} is the union of finitely many U_{α}. Thus, X_{f} is compact.
g. Show that an open subspace of X is compact if and only if it is the union of finitely many of the basic open sets X_{f}.

Clearly, the union of finitely many X_{f} is open and compact. So suppose \mathcal{U} is compact and open. Then since \mathcal{U} is the union of some X_{f}, it is the union of finitely many X_{f}.
1.18. Show the following about $X=\operatorname{Spec}(A)$.
a. The set $\{\mathfrak{p}\}$ is closed iff \mathfrak{p} is a maximal ideal.

If \mathfrak{p} is a maximal ideal, then $V(\mathfrak{p})=\{\mathfrak{p}\}$, and so $\{\mathfrak{p}\}$ is closed. If $\{\mathfrak{p}\}$ is closed then $\{\mathfrak{p}\}=V(E)$ for some $E \subsetneq A$. Let \mathfrak{m} be a maximal ideal containing \mathfrak{p} so that $\mathfrak{m} \in V(E)$. Then $\mathfrak{m}=\mathfrak{p}$, so that \mathfrak{p} is a maximal ideal.
b. $\mathbf{C l}(\{\mathfrak{p}\})=V(\mathfrak{p})$

Notice that $\mathrm{Cl}(\mathfrak{p}) \subseteq V(\mathfrak{p})$ since $V(\mathfrak{p})$ is a closed set containing \mathfrak{p} and $\mathrm{Cl}(\mathfrak{p})$ is the intersection of all closed sets containing \mathfrak{p}. Conversely, suppose that \mathfrak{q} is a prime ideal not in $\operatorname{Cl}(\mathfrak{p})$, and choose a neighborhood U of \mathfrak{q} that does not intersect $\{\mathfrak{p}\}$. Then there is $E \subset A$ for which $X-U=V(E)$. Consequently, $\mathfrak{p} \in V(E)$ and $\mathfrak{q} \notin V(E)$. Since \mathfrak{p} contains E and \mathfrak{q} does not, we conclude in particular that \mathfrak{q} does not contain \mathfrak{p}. This means that $\mathfrak{q} \notin V(\mathfrak{p})$. So $\operatorname{Cl}(\mathfrak{p})=V(\mathfrak{p})$.
c. $\mathfrak{q} \in \mathbf{C l}(\{\mathfrak{p}\})$ if and only if $\mathfrak{p} \subseteq \mathfrak{q}$.

Obvious from part b.
d. X is a T_{0} space.

Suppose that $\mathfrak{p} \neq \mathfrak{q}$. If $\mathfrak{p} \subsetneq \mathfrak{q}$ then $X-V(\mathfrak{q})$ is an open set containing \mathfrak{p} but not containing \mathfrak{q}; otherwise $\mathfrak{p} \nsubseteq \mathfrak{q}$ and hence $X-V(\mathfrak{p})$ is an open set containing \mathfrak{q} but not containing \mathfrak{p}.
1.19. Show that $\operatorname{Spec}(A)$ is an irreducible topological space iff $\mathfrak{N}(A)$ is a prime ideal in A.

Suppose that $\mathfrak{N}(A)$ is not a prime ideal. Then there are $f, g \in A$ for which $f g \in \mathfrak{N}(A)$ and yet $f, g \notin \mathfrak{N}(A)$. Since f and g are not nilpotent, we see that X_{f} and X_{g} are nonempty open sets. But $X_{f} \cap X_{g}=X_{f g}=\emptyset$ since $f g$ is nilpotent. Hence, $\operatorname{Spec}(A)$ is not irreducible.

Suppose that $\operatorname{Spec}(A)$ is not irreducible. Choose nonempty open U, V for which $U \cap V=\emptyset$. Then there are f, g for which $\emptyset \neq X_{f} \subseteq U$ and $\emptyset \neq X_{g} \subseteq V$. So $f g$ is nilpotent since $X_{f g}=X_{f} \cap X_{g}=\emptyset$. But neither f nor g is nilpotent. This means that $\mathfrak{N}(A)$ is not a prime ideal.
1.20. Let X be a general topological space. Prove the following.
a. If Y is an irreducible subspace of X, then the closure \bar{Y} of Y in X is irreducible.

Suppose U and V are open in X, and that $U \cap \bar{Y}$ and $V \cap \bar{Y}$ are nonempty. Choose $x \in U \cap \bar{Y}$. Since U is a neighborhood of x, and since $x \in \bar{Y}$, we see that U intersects Y nontrivially. So $U \cap Y$, and similarly $V \cap Y$, are nonempty. Since Y is irreducible, $U \cap Y$ intersects $V \cap Y$ nontrivially, and therefore $U \cap \bar{Y}$ intersects $V \cap \bar{Y}$ nontrivially. Hence, \bar{Y} is irreducible as well.
b. Every irreducible subspace of X is contained in a maximal irreducible subspace.

Suppose that Σ consists of all irreducible subspaces of X and that Σ is partially ordered by inclusion. Let $C=\left\{Y_{\alpha}: \alpha \in I\right\}$ be an ascending chain in Σ. Define $Y=\bigcup_{\alpha \in I} Y_{\alpha}$, and suppose that U, V open in X are such that $U \cap Y$ and $V \cap Y$ are nonempty. There are α, β for which $U \cap Y_{\alpha}$ and $V \cap Y_{\beta}$ are nonempty. We may assume that $\alpha \leq \beta$. Notice then that $U \cap Y_{\beta} \supseteq U \cap Y_{\alpha}$ is nonempty. Since Y_{β} is irreducible, we conclude that $U \cap Y_{\beta}$ and $V \cap Y_{\beta}$ intersect nontrivially. But then $U \cap Y$ and $V \cap Y$ intersect nontrivially. That is, Y is irreducible. So by Zorn's Lemma, Σ has maximal elements. Thus, every irreducible subspace of X is contained in a maximal irreducible subspace of X.
c. The maximal irreducible subspaces of X are closed and cover X. What are the irreducible components of a Hausdorff space?

If Y is a maximal irreducible subspace of X, then $Y=\bar{Y}$ since \bar{Y} is irreducible. In other words, Y is closed. If $x \in X$, then $\{x\}$ is irreducible, and so x is contained in some maximal irreducible subspace of X. This means that X is covered by the irreducible components.

If X is a Hausdorff space and $Y \subseteq X$ contains two distinct points x and y, then we can choose disjoint open U and V for which $x \in U$ and $y \in V$. Then $U \cap Y$ and $V \cap Y$ are nonempty disjoint open sets in Y, implying that Y is not irreducible. So the irreducible components of a Hausdorff space are precisely the one point sets.
d. The irreducible components of $\operatorname{Spec}(A)$ are of the form $V(\mathfrak{p})$ for some minimal prime ideal \mathfrak{p}.

Let \mathfrak{p} be a prime ideal and suppose $f \in A$. Then $X_{f} \cap V(\mathfrak{p}) \neq \emptyset$ if and only if $f \notin \mathfrak{q}$ for some prime ideal $\mathfrak{q} \supseteq \mathfrak{p}$, and this occurs if and only if $f \notin \mathfrak{p}$. Now assume that $X_{f} \cap V(\mathfrak{p})$ and $X_{g} \cap V(\mathfrak{p})$ are nonempty open subsets of $V(\mathfrak{p})$. Then $f, g \notin \mathfrak{p}$ so that $f g \notin \mathfrak{p}$, and hence

$$
\mathfrak{p} \in X_{f g} \cap V(\mathfrak{p})=\left(X_{f} \cap V(\mathfrak{p})\right) \cap\left(X_{g} \cap V(\mathfrak{p})\right)
$$

This means that $V(\mathfrak{p})$ is an irreducible subspace of $\operatorname{Spec}(A)$. Now any irreducible subspace of $\operatorname{Spec}(A)$ is of the form $V(r(\mathfrak{a}))$ for some ideal \mathfrak{a}. Suppose $r(\mathfrak{a})$ is not prime. Then there are $f, g \notin r(\mathfrak{a})$ for which $f g \in r(\mathfrak{a})$. So there is $\mathfrak{p} \in V(\mathfrak{a})$ not containing f and there is $\mathfrak{q} \in V(\mathfrak{a})$ not containing g. This means that $X_{f} \cap V(r(\mathfrak{a}))$ and $X_{g} \cap V(r(\mathfrak{a}))$ are nonempty. But $X_{f g} \cap V(r(\mathfrak{a}))=\emptyset$ since every prime ideal containing $r(\mathfrak{a})$ contains $f g$. Hence, $V(r(\mathfrak{a}))$ is not irreducible. So the irreducible subspaces of X are precisely of the form $V(\mathfrak{p})$ for some prime ideal \mathfrak{p}. Further, $V(\mathfrak{p})$ is maximal among all sets of the form $V(\mathfrak{q})$, where \mathfrak{q} is prime, if and only if \mathfrak{p} is a minimal prime ideal. So we are done.
1.21. Let $\phi: A \rightarrow B$ be a ring homomorphism, with $X=\operatorname{Spec}(A)$ and $Y=\operatorname{Spec}(B)$. Define $\phi^{*}: Y \rightarrow X$ by $\phi^{*}(\mathfrak{q})=\phi^{-1}(\mathfrak{q})$. Prove the following.
a. If $f \in A$ then $\phi^{*-1}\left(X_{f}\right)=Y_{\phi(f)}$ and so ϕ^{*} is continuous.

Notice that $\phi^{*-1}\left(X_{f}\right)$ consists of all $\mathfrak{q} \in Y$ for which $f \notin \phi^{-1}(\mathfrak{q})$. Also, $Y_{\phi(f)}$ consists of all $\mathfrak{q} \in Y$ for which $\phi(f) \notin \mathfrak{q}$. But $\phi(f) \in \mathfrak{q}$ if and only if $f \in \phi^{-1}(\mathfrak{q})$, and so $\phi^{*-1}\left(X_{f}\right)=Y_{\phi(f)}$. In turn, this implies that ϕ^{*} is continuous since $\left\{X_{f} \mid f \in A\right\}$ is a basis of X and $\phi^{*-1}\left(X_{f}\right)$ is open for every $f \in A$.
b. If \mathfrak{a} is an ideal in A and then $\phi^{*-1}(V(\mathfrak{a}))=V\left(\mathfrak{a}^{e}\right)$.

The following long chain of equalities

$$
\begin{aligned}
\phi^{*-1}(V(\mathfrak{a})) & =\phi^{*-1}\left(V\left(\cup_{x \in \mathfrak{a}}\{x\}\right)\right) \\
& =\phi^{*-1}\left(\cap_{x \in \mathfrak{a}} V(x)\right) \\
& =\cap_{x \in \mathfrak{a}} \phi^{*-1}(V(x)) \\
& =\cap_{x \in \mathfrak{a}} \phi^{*-1}\left(X-X_{x}\right) \\
& =\cap_{x \in \mathfrak{a}}\left[Y-\phi^{*-1}\left(X_{x}\right)\right] \\
& =\cap_{x \in \mathfrak{a}}\left[Y-Y_{\phi(x)}\right] \\
& =\cap_{x \in \mathfrak{a}} V(\phi(x)) \\
& =V(\phi(\mathfrak{a})) \\
& =V\left(\mathfrak{a}^{e}\right)
\end{aligned}
$$

gives us the desired result.
c. If \mathfrak{b} is an ideal in B then $\operatorname{Cl}\left(\phi^{*}(V(\mathfrak{b}))\right)=V\left(\mathfrak{b}^{c}\right)$.

Any $\mathfrak{p} \in \phi^{*}(V(\mathfrak{b}))$ is of the form \mathfrak{q}^{c} for some $\mathfrak{q} \supseteq \mathfrak{b}$. Then $\mathfrak{p} \supseteq \mathfrak{b}^{c}$, so that $\phi^{*}(V(\mathfrak{b})) \subseteq V\left(\mathfrak{b}^{c}\right)$, and hence

$$
\mathrm{Cl}\left(\phi^{*}(V(\mathfrak{b}))\right) \subseteq \mathrm{Cl}\left(V\left(\mathfrak{b}^{c}\right)\right)=V\left(\mathfrak{b}^{c}\right)
$$

On the other hand, suppose $\mathfrak{p} \in V\left(\mathfrak{b}^{c}\right)$ and that X_{f} is a basic open set in X containing \mathfrak{p}. Then $\mathfrak{b}^{c} \subseteq \mathfrak{p}$ and $f \notin \mathfrak{p}$ so that $f \notin r\left(\mathfrak{b}^{c}\right)=r(\mathfrak{b})^{c}$. Hence, $\phi(f) \notin r(\mathfrak{b})$, implying the existence of a prime ideal $\mathfrak{q} \in V(\mathfrak{b})$ for which $\phi(f) \notin \mathfrak{q}$. Then $f \notin \phi^{*}(\mathfrak{q})$ and so $\phi^{*}(\mathfrak{q}) \in X_{f}$. This means that $\phi^{*}(V(\mathfrak{b})) \cap X_{f} \neq \emptyset$, so that $\mathfrak{p} \in \operatorname{Cl}\left(\phi^{*}(V(\mathfrak{b}))\right)$. Thus $\operatorname{Cl}\left(\phi^{*}(V(\mathfrak{b}))\right)=V\left(\mathfrak{b}^{c}\right)$.
d. If ϕ is surjective then ϕ^{*} is a homeomorphism of Y onto the closed subset $V(\operatorname{Ker}(\phi))$ of X. In particular, $\operatorname{Spec}(A)$ and $\operatorname{Spec}(A / \mathfrak{N}(A))$ are naturally isomorphic.

If $\mathfrak{q} \in Y$, then $\phi^{*}(\mathfrak{q})$ contains $\operatorname{Ker}(\phi)$. If $\mathfrak{p} \in V(\operatorname{Ker}(\phi))$ then $\mathfrak{p} / \operatorname{Ker}(\phi)$ is isomorphic with a prime ideal \mathfrak{q} of Y, under the isomorphism $\bar{\phi}: A / \operatorname{Ker}(\phi) \rightarrow B$. Thus, $\mathfrak{p}=\phi^{*}(\mathfrak{q})$ so that ϕ^{*} maps Y onto $V(\operatorname{Ker}(\phi))$. Now if $\phi^{*}(\mathfrak{p})=\phi^{*}(\mathfrak{q})$, then $\phi^{-1}(\mathfrak{p})=\phi^{-1}(\mathfrak{q})$, and so $\mathfrak{p}=\mathfrak{q}$ since ϕ is surjective. So ϕ^{*} is injective. We already know by part a that ϕ^{*} is continuous. To show that ϕ^{*} is a homeomorphism it suffices to show that ϕ^{-1} is continuous. To do this, it suffices to show that ϕ^{*} is a closed map. By part c we know that $\phi^{*}(V(\mathfrak{b})) \subseteq V\left(\mathfrak{b}^{c}\right)$ for any ideal \mathfrak{b} in Y. If $\mathfrak{p} \in V\left(\mathfrak{b}^{c}\right)$ then $\phi(\mathfrak{p}) \supseteq \phi\left(\mathfrak{b}^{c}\right)=\mathfrak{b}$ by surjectivity of ϕ, and $\phi(\mathfrak{p}) \in Y$. But then $\mathfrak{p}=\phi^{*}(\phi(\mathfrak{p})) \in \phi^{*}(V(\mathfrak{b}))$. So $\phi^{*}(V(\mathfrak{b}))=V\left(\mathfrak{b}^{c}\right)=\operatorname{Cl}\left(\phi^{*}(V(\mathfrak{b}))\right)$ by part c. Hence, ϕ^{*} is indeed a closed map. So ϕ^{*} is a homeomorphism between Y and $V(\operatorname{Ker}(\phi))$.

Finally, the natural homomorphism $A \rightarrow A / \mathfrak{N}(A)$ is surjective with kernel $\mathfrak{N}(A)$. Therefore, $\operatorname{Spec}(A / \mathfrak{N}(A)$ is homeomorphic with $V(\mathfrak{N}(A))=\operatorname{Spec}(A)$.
e. The image $\phi^{*}(Y)$ of Y is dense in X if and only if $\operatorname{Ker}(\phi) \subseteq \mathfrak{N}(A)$.

Notice that $\mathrm{Cl}\left(\phi^{*}(Y)\right)=\mathrm{Cl}\left(\phi^{*}(V(0))\right)=V\left(0^{c}\right)=V(\operatorname{Ker}(\phi))$. Consequently, $\phi^{*}(Y)$ is dense in X if and only if $V(\operatorname{Ker} \phi)=X$, and this occurs precisely when $\operatorname{Ker}(\phi) \subseteq \mathfrak{N}(A)$, and in particular when ϕ is 1-1.
f. Let $\psi: B \rightarrow C$ be another ring homomorphism. Show that $(\psi \circ \phi)^{*}=\phi^{*} \circ \psi^{*}$.

We have $(\psi \circ \phi)^{*}(\mathfrak{r})=(\psi \circ \phi)^{-1}(\mathfrak{r})=\phi^{-1}\left(\psi^{-1}(\mathfrak{r})\right)=\phi^{*}\left(\psi^{*}(\mathfrak{r})\right)$ for every $\mathfrak{r} \in \operatorname{Spec}(C)$.
g. Let A be an integral domain with only one nonzero prime ideal \mathfrak{p}, and suppose that K is the field of fractions of A. Define $B=(A / \mathfrak{p}) \times K$ and let $\phi: A \rightarrow B$ by $\phi(x)=(\bar{x}, x)$. Show that ϕ^{*} is bijective but not a homeomorphism.

First, A / \mathfrak{p} is a field since \mathfrak{p} is a maximal ideal in A. Now let \mathfrak{q}_{1} consist of all $(\bar{x}, 0) \in B$ and let \mathfrak{q}_{2} consist of all $(0, x) \in B$. Then \mathfrak{q}_{1} and \mathfrak{q}_{2} are maximal ideals in B since $B / \mathfrak{q}_{1} \cong K$ and $B / \mathfrak{q}_{2} \cong A / \mathfrak{p}$. If \mathfrak{q} is another prime ideal of B, then $\mathfrak{q}_{1} \mathfrak{q}_{2}=0$ is contained in \mathfrak{q}, and so $\mathfrak{q}_{1} \subseteq \mathfrak{q}$ or $\mathfrak{q}_{2} \subseteq \mathfrak{q}$. So \mathfrak{q}_{1} and \mathfrak{q}_{2} are the only prime ideals of B. Hence, $\operatorname{Spec}(A)=\{0, \mathfrak{p}\}$ and $\operatorname{Spec}(B)=\left\{\mathfrak{q}_{1}, \mathfrak{q}_{2}\right\}$ are two-point spaces. It is easy to see that $\phi^{*}\left(\mathfrak{q}_{1}\right)=0$ and $\phi^{*}\left(\mathfrak{q}_{2}\right)=\mathfrak{p}$, so that ϕ^{*} is a bijection. But ϕ^{*} is not a homeomorphism. After all, $\operatorname{Spec}(B)$ is Hausdorff since all prime ideals are maximal, but $\operatorname{Spec}(A)$ is not Hausdorff since 0 is a non-maximal prime ideal.
1.22. Suppose that A_{1}, \ldots, A_{n} are rings and $A=\prod_{j=1}^{n} A_{j}$. Show that $\operatorname{Spec}(A)$ is the disjoint union of open (and closed) subspaces X_{j}, where X_{j} is canonically homeomorphic with $\operatorname{Spec}\left(A_{j}\right)$.

Let $\pi_{j}: A \rightarrow A_{j}$ and $i_{j}: A_{j} \rightarrow A$ be the canonical maps. If \mathfrak{q} is a prime ideal in A_{j}, then $\pi_{j}^{-1}(\mathfrak{q})$ is a prime ideal in A. Conversely, suppose \mathfrak{p} is a prime ideal in A. Define $e_{j}=i_{j}\left(1_{A_{j}}\right)$ so that $\sum_{1}^{n} e_{j}=1_{A}$ and $e_{j} e_{k}=0$ if $j \neq k$. Some $e_{j^{*}} \notin \mathfrak{p}$ since $\mathfrak{p} \neq A$. For $j \neq j^{*}$ we have $e_{j} e_{j^{*}}=0 \in \mathfrak{p}$ so that $e_{j} \in \mathfrak{p}$. From this we see that $\mathfrak{p}=\pi_{j^{*}}^{-1}(\mathfrak{q})$ for some ideal \mathfrak{q} in $A_{j^{*}}$, and it is easy to see that \mathfrak{q} is a prime ideal in $A_{j^{*}}$.

Therefore, $\operatorname{Spec}(A)$ is the disjoint union of the subsets X_{j}, where X_{j} is the set of all $\pi_{j}^{-1}(\mathfrak{q})$, where \mathfrak{q} is a prime ideal in A_{j}. Notice that each X_{j} is closed since $X_{j}=V\left(\pi_{j}^{-1}(0)\right)$. This also shows that each X_{j} is open since $X_{j}=\bigcap_{k \neq j} X_{k}^{c}$. Since π_{j} is surjective, exercise 1.22 tells us that $\pi_{j}^{*}: \operatorname{Spec}\left(A_{j}\right) \rightarrow \operatorname{Spec}(A)$ is a homeomorphism of $\operatorname{Spec}\left(A_{i}\right)$ onto $V\left(\operatorname{Ker}\left(\pi_{j}\right)\right)=V\left(\pi_{j}^{-1}(0)\right)=X_{j}$. In particular, X_{j} and $\operatorname{Spec}\left(A_{j}\right)$ are canonically homeomorphic.

Conversely, prove that the following are equivalent for any ring A. Deduce that the spectrum of a local ring is always connected.
a. $X=\operatorname{Spec}(A)$ is disconnected.
b. $A \cong A_{1} \times A_{2}$ where A_{1} and A_{2} are nonzero rings.
c. A has an idempotent $e \neq 0,1$.
$(a \Rightarrow c)$ We can write $X=V(\mathfrak{a}) \coprod V(\mathfrak{b})$ where \mathfrak{a} and \mathfrak{b} are ideals in A. Then $V(\mathfrak{a} \cap \mathfrak{b})=V(\mathfrak{a}) \cup V(\mathfrak{b})=X$ implying that $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{N}(A)$. Also, $\emptyset=V(\mathfrak{a}) \cap V(\mathfrak{b})=V(\mathfrak{a} \cup \mathfrak{b})$, implying that $A=\langle\mathfrak{a} \cup \mathfrak{b}\rangle$, and hence $A=\mathfrak{a}+\mathfrak{b}$. Now write $1=a+b$ with $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$. Notice that $a b \in \mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{N}(A)$ so that $(a b)^{n}=0$ for some $n>0$. Now $1=(a+b)^{n}=a^{n}+b^{n}+a b x$ for some $x \in A$. Since $a b x \in \mathfrak{N}(A)$ we conclude that $a^{n}+b^{n}$ is a unit in A. Let u be the inverse of $a^{n}+b^{n}$ and notice that $u a^{n} b^{n}=0$ so that $u a^{n}=u a^{n}\left(u\left(a^{n}+b^{n}\right)\right)=\left(u a^{n}\right)^{2}$ and similarly $u b^{n}=\left(u b^{n}\right)^{2}$. If $u a^{n}=0$ then $a^{n}=0$ and $1=b\left(b^{-1}+a x\right) \in \mathfrak{b}$, which is not possible since $V(\mathfrak{b}) \neq \emptyset$. So $u a^{n}$ and $u b^{n}$ are nonzero. On the other hand, if $1=u a^{n}=u b^{n}$ then $1=u\left(a^{n}+b^{n}\right)=2$ so that $1=0$. Hence, one of $u a^{n}, u b^{n}$ is a nontrivial idempotent.
$(b \Rightarrow a)$ We already know that $X=X_{1} \amalg X_{2}$ where $X_{i}=\operatorname{Spec}\left(A_{i}\right)$ is a non-empty open subset of X, since $A_{i} \neq 0$. So X is disconnected.
$(b \Rightarrow c)$ Take $e=(0,1)$ or $e=(1,0)$.
$(c \Rightarrow b)$ Define non-zero subrings of A by $A_{1}=(e)$ and $A_{2}=(1-e)$. Then $A=A_{1}+A_{2}$ since $a=a e+a(1-e)$ for any $a \in A$. If $x \in A_{1} \cap A_{2}$, then $x=a e$ and $x=b(1-e)$ for some a and b. But $a e=a e e=b(1-e) e=0$, and so $x=0$. Therefore, $A \cong A_{1} \times A_{2}$.

Exercise 1.12 shows that a local ring A has no idempotent $e \neq 0$ or 1 , so that $\operatorname{Spec}(A)$ is always connected by the above.
1.23. Let A be a Boolean ring. Prove the following.
a. For each $f \in A$, the set X_{f} is open and closed in $\operatorname{Spec}(A)$.

By definition, $X_{f}=V(f)^{c}$ is open. If \mathfrak{p} is a prime ideal, then $f \in \mathfrak{p}$ or $1-f \in \mathfrak{p}$ since $f(1-f)=0$. It follows from this that $X_{f}=V(1-f)$, so that X_{f} is closed in $\operatorname{Spec}(A)$.
b. If $f_{1}, \ldots, f_{n} \in A$ then $X_{f_{1}} \cup \cdots \cup X_{f_{n}}=X_{f}$ for some $f \in A$.

Choose f, as in exercise 1.11, so that $\left(f_{1}, \ldots, f_{n}\right)=(f)$. Then $V(f)=V\left(\bigcup_{1}^{n}\left(f_{j}\right)\right)=\bigcap_{1}^{n} V\left(f_{j}\right)$, implying that $X_{f}=\bigcup_{1}^{n} X_{f_{j}}$.
c. If Y is both open and closed, then $Y=X_{f}$ for some $f \in A$.

Since Y is closed in the compact space $\operatorname{Spec}(A)$, we see that Y itself is compact. Exercise 1.17 now says that Y is the union of finitely many sets of the form X_{f}. We now apply part b .
d. $\operatorname{Spec}(A)$ is a compact Hausdorff space.

Suppose that $\mathfrak{p}, \mathfrak{q}$ are distinct prime ideals in X. We may suppose that there is $f \in \mathfrak{p}-\mathfrak{q}$. Then $1-f \in \mathfrak{q}-\mathfrak{p}$ since $f(1-f)=0$. So X_{1-f} and X_{f} are open sets containing \mathfrak{p} and \mathfrak{q}, respectively. These sets are disjoint since $X_{1-f} \cap X_{f}=X_{(1-f) f}=X_{0}=\emptyset$. Therefore, X is compact Hausdorff.
1.24. Show that every Boolean lattice becomes a Boolean ring, and that every Boolean ring becomes a Boolean lattice. Deduce that Boolean lattices and Boolean rings are equivalent.
A lattice L is a partially ordered set such that, if a and b are in L, then there is an element $a \wedge b$ that is the largest element in the non-empty set $\{c \in L: c \leq a$ and $c \leq b\}$, and there is an element $a \vee b$ that is the smallest element in the non-empty set $\{c \in L: c \geq a$ and $c \geq b\}$. We say that L is Boolean provided that the following hold.
a. There is a smallest element 0 in L, and a largest element 1.
b. For $a, b, c \in L$ we have $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$ and also $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$. In other words, we have distribution.
c. For each a there is a unique a^{\prime} such that $a \wedge a^{\prime}=1$ and $a \vee a^{\prime}=0$.

Lets make a few observations about \wedge and \vee. We first have

$$
a \wedge 0=0 \quad a \vee 0=a \quad a \wedge 1=a \quad a \vee 1=1
$$

This implies that $0^{\prime}=1$ and $1^{\prime}=0$. Clearly $a^{\prime \prime}=a$. We also have

$$
a \wedge b=b \wedge a \quad a \vee b=b \vee a \quad a \wedge a=a \quad a \vee a=a
$$

We have the associativity relations

$$
(a \wedge b) \wedge c=a \wedge(b \wedge c) \quad(a \vee b) \vee c=a \vee(b \vee c)
$$

We also have DeMorgan's Laws

$$
(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime} \quad(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}
$$

To prove the first of DeMorgan's Laws we note that

$$
(a \wedge b) \wedge\left(a^{\prime} \vee b^{\prime}\right)=\left(a \wedge b \wedge a^{\prime}\right) \vee\left(a \wedge b \wedge b^{\prime}\right)=0 \vee 0=0
$$

and also

$$
(a \wedge b) \vee\left(a^{\prime} \vee b^{\prime}\right)=\left(a \vee a^{\prime} \vee b^{\prime}\right) \wedge\left(b \vee a^{\prime} \vee b^{\prime}\right)=1 \wedge 1=1
$$

The first of Demorgan's Laws now follows from the uniqueness in b . The second of DeMorgan's Laws follows very similarly. Now for $a, b \in L$ we define operations of addition and multiplication by

$$
a+b=\left(a \wedge b^{\prime}\right) \vee\left(a^{\prime} \wedge b\right) \quad \text { and } \quad a \cdot b=a \wedge b
$$

Notice that $a+0=(a \wedge 1) \vee\left(a^{\prime} \wedge 0\right)=a \vee 0=a$ so that 0 is the additive identity in L. Addition is commutative since

$$
\begin{aligned}
b+a & =\left(b \wedge a^{\prime}\right) \vee\left(b^{\prime} \wedge a\right) \\
& =\left(b^{\prime} \wedge a\right) \vee\left(b \wedge a^{\prime}\right) \\
& =\left(a \wedge b^{\prime}\right) \vee\left(a^{\prime} \wedge b\right)=a+b
\end{aligned}
$$

Every $a \in L$ has an additive inverse since $a+a^{\prime}=\left(a \wedge a^{\prime}\right) \vee\left(a^{\prime} \wedge a\right)=a \wedge a^{\prime}=0$ by definition of a^{\prime}. Lastly, addition is associative. This is tedious to check, so I will not include that calculation. Notice that $a \cdot 1=a \wedge 1=a$ so that 1 is the multiplicative identity. Clearly, multiplication is commutative and associative. Lastly, multiplication distributes over addition since

$$
\begin{aligned}
a \cdot c+b \cdot c & =(a \wedge c)+(b \wedge c) \\
& =\left((a \wedge c) \wedge(b \wedge c)^{\prime}\right) \vee\left((a \wedge c)^{\prime} \wedge(b \wedge c)\right)
\end{aligned}
$$

Summarizing, we see that L has a ring structure. L is a boolean ring since $a \cdot a=a \wedge a=a$. Now suppose that A is a Boolean ring. Define an ordering on A by $a \leq b$ if and only if $a=a b$. Then \leq is reflexive since $a=a^{2}$. If $a \leq b$ and $b \leq a$ then $a=a b=b a=b$, so that \leq is anti-symmetric. If $a \leq b$ and $b \leq c$ then $a=a b=a b c=a c$ so that $a \leq c$, and hence \leq is transitive. So A is partially ordered.

Now let a and b be arbitrary elements of A, and notice that $a, b \leq a+b+a b$ since $a(a+b+a b)=a+a b+a b=a$ and $b(a+b+a b)=a b+b+a b=b$. If $a \leq c$ and $b \leq c$, then $a=a c$ and $b=b c$, so that $(a+b+a b) c=a+b+a b$ and hence $a+b+a b \leq c$. This means that $\{c \in A: a, b \leq c\}$ is a non-empty set with $a+b+a b$ as its smallest element. So define $a \vee b=a+b+a b$.

Again let a and b be arbitrary elements of A, and notice that $a b \leq a$ and $a b \leq b$. If $c \leq a$ and $c \leq b$, then $c=a c$ and $c=b c$, so that $(a b) c=a c=c$ and hence $c \leq a b$. This means that $\{c \in A: c \leq a, b\}$ is a non-empty set with $a b$ as its largest element. So define $a \vee b=a+b+a b$. Now that A is seen to be a lattice, I claim that A is a Boolean lattice. Notice that $0 \leq a \leq 1$ for every $a \in L$ since $0=a 0$ and $a=a 1$. We see that \vee and \wedge distribute over one another since

$$
\begin{aligned}
a \vee(b \wedge c) & =a+(b \wedge c)+a(b \wedge c) \\
& =a+b c+a b c \\
& =(a+2 a c)+(a b+b c+a b c)+(a b+2 a b c) \\
& =a(a+c+a c)+b(a+c+a c)+a b(a+c+a c) \\
& =(a+b+a b)(a+c+a c) \\
& =(a \vee b)(a \vee c) \\
& =(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

and similarly $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$. Now define $a^{\prime}=1-a$ so that $a \wedge a^{\prime}=a(1-a)=0$ and $a \vee a^{\prime}=a+(1-a)+a(1-a)=1$. If $b \in A$ satisfies $0=a \wedge b$ and $1=a \vee b=a+b+a b=a+b$, then $b=1-a=a^{\prime}$. So a^{\prime} is unique. Thus, A is indeed a Boolean lattice.

Now suppose that we started with a Boolean lattice (L, \leq) and made it into a Boolean ring $(L,+, \cdot)$, then made this ring into a new Boolean lattice (L, \preccurlyeq). If $a \leq b$ then $a b=a \wedge b=a$, so that $a \preccurlyeq b$. If $a \preccurlyeq b$ then $a=a b=a \wedge b$, so that $a \leq b$. Hence, (L, \leq) and (L, \preccurlyeq) are isomorphic Boolean lattices under the identity map id : $L \rightarrow L$.

On the other hand, suppose we started with a ring $(A,+, \cdot)$ and made it into a Boolean lattice (A, \leq), then made this Boolean lattice into a new Boolean ring $(A, \dot{+}, \times)$. Then $a \times b=a \wedge b=a \cdot b$ and

$$
\begin{aligned}
a \dot{+} b & =\left(a \wedge b^{\prime}\right) \vee\left(a^{\prime} \wedge b\right) \\
& =(a \wedge(1-b)) \vee((1-a) \wedge b) \\
& =a(1-b) \vee(1-a) b \\
& =a(1-b)+(1-a) b+a(1-b)(1-a) b \\
& =a+b
\end{aligned}
$$

Therefore, $(A,+, \cdot)$ and $(A, \dot{+}, \times)$ are isomorphic rings Boolean rings under the identity map id : $A \rightarrow A$. Suppose $f: A \rightarrow B$ is a ring isomorphism of Boolean rings. Let (A, \leq) and (B, \preccurlyeq) be the resulting Boolean lattices. The bijection f is order-preserving since $a \leq b$ implies that $a=a b$, and hence $f(a)=f(a) f(b)$, implying that $f(a) \preccurlyeq f(b)$. This means that the two resulting lattices are isomorphic.

On the other hand, if (L, \leq) and (\bar{L}, \preccurlyeq) are two Boolean lattices, isomorphic under $f: L \rightarrow \bar{L}$, then let $(L,+, \cdot)$ and $(\bar{L},+, \cdot)$ be the resulting Boolean rings. Notice that $f^{-1}: \bar{L} \rightarrow L$ is order-preserving as well. It follows easily that $f(a \wedge b)=f(a) \bar{\wedge} f(b)$ and $f(a \vee b)=f(a) \vee f(b)$. So $f(a+b)=f(a)+f(b)$ and $f(a b)=f(a) f(b)$. In other words, $(L,+, \cdot)$ and $(\bar{L},+, \cdot)$ are isomorphic Boolean rings. Summarizing, there is a bijective correspondence between (isomorphism classes of) Boolean rings and (isomorphism classes of) Boolean lattices.
1.25. Deduce Stone's Theorem, that every Boolean lattice is isomorphic to the lattice of open-andclosed subsets of some compact Hausdorff topological space.
Suppose L is a Boolean lattice and make L into a Boolean ring A as in exercise 1.24. Then $X=\operatorname{Spec}(A)$ is a compact Hausdorff space. Let \mathscr{L} consist of all subsets of X that are both open and closed. We order \mathscr{L} by set-theoretic inclusion. \mathscr{L} is clearly a partially ordered set. If $Y, Y^{\prime} \in \mathscr{L}$ then $Y \cup Y^{\prime}, Y \cap Y^{\prime} \in \mathscr{L}$ so that \mathscr{L} is a lattice. The emptyset \emptyset is the smallest element in \mathscr{L} and full space X is the largest element of \mathscr{L}. Also, if $Y \in \mathscr{L}$ then Y^{c} is an open and closed subset of X, with $Y \cap Y^{c}=\emptyset$ and $Y \cup Y^{c}=X$, with Y^{c} uniquely determined by these equations. This means that \mathscr{L} is in fact a Boolean lattice. Exercise 1.23 tells us that $Y \in \mathscr{L}$ if and only if $Y=X_{f}$ for some $f \in L$. So we have a surjective map $\psi: L \rightarrow \mathscr{L}$ given by $\psi(f)=X_{f}$. If $f \leq g$ then $f=f g$ so that $X_{f}=X_{f} \cap X_{g}$ and hence $X_{f} \subseteq X_{g}$. This means that ψ is an order-preserving map. On the other hand, if $X_{f}=X_{g}$ then

$$
\emptyset=X_{1-f} \cap X_{f}=X_{1-f} \cap X_{g}=X_{(1-f) g}
$$

so that $(1-f) g \in \mathfrak{N}(A)$. But then $0=[(1-f) g]^{n}$ for some $n>0$ so that $(1-f) g=0$, and hence $g=f g$. Similarly, $f=f g$ and hence $f=g$. This shows that ψ is an isomorphism of lattices.
1.26. Let X be a compact Hausdorff space, let $C(X)$ consists of all continuous real-valued functions defined on X, and define \tilde{X} as the set of all maximal ideals in $C(X)$. We have a map $\mu: X \rightarrow \tilde{X}$ given by $x \mapsto \mathfrak{m}_{x}$, where \mathfrak{m}_{x} consists of all $f \in C(X)$ that vanish at the point x. Prove the following.

a. The map μ is surjective.

Suppose that \mathfrak{m} is a maximal ideal in $C(X)$. Let V consist of all $x \in X$ such that $f(x)=0$ whenever $f \in \mathfrak{m}$. If V is nonempty and $x \in V$, then $\mathfrak{m} \subseteq \mathfrak{m}_{x}$, and so $\mathfrak{m}=\mathfrak{m}_{x}=\mu(x)$ by maximality. So assume that V is empty. Then given $x \in X$ there is $f \in \mathfrak{m}$ for which $f(x) \neq 0$. By continuity, there is a neighborhood U_{x} of x on which f_{x} is nonzero. These neighborhoods cover X since $V=\emptyset$, and so by compactness there are $\left\{x_{i}\right\}_{1}^{n}$ so that $X=\bigcup_{1}^{n} U_{x_{i}}$. Let $f=\sum_{1}^{n} f_{x_{i}}^{2}$ and notice that f is a continuous function that is everywhere positive. But then f is a unit in $C(X)$, having multiplicative inverse $1 / f$, and so $\mathfrak{m}=C(X)$; a contradiction. Therefore, V is nonempty and $\mathfrak{m}=\mu(x)$ for some $x \in V$.
b. The map μ is injective.

Recall that every compact Hausdorff space is normal. Let x, y be distinct points of X. Since $\{x\}$ and $\{y\}$ are disjoint closed sets, we can apply Urysohn's Lemma to deduce the existence of an $f \in C(X)$ for which $f(x)=0$ and $f(y)=1$. Then $f \in \mathfrak{m}_{x}$ and $f \notin \mathfrak{m}_{y}$. So $\mathfrak{m}_{x} \neq \mathfrak{m}_{y}$. This shows that μ is injective.
c. The bijection μ is a homeomorphism when \tilde{X} is given the subspace topology of $\operatorname{Spec}(C(X))$.

Suppose $f \in C(X)$ and define $U_{f}=f^{-1}\left(\mathbf{R}^{*}\right)$ and $\tilde{U}_{f}=\{\mathfrak{m} \in \tilde{X}: f \notin \mathfrak{m}\}$. Every $\mathfrak{m} \in \tilde{X}$ is of the form \mathfrak{m}_{x} for a unique $x \in X$. So $f \in \mathfrak{m}$ if and only if $f(x)=0$. It follows that $\mu\left(U_{f}\right)=\tilde{U}_{f}$.

Now U_{f} is open in X since f is continuous. So suppose that $U \subseteq X$ is open and that $x \in U$. By normality there is a neighborhood V of x such that $\mathrm{Cl}(V) \subseteq U$. By Urysohn's Lemma there is $f \in C(X)$ such that $f(\mathrm{Cl}(V))=\{1\}$ and $f(X \backslash U)=\{0\}$. But then $U_{f} \subseteq \mathrm{Cl}(V) \subseteq U$. This shows that $\left\{U_{f}\right\}_{f \in C(X)}$ is a basis for the topology on X.

Notice that $\tilde{U}_{f}=\tilde{X} \cap X_{f}$ is open in subspace topology. This also shows that $\left\{\tilde{U}_{f}\right\}_{f \in C(X)}$ is a basis for the topology of \tilde{X} since $\left\{X_{f}\right\}_{f \in C(X)}$ is a basis for the topology of $\operatorname{Spec}(X)$ by exercise 1.17.

Now the fact that μ takes basis elements to basis elements shows that μ is a homeomorphism. Consequently, X and \tilde{X} are homeomorphic topological spaces.
1.27. Let k be an algebraically closed field and X an affine variety in k^{n}. Show that there is a natural bijection between the elements of X and the maximal ideals of $P(X)$, where $P(X)=$ $k\left[t_{1}, \ldots, t_{n}\right] / I(X)$ is the coordinate ring of X.

Let $x \in X$ and consider the map $k\left[t_{1}, \ldots, t_{n}\right] \rightarrow k$ given by $f \mapsto f(x)$. That is, consider the map given by evaluation at x. This map is surjective since $k\left[t_{1}, \ldots, t_{n}\right]$ contains all of the constant functions. If $f-g \in I(X)$ then $f(x)=g(x)$ since $x \in X$, and so the map $k\left[t_{1}, \ldots, t_{n}\right] \rightarrow k$ induces a surjective map $P(X) \rightarrow k$. The kernel of this map is a maximal ideal, denoted by \mathfrak{m}_{x}. We now have a map $\mu: X \rightarrow \operatorname{Max}(P(X))$ given by $\mu(x)=\mathfrak{m}_{x}$. If $\mathfrak{m}_{x}=\mathfrak{m}_{y}$ and $x=\left(x_{1}, \ldots, x_{n}\right)$ while $y=\left(y_{1}, \ldots, y_{n}\right)$, then $t_{i}-x_{i} \in \mathfrak{m}_{y}$ for every i as
$t_{i}-x_{i} \in \mathfrak{m}_{x}$ for every i. But this means that $y_{i}-x_{i}=0$ and so $y_{i}=x_{i}$ for all i, so that $x=y$. In other words, μ is injective. The less trivial part of this exercise is showing that μ is surjective. So let \mathfrak{m} be a maximal ideal in $P(X)$. Then $\mathfrak{m}=\mathfrak{n} / I(X)$ where \mathfrak{n} is a maximal ideal in $k\left[t_{1}, \ldots, t_{n}\right]$ containing $I(X)$. Since k is algebraically closed, the Weak Nullstellensatz implies that $\mathfrak{n}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ for some $a_{i} \in k$. Suppose $\left(a_{1}, \ldots, a_{n}\right) \notin X$. Since X is an affine variety, we can easily verify that $x \in X$ if and only if $f(x)=0$ for every $f \in I(X)$. So there is some $f \in I(X)$ for which $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$. Since every $g \in \mathfrak{n}$ satisfies $g\left(a_{1}, \ldots, a_{n}\right)=0$, we see that $f \notin \mathfrak{n}$; a contradiction. Therefore, $\left(a_{1}, \ldots, a_{N}\right) \in X$ and thus $\mathfrak{m}=\mu\left(a_{1}, \ldots, a_{n}\right)$, showing that μ is surjective. Hence, μ is a bijection between X and $\operatorname{Max}(P(X))$.
1.28? Let X and Y be affine varieties in k^{n} and k^{m}. Show that there is a bijective correspondence Ψ between the regular mappings $X \rightarrow Y$ and the k-algebra homomorphisms $P(Y) \rightarrow P(X)$.

By definition, $P(X)$ consists of all polynomial maps $X \rightarrow k$. There is a natural multiplication on $P(X)$ that makes $P(X)$ into a k-algebra. Suppose that $\phi: X \rightarrow Y$ is a regular mapping and that $\eta \in P(Y)$ so that $\eta \circ \phi \in P(X)$. Then $\eta \mapsto \eta \circ \phi$ is a k-linear map $P(Y) \rightarrow P(X)$. If $\eta, \theta \in P(Y)$ then

$$
((\eta \circ \phi) \cdot(\theta \circ \phi))(x)=\eta(\phi(x)) \theta(\phi(x))=(\eta \cdot \theta)(\phi(x))=((\eta \cdot \theta) \circ \phi)(x)
$$

This means that the map $P(Y) \rightarrow P(X)$ induced by ϕ is a k-algebra homomorphism. Now suppose that ϕ^{\prime} induces the same k-algebra homomorphism $P(Y) \rightarrow P(X)$ as ϕ. Let $\eta_{i}: Y \rightarrow k$ be the ith coordinate function on Y, so that $\eta_{i} \circ\left(\phi-\phi^{\prime}\right)=0$ for all i. Then $\phi(x)=\phi^{\prime}(x)$ for all $x \in X$. So Ψ is an injective map. Now suppose that $f: P(Y) \rightarrow P(X)$ is a k-algebra homomorphism. Define $f_{i}: X \rightarrow k$ by $f_{i}=f\left(\eta_{i}\right)$ where η_{i} is ith coordinate function on Y, and let $\phi: X \rightarrow k^{m}$ by $\phi=\left(f_{1}, \ldots, f_{m}\right)$.

Chapter 2 : Modules

2.1. Show that $\mathbb{Z}_{m} \otimes_{\mathbb{Z}} \mathbb{Z}_{n}$ is the zero ring if $\operatorname{gcd}(m, n)=1$.

Choose integers s and t for which $s m+t n=1$. Then the identity element of $\mathbb{Z}_{m} \otimes_{\mathbb{Z}} \mathbb{Z}_{n}$ satisfies

$$
[1]_{m} \otimes[1]_{n}=[s m+t n]_{m} \otimes[1]_{n}=[t n]_{m} \otimes[1]_{n}=t n \cdot[1]_{m} \otimes[1]_{n}=[1]_{m} \otimes t n \cdot[1]_{n}=0
$$

Therefore our whole ring $\mathbb{Z}_{m} \otimes_{\mathbb{Z}} \mathbb{Z}_{n}=0$.
2.2. Let A be a ring with ideal \mathfrak{a} and A-module M. Show that $A / \mathfrak{a} \otimes_{A} M \cong M / \mathfrak{a} M$.

Tensoring the short exact sequence of A-modules

$$
0 \longrightarrow \mathfrak{a} \xrightarrow{j} A \xrightarrow{\pi} A / \mathfrak{a} \longrightarrow 0
$$

with M yields the exact sequence of A-modules

$$
\mathfrak{a} \otimes_{A} M \xrightarrow{j \otimes 1} A \otimes_{A} M \xrightarrow{\pi \otimes 1} A / \mathfrak{a} \otimes_{A} M \longrightarrow 0
$$

Since the map $f: A \otimes M \rightarrow M$ given by $f(a \otimes m)=a m$ is an isomorphism of A-modules, we can define $g=(\pi \otimes 1) \circ f^{-1}: M \rightarrow A / \mathfrak{a} \otimes M$. Then $\operatorname{Im}(g)=\operatorname{Im}(\pi \otimes 1)=A / \mathfrak{a} \otimes M$ and $\operatorname{Ker}(g)=f(\operatorname{Ker}(\pi \otimes 1))=$ $f(\operatorname{Im}(j \otimes 1))=\mathfrak{a} M$. So we have an isomorphism $\bar{g}: M / \mathfrak{a} M \rightarrow A / \mathfrak{a} \otimes M$ of A-modules.
2.3. Let (A, \mathfrak{m}, k) be a local ring. Show that, if M and N are finitely generated A-modules satisfying $M \otimes_{A} N=0$, then $M=0$ or $N=0$.

For every A-module P define a k-vector space $P_{k}=k \otimes_{A} P$. Then P_{k} and $P / \mathfrak{m} P$ are isomorphic by exercise 2.2. Now suppose that M and N are finitely generated A-modules for which $M \otimes N=0$, so that $(M \otimes N)_{k}=0$. Then

$$
\begin{aligned}
M_{k} \otimes_{k} N_{k} & =\left(M \otimes_{A} k\right) \otimes_{k}\left(N \otimes_{A} k\right) \\
& \cong M \otimes_{A}\left(k \otimes_{k}\left(N \otimes_{A} k\right)\right) \\
& \cong M \otimes_{A}\left(k \otimes_{k}\left(k \otimes_{A} N\right)\right) \\
& \cong M \otimes_{A}\left(\left(k \otimes_{k} k\right) \otimes_{A} N\right) \cong\left(M \otimes_{A} N\right)_{k}
\end{aligned}
$$

Therefore $M_{k} \otimes_{k} N_{k}=0$. Since M_{k} and N_{k} are k-vector spaces, we see that $M_{k}=0$ or $N_{k}=0$. So either $\mathfrak{m} M=M$ or $\mathfrak{m} N=N$. By Nakayama's lemma, either $M=0$ or $N=0$.
2.4. Suppose M_{i} are A-modules and let $M=\bigoplus_{i} M_{i}$. Prove that M is flat iff each M_{i} is flat.

I claim that, for every A-module N, the A-modules $N \otimes \bigoplus M_{i}$ and $\bigoplus\left(N \otimes M_{i}\right)$ are isomorphic. Define $\phi: N \times M \rightarrow \bigoplus\left(N \otimes M_{i}\right)$ by $\phi\left(n,\left(x_{i}\right)\right)=\left(n \otimes x_{i}\right)$. Then ϕ is A-bilinear and so induces a homomorphism $\Phi: N \otimes M \rightarrow \bigoplus\left(N \otimes M_{i}\right)$ for which $\Phi\left(n \otimes\left(x_{i}\right)\right)=\left(n \otimes x_{i}\right)$. Suppose now that $j_{i}: M_{i} \rightarrow M$ corresponds to canonical injection. The map $n \otimes x_{i} \mapsto n \otimes j_{i}\left(x_{i}\right)$ is a homomorphism of $N \otimes M_{i}$ into $N \otimes M$. Consequently, $\Psi: \bigoplus\left(N \otimes M_{i}\right) \rightarrow N \otimes M$ by $\Psi\left(\left(n_{i} \otimes x_{i}\right)\right)=\sum n_{i} \otimes j_{i}\left(x_{i}\right)$ is a homomorphism. It is easy to show that Φ and Ψ are inverse to one another, and so are isomorphisms.

Suppose now that $f: N^{\prime} \rightarrow N$ is injective and consider the mapping $f \otimes 1: N^{\prime} \otimes M \rightarrow N \otimes M$. As above, $N^{\prime} \otimes M$ is isomorphic with $\bigoplus\left(N^{\prime} \otimes M_{i}\right)$ under Ψ^{\prime}, and $\bigoplus\left(N \otimes M_{i}\right)$ is isomorphic with $N \otimes M$ under Φ.

Therefore, $f \otimes 1$ is injective if and only if the induced map $g=\Phi \circ\left(f \otimes 1_{M}\right) \circ \Psi^{\prime}$ from $\bigoplus\left(N^{\prime} \otimes M_{i}\right)$ to $\bigoplus\left(N \otimes M_{i}\right)$ is injective.

Notice that $g\left(\left(n_{\alpha} \otimes x_{\alpha}\right)\right)=\left(f\left(n_{\alpha}\right) \otimes x_{\alpha}\right)$. Put differently $g=\left(f \otimes 1_{\alpha}\right)$ where 1_{α} is identity on M_{α}. Therefore, g is injective if and only if each of its coordinate functions $f \otimes 1_{\alpha}$ is injective. Hence, M is flat if and only if each M_{α} is flat.
2.5. Prove that $A[x]$ is a flat A-module for every ring A.

Let M_{i} be the A-submodule of $A[x]$ generated by x^{k}. Then $M_{i}=A x^{i} \cong A$ so that M_{i} is flat. Consequently, $A[x]$ is a flat A-module since $A[x]=\bigoplus_{0}^{\infty} M_{i}$.
2.6. For any A-module M, let $M[x]$ denote the set of all polynomials in x with coefficients in M. Then $M[x]$ is an $A[x]$-module. Show that $M[x] \cong A[x] \otimes_{A} M$ as $A[x]$-modules.

It is clear that as A-modules $A[x] \cong \bigoplus_{i=0}^{\infty} A x^{i}$. Therefore, we have the isomorphism of A-modules

$$
A[x] \otimes_{A} M \cong \bigoplus_{i=0}^{\infty}\left(A x^{i} \otimes_{A} M\right) \cong \bigoplus_{i=0}^{\infty} M x^{i}=M[x]
$$

Here the isomorphism θ is given by $\theta\left(\sum a_{i} x^{i} \otimes m\right)=\sum\left(a_{i} m\right) x^{i}$. All we have to do now is verify that θ is $A[x]$-linear. Omitting indices we compute

$$
\begin{aligned}
\theta\left(\sum a_{i}^{\prime} x_{i} \cdot\left(\sum a_{i} x^{i} \otimes m\right)\right) & =\theta\left(\left(\sum a_{i}^{\prime} x_{i} \cdot \sum a_{i} x^{i}\right) \otimes m\right) \\
& =\theta\left(\sum x^{n} \sum a_{i} a_{n-i}^{\prime} \otimes m\right) \\
& =\sum\left(\sum a_{i} a_{n-i}^{\prime} m\right) x^{n} \\
& =\sum a_{i}^{\prime} x^{i} \cdot \sum\left(a_{i} m\right) x^{i} \\
& =\sum a_{i}^{\prime} x^{i} \cdot \theta\left(\sum a_{i} x^{i} \otimes m\right)
\end{aligned}
$$

Hence, θ is an isomorphism of $A[x]$-modules.
2.7. Let \mathfrak{p} be a prime ideal in A and show that $\mathfrak{p}[x]$ is a prime ideal in $A[x]$. If \mathfrak{m} is a maximal ideal in A, must $\mathfrak{m}[x]$ be a maximal ideal in $A[x]$?

Is $\pi: A \rightarrow A / \mathfrak{p}$ denotes the natural map, then π induces a map $A[x] \rightarrow(A / \mathfrak{p})[x]$ given by $\sum a_{k} x^{k} \mapsto$ $\sum \pi\left(a_{k}\right) x^{k}$. This map is surjective and has kernel $\mathfrak{p}[x]$. So $A[x] / \mathfrak{p}[x] \cong(A / \mathfrak{p})[x]$. But $(A / \mathfrak{p})[x]$ is an integral domain since A / \mathfrak{p} is an integral domain. So $\mathfrak{p}[x]$ is a prime ideal in $A[x]$. If \mathfrak{m} is a maximal ideal in A, then $A[x] / \mathfrak{m}[x] \cong(A / \mathfrak{m})[x]$ with A / \mathfrak{m} a non-zero field. So $(A / \mathfrak{m})[x]$ is not a field, implying that $\mathfrak{m}[x]$ is not a maximal ideal in $A[x]$.
2.8. Suppose that M and N are flat A-modules. Show that $M \otimes_{A} N$ is a flat A-module.

Let \mathcal{S}_{0} be an exact sequence. We may tensor \mathcal{S}_{0} with M to get an exact sequence \mathcal{S}_{1}, and we may tensor \mathcal{S}_{1} with N to get an exact sequence \mathcal{S}_{2}. But the tensor product is associative, and so the sequence \mathcal{S}_{2} is
the same one as would have been obtained had we tensored \mathcal{S}_{0} with $M \otimes_{A} N$. This shows that $M \otimes_{A} N$ is flat.

Let B be a flat A-algebra and N a flat B-module. Show that N is a flat A-module.

Let \mathcal{S}_{0} be an exact sequence of A-modules. We may tensor \mathcal{S}_{0} with B to get an exact sequence \mathcal{S}_{1} of A modules. This is an exact sequence of B-modules, since B is an (A, B)-bimodule. Tensoring this sequence with N yields an exact sequence \mathcal{S}_{2} of B-modules. Also, \mathcal{S}_{2} is an exact sequence of A-modules. So N is a flat A-module.
2.9. Suppose we have the short exact sequence of A-modules

$$
0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0
$$

with M^{\prime} and $M^{\prime \prime}$ finitely generated. Show that M is finitely generated as well.

Suppose that M^{\prime} is generated by $\left\{x_{i}\right\}$ and $M^{\prime \prime}$ is generated by $\left\{z_{i}\right\}$. Clearly $\operatorname{Im}(f)$ is generated by $\left\{f\left(x_{i}\right)\right\}$. Since g is surjective, there are $y_{i} \in M$ for which $g\left(y_{i}\right)=z_{i}$. Let N be the submodule of M generated by $\left\{y_{i}\right\}$, so that $g(N)=M^{\prime \prime}$. So for $y \in M$ there is $y^{\prime} \in N$ with $g(y)=g\left(y^{\prime}\right)$, and hence $y=y^{\prime}+\left(y-y^{\prime}\right)$ where $y-y^{\prime} \in \operatorname{Ker}(g)=\operatorname{Im}(f)$. We conclude that M is generated by $\left\{f\left(x_{i}\right)\right\} \cup\left\{y_{i}\right\}$.
2.10. Let A be a ring with the ideal $\mathfrak{a} \subseteq \mathfrak{R}(A)$. Suppose M is an A-module and N is a finitely generated A-module, with $u: M \rightarrow N$ a homomorphism. Show that u is surjective provided the induced homomorphism $\bar{u}: M / \mathfrak{a} M \rightarrow N / \mathfrak{a} N$ is surjective.

We define \bar{u} by $\bar{u}(\bar{m})=\overline{u(m)}$. We have the commutative diagram

Define $L=N / \operatorname{Im}(u)$. We have an exact sequence $M \rightarrow N \rightarrow L \rightarrow 0$. We can tensor this with A / \mathfrak{a} to get an exact sequence. Using the canonical isomorphism above we get the exact sequence

$$
M / \mathfrak{a} M \xrightarrow{\bar{u}} N / \mathfrak{a} N \xrightarrow{\bar{\pi}} L / \mathfrak{a} L \longrightarrow 0
$$

But \bar{u} is surjective so that $\bar{\pi}$ is the zero map, and hence $L / \mathfrak{a} L=0$. Nakayama's lemma yields $L=0$. In other words, u is surjective, as claimed.
2.11. Suppose A is a nonzero ring. Show that $m=n$ if A^{m} and A^{n} are isomorphic A-modules. Show that $m \geq n$ if A^{n} is a homomorphic image of A^{m}. Must $m \leq n$ if there is an injective homomorphism $A^{m} \rightarrow A^{n}$ of A-modules?

Let \mathfrak{m} be a maximal ideal in A with residue field $k=A / \mathfrak{m}$. If $\phi: A^{m} \rightarrow A^{n}$ is an isomorphism of A-modules, then $1 \otimes \phi: k \otimes_{A} A^{m} \rightarrow k \otimes_{A} A^{n}$ is an isomorphism of A-modules, and so is an isomorphism of k-vector spaces. These vector spaces have dimension m and n, respectively. We conclude that $m=n$. We prove similarly that $m \geq n$ if there is a surjection $A^{m} \rightarrow A^{n}$, and that $m \leq n$ if there is an injection $A^{m} \rightarrow A^{n}$.
2.12. Let M be a finitely generated A-module and $\phi: M \rightarrow A^{n}$ a surjective A-module homomorphism. Show that $\operatorname{Ker}(\phi)$ is finitely generated.

Let A^{n} be free on $\left\{e_{1}, \ldots, e_{n}\right\}$, and choose $u_{i} \in M$ so that $\phi\left(u_{i}\right)=e_{i}$. Then for $x \in M$ there are $a_{i} \in A$ satisfying $\phi(x)=\phi\left(\sum_{1}^{n} a_{i} u_{i}\right)$, and hence $x-\sum_{1}^{n} a_{i} u_{i} \in \operatorname{Ker}(\phi)$. So if we let N be the submodule of M generated by $\left\{u_{i}\right\}$, then $M=N+\operatorname{Ker}(\phi)$. Obviously $N \cap \operatorname{Ker}(\phi)=0$ since $0=\phi\left(\sum_{1}^{n} a_{i} u_{i}\right)=\sum_{1}^{n} a_{i} e_{i}$ implies that each $a_{i}=0$, and hence $\sum_{1}^{n} a_{i} u_{i}=0$. Therefore, $M=N \oplus \operatorname{Ker}(\phi)$. Now $\operatorname{Ker}(\phi)$ is isomorphic with M / N, so that $\operatorname{Ker}(\phi)$ is finitely generated.
2.13. Let $f: A \rightarrow B$ be a ring homomorphism, and let N be a B-module. Regarding N as an A-module by restriction of scalars, form the B-module $N_{B}=B \otimes_{A} N$. Define $g: N \rightarrow N_{B}$ by $g(n)=1 \otimes n$. Show that g is an injective homomorphism and that $g(N)$ is a direct summand of N_{B}.

In general, the map $M \rightarrow M_{B}$ need not be injective. So we are proving that it is injective in the special case where A acts on M by restriction of scalars. Now (presumably) the action of B on N_{B} is given by

$$
b^{\prime} \cdot(b \otimes n)=b^{\prime} b \otimes n
$$

Of course the action of A on N is given by $a . n=f(a) \cdot n$. Define $p^{\prime}: B \times N \rightarrow N$ by $p^{\prime}(b, n)=b \cdot n$. Obviously p^{\prime} is additive in both variables. Also, p^{\prime} is A-bilinear since

$$
\begin{aligned}
& p^{\prime}(a . b, n)=p^{\prime}(f(a) b, n)=f(a) b \cdot n=f(a) \cdot(b \cdot n)=a \cdot(b \cdot n)=a \cdot p^{\prime}(b, n) \\
& p^{\prime}(b, a . n)=b \cdot(a . n)=b \cdot(f(a) \cdot n)=f(a) \cdot(b \cdot n)=a \cdot(b \cdot n)=a \cdot p^{\prime}(b, n)
\end{aligned}
$$

So there is a unique A-linear map $p: B \otimes_{A} N \rightarrow N$ satisfying $p(b \otimes n)=b \cdot n$. Since p is A-linear we see that p is a A-submodule of N_{B}, and since g is A-linear, we see that $\operatorname{Im}(g)$ is an A-submodule of N_{B}. Now g is injective since $p \circ g=1_{N}$. If $y \in \operatorname{Im}(g) \cap \operatorname{Ker}(p)$ with $y=g(x)$ then $x=p(g(x))=p(y)=0$, so that $y=0$. In other words, $\operatorname{Im}(g) \cap \operatorname{Ker}(p)=0$. On the other hand, for $x \in N_{B}$

$$
x=g(p(x))+(x-g(p(x)))
$$

where $g(p(x)) \in \operatorname{Im}(g)$ and $x-g(p(x)) \in \operatorname{Ker}(p)$ since

$$
p(x-g(p(x)))=p(x)-p(g(p(x)))=0
$$

Therefore, $N_{B}=\operatorname{Im}(g) \oplus \operatorname{Ker}(p)$ as an A-module. On the other hand, if we define the action of B on N_{B} by $b^{\prime} \cdot(b \otimes n)=b \otimes b^{\prime} \cdot n$ then p and g are both B-linear so that $N_{B}=\operatorname{Im}(g) \oplus \operatorname{Ker}(p)$ as a B-module.
2.15. Use the notation of exercise 14 to show the following.
a. Every element in M is of the form $\mu_{j}\left(x_{j}\right)$ for some $j \in I$.

The general element of M is of the form $\sum_{i \in F} x_{i}+C$, where $x_{i} \in M_{i}$ and F is a finite subset of I. Choose $j \in I$ so that $i \leq j$ whenever $i \in F$. By definition of C we have $\sum_{i \in F} x_{i}+C=\sum_{i \in F} \mu_{i j}\left(x_{i}\right)+C$. But $\sum_{i \in F} \mu_{i j}\left(x_{i}\right) \in M_{j}$ since each $\mu_{i j}: M_{i} \rightarrow M_{j}$. So elements in M are of the form $x_{j}+C=\mu_{j}\left(x_{j}\right)$ for some $j \in I$ and $x_{j} \in M_{j}$.
b. If $\mu_{i}\left(x_{i}\right)=0$ then $\mu_{i l}\left(x_{i}\right)=0$ for some $l \geq i$.

Notice that $x_{i} \in C$ since $\mu_{i}\left(x_{i}\right)=0$. So write

$$
x_{i}=\sum_{j \in I} \sum_{k \geq j}\left(x_{j k}-\mu_{j k}\left(x_{j k}\right)\right)
$$

Where $x_{j k} \in M_{j}$ equals 0 for all but finitely many j, k. We can choose $l \geq i$ so that $x_{j k}=0$ if $j>l$ or $k>l$. I claim that $\mu_{i l}\left(x_{i}\right)=0$. Now we play with indices to get

$$
\begin{aligned}
\mu_{i l}\left(x_{i}\right) & =\left(\left(-x_{i}\right)-\mu_{i l}\left(-x_{i}\right)\right)+x_{i} \\
& =\left(\left(-x_{i}\right)-\mu_{i l}\left(-x_{i}\right)\right)+\sum_{j \leq l} \sum_{j \leq k \leq l}\left(x_{j k}-\mu_{j k}\left(x_{j k}\right)\right) \\
& =\sum_{j \leq l} \sum_{j \leq k \leq l}\left(x_{j k}^{\prime}-\mu_{j k}\left(x_{j k}^{\prime}\right)\right) \\
& =\sum_{j \leq l} \sum_{j \leq k \leq l}\left[\left(x_{j k}^{\prime}-\mu_{j l}\left(x_{j k}^{\prime}\right)\right)+\left(\mu_{j l}\left(x_{j k}^{\prime}\right)-\mu_{j k}\left(x_{j k}^{\prime}\right)\right)\right] \\
& =\sum_{j \leq l} \sum_{j \leq k \leq l}\left[\left(x_{j k}^{\prime}-\mu_{j l}\left(x_{j k}^{\prime}\right)\right)+\left(\mu_{k l}\left(\mu_{j k}\left(x_{j k}^{\prime}\right)\right)-\mu_{j k}\left(x_{j k}^{\prime}\right)\right)\right] \\
& =\sum_{j \leq l} \sum_{j \leq k \leq l}\left(x_{j k}^{\prime \prime}-\mu_{j l}\left(x_{j k}^{\prime \prime}\right)\right) \\
& =\sum_{j \leq l}\left[\left(\sum_{j \leq k \leq l} x_{j k}^{\prime \prime}\right)-\mu_{j l}\left(\sum_{j \leq k \leq l} x_{j k}^{\prime \prime}\right)\right] \\
& =\sum_{j \leq l}\left(x_{j}^{\prime \prime \prime}-\mu_{j l}\left(x_{j}^{\prime \prime \prime}\right)\right) \\
& =\sum_{j<l}\left(x_{j}^{\prime \prime \prime}-\mu_{j l}\left(x_{j}^{\prime \prime \prime}\right)\right)+\left(x_{j}^{\prime \prime \prime}-\mu_{l l}\left(x_{j}^{\prime \prime \prime}\right)\right) \\
& =\sum_{j<l}\left(x_{j}^{\prime \prime \prime}-\mu_{j l}\left(x_{j}^{\prime \prime \prime}\right)\right)
\end{aligned}
$$

since $\mu_{l l}$ is the identity. Since this identity holds in $\bigoplus_{j} M_{j}$, we see that $x_{j}^{\prime \prime \prime}=0$ for all $j<l$. This implies that $\mu_{i l}\left(x_{i}\right)=0$, as desired.
2.16. Suppose that N is an A-module paired with A-module homomorphisms $\alpha_{i}: M_{i} \rightarrow N$, indexed by I, with the property that $\alpha_{i}=\alpha_{j} \circ \mu_{i j}$ whenever $i \leq j$. Define a A-module homomorphism $\phi: \bigoplus_{i \in I} M_{i} \rightarrow N$ by $\phi\left(\sum x_{i}\right)=\sum \alpha_{i}\left(x_{i}\right)$. Notice that $\phi\left(x_{i}-\mu_{i j}\left(x_{i}\right)\right)=\alpha_{i}\left(x_{i}\right)-\alpha_{j}\left(\mu_{i j}\left(x_{i}\right)\right)=0$ for every $j>i$, and of course $\phi\left(x_{i}-\mu_{i i}\left(x_{i}\right)\right)=\phi(0)=0$. So ϕ is identically zero on the submodule generated by $\left\{x_{i}-\mu_{i j}\left(x_{i}\right): j \geq i\right\}$. This means that ϕ induces an A-module homomorphism Φ on $\underset{\longrightarrow}{\lim } M_{i}$ for which $\Phi\left(\sum x_{i}+C\right)=\sum \alpha_{i}\left(x_{i}\right)$. Obviously $\Phi \circ \mu_{i}=\alpha_{i}$ for all $i \in I$. If Φ^{\prime} were a homomorphism on M for which $\Phi^{\prime} \circ \mu_{i}=\alpha_{i}$, then we would have $\Phi^{\prime}\left(\sum x_{i}+C\right)=\sum \Phi^{\prime}\left(\mu_{i}\left(x_{i}\right)\right)=\sum \alpha_{i}\left(x_{i}\right)=\Phi\left(\sum x_{i}=C\right)$, so that $\Phi^{\prime}=\Phi$. Therefore, M has the desired universal mapping property.

Suppose that M is an A-module and $\nu_{i}: M_{i} \rightarrow M$ are A-module homomorphisms for which $\nu_{i}=\nu_{j} \circ$ $\mu_{i j}$ whenever $j \geq i$. Suppose also that whenever N is an A-module and $\alpha_{i}: M_{i} \rightarrow N$ are A-module homomorphisms for which $\alpha_{i}=\alpha_{j} \circ \mu_{i j}$ for every $j \geq i$, then there is a unique A-module homomorphism $\Psi: M \rightarrow N$ such that $\Psi \circ \nu_{i}=\alpha_{i}$ holds for every $i \in I$. It is easy to show that M and $\lim M_{i}$ are isomorphic as A-modules. After all, choose $\Psi: M \rightarrow \underset{\longrightarrow}{\lim } M_{i}$ so that $\Psi \circ \nu_{i}=\mu_{i}$ for every i. Also, choose $\Phi: \underset{\longrightarrow}{\lim } M_{i} \rightarrow M$ so that $\Phi \circ \mu_{i}=\nu_{i}$ for every i. Then $\Phi \circ \Psi: \vec{M} \rightarrow M$ is an A-module homomorphism for which $(\Phi \circ \Psi) \circ \nu_{i}=\nu_{i}$. But i_{M} is another map from M to M with this property. So by uniqueness $\Phi \circ \Psi=i_{M}$. Similarly $\Psi \circ \Phi$ is identity on $\underset{\longrightarrow}{\lim } M_{i}$. Therefore, Φ and Ψ are inverse isomorphisms.
2.17. Let $\left(M_{i}\right)_{i \in I}$ be a family of submodules of an A-module, such that for every i, j there is k for which $M_{i}+M_{j} \subseteq M_{k}$. Define $i \leq j$ if $M_{i} \subseteq M_{j}$, and in this case let $\mu_{i j}$ correspond to inclusion. Notice that I is a directed set under this ordering. So we may speak of $\lim M_{i}$.

Consider the submodule $\bigcup M_{i}$. Let N be an A-module and $\alpha_{i}: M_{i} \rightarrow N$ an A-module homomorphism for which $\alpha_{i}=\alpha_{j} \circ \mu_{i j}$ whenever $i \leq j$. Define $\alpha: \bigcup M_{i} \rightarrow N$ by $\alpha(x)=\alpha_{i}(x)$, where $x \in M_{i}$. If $x \in M_{i}$ and
$x \in M_{j}$ then choose k for which $i \leq k$ and $j \leq k$. Then $\alpha_{k}(x)=\alpha_{i}(x)$ and $\alpha_{k}(x)=\alpha_{j}(x)$ since $\mu_{i k}$ and $\mu_{i j}$ correspond to inclusion. Therefore, α is a well-defined map. It is an A-module homomorphism for which $\alpha \circ \mu_{i}=\alpha_{i}$. It is also the unique A-module homomorphism with this property. Therefore, $\bigcup M_{i}$ is isomorphic with $\xrightarrow{\lim } M_{i}$. It is easy to see that $\bigcup M_{i}=\sum M_{i}$.

Suppose M is an arbitrary A-module. Let \mathcal{F} consist of all finitely generated submodules of M. If M_{1} and M_{2} are finitely generated then so is $M_{1}+M_{2}$. So we can consider the direct limit of the elements of \mathcal{F}. Also, if $x \in M$ then $A x \in \mathcal{F}$. Consequently M equals the union of all the finitely generated submodules of M. The previous paragraph shows that M is isomorphic with the direct limit of its finitely generated submodules.
2.18. Let $\mathbf{M}=\left(M_{i}, \mu_{i j}\right)$ and $\mathbf{N}=\left(N_{i}, \nu_{i j}\right)$ be direct systems of A-modules over the same directed set I. Suppose that $\phi_{i}: M_{i} \rightarrow N_{i}$ are A-module homomorphisms such that $\phi_{j} \circ \mu_{i j}=\nu_{i j} \circ \phi_{i}$ whenever $i \leq j$. Let M and N be the direct limits of \mathbf{M} and \mathbf{N}, with associated homomorphisms μ_{i} and ν_{i}. Define $\alpha_{i}: M_{i} \rightarrow N$ by $\alpha_{i}=\nu_{i} \circ \phi_{i}$. Notice that $\alpha_{j} \circ \mu_{i j}=\nu_{j} \circ \nu_{i j} \circ \phi_{i}=\nu_{i} \circ \phi_{i}=\alpha_{i}$ whenever $i \leq j$. By exercise 17 there is an A-module homomorphism $\phi: M \rightarrow N$ for which $\phi \circ \mu_{i}=\alpha_{i}=\nu_{i} \circ \phi_{i}$ for every i. So ϕ is the desired homomorphism. By exercise 16 we see that Φ is the unique A-module homomorphism with this property.
2.19. The sequence $\mathbf{M} \rightarrow \mathbf{N} \rightarrow \mathbf{P}$ of direct systems over the same directed set I is said to be exact provided that the corresponding sequence of modules and module homomorphisms is exact for every $i \in I$. Let M, N, P be the direct limits of these directed systems and let $\phi: M \rightarrow N$ and $\psi: N \rightarrow P$ be the homomorphisms induced by the homomorphisms of the directed systems. For all $i \leq j$ we have the commutative diagram

Suppose that $x \in M$. Choose j and $x_{j} \in M_{j}$ for which $x=\mu_{j}\left(x_{j}\right)$. Then $\psi(\phi(x))=\psi\left(\phi\left(\mu_{j}\left(x_{j}\right)\right)\right)=$ $\xi_{j}\left(\psi_{j}\left(\phi_{j}\left(x_{j}\right)\right)\right)=\xi_{j}(0)=0$ since $\operatorname{Im}\left(\phi_{j}\right)=\operatorname{Ker}\left(\psi_{j}\right)$. Thus $\operatorname{Im}(\phi) \subseteq \operatorname{Ker}(\psi)$.

Suppose that $\psi(y)=0$ where $y \in N$. Choose i and $y_{i} \in N_{i}$ for which $y=\nu_{i}\left(y_{i}\right)$. Then $0=\psi\left(\nu_{i}\left(x_{i}\right)\right)=$ $\xi_{i}\left(\psi_{i}\left(y_{i}\right)\right)$. But then there is $j \geq i$ for which $\xi_{i j}\left(\psi_{i}\left(y_{i}\right)\right)=0$. Then $\psi_{j}\left(\nu_{i j}\left(y_{i}\right)\right)=0$, implying the existence of $x_{j} \in M_{j}$ for which $\nu_{i j}\left(y_{i}\right)=\phi_{j}\left(x_{j}\right)$. Now notice that $y=\nu_{i}\left(y_{i}\right)=\nu_{j}\left(\nu_{i j}\left(y_{i}\right)\right)=\nu_{j}\left(\phi_{j}\left(x_{j}\right)\right)=\phi\left(\mu_{j}\left(x_{j}\right)\right)$. Thus $\operatorname{Ker}(\psi) \subseteq \operatorname{Im}(\psi)$ and hence $\operatorname{Ker}(\psi)=\operatorname{Im}(\psi)$. We conclude that $M \rightarrow N \rightarrow P$ is an exact sequence.
2.20. Let M be a directed system of A-modules and N an A-module. $\left\{\left(M_{i} \otimes N, \mu_{i j} \otimes 1\right): i \in I\right\}$ is a directed system of A-modules; let P be its direct limit with associated homomorphisms ν_{i}. For each $i \in I$ we have a homomorphism $\mu_{i} \otimes 1: M_{i} \otimes N \rightarrow M \otimes N$. Clearly $\mu_{i} \otimes 1=\left(\mu_{j} \otimes 1\right) \circ\left(\mu_{i j} \otimes 1\right)$. So there is a unique homomorphism $\psi: P \rightarrow M \otimes N$ satisfying $\psi \circ \nu_{i}=\mu_{i} \otimes 1$. Show ψ is an isomorphism.

Assume $(m, n) \in M \times N$ and write $m=\mu_{i}\left(m_{i}\right)$. Define $g(m, n)=\nu_{i}\left(m_{i} \otimes n\right)$. I claim that g is welldefined. So suppose that $\mu_{i}\left(m_{i}\right)=\mu_{j}\left(m_{j}\right)$ with $j \geq i$. Then $\mu_{i}\left(m_{i}\right)=\mu_{j}\left(\mu_{i j}\left(m_{i}\right)\right)$ so that
2.21. Let $\left(A_{i}, \alpha_{i j}\right)$ be a directed system of \mathbb{Z}-modules so that each A_{i} is a ring and each $\alpha_{i j}$ is a ring homomorphism. Show that $A=\lim A_{i}$ inherits a ring structure so that each associated homomorphism α_{i} is a ring homomorphism. In case $A=0$, show that some $A_{i}=0$.

Let ξ and η be elements of A. We can write $\xi=\mu_{i}(x)$ and $\eta=\mu_{j}(y)$. Choose $k \geq i, j$ and notice that $\xi=\mu_{k}\left(\mu_{i k}(x)\right)$ and $\eta=\mu_{k}\left(\mu_{j k}(y)\right)$. Define $\xi * \eta=\mu_{k}\left(\mu_{i k}(x) \mu_{j k}(y)\right)$. I claim that this defines a multiplication
of A that makes A into a ring and each μ_{i} into a ring homomorphism. The hardest part of this is to show that $\xi * \eta$ is actually well-defined. Suppose first that $l \geq i, j$ and $m \geq l, k$. Then

$$
\begin{aligned}
\mu_{k}\left(\mu_{j k}(x) \mu_{i k}(y)\right) & =\mu_{m}\left(\mu_{k m}\left(\mu_{j k}(x) \mu_{j k}(y)\right)\right) \\
& =\mu_{m}\left(\mu_{k m}\left(\mu_{i k}(x)\right) \mu_{k m}\left(\mu_{j k}(y)\right)\right) \\
& =\mu_{m}\left(\mu_{i m}(x) \mu_{j m}(y)\right) \\
& =\mu_{m}\left(\mu_{l m}\left(\mu_{i l}(x)\right) \mu_{l m}\left(\mu_{j l}(y)\right)\right) \\
& =\mu_{m}\left(\mu_{l m}\left(\mu_{j l}(x) \mu_{j l}(y)\right)\right) \\
& =\mu_{l}\left(\mu_{j l}(x) \mu_{i l}(y)\right)
\end{aligned}
$$

This shows that $\xi * \eta$ is independent of k. Now suppose that $\xi=\mu_{i^{\prime}}\left(x^{\prime}\right)$ and $\eta=\mu_{j^{\prime}}\left(y^{\prime}\right)$. Choose $k \geq i, i^{\prime}, j, j^{\prime}$ and observe that

$$
\mu_{k}\left(\mu_{i k}(x)-\mu_{i^{\prime} k}\left(x^{\prime}\right)\right)=0 \quad \text { and } \quad \mu_{k}\left(\mu_{j k}(y)-\mu_{j^{\prime} k}\left(y^{\prime}\right)\right)=0
$$

By exercise 15 part b we can choose $l \geq k$ for which

$$
\mu_{k l}\left(\mu_{i k}(x)-\mu_{i^{\prime} k}\left(x^{\prime}\right)\right)=0 \quad \text { and } \quad \mu_{k l}\left(\mu_{j k}(y)-\mu_{j^{\prime} k}\left(y^{\prime}\right)\right)=0
$$

But this means that $\mu_{i l}(x)=\mu_{i^{\prime} l}\left(x^{\prime}\right)$ and $\mu_{j l}(y)=\mu_{j^{\prime} l}\left(y^{\prime}\right)$. Hence

$$
\mu_{l}\left(\mu_{i l}(x) \mu_{j l}(y)\right)=\mu_{l}\left(\mu_{i^{\prime} l}\left(x^{\prime}\right) \mu_{j^{\prime} l}\left(y^{\prime}\right)\right)
$$

This shows that $\xi * \eta$ is well-defined. It is clear that the multiplication is associative, commutative, and unital. Lastly, multiplication distributes over addition : suppose $i, j, k \leq m$ and notice that

$$
\begin{aligned}
\left(\mu_{i}(x)+\mu_{j}(y)\right) * \mu_{k}(z) & =\left(\mu_{m}\left(\mu_{i m}(x)\right)+\mu_{m}\left(\mu_{j m}(y)\right)\right) * \mu_{k}(z) \\
& =\mu_{m}\left(\mu_{i m}(x)+\mu_{j k}(y)\right) * \mu_{k}(z) \\
& =\mu_{m}\left(\left(\mu_{i m}(x)+\mu_{j k}(y)\right) \mu_{k m}(z)\right) \\
& =\mu_{m}\left(\mu_{i m}(x) \mu_{k m}(z)\right)+\mu_{m}\left(\mu_{j m}(y) \mu_{k m}(z)\right) \\
& =\mu_{i}(x) * \mu_{k}(z)+\mu_{j}(y) * \mu_{k}(z)
\end{aligned}
$$

Further, each μ_{i} is a ring homomorphism since

$$
\mu_{i}(x) * \mu_{i}(y)=\mu_{i}\left(\mu_{i i}(x) \mu_{i i}(y)\right)=\mu_{i}(x y)
$$

So A is indeed a ring and each μ_{i} is a map of rings. Now suppose that $A=0$. Let the zero and identity elements in A_{i} be represented by 0_{i} and 1_{i} respectively. Since $\alpha_{i}\left(1_{i}\right)=0_{A}$, exercise 15 part b tells us that there is $j \geq i$ for which $0_{j}=\alpha_{i j}\left(1_{i}\right)=1_{j}$. This forces $A_{j}=0$.
2.22. Suppose $\left(A_{i}, \alpha_{i j}\right)$ is a directed system of rings and let \mathfrak{N}_{i} be the nilradical of A_{i}. Show that $\xrightarrow{\lim } \mathfrak{N}_{i}$ is the nilradical of $\xrightarrow{\lim } A_{i}$.

Lets work in the general setting for the moment. Assume that $\left(M_{i}, \mu_{i j}\right)$ is a direct system of A-modules, with direct limit M and maps $\mu_{i}: M_{i} \rightarrow M$. Suppose that for each $i \in I$ there is a submodule N_{i} of M_{i}, and that $\mu_{i j}\left(N_{i}\right) \subseteq N_{j}$. Then $\left(N_{i}, \mu_{i j} \mid N_{i}\right)$ is a direct system as well. Let N be the direct limit with maps $\nu_{i}: N_{i} \rightarrow N$. Now we have a commutative diagram

By exercise 16 there is a unique $\alpha: N \rightarrow M$ that makes the diagram commute with ? $=\alpha$. Notice that $\alpha\left(x+C^{\prime}\right)=x+C$ if we construct $N=\bigoplus N_{i} / C^{\prime}$ and $M=\bigoplus N_{i} / C$ as in exercise 14 . This means that there is a natural way of considering N as a submodule of M. Now lets return to the specific case given in the problem statement. It is clear that $\mathfrak{N}\left(M_{i}\right)$ is a \mathbb{Z}-submodule of A_{i} and that $\mu_{i j}\left(\mathfrak{N}\left(A_{i}\right)\right) \subseteq \mathfrak{N}\left(A_{j}\right)$ for $i \leq j$ since $\mu_{i j}$ is a ring homomorphism. Write

$$
N=\underset{\longrightarrow}{\lim } \mathfrak{N}\left(A_{i}\right)=\bigoplus \mathfrak{N}\left(A_{i}\right) / C^{\prime} \quad \text { and } \quad A=\underset{\longrightarrow}{\lim } A_{i}=\bigoplus A_{i} / C
$$

as in exercise 14. Let $\nu_{i}: \mathfrak{N}\left(A_{i}\right) \rightarrow N$ and $\mu_{i}: A_{i} \rightarrow A$ be the natural maps and let $\alpha: N \rightarrow A$ as above. Giving N the obvious ring structure I claim that α is a ring homomorphism and that $\mathfrak{N}(A)=\alpha(N)$. So suppose that $\nu_{i}(x), \nu_{j}(y) \in N$ and that $k \geq i, j$. Then

$$
\begin{aligned}
\alpha\left(\nu_{i}(x)\right) * \alpha\left(\nu_{j}(y)\right) & =\mu_{i}(x) * \mu_{j}(y) \\
& =\mu_{k}\left(\mu_{i k}(x) \mu_{j k}(y)\right) \\
& =\alpha\left(\nu_{k}\left(\mu_{i k}(x) \mu_{j k}(y)\right)\right) \\
& =\alpha\left(\nu_{k}\left(\nu_{i k}(x) \nu_{j k}(y)\right)\right) \\
& =\alpha\left(\nu_{i}(x) * \nu_{j}(y)\right)
\end{aligned}
$$

Consequently, α is a ring homomorphism. Now every element of N is of the form $\nu_{i}(x)$ for some $x \in N_{i}$. So every element of N is nilpotent (since every element of N_{i} is nilpotent by definition). Since α is a ring homomorphism we conclude that $\alpha(N) \subseteq A$. On the other hand suppose that $\mu_{i}(x) \in \mathfrak{N}(A)$. Then $\mu_{i}(x)^{n}=0$ for some $n>0$, so that $\mu_{i}\left(x^{n}\right)=0$. There is some $j \geq i$ satisfying $\mu_{i j}\left(x^{n}\right)=0$; implying that $\mu_{i j}(x) \in N_{j}$. This means that $\mu_{i}(x)=\mu_{j}\left(\mu_{i j}(x)\right)=\alpha\left(\nu_{j}\left(\mu_{i j}(x)\right)\right) \in \alpha(N)$. Thus, $\alpha(N)=\mathfrak{N}(A)$ as claimed. This has can be written more suggestively as

$$
\underline{\longrightarrow} \lim _{i}=\mathfrak{N}\left(\underline{\longrightarrow} A_{i}\right)
$$

2.23. Let B_{λ} be a collection of A-algebras for $\lambda \in \Lambda$. When J is a finite subset of Λ, let B_{J} denote the tensor product of the B_{λ} for $\lambda \in J$. Then B_{J} is an A-algebra and if $J \subset J^{\prime}$ are finite sets, then there is a canonical map $B_{J} \rightarrow B_{J^{\prime}}$. Let B denote the direct limit of the B_{J} as J ranges over the finite subsets of Λ. Show that B has an A-algebra structure for which the maps $B_{J} \rightarrow B$ are A-algebra homomorphisms.

Suppose J is a finite subset with n elements $\lambda_{1}, \ldots, \lambda_{n}$. Then the A-algebra structure of A on $B_{J}=\bigotimes_{A} B_{\lambda_{i}}$ is given by

$$
a \cdot\left(b_{1} \otimes \cdots \otimes b_{n}\right)=a \cdot b_{1} \otimes b_{2} \otimes \cdots \otimes b_{n}
$$

If $J \subset J^{\prime}$ are finite, then let $\mu_{J J^{\prime}}: B_{J} \rightarrow B_{J^{\prime}}$ be the obvious inclusion map. Notice that $\{J \subset \Lambda: J$ is finite $\}$ is a directed set under inclusion, and that $\mu_{J J^{\prime \prime}}=\mu_{J^{\prime} J^{\prime \prime}} \circ \mu_{J J^{\prime}}$ whenever $J \subset J^{\prime} \subset J^{\prime \prime}$. Clearly $\mu_{J J}=\mathrm{id}$. This means that we can define the direct limit B and the maps $\mu_{J}: B_{J} \rightarrow B$. Moreover, B has a natural ring structure so that each μ_{J} is a ring homomorphism. Now suppose that $f_{\lambda}: A \rightarrow B_{\lambda}$ gives the A-algebra
structure of B_{λ}. Define $f: A \rightarrow B$ by $f=\mu_{\lambda} \circ f_{\lambda}$ for any $\lambda \in \Lambda$. This is well-defined: let $J_{1}=\left\{\lambda_{1}\right\}, J_{2}=\left\{\lambda_{2}\right\}$, and $J=\left\{\lambda_{1}, \lambda_{2}\right\}$. Then

$$
\begin{aligned}
\mu_{J_{1}}\left(f_{\lambda_{1}}(a)\right) & =\mu_{J}\left(\mu_{J_{1} J}\right)\left(f_{\lambda_{1}}(a)\right) \\
& =\mu_{J}\left(f_{\lambda_{1}}(a) \otimes 1\right) \\
& =\mu_{J}\left(1 \otimes f_{\lambda_{2}}(a)\right) \\
& =\mu_{J}\left(\mu_{J_{2} J}\left(f_{\lambda_{2}}(a)\right)\right) \\
& =\mu_{J_{2}}\left(f_{\lambda_{2}}(a)\right)
\end{aligned}
$$

So B has a natural A-algebra structure. Lastly, each μ_{i} is a map of A-algebras since we have (for each λ) the commutative diagram

2.24. Let M an A-module and show that TFAE
a. M is flat.
b. $\operatorname{Tor}_{n}^{A}(M, N)=0$ for every A-module N and every $n>0$.
c. $\operatorname{Tor}_{1}^{A}(M, N)=0$ for every A-module N.
$(a \Rightarrow b)$ Take a projective resolution $P \xrightarrow{\varepsilon} N$ of N. Since M is flat, $P \otimes_{A} M$ is exact in degree n, for $n>0$. But $\operatorname{Tor}_{n}^{A}(M, N)$ is defined as the nth homology group of $P \otimes_{A} M$, so that $\operatorname{Tor}_{n}^{A}(M, N)=0$ for $n>0$.
$(b \Rightarrow c)$ O.K.
$(c \Rightarrow a)$ Assume that we have an exact sequence

$$
0 \longrightarrow N^{\prime} \longrightarrow N \longrightarrow N^{\prime \prime} \longrightarrow 0
$$

Then we have the exact sequence

$$
\operatorname{Tor}_{1}^{A}\left(M, N^{\prime \prime}\right) \longrightarrow M \otimes N^{\prime} \longrightarrow M \otimes N \longrightarrow M \otimes N^{\prime \prime} \longrightarrow 0
$$

But $\operatorname{Tor}_{1}^{A}\left(M, N^{\prime \prime}\right)=0$ so that we have the exact sequence

$$
0 \longrightarrow M \otimes N^{\prime} \longrightarrow M \otimes N \longrightarrow M \otimes N^{\prime \prime} \longrightarrow 0
$$

This shows that M is a flat A-module.
2.25. Suppose we have an exact sequence of A-modules

$$
0 \longrightarrow N^{\prime} \longrightarrow N \longrightarrow N^{\prime \prime} \longrightarrow 0
$$

with $N^{\prime \prime}$ flat. Show that N^{\prime} is flat iff N is flat.

Let M be an A-module. Since $N^{\prime \prime}$ is flat, we can take a projective resolution of M, and argue as above to get

$$
\operatorname{Tor}_{2}^{A}\left(M, N^{\prime \prime}\right)=\operatorname{Tor}_{1}^{A}\left(M, N^{\prime \prime}\right)=0
$$

So we have the short exact sequence

$$
0 \longrightarrow \operatorname{Tor}_{1}^{A}\left(M, N^{\prime}\right) \longrightarrow \operatorname{Tor}_{1}^{A}(M, N) \longrightarrow 0
$$

Now $\operatorname{Tor}_{1}^{A}\left(M, N^{\prime}\right)=0$ if and only if $\operatorname{Tor}_{1}^{A}(M, N)=0$. Since this holds for every A-module M, we are done. I have used here the fact that in computing Tor we can take a projective resolution in either variable. This seemed like a reasonably elementary fact to assume.
2.26. Let N be an A-module. Show that N is flat if and only if $\operatorname{Tor}_{1}^{A}(A / \mathfrak{a}, N)=0$ whenever \mathfrak{a} is a finitely generated ideal in A.

We already know that $\operatorname{Tor}_{1}(A / \mathfrak{a}, N)=0$ when N is flat. We prove the converse through a series of reductions. So suppose that $\operatorname{Tor}_{1}(M, N)=0$ whenever M is a finitely generated A-module. Let $f: M^{\prime} \rightarrow M$ be injective with M and M^{\prime} finitely generated A-modules. Then we have the short exact sequence

$$
0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{\pi} M / f\left(M^{\prime}\right) \longrightarrow 0
$$

So we have the exact sequence

$$
\operatorname{Tor}_{1}\left(M / f\left(M^{\prime}\right), N\right) \longrightarrow M^{\prime} \otimes_{A} N \xrightarrow{f \otimes \mathrm{id}} M \otimes_{A} N
$$

But $M / f\left(M^{\prime}\right)$ is finitely generated so that $\operatorname{Tor}_{1}\left(M / f\left(M^{\prime}\right), N\right)=0$. This means that $f \otimes$ id is injective. Proposition 2.19 now tells us that N is flat. Now suppose that $\operatorname{Tor}_{1}(M, N)=0$ whenever M is generated by a single element, and let M be an arbitrary finitely generated A-module. Assume x_{1}, \ldots, x_{n} generate M and let M^{\prime} be the submodule of M generated by x_{1}, \ldots, x_{n-1}. We have the short exact sequence

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M / M^{\prime} \longrightarrow 0
$$

This yields the exact sequence

$$
\operatorname{Tor}_{1}\left(M^{\prime}, N\right) \longrightarrow \operatorname{Tor}_{1}(M, N) \longrightarrow \operatorname{Tor}_{1}\left(M / M^{\prime}, N\right)
$$

But M / M^{\prime} is generated by a single element so that $\operatorname{Tor}_{1}\left(M / M^{\prime}, N\right)=0$. By induction on n we see that $\operatorname{Tor}_{1}\left(M^{\prime}, N\right)=0$. Hence $\operatorname{Tor}_{1}(M, N)=0$. Now assume that $\operatorname{Tor}_{1}(A / \mathfrak{a}, N)=0$ whenever \mathfrak{a} is any ideal in A. If M is an A-module generated by the element x, then M and $A / \operatorname{Ann}(x)$ are isomorphic, so that $\operatorname{Tor}_{1}(M, N)=\operatorname{Tor}_{1}(A / \operatorname{Ann}(x), N)=0$. Now suppose that $\operatorname{Tor}_{1}(A / \mathfrak{a}, N)=0$ whenever \mathfrak{a} is a finitely generated ideal in A. Let \mathfrak{b} be an arbitrary ideal in A. If \mathfrak{a} is a finitely generated ideal of A contained in \mathfrak{b}, then we have the short exact sequence

$$
0 \longrightarrow \mathfrak{a} \longrightarrow A \longrightarrow A / \mathfrak{a} \longrightarrow 0
$$

From this we get the long exact sequence

$$
\operatorname{Tor}_{1}(A / \mathfrak{a}, N) \longrightarrow \mathfrak{a} \otimes_{A} N \longrightarrow A \otimes_{A} N \longrightarrow A / \mathfrak{a} \otimes_{A} N \longrightarrow 0
$$

Since $\operatorname{Tor}_{1}(A / \mathfrak{a}, N)=0$, we conclude that the map $\mathfrak{a} \otimes_{A} N \rightarrow A \otimes_{A} N$ is injective. Analysing the proof to Proposition 2.19, we see that more is proved than is stated. In particular, it is demonstrated that $\mathfrak{b} \otimes_{A} N \rightarrow$ $A \otimes_{A} N$ is injective since $\mathfrak{a} \otimes_{A} N \rightarrow A \otimes_{A} N$ is injective for every finitely generated ideal \mathfrak{a} contained in \mathfrak{b}. So from the short exact sequence

$$
0 \longrightarrow \mathfrak{b} \longrightarrow A \longrightarrow A / \mathfrak{b} \longrightarrow 0
$$

we get the long exact sequence

$$
\operatorname{Tor}_{1}(A, N) \longrightarrow \operatorname{Tor}_{1}(A / \mathfrak{b}, N) \longrightarrow \mathfrak{b} \otimes_{A} N \longrightarrow A \otimes_{A} N \longrightarrow A / \mathfrak{b} \otimes_{A} N \longrightarrow 0
$$

with $\operatorname{Tor}_{1}(A, N)=0$ since $A=A / 0$ with 0 a finitely generated ideal, and the map $\mathfrak{b} \otimes_{A} N \rightarrow A \otimes_{A} N$ injective. These two observations imply that $\operatorname{Tor}_{1}(A / \mathfrak{b}, N)=0$. Summarizing, we have shown that N is flat provided $\operatorname{Tor}_{1}(A / \mathfrak{a}, N)=0$ whenever \mathfrak{a} is a finitely generated ideal in A.
2.27. Show that the following conditions are equivalent for a ring A
a. A is absolutely flat (i.e. every A-module is flat).
b. Every principal ideal in A is idempotent.
c. Every finitely generated ideal in A is a direct summand of A.
$(a \Rightarrow b)$ Let (x) be a principal ideal in A so that $A /(x)$ is a flat A-module. Then from the inclusion $(x) \rightarrow A$ we get an inclusion $(x) \otimes_{A} A /(x) \rightarrow A \otimes_{A} A /(x)$. But this map is the zero map since $x \otimes \overline{1} \mapsto x \otimes \overline{1}=1 \otimes x \cdot \overline{1}=0$. Hence $(x) \otimes_{A} A /(x)=0$, so that $(x) /\left(x^{2}\right) \cong A /(x) \otimes_{A}(x)=0$ by exercise 2.2. This shows that $(x)=\left(x^{2}\right)=(x)^{2}$, as desired.
$(b \Rightarrow c)$ Let \mathfrak{a} be a finitely generated ideal in A and write $\mathfrak{a}=\left(x_{1}, \ldots, x_{n}\right)$. For each i there is $a_{i} \in A$ for which $x_{i}=a_{i} x_{i}^{2}$. But then $e_{i}=a_{i} x_{i}$ satisfies $e_{i}^{2}=a_{i}\left(a_{i} x_{i}^{2}\right)=a_{i} x_{i}=e_{i}$. That is, each e_{i} is idempotent and $\left(e_{i}\right)=\left(x_{i}\right)$. Now $\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}\right)+\cdots+\left(x_{n}\right)=\left(e_{1}\right)+\cdots+\left(e_{n}\right)=\left(e_{1}, \ldots, e_{n}\right)$. In general, if e and f are idempotent elements then $(e+f-e f) \subseteq(e, f)$, and also $(e, f) \subseteq(e+f-e f)$ since $e=e(e+f-e f)$ and $f=f(e+f-e f)$. Hence, $(e, f)=(e+f-e f)$. By induction on n there is an idempotent element e^{*} for which $\left(e_{1}, \ldots, e_{n}\right)=\left(e^{*}\right)$. Finally, $A=\left(e^{*}\right)+\left(1-e^{*}\right)$ for every idempotent element e^{*}, as was shown in exercise 1.22, or as can be seen directly.
$(c \Rightarrow a)$ Let M be an A-module and suppose \mathfrak{a} is a finitely generated ideal of A. Choose an ideal \mathfrak{b} of A so that $A=\mathfrak{a} \oplus \mathfrak{b}$. Then in particular \mathfrak{b} is a projective A-module. Thus $\operatorname{Tor}_{1}^{A}(A / \mathfrak{a}, M)=\operatorname{Tor}_{1}^{A}(\mathfrak{b}, M)=0$. So M is flat by exercise 1.26 . Hence, A is an absolutely flat ring.

2.28. Establish the following.

Every Boolean ring A is absolutely flat.

If (x) is a principal ideal in A, then $(x)^{2}=\left(x^{2}\right)=(x)$ since $x^{2}=x$. So A is absolutely flat by exercise 1.27.

The ring A is absolutely flat if, for every $x \in A$, there is $n>1$ for which $x^{n}=x$.
Let (x) be an arbitrary principal ideal in A. Write $x^{n}=x$ for some $n>1$. Then $\left(x^{n}\right)=(x)$. But $\left(x^{n}\right) \subseteq\left(x^{2}\right) \subseteq(x)$ since $n \geq 2$. We conclude that $(x)=\left(x^{2}\right)=(x)^{2}$ so that A is absolutely flat.

If A is absolutely flat and $f: A \rightarrow B$ is surjective, then B is absolutely flat.
A principal ideal of B has the form $(f(a))$ for some $a \in A$. Clearly $(f(a))^{2} \subseteq(f(a))$. On the other hand, if $b f(a)$ is an arbitrary element of $(f(a))$ and choose $\tilde{a} \in A$ satisfying $a=\tilde{a} a^{2}$. Such an \tilde{a} exists since $\left(a^{2}\right)=(a)$. Then $b f(a)=b f(\tilde{a}) f(a)^{2} \in(f(a))^{2}$. Hence, $(f(a))=(f(a))^{2}$ so that B is absolutely flat.

If a local ring A is absolutely flat, then A is a field.
Since A is absolutely flat, every principal ideal is generated by an idempotent element, as demonstrated in the course of establishing exercise 2.27 . But in a nonzero local ring, there are precisely two idempotents, namely 0 and 1 . So the only principal ideals in A are 0 and A, implying that A is a field.

If A is an absolutely flat ring and $x \in A$, then x is a zero-divisor or x is a unit.
Choose $a \in A$ for which $x=a x^{2}$. Then $x(a x-1)=0$. If $a x-1=0$, then x is a unit. Otherwise, $a x-1 \neq 0$, and hence x is a zero-divisor.

Chapter 3 : Rings and Modules of Fractions

3.1. Let M be a finitely generated A-module and S a multiplicatively closed subset of A. Show that $S^{-1} M=0$ iff $s M=0$ for some s.

Suppose x_{1}, \ldots, x_{n} generate M. If $S^{-1} M=0$ then $s_{i} x_{i}=0$ for some $s_{i} \in S$. Defining $s=s_{1} \cdots s_{n}$ yields an element $s \in S$ such that $s x_{i}=0$ for each i, and hence $s M=0$. The converse is obvious.
3.2. Let \mathfrak{a} be an ideal in A and let $S=1+\mathfrak{a}$. Show that $S^{-1} \mathfrak{a} \subseteq \mathfrak{R}\left(S^{-1} A\right)$.

Clearly S is a multiplicatively closed subset of A since

$$
(1+a)\left(1+a^{\prime}\right)=1+\left(a+a^{\prime}+a a^{\prime}\right) \in 1+\mathfrak{a}
$$

We also have $S^{-1} \mathfrak{a} \subseteq \mathfrak{R}\left(S^{-1} A\right)$ since

$$
1-\frac{a_{1}}{1+a_{2}} \cdot \frac{x}{1+a_{3}}=\frac{1+a_{2}+a_{3}+a_{2} a_{3}-a_{1} x}{\left(1+a_{2}\right)\left(1+a_{3}\right)}=\frac{1+a_{4}}{\left(1+a_{2}\right)\left(1+a_{3}\right)}
$$

is a unit in $S^{-1} A$ for all $a_{1}, a_{2}, a_{3} \in \mathfrak{a}$ and $x \in A$.

Use this result and Nakayama's Lemma to give a different proof of Proposition 2.5

Now suppose that M is a finitely generated A-module for which $\mathfrak{a} M=M$ with $\mathfrak{a} \subseteq \mathfrak{R}(A)$. Then $\left(S^{-1} \mathfrak{a}\right)\left(S^{-1} M\right)=$ $S^{-1} M$ where again $S=1+\mathfrak{a}$. After all, given $m / s \in S^{-1} M$ there is $a \in \mathfrak{a}$ and $m^{\prime} \in M$ for which $a m^{\prime}=m$, implying that $(a / 1)\left(m^{\prime} / s\right)=m / s$, and hence showing that $S^{-1} M \subseteq\left(S^{-1} \mathfrak{a}\right)\left(S^{-1} M\right)$. Since $S^{-1} \mathfrak{a} \subseteq \mathfrak{R}\left(S^{-1} A\right)$ and since $S^{-1} M$ is a finitely generated $S^{-1} A$-module, Nakayama's Lemma yields $S^{-1} M=0$. By exercise 3.1 there is $a \in \mathfrak{a}$ satisfying $(1+a) M=0$.
3.3. Let A be a ring with multiplicatively closed subsets S and T. Define U to be the image of T in $S^{-1} A$. Show that $(S T)^{-1} A$ and $U^{-1}\left(S^{-1} A\right)$ are isomorphic rings.

Notice that $S T$ is a multiplicatively closed subset of A. Now we apply the universal mapping property for the ring of fractions three times.

Define a map from A to $(S T)^{-1} A$ by $a \mapsto a / 1$. Since this is a homomorphism and since the image $s / 1$ of s in S has the inverse $1 / s$, we conclude that there is a homomorphism from $S^{-1} A$ to $(S T)^{-1} A$ sending a / s to a / s. But this map sends t / s to t / s, which has inverse s / t in $(S T)^{-1} A$. So there is a homomorphism $F: U^{-1}\left(S^{-1} A\right) \rightarrow(S T)^{-1} A$ satisfying $F\left((a / s) /\left(t / s^{\prime}\right)\right)=a s^{\prime} / s t$.

Similarly, the map from A into $U^{-1}\left(S^{-1} A\right)$ given by $a \mapsto(a / 1) /(1 / 1)$ is such that the image $(s t / 1) /(1 / 1)$ of st has inverse $(1 / s) /(t / 1)$. So there is a homomorphism $G:(S T)^{-1} A \rightarrow U^{-1}\left(S^{-1} A\right)$ satisfying $G(a / s t)=$ $(a / s) /(t / 1)$.

It is straightforward to check that $F \circ G$ is the identity map for $(S T)^{-1} A$ and that $G \circ F$ is the identity map for $U^{-1}\left(S^{-1} A\right)$. So F and G are isomorphisms, and hence $U^{-1}\left(S^{-1} A\right)$ and $(S T)^{-1} A$ are isomorphic rings.
3.4. Let $f: A \rightarrow B$ be a ring homomorphism, suppose that S is a multiplicatively closed subset of A, and define $T=f(S)$. Show that $S^{-1} B$ and $T^{-1} B$ are isomorphic as $S^{-1} A$-modules.

First, it is clear that T is a multiplicatively closed subset of B since $1=f(1)$ and $f(s) f\left(s^{\prime}\right)=f\left(s s^{\prime}\right)$. We make $T^{-1} B$ into an $S^{-1} A$-module by defining $a / s \cdot b / f\left(s^{\prime}\right)=f(a) b / f(s) f\left(s^{\prime}\right)$. Now define $\Phi: S^{-1} B \rightarrow T^{-1} B$
by $\Phi(b / s)=b / f(s)$. I claim that Φ is an isomorphism. First, suppose that $b / s=b^{\prime} / s^{\prime}$ in $S^{-1} B$. Then for some $s^{\prime \prime} \in S$ we have

$$
0=s^{\prime \prime} \cdot\left(s^{\prime} \cdot b-s \cdot b^{\prime}\right)=f\left(s^{\prime \prime}\right)\left(f\left(s^{\prime}\right) b-f(s) b^{\prime}\right)
$$

so that $b / f(s)=b^{\prime} / f\left(s^{\prime}\right)$ in $T^{-1} B$. Hence, Φ is well-defined. Notice that

$$
\begin{aligned}
\Phi\left(b / s+b^{\prime} / s^{\prime}\right) & =\Phi\left(\left(s^{\prime} \cdot b+s \cdot b^{\prime}\right) / s s^{\prime}\right) \\
& =\Phi\left(\left(f\left(s^{\prime}\right) b+f(s) b^{\prime}\right) / s s^{\prime}\right) \\
& =\left(f\left(s^{\prime}\right) b+f(s) b^{\prime}\right) / f\left(s s^{\prime}\right) \\
& =\left(f\left(s^{\prime}\right) b+f(s) b^{\prime}\right) / f(s) f\left(s^{\prime}\right) \\
& =b / f(s)+b^{\prime} / f\left(s^{\prime}\right) \\
& =\Phi(b / s)+\Phi\left(b^{\prime} / s^{\prime}\right)
\end{aligned}
$$

We also have the relation

$$
\Phi\left(a / s \cdot b / s^{\prime}\right)=\Phi\left(f(a) b / s s^{\prime}\right)=f(a) b / f\left(s s^{\prime}\right)=f(a) b / f(s) f\left(s^{\prime}\right)=a / s \cdot b / f\left(s^{\prime}\right)=a / s \cdot \Phi\left(b / s^{\prime}\right)
$$

So Φ is a homomorphism of $S^{-1} A$-modules. Clearly Φ is surjective. Now if $\Phi(b / s)=\Phi\left(b^{\prime} / s^{\prime}\right)$ then for some $t \in T$ we have

$$
t\left(f\left(s^{\prime}\right) b-f(s) b^{\prime}\right)=0
$$

Choose $s^{\prime \prime} \in S$ satisfying $t=f\left(s^{\prime \prime}\right)$. Then

$$
s^{\prime \prime} \cdot\left(s^{\prime} \cdot b-s \cdot b^{\prime}\right)=0
$$

This means that $b / s=b^{\prime} / s^{\prime}$ in $S^{-1} A$. So Φ is injective as well. Thus, Φ is an isomorphism of $S^{-1} A$-modules, as claimed.
3.5. Suppose that for each prime ideal \mathfrak{p}, the ring $A_{\mathfrak{p}}$ has no nilpotent element $\neq 0$. Show that A has no nilpotent element $\neq 0$.

For every prime ideal \mathfrak{p} we have $\mathfrak{N}(A)_{\mathfrak{p}}=\mathfrak{N}\left(A_{\mathfrak{p}}\right)=0$, so that $\mathfrak{N}(A)=0$.

Must A be an integral domain if $A_{\mathfrak{p}}$ is an integral domain for every prime ideal \mathfrak{p} ?

Let $A=k \times k$ where k is an field. Obviously A is not an integral domain. From exercise 1.23 we know that $\mathfrak{p}=0 \times k$ and $\mathfrak{q}=k \times 0$ are the prime ideals of A. Since $(1,0) \in A-\mathfrak{p}$ and $(1,0) \mathfrak{p}=0$ we see that $\mathfrak{p}_{\mathfrak{p}}=0$. But $\mathfrak{p}_{\mathfrak{p}}$ is a prime ideal in $A_{\mathfrak{p}}$, so that $A_{\mathfrak{p}}$ is an integral domain. Similarly, $A_{\mathfrak{q}}$ is an integral domain as well. Thus, the property of being an integral domain is not a local property.
3.6. Let A be a nonzero ring and let Σ be the set of all multiplicatively closed subsets S of A for which $0 \notin S$. Show that Σ has maximal elements and that $S \in \Sigma$ is maximal if and only if $A-S$ is a minimal prime ideal of A.

That Σ has maximal elements follows from a straightforward application of Zorn's Lemma since Σ is chain complete. Now suppose that $S \in \Sigma$ is maximal. Since $0 \notin S$ we know that $1 / 1 \neq 0 / 1$ in $S^{-1} A$. So $S^{-1} A$ is a nonzero ring, and hence has a maximal ideal, which is of course a prime ideal. But this prime ideal corresponds to a prime ideal \mathfrak{p} in A that does not meet S. In other words, there is \mathfrak{p} for which $S \subseteq A-\mathfrak{p}$. But $A-\mathfrak{p}$ is in Σ, so that $S=A-\mathfrak{p}$ by maximality. Further, if $\mathfrak{q} \subseteq \mathfrak{p}$ is a prime ideal, then $A-\mathfrak{p} \subseteq A-\mathfrak{q}$ and $A-\mathfrak{q}$
is in Σ, so that $S=A-\mathfrak{q}$ again by maximality. This means that $\mathfrak{p}=\mathfrak{q}$, so that \mathfrak{p} is a minimal prime ideal in A.

On the other hand, if \mathfrak{p} is a minimal prime ideal in A, then $S=A-\mathfrak{p}$ is an element of Σ. Choose a maximal $S^{\prime} \in \Sigma$ for which $S \subseteq S^{\prime}$. By the above $A-S^{\prime}$ is a minimal prime ideal in A. But $A-S^{\prime} \subseteq \mathfrak{p}$, implying that $A-S^{\prime}=\mathfrak{p}$, since \mathfrak{p} is minimal. So $S=S^{\prime}$, showing that $A-\mathfrak{p}$ is a maximal element of Σ whenever \mathfrak{p} is a minimal prime ideal in A.
3.7. A multiplicatively closed subset S in A is called saturated if x and y are in S whenever $x y$ is in S. Prove the following.
a. S is saturated iff $A-S$ is a union of prime ideals of A.

Suppose that $A-S=\bigcup \mathfrak{p}$ is a union of prime ideals of A. If $x y \notin S$ then $x y$ is in some \mathfrak{p}, implying that $x \in \mathfrak{p}$ or $y \in \mathfrak{p}$, so that $x \notin S$ or $y \notin S$. If $x \notin S$ or $y \notin S$, then $x y \notin S$ since $A-S$ is a union of ideals. So S is a saturated multiplicatively closed subset of A.

Now suppose S is a saturated multiplicatively closed subset of A. It suffices to show that every $x \in A-S$ is contained in a prime ideal that does not intersect S. If $x \in A-S$, then $(x) \cap S=\emptyset$ since S is saturated. But then $(x)^{e} \neq(1)$ in $S^{-1} A$, so that $x / 1$ is not a unit in $S^{-1} A$ and $S^{-1} A \neq 0$. So there is a maximal ideal \mathfrak{m} in $S^{-1} A$ containing $x / 1$. We can choose a prime ideal \mathfrak{p} that does not meet S and is such that $\mathfrak{p}^{e}=\mathfrak{m}$. Then $x \in \mathfrak{p}$ since $\mathfrak{p}=\mathfrak{m}^{c}$. So $A-S$ is indeed a union of prime ideals.
b. If S is any multiplicatively closed subset of A then there is a unique smallest saturated multiplicatively closed subset S^{*} of A containing $S . S^{*}$ is the complement in A of the union of the prime ideals in A that do not intersect S.

Let Σ consist of all saturated multiplicatively closed subsets of A containing S. Then $\Sigma \neq \emptyset$ since $A \in \Sigma$. Let $S^{*}=\bigcap_{S^{\prime} \in \Sigma} S^{\prime}$, and notice that S^{*} is the desired set. We can choose prime ideals $\mathfrak{p}_{\alpha, S^{\prime}}$ so that $A-S^{\prime}=\bigcup \mathfrak{p}_{\alpha, S^{\prime}}$ for each $S^{\prime} \in \Sigma$. Then $S^{*}=A-\bigcup_{S^{\prime} \in \Sigma} \bigcup \mathfrak{p}_{\alpha, S^{\prime}}$. So clearly each $\mathfrak{p}_{\alpha, S^{\prime}}$ has empty intersection with S. Further, if \mathfrak{p} is a prime ideal that does not meet S, then $A-\mathfrak{p} \in \Sigma$, so that $\mathfrak{p} \subseteq A-S^{*}$. Hence, S^{*} is the complement in A of the prime ideals that do not intersect S.
c. Find S^{*} if $S=1+\mathfrak{a}$ for some ideal \mathfrak{a}.

If \mathfrak{p} meets S then $1+a \in \mathfrak{p}$ for some $a \in \mathfrak{a}$, and hence $1 \in \mathfrak{p}+\mathfrak{a}$. Conversely, if $1 \in \mathfrak{p}+\mathfrak{a}$ then \mathfrak{p} meets S. Therefore $S^{*}=A-\bigcup_{\mathfrak{p}: 1 \notin \mathfrak{p}+\mathfrak{a}} \mathfrak{p}$. If \mathfrak{m} is a maximal ideal containing \mathfrak{a}, then \mathfrak{m} is a prime ideal satisfying $1 \notin \mathfrak{m}+\mathfrak{a}$. Conversely, if \mathfrak{p} is a prime ideal satisfying $1 \notin \mathfrak{p}+\mathfrak{a}$, then there is a maximal (and hence prime) ideal \mathfrak{m} containing $\mathfrak{p}+\mathfrak{a}$, so that $1 \notin \mathfrak{m}+\mathfrak{a}$. These two observations give us $S^{*}=A-\bigcup_{\mathfrak{m} \supseteq \mathfrak{a}} \mathfrak{m}$.
3.8. Let S and T be multiplicatively closed subsets of A such that $S \subseteq T$. Let $\phi: S^{-1} A \rightarrow T^{-1} A$ be the obvious inclusion. Show that the following conditions are equivalent.
a. ϕ is bijective
b. For each $t \in T$ the element $t / 1$ is a unit in $S^{-1} A$.
c. For each $t \in T$ there is $x \in A$ for which $x t \in S$.
d. T is contained in the saturation of S.
e. Every prime ideal which meets T also meets S.

Notice that the map $a \mapsto a / 1$ from A to $T^{-1} A$ is a homomorphism such that the image $s / 1$ of $s \in S$ has inverse $1 / s$ (since $s \in T$). Thus, there is a unique homomorphism $\phi: S^{-1} A \rightarrow T^{-1} A$ for which $\phi(a / s)=a / s$ whenever $a \in A$ and $s \in S$.
($\mathrm{a} \Rightarrow \mathrm{b}$) As always, $t / 1$ is a unit in $T^{-1} A$. So if ϕ is bijective, then ϕ is a ring isomorphism, so that $t / 1=\phi^{-1}(t / 1)$ is a unit in $S^{-1} A$.
$(\mathrm{b} \Rightarrow \mathrm{c})$ Choose $a \in A$ and $s \in S$ so that $t / 1 \cdot a / s=1 / 1$. Then $s^{\prime}(a t-s)=0$ for some $s^{\prime} \in S$. But then $\left(a s^{\prime}\right) t=s s^{\prime} \in S$.
$(\mathrm{c} \Rightarrow \mathrm{d})$ For $t \in T$ choose $x \in A$ so that $x t \in S \subseteq S^{*}$. Then $x \in S^{*}$ and $t \in S^{*}$, and hence $T \subseteq S^{*}$.
$(\mathrm{d} \Rightarrow \mathrm{e})$ If \mathfrak{p} is a prime ideal in A that does not meet S, then \mathfrak{p} does not meet S^{*} by exercise 3.7. Therefore, \mathfrak{p} does not meet T. So every prime ideal in A that meets T also meets S.
($\mathrm{e} \Rightarrow \mathrm{c}$) If b does not hold then $(t) \cap S=\emptyset$ for some $t \in T$. But then there is a prime ideal \mathfrak{p} containing (t) such that $\mathfrak{p} \cap S=\emptyset$. Since $t \in \mathfrak{p} \cap T$ we see that e does not hold.
($\mathrm{c} \Rightarrow \mathrm{b}$) Let $t \in T$ and choose $x \in A$ satisfying $x t \in S$. Then $t / 1$ has inverse $x / x t$ in $S^{-1} A$.
$(\mathrm{b} \Rightarrow \mathrm{a})$ Suppose that $\phi(a / s)=\phi\left(a^{\prime} / s^{\prime}\right)$ in $T^{-1} A$ so that $t\left(a s^{\prime}-a^{\prime} s\right)=0$ for some $t \in T$. Choose $x \in A$ for which $x t \in S$. Then $(x t)\left(a s^{\prime}-a^{\prime} s\right)=0$, so that $a / s=a^{\prime} / s^{\prime}$ in $S^{-1} A$. In other words, ϕ is injective. Now let $t \in T$ and choose $a \in A$ and $s \in S$ for which $t / 1 \cdot a / s=1 / 1$ in $S^{-1} A$. Then $s^{\prime}(a t-s)=0$ for some $s^{\prime} \in S$. But $S \subseteq T$ so that $1 / t=a / s$ in $T^{-1} A$. In other words, $1 / t=\phi(a / s) \in \operatorname{Im}(\phi)$, so that ϕ is surjective. Thus, ϕ is a bijection.
3.9. For $A \neq 0$ let S_{0} consist of all regular elements of A. Show that S_{0} is a saturated mutliplicatively closed subset of A and that every minimal prime ideal of A is contained in $D=A-S_{0}$. The ring $S_{0}^{-1} A$ is called the total ring of fractions of A. Prove assertions a,b, and \mathbf{c} below.

Suppose $x \notin S_{0}$ or $y \notin S_{0}$. Then there is $z \neq 0$ such that $x z=0$ or $y z=0$. But then $x y z=0$ so that $x y \notin S_{0}$. On the other hand, if $x y \notin S_{0}$ then there is $z \neq 0$ satisfying $x y z=0$. If $y z=0$ then $y \notin S_{0}$, and if $y z \neq 0$ then $x \notin S_{0}$. Thus, S_{0} is a saturated multiplicatively closed subset of A.

Now let \mathfrak{p} be a prime ideal in A and suppose that $x \in \mathfrak{p}$ is regular. We see that $\left\{x^{i} y: y \in A-\mathfrak{p}\right.$ and $\left.i \in \mathbb{N}\right\}$ is a multiplicatively closed subset of A properly containing $A-\mathfrak{p}$. This subset of A does not contain 0 since x is not a zero-divisor. Therefore, $A-\mathfrak{p}$ is not maximal in Σ, and hence \mathfrak{p} is not a minimal prime ideal. In other words, every minimal prime ideal in A consists entirely of zero-divisors and so is contained in D. From this it follows easily that D is the union of the minimal prime ideals in A.
a. S_{0} is the largest multiplicatively closed subset S of A so that the map $A \rightarrow S^{-1} A$ is 1-1.

Suppose that $a / 1=0 / 1$ in $S_{0}^{-1} A$. Then $a x=0$ for some $x \in S_{0}$. But x is not a zero-divisor, and so $a=0$. So the natural map is 1-1. Now assume that S is a multiplicatively closed subset of A with this property. Suppose that $x \in S$ and $a \in A$ satisfy $a x=0$. Then $a / 1=0 / 1$ in $S^{-1} A$ so that $a=0$. In other words x is a regular element, and so $S \subseteq S_{0}$.
b. Every element in $S_{0}^{-1} A$ is a unit or a zero-divisor.

Suppose that $x / y \in S_{0}^{-1} A$. If $x \in S_{0}$ then x / y is a unit in $S_{0}^{-1} A$ with inverse y / x. If $x \notin S_{0}$, then there is $z \neq 0$ satisfying $x z=0$, implying that $(x / y)(z / 1)=0 / 1$. Since $z / 1 \neq 0 / 1$ we see that x / y is a zero-divisor in $S_{0}^{-1} A$. So we are done.
c. If every element in A is a unit or a zero-divisor then the natural map $f: A \rightarrow S_{0}^{-1} A$ is an isomorphism.

We already know that f is injective. Now if $x \in S_{0}$ then x is a unit. So f is surjective since $a / x=$ $a x^{-1} /\left(x x^{-1}\right)=a x^{-1} / 1=f\left(a x^{-1}\right)$ for $a \in A$ and $x \in S_{0}$. Thus, f is bijective, and hence an isomorphism.
3.10. Show that $S^{-1} A$ is an absolutely flat ring if A is an absolutely flat ring.

Suppose that M is an $S^{-1} A$-module. Let $N=M$, where we consider N as an A-module with $a . m=a / 1 \cdot m$. Then $S^{-1} N$ is an $S^{-1} A$-module. I claim that $S^{-1} N$ and M are isomorphic as $S^{-1} A$-modules. Assuming this, we see that N is a flat A-module since A is absolutely flat, and so $S^{-1} N$ is a flat $S^{-1} A$-module. This means that M is a flat $S^{-1} A$-module, and so $S^{-1} A$ is absolutely flat. Now we finish the stickier part of this exercise by defining $f: S^{-1} N \rightarrow M$ by $f(m / s)=1 / s \cdot m$. Notice first that f is additive since

$$
f\left(m / s+m^{\prime} / s^{\prime}\right)=f\left(\left(s^{\prime} . m+s . m^{\prime}\right) / s s^{\prime}\right)=1 / s s^{\prime} \cdot\left(s^{\prime} / 1 \cdot m+s / 1 \cdot m^{\prime}\right)=f(m / s)+f\left(m^{\prime} / s^{\prime}\right)
$$

Further, f preserves the action of $S^{-1} A$ since

$$
f(a / s \cdot m / t)=f(a \cdot m / s t)=1 / s t \cdot a \cdot m=1 / s t \cdot a / 1 \cdot m=a / s \cdot 1 / t \cdot m=a / s \cdot f(m / t)
$$

So f will be a homomorphism provided that f is well-defined. Suppose $m / s=0 / 1$ in $S^{-1} N$. Then $t . m=0$ for some $t \in S$, so that $t / 1 \cdot m=0$. But now $m=0$ since $t / 1$ is a unit in $S^{-1} A$. Hence, f is well-defined and thus is a homomorphism. Clearly f is surjective with $f(m / 1)=m$. Lastly, suppose that $f(\mathrm{~m} / \mathrm{s})=f\left(\mathrm{~m}^{\prime} / \mathrm{s}^{\prime}\right)$. Then $1 / s \cdot m=1 / s^{\prime} \cdot m^{\prime}$ so that $s^{\prime} / 1 \cdot m=s / 1 \cdot m^{\prime}$, implying that $1 .\left(s^{\prime} \cdot m-s \cdot m^{\prime}\right)=0$. In other words, $m / s=m^{\prime} / s^{\prime}$ in $S^{-1} N$. Consequently, f is an isomorphism of $S^{-1} A$-modules.

Show that A is an absolutely flat ring if and only if $A_{\mathfrak{m}}$ is a field for every maximal \mathfrak{m}.

If A is absolutely flat and \mathfrak{m} is a maximal ideal in A, then $A_{\mathfrak{m}}$ is absolutely flat by the above. But $A_{\mathfrak{m}}$ is a local ring so that $A_{\mathfrak{m}}$ is a field by exercise 2.28. So suppose that $A_{\mathfrak{m}}$ is a field whenever \mathfrak{m} is a maximal ideal in A. Let M be an A-module so that $M_{\mathfrak{m}}$ is an $A_{\mathfrak{m}}$-module. This means that $M_{\mathfrak{m}}$ is an $A_{\mathfrak{m}}$-vector space. But now $M_{\mathfrak{m}}$ is flat as an $A_{\mathfrak{m}}$-module. Hence, M is flat as an A-module, implying that A is absolutely flat.
3.11. Let A be a ring. Show that the following are equivalent.
a. $A / \mathfrak{N}(A)$ is absolutely flat.
b. Every prime ideal in A is a maximal ideal.
c. In $\operatorname{Spec}(A)$ every one point set is closed.
d. $\operatorname{Spec}(A)$ is Hausdorff.
$(\mathrm{a} \Rightarrow \mathrm{b})$ Let \mathfrak{p} be a prime ideal in A. Since $\mathfrak{N}(A) \subseteq \mathfrak{p}$ we have a surjective homomorphism $A / \mathfrak{N}(A) \rightarrow A / \mathfrak{p}$. In other words, A / \mathfrak{p} is the homomorphic image of an absolutely flat ring, and so is an absolutely flat ring. But then every non-unit in A / \mathfrak{p} is a zero-divisor by exercise 2.28 . Since A / \mathfrak{p} is an integral domain, this means that A / \mathfrak{p} is a field, and so \mathfrak{p} is a maximal ideal in A.
$(\mathrm{b} \Rightarrow \mathrm{a})$ A maximal ideal \mathfrak{q} in $A / \mathfrak{N}(A)$ is of the form $\mathfrak{q}=\mathfrak{p} / \mathfrak{N}(A)$ for some prime ideal \mathfrak{p} in A. Now $A / \mathfrak{N}(A)$ is a reduced ring. Since localization commutes with taking the nilradical, we see that $(A / \mathfrak{N}(A))_{\mathfrak{q}}$ is a reduced ring as well. But $\operatorname{Spec}\left((A / \mathfrak{N}(A))_{\mathfrak{q}}\right) \cong V(\mathfrak{q})$ and $V(\mathfrak{q})=\{\mathfrak{q}\}$ since prime ideals in $A / \mathfrak{N}(A)$ are maximal. So $\mathfrak{q}_{\mathfrak{q}}=0$, and hence $(A / \mathfrak{N}(A))_{\mathfrak{q}}$ is a field. Exercise 3.10 now implies that $A / \mathfrak{N}(A)$ is absolutely flat.
$(\mathrm{b} \Leftrightarrow \mathrm{c})$ If \mathfrak{p} is maximal then $\{\mathfrak{p}\}=V(\mathfrak{p})$ so that $\{\mathfrak{p}\}$ is a closed set. If $\{\mathfrak{p}\}$ is closed then $\{\mathfrak{p}\}=V(E)$ for some $E \subseteq A$. Clearly $\mathfrak{p} \supseteq E$ and no other prime ideal in A contains E. In particular, no prime ideal in A strictly contains \mathfrak{p}. So \mathfrak{p} is a maximal ideal in A.
$(d \Rightarrow c)$ This is elementary point-set topology.
$(\mathrm{b} \Rightarrow \mathrm{d})$ Suppose that \mathfrak{p} and \mathfrak{q} are distinct elements of $\operatorname{Spec}(A)$.
If these conditions hold, show that $\operatorname{Spec}(A)$ is compact Hausdorff and totally disconnected.

It is always true that $\operatorname{Spec}(A)$ is compact, and by hypothesis $\operatorname{Spec}(A)$ is Hausdorff.
3.12. Let M be an A-module and A an integral domain. Show that the set of all $x \in M$ for which $\operatorname{Ann}(x) \neq 0$ forms an A-submodule of M, denoted $T(M)$. An element $x \in T(M)$ is called a torsion element. Prove assertions a-d.

Suppose that $x, y \in T(M)$ and $a, a^{\prime} \neq 0$ satisfy $a x=a^{\prime} y=0$. Then $a a^{\prime}(x-y)=0$ and $a a^{\prime} \neq 0$ since A has no zero-divisors. Therefore, $x-y \in T(M)$. Also, if $a^{\prime \prime} \neq 0$, then $a^{\prime \prime} x \in T(M)$ since $a\left(a^{\prime \prime} x\right)=0$ and $a a^{\prime \prime} \neq 0$. Therefore $T(M)$ is a submodule of M.
a. $M / T(M)$ is torsion free.

Suppose that \bar{x} is a torsion element in $M / T(M)$. Choose $a \neq 0$ for which $0=a \bar{x}=\overline{a x}$, so that $a x \in T(M)$. Then there is $a^{\prime} \neq 0$ for which $a^{\prime} a x=0$. But $a^{\prime} a \neq 0$, and hence $x \in T(M)$, so that $\bar{x}=0$.
b. $f(T(M)) \subseteq T(N)$ if $f: M \rightarrow N$ is an A-module homomorphism.

If $x \in T(M)$ and $a \neq 0$ satisfies $a x=0$, then $a f(x)=f(a x)=0$, so that $f(x) \in T(N)$.
c. Suppose we have an exact sequence

$$
0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0
$$

of A-modules. Then we get a new exact sequence obtained by restricting f and g

$$
0 \longrightarrow T\left(M^{\prime}\right) \xrightarrow{f} T(M) \xrightarrow{g} T\left(M^{\prime \prime}\right)
$$

This sequence is clearly exact at $T\left(M^{\prime}\right)$. Suppose that $m \in T(M)$ and $g(m)=0$. Choose $m^{\prime} \in M^{\prime}$ for which $f\left(m^{\prime}\right)=m$, and suppose $a \neq 0$ satisfies $a m=0$. Then $0=a m=a f\left(m^{\prime}\right)=f\left(a m^{\prime}\right)$. By injectivity of f we conclude that $a m^{\prime}=0$, and hence $m^{\prime} \in T\left(M^{\prime}\right)$. This means that $\operatorname{Ker}\left(\left.g\right|_{T(M)}\right) \subseteq \operatorname{Im}\left(\left.f\right|_{T\left(M^{\prime}\right)}\right)$. The oppositive inclusion follows from $g \circ f=0$. Therefore, the resulting sequence is exact at $T(M)$, and hence is exact.
d. $T(M)$ is the kernel of the A-module homomorphism $x \mapsto 1 \otimes x$ of M into $K \otimes_{A} M$, where K is the field of fractions of A.

Let $S=A-\{0\}$ so that $K=S^{-1} A$. Recall that the mapping $a / s \otimes m \mapsto a m / s$ of $S^{-1} A \otimes_{A} M$ into $S^{-1} M$ is an isomorphism. So the kernel of the map $M \rightarrow K \otimes_{A} M$ is precisely the kernel of the canonical map $M \rightarrow S^{-1} M$ given by $x \mapsto x / 1$. Now $x / 1=0 / 1$ in $S^{-1} M$ precisely when there is $s \in S$ for which $s x=0$. Since $S=A-\{0\}$, this occurs precisely when $x \in T(M)$.
3.13. Let A be an integral domain with a multiplicatively closed subset S, and let M be an A-module. Show that $T\left(S^{-1} M\right)=S^{-1}(T M)$.

We may assume that $0 \notin S$ since otherwise $S^{-1} M=S^{-1}(T M)=0$. If $m / s \in T\left(S^{-1} M\right)$, then there is $a / s^{\prime} \neq 0 / 1$ in $S^{-1} A$ so that $0 / 1=\left(a / s^{\prime}\right)(m / s)=a m /\left(s s^{\prime}\right)$. But then there is $s^{\prime \prime} \in S$ for which $s^{\prime \prime} a m=0$. Now $s^{\prime \prime} a \neq 0$ since $s^{\prime \prime}, a \neq 0$. So $m \in T(M)$, and hence $m / s \in S^{-1}(T M)$. In other words, $T\left(S^{-1} M\right) \subseteq S^{-1}(T M)$.

On the other hand, if $m \in T M$ then there is $a \neq 0$ for which $a m=0$. Then $a / 1 \neq 0 / 1$ since $0 \notin S$. Since $(a / 1)(m / s)=0 / 1$ for any $s \in S$, we see that $m / s \in T\left(S^{-1} M\right)$. In other words, $S^{-1}(T M) \subseteq T\left(S^{-1} M\right)$.

Deduce that the following conditions are equivalent.

a. M is torsion free.
b. $M_{\mathfrak{p}}$ is torsion free for all prime ideals \mathfrak{p}.
c. $M_{\mathfrak{m}}$ is torsion free for all maximal ideals \mathfrak{m}.
$(\mathrm{a} \Rightarrow \mathrm{b}) T\left(M_{\mathfrak{p}}\right)=(T M)_{\mathfrak{p}}$ by the above, and $(T M)_{\mathfrak{p}}=0$ when $T M=0$.
($\mathrm{b} \Rightarrow \mathrm{c}$) O.K.
$(\mathrm{c} \Rightarrow \mathrm{a})(T M)_{\mathfrak{m}}=T\left(M_{\mathfrak{m}}\right)$ by the above, and $T\left(M_{\mathfrak{m}}\right)=0$ by hypothesis. Therefore $T M=0$.
3.14. Let M be an A-module and \mathfrak{a} an ideal of A. Suppose that $M_{\mathfrak{m}}=0$ for all maximal ideals $\mathfrak{m} \supseteq \mathfrak{a}$. Prove that $M=\mathfrak{a} M$.

If $M \neq \mathfrak{a} M$, then there is $x \in M-\mathfrak{a} M$. Define an ideal $\mathfrak{b}=(\mathfrak{a} M: x)$. Then $\mathfrak{a} \subseteq \mathfrak{b} \subsetneq A$ since $1 \notin \mathfrak{b}$. So we can choose a maximal \mathfrak{m} that contains \mathfrak{b}. By hypothesis $M_{\mathfrak{m}}=0$, and so $x / 1=0 / 1$ in $M_{\mathfrak{m}}$. So there is $a \in A-\mathfrak{m}$ for which $a x=0$. But $0 \in \mathfrak{a} M$ so that $a \in \mathfrak{b} \subseteq \mathfrak{m}$. This contradiction shows that $M=\mathfrak{a} M$, as claimed.
3.15. Let A be a ring and let $F=A^{n}$. Show that every set of n generators of F is a basis of F. Deduce that every set of generators of F has at least n elements.

Suppose $\left\{x_{i}\right\}_{1}^{n}$ generates F and let $\left\{e_{i}\right\}_{1}^{n}$ be the standard basis. Choose $b_{i j}$ and $c_{i j}$ in A for which

$$
x_{i}=\sum_{j=1}^{n} b_{i j} e_{j} \quad e_{i}=\sum_{j=1}^{n} c_{i j} x_{j}
$$

Define matrices $B=\left(b_{i j}\right)$ and $C=\left(c_{i j}\right)$. Notice that

$$
e_{i}=\sum_{j=1}^{n} \sum_{k=1}^{n} c_{i j} b_{j k} e_{k}=\sum_{k=1}^{n} e_{k} \cdot \sum_{j=1}^{n} c_{i j} b_{j k}
$$

Since $\left\{e_{1}, \ldots, e_{n}\right\}$ is linearly independent we conclude that

$$
\sum_{j=1}^{n} c_{i j} b_{j k}=\delta_{i k}
$$

This means that $C B=I$, so that $\operatorname{det}(C) \operatorname{det}(B)=1$. But now $\operatorname{det}(B)$ is a unit in A, so that B (and hence $\left.B^{T}\right)$ is an invertible matrix. So suppose that $\sum_{i=1}^{n} \lambda_{i} x_{i}=0$ for some λ_{i}. Then

$$
0=\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} b_{i j} e_{j}=\sum_{j=1}^{n} e_{j} \cdot \sum_{i=1}^{n} b_{i j} \lambda_{i}
$$

We see that each $\sum_{i=1}^{n} b_{i j} \lambda_{i}=0$, so that $B^{T} \lambda=0$. But now $\lambda=0$ since B^{T} is invertible. This means that $\left\{x_{i}\right\}_{1}^{n}$ is linearly independent set, and hence is a basis. Further, if F is generated by m elements x_{1}, \ldots, x_{m} with $m<n$, then F is generated by the n elements $\left\{x_{1}, \ldots, x_{m}, 0, \ldots, 0\right\}$ and this is a basis by the above; a contradiction. So F is generated by no fewer than n elements.
3.16. Let $f: A \rightarrow B$ be a ring homomorphism and assume that B is flat as an A-algebra. Show that the following are equivalent.
a. $\mathfrak{a}^{e c}=\mathfrak{a}$ for all ideals \mathfrak{a} in A.
b. $f^{*}: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ is surjective.
c. For every maximal ideal \mathfrak{m} in A we have $\mathfrak{m}^{e} \neq(1)$.
d. If M is a nonzero A-module then M_{B} is nonzero as well.
e. For every A-module M the natural map $M \rightarrow M_{B}$ is injective.
$(\mathrm{a} \Rightarrow \mathrm{b})$ Assume that $\mathfrak{p} \in \operatorname{Spec}(A)$. Then \mathfrak{p} is the contraction of a prime ideal in B by Proposition 3.16. This means that \mathfrak{p} is in the image of f^{*}. In particular $\mathfrak{p}=f^{*}\left(\mathfrak{p}^{e}\right)$.
$(\mathrm{b} \Rightarrow \mathrm{c})$ Since \mathfrak{m} is maximal and since f^{*} is surjective we know that $\mathfrak{m}=\mathfrak{q}^{c}$ for some $\mathfrak{q} \in \operatorname{Spec}(B)$. But then $\mathfrak{m}^{e c}=\mathfrak{q}^{c e c}=\mathfrak{q}^{c}=\mathfrak{m}$. So $\mathfrak{m}^{e}=(1)$ implies that $\mathfrak{m}=\mathfrak{m}^{e c}=B^{c}=A$, a contradiction.
$(\mathrm{c} \Rightarrow \mathrm{d})$ Let $0 \neq x \in M$ so that $M^{\prime}=A x$ is a nonzero submodule of M. Then the sequence

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M / M^{\prime} \longrightarrow 0
$$

is exact. Since B is flat as an A-module we have the exact sequence

$$
0 \longrightarrow M_{B}^{\prime} \longrightarrow M_{B} \longrightarrow\left(M / M^{\prime}\right)_{B} \longrightarrow 0
$$

Since the map $M_{B}^{\prime} \rightarrow M_{B}$ is injective, $M_{B} \neq 0$ provided that $M_{B}^{\prime} \neq 0$. Now $M^{\prime} \cong A / \operatorname{Ann}(x)$ where $\operatorname{Ann}(x) \neq A$ since $1 \notin \operatorname{Ann}(x)$. Choose a maximal ideal \mathfrak{m} containing $\operatorname{Ann}(x)$. Then $\operatorname{Ann}(x)^{e} \subseteq \mathfrak{m}^{e} \subsetneq B$. Now $M_{B}^{\prime} \cong A / \operatorname{Ann}(x) \otimes_{A} B \cong B / \operatorname{Ann}(x)^{e} \neq 0$, as claimed.
$(\mathrm{d} \Rightarrow \mathrm{e})$ Let M^{\prime} be the kernel of the natural map $M \rightarrow M_{B}$ given by $x \mapsto 1 \otimes x$. The sequence

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M_{B} \longrightarrow 0
$$

is exact. Since B is flat as an A-module we have an exact sequence

$$
0 \longrightarrow M_{B}^{\prime} \longrightarrow M_{B} \longrightarrow\left(M_{B}\right)_{B} \longrightarrow 0
$$

Now the map $M_{B} \rightarrow\left(M_{B}\right)_{B}$ is injective by 2.13. So the image of the map $M_{B}^{\prime} \rightarrow M_{B}$ is trivial. Since this map is injective, we see that $M_{B}^{\prime}=0$, so that $M^{\prime}=0$ by hypothesis. In other words, the natural map $M \rightarrow M_{B}$ is injective.
(e \Rightarrow a) Let \mathfrak{a} be an ideal in A. The natural map $A / \mathfrak{a} \rightarrow A / \mathfrak{a} \otimes_{A} B$ is injective by hypothesis. Suppose $x \in \mathfrak{a}^{e c} \subseteq A$ so that $f(x)=\sum f\left(a_{i}\right) b_{i}$ for some $a_{i} \in \mathfrak{a}$. Then in $A / \mathfrak{a} \otimes_{A} B$ we have

$$
\bar{x} \otimes 1=x \cdot \overline{1} \otimes 1=\overline{1} \otimes x \cdot 1=\overline{1} \otimes f(x)
$$

and from this we get

$$
\bar{x} \otimes 1=\overline{1} \otimes \sum f\left(a_{i}\right) b_{i}=\sum \overline{a_{i}} \otimes b_{i}=0
$$

since each $a_{i} \in \mathfrak{a}$. By injectivity $\bar{x}=\overline{0}$, so that $x \in \mathfrak{a}$. Therefore $\mathfrak{a}^{e c} \subseteq \mathfrak{a}$, and hence $\mathfrak{a}=\mathfrak{a}^{e c}$.
3.17. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be ring homomorphisms. Suppose that $g \circ f$ is flat and g is faithfully flat. Show that f is flat.

Let $M \rightarrow N$ be an injection of A-modules. Then we have the commutative diagram

where the last four vertical maps are natural isomorphisms, and the top two vertical maps are injections since g is faithfully flat. Finally, horizontal map on the bottom row is injective since $g \circ f$ is flat. This shows that the horizontal map on the top row is injective as well. This means that f is flat.
3.18. Suppose $f: A \rightarrow B$ is a flat ring homomorphism. If \mathfrak{q} is a prime ideal in B let $\mathfrak{p}=\mathfrak{q}^{c}$. Show that $f^{*}: \operatorname{Spec}\left(B_{\mathfrak{q}}\right) \rightarrow \operatorname{Spec}\left(A_{\mathfrak{p}}\right)$ is onto.

Since B is a flat A-module, we know that $B_{\mathfrak{p}}$ is a flat $A_{\mathfrak{p}}$-module. In fact, $B_{\mathfrak{p}}$ is a flat $A_{\mathfrak{p}}$-algebra since $B_{\mathfrak{p}}$ has the obvious multiplicative structure. Since $f(A-\mathfrak{p})$ is a multiplicatively closed subset of B that does not meet \mathfrak{q}, we see that $B_{\mathfrak{q}}$ is a localization of $B_{\mathfrak{p}}$, so that $B_{\mathfrak{q}}$ is a flat $B_{\mathfrak{p}}$-algebra. Now exercise 2.8 tells us that $B_{\mathfrak{q}}$ is a flat $A_{\mathfrak{p}}$-algebra. The only maximal ideal of $A_{\mathfrak{p}}$ is $\mathfrak{p}_{\mathfrak{p}}$ whose contraction to $B_{\mathfrak{q}}$ is $\mathfrak{q}_{\mathfrak{q}} \neq B_{\mathfrak{q}}$. It follows that the map $f: A_{\mathfrak{p}} \rightarrow B_{\mathfrak{q}}$ is faithfully flat, and so the induced map $f^{*}: \operatorname{Spec}\left(B_{\mathfrak{q}}\right) \rightarrow \operatorname{Spec}\left(A_{\mathfrak{p}}\right)$ is onto.
3.19. Suppose M is an A-module and define $\operatorname{Supp}(M)=\left\{\mathfrak{p} \in \operatorname{Spec}(A): M_{\mathfrak{p}} \neq 0\right\}$. Show the following.
a. $\operatorname{Supp}(M) \neq \emptyset$ if $M \neq 0$

If $M_{\mathfrak{p}}=0$ for all $\mathfrak{p} \in \operatorname{Spec}(A)$ then $M=0$.
b. $V(\mathfrak{a})=\operatorname{Supp}(A / \mathfrak{a})$

Notice that $(A / \mathfrak{a})_{\mathfrak{p}}=0$ iff $\overline{1} / 1=\overline{0} / 1$ in $(A / \mathfrak{a})_{\mathfrak{p}}$. This occurs precisely when there is $x \in A-\mathfrak{p}$ satisfying $\overline{0}=x \overline{1}=\bar{x}$. But this occurs precisely when $(A-\mathfrak{p}) \cap \mathfrak{a} \neq \emptyset$. This is equivalent to $\mathfrak{a} \nsubseteq \mathfrak{p}$. Hence, $(A / \mathfrak{a})_{\mathfrak{p}} \neq 0$ if and only if $\mathfrak{a} \subseteq \mathfrak{p}$.
c. Suppose we have an exact sequence

$$
0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0
$$

and show that $\operatorname{Supp}(M)=\operatorname{Supp}\left(M^{\prime}\right) \cup \operatorname{Supp}\left(M^{\prime \prime}\right)$.
We have the exact sequence

$$
0 \longrightarrow M_{\mathfrak{p}}^{\prime} \xrightarrow{f_{\mathfrak{p}}} M_{\mathfrak{p}} \xrightarrow{g_{\mathfrak{p}}} M_{\mathfrak{p}}^{\prime \prime} \longrightarrow 0
$$

If $M_{\mathfrak{p}}=0$ then $M_{\mathfrak{p}}^{\prime}=0$ since $f_{\mathfrak{p}}$ is injective, and $M_{\mathfrak{p}}^{\prime \prime}=0$ since $g_{\mathfrak{p}}$ is surjective. If $M_{\mathfrak{p}}^{\prime}=0$ and $M_{\mathfrak{p}}^{\prime \prime}=0$ then $0=\operatorname{Im}\left(f_{\mathfrak{p}}\right)$ and $\operatorname{Ker}\left(g_{\mathfrak{p}}\right)=M_{\mathfrak{p}}=0$, implying that $M_{\mathfrak{p}}=0$. Therefore $M_{\mathfrak{p}} \neq 0$ iff $M_{\mathfrak{p}}^{\prime} \neq 0$ or $M_{\mathfrak{p}}^{\prime \prime} \neq 0$. This gives $\operatorname{Supp}(M)=\operatorname{Supp}\left(M^{\prime}\right) \cup \operatorname{Supp}\left(M^{\prime \prime}\right)$.
d. If $M=\sum M_{i}$ then $\operatorname{Supp}(M)=\bigcup \operatorname{Supp}\left(M_{i}\right)$.

Suppose that $M_{\mathfrak{p}}=0$ and that $m_{i} / s \in\left(M_{i}\right)_{\mathfrak{p}}$. Since m_{i} / s is zero in $M_{\mathfrak{p}}$, there is $x \notin \mathfrak{p}$ for which $x m_{i}=0$. But then m_{i} / s is zero in $\left(M_{i}\right)_{\mathfrak{p}}$. In other words each $\left(M_{i}\right)_{\mathfrak{p}}=0$. Now suppose that each $\left(M_{i}\right)_{\mathfrak{p}}=0$. If $\left(\sum m_{i}\right) / s \in M_{\mathfrak{p}}$, then there are $x_{i} \notin \mathfrak{p}$ for which $x_{i} m_{i}=0$, so that $\left(\prod x_{i}\right) \sum m_{i}=0$. In other words $M_{\mathfrak{p}}=0$. So $M_{\mathfrak{p}}=0$ iff each $\left(M_{i}\right)_{\mathfrak{p}}=0$. This yields $\operatorname{Supp}(M)=\bigcup \operatorname{Supp}\left(M_{i}\right)$.
e. If M is finitely generated then $\operatorname{Supp}(M)=V(\operatorname{Ann}(M))$.

Since M is finitely generated $(A-\mathfrak{p})^{-1} M=0$ iff $x M=0$ for some $x \in A-\mathfrak{p}$. This occurs iff $(A-\mathfrak{p}) \cap \operatorname{Ann}(M) \neq \emptyset$, or equivalently iff $\operatorname{Ann}(M) \nsubseteq \mathfrak{p}$. So $M_{\mathfrak{p}} \neq 0$ iff $\operatorname{Ann}(M) \subseteq \mathfrak{p}$.
f. If M and N are finitely generated then $\operatorname{Supp}\left(M \otimes_{A} N\right)=\operatorname{Supp}(M) \cap \operatorname{Supp}(N)$.

Recall that $\left(M \otimes_{A} N\right)_{\mathfrak{p}}$ and $M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} N_{\mathfrak{p}}$ are isomorphic as $A_{\mathfrak{p}}$-modules. Since M, N are finitely generated A-modules we see that $M_{\mathfrak{p}}, N_{\mathfrak{p}}$ are finitely generated $A_{\mathfrak{p}}$-modules. So exercise 2.3 tells us that $M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} N_{\mathfrak{p}}=0$ iff $M_{\mathfrak{p}}=0$ or $N_{\mathfrak{p}}=0$.
g. If M is finitely generated and \mathfrak{a} is an ideal in A, then $\operatorname{Supp}(M / \mathfrak{a} M)=V(\mathfrak{a}+\operatorname{Ann}(M))$.

Since M is finitely generated, $M / \mathfrak{a} M$ and $A / \mathfrak{a} \otimes_{A} M$ are isomorphic as A-modules by exercise 2.2 . Further, A / \mathfrak{a} is generated by the single element $1+\mathfrak{a}$ as an A-module. So

$$
\begin{aligned}
\operatorname{Supp}(M / \mathfrak{a} M) & =\operatorname{Supp}\left(A / \mathfrak{a} \otimes_{A} M\right) \\
& =\operatorname{Supp}(A / \mathfrak{a}) \cap \operatorname{Supp}(M) \\
& =V(\mathfrak{a}) \cap V(\operatorname{Ann}(M)) \\
& =V(\mathfrak{a}+\operatorname{Ann}(M))
\end{aligned}
$$

h. If $f: A \rightarrow B$ is a ring homomorphism and if M is a finitely generated A-module, then $\operatorname{Supp}\left(B \otimes_{A} M\right)=f^{*-1}(\operatorname{Supp}(M))$.

Since M is a finitely generated A-module we have $\operatorname{Supp}(M)=V(\operatorname{Ann}(M))$, and since M_{B} is a finitely generated B-module we have $\operatorname{Supp}\left(M_{B}\right)=V\left(\operatorname{Ann}\left(M_{B}\right)\right)$. So we need to prove that a prime ideal \mathfrak{q} in B contains $\operatorname{Ann}\left(M_{B}\right)$ if and only if $f^{-1}(\mathfrak{q})$ contains $\operatorname{Ann}(M)$. Suppose $\mathfrak{q} \supseteq \operatorname{Ann}\left(M_{B}\right)$ and $a \in \operatorname{Ann}(M)$ so that $a \cdot m=0$ for every $m \in M$. Then $f(a)$ annihilates M_{B} since $f(a)(b \otimes m)=f(a) b \otimes m=a \cdot b \otimes m=$ $b \otimes a \cdot m=0$ for all $b \in B$ and $m \in M$. By hypothesis, $f(a) \in \mathfrak{q}$. This means that $\operatorname{Ann}(M) \subseteq f^{-1}(\mathfrak{q})$. Now suppose that $\operatorname{Ann}(M) \subseteq f^{-1}(\mathfrak{q})$ and let $b \in \operatorname{Ann}\left(M_{B}\right)$.
3.20. Let $f: A \rightarrow B$ be a ring homomorphism. Show the following.
a. Every prime ideal in A is a contracted ideal $\Leftrightarrow f^{*}$ is onto.

Suppose \mathfrak{p} is a prime ideal in A. Proposition 1.17 and 3.16 yield: \mathfrak{p} is a contracted ideal in A iff \mathfrak{p} satisfies $\mathfrak{p}^{e c}=\mathfrak{p}$ iff \mathfrak{p} is the contraction of a prime ideal in B iff \mathfrak{p} lies in the image of f^{*}.
b. Every prime ideal in B is an extended ideal $\Rightarrow f^{*}$ is 1-1.

Assume that every prime ideal in B is an extended ideal. Suppose that $f^{*}(\mathfrak{p})=f^{*}(\mathfrak{q})$, so that $\mathfrak{p}^{c}=\mathfrak{q}^{c}$. Then $\mathfrak{p}=\mathfrak{p}^{c e}=\mathfrak{q}^{c e}=\mathfrak{q}$ by Proposition 1.17. But this means that f^{*} is 1-1.

c. Is the converse to part b true?

The converse to part b is false. Let $j: \mathbb{Z} \rightarrow \mathbb{Z}[i]$ be the natural inclusion map. If p is a prime congruent to 3 modulo 4 , then (p) is a prime ideal in $\mathbb{Z}[i]$. If p is a prime congruent to 1 modulo 4 , then there are unique $a, b>0$ such that $a^{2}+b^{2}=p$, and $(a+b i)$ is a prime ideal in $\mathbb{Z}[i]$. Also, $(1+i)$ is a prime ideal in $\mathbb{Z}[i]$. These are all of the prime ideals in $\mathbb{Z}[i]$. Now the contraction of (p) equals (p), the contraction of $(a+b i)$ equals $\left(a^{2}+b^{2}\right)$, and the contraction of $(1+i)$ equals (2). This means that j^{*} is an injective map. However, the extension of (2) and (p) are not prime ideals, for p a prime congruent to 1 modulo 4. Also, the extension of (p) equals (p), for p a prime congruent to 3 modulo 4 . This means that $(1+i)$ and prime ideals of the form $(a+b i)$ are not extended ideals in $\mathbb{Z}[i]$.
3.21. Throughout, $f: A \rightarrow B$ is a ring homomorphism, $X=\operatorname{Spec}(A), Y=\operatorname{Spec}(B), S$ is a multiplicatively closed subset of A, and $\phi_{A}: A \rightarrow S^{-1} A$ is the canonical homomorphism. Establish the following facts.
a. $\phi^{*}: \operatorname{Spec}\left(S^{-1} A\right) \rightarrow X$ is a homeomorphism onto its image, which we denote by $S^{-1} X$.

Notice that $S^{-1} X$ consists of all prime ideals in A that have empty intersection with S. Now every ideal in $S^{-1} A$ is an extended ideal so that ϕ^{*} is $1-1$ by exercise 2.20. As always, ϕ^{*} is continuous. I claim that ϕ^{*} is a closed map. Let \mathfrak{a} be an ideal in A and notice that

$$
\phi^{*}\left(V\left(S^{-1} \mathfrak{a}\right)\right)=S^{-1} X \cap V\left(\mathfrak{a}^{e c}\right)
$$

After all, if $\mathfrak{p} \in \phi^{*}\left(V\left(S^{-1} \mathfrak{a}\right)\right)$ then $\mathfrak{p} \cap S=\emptyset$ and $S^{-1} \mathfrak{a} \subseteq S^{-1} \mathfrak{p}$ so that $\mathfrak{a}^{e c} \subset \mathfrak{p}^{e c}=\mathfrak{p}$. Conversely, if $\mathfrak{p} \in S^{-1} X \cap V\left(\mathfrak{a}^{e c}\right)$ then $\mathfrak{p} \cap S=\emptyset$ and $\mathfrak{a}=S^{-1} \mathfrak{a}^{e c} \subseteq S^{-1} \mathfrak{p}$. So ϕ is a homeomorphism onto its image.
b. Identify $\operatorname{Spec}\left(S^{-1} A\right)$ with its image $S^{-1} X$, and identify $\operatorname{Spec}\left(S^{-1} B\right)$ with its image $S^{-1} Y$. Then $\left(S^{-1} f\right)^{*}$ is the restriction of f^{*} to $S^{-1} Y$, and $S^{-1} Y=f^{*-1}\left(S^{-1} X\right)$.

Notice that $S^{-1} B=f(S)^{-1} B$ as in exercise 3.4 and that $S^{-1} f(a / s)=f(a) / f(s)$. So we have the commutative diagram

This yields the commutative diagram

as desired. Now obviously $S^{-1} Y \subseteq f^{*-1}\left(S^{-1} X\right)$. So suppose that $\mathfrak{q} \in Y$ and $f^{*}(\mathfrak{q}) \in S^{-1} X$. Then $f^{-1} \mathfrak{q}$ is a prime ideal in A that has empty intersection with $f(S)$. If $x \in \mathfrak{q} \cap f(S)$ with $x=f(s)$ then $s \in f^{-1}(\mathfrak{q}) \cap S$, which is not possible. So $\mathfrak{q} \cap f(S)=\emptyset$, implying that $\mathfrak{q} \in S^{-1} Y$. Hence
$S^{-1} Y=f^{*-1}\left(S^{-1} X\right)$.
c. Let \mathfrak{a} be an ideal in A and write $\mathfrak{b}=B \mathfrak{a}$. Then f induces a map $\bar{f}: A / \mathfrak{a} \rightarrow B / \mathfrak{b}$. If $\operatorname{Spec}(A / \mathfrak{a})$ is identified with its image $V(\mathfrak{a})$ in X and $\operatorname{Spec}(B / \mathfrak{b})$ is identified with its image $V(\mathfrak{b})$ in Y, then \bar{f}^{*} is the restriction of f^{*} to $V(\mathfrak{a})$.

We have the commutative diagram

This yields the commutative diagram

Now exercise 1.21 tells us that π_{B}^{*} maps $\operatorname{Spec}(B / \mathfrak{b})$ homeomorphically onto $V\left(\operatorname{Ker}\left(\pi_{B}\right)\right)=V(\mathfrak{b})$, and $\pi_{A}^{*} \operatorname{maps} \operatorname{Spec}(A / \mathfrak{a})$ homeomorphically onto $V\left(\operatorname{Ker}\left(\pi_{A}\right)\right)=V(\mathfrak{a})$. We are done.
d. Let \mathfrak{p} be a prime ideal in A and define $S=A-\mathfrak{p}$. Then the subspace $f^{*-1}(\mathfrak{p})$ of Y is homeomorphic with $\operatorname{Spec}\left(B_{\mathfrak{p}} / \mathfrak{p}_{\mathfrak{p}} B_{\mathfrak{p}}\right)=\operatorname{Spec}\left(k(\mathfrak{p}) \otimes_{A} B\right)$, where $k(\mathfrak{p})$ is the residue field of $A_{\mathfrak{p}}$.

We use part c with $\mathfrak{a}=\mathfrak{p}_{\mathfrak{p}}$ and $\mathfrak{b}=\mathfrak{p}_{\mathfrak{p}}^{e}=\mathfrak{p}_{\mathfrak{p}} B_{\mathfrak{p}}=(\mathfrak{p} B)_{\mathfrak{p}}$ to get the commutative diagram

Now $\operatorname{Spec}\left(B_{\mathfrak{p}} / \mathfrak{p}_{\mathfrak{p}} B_{\mathfrak{p}}\right)$ is homeomorphic with $V\left((\mathfrak{p} B)_{\mathfrak{p}}\right)$, which is homeomorphic with $\phi_{B}^{*}\left(V\left((\mathfrak{p} B)_{\mathfrak{p}}\right)\right)$. I claim that $\phi_{B}^{*}\left(V\left((\mathfrak{p} B)_{\mathfrak{p}}\right)\right)=f^{*-1}(\mathfrak{p})$, establishing the first result. So suppose that $\mathfrak{q} \in f^{*-1}(\mathfrak{p})$. Since $\mathfrak{p} \in \operatorname{Im}\left(\phi_{A}^{*}\right)$ we see that $\mathfrak{q} \in \operatorname{Im}\left(\phi_{B}^{*}\right)$. Also, $\mathfrak{p}=f^{-1}(\mathfrak{q})$, so that $f(\mathfrak{p}) \subseteq \mathfrak{q}$, and hence $\mathfrak{p} B \subseteq \mathfrak{q}$. But now $\mathfrak{q}_{\mathfrak{p}}$ is a prime ideal in $B_{\mathfrak{p}}$ containing the ideal $(\mathfrak{p} B)_{\mathfrak{p}}$. Conversely, assume that $\mathfrak{q} \in \phi_{B}^{*}\left(V\left((\mathfrak{p} B)_{\mathfrak{p}}\right)\right)$. Then $(\mathfrak{p} B)_{\mathfrak{p}} \subseteq \mathfrak{q}_{\mathfrak{p}}$ so that $\mathfrak{p} B \subseteq \mathfrak{q}_{\mathfrak{p}}^{c}=\mathfrak{q}$, and hence $f(\mathfrak{p}) \subseteq \mathfrak{q}$. So we see that $\mathfrak{p} \subseteq f^{-1}(\mathfrak{q})$. On the other hand, it is trivial to check that $f^{-1}(\mathfrak{q}) \subseteq \mathfrak{p}$ since $\mathfrak{q} \cap f(A-\mathfrak{p})=\emptyset$. So the claim is established. Now we have a chain of isomorphisms between $A_{\mathfrak{p}}$-modules

$$
\begin{aligned}
B_{\mathfrak{p}} / \mathfrak{p}_{\mathfrak{p}} B_{\mathfrak{p}} & =B_{\mathfrak{p}} /(\mathfrak{p} B)_{\mathfrak{p}} \\
& \cong(B / \mathfrak{p} B)_{\mathfrak{p}} \\
& \cong A_{\mathfrak{p}} \otimes_{A} B / \mathfrak{p} B \\
& \cong A_{\mathfrak{p}} \otimes_{A}\left(A / \mathfrak{p} \otimes_{A} B\right) \\
& \cong\left(A / \mathfrak{p} \otimes_{A} A_{\mathfrak{p}}\right) \otimes_{A} B \\
& \cong A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}} \otimes_{A} B \\
& =A_{\mathfrak{p}} / \mathfrak{p}_{\mathfrak{p}} \otimes_{A} B \\
& =k(\mathfrak{p}) \otimes_{A} B
\end{aligned}
$$

Specifically, the map is given by

$$
b / f(x)+\mathfrak{p}_{\mathfrak{p}} B_{\mathfrak{p}} \mapsto\left(1 / x+\mathfrak{p}_{\mathfrak{p}}\right) \otimes b
$$

It is easy to see that this preserves the product structure of our rings. Consequently, $\operatorname{Spec}\left(B_{\mathfrak{p}} / \mathfrak{p}_{\mathfrak{p}} B_{\mathfrak{p}}\right)=$ $\operatorname{Spec}\left(k(\mathfrak{p}) \otimes_{A} B\right)$.
3.22. Let A be a ring and \mathfrak{p} a prime ideal in A. Show that the canonical image $X_{\mathfrak{p}}$ of $\operatorname{Spec}\left(A_{\mathfrak{p}}\right)$ in $X=\operatorname{Spec}(A)$ is equal to the intersection of all open neighborhoods of \mathfrak{p} in X.

As in $3.21, X_{\mathfrak{p}}$ consists of all prime ideals in A that have empty intersection with $S=A-\mathfrak{p}$, that is, the prime ideals contained in \mathfrak{p}. Suppose $\mathfrak{q} \nsubseteq \mathfrak{p}$, so that $\mathfrak{p} \notin V(\mathfrak{q})$. Then $\mathfrak{q} \notin X-V(\mathfrak{q})$, even though $X-V(\mathfrak{q})$ is an open neighborhood of \mathfrak{p} in X. Conversely, if $\mathfrak{q} \subseteq \mathfrak{p}$, then $\mathfrak{p} \in X-V(E)$ implies that $E \nsubseteq \mathfrak{p}$, and consequently $E \nsubseteq \mathfrak{q}$, so that $\mathfrak{q} \in X-V(E)$. So we are done.
3.23 ? Let A be a ring with $X=\operatorname{Spec}(A)$ and assume that $U=X_{f}=A-V(f)$ for some $f \in A$. Show the following.
a. The ring $A(U):=A_{f}$ is independent of f.

Suppose that $X_{f}=X_{g}$, so that $f \in r((g))$ and $g \in r((f))$, as according to exercise 1.17. Then $f^{m}=a g$ and $g^{n}=b f$ for some $a, b \in A$ and $m, n>0$. Define

$$
F: A_{f} \rightarrow A_{g} \quad \text { by } \quad F\left(x / f^{p}\right)=x b^{p} / g^{n p}
$$

and define

$$
G: A_{g} \rightarrow A_{f} \quad \text { by } \quad G\left(x / g^{p}\right)=x a^{p} / f^{m p}
$$

Notice that

$$
\begin{aligned}
G\left(F\left(x / f^{p}\right)\right) & =G\left(x b^{p} / g^{n p}\right) \\
& =G\left(x b^{p} a^{n p} / f^{m n p}\right) \\
& =x b^{p} a^{n p} / a^{n p} g^{n p} \\
& =x b^{p} / b^{p} f^{p} \\
& =x / f^{p}
\end{aligned}
$$

Similarly, $F\left(G\left(x / g^{p}\right)\right)=x / g^{p}$. Thus, F and G are bijections and inverse to one another. Another tedious calculation reveals that F is additive since

$$
\begin{aligned}
F\left(x / f^{p}+x^{\prime} / f^{q}\right) & =F\left(\left(f^{q} x+f^{p} x^{\prime}\right) / f^{p+q}\right) \\
& =\left(f^{q} x+f^{p} x^{\prime}\right) b^{p+q} / g^{n(p+q)} \\
& =\left(f^{q} x+f^{p} x^{\prime}\right) b^{p+q} / b^{p+q} f^{p+q} \\
& =x / f^{p}+x^{\prime} / f^{q}
\end{aligned}
$$

Clearly F and G respect the multiplication. Lastly, F and G are well-defined: suppose $x / f^{p}=0 / 1$ in A_{f} so that $f^{q} x=0$ for some q. Then clearly $b^{p} b^{q} f^{q} x=0$, so that $g^{n q} x b^{p}=0$, implying that $x b^{p} / g^{n p}=0 / 1$ in A_{g}. Hence, A_{f} and A_{g} are isomorphic, as desired.
b. Suppose $U^{\prime}=X_{g}$ satisfies $U^{\prime} \subseteq U$. There is a natural homomorphism $\rho: A(U) \rightarrow A\left(U^{\prime}\right)$ that is independent of f, g.

If $U^{\prime} \subseteq U$ then $V(f) \subseteq V(g)$, so that any prime ideal containing f contains g. This means that $g \in r(f)$, so that $g^{m}=a f$ for some $m>0$ and some $a \in A$. As in part a, we define a map

$$
\rho: A_{f} \rightarrow A_{g} \quad \text { by } \quad \rho\left(x / f^{r}\right)=x a^{r} / g^{m r}
$$

This is a well-defined ring homomorphism. Now suppose $X_{f}=X_{f^{\prime}}$ and $X_{g}=X_{g^{\prime}}$. Then we have equations

$$
\left(f^{\prime}\right)^{n}=b f \quad\left(g^{\prime}\right)^{p}=c g \quad\left(g^{\prime}\right)^{q}=d f^{\prime}
$$

Define maps

$$
F: X_{f} \rightarrow X_{f^{\prime}} \quad \text { by } \quad F\left(x / f^{r}\right)=x b^{r} / f^{\prime n r}
$$

and

$$
G: X_{g} \rightarrow X_{g^{\prime}} \quad \text { by } \quad G\left(x / g^{r}\right)=x c^{r} / g^{\prime p r}
$$

we also need

$$
\rho^{\prime}: X_{f^{\prime}} \rightarrow X_{g^{\prime}} \quad \text { by } \quad \rho^{\prime}\left(x / f^{\prime r}\right)=x d^{r} / g^{\prime q r}
$$

To say that ρ is independent of f and g is to say that $\rho^{\prime} \circ F=G \circ \rho$. But $\rho^{\prime}\left(F\left(x / f^{r}\right)\right)=x b^{r} d^{n r} / g^{\prime q n r}$ and $G\left(\rho_{f g}\left(x / f^{r}\right)\right)=x a^{r} c^{m r} / g^{\prime m p r}$. Using the equations above we see that

$$
\left(b^{r} d^{n r}\right) g^{\prime m p r}-\left(a^{r} c^{m r}\right) g^{\prime q n r}=0
$$

So equality follows, showing that ρ is independent of f, g.
c. If $U^{\prime}=U$ then $\rho=\mathbf{i d .}$

This follows from part b.
d. If $U^{\prime \prime} \subseteq U^{\prime} \subseteq U$ then ρ acts 'functorially'.

Write $U^{\prime \prime}=X_{h}, U^{\prime}=X_{g}, U=X_{f}$. We can write $g^{m}=a f$ and $h^{n}=b g$.
e. If $\mathfrak{p} \in X$ then $\lim _{\mathfrak{p} \in U} A(U) \cong A_{\mathfrak{p}}$.
3.25. Let $f: A \rightarrow B$ and $g: A \rightarrow C$ be ring homomorphisms. Suppose $h: A \rightarrow B \otimes_{A} C$ is defined by $h(a)=f(a) \otimes 1=1 \otimes g(a)$. Define X, Y, Z, T to be the spectra of $A, B, C, B \otimes_{A} C$ respectively. Show that $h^{*}(T)=f^{*}(Y) \cap g^{*}(Z)$.

Let $\mathfrak{p} \in X$ and define $k=k(\mathfrak{p})$. We have a natural homeomorphism between $h *^{-1}(\mathfrak{p})$ and $\operatorname{Spec}\left(\left(B \otimes_{A} C\right) \otimes_{A} k\right)$, and also

$$
\begin{aligned}
\left(B \otimes_{A} C\right) \otimes_{A} k & \cong B \otimes_{A} k \otimes_{A} C \\
& \cong B \otimes_{A}\left(k \otimes_{k} k\right) \otimes_{A} C \\
& \cong B \otimes_{A}\left(k \otimes_{k}\left(k \otimes_{A} C\right)\right) \\
& \cong B \otimes_{A}\left(k \otimes_{k}\left(C \otimes_{A} k\right)\right) \\
& \cong\left(B \otimes_{A} k\right) \otimes_{k}\left(C \otimes_{A} k\right)
\end{aligned}
$$

Now $\mathfrak{p} \in h^{*}(T)$ precisely when $h^{*-1}(\mathfrak{p}) \neq \emptyset$. By the natural homeomorphism this occurs precisely when $\operatorname{Spec}\left(\left(B \otimes_{A} C\right) \otimes_{A} k\right) \neq \emptyset$. Now the spectrum of any ring is nonempty if and only if that ring is nonzero. Since $B \otimes_{A} k$ and $C \otimes_{A} k$ are vector spaces over k, we see that $\left(B \otimes_{A} k\right) \otimes_{k}\left(C \otimes_{A} k\right) \neq 0$ if and only if $B \otimes_{A} k \neq 0$ and $C \otimes_{A} k \neq 0$. Again, this occurs precisely when $\mathfrak{p} \in f^{*}(Y)$ and $\mathfrak{p} \in g^{*}(Z)$. So we are done.
3.26. Let $\left(B_{\alpha}, g_{\alpha \beta}\right)$ be a direct system of rings and B the direct limit. For each α let $f_{\alpha}: A \rightarrow B_{\alpha}$ be a ring homomorphism satisfying $g_{\alpha \beta} \circ f_{\alpha}=f_{\beta}$ whenever $\alpha \leq \beta$. Then there is an induced map $f: A \rightarrow B$. Show that

$$
f^{*}(\operatorname{Spec}(B))=\bigcap_{\alpha} f_{\alpha}^{*}\left(\operatorname{Spec}\left(B_{\alpha}\right)\right)
$$

Let $\mathfrak{p} \in \operatorname{Spec}(A)$. Then $\mathfrak{p} \notin f^{*}(\operatorname{Spec}(B))$ precisely when $f^{*}(\mathfrak{p})=\emptyset$. This occurs precisely when $\operatorname{Spec}\left(B \otimes_{A}\right.$ $k(\mathfrak{p}))=\emptyset$. As in exercise 25 , this happens if and only if $B \otimes_{A} k(\mathfrak{p})=0$. But we have the isomorphism

$$
B \otimes_{A} k(\mathfrak{p}) \cong \underset{\longrightarrow}{\lim \left(B_{\alpha} \otimes_{A} k(\mathfrak{p})\right)}
$$

since the direct limit commutes with tensor products. So $B \otimes_{A} k(\mathfrak{p})=0$ if and only if some $B_{\alpha} \otimes_{A} k(\mathfrak{p})=0$. Again, this occurs precisely when $\mathfrak{p} \notin f_{\alpha}^{*}\left(\operatorname{Spec}\left(B_{\alpha}\right)\right)$ for some α. So we are done.
3.27? Prove the following.
a. Let $f_{\alpha}: A \rightarrow B_{\alpha}$ be any family of A-algebras and let $f: A \rightarrow B$ be their tensor product over A. Then

$$
f^{*}(\operatorname{Spec}(B))=\bigcap_{\alpha} f_{\alpha}^{*}\left(\operatorname{Spec}\left(B_{\alpha}\right)\right)
$$

b. Let $f_{\alpha}: A \rightarrow$
c.
d. The space X endowed with the constructible topology (denoted hereafter as X_{C}) is compact.
3.28? Prove the following results.
a. X_{g} is open and closed in the constructible topology.
b. Let C^{\prime} denote the smallest topology on X for which the sets X_{g} are both open and closed, and let $X_{C^{\prime}}$ denote the set X with this topology. Show that $X_{C^{\prime}}$ is Hausdorff.
c. Deduce that the identity map $X_{C} \rightarrow X_{C^{\prime}}$ is a homeomorphism. Hence, a subset E of X is of the form $f^{*}(\operatorname{Spec}(B))$ for some $f: A \rightarrow B$ if and only if it is closed in C^{\prime}.
d. X_{C} is compact Hausdorff and totally disconnected.
3.29? Show that, for $f: A \rightarrow B$, the map $f^{*}: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ is a continuous and closed mapping, when $\operatorname{Spec}(A)$ and $\operatorname{Spec}(B)$ are given the constructible topology.
3.30? Show that the Zariski topology and the constructible topology on $\operatorname{Spec}(A)$ coincide iff $A / \mathfrak{N}(A)$ is absolutely flat.
If the two topologies coincide, then $\operatorname{Spec}(A)$ is Hausdorff in the Zariski topology, and so $A / \mathfrak{N}(A)$ is absolutely flat. Suppose then that $A / \mathfrak{N}(A)$ is absolutely flat. Let $f: A \rightarrow B$ be a ring homomorphism so that $f^{*}(\operatorname{Spec}(A))$ is closed in the constructible topology.

Chapter 4 : Primary Decomposition

4.1. If the ideal \mathfrak{a} has a primary decomposition in A, then $\operatorname{Spec}(A / \mathfrak{a})$ has finitely many irreducible components.

The minimal elements in the set of all prime ideals containing \mathfrak{a} is precisely the set of isolated primes belonging to \mathfrak{a} in any primary decomposition of \mathfrak{a}. But the isolated primes belonging to \mathfrak{a} are uniquely determined, so that there are finitely many minimal elements in the set of all prime ideals containing \mathfrak{a}. This means that there are finitely many minimal prime ideals in A / \mathfrak{a}. Also, the irreducible components of $\operatorname{Spec}(A / \mathfrak{a})$ are of the form $V(\mathfrak{p})$, where \mathfrak{p} is a minimal prime ideal in A / \mathfrak{a}. $\operatorname{So} \operatorname{Spec}(A / \mathfrak{a})$ has finitely many irreducible components.
4.2. If $\mathfrak{a}=r(\mathfrak{a})$ then \mathfrak{a} has no embedded prime ideals.

Let Σ consist of all the prime ideals containing \mathfrak{a}, and let $\Sigma^{\prime} \subseteq \Sigma$ consist of the minimal elements in Σ. Then

$$
\mathfrak{a}=r(\mathfrak{a})=\bigcap_{\mathfrak{p} \in \Sigma} \mathfrak{p}=\bigcap_{\mathfrak{p} \in \Sigma^{\prime}} \mathfrak{p}
$$

Since \mathfrak{a} is decomposable, Σ^{\prime} is finite. By using proposition 1.11 we see that \mathfrak{a} has the minimal primary decomposition

$$
\mathfrak{a}=\bigcap_{\mathfrak{p} \in \Sigma^{\prime}} \mathfrak{p}
$$

But the first uniqueness theorem tells us that $\left\{\mathfrak{p}: \mathfrak{p} \in \Sigma^{\prime}\right\}$ is uniquely determined by \mathfrak{a}. We conclude that \mathfrak{a} has no embedded prime ideals.
4.3. Every primary ideal in A is maximal if A is absolutely flat.

Let \mathfrak{q} be a \mathfrak{p}-primary ideal in A. If A is absolutely flat then so is $A / \mathfrak{N}(A)$, since it is a homomorphic image of A. This tells us that every prime ideal in A is maximal. In particular $A_{\mathfrak{p}}$ is a field. This means that (0) is the only primary ideal in $A_{\mathfrak{p}}$. Now the correspondence in Prop 4.8 tells us that $\mathfrak{q}=\mathfrak{p}$.

After all, if $\mathfrak{p}^{\prime} \cap(A-\mathfrak{p})=\emptyset$ with \mathfrak{p}^{\prime} a prime ideal, then $\mathfrak{p}^{\prime} \subseteq \mathfrak{p}$, so that $\mathfrak{p}^{\prime}=\mathfrak{p}$. So the \mathfrak{p}-primary ideals are in a bijective correspondence with the primary ideals in $A_{\mathfrak{p}}$. But there is only one primary ideal in $A_{\mathfrak{p}}$, and we already know that \mathfrak{p} is a \mathfrak{p}-primary ideal since \mathfrak{p} is a maximal ideal. This forces us to conclude that $\mathfrak{q}=\mathfrak{p}$.
4.4. In the polynomial ring $\mathbb{Z}[t]$, the ideal $\mathfrak{m}=(2, t)$ is maximal and the ideal $\mathfrak{q}=(4, t)$ is \mathfrak{m}-primary, but \mathfrak{q} is not a power of \mathfrak{m}.
\mathfrak{m} is a maximal ideal since $\mathbb{Z}[t] / \mathfrak{m} \cong \mathbb{Z}_{2}$ is a field. Clearly $\mathfrak{q} \subseteq \mathfrak{m} \subseteq r(\mathfrak{q})$. Since \mathfrak{m} is a prime ideal we have $\mathfrak{m}=r(\mathfrak{q})$. Since \mathfrak{m} is maximal we conclude that \mathfrak{q} is \mathfrak{m}-primary. Now $\left(4,4 t, t^{2}\right)=\mathfrak{m}^{2} \subseteq \mathfrak{q} \subseteq \mathfrak{m}$. The first inclusion is strict since $t \in \mathfrak{q}-\mathfrak{m}^{2}$, and the second inclusion is strict since $2 \in \mathfrak{m}-\mathfrak{q}$. So \mathfrak{q} is not a power of \mathfrak{m}.
4.5. Let K be a field and $A=K[x, y, z]$. Write $\mathfrak{p}_{1}=(x, y), \mathfrak{p}_{2}=(x, z)$, and $\mathfrak{m}=(x, y, z)$, so that \mathfrak{p}_{1} and \mathfrak{p}_{2} are prime ideals, while \mathfrak{m} is maximal. Let $\mathfrak{a}=\mathfrak{p}_{1} \mathfrak{p}_{2}$. Show that $\mathfrak{a}=\mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$ is a minimal primary decomposition of \mathfrak{a}. Which components are isolated and which are embedded?

Notice that $\mathfrak{a}=\left(x^{2}, x y, x z, y z\right)$ so that $\mathfrak{a} \subseteq \mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$ by inspection. Suppose that $p \in \mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$. Since $p \in \mathfrak{m}^{2}$ we can write

$$
p=a x^{2}+b y^{2}+c z^{2}+d x y+e x z+f y z
$$

where $a, b, \ldots \in A$. But $c=0$ since $p \in \mathfrak{p}_{1}$ and $b=0$ since $p \in \mathfrak{p}_{2}$. Hence

$$
p=a x^{2}+d x y+e x z+f y z \in \mathfrak{a}
$$

so that $\mathfrak{a}=\mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$. Now we know by proposition 4.2 that \mathfrak{m}^{2} is a primary ideal, as are all prime ideals. So $\mathfrak{a}=\mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$ is a primary decomposition of \mathfrak{a}. It satisfies the first condition for minimality since $r\left(\mathfrak{p}_{i}\right)=\mathfrak{p}_{i}$ and $r\left(\mathfrak{m}^{2}\right)=\mathfrak{m}$ are all distinct. The second condition is satisfied since

$$
z^{2} \in\left(\mathfrak{p}_{2} \cap \mathfrak{m}^{2}\right)-\mathfrak{p}_{1} \quad y^{2} \in\left(\mathfrak{p}_{1} \cap \mathfrak{m}^{2}\right)-\mathfrak{p}_{2} \quad x \in\left(\mathfrak{p}_{1} \cap \mathfrak{p}_{2}\right)-\mathfrak{m}^{2}
$$

Thus, the primary decomposition is indeed minimal. Lastly, \mathfrak{p}_{1} and \mathfrak{p}_{2} are the isolated components and \mathfrak{m}^{2} is the embedded component.
4.6. Let X be an infinite compact Hausdorff space and $C(X)$ the ring of all real-valued continuous functions on X. Is the zero ideal decomposable in this ring?

Let \mathfrak{m}_{x} consist of all $f \in C(X)$ for which $f(x)=0$. Then \mathfrak{m}_{x} is a maximal ideal in X since $C(X) / \mathfrak{m}_{x}$ is isomorphic with \mathbb{R} under the map $f+\mathfrak{m}_{x} \mapsto f(x)$. If Σ_{x} is the set of all prime ideals in $C(X)$ contained in \mathfrak{m}_{x}, then $\mathfrak{m}_{x} \in \Sigma_{x}$, and so Σ_{x} is nonempty. Let \mathfrak{p}_{x} be a minimal element in Σ_{x}. This exists by a straightforward application of Zorn's Lemma. If 0 is decomposable, then there are finitely many minimal prime ideals in $C(X)$, by proposition 4.6 . So to show that 0 is not decomposable it suffices to show that $\mathfrak{p}_{x} \neq \mathfrak{p}_{x^{\prime}}$ whenever $x \neq x^{\prime}$. Here we use the fact that X is infinite.

So assume that $x \neq x^{\prime}$. Choose a neighborhood U of x not containing x^{\prime}. Notice that X is normal since it is compact Hausdorff. Hence, there is a neighborhood V of x so that $\mathrm{Cl}(V) \subset U$. By Urysohn's Lemma there is $f \in C(X)$ so that $f=0$ on $\mathrm{Cl}(V)$ and $f\left(x^{\prime}\right)=1$. Similarly, there is $g \in C(X)$ so that $g=0$ on $X-V$ and $g(x)=1$. Then $f \in \mathfrak{p}_{x}$ since $f g=0 \in \mathfrak{p}_{x}$ and $g \notin \mathfrak{p}_{x}$. Since $f \notin \mathfrak{p}_{x^{\prime}}$ we see that $\mathfrak{p}_{x} \neq \mathfrak{p}_{x^{\prime}}$, as claimed.
4.7. If \mathfrak{a} is an ideal of the ring A, let $\mathfrak{a}[x]$ consist of all polynomials in $A[x]$ with coefficients in \mathfrak{a}. Show the following.
a. The extension of \mathfrak{a} to $A[x]$ equals $\mathfrak{a}[x]$.

By definition $\mathfrak{a}^{e}=\mathfrak{a} A[x]$. A moment's worth of thought though shows that $\mathfrak{a} A[x]=\mathfrak{a}[x]$.
b. If \mathfrak{p} is a prime ideal in A then $\mathfrak{p}[x]$ is a prime ideal in $A[x]$.

Define a ring homomorphism

$$
A[x] \rightarrow(A / \mathfrak{p})[x] \quad \text { by } \quad \sum a_{k} x^{k}=\sum\left(a_{k}+\mathfrak{p}\right) x^{k}
$$

This is a surjective map with kernel $\mathfrak{p}[x]$. So $A[x] / \mathfrak{p}[x]$ is isomorphic with $(A / \mathfrak{p})[x]$. But $(A / \mathfrak{p})[x]$ is an integral domain since A / \mathfrak{p} is an integral domain. Therefore, $\mathfrak{p}[x]$ is a prime ideal in $A[x]$.
c. If \mathfrak{q} is \mathfrak{p}-primary in A then $\mathfrak{q}[x]$ is $\mathfrak{p}[x]$-primary in $A[x]$.

First $A[x] / \mathfrak{q}[x] \neq 0$ since $1 \notin \mathfrak{q}[x]$. As above, $A[x] / \mathfrak{q}[x]$ is isomorphic with $(A / \mathfrak{q})[x]$. So if $\sum a_{k} x^{k}+\mathfrak{q}[x]$ is a zero-divisor in $A[x] / \mathfrak{q}[x]$, then $\sum\left(a_{k}+\mathfrak{q}\right) x^{k}$ is a zero-divisor in $(A / \mathfrak{q})[x]$. Hence, there is $b \in A-\mathfrak{q}$ satisfying $\bar{b} \sum\left(a_{k}+\mathfrak{q}\right) x^{k}=0$. This means that $b a_{k} \in \mathfrak{q}$ for all k. So for every k there is $n>0$ satisfying $a_{k}^{n} \in \mathfrak{q}$. This means that $a_{k}+\mathfrak{q}$ is nilpotent in A / \mathfrak{q}, and hence $\sum\left(a_{k}+\mathfrak{q}\right) x^{k}$ is nilpotent in $(A / \mathfrak{q})[x]$ as well. Consequently, $\sum a_{k} x^{k}+\mathfrak{q}[x]$ is nilpotent in $A[x] / \mathfrak{q}[x]$. So every zero-divisor in $A[x] / \mathfrak{q}[x]$ is nilpotent, implying that $\mathfrak{q}[x]$ is primary.

Notice that $\sum\left(a_{k}+\mathfrak{q}\right) x^{k} \in(A / \mathfrak{q})[x]$ is nilpotent iff each $a_{k}+\mathfrak{q}$ is nilpotent in A / \mathfrak{q}. This occurs precisely when $a_{k} \in \mathfrak{p}$. So $\mathfrak{N}((A / \mathfrak{q})[x])=(\mathfrak{p} / \mathfrak{q})[x]$, and hence $\mathfrak{N}(A[x] / \mathfrak{q}[x])=\mathfrak{p}[x] / \mathfrak{q}[x]$. This means that

$$
r(\mathfrak{q}[x])=\pi^{-1}(\mathfrak{N}(A[x] / \mathfrak{q}[x]))=\pi^{-1}(\mathfrak{p}[x] / \mathfrak{q}[x])=\mathfrak{p}[x]
$$

d. If $\mathfrak{a}=\bigcap_{i=1}^{n} \mathfrak{q}_{i}$ is a minimal primary decomposition in A then $\mathfrak{a}[x]=\bigcap_{i=1}^{n} \mathfrak{q}_{i}[x]$ is a minimal primary decomposition in $A[x]$.

Notice that $\mathfrak{a}[x]=\mathfrak{a}^{e} \subseteq \bigcap_{1}^{n} \mathfrak{q}_{k}^{e}=\bigcap_{1}^{n} \mathfrak{q}_{k}[x]$. On the other hand, if $\sum a_{k} x^{k} \notin \mathfrak{a}[x]$, then some $a_{k} \notin \mathfrak{a}$, and so $a_{k} \notin \mathfrak{q}_{j}$ for some j. But then $\sum a_{k} x^{k} \notin \mathfrak{q}_{j}[x]$. Therefore, $\mathfrak{a}[x]=\bigcap_{1}^{n} \mathfrak{q}_{k}[x]$ is a primary decomposition of $\mathfrak{a}[x]$. Notice that $\mathfrak{p}_{k}[x] \neq \mathfrak{p}_{j}[x]$ whenever $\mathfrak{p}_{k} \neq \mathfrak{p}_{j}$. Also, $\mathfrak{q}_{k}[x] \supseteq \bigcap_{j \neq k} \mathfrak{q}_{j}[x]$ would imply that

$$
\mathfrak{q}_{k}=\mathfrak{q}_{k}[x]^{c} \supseteq\left(\bigcap_{j \neq k} \mathfrak{q}_{j}[x]\right)^{c}=\bigcap_{j \neq k} \mathfrak{q}_{j}[x]^{c}=\bigcap_{j \neq k} \mathfrak{q}_{j}
$$

Thus, the primary decomposition for $\mathfrak{a}[x]$ is minimal.
e. If \mathfrak{p} is a minimal prime ideal of \mathfrak{a}, then $\mathfrak{p}[x]$ is a minimal prime ideal of $\mathfrak{a}[x]$.

Obviously $\mathfrak{p}[x]$ is a prime ideal contained in $\mathfrak{a}[x]$. So suppose that \mathfrak{q} is a prime ideal for which $\mathfrak{q} \subseteq \mathfrak{p}[x]$. Then $\mathfrak{q}^{c} \subseteq \mathfrak{p}$ and \mathfrak{q}^{c} is a prime ideal, so that $\mathfrak{q}^{c}=\mathfrak{p}$. But now $\mathfrak{p}[x]=\mathfrak{p}^{e}=\mathfrak{q}^{c e} \subseteq \mathfrak{q} \subseteq \mathfrak{p}[x]$, and hence $\mathfrak{q}=\mathfrak{p}[x]$. Thus, $\mathfrak{p}[x]$ is a minimal prime ideal of $\mathfrak{a}[x]$.
4.8 ? Let k be a field. Show that in $k\left[x_{1}, \ldots, x_{n}\right]$ the ideals $\mathfrak{p}_{i}=\left(x_{1}, \ldots, x_{i}\right)$ are prime and that all their powers are primary.

Write $A_{n}=k\left[x_{1}, \ldots, x_{n}\right]$. Each \mathfrak{p}_{i} is a prime ideal since $A_{n} / \mathfrak{p}_{i} \cong A_{n-i}$ is an integral domain. Now since (x) is maximal in $k[x]$, every power of (x) is primary in $k[x]$. So the result holds for A_{1}. We proceed by induction by assuming the result holds for A_{n}. Every power of \mathfrak{p}_{n+1} is primary in A_{n+1} since \mathfrak{p}_{n+1} is maximal in A_{n+1}. If $i<n+1$ then every power of \mathfrak{p}_{i} is primary in A_{n} by induction.
4.9. In a ring A, let $D(A)$ consist of all prime ideals \mathfrak{p} that satisfy the following condition: there is $a \in A$ so that \mathfrak{p} is minimal in the set of prime ideals containing $\operatorname{Ann}(a)$. Show the following.

Notice that $\operatorname{Ann}(a)$ is a proper ideal in A for $a \neq 0$ (and $A \neq 0$) since $1 \notin \operatorname{Ann}(a)$. So there is a maximal ideal containing $\operatorname{Ann}(a)$, implying that the set of all prime ideals containing $\operatorname{Ann}(a)$ is non-empty. If we order this set by reverse inclusion, then it is clearly chain complete. So Zorn's Lemma yields minimal elements.
a. x is a zero-divisor iff $x \in \mathfrak{p}$ for some $\mathfrak{p} \in D(A)$.

Suppose $x y=0$ with $y \neq 0$. Then $x \in(0: y) \subseteq \mathfrak{p}$ for some $\mathfrak{p} \in D(A)$. Conversely, suppose $\mathfrak{p} \in D(A)$. We have to show that \mathfrak{p} consists of zero-divisors.
b. After identifications, $D\left(S^{-1} A\right)=D(A) \cap \operatorname{Spec}\left(S^{-1} A\right)$.

Let $\mathfrak{p} \in D(A) \cap \operatorname{Spec}\left(S^{-1} A\right)$ so that \mathfrak{p} is a minimal element in the set of all prime ideals containing $(0: a)$ for some $a \in A$, and $\mathfrak{p} \cap S=\emptyset$. Define a prime ideal $\mathfrak{q}=S^{-1} \mathfrak{p}$ in $S^{-1} A$ and notice that $(0: a / 1) \subseteq \mathfrak{q}$. Suppose $(0: a / 1) \subseteq S^{-1} \mathfrak{r} \subseteq \mathfrak{q}$, with \mathfrak{r} a prime ideal in A that does not meet S. Then $(0: a) \subseteq(0: a / 1)^{c} \subseteq \mathfrak{r} \subseteq \mathfrak{p}$ so that $\mathfrak{r}=\mathfrak{p}$, and hence $S^{-1} \mathfrak{r}=\mathfrak{q}$. It follows that \mathfrak{q} is minimal in the set of prime ideals in $S^{-1} A$ containing $(0: a / 1)$, and hence $\mathfrak{q} \in D\left(S^{-1} A\right)$. Thus $D(A) \cap \operatorname{Spec}\left(S^{-1} A\right) \subseteq D\left(S^{-1} A\right)$. Conversely, suppose that $\mathfrak{q} \in D\left(S^{-1} A\right)$ so that \mathfrak{q} is a minimal element in the set of prime ideals in $S^{-1} A$ containing $(0: a / s)$. Write $\mathfrak{q}=S^{-1} \mathfrak{p}$ with \mathfrak{p} a prime ideal in A that does not meet S. Since $(0: a / 1)=(0: a / s)$ we have $(0: a) \subseteq(0: a / 1)^{c} \subseteq \mathfrak{p}$. Suppose $(0: a) \subseteq \mathfrak{r} \subseteq \mathfrak{p}$
with \mathfrak{r} a prime ideal in A. Then \mathfrak{r} does not meet S, and hence $(0: a / 1) \subseteq S^{-1} \mathfrak{r} \subseteq \mathfrak{q}$. After all, if $a / 1 \cdot b / t=0 / 1$ so that $a b u=0$ for some $u \in S$, then $b u \in(0: a) \subseteq \mathfrak{r}$, and hence $b / t=b u / t u \in S^{-1} \mathfrak{r}$. Thus, $S^{-1} \mathfrak{r}=\mathfrak{q}$, implying that $\mathfrak{r}=\mathfrak{p}$; showing that \mathfrak{p} is minimal in the set of all prime ideals containing $(0: a)$. Therefore, $\mathfrak{q} \in D(A) \cap \operatorname{Spec}\left(S^{-1} A\right)$. Hence, $D\left(S^{-1} A\right)=D(A) \cap \operatorname{Spec}\left(S^{-1} A\right)$ after our identifications.
c. If the zero ideal has a primary decomposition, then $D(A)$ is the set of all prime ideals belonging to 0 .

Suppose \mathfrak{p} is a prime ideal belonging to 0 so that \mathfrak{p} is a minimal element in the set of all prime ideals containing $0=(0: 1)$. Then \mathfrak{p} is an element of $D(A)$. Conversely, suppose $\mathfrak{p} \in D(A)$ and \mathfrak{p} is minimal in the set of all prime ideals containing $(0: a)$.
4.10. For any prime \mathfrak{p}, let $S_{\mathfrak{p}}(0)=\operatorname{Ker}\left(A \rightarrow A_{\mathfrak{p}}\right)$. Prove the following.
a. We have the containment $S_{\mathfrak{p}}(0) \subseteq \mathfrak{p}$.

If a is in $S_{\mathfrak{p}}(0)$, then $a / 1=0$ in $A_{\mathfrak{p}}$. So there is $s \in A-\mathfrak{p}$ for which $a s=0 \in \mathfrak{p}$. But then $a \in \mathfrak{p}$ since $s \notin \mathfrak{p}$. Thus, $S_{\mathfrak{p}}(0) \subseteq \mathfrak{p}$.
b. $r\left(S_{\mathfrak{p}}(0)\right)=\mathfrak{p}$ if and only if \mathfrak{p} is a minimal prime ideal in A.

The prime ideals of $A_{\mathfrak{p}}$ are in a bijective correspondence with the prime ideals that don't meet $S=A-\mathfrak{p}$. That is, they correspond bijectively with prime ideals contained in \mathfrak{p}. When \mathfrak{p} is minimal, we see that $A_{\mathfrak{p}}$ has precisely one prime ideal, namely $\mathfrak{p}_{\mathfrak{p}}$. Hence, $\mathfrak{p}_{\mathfrak{p}}$ is the nilradical of $A_{\mathfrak{p}}$. So if $a \in \mathfrak{p}$ then $(a / 1)^{n}=0$ in $A_{\mathfrak{p}}$ for some $n>0$, and therefore $a^{n} \in S_{\mathfrak{p}}(0)$. Hence $\mathfrak{p} \subseteq r\left(S_{\mathfrak{p}}(0)\right)$. On the other hand, $r\left(S_{\mathfrak{p}}(0)\right) \subseteq r(\mathfrak{p})=\mathfrak{p}$. Hence $\mathfrak{p}=r\left(S_{\mathfrak{p}}(0)\right)$.

Suppose that \mathfrak{p} is not minimal. Then there is prime $\mathfrak{q} \subsetneq \mathfrak{p}$. So by the correspondence in the above paragraph, $\mathfrak{N}\left(A_{\mathfrak{p}}\right) \subsetneq \mathfrak{p}_{\mathfrak{p}}$. There is thus $a \in \mathfrak{p}$ for which $(a / 1)^{n} \neq 0$ in $A_{\mathfrak{p}}$ for any $n>0$. This means that $a \notin r\left(S_{\mathfrak{p}}(0)\right)$, and so $\mathfrak{p} \neq r\left(S_{\mathfrak{p}}(0)\right)$.
c. If $\mathfrak{p}^{\prime} \subseteq \mathfrak{p}$ are prime ideals, then $S_{\mathfrak{p}}(0) \subseteq S_{\mathfrak{p}^{\prime}}(0)$.

If $a \in S_{\mathfrak{p}}(0)$ then $a s=0$ for some $s \in A-\mathfrak{p} \subseteq A-\mathfrak{p}^{\prime}$, and hence $a \in S_{\mathfrak{p}^{\prime}}(0)$. Therefore $S_{\mathfrak{p}}(0) \subseteq S_{\mathfrak{p}^{\prime}}(0)$.
d. The intersection $\bigcap_{\mathfrak{p} \in D(\mathfrak{a})} S_{\mathfrak{p}}(0)$ equals $\mathbf{0}$.

Suppose that $x \neq 0$ and notice that $(0: x) \neq(1)$. So there is a minimal \mathfrak{p} in the set of prime ideals containing $(0: x)$. If $x \in S_{\mathfrak{p}}(0)$, then for some $s \in A-\mathfrak{p}$ we have $s x=0$. This contradicts the equation $(0: x) \subseteq \mathfrak{p}$. Therefore, $x \notin S_{\mathfrak{p}}(0)$; and hence $\bigcap_{\mathfrak{p} \in D(A)} S_{\mathfrak{p}}(0)=0$.
4.11. If \mathfrak{p} is a minimal prime ideal in A, show that $S_{\mathfrak{p}}(0)$ is the smallest \mathfrak{p}-primary ideal. Let \mathfrak{a} be the intersection of the ideals $S_{\mathfrak{p}}(0)$ as \mathfrak{p} runs through the minimal prime ideals in A. Show that $\mathfrak{a} \subseteq \mathfrak{N}(A)$. Suppose that the zero ideal is decomposable. Prove that $\mathfrak{a}=0$ iff every prime ideal of 0 is isolated.

As above $r\left(S_{\mathfrak{p}}(0)\right)=\mathfrak{p}$ whenever \mathfrak{p} is a minimal prime ideal in A. Now suppose that $x y \in S_{\mathfrak{p}}(0)$ with $x \notin S_{\mathfrak{p}}(0)$. Choose $s \in A-\mathfrak{p}$ with $s x y=0$. Then $s y \in \mathfrak{p}$ (for otherwise $x \in S_{\mathfrak{p}}(0)$), and so $y \in \mathfrak{p}=r\left(S_{\mathfrak{p}}(0)\right.$). This means that $y^{n} \in S_{\mathfrak{p}}(0)$ for some $n>0$. Hence, $S_{\mathfrak{p}}(0)$ is \mathfrak{p}-primary.

Now let \mathfrak{q} be any \mathfrak{p}-primary ideal, with \mathfrak{p} a minimal prime ideal. If $x \in S_{\mathfrak{p}}(0)$ then $0=s x \in \mathfrak{q}$ for some $s \in A-\mathfrak{p}$. If $x \notin \mathfrak{q}$ then $s^{n} \in \mathfrak{q}$ for some $n>0$. But this is impossible since $A-\mathfrak{p}$ is multiplicatively closed. Therefore $S_{\mathfrak{p}}(0) \subseteq \mathfrak{q}$.

It is clear that $\mathfrak{a} \subseteq \mathfrak{N}(A)$ since we always have $S_{\mathfrak{p}}(0) \subseteq \mathfrak{p}$ and since $\mathfrak{N}(A)$ is the intersection of all the minimal prime ideals in A.

Suppose that the zero ideal is decomposable and that $\mathfrak{a}=0$. Then there are finitely many minimal prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ in A. Notice that $0=\mathfrak{a}=\bigcap_{i=1}^{n} S_{\mathfrak{p}_{i}}(0)$ is a primary decomposition since each $S_{\mathfrak{p}_{i}}(0)$ is a \mathfrak{p}_{i}-primary ideal. From this we see that the prime ideals belonging to 0 are all isolated.

Suppose that the zero ideal is decomposable and that every prime ideal belonging to 0 is isolated. Write $0=\bigcap_{i=1}^{n} \mathfrak{q}_{i}$ and let $\mathfrak{p}_{i}=r\left(\mathfrak{q}_{i}\right)$. Then each \mathfrak{p}_{i} is a minimal prime ideal in A. Therefore $S_{\mathfrak{p}_{i}}(0) \subseteq \mathfrak{q}_{i}$ so that $\mathfrak{a}=0$.
4.12? Let S be a multiplicatively closed subset of A. For any ideal \mathfrak{a}, let $S(\mathfrak{a})$ denote the contraction of $S^{-1} \mathfrak{a}$ in A. The ideal $S(\mathfrak{a})$ is called the saturation of \mathfrak{a} with respect to S. Prove the following.
a. $S(\mathfrak{a}) \cap S(\mathfrak{b})=S(\mathfrak{a} \cap \mathfrak{b})$

This follows directly from proposition 1.18.
b. $S(r(\mathfrak{a}))=r(S(\mathfrak{a}))$

This follows directly from proposition 1.18.
c. $S(\mathfrak{a})=(1)$ iff \mathfrak{a} meets S.

This follows directly from proposition 3.11.
d. $S_{1}\left(S_{2}(\mathfrak{a})\right)=\left(S_{1} S_{2}\right)(\mathfrak{a})$

Notice that $S_{1} S_{2}$ is a multiplicatively closed subset of A. Suppose $x \in S_{1}\left(S_{2}(\mathfrak{a})\right)$ so that $x / 1=y / s_{1}$ for some $y \in S_{2}(\mathfrak{a})$ and $y / 1=a / s_{2}$ for some $a \in A$. Choose $s_{1}^{\prime}, s_{2}^{\prime}$ with $s_{1}^{\prime}\left(x s_{1}-y\right)=0$ and $s_{2}^{\prime}\left(y s_{2}-a\right)=0$. Then $s_{1}^{\prime} s_{2}^{\prime}\left(s_{1} s_{2} x-a\right)=s_{1}^{\prime} s_{2} s_{2}^{\prime} y-s_{1}^{\prime} s_{2}^{\prime} a=0$ so that $x / 1=a / s_{1} s_{2}$ and hence $x \in\left(S_{1} S_{2}\right)(\mathfrak{a})$. Conversely, if $x / 1=a / s_{1} s_{2}$ then ????
e. If \mathfrak{a} is decomposable then the set of $S(\mathfrak{a})$ is finite.
4.13. Let A be a ring and \mathfrak{p} a prime ideal in A. Define the nth symbolic power $\mathfrak{p}^{(n)}$ of \mathfrak{p} by $\mathfrak{p}^{(n)}=S_{\mathfrak{p}}\left(\mathfrak{p}^{n}\right)$. Prove the following.
a. $\mathfrak{p}^{(n)}$ is a \mathfrak{p}-primary ideal.

Notice first that $r\left(S_{\mathfrak{p}}\left(\mathfrak{p}^{n}\right)\right)=S_{\mathfrak{p}}\left(r\left(\mathfrak{p}^{n}\right)\right)=S_{\mathfrak{p}}(\mathfrak{p})=\mathfrak{p}$. Now $r\left(\left(\mathfrak{p}^{n}\right)_{\mathfrak{p}}\right)=\left(r\left(\mathfrak{p}^{n}\right)\right)_{\mathfrak{p}}=\mathfrak{p}_{\mathfrak{p}}$ is the maximal ideal in $A_{\mathfrak{p}}$ so that $\left(\mathfrak{p}^{n}\right)_{\mathfrak{p}}$ is primary in $A_{\mathfrak{p}}$. This means that its contraction (i.e. $\mathfrak{p}^{(n)}$) is primary in A, and hence is \mathfrak{p}-primary.
b. If \mathfrak{p}^{n} has a primary decomposition, then $\mathfrak{p}^{(n)}$ is its \mathfrak{p}-component.

Suppose $\mathfrak{p}^{n}=\bigcap_{i=1}^{m} \mathfrak{q}_{i}$ is a minimal primary decomposition of \mathfrak{p}^{n}, and write $\mathfrak{p}_{i}=r\left(\mathfrak{q}_{i}\right)$. Assume that \mathfrak{p}_{i} does not meet $A-\mathfrak{p}$ for $1 \leq i \leq n$ and that \mathfrak{p}_{i} meets $S-\mathfrak{p}$ for $n<i \leq m$. Then $\mathfrak{p}^{(n)}=\bigcap_{i=1}^{n} \mathfrak{q}_{i}$ is a primary decomposition of $\mathfrak{p}^{(n)}$. Now $\mathfrak{p}=r\left(\mathfrak{p}^{(n)}\right)=\bigcap_{i=1}^{n} \mathfrak{p}_{i}$. But $\mathfrak{p}_{i} \subseteq \mathfrak{p}$ for $1 \leq i \leq n$, and $\mathfrak{p}_{i} \neq \mathfrak{p}_{j}$ for $i \neq j$. Therefore, $n=1$ and $\mathfrak{p}_{1}=\mathfrak{p}$. This means that $\mathfrak{q}_{1}=\mathfrak{p}^{(n)}$. In other words, $\mathfrak{p}^{(n)}$ is the \mathfrak{p}-component of \mathfrak{a}, as claimed.
c. If $\mathfrak{p}^{(m)} \mathfrak{p}^{(n)}$ has a primary decomposition, then $\mathfrak{p}^{(m+n)}$ is its \mathfrak{p}-primary component.

Let $\mathfrak{p}^{(m)} \mathfrak{p}^{(n)}=\bigcap_{i=1}^{m} \mathfrak{q}_{i}$ be a minimal primary decomposition, and write $\mathfrak{p}_{i}=r\left(\mathfrak{q}_{i}\right)$. Assume that \mathfrak{p}_{i} does not meet $A-\mathfrak{p}$ for $1 \leq i \leq n$ and that \mathfrak{p}_{i} meets $S-\mathfrak{p}$ for $n<i \leq m$. Then $S_{\mathfrak{p}}\left(\mathfrak{p}^{(m)} \mathfrak{p}^{(n)}\right)=\bigcap_{i=1}^{n} \mathfrak{q}_{i}$ so that $\bigcap_{i=1}^{n} \mathfrak{p}_{i}=r\left(S_{\mathfrak{p}}\left(\mathfrak{p}^{(m)} \mathfrak{p}^{(n)}\right)\right)=S_{\mathfrak{p}}\left(r\left(\mathfrak{p}^{(m)} \mathfrak{p}^{(n)}\right)\right)=S_{\mathfrak{p}}(\mathfrak{p})=\mathfrak{p}$. So again, $n=1$ and $\mathfrak{p}_{1}=\mathfrak{p}$. Using Proposition 1.18 we see that $S_{\mathfrak{p}}\left(\mathfrak{p}^{(m)} \mathfrak{p}^{(n)}\right)=\mathfrak{p}^{(m+n)}$. So $\mathfrak{q}_{1}=\mathfrak{p}^{(m+n)}$, showing that $\mathfrak{p}^{(m+n)}$ is the \mathfrak{p}-primary component of $\mathfrak{p}^{(m)} \mathfrak{p}^{(n)}$.
d. $\mathfrak{p}^{(n)}=\mathfrak{p}^{n}$ if and only if \mathfrak{p}^{n} is \mathfrak{p}-primary.

If $\mathfrak{p}^{(n)}=\mathfrak{p}^{n}$ then \mathfrak{p}^{n} is \mathfrak{p}-primary by part a. Assume \mathfrak{p}^{n} is \mathfrak{p}-primary so that $\mathfrak{p}^{n}=\mathfrak{p}^{n}$ is a minimal primary decomposition of \mathfrak{p}^{n}, implying that $\mathfrak{p}^{n}=\mathfrak{p}^{(n)}$ by part c .
4.14. Let \mathfrak{a} be a decomposable ideal in the ring A and let \mathfrak{p} be a maximal element in $\Sigma=\{(\mathfrak{a}: x): x \notin \mathfrak{a}\}$. Show that \mathfrak{p} is a prime ideal belonging to \mathfrak{a}.

Let $\mathfrak{p}=(\mathfrak{a}: x)$ be a maximal element in Σ. Suppose $a b \in \mathfrak{p}$ and $b \notin \mathfrak{p}$, so that $a b x \in \mathfrak{a}$ and $b x \notin \mathfrak{a}$. Then $(\mathfrak{a}: x) \subseteq(\mathfrak{a}: b x) \in \Sigma$ so that $(\mathfrak{a}: x)=(\mathfrak{a}: b x)$ by maximality. Then $a \in(\mathfrak{a}: b x)=(\mathfrak{a}: x)=\mathfrak{p}$. Therefore, \mathfrak{p} is a prime ideal in A. Also, $\mathfrak{p}=r(\mathfrak{p})=r(\mathfrak{a}: x)$ is a prime ideal in the set $\{r(\mathfrak{a}: x) \mid x \in A\}$. Since \mathfrak{a} is a decomposable ideal, the first uniqueness theorem tells us that \mathfrak{p} belongs to \mathfrak{a}.
4.15? Let \mathfrak{a} be a decomposable ideal, Σ an isolated set of prime ideals belonging to \mathfrak{a}, and q_{Σ} the intersection of the corresponding primary components. Suppose f is an element of A such that, if \mathfrak{p} belongs to \mathfrak{a}, then $f \in \mathfrak{p}$ if and only if $\mathfrak{p} \notin \Sigma$. Show that $q_{\Sigma}=S_{f}(\mathfrak{a})=\left(\mathfrak{a}: f^{n}\right)$ for all large n.

If \mathfrak{p} belongs to A, then \mathfrak{p} meets $S_{f}=\left\{1, f, f^{2}, \ldots\right\}$ if and only if $\mathfrak{p} \notin \Sigma$. Therefore, $S_{f}(\mathfrak{a})=\bigcap_{\mathfrak{p} \cap S_{f}=\emptyset} \mathfrak{q}=\mathfrak{q}_{\Sigma}$. Now $S_{f}(\mathfrak{a})=\mathfrak{a}^{e c}=\bigcup_{0 \leq n}\left(\mathfrak{a}: f^{n}\right)$ so that $\left(\mathfrak{a}: f^{n}\right) \subseteq S_{f}(\mathfrak{a})$ for all n.
4.16. Suppose A is a ring in which every proper ideal has a primary decomposition. Show that the same holds for $S^{-1} A$.

This follows from proposition 4.9 and the fact that every proper ideal in $S^{-1} A$ is of the form $S^{-1} \mathfrak{a}$ for some proper ideal \mathfrak{a} in A.
4.17? Let A be a ring satisfying (L1) For every proper ideal \mathfrak{a} and every prime ideal \mathfrak{p}, there exists $x \notin \mathfrak{p}$ such that $S_{\mathfrak{p}}(\mathfrak{a})=(\mathfrak{a}: x)$. Show that every proper ideal \mathfrak{a} in A is an intersection of (perhaps infinitely many) primary ideals.

Let \mathfrak{p}_{1} be a minimal element in the set of all prime ideals containing \mathfrak{a}. Then $\mathfrak{q}_{1}=S_{\mathfrak{p}_{1}}(\mathfrak{a})$ is \mathfrak{p}_{1}-primary. By hypothesis, $\mathfrak{q}_{1}=(\mathfrak{a}: x)$ for some $x \notin \mathfrak{p}_{1}$.
4.18? Show that every proper ideal in A has a primary decomposition if and only if A satisfies the following two conditions.

L1. If \mathfrak{a} is a proper ideal and \mathfrak{p} is a prime ideal, then there exists $x \notin \mathfrak{p}$ such that $S_{\mathfrak{p}}(\mathfrak{a})=(\mathfrak{a}: x)$.
L2. If \mathfrak{a} is a proper ideal and $S_{1} \supseteq S_{2} \supseteq \ldots$ is a descending sequence of multiplicatively closed subsets of A, then there exists an N such that $S_{n}(\mathfrak{a})=S_{N}(\mathfrak{a})$ for all $n \geq N$.

Suppose that every proper ideal in A has a primary decomposition. Let \mathfrak{a} be a proper ideal in A, so that \mathfrak{a} has a primary decomposition, and hence the saturations of \mathfrak{a} in A form a finite set by exercise 4.12 . This shows that L2 holds for \mathfrak{a}. Let \mathfrak{p} a prime ideal.
4.19? Show that every \mathfrak{p}-primary ideal contains $S_{\mathfrak{p}}(0)$. Suppose that A satisfies the following condition: for every prime ideal \mathfrak{p}, the intersection of all \mathfrak{p}-primary ideals equals $S_{\mathfrak{p}}(0)$. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be distinct non-minimal prime ideals in A. Show that there is an ideal \mathfrak{a} whose associated prime ideals are $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$.

Suppose that \mathfrak{p} is a prime ideal in A. Let \mathfrak{q} be a \mathfrak{p}-primary ideal and suppose $a \in S_{\mathfrak{p}}(0)$. Then $a / 1=0 / 1$ so that $a b=0$ for some $b \notin \mathfrak{p}$. Since $b^{n} \notin \mathfrak{q}$ for any $n>0$, we see that $a \in \mathfrak{q}$. In other words, $S_{\mathfrak{p}}(0) \subseteq \mathfrak{q}$, as claimed.

Now let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be distinct prime ideals in A, where A satisfies the hypothesis as in the problem statement. If $n=1$ then we can take $\mathfrak{a}=\mathfrak{p}_{1}$. Suppose then that $n>1$, and assume \mathfrak{p}_{n} is a maximal element in $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$. By induction, there is an ideal \mathfrak{b} and a minimal primary decomposition $\mathfrak{b}=\mathfrak{q}_{1} \cap \ldots \cap \mathfrak{q}_{n-1}$ with each \mathfrak{q}_{i} a \mathfrak{p}_{i}-primary ideal. Suppose for the sake of contradiction that $\mathfrak{b} \subseteq S_{\mathfrak{p}_{n}}(0)$. Let \mathfrak{p} be a minimal prime ideal in A contained in \mathfrak{p}_{n} so that $S_{\mathfrak{p}_{n}}(0) \subseteq S_{\mathfrak{p}}(0)$ by exercise 4.10. Then $\mathfrak{p}_{1} \cap \ldots \cap \mathfrak{p}_{n-1}=r(\mathfrak{b}) \subseteq r\left(S_{\mathfrak{p}}(0)\right)=\mathfrak{p}$ so that $\mathfrak{p}_{i} \subseteq \mathfrak{p}$ for some i. By minimality, $\mathfrak{p}_{i}=\mathfrak{p}$ is a minimal prime ideal; a contradiction. Therefore, $\mathfrak{b} \nsubseteq S_{\mathfrak{p}_{n}}(0)$. Since $S_{\mathfrak{p}_{n}}(0)$ is the intersection of all \mathfrak{p}_{n}-primary ideals in A, there is a \mathfrak{p}_{n}-primary ideal \mathfrak{q}_{n} such that $\mathfrak{b} \nsubseteq \mathfrak{q}_{n}$. Now define $\mathfrak{a}=\mathfrak{b} \cap \mathfrak{q}_{n}$. Obviously $\mathfrak{a}=\mathfrak{q}_{1} \cap \ldots \cap \mathfrak{q}_{n}$ is a primary decomposition of \mathfrak{a}. We know that $r\left(\mathfrak{q}_{i}\right)=\mathfrak{p}_{i} \neq \mathfrak{p}_{j}=r\left(\mathfrak{q}_{j}\right)$ for $i \neq j$, and that $\mathfrak{q}_{n} \nsupseteq \bigcap_{i \neq n} \mathfrak{q}_{i}=\mathfrak{b}$. Suppose then that $\mathfrak{q}_{i} \supseteq \bigcap_{j \neq i} \mathfrak{q}_{j}$ for $1 \leq i<n$.

Taking radicals we see that $\bigcap_{j \neq i, n} \mathfrak{p}_{j} \cap \mathfrak{p}_{n} \subseteq \mathfrak{p}_{i}$. Either $\bigcap_{j \neq i, n} \mathfrak{p}_{j} \subseteq \mathfrak{p}_{i}$ or $\mathfrak{p}_{n} \subseteq \mathfrak{p}_{i}$. In the latter case, $\mathfrak{p}_{n}=\mathfrak{p}_{i}$ since \mathfrak{p}_{n} is a maximal element in $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$. But $\mathfrak{p}_{n} \neq \mathfrak{p}_{i}$, so that $\bigcap_{j \neq i, n} \mathfrak{p}_{j} \subseteq \mathfrak{p}_{i}$.
4.20. Let M be a fixed A-module with submodules N and N^{\prime}. The radical $r_{M}(N)$ of N in M is defined to be the set of all $x \in A$ so that $x^{q} M \subseteq N$ for some $q>0$. Establish the following.
a. $r_{M}(N)=r(N: M)=r(\operatorname{Ann}(M / N))$

It is clear that $r_{M}(N)=r(N: M)$ so that $r_{M}(N)$ is an ideal in A. We also know that $(N: M)=$ $\operatorname{Ann}((N+M) / N)=\operatorname{Ann}(M / N)$ so that the last equality holds as well.
b. $r\left(r_{M}(N)\right)=r_{M}(N)$

We have $r\left(r_{M}(N)\right)=r(r(N: M))=r(N: M)=r_{M}(N)$.
c. $r_{M}\left(N \cap N^{\prime}\right)=r_{M}(N) \cap r_{M}\left(N^{\prime}\right)$

This follows from

$$
\begin{aligned}
r_{M}\left(N \cap N^{\prime}\right) & =r\left(N \cap N^{\prime}: M\right) \\
& =r\left((N: M) \cap\left(N^{\prime}: M\right)\right) \\
& =r(N: M) \cap r\left(N^{\prime}: M\right) \\
& =r_{M}(N) \cap r_{M}\left(N^{\prime}\right)
\end{aligned}
$$

d. $r_{M}(N)=A$ if and only if $N=M$.

Since $r_{M}(N)$ is an ideal, $r_{M}(N)=A$ iff $1 \in r_{M}(N)$ iff $M=N$.
e. $r_{M}\left(N+N^{\prime}\right) \supseteq r\left(r_{M}(N)+r_{M}\left(N^{\prime}\right)\right)$

Suppose that $x^{n} \in r_{M}(N)+r_{M}\left(N^{\prime}\right)$. Write $x^{n}=y+y^{\prime}$ with $y^{q} M \subseteq N$ and $y^{\prime r} M \subseteq N^{\prime}$. Then $x^{n(q+r)} M \subseteq y^{q} M+y^{\prime r} M \subseteq N+N^{\prime}$ so that $x \in r_{M}\left(N+N^{\prime}\right)$.
4.21. Each $a \in A$ defines an endomorphism $\phi_{a}: M \rightarrow M . a$ is called a zero-divisor if ϕ_{a} is not injective, and a is called nilpotent if ϕ_{a} is nilpotent. A submodule $Q \neq M$ is called primary if every zero-divisor in M / Q is nilpotent. Prove the following.
a. If Q is primary in M then $(Q: M)$ is a primary ideal.

Suppose that $a b \in(Q: M)$ with $a \notin(Q: M)$. Choose $x \in M$ with $a x \notin Q$ so that the image of $a x$ in M / Q is nonzero. Then $b(a x) \in Q$ since $a b M \subseteq Q$. Since Q is primary, we see that $b^{q} M \subseteq Q$ for some $q>0$. This means that $b^{q} \in(Q: M)$. Therefore, $(Q: M)$ is a primary ideal in A.
b. If Q_{1}, \ldots, Q_{n} are \mathfrak{p}-primary in M then so is $Q=\bigcap_{1}^{n} Q_{i}$.

We know that $r(Q)=\bigcap_{1}^{n} r\left(Q_{i}\right)=\mathfrak{p}$. Suppose $a \in A$ satisfies $a x \in Q$ for some $x \in M$. If $a^{q} Q \neq Q$ for any q, then $a \notin r_{M}(Q)=\mathfrak{p}$. Since Q_{i} is \mathfrak{p}-primary and $a x \in Q_{i}$, we conclude that $x \in Q_{i}$. Thus, $x \in \bigcap_{1}^{n} Q_{i}=Q$. This means that Q is a primary ideal in A.
c. If Q is \mathfrak{p}-primary and $x \notin Q$ then $(Q: x)$ is \mathfrak{p}-primary.

Suppose $a \in(Q: x)$ so $a x \in Q$. Hence, $a^{q} M \subseteq Q$ for some $q>0$. This means that $a \in r_{M}(Q)=\mathfrak{p}$. So $(Q: M) \subseteq(Q: x) \subseteq \mathfrak{p}$, and hence $r(Q: x)=\mathfrak{p}$, after taking radicals. Now let $a b \in(Q: x)$. If $a \notin \mathfrak{p}$ then $b x \in Q$. After all, $a(b x) \in Q$ and if $b x \notin Q$ then $a \in r(Q: M)=\mathfrak{p}$ since Q is a primary submodule. Thus, either $a \in \mathfrak{p}=r(Q: x)$ or $b \in(Q: x)$. This means that $(Q: x)$ is a \mathfrak{p}-primary ideal in A.
4.22. Let N be a submodule of M. We say that N is decomposable if $N=\bigcap_{i=1}^{n} Q_{i}$ where each Q_{i} is a primary submodule of Q. This decomposition is said to be minimal if $r_{M}\left(Q_{i}\right) \neq r_{M}\left(Q_{j}\right)$ for $i \neq j$ and if every i we have $Q_{i} \nsupseteq \bigcap_{j \neq i} Q_{j}$. Supposing N is a decomposable submodule, show that the primes belonging to N are uniquely determined, and that they are the primes belonging to 0 in M / N.

Let $N=\bigcap_{i=1}^{n} Q_{i}$ be a minimal primary decomposition. For $x \in M$

$$
(N: x)=\left(\bigcap Q_{i}: x\right)=\bigcap\left(Q_{i}: x\right)
$$

Taking radicals yields

$$
r(N: x)=\bigcap r\left(Q_{i}: x\right)=\bigcap_{x \notin Q_{i}} r\left(Q_{i}: x\right)=\bigcap_{x \notin Q_{i}} \mathfrak{p}_{i}
$$

where $\mathfrak{p}_{i}=r_{M}\left(Q_{i}\right)$. So if $r(N: x)$ is a prime ideal, then $r(N: x)=\mathfrak{p}_{i}$ for some i. Conversely, choose $x_{i} \in \bigcap_{j \neq i} Q_{j}-Q_{i}$ and notice that $r\left(N: x_{i}\right)=\mathfrak{p}_{i}$. Therefore, the \mathfrak{p}_{i} are precisely the prime ideals in the set of all $r(N: x)$ as x ranges over M. This means that the primes belonging to N are unique, defined independently of the particular primary decomposition of \mathfrak{a}. Notice that $N \subseteq Q_{i}$ for each i, and so $0=\bigcap_{1}^{n} Q_{i} / N$ is a primary decomposition of 0 in M / N. This is clearly a minimal primary decomposition with $r_{M / N}\left(Q_{i} / N\right)=r_{M}\left(Q_{i}\right)$. So the primes belonging to N are precisely the primes belonging to 0 in M / N, by the uniqueness theorem proved above.

4.23. Prove analogues of Propositions 4.6 to 4.11 .

Let N be a decomposable submodule of M, with minimal primary decomposition $N=\bigcap Q_{i}$. Write $\mathfrak{p}_{i}=r\left(Q_{i}: M\right)$ and notice that $(N: M)=\bigcap\left(Q_{i}: M\right) \subseteq\left(Q_{i}: M\right) \subseteq \mathfrak{p}_{i}$ for every i. Suppose \mathfrak{p} be a prime ideal in A containing $(N: M)$. Then $\mathfrak{p} \supseteq r(N: M)=\bigcap r\left(Q_{i}: M\right)=\bigcap \mathfrak{p}_{i}$ so that $\mathfrak{p}_{i} \subseteq \mathfrak{p}$ for some i. This means that the minimal elements in the set of all prime ideals containing $(N: M)$ are precisely the minimal elements in the set of prime ideals belonging to N.

Suppose that 0 is a decomposable submodule with minimal primary decomposition $0=\bigcap Q_{i}$ and $\mathfrak{p}_{i}=r_{M}\left(Q_{i}\right)$. Notice that $a \in A$ is a zero-divisor in M iff $a \in \bigcup_{0 \neq x \in M} \operatorname{Ann}(x)$. The set $D(M)$ of $a \in A$ that are zero-divisors clearly satisfies $r(D(M))=D(M)$ so that $D(M)=\bigcup_{0 \neq x \in M} r(0: x)$. From the work done in exercise 4.22, we know that $r(0: x)=\bigcap_{x \notin Q_{i}} \mathfrak{p}_{i}$, and hence $r(0: x) \subseteq \mathfrak{p}_{j}$ for some j, since x is assumed to be nonzero. Therefore, $D(M) \subseteq \bigcup_{1}^{n} \mathfrak{p}_{i}$. We have $\bigcup_{1}^{n} \mathfrak{p}_{i} \subseteq D(M)$ since $\mathfrak{p}_{i}=r(0: x)$ for some $x \neq 0$. Thus, we have the equality $\bigcup_{1}^{n} \mathfrak{p}_{i}=D(M)$.

Let S be a multiplicatively closed subset of A. Suppose Q is a \mathfrak{p}-primary submodule of M. Assume \mathfrak{p} meets S at s, so that $s^{n} M \subseteq Q$ for some n. Then $S^{-1} Q$ contains $m / t=\left(s^{n} m\right) /\left(s^{n} t\right)$ for every $m \in M$ and $t \in S$. This means that $S^{-1} Q=S^{-1} M$. On the other hand, assume that $\mathfrak{p} \cap S=\emptyset$. Then $S^{-1} Q$ is an $S^{-1} \mathfrak{p}$-primary submodule of $S^{-1} M$. We have the canonical map $f: M \rightarrow S^{-1} M$ that is a homomorphism of A-modules. Then $f^{-1}\left(S^{-1} Q\right)=Q$.

Let N be a decomposable submodule of M, with minimal primary decomposition $N=\bigcap_{1}^{n} Q_{i}$. Suppose S is a multiplicatively closed subset of A. Write $\mathfrak{p}_{i}=r_{M}\left(Q_{i}\right)$ and assume that $\mathfrak{p}_{i} \cap S=\emptyset$ for $1 \leq i \leq m$, and that \mathfrak{p}_{i} meets S for $m<i \leq n$. By the above paragraph, $S^{-1} N=\bigcap_{1}^{n} S^{-1} Q_{i}=\bigcap_{1}^{m} S^{-1} Q_{i}$ is a primary decomposition of $S^{-1} N$ in $S^{-1} M$. Since the \mathfrak{p}_{i} are distinct, so are the $S^{-1} \mathfrak{p}_{i}$ for $1 \leq i \leq m$. If $S^{-1} Q_{m} \supseteq \bigcap_{1<i<m} S^{-1} Q_{i}=$ $S^{-1}\left(\bigcap_{1 \leq i<m} Q_{i}\right)$ then $Q_{m}=\left(S^{-1} Q_{m}\right)^{c} \supseteq\left(S^{-1} \bigcap_{1 \leq i<m} Q_{i}\right)^{c} \supseteq \bigcap_{1 \leq i<m} Q_{i}$. So $S^{-1} N=\bigcap_{1}^{m} S^{-1} Q_{i}$ is a minimal primary decomposition. Contracting this, we get $S(N)=\left(S^{-1} N\right)^{c}=\bigcap_{1}^{m}\left(S^{-1} Q_{i}\right)^{c}=\bigcap_{1}^{m} Q_{i}$. This is a minimal primary decomposition of $S(N)$ in M.

Let N be a decomposable submodule of M, with minimal primary decomposition $N=\bigcap_{1}^{n} Q_{i}$. Suppose Σ is an isolated set of prime ideals belonging to N, where we write $\mathfrak{p}_{i}=r_{M}\left(Q_{i}\right)$ as usual. Define $Q_{\Sigma}=\bigcap_{\mathfrak{p}_{i} \in \Sigma} Q_{i}$. Clearly, $S=A-\bigcup_{\mathfrak{p}_{i} \in \Sigma}$ is a multiplicatively closed subset of A. Then $Q_{\Sigma}=S(N)$ depends only on Σ, and is independent of the minimal primary decomposition of N. In particular, the isolated components of N are uniquely determined.

Chapter 5: Integral Dependence and Valuations

5.1. Let $f: A \rightarrow B$ be an integral homomorphism of rings. Show that f^{*} is a closed map.

Let \mathfrak{q} be a prime ideal in B. I claim that $f^{*}(V(\mathfrak{q}))=V\left(f^{*}(\mathfrak{q})\right)$. Clearly $f^{*}(V(\mathfrak{q})) \subseteq V\left(f^{*}(\mathfrak{q})\right)$. Now if $\mathfrak{p} \in V\left(f^{*}(\mathfrak{q})\right)$ then $\operatorname{Ker}(f) \subseteq f^{*}(\mathfrak{q}) \subseteq \mathfrak{p}$ so that $f\left(f^{*}(\mathfrak{q})\right) \subseteq f(\mathfrak{p})$ is a chain of prime ideals in $f(A)$. Observe that $\mathfrak{q} \cap f(A)=f\left(f^{-1}(\mathfrak{q})\right)=f\left(f^{*}(\mathfrak{q})\right)$. Since B is integral over $f(A)$, there is a prime ideal \mathfrak{r} in B containing \mathfrak{q} with $\mathfrak{r} \cap f(A)=f(\mathfrak{p})$. So $\mathfrak{p}=f^{-1}(f(\mathfrak{p}))=f^{-1}(\mathfrak{r} \cap f(A))=f^{-1}(\mathfrak{r})=f^{*}(\mathfrak{r})$ with $\mathfrak{r} \in V(\mathfrak{q})$. This means that f^{*} is a surjective map, and hence $f^{*}(V(\mathfrak{q}))=V\left(f^{*}(\mathfrak{q})\right)$, showing that f^{*} is a closed map.
5.2. Let A be a subring of B so that B is integral over A, and let $f: A \rightarrow \Omega$ be a homomorphism of A into an algebraically closed field Ω. Show that f can be extended to a map $B \rightarrow \Omega$.

By a straightforward application of Zorn's Lemma there is a subring C of B containing A so that f can be extended to a map $C \rightarrow \Omega$ but such that f cannot be extended to a map defined on a subring of B properly containing C. So assume that $C \neq B$ so that we can derive a contradiction. If $b \notin C$ then $p(b)=0$ for some monic $p \in C[x]$, where x is an indeterminate. Assume that p is chosen to have minimal degree, so that p is an irreducible polynomial. Since Ω is algebraically closed, p has a root ξ in Ω. Now define $\bar{f}: C[x] \rightarrow \Omega$ by $\bar{f}\left(\sum c_{i} x^{i}\right)=\sum f\left(c_{i}\right) \xi^{i}$. Then \bar{f} is a ring homomorphism whose kernel contains (p). Hence, \bar{f} induces a ring homomorphism $C[x] /(p) \rightarrow \Omega$ given by $\sum c_{i} x^{i}+(p) \rightarrow \sum f\left(c_{i}\right) \xi^{i}$. But $C[b]$ and $C[x] /(p)$ are isomorphic rings, so that there is a ring homomorphism $C[b] \rightarrow \Omega$ given by $\sum c_{i} b^{i} \mapsto \sum f\left(c_{i}\right) \xi^{i}$. This map extends f to the subring $C[b]$ of B that properly contains C; a contradiction. Hence, f can indeed be extended to a map $B \rightarrow \Omega$.
5.3. Let $f: B \rightarrow B^{\prime}$ be a homomorphism of A-algebras, and let C be an A-algebra. If f is integral, prove that $f \otimes 1: B \otimes A \rightarrow B^{\prime} \otimes C$ is integral.
Let $b^{\prime} \otimes c$ be a generator of $B^{\prime} \otimes C$. It suffices to show that $b^{\prime} \otimes c$ is integral over $(f \otimes 1)(B \otimes C)$. Suppose b^{\prime} is a root of the polynomial $p(x)=\sum_{i=0}^{n} f\left(b_{i}\right) x^{i}$. Define a polynomial $q(x)=\sum_{i=0}^{n}(f \otimes 1)\left(b_{i} \otimes c^{n-i}\right) x^{i}$. Then $q\left(b^{\prime} \otimes c\right)=p\left(b^{\prime}\right) \otimes c^{n}=0$. So we are done.
5.4. Suppose $A \subseteq B$ are rings with B integral over A. Let \mathfrak{n} be a maximal ideal of B and let $\mathfrak{m}=A \cap \mathfrak{n}$ be the corresponding maximal ideal of A. Must $B_{\mathfrak{n}}$ be integral over $A_{\mathfrak{m}}$?
Let k be a field and consider the subring $k\left[x^{2}-1\right]$ of $k[x]$. Since the polynomial $x-1$ is irreducible over k, and since $k[x]$ is a principal ideal domain, the ideal $\mathfrak{n}=(x-1)$ is maximal in $k[x]$. Thus, $\mathfrak{m}=k\left[x^{2}-1\right] \cap \mathfrak{n}=\left(\right.$ l.c.m. $\left.\left\{x^{2}-1, x-1\right\}\right)=\left(x^{2}-1\right)$ is a maximal ideal in $k\left[x^{2}-1\right]$.

Notice that $x \in k[x]$ is integral over $k\left[x^{2}-1\right]$ since x is a root of the polynomial $p(\xi)=\xi^{2}-\left[\left(x^{2}-1\right)+1\right]$. Since the set of all elements integral over $k\left[x^{2}-1\right]$ form a subring of $k[x]$, and since x is integral over $k\left[x^{2}-1\right]$, we see that $k[x]$ is indeed integral over $k\left[x^{2}-1\right]$.

For the sake of deriving a contradiction, suppose $k[x]_{\mathfrak{n}}$ is integral over $k\left[x^{2}-1\right]_{\mathfrak{m}}$. Then in particular, $1 /(x+1)$ is integral over $k\left[x^{2}-1\right]_{\mathfrak{m}}$ since $x+1 \in k[x]-\mathfrak{n}$. This means that there are polynomials $p_{1}, \ldots, p_{n} \in k\left[x^{2}-1\right]$ and polynomials $q_{1}, \ldots, q_{n} \in k\left[x^{2}-1\right]-\mathfrak{m}$ for which

$$
(x+1)^{-n}+(x+1)^{-(n-1)} \frac{p_{n-1}}{q_{n-1}}+\cdots+(x+1)^{-1} \frac{p_{1}}{q_{1}}+\frac{p_{0}}{q_{0}}=0
$$

Define $\hat{q}_{i}=\prod_{j \neq i} q_{j}$ and $q=\prod_{1}^{n} q_{i}$. Clearing the denominators in the above equation yields

$$
(x+1)^{n} p_{0} \hat{q}_{0}+(x+1)^{n-1} p_{1} \hat{q}_{1}+\cdots+(x+1) p_{n-1} \hat{q}_{n-1}+q=0
$$

This shows that $x+1$ divides q. Since $q \in k\left[x^{2}-1\right]$, we can choose scalars $r_{0}, \ldots, r_{m} \in k$ satisfying

$$
q=r_{0}+r_{1}\left(x^{2}-1\right)+\cdots+r_{m}\left(x^{2}-1\right)^{2 m}
$$

Since $x+1$ divides q and $x^{2}-1$, we see that $r_{0}=0$, and so $q \in \mathfrak{m}$. But q is the product of elements $q_{1}, \ldots, q_{n} \notin \mathfrak{m}$, and so we have a contradiction. This contradiction shows us that $1 /(x+1)$ is not integral over $k\left[x^{2}-1\right]_{\mathfrak{m}}$. Hence, $k[x]_{\mathfrak{n}}$ is not integral over $k\left[x^{2}-1\right]_{\mathfrak{m}}$.

5.5. Let $A \subseteq B$ be rings with B integral over A. Prove the following.

a. If $x \in A$ is a unit in B then x is a unit in A.

Since $x^{-1} \in B$ we have an equation of the form

$$
x^{-n}+a_{n-1} x^{-n+1}+\cdots+a_{1} x^{-1}+a_{0}=
$$

with $n>0$ and each $a_{i} \in A$. Then

$$
x^{-1}=-\left(a_{0} x^{n-1}+a_{1} x^{n-2}+\cdots+a_{n-1}\right) \in A
$$

since $x \in A$. That is, x is invertible in A.
b. $\mathfrak{R}(A)=A \cap \mathfrak{R}(B)$.

If \mathfrak{m} is a maximal ideal in B then $\mathfrak{m} \cap A$ is a maximal ideal in A. If \mathfrak{n} is a maximal ideal in A, then \mathfrak{n} is a prime ideal in A, so that $\mathfrak{n}=A \cap \mathfrak{m}$ for some prime ideal \mathfrak{m} in B. But now \mathfrak{m} is a maximal ideal in B. So

$$
\mathfrak{R}(A)=\bigcap \mathfrak{m}=\bigcap(\mathfrak{m} \cap A)=\bigcap \mathfrak{m} \cap A=\mathfrak{R}(B) \cap A
$$

where the first intersection is taken over all maximal ideals in A and the last intersection is taken over all maximal ideals in B.
5.6. Let B_{1}, \ldots, B_{n} be integral A-algebras. Show that $B=\prod_{i=1}^{n} B_{i}$ is an integral A-algebra as well.

It suffices to assume $n=2$. If B_{i} is given the A-algebra structure induced by $f_{i}: A \rightarrow B_{i}$, then B is given the A-algebra structure induced by $f: A \rightarrow B$ with $f(a)=\left(f_{1}(a), f_{2}(a)\right)$. Suppose $\left(b_{1}, b_{2}\right) \in B$ so that b_{1} is integral over $f_{1}(A)$. Choose a monic polynomial

$$
p(x)=x^{m}+\sum_{i=0}^{m-1} f_{1}\left(a_{i}\right) x^{i} \quad \text { such that } p\left(b_{1}\right)=0
$$

Then define a new monic polynomial with coefficients in $f(A)$ by

$$
p^{\prime}(x)=x^{m}+\sum_{i=0}^{m-1} f\left(a_{i}\right) x^{i}
$$

so that $p^{\prime}\left(b_{1}, b_{2}\right)=\left(0, b_{2}^{\prime}\right)$ for some $b_{2}^{\prime} \in B$. Choose a monic polynomial

$$
q(x)=x^{n}+\sum_{i=0}^{n-1} f_{2}\left(a_{i}^{\prime}\right) x^{i} \quad \text { such that } q\left(b_{2}^{\prime}\right)=0
$$

Then define a new monic polynomial with coefficients in $f(A)$ by

$$
q^{\prime}(x)=x^{n}+\sum_{i=0}^{n-1} f\left(a_{i}^{\prime}\right) x^{i}
$$

so that $q^{\prime}\left(0, b_{2}^{\prime}\right)=\left(f\left(a_{0}^{\prime}\right), 0\right)$. Now define a monic polynomial r with coefficients in $f(A)$ by the equation

$$
r(x)=x^{2}+\left(-f\left(a_{0}^{\prime}\right),-f\left(a_{0}^{\prime}\right)\right) x
$$

so that $r\left(f\left(a_{0}^{\prime}\right), 0\right)=(0,0)$. To summarize, $\left(b_{1}, b_{2}\right)$ is integral over $f(A)\left[\left(0, b_{2}^{\prime}\right),\left(f\left(a_{0}^{\prime}\right), 0\right)\right]$, the element $\left(0, b_{2}^{\prime}\right)$ is integral over $f(A)\left[\left(f\left(a_{0}^{\prime}\right), 0\right)\right]$, and lastly $\left(f\left(a_{0}^{\prime}\right), 0\right)$ is integral over $f(A)$. Working backwards reveals that $\left(b_{1}, b_{2}\right)$ is integral over $f(A)$. Hence, $B_{1} \times B_{2}$ is integral over A.
5.7. Let $A \subset B$ be rings so that $B-A$ is closed under multiplication. Show that A is integrally closed in B.
Let C be the integral closure of A in B and suppose that $A \subsetneq C$. Define

$$
n=\min \{d: \text { the irreducible polynomial of some } x \in C-A \text { has degree } d\}
$$

Clearly $n>1$. Suppose $x \in C-A$ has the irreducible polynomial

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0
$$

Then by minimality $x^{n-1}+a_{1} x^{n-2}+\cdots+a_{n-1} \notin A$. But

$$
x\left(x^{n-1}+a_{1} x^{n-2}+\cdots+a_{n-1}\right)=-a_{n} \in A
$$

showing that $B-A$ is not closed under multiplication.
5.8. Suppose $A \subseteq B$ are rings and let C be the integral closure of A in B. Let f, g be monic polynomials in $B[x]$ so that $f g \in C[x]$. Show that $f, g \in C[x]$.
Suppose for the moment that there is a ring D containing B over which f and g split completely into linear factors. Then we can write $f=\Pi\left(x-a_{j}\right)$ and $g=\Pi\left(x-b_{j}\right)$ for appropriate a_{j}, b_{j} in D. Notice that a_{j}, b_{j} are roots of $f g$ in D. Since $f g$ is a monic polynomial in $C[x]$, this means that the a_{j}, b_{j} are integral over C. Now the coefficients of f and g are polynomials in terms of the a_{j}, b_{j}. So these coefficients are themselves integral over C, and are hence integral over A. Since the coefficients of f and g lie in B, they are in C by definition of C. In other words, f and g are in $C[x]$.

So now it suffices to prove that for every ring B and every $f \in B[x]$, there is a ring D containing B over which f splits completely into linear factors. Of course we proceed by induction on $\operatorname{deg}(f)>0$. Let $D^{\prime}=B[x] /(f)$, and consider the natural map $B \rightarrow B[x] \rightarrow B[x] /(f)=D^{\prime}$. This map is injective since f is monic and has degree greater than 0 . Hence, we can consider B as being a subring of D^{\prime}, and we can consider f as being an element of $D^{\prime}[x]$. As such, f has the root $x+(f)$. Denote this root by a. Notice that we can choose a monic $q \in D^{\prime}[x]$ satisfying $f(x)=q(x)(x-a)$ and $\operatorname{deg}(q)=\operatorname{deg}(f)-1$. By induction there is a ring D containing D^{\prime} over which q splits completely into linear factors. Now B is a subring of D and f splits completely over D into linear factors. So we are done.
5.9. Suppose $A \subseteq B$ are rings with C the integral closure of A in B. Show that $C[x]$ is the integral closure of $A[x]$ in $B[x]$.

Let $c x^{m} \in C[x]$ and suppose that c is a root of the polynomial $\sum_{i=0}^{n} a_{i} \xi^{i} \in A[\xi]$. Then $c x^{m}$ is a root of the polynomial $\sum_{i=0}^{n}\left(a_{i} x^{m n-i m}\right) \xi^{i} \in A[x][\xi]$ so that $c x^{m}$ is integral over $A[x]$. Consequently, $C[x]$ is contained in the integral closure of $A[x]$ in $B[x]$. Now suppose that $f \in B[x]$ is integral over $A[x]$ and choose $g_{0}, \ldots, g_{m} \in A[x]$ satisfying

$$
f^{m}+g_{m-1} f^{m-1}+\cdots+g_{1} f+g_{0}=0
$$

Let r be an integer that is greater than m and every $\operatorname{deg}\left(g_{i}\right)$. Define

$$
\tilde{f}=f-x^{r}
$$

Of course $-\tilde{f}$ is a monic polynomial in $B[x]$ of degree r and

$$
\left(\tilde{f}+x^{r}\right)^{m}+g_{m-1}\left(\tilde{f}+x^{r}\right)^{m-1}+\cdots+g_{1}\left(\tilde{f}+x^{r}\right)+g_{0}=0
$$

We can rewrite this as

$$
\tilde{f}^{m}+h_{m-1} \tilde{f}^{m-1}+\cdots+h_{1} \tilde{f}+h_{0}=0
$$

for appropriate $h_{i} \in B[x]$. Observe that

$$
(-\tilde{f})\left(\tilde{f}^{m-1}+h_{m-1} \tilde{f}^{m-2}+\cdots+h_{1}\right)=h_{0}
$$

But $h_{0}=x^{r m}+g_{m-1} x^{r(m-1)}+\cdots+g_{1} x^{r}+g_{0} \in A[x] \subseteq C[x]$ and $\operatorname{deg}\left(h_{0}\right)=r m$ with leading coefficient equal to 1. After all

$$
\operatorname{deg}\left(g_{i} x^{r i}\right)=\operatorname{deg}\left(g_{i}\right)+r i<r(i+1) \leq r m \quad \text { for } 0 \leq i \leq m-1
$$

So h is a monic polynomial. This implies that

$$
\tilde{f}^{m-1}+h_{m-1} \tilde{f}^{m-2}+\cdots+h_{1}
$$

is monic as well. Now exercise 5.8 tells us that $-\tilde{f} \in C[x]$. Since $x^{r} \in C[x]$ we see that $f \in C[x]$. So we are done.
5.10. Consider the following conditions and show that $a \Rightarrow b \Leftrightarrow c$.
a. The $\operatorname{map} f^{*}$ is closed.
b. The map f has the going-up property.
c. The $\operatorname{map} f^{*}: \operatorname{Spec}(B / \mathfrak{q}) \rightarrow \operatorname{Spec}(A / \mathfrak{p})$ is onto whenever \mathfrak{q} is a prime ideal in B and $\mathfrak{p}=f^{*}(\mathfrak{q})$.
$(a \Rightarrow b)$ Suppose that $\mathfrak{p}_{1} \subseteq \mathfrak{p}_{2}$ is a chain of prime ideals in $f(A)$ with $\mathfrak{p}_{1}=f(A) \cap \mathfrak{q}_{1}$, where \mathfrak{q}_{1} is a prime ideal in B. Then $f^{-1}\left(\mathfrak{p}_{2}\right) \in V\left(f^{*}\left(\mathfrak{q}_{1}\right)\right)$ since $f^{*}\left(\mathfrak{q}_{1}\right)=f^{-1}\left(\mathfrak{p}_{1}\right) \subseteq f^{-1}\left(\mathfrak{p}_{2}\right)$. Since $f^{*}\left(V\left(\mathfrak{q}_{1}\right)\right)=V\left(f^{*}\left(\mathfrak{q}_{1}\right)\right)$ there is a prime ideal \mathfrak{q}_{2} in B containing \mathfrak{q}_{1} such that $f^{-1}\left(\mathfrak{p}_{2}\right)=f^{*}\left(\mathfrak{q}_{2}\right)=f^{-1}\left(f(A) \cap \mathfrak{q}_{2}\right)$. This means that $\mathfrak{p}_{2}=f(A) \cap \mathfrak{q}_{2}$. Therefore, B and $f(A)$ satisfy the conclusions of the going-up theorem, showing that f has the going-up property.
$(b \Rightarrow c)$ Let \mathfrak{q} be a prime ideal in B and write $\mathfrak{p}=\mathfrak{q}^{c}$. We have to show that the map $f^{*}: V(\mathfrak{q}) \rightarrow V(\mathfrak{p})$ is surjective. If $\mathfrak{p}^{\prime} \in V(\mathfrak{p})$ then $\operatorname{Ker}(f) \subseteq \mathfrak{p} \subseteq \mathfrak{p}^{\prime}$ so that $f(\mathfrak{p}) \subseteq f\left(\mathfrak{p}^{\prime}\right)$ is a chain of prime ideals in $f(A)$ with $\mathfrak{q} \cap f(A)=f(\mathfrak{p})$. Since f has the going-up property, there is a prime ideal \mathfrak{q}^{\prime} in B containing \mathfrak{q} so that $\mathfrak{q}^{\prime} \cap f(A)=f\left(\mathfrak{p}^{\prime}\right)$. Now $f^{*}\left(\mathfrak{q}^{\prime}\right)=f^{-1}\left(f\left(\mathfrak{p}^{\prime}\right)\right)=\mathfrak{p}^{\prime}$. This means that f^{*} is surjective.
$(c \Rightarrow b)$ Let \mathfrak{p} be a prime ideal in $f(A)$ so that $f^{-1}(\mathfrak{p})$ is a prime ideal in A.
5.10^{\prime}. Consider the following conditions and show that $a \Rightarrow b \Leftrightarrow c$.
a. The map f^{*} is open.
b. The $\operatorname{map} f$ has the going-down property.
c. The $\operatorname{map} f^{*}: \operatorname{Spec}\left(B_{\mathfrak{q}}\right) \rightarrow \operatorname{Spec}(A \mathfrak{p})$ is onto whenever \mathfrak{q} is a prime ideal in B and $\mathfrak{p}=f^{*}(\mathfrak{q})$.

$$
\begin{aligned}
& (a \Rightarrow b) \\
& (b \Rightarrow c) \\
& (c \Rightarrow b)
\end{aligned}
$$

5.11. Let $f: A \rightarrow B$ be a flat homomorphism of rings. Then f has the going-down property.

By exercise 3.18 we know that $f^{*}: \operatorname{Spec}\left(B_{\mathfrak{q}}\right) \rightarrow \operatorname{Spec}\left(A_{\mathfrak{p}}\right)$ is a closed map whenever \mathfrak{q} is a prime ideal of B and $\mathfrak{p}=\mathfrak{q}^{c}$. But now exercise 3.10 tells us that f has the going-down property.
5.12. Let G be a finite group of automorphisms of the ring A. Prove that A is integral over A^{G}. Let S be a multiplicatively closed subset of A such that $\sigma(S)=S$ for every $\sigma \in G$. Define $S^{G}=S \cap A^{G}$. Show that the action of G on A extends to an action on $S^{-1} A$, and that $\left(S^{G}\right)^{-1} A^{G} \cong\left(S^{-1} A\right)^{G}$.

It is clear that A^{G} is a subring of A. Let $a \in A$ and consider

$$
p(x)=\prod_{\sigma \in G}(x-\sigma(a))
$$

Notice that $p(a)=0$ since 1_{G} induces the identity autmorphism on A. Label the elements of G as $\sigma_{1}, \ldots, \sigma_{n}$ assuming that σ_{1} is the identity map of A, and observe that $p(x)=x^{n}-a_{1} x^{n-1}+\cdots+(-1)^{n-1} a_{n-1} x+(-1)^{n} a_{n}$ where

$$
a_{k}=\sum_{i_{1}<\cdots<i_{k}} \sigma_{i_{1}}(a) \cdots \sigma_{i_{k}}(a)
$$

It follows that $\tau\left(a_{k}\right)=a_{k}$ for any $\tau \in G$. In other words, the coefficients of p are elements of A^{G}. Consequently, A is integral over A^{G}.

Clearly $S^{G}=\{s \in S: \sigma(s)=s$ for every $\sigma \in G\}$ is a multiplicatively closed subset of A. Now given $\sigma \in G$ and $a / s \in S^{-1} A$, define $\sigma(a / s)=\sigma(a) / \sigma(s)$. Suppose that $a / s=a^{\prime} / s^{\prime}$ in $S^{-1} A$ so that $s^{\prime \prime}\left(a s^{\prime}-a^{\prime} s\right)=0$ for some $s^{\prime \prime} \in S$. Then $\sigma\left(s^{\prime \prime}\right)\left(\sigma(a) \sigma\left(s^{\prime}\right)-\sigma\left(a^{\prime}\right) \sigma(s)\right)$ and $\sigma\left(s^{\prime \prime}\right) \in S$ so that $\sigma(a) / \sigma(s)=\sigma\left(a^{\prime}\right) / \sigma\left(s^{\prime}\right)$ in $S^{-1} A$. This means that σ extends to a well-defined map $S^{-1} A \rightarrow S^{-1} A$. Clearly this extension is a surjective homomorphism of rings. Now suppose that $0 / 1=\sigma(a / s)=\sigma(a) / \sigma(s)$ so that $s^{\prime} \sigma(a)=0$ for some $s^{\prime} \in S$. Now $\sigma(S)=S$ so that $s^{\prime}=\sigma\left(s^{\prime \prime}\right)$ for some $s^{\prime \prime} \in S$, implying that $\sigma\left(s^{\prime \prime} a\right)=0$ and hence $s^{\prime \prime} a=0$. This means that $a / s=0 / 1$ in $S^{-1} A$. In other words, σ extends to an automorphism of $S^{-1} A$. It is also clear that the extension of the composition equals the composition of the extensions, so that G is a group of automorphisms of $S^{-1} A$.

Since the natural map $A^{G} \rightarrow S^{-1} A$ sends elements of S^{G} to units of $S^{-1} A$, there is a map $\left(S^{G}\right)^{-1} A^{G} \rightarrow S^{-1} A$ given by $a / s \mapsto a / s$. I claim that this map is injective. If $a \in A^{G}$ and $s \in S^{G}$ are such that $a / s=0 / 1$ in $S^{-1} A$ then $t a=0$ for some $t \in S$. In particular, $t \prod_{\sigma \in G^{*}} \sigma(t) a=0$ where $t \prod_{\sigma \in G^{*}} \sigma(t) \in S^{G}$. So $a / s=0 / 1$ in $\left(S^{G}\right)^{-1} A^{G}$. This means that the map $\left(S^{G}\right)^{-1} A^{G} \rightarrow S^{-1} A$ is injective. Clearly $\sigma(a / s)=a / s$ whenever $a \in A^{G}$ and $s \in S^{G}$, and hence the image of $\left(S^{G}\right)^{-1} A^{G}$ in $S^{-1} A$ is contained in $\left(S^{-1} A\right)^{G}$.

Now suppose that $x=a / s \in\left(S^{-1} A\right)^{G}$. Notice that $a / s=a s^{\prime} / s s^{\prime}$ with $s^{\prime}=\prod_{\sigma \neq \sigma_{1}} s$, and that $\sigma\left(s s^{\prime}\right)=s s^{\prime}$ for every $\sigma \in G$. We still have $x=a s^{\prime} / s s^{\prime}$. Since

$$
a s^{\prime} / s s^{\prime}=x=\sigma(x)=\sigma\left(a s^{\prime}\right) / \sigma\left(s s^{\prime}\right)=\sigma\left(a s^{\prime}\right) / s s^{\prime}
$$

there is, for every $\sigma \in G$, an element $u_{\sigma} \in S$ satisfying

$$
u_{\sigma}\left(a s^{\prime} s s^{\prime}-\sigma\left(a s^{\prime}\right) s s^{\prime}\right)=0
$$

Defining $u=\prod_{\sigma \in G} u_{\sigma}$ we see that

$$
u s s^{\prime}\left(a s^{\prime}-\sigma\left(a s^{\prime}\right)\right)=0 \quad \text { for every } \sigma \in G
$$

Define $v=\prod_{\sigma \neq \sigma_{1}} \sigma(u)$ so that

$$
u v s s^{\prime}\left(a s^{\prime}-\sigma\left(a s^{\prime}\right)\right)=0 \quad \text { and } u v s s^{\prime} \in S^{G}
$$

Then $\sigma\left(a s^{\prime} u v s s^{\prime}\right)=a s^{\prime} u v s s^{\prime}$ for all $\sigma \in G$. This means that $a s^{\prime} u v s s^{\prime} \in A^{G}$. Since

$$
x=a s^{\prime} u v s s^{\prime} / u v s s^{\prime} s s^{\prime}
$$

with as $s^{\prime} u v s s^{\prime} \in A^{G}$ and uvss'ss $s^{\prime} \in S^{G}$ we conclude that x is in the image of the map $\left(S^{G}\right)^{-1} A^{G} \rightarrow S^{-1} A$. So we have the desired isomorphism $\left(S^{G}\right)^{-1} A^{G} \cong S^{-1} A$.
5.13. In the situation above, let \mathfrak{p} be a prime ideal in A^{G} and define P as the set of prime ideals in A whose contraction is \mathfrak{p}. Show that G acts transitively on P. In particular, P is finite.

Suppose $\mathfrak{q} \in P$ and $\sigma \in G$ so that $\sigma(\mathfrak{q})$ is a prime ideal in A. It is easy to check that $\sigma(\mathfrak{q}) \cap A^{G}=\mathfrak{p}$. After all, if $a \in \sigma(\mathfrak{q}) \cap A^{G}$ with $a=\sigma\left(a^{\prime}\right)$ and $a^{\prime} \in \mathfrak{q}$, then $a^{\prime}=\sigma^{-1}(a)=a$ so that $a \in \mathfrak{q} \cap A^{G}=\mathfrak{p}$. Similarly, if $a \in \mathfrak{p}=\mathfrak{q} \cap A^{G}$ then $a=\sigma(a)$ so that $a \in \sigma(\mathfrak{q}) \cap A^{G}$. This means that G acts on P.

Now let \mathfrak{q}_{1} and \mathfrak{q}_{2} be elements in P. Suppose $x \in \mathfrak{q}_{1}$ and consider $y=\prod_{\sigma \in G} \sigma(x)$. Clearly $y \in A^{G}$ and $y \in \mathfrak{q}_{1}$ since 1_{G} induces the identity automorphism of A. Therefore, $y \in \mathfrak{q}_{1} \cap A^{G}=\mathfrak{p} \subseteq \mathfrak{q}_{2}$. Since \mathfrak{q}_{2} is a prime ideal, we see that $\sigma(x) \in \mathfrak{q}_{2}$ for some $\sigma \in G$. This means that $\mathfrak{q}_{2} \subseteq \bigcup_{\sigma \in G} \sigma\left(\mathfrak{q}_{1}\right)$. Now $\sigma\left(\mathfrak{q}_{1}\right)$ is a prime ideal for each $\sigma \in G$, allowing us to conclude that $\mathfrak{q}_{2} \subseteq \sigma\left(\mathfrak{q}_{1}\right)$ for some $\sigma \in G$. Since A is integral over A^{G} and $\sigma\left(\mathfrak{q}_{1}\right) \cap A^{G}=\mathfrak{p}=\mathfrak{q}_{2} \cap A^{G}$, we see by Corollary 5.9 that $\sigma\left(\mathfrak{q}_{1}\right)=\mathfrak{q}_{2}$. In other words, G acts transitively on P. Finally, P is a finite set since G is finite and acts transitively on P.
5.14. Let A be an integrally closed domain, K its field of fractions, and L a finite normal separable extension of K. Let G be the Galois group of L over K, and let B be the integral closure of A in L. Show that $\sigma(B)=B$ for every $\sigma \in G$, and that $A=B^{G}$.

Suppose that $b \in B$, let b satisfy the integral dependence relation $b^{n}+\sum_{i=0}^{n-1} a_{i} b^{i}=0$ where each $a_{i} \in A$, and let $\sigma \in G$. Then $\sigma(b)$ satisfies the integral dependence relation $\sigma(b)^{n}+\sum_{i=0}^{n-1} a_{i} \sigma(b)^{i}=0$ since σ fixes K and $A \subseteq K$. This means that $\sigma(B) \subseteq B$. Similarly, $\sigma^{-1}(B) \subseteq B$ so that $B \subseteq \sigma(B)$, and hence $\sigma(B)=B$ for every $\sigma \in G$. Now A is clearly contained in B^{G}, and $B^{G} \subseteq L^{G}=K$. But elements in B^{G} are integral over A, and A is algebraically closed in K, implying that $B^{G}=A$.
5.15. Let A be an integrally closed domain, K its field of fractions, L a finite extension field of K, and B the integral closure of A in L. Show that, if \mathfrak{p} is any prime ideal in A, then the set of prime ideals \mathfrak{q} in B that contract to \mathfrak{p} is finite.

Suppose for the moment that we can establish this result in the case that L / K is a separable extension or in the case that L / K is a purely inseparable extension. We know from field theory that there is an intermediate field $K \subset J \subset L$ so that J / K is a finite separable extension and L / J is a finite purely inseparable extension. Let C be the integral closure of A in J and notice that B is the integral closure of C in L. So by hypothesis, if \mathfrak{p} is any prime ideal in A then there are finitely many prime ideals in C that contract to \mathfrak{p}, label these $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{n}$. Again by hypothesis, for each i there are finitely many prime ideals in B that contract to \mathfrak{q}_{i}.

These are precisely the prime ideals of B that contract to \mathfrak{p}, and so finitely many prime ideals in B contract to \mathfrak{p}, establishing the claim. So it suffices to tackle the problem in the two special cases.

So suppose first that L is a finite separable extension of K. If x_{1}, \ldots, x_{n} generate L over K, then let p_{1}, \ldots, p_{n} be the minimal polynomials of x_{i} over K. Assuming L is embedded in its algebraic closure \bar{L}, let L^{\prime} be the subfield of \bar{L} generated by K and all of the roots of p_{1}, \ldots, p_{n}. Then L^{\prime} is an extension of L, L^{\prime} is a finite extension over K since each root of p_{1}, \ldots, p_{n} is algebraic over K, and L^{\prime} is a normal extension of K since it is generated over K by roots of irreducible polynomials. Further, since L is a separable extension of K, we know that each p_{i} is a separable polynomial, and so L^{\prime} is separable over K as well. Now define G to be the Galois group of L^{\prime} over K so that $L^{\prime G}=K$. Define B^{\prime} to be the integral closure of A in L^{\prime}. Exercise 5.14 tells us that the set of prime ideals P of B^{\prime} lying over \mathfrak{p} is finite. By the Going Up Theorem, if there is a prime ideal \mathfrak{q} in B that lies over \mathfrak{p}, then there is a prime ideal \mathfrak{r} in P that contracts to \mathfrak{q}. This means that there are finitely many prime ideals in B that contract to \mathfrak{p}.

Now assume that L is a finite purely inseparable extension of A. Let \mathfrak{q} be a prime ideal of B that contracts to A, where B is the integral closure of A in L. As we may assume that $L \neq K$ we conclude that $\operatorname{char}(K)$ is a prime p. If $x^{p^{m}} \in \mathfrak{p}$ for some $m \geq 0$, then $x^{p^{m}} \in \mathfrak{q}$ so that $x \in \mathfrak{q}$. On the other hand, if $x \in \mathfrak{q}$ then $x^{p^{m}} \in K$ for some $m \geq 0$ since L / K is purely inseparable. But now $x^{p^{m}} \in K \cap \mathfrak{q}=\mathfrak{p}$. This means that \mathfrak{q} consists of all $x \in L$ satisfying $x^{p^{m}} \in \mathfrak{p}$ for some $m \geq 0$. Hence, there is precisely one prime ideal of B lying over \mathfrak{p}. So we are done.
5.16. Suppose k is an infinite field and A a finitely generated k-algebra. Show that there exist $y_{1}, \ldots, y_{s} \in A$ algebraically independent over k such that A is integral over $k\left[y_{1}, \ldots, y_{r}\right]$.

Suppose A is generated by x_{1}, \ldots, x_{n} as a k-algebra. Renumber the $\left\{x_{i}\right\}$ and choose $r \geq 0$ so that x_{1}, \ldots, x_{r} are algebraically independent and each x_{i} is algebraic over $k\left[x_{1}, \ldots, x_{r}\right]$ for $r<i \leq n$. Proceed by induction on $n-r$. If $n-r=0$ then there is nothing to show. So suppose $n-r>0$ and choose a non-trivial algebraic dependence relation $f\left(x_{1}, \ldots, x_{n}\right)=0$. Let F be the homogeneous part of highest degree in f. Since k is infinite, there exist $\lambda_{1}, \ldots, \lambda_{n-1} \in k$ such that $\mu:=F\left(\lambda_{1}, \ldots, \lambda_{n-1}, 1\right) \neq 0$. After all, $F(\cdot, \ldots, \cdot, 1)$ is a non-zero polynomial in $n-1$ variables, and so it cannot induce the zero function on k^{n-1} when k is infinite. Now define $x_{i}^{\prime}=x_{i}-\lambda_{i} x_{n}$ for $1 \leq i<n$, and let $A^{\prime}=k\left[x_{1}^{\prime}, \ldots, x_{n-1}^{\prime}\right]$. I claim that x_{n} is integral over A^{\prime}. Let $d=\operatorname{deg}(F)$ and choose polynomials G_{j} in $n-1$ variables so that

$$
F\left(\xi_{1}, \ldots, \xi_{n}\right)=\sum_{j=0}^{d} \xi_{n}^{j} G_{j}\left(\xi_{1}, \ldots, \xi_{n-1}\right)
$$

Notice that each G_{j} is a homogeneous polynomial of degree $d-j$. Now let $\xi_{i}^{\prime}=\xi_{i}-\lambda_{i} \xi_{n}$ and compute

$$
\begin{aligned}
F\left(\xi_{1}, \ldots, \xi_{n}\right) & =\sum_{j=0}^{d} \xi_{n}^{j} G_{j}\left(\xi_{1}^{\prime}+\lambda_{1} \xi_{n}, \ldots, \xi_{n-1}^{\prime}+\lambda_{n-1} \xi_{n}\right) \\
& =\sum_{j=0}^{d} \xi_{n}^{j}\left[\xi_{n}^{d-j} G_{j}\left(\lambda_{1}, \ldots, \lambda_{n-1}, 1\right)+H_{j}\left(\xi_{1}^{\prime}, \ldots, \xi_{n-1}^{\prime}, \xi_{n}\right)\right] \\
& =\xi_{n}^{d} F\left(\lambda_{1}, \ldots, \lambda_{n-1}, 1\right)+\sum_{j=0}^{d} \xi_{n}^{j} H_{j}\left(\xi_{1}^{\prime}, \ldots, \xi_{n-1}^{\prime}, \xi_{n}\right)
\end{aligned}
$$

where each H_{j} is a polynomial in the variables $\xi_{1}^{\prime}, \ldots, \xi_{n-1}^{\prime}, \xi_{n}$ with degree strictly less than $d-j$ in ξ_{n}, and with coefficients in k. Define a new polynomial \tilde{F} by

$$
\tilde{F}(\xi)=\xi^{d}+\frac{1}{\mu} \sum_{j=0}^{d} \xi^{j} H_{j}\left(x_{1}^{\prime}, \ldots, x_{n-1}^{\prime}, \xi_{n}\right)
$$

Then \tilde{F} is a monic polynomial in ξ with coefficients in A^{\prime} and such that $\tilde{F}\left(x_{n}\right)=F\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=0$. Therefore, x_{n} is indeed integral over A^{\prime}. This means that $A=k\left[x_{1}, \ldots, x_{n}\right]=k\left[x_{1}^{\prime}, \ldots, x_{n-1}^{\prime}, x_{n}\right]$ is integral over A^{\prime}. By the induction hypothesis, there are $y_{1}, \ldots, y_{s} \in A^{\prime}$ algebraically independent over k such that A^{\prime} is integral over $A^{\prime}\left[y_{1}, \ldots, y_{s}\right]$. Now $y_{1}, \ldots, y_{s} \in A$ are algebraically independent over k and A is integral over $A\left[y_{1}, \ldots, y_{s}\right]$. We are finished.
5.16.' Suppose that k is an algebraically closed field and that X is an affine algebraic variety in k^{n} with coordinate ring $A \neq 0$. Show that there is a linear subspace L of dimension r in k^{n} and a linear mapping of k^{n} onto L that maps X onto L.
5.17. Let k be algebraically closed. Show that, if $\mathfrak{a} \neq(1)$ is an ideal in $A=k\left[t_{1}, \ldots, t_{n}\right]$, then $V(\mathfrak{a}) \neq \emptyset$. Deduce that every maximal ideal in A is of the form ($t_{1}-a_{1}, \ldots, t_{n}-a_{n}$) for some $a_{i} \in k$.
Let \mathfrak{m} be a maximal ideal in A containing \mathfrak{a}. Then $A / \mathfrak{m} \neq 0$ is a finitely generated k-algebra, since it is generated by $t_{1}+\mathfrak{m}, \ldots, t_{n}+\mathfrak{m}$ as a k-algebra. By Noether's Normalization Lemma, there are $y_{1}, \ldots, y_{s} \in A / \mathfrak{m}$ algebraically independent over k such that A / \mathfrak{m} is integral over $k\left[y_{1}, \ldots, y_{s}\right]$. But A / \mathfrak{m} is a field, so that $k\left[y_{1}, \ldots, y_{s}\right]$ is a field by Proposition 5.7. Since $k\left[y_{1}, \ldots, y_{s}\right]$ is a polynomial ring over k, we must have $s=0$ and $k\left[y_{1}, \ldots, y_{s}\right] \cong k$. So A / \mathfrak{m} is a finite algebraic extension of k. Since k is algebraically closed, we conclude that $A / \mathfrak{m}=k$. More precisely, A / \mathfrak{m} is generated by $1+\mathfrak{m}$ as a k-vector space. Now let a_{i} be the unique element in k satisfying $a_{i}+\mathfrak{m}=t_{i}+\mathfrak{m}$, so that $t_{i}-a_{i} \in \mathfrak{m}$. Then $\mathfrak{n}=\left(t_{1}-a_{1}, \ldots, t_{n}-a_{n}\right) \subseteq \mathfrak{m}$. But $A / \mathfrak{n} \cong k$ so that \mathfrak{n} is a maximal ideal, and hence $\mathfrak{n}=\mathfrak{m}$. Now $\left(a_{1}, \ldots, a_{n}\right) \in V(\mathfrak{m}) \subseteq V(\mathfrak{a})$. In particular, this means that $V(\mathfrak{a}) \neq \emptyset$.
5.18. Let k be a field and B a finitely generated k-algebra. Suppose B is a field. Show that B is a finite algebra extension of k.
Assume B is generated by x_{1}, \ldots, x_{n} as a k-algebra. If $n=1$ and $x_{1} \neq 0$, then $x_{1}^{-1}=p\left(x_{1}\right)$ where p is some polynomial with coefficients in k, so that $x_{1} p\left(x_{1}\right)=1$. If $d=\operatorname{deg}(p)$ then we can write x_{1}^{d+1} as a k-linear combination of $\left\{1, x_{1}, \ldots, x_{1}^{d}\right\}$ so that B is finitely generated as a k-vetor space, and hence B is a finite algebraic extension of k.

Therefore, assume that $n>1$. Define an integral subdomain $A=k\left[x_{1}\right]$ of B, and $K=k\left(x_{1}\right)$ as the field of fractions of A, contained in B since B is a field. Now B is a K-algebra generated by $\left\{x_{2}, \ldots, x_{n}\right\}$. By induction, B is a finite algebraic extension of K. In particular, x_{2}, \ldots, x_{n} satisfy monic polynomial equations with coefficients in K. Coefficients in K are of the form a / b for $a, b \in A$. Let f be the product of the denominators of all these coefficients. Then the coefficients a / b are elements of A_{f} when we consider $A \subset A_{f} \subset K \subset B$. So x_{2}, \ldots, x_{n} are integral over A_{f}. Since B is an A_{f}-algebra generated by $\left\{x_{2}, \ldots, x_{n}\right\}$, we see that B is integral over A_{f}, and hence that K is integral over A_{f}.

For the sake of deriving a contradiction, suppose that x_{1} is trascendental over k. Then A is a Euclidean domain since k is a field, and so A is a unique factorization domain. As such, A is integrally closed in K. By 5.12 this means that A_{f} is integrally closed in $K_{f}=K$. By the above, integral closure of A_{f} in K equals K, implying that $A_{f}=K$. In other words, $k[x]_{f}=k(x)$ for some $f \in k[x]$. This is impossible: let $p \in k[x]$ be irreducible, then $1 / p=g / f^{n}$ for some $n \in \mathbb{N}$ and some $g \in k[x]$ having no factor in common with f, implying that p is a factor of f, and in particular implying that $k[x]$ has finitely many irreducible elements. But an adaptation of Euclid's proof shows that $k[x]$ has infinitely many irreducible elements.

Therefore, x_{1} is algebraic over k. As a result, $K=k\left(x_{1}\right)$ is a finite algebraic extension of k. As B is a finite algebraic extension of K, we conclude that B is a finite algebraic extension of k, as claimed.
5.19. Deduce the result of exercise 17 from exercise 18.

Choose a maximal ideal \mathfrak{m} in A containing \mathfrak{a}. Notice that A / \mathfrak{m} is a finitely generated k-algebra, which is itself a field. So A / \mathfrak{m} is a finite algebraic extension of k by Corollary 5.24. But k is algebraically closed, so that A / \mathfrak{m} is generated by $1+\mathfrak{m}$ as a k-vector space. Let a_{i} be the unique element in k satisfying $a_{i}+\mathfrak{m}=t_{i}+\mathfrak{m}$, so that $t_{i}-a_{i} \in \mathfrak{m}$. Then $\mathfrak{n}=\left(t_{1}-a_{1}, \ldots, t_{n}-a_{n}\right) \subseteq \mathfrak{m}$. But $A / \mathfrak{n} \cong k$ so that \mathfrak{n} is a maximal ideal, and hence $\mathfrak{n}=\mathfrak{m}$. Now $\left(a_{1}, \ldots, a_{n}\right) \in V(\mathfrak{m}) \subseteq V(\mathfrak{a})$. In particular, this means that $V(\mathfrak{a}) \neq \emptyset$.
5.20. Let A be a subring of an integral domain B so that B is finitely generated over A. Show that there exists $0 \neq s \in A$ and elements $y_{1}, \ldots, y_{n} \in B$ algebraically independent over A such that B_{s} is integral over $\left(B^{\prime}\right)_{s}$, where $B^{\prime}=A\left[y_{1}, \ldots, y_{n}\right]$.

Let F be the field of fractions of B, let $S=A-\{0\}$, and define $K \subset F$ by $K=S^{-1} A$ so that K is the field of fractions of A. Supposing that B is generated by $\left\{z_{1}, \ldots, z_{m}\right\}$ as an A-algebra, we easily see that $S^{-1} B$ is generated by $\left\{z_{1}, \ldots, z_{m}\right\}$ as a K-algebra. Hence, we can apply Noether's Normalization Lemma to deduce the existence of $y_{1} / s_{1}, \ldots, y_{n} / s_{n} \in S^{-1} B$ algebraically independent over K and such that $S^{-1} B$ is integral over $K\left[y_{1} / s_{1}, \ldots, y_{n} / s_{n}\right]=K\left[y_{1}, \ldots, y_{n}\right]$. If s is any element in S, then we have a commutative diagram as below.

Now suppose p is some polyomial in n indeterminates with coefficients in A such that $p\left(y_{1}, \ldots, y_{n}\right)=0$. We can write

$$
p\left(\xi_{1}, \ldots, \xi_{n}\right)=\sum_{\alpha:\{1, \cdots, n\} \rightarrow A} a_{\alpha} \xi_{1}^{\alpha(1)} \cdots \xi_{n}^{\alpha(n)} \quad \text { with } a_{\alpha} \in A
$$

Define a polynomial \tilde{p} in n indeterminates with coefficients in K by

$$
\tilde{p}\left(\xi_{1}, \ldots, \xi_{n}\right)=\sum_{\alpha:\{1, \cdots, n\} \rightarrow A}\left(a_{\alpha} s_{1}^{\alpha(1)} \cdots s_{n}^{\alpha(n)}\right) \xi_{1}^{\alpha(1)} \cdots \xi_{n}^{\alpha(n)}
$$

Then $\tilde{p}\left(y_{1} / s_{1}, \ldots, y_{n} / s_{n}\right)=p\left(y_{1}, \ldots, y_{n}\right)=0$. Since $y_{1} / s_{1}, \ldots, y_{n} / s_{n}$ are algebraically independent over K, we see that $\tilde{p}=0$ and so $a_{\alpha} s_{1}^{\alpha(1)} \cdots s_{n}^{\alpha(n)}=0$ for all α. But every $s_{i} \in S=A-\{0\}$ so that each $a_{\alpha}=0$. This means that $p=0$, and hence y_{1}, \ldots, y_{n} are algebraically independent over A.

Now z_{1}, \ldots, z_{m} satisfy integral dependence relations $q_{i}\left(z_{i}\right)=0$ with coefficients from $K\left[y_{1}, \ldots, y_{n}\right]$. Define $d_{i}=\operatorname{deg}\left(q_{i}\right)$. Clearing denominators in all of the q_{i} simultaneously gives us an $s \in S$ and polynomials r_{i} with coefficients from $A\left[y_{1}, \ldots, y_{n}\right]$ so that $z_{i}^{d_{i}}+r_{i}\left(z_{i}\right) / s=0$ and $\operatorname{deg}\left(r_{i}\right)<d_{i}$ for every i. In particular, each z_{i} is integral over $\left(B^{\prime}\right)_{s}$. Consequently, B_{s} is integral over $\left(B^{\prime}\right)_{s}$ since $B_{s}=\left(B^{\prime}\right)_{s}\left[z_{1}, \ldots, z_{m}\right]$.

5.21. Let A and B be as in exercise 5.20. Show that there is $0 \neq s \in A$ such that, if Ω is an algebraically closed field and $f: A \rightarrow \Omega$ is a homomorphism satisfying $f(s) \neq 0$, then f can be extended to a homomorphisms $B \rightarrow \Omega$.

We use the same notation as in exercise 2 . Since y_{1}, \ldots, y_{n} are algebraically independent over A, we have an extension $f: A\left[y_{1}, \ldots, y_{n}\right] \rightarrow \Omega$ induced by defining $f\left(y_{i}\right)=0$ for every i. Now $f(s)$ is a unit in Ω since $f(s) \neq 0$. By the Universal Mapping Property for $A\left[y_{1}, \ldots, y_{n}\right]_{s}$, we have an extension $f: A\left[y_{1}, \ldots, y_{n}\right] \rightarrow \Omega$. Since B_{s} is integral over $A\left[y_{1}, \ldots, y_{n}\right]_{s}$ and since Ω is algebraically closed, exercise 5.2 tells us that we have
an extension $f: B_{s} \rightarrow \Omega$. Now restriction yields a map $f: B \rightarrow \Omega$ that is an extension of the original map $A \rightarrow \Omega$.
5.22. Let A and B be as in exercise 5.20. Show that the Jacobson radical $\mathfrak{R}(B)$ of B equals zero if $\mathfrak{R}(A)=0$.

Let $0 \neq v \in B$ and notice that A is a subring of the integral domain B_{v}. By exercise 5.21 there is $0 \neq s \in A$ such that, if Ω is an algebraically closed field and $f: A \rightarrow \Omega$ is a homomorphism satisfying $f(s) \neq 0$, then f can be extended to a homomorphism $B \rightarrow \Omega$. Let \mathfrak{m} be a maximal ideal of A not containing s. This exists since $s \notin \mathfrak{R}(A)=0$. Write $k=A / \mathfrak{m}$ and embed k in its algebraic closure Ω. Then the composition of the maps $A \rightarrow k \rightarrow \Omega$ is a homomorphism not sending s to 0 . So we can extend this to a map $g: B_{v} \rightarrow \Omega$. Clearly $g(v) \neq 0$ since $v=v / 1$ is a unit in B_{v} with inverse $1 / v$. Hence, $v \notin \operatorname{Ker}(g) \cap B$.
5.23. Show that the following are equivalent for a ring A.
a. Each prime ideal in A is an intersection of maximal ideals.
b In each homomorphic image of A, the nilradical equals the Jacobson radical.
c. Each non-maximal prime ideal in A equals the intersection of the prime ideals that strictly contain it.
$(a \Rightarrow b)$ Let \mathfrak{a} be a proper ideal in A. Every prime ideal in A / \mathfrak{a} is of the form $\mathfrak{p} / \mathfrak{a}$ where \mathfrak{p} is a prime ideal in A. By hypothesis, \mathfrak{p} is an intersection of maximal ideals (containing \mathfrak{p}). These maximal ideals correspond to maximal ideals in A / \mathfrak{a}. So every prime ideal in A / \mathfrak{a} is an intersection of maximal ideals. Hence, it suffices to show that $\mathfrak{N}(A)=\mathfrak{R}(A)$. As always $\mathfrak{N}(A) \subseteq \mathfrak{R}(A)$. Now every prime ideal in A contains $\mathfrak{R}(A)$ so that $\mathfrak{N}(A) \supseteq \mathfrak{R}(A)$, and therefore $\mathfrak{N}(A)=\mathfrak{R}(A)$.
$(a \Rightarrow c)$ Let \mathfrak{p} be a non-maximal prime ideal. By hypothesis, \mathfrak{p} is the intersection of all maximal ideals containing \mathfrak{p}. But these ideals strictly contain \mathfrak{p} since \mathfrak{p} is not a maximal ideal. Therefore, \mathfrak{p} equals the intersection of all prime ideals strictly containing \mathfrak{p}.
$(b \Rightarrow c)$ Let \mathfrak{p} be a non-maximal prime ideal in A so that A / \mathfrak{p} is an integral domain that is not a field. Then 0 is not a maximal ideal in A / \mathfrak{p}. Since $0=\mathfrak{N}(A / \mathfrak{p})=\mathfrak{R}(A / \mathfrak{p})$ we see that 0 is the intersection of all maximal ideals in A / \mathfrak{p}. This means that \mathfrak{p} is the intersection of all maximal ideals in A containing \mathfrak{p}, and hence is the intersection of all the prime ideals in A strictly containing \mathfrak{p}.
$(c \Rightarrow b)$ If b does not hold, then a does not hold, so that there is a prime ideal \mathfrak{p} that is properly contained in the intersection I of all maximal ideals in A containing \mathfrak{p}. Choose $f \in I-\mathfrak{p}$ and notice that $A_{f} \neq 0$, since $1 / 1=0 / 1$ in A_{f} implies that $f^{n}=0 \in \mathfrak{p}$ for some $n \geq 0$. Also, \mathfrak{p} does not meet $\left\{1, f, f^{2}, \ldots\right\}$ so that $\mathfrak{p}_{f} \neq A_{f}$. Let \mathfrak{m} be a maximal ideal in A_{f} containing \mathfrak{p}_{f}, so that \mathfrak{m}^{c} is a prime ideal \mathfrak{q} in A containing \mathfrak{p}. Observe that $f \in \mathfrak{q}$ implies that $f / 1 \in \mathfrak{m}$ and hence \mathfrak{m} contains a unit in A_{f}. Thus, $f \notin \mathfrak{q}$. If \mathfrak{q} were a maximal ideal, then $f \in \mathfrak{q}$ since $f \in I$, but this is not the case. Suppose that $\mathfrak{r} \supseteq \mathfrak{q}$ is another prime ideal in A not containing f, so that \mathfrak{r} does not meet $\left\{1, f, f^{2}, \ldots\right\}$, and hence $A_{f} \neq \mathfrak{r}_{f} \supseteq \mathfrak{q}_{f}=\mathfrak{m}$. Then $\mathfrak{r}_{f}=\mathfrak{m}$, and hence $\mathfrak{r}=\mathfrak{q}$. So if \mathfrak{r} is a prime ideal strictly containing \mathfrak{q}, then $f \in \mathfrak{r}$. Hence, \mathfrak{q} is not the intersection of the prime ideals in A strictly containing \mathfrak{q}, since this intersection contains $f \notin \mathfrak{q}$. Therefore, c does not hold when b does not hold.
5.24. Let A be a Jacobson ring (as in exercise 5.23) and B an A-algebra. Show that if B is either integral over A or finitely generated as an A-algebra, then B is a Jacobson ring as well.
Suppose that B is integral over A. Let \mathfrak{p} be a prime ideal in B so that $A \cap \mathfrak{p}$ is a prime ideal in A. For every maximal ideal \mathfrak{q} in A containing $A \cap \mathfrak{p}$, choose a maximal ideal \mathfrak{r} in B with $A \cap \mathfrak{r}=\mathfrak{q}$. Then $A \cap \mathfrak{p}=\bigcap_{A \cap \mathfrak{p} \subseteq \mathfrak{q}} \mathfrak{q}=A \cap \bigcap_{A \cap \mathfrak{p} \subseteq \mathfrak{q}} \mathfrak{r}$ so that

Suppose that B is finitely generated as an A-algebra. Let \mathfrak{p} be a prime ideal in B so that $\mathfrak{q}=A \cap \mathfrak{p}$ is a prime ideal in A, and A / \mathfrak{q} is a subring of the integral domain B / \mathfrak{p}. Then B / \mathfrak{p} is finitely generated over A / \mathfrak{q}. Since A is a Jacobson ring, $\mathfrak{R}(A / \mathfrak{q})=\mathfrak{N}(A / \mathfrak{q})=0$. By exercise $5.22, \mathfrak{R}(B / \mathfrak{p})=0$ as well, implying that \mathfrak{q} is the intersection of all the maximal ideals in B containing \mathfrak{q}. Therefore, B is Jacobson.
5.25 ? Show that A is a Jacobson ring if and only if every finitely generated A-algebra B which is a field is finite over A.
5.26? Show that the following are equivalent for a ring A.
a. A is a Jacobson ring.
b The maximal ideals are very dense in $\operatorname{Spec}(A)$.
c. A singleton set in $\operatorname{Spec}(A)$ is closed if it's locally closed.

$$
\begin{aligned}
(a & \Rightarrow b) \\
(b & \Rightarrow c) \\
(c & \Rightarrow a)
\end{aligned}
$$

5.27. We say that the local ring (B, \mathfrak{n}) dominates the local ring (A, \mathfrak{m}) if $A \subseteq B$ and $\mathfrak{m}=A \cap \mathfrak{n}$. Let K be a field and let Σ consist of all local rings (A, \mathfrak{m}) of K, partially ordered by the above relation. Show that Σ has maximal elements and that (A, \mathfrak{m}) is a maximal element of Σ iff A is a valuation ring of K.
Let $C=\left\{A_{\alpha}: \alpha \in I\right\}$ be a chain in Σ. Define $A=\bigcup_{\alpha \in I} A_{\alpha}$ and $\mathfrak{m}=\bigcup_{\alpha \in I} \mathfrak{m}_{\alpha}$. As usual, A is a ring with ideal \mathfrak{m}. If $x \in A \backslash \mathfrak{m}$, then $x \in A_{\alpha} \backslash \mathfrak{m}_{\alpha}$ for some α, and so x is a unit in A_{α}. But then x is a unit in A. Thus, (A, \mathfrak{m}) is a local ring dominating each $\left(A_{\alpha}, \mathfrak{m}_{\alpha}\right)$. Therefore, Σ is chain complete, and so Σ has maximal elements.

Suppose that $(A, \mathfrak{m}) \in \Sigma$ is a maximal element. Let Ω be the algebraic closure of A / \mathfrak{m} and $\eta: A \rightarrow \Omega$ the canonical map. Denote Σ^{\prime} as the set of all (B, f) with B a subring of K and f a map $B \rightarrow \Omega$. We order Σ^{\prime} in the obvious way. Choose $(B, f) \in \Sigma^{\prime}$ as a maximal element dominating (A, η). Then B is a local ring with maximal ideal $\mathfrak{n}=\operatorname{Ker}(f)$. Now $\mathfrak{m}=\operatorname{Ker}(\eta)=A \cap \operatorname{Ker}(f)=A \cap \mathfrak{n}$ so that $(B, \mathfrak{n}) \in \Sigma$ dominates (A, \mathfrak{m}). Therefore, $A=B$ by maximality. Consequently, Theorem 5.21 tells us that A is a valuation ring of K.

Suppose (A, \mathfrak{m}) is a valuation ring of K strictly dominated by (B, \mathfrak{n}). Choose $x \in B \backslash A$ so that $x^{-1} \in A$. Then $x^{-1} \in \mathfrak{m}$ since x^{-1} is a non-unit in A. But $x^{-1} \notin \mathfrak{n}$ since x^{-1} is invertible in B. This contradicts $\mathfrak{m} \subseteq \mathfrak{n}$. Thus, every valuation ring of K is maximal in Σ.
5.28. Let K be the field of fractions of the integral domain A. Show that A is a valuation ring of K if and only if the ideals of A are totally ordered by inclusion. Deduce that, if A is a valuation ring and if \mathfrak{p} is a prime ideal in A, then $A_{\mathfrak{p}}$ and A / \mathfrak{p} are valuation rings in their field of fractions.
Assume A is a valuation ring of K. Let \mathfrak{a} and \mathfrak{b} be two ideals in A. Suppose there is $x \in \mathfrak{a}-\mathfrak{b}$ and let $0 \neq y \in \mathfrak{b}$. Then $x / y \notin A$ since \mathfrak{b} is an ideal. So we have $y / x \in A$, and hence $y \in \mathfrak{a}$. In other words $\mathfrak{b} \subseteq \mathfrak{a}$.

Now assume that $\mathfrak{a} \subseteq \mathfrak{b}$ or $\mathfrak{b} \subseteq \mathfrak{a}$ whenever \mathfrak{a} and \mathfrak{b} are ideals in A. Suppose that $a, b \in A$ with $b \neq 0$ are such that $a / b \in K-A$. Then $a \neq 0$. Define ideals in A by $\mathfrak{a}=(a)$ and $\mathfrak{b}=(b)$. If $\mathfrak{a} \subseteq \mathfrak{b}$ then there is $c \in A$ with $b c=a$ so that $a / b=c \in A$; a contradiction. Thus, $\mathfrak{b} \subseteq \mathfrak{a}$, implying the existence of $c \in A$ with $a c=b$, so that $b / a=c \in A$. Hence, A is a valuation ring of K.

Now let \mathfrak{p} be a prime ideal in A. Any two ideals in $A_{\mathfrak{p}}$ are of the form $\mathfrak{a}_{\mathfrak{p}}$ and $\mathfrak{b}_{\mathfrak{p}}$, where \mathfrak{a} and \mathfrak{b} are ideals in A. Either $\mathfrak{a} \subseteq \mathfrak{b}$ or $\mathfrak{b} \subseteq \mathfrak{a}$ so that $\mathfrak{a}_{\mathfrak{p}} \subseteq \mathfrak{b}_{\mathfrak{p}}$ or $\mathfrak{b}_{\mathfrak{p}} \subseteq \mathfrak{a}_{\mathfrak{p}}$. This means that $A_{\mathfrak{p}}$ is a valuation ring in its field of fractions. Any two ideals in A / \mathfrak{p} are of the form $\mathfrak{a} / \mathfrak{p}$ and $\mathfrak{b} / \mathfrak{p}$, where \mathfrak{a} and \mathfrak{b} are two ideals in A containing \mathfrak{p}. Either $\mathfrak{a} \subseteq \mathfrak{b}$ or $\mathfrak{b} \subseteq \mathfrak{a}$ so that $\mathfrak{a} / \mathfrak{p} \subseteq \mathfrak{b} / \mathfrak{p}$ or $\mathfrak{b} / \mathfrak{p} \subseteq \mathfrak{a} / \mathfrak{p}$. This means that A / \mathfrak{p} is a valuation ring in its field of fractions.
5.29 ? Let A be a valuation ring of the field K. Show that every subring B of K containing A is local. What is the problem asking?
5.30. Let A be a valuation ring of the field K. Assign to (A, K) a valuation $v: K \rightarrow \Gamma$ of K with values in Γ.

Notice that $K^{*}=K-\{0\}$ is an abelian group under multiplication, and that the set U of units in A is a subgroup of K^{*}. Define an abelian group $\Gamma=K^{*} / U$. For $x U, y U \in \Gamma$, we say that $x U \geq y U$ provided $x y^{-1} \in A$. If $x U=x^{\prime} U$ and $y U=y^{\prime} U$ so that $x x^{\prime-1} \in U$ and $y^{-1} y^{\prime} \in U$, then $x y^{-1}=x^{\prime} y^{\prime-1} \cdot x x^{\prime-1} y^{-1} y^{\prime} \in A$, and hence $x y^{-1} \in A$ if and only if $x^{\prime} y^{\prime-1} \in A$. This means that our relation \geq is well-defined. Clearly $x U \geq x U$ since $x x^{-1} \in A$. So \geq is a reflexive relation. If $x U \geq y U \geq z U$ then $x y^{-1} \in A$ and $y z^{-1} \in A$, so that $x z^{-1} \in A$, and hence $x U \geq z U$. So \geq is a transitive relation. Suppose $x U \geq y U$ and $y U \geq x U$, so that $x y^{-1} \in A$ and $y x^{-1} \in A$, implying that $x y^{-1} \in U$, and hence $x U=y U$. So \geq is an antisymmetric relation. If $x U, y U \in \Gamma$ then $x y^{-1} \in A$ or $y x^{-1} \in A$, so that $x U \geq y U$ or $y U \geq x U$. So any two elements of Γ are comparable. All of these observations imply that \geq is a total order on Γ. If $x U \geq y U$ and $z U \in \Gamma$, then $(x z)(y z)^{-1}=x y^{-1} \in A$ so that $x U+z U \geq y U+z U$. This means that Γ is a totally ordered abelian group. Define $v: K^{*} \rightarrow \Gamma$ and notice finally that $v(x+y) \geq \min \{v(x), v(y)\}$ since. This means that v is a valuation of K. Lastly, suppose x and y are non-zero elements such that $x \neq-y$. Either $x y^{-1} \in A$ or $y x^{-1} \in A$, so that either $(x+y) y^{-1}=1+x y^{-1} \in A$ or $(x+y) x^{-1}=1+y x^{-1} \in A$, and hence either $v(x+y) \geq v(x)$ or $v(x+y) \geq v(x)$. This means that $v(x+y) \geq \min \{v(x), v(y)\}$ for $x \neq y \in K^{*}$.
5.31. Let $v: K^{*} \rightarrow \Gamma$ be a valuation. Show that K has the valuation ring $A=\left\{x \in K^{*}: v(x) \geq 0\right\} \cup\{0\}$. Thus, the concepts of valuation ring and valuations are equivalent.

Lets make a few observations. Notice that $v(1)+v(1)=v(1)$ so that $v(1)=0$. Suppose that $v(-1)<0=v(1)$ so that $v(-1)=v(1)+v(-1)>v(-1)+v(-1)=v(1)$, a contradiction. Thus, $v(-1) \geq v(1)=0$. Finally, if $x \in K^{*}$ then $0=v(1)=v\left(x x^{-1}\right)=v(x)+v\left(x^{-1}\right)$.

From the above $1,-1 \in A$. If $x, y \in A-\{0\}$ then $v(x y)=v(x)+v(y) \geq v(x)+v(1) \geq v(1)+v(1)=0$ so that $x y \in A$. Hence, A is closed under multiplication. If $x \neq y \in A$ then $x+y \in A$ since $v(x+y) \geq$ $\min \{v(x), v(y)\} \geq 0$. So A is closed under addition. Finally, A is closed under additive inversion since $-1 \in A$ and A is closed under multiplication. These remarks show that A is a subring of K.

Now suppose that $x, x^{-1} \in K-A$ for some $x \neq 0$. Then $v(x), v\left(x^{-1}\right)<0$ so that $v(x), v\left(x^{-1}\right)<v(1)$. Thus $0=v(x)+v\left(x^{-1}\right)<v(1)+v\left(x^{-1}\right)<v(1)+v(1)=0$. So all of these inequalities are equalities, implying that $v\left(x^{-1}\right)=0=v(x)$, a contradiction. We conclude that A is a valuation ring in K.

Now to show how these two concepts are equivalent in a precise manner. If we start with a field K and a valuation ring A, lets assign the valuation $v: K^{*} \rightarrow \Gamma=K^{*} / U$ as in exercise 5.20. Then $0 \neq x \in A$ if and only if $v(x) \geq v(1)$. But $v(1)=0$ since $1 \in A$. Therefore, A equals the valuation ring of K assigned to v.

Conversely, suppose we start with a valuation $v: K^{*} \rightarrow \Gamma$ of the field K. Let A be the valuation ring of K consisting of 0 and all $x \in K^{*}$ such that $v(x) \geq 0$. Define $\Gamma^{\prime}=K^{*} / U$ where U is the group of units in A, and let $v^{\prime}: K^{*} \rightarrow \Gamma^{\prime}$ by $v^{\prime}(x)=x U$. Suppose that $v(x)=0$ so that $0=v(x)+v\left(x^{-1}\right)=v\left(x^{-1}\right)$. Conversely, suppose that $x \in U$ so that $x^{-1} \in U$, and hence $v(x), v\left(x^{-1}\right) \geq 0$. Then $0=v(x)+v\left(x^{-1}\right)=\min \left\{v(x), v\left(x^{-1}\right)\right\}$, implying that $v(x)=0$ or $v\left(x^{-1}\right)=0$, and hence $v(x)=v\left(x^{-1}\right)=0$. Combining these two remarks reveals that $U=\left\{x \in K^{*}: v(x)=0\right\}$. Obviously $U=\left\{x \in K^{*}: v^{\prime}(x)=0\right\}$. Now define a map $f: \Gamma^{\prime} \rightarrow \Gamma$ by $f\left(v^{\prime}(x)\right)=v(x)$. If $v^{\prime}(x)=v^{\prime}(y)$ so that $x y^{-1} \in U$, then $v\left(x y^{-1}\right)=0$, and hence $0=v(x)+v\left(y^{-1}\right)=v(x)-v(y)$, implying that $v(x)=v(y)$. Therefore, ψ is well-defined. Similarly, ψ is injective. Obviously $\psi \circ v^{\prime}=v$. Lastly, $\operatorname{Im}(v)$ is a totally order subgroup of Γ, and $\psi: \Gamma \rightarrow \operatorname{Im}(v)$ is an isomorphism of totally ordered groups.
5.32? Suppose A is a valuation ring of K with value group Γ. Show that, if \mathfrak{p} is a prime ideal in A, then there is an isolated subgroup Δ of Γ such that $v(A-\mathfrak{p})$ consists of all $\xi \in \Gamma$ with $v(\xi) \geq 0$. Show that this defines a bijective correspondence between $\operatorname{Spec}(A)$ and the set of all isolated subgroups of Γ. If \mathfrak{p} is prime, then describe the values groups of A / \mathfrak{p} and $A_{\mathfrak{p}}$.
5.33. Let Γ be a totally ordered abelian group. Construct a field K and a valuation v of K with Γ as
the value group.
First let k be any field and $A=k[\Gamma]$ the group algebra of Γ over k. I claim that A is an integral domain. So suppose that $x=\sum_{\alpha \in S} a_{\alpha} \alpha$ and $y=\sum_{\beta \in T} b_{\beta} \beta$ are nonzero elements in $k[\Gamma]$, where S and T are finite subsets of Γ. Let $\alpha_{1}<\cdots<\alpha_{m}$ be the elements of S, and $\beta_{1}<\cdots<\beta_{n}$ be the elements of T, where we can assume that each $a_{\alpha_{i}}$ and $b_{\beta_{i}}$ is nonzero. The smallest coefficient $x y$ is $a_{\alpha_{1}} b_{\beta_{1}}\left(\alpha_{1}+\beta_{1}\right)$, which is non-zero since k is a field. Therefore, $x y \neq 0$, and hence A is an integral domain.

Now letting x and y be as before, define $v_{0}: A-\{0\} \rightarrow \Gamma$ by $v_{0}(x)=\alpha_{1}$. Notice that $v_{0}(x y)=\alpha_{1}+\beta_{1}=$ $v_{0}(x)+v_{0}(y)$ and $v_{0}(x+y)=$.
5.34. Let A be a valuation ring in its field of fractions K. Suppose $f: A \rightarrow B$ is such that f^{*} is a closed map. Show that, if $g: B \rightarrow K$ is a map of A-algebras, then $g(B)=A$.
Since g is a map of A-algebras, $g \circ f=i$ where $i: A \rightarrow K$ is the inclusion map. Define $C=g(B)$ so that $A=g(f(A)) \subset g(B)=C$. Let \mathfrak{n} be a maximal ideal in C, and define $\mathfrak{q}=g^{-1}(\mathfrak{n})$, so that \mathfrak{q} is maximal in B. Since f^{*} is a closed map, $f^{*}: \operatorname{Spec}(B / \mathfrak{q}) \rightarrow \operatorname{Spec}(A / \mathfrak{p})$ is surjective, where $\mathfrak{p}=f^{-1}(\mathfrak{q})$. But 0 is the only prime ideal in B / \mathfrak{q}, so that A / \mathfrak{p} is an integral domain with precisely one prime ideal. This means that A / \mathfrak{p} is a field, and hence \mathfrak{p} is a maximal ideal in A. Now we have $A \subset C \subset C_{\mathfrak{n}} \subset K$ with $\left(C_{\mathfrak{n}}, \mathfrak{n}\right)$ a local ring. We also have $\mathfrak{p}=f^{-1}(\mathfrak{q})=f^{-1}\left(g^{-1}(\mathfrak{n})\right)=i^{-1}(\mathfrak{n})=A \cap \mathfrak{n}$ showing that (C, \mathfrak{n}) dominates (A, \mathfrak{p}). But A is a valuation ring in K, so that $A=C$ by exercise 5.27. In other words, $g(B)=A$, as claimed.
5.35 ? Let B be an integral domain and f a map $A \rightarrow B$ such that $(f \otimes 1)^{*}: \operatorname{Spec}\left(B \otimes_{A} C\right) \rightarrow \operatorname{Spec}\left(A \otimes_{A} C\right)$ is a closed map for every A-algebra C. Show that f is an integral mapping.

Chapter 6: Chain Conditions

6.1. Let M be an A-module and $u \in \operatorname{End}_{A}(M)$. Show the following.

a. If M is Noetherian and u is surjective then u is injective.

Clearly $\operatorname{Ker}(u) \subseteq \operatorname{Ker}\left(u^{2}\right) \subseteq \ldots$ is a chain of submodules in M. So there is $n>0$ with $\operatorname{Ker}\left(u^{n+1}\right)=$ $\operatorname{Ker}\left(u^{n}\right)$. Suppose that $x \in \operatorname{Ker}(u)$. Since u is surjective, we can choose x^{\prime} for which $u^{n}\left(x^{\prime}\right)=x$. Then $u^{n+1}\left(x^{\prime}\right)=u(x)=0$ so that $u^{n}\left(x^{\prime}\right)=0$. But now $x=0$, and hence u is injective.
b. If M is Artinian and u is injective then u is surjective.

Clearly $\operatorname{Im}(u) \supseteq \operatorname{Im}\left(u^{2}\right) \supseteq \ldots$ is a chain of submodules in M. So there is $n>0$ with $\operatorname{Im}\left(u^{n+1}\right)=\operatorname{Im}\left(u^{n}\right)$. Suppose that $x \in M$ and choose y for which $u^{n}(x)=u^{n+1}(y)=u^{n}(u(y))$. Since u is injective, we see that $u(y)=x$. This means that u is surjective.
6.2. Let M be an A-module. If every non-empty set of finitely generated submodules of M has a maximal element, then M is Noetherian.

Suppose that N is a submodule of M that is not finitely generated. Then given $x_{1}, \ldots, x_{n} \in N$ there is $x_{n+1} \in N$ not lying in the submodule N_{n} of N generated by x_{1}, \ldots, x_{n}. But then $N_{1} \subset N_{2} \subset \ldots$ is a strictly increasing sequence of finitely generated submodules of M, which has no maximal element. This contradiction shows that every submodule of M is finitely generated, and so M is Noetherian.
6.3. Let M be an A-module, and let N_{1}, N_{2} be submodules of M. If M / N_{1} and M / N_{2} are Noetherian, then so is $M /\left(N_{1} \cap N_{2}\right)$. Similarly with Artinian in place of Noetherian.

Define $\varphi: M /\left(N_{1} \cap N_{2}\right) \rightarrow M / N_{1} \oplus M / N_{2}$ by $\varphi\left(x+N_{1} \cap N_{2}\right)=\left(x+N_{1}, x+N_{2}\right)$. This yields a well-defined A-module monomorphism. Now if $M / N_{1}, M / N_{2}$ are Noetherian (Artinian) then is $M / N_{1} \oplus M / N_{2}$, and hence so is every submodule of $M / N_{1} \oplus M / N_{2}$. Since φ is injective, this means that $M /\left(N_{1} \cap N_{2}\right)$ is Noetherian (Artinian) as well.
6.4. Let M be a Noetherian A-module and let \mathfrak{a} be the annihilator of M in A. Prove that A / \mathfrak{a} is Noetherian. Does a similar result hold with Artinian in place of Noetherian?

Let M be Noetherian and suppose M is generated as an A-module by $\left\{x_{1}, \ldots, x_{n}\right\}$. Notice that $M^{n}=\bigoplus_{1}^{n} M$ is a Noetherian A-module and that the map $A \rightarrow M^{n}$ given by $a \mapsto\left(a x_{1}, \ldots, a x_{n}\right)$ is a homomorphism of A-modules. Clearly $\mathfrak{a}=\operatorname{Ann}(M)$ is precisely the kernel of this map. So A / \mathfrak{a} is isomorphic with a submodule of M^{n}. From this we conclude that A / \mathfrak{a} is a Noetherian A-module, and so is a Noetherian A / \mathfrak{a}-module, and is therefore a Noetherian ring.

This result does not hold with Artinian in place of Noetherian. As a counterexample, let p be a fixed prime number, take $A=\mathbb{Z}$, and define G as the subgroup of \mathbb{Q} / \mathbb{Z} consisting of all $[a / b]$ with b a power of p. Then the subgroups of G are generated by $\left[1 / p^{n}\right]$ for some $n \in \mathbb{N}$. Hence, G is an Artinian \mathbb{Z}-module. Now suppose that $n \in \mathbb{Z}$ annihilates G. Then $n / p^{m} \in \mathbb{Z}$ for every $m \geq 0$. This means that $n=0$, and thus $\operatorname{Ann}(G)=0$. But $\mathbb{Z} / \operatorname{Ann}(G)=\mathbb{Z}$ is not Artinian. So we have a counterexample.
6.5. Show that every subspace Y of a Noetherian topological space X is Noetherian, and that X is compact.

Let $U_{1} \subseteq U_{2} \subseteq \ldots$ be open sets in Y. Choose V_{k} open in X such that $U_{k}=V_{k} \cap Y$. Define $W_{k}=\bigcup_{1 \leq i \leq k} V_{i}$, and note that $W_{k} \cap Y=\bigcup_{1 \leq i \leq k} U_{i}=U_{k}$. Since $W_{1} \subseteq W_{2} \subseteq \ldots$ we deduce the existence of an N for which $W_{n}=W_{N}$ whenever $n \geq N$. But then $U_{n}=U_{N}$ whenever $n \geq N$. Therefore, Y is itself Noetherian.

Let \mathcal{C} be a collection of closed subsets of X such that any intersection of finitely many members of \mathcal{C} is non-empty. Let \mathcal{I} denote the set of all intersections of finitely many members of \mathcal{C} so that \mathcal{I} is a collection of closed subsets of X. Then \mathcal{I} has minimal elements. Since \mathcal{I} is closed under finite intersections, it must be that \mathcal{I} has a minimum element. Since this element is non-empty, we see that $\bigcap \mathcal{C}$ is non-empty. This implies that X is compact.
6.6. Let X be a topological space. Show that X is Noetherian if and only if every open subspace is compact, and that this occurs if and only if every subspace of X is compact.

Suppose that X is Noetherian. Then every subspace of X is Noetherian in the subspace topology, and so every subspace of X is compact.

If every subspace of X is compact then so is every open subspace.

Suppose that every open subspace of X is compact. Let $U_{1} \subseteq U_{2} \subseteq \ldots$ be a sequence of open subsets of X. Then $\left\{U_{i}\right\}_{1}^{\infty}$ is an open cover of $U=\bigcup_{1}^{\infty} U_{i}$. Since U is compact, $\left\{U_{i}\right\}_{1}^{\infty}$ has a finite subcover. This means that our sequence of open sets becomes stationary. Therefore, X is a Noetherian topological space.
6.7. Show that a Noetherian topological space X is a union of finitely many irreducible closed subspaces. Conclude that X has finitely many irreducible components.

Suppose that X is not the union of finitely many closed irreducible subspaces. Let Σ be the collection of all closed subsets of X that cannot be written as the union of finitely many closed irreducible subspaces of X. By hypothesis, $X \in \Sigma$ and so Σ is non-empty. Since X is Noetherian, Σ has a minimal element Y. Now Y is not irreducible, so Y is the union of two proper closed subsets, each of these being closed in X since Y is closed in X. By minimality of Y, each of these closed subsets can be written as the union of finitely many closed irreducible subspaces of X. This means that $Y \notin \Sigma$, a contradiction. Therefore, X is the union of finitely many irreducible closed subspaces.

This means that X is the union of finitely many irreducible components, say Y_{1}, \ldots, Y_{n}. If Y is an irreducible component of X, then $Y \subseteq \bigcup_{1}^{n} Y_{i}$. I claim that $Y \subseteq Y_{i}$ for some i. Otherwise, there is a set $S \subseteq\{1, \ldots, n\}$ minimal with respect to the property that $Y \subseteq \bigcup_{i \in S} Y_{i}$, with $|S| \geq 2$. But then $Y=\bigcup_{i \in S} Y \cap Y_{i}$ with each $Y \cap Y_{i}$ a proper closed subset of Y, contradicting the assumption that Y is irreducible. Therefore, $Y \subseteq Y_{i}$ for some i, and hence $Y=Y_{i}$ for some i. This means that X has finitely many irreducible components.
6.8. Show that $\operatorname{Spec}(A)$ is a Noetherian topological space whenever A is a Noetherian ring. Is the converse true?

Let A be a Noetherian ring. Suppose we have a descending sequence of closed subsets of $\operatorname{Spec}(A)$. This sequence has the form $V\left(\mathfrak{a}_{1}\right) \supseteq V\left(\mathfrak{a}_{2}\right) \supseteq \ldots$ for some ideals \mathfrak{a}_{i} in A. The relation $V\left(\mathfrak{a}_{i}\right) \supseteq V\left(\mathfrak{a}_{i+1}\right)$ implies that $r\left(\mathfrak{a}_{i}\right) \subseteq r\left(\mathfrak{a}_{i+1}\right)$. This means that $r\left(\mathfrak{a}_{1}\right) \subseteq r\left(\mathfrak{a}_{2}\right) \subseteq \ldots$ is an increasing sequence of ideals in A. So we can choose N satisfying $r\left(\mathfrak{a}_{n}\right)=r\left(\mathfrak{a}_{N}\right)$ for all $n \geq N$. Then $V\left(\mathfrak{a}_{n}\right)=V\left(r\left(\mathfrak{a}_{n}\right)\right)=V\left(r\left(\mathfrak{a}_{N}\right)\right)=V\left(\mathfrak{a}_{n}\right)$ for all $n \geq N$. Therefore, $\operatorname{Spec}(A)$ is Noetherian.

It is not true that A needs to be a Noetherian ring when $\operatorname{Spec}(A)$ is a Noetherian topological space. As a counterexample, let $B=k\left[x_{1}, x_{2}, \ldots\right]$ be the polynomial ring in countably many variables, suppose we have the ideal $\mathfrak{a}=\left(x_{1}, x_{2}^{2}, x_{3}^{3}, \ldots\right)$ in B, and define $A=B / \mathfrak{a}$. Also define an ideal $\mathfrak{b}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ in B. Then \mathfrak{b} is a maximal ideal in B containing \mathfrak{a}, so that $\mathfrak{b} / \mathfrak{a}$ is a maximal ideal in A. But $\mathfrak{b} / \mathfrak{a} \subseteq \mathfrak{N}(A) \subset A$ so that $\mathfrak{N}(A)=\mathfrak{b} / \mathfrak{a}$. Therefore, A has exactly one prime ideal. This means that $\operatorname{Spec}(A)$ is a one-point space, and hence is trivially Noetherian. But A is not Noetherian since there is no $k \in \mathbb{N}$ satisfying $\mathfrak{N}(A)^{k}=0$. After all, such a k would yield $\mathfrak{b}^{k} \subseteq \mathfrak{a}$, which cannot hold since $x_{k+1}^{k} \in \mathfrak{b}^{k}-\mathfrak{a}$ by inspection.
6.9. Deduce from exercise 6.8 that a Noetherian ring A has finitely many minimal prime ideals.

Since A is Noetherian, $\operatorname{Spec}(A)$ is Noetherian, and so $\operatorname{Spec}(A)$ has finitely many irreducible components. But the minimal prime ideals of A and the irreducible components of $\operatorname{Spec}(A)$ are in a bijective correspondence under the map $\mathfrak{p} \mapsto V(\mathfrak{p})$. So A has finitely many minimal prime ideals.
6.10. Let M be a Noetherian A-module. Show that $\operatorname{Supp}(M)$ is a closed Noetherian subspace of $\operatorname{Spec}(A)$.

Since M is finitely generated, $\operatorname{Supp}(M)=V(\operatorname{Ann}(M))$. Therefore $\operatorname{Supp}(M)$ is closed in $\operatorname{Spec}(A)$. Also, $V(\operatorname{Ann}(M))$ is homeomorphic with $\operatorname{Spec}(A / \operatorname{Ann}(M))$ as topological spaces. Exercise 6.4 shows that $A / \operatorname{Ann}(M)$ is a Noetherian ring, so that $\operatorname{Supp}(M)$ is a Noetherian space.
6.11. Let $f: A \rightarrow B$ be a ring homomorphism and suppose that $\operatorname{Spec}(B)$ is Noetherian. Prove that $f^{*}: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ is a closed mapping if and only if f has the going-up property.

Suppose that f^{*} is a closed mapping. Let $\mathfrak{p}_{1} \subseteq \mathfrak{p}_{2}$ be a chain of prime ideals in $f(A)$ with $\mathfrak{p}_{1}=f(A) \cap \mathfrak{q}_{1}$, where \mathfrak{q}_{1} is a prime ideal in B. Then $f^{-1}\left(\mathfrak{p}_{2}\right) \in V\left(f^{*}\left(\mathfrak{q}_{1}\right)\right)$ since $f^{*}\left(\mathfrak{q}_{1}\right)=f^{-1}\left(\mathfrak{p}_{1}\right) \subseteq f^{-1}\left(\mathfrak{p}_{2}\right)$. Since $f^{*}\left(V\left(\mathfrak{q}_{1}\right)\right)=$ $V\left(f^{*}\left(\mathfrak{q}_{1}\right)\right)$ there is a prime ideal \mathfrak{q}_{2} in B containing \mathfrak{q}_{1} such that $f^{-1}\left(\mathfrak{p}_{2}\right)=f^{*}\left(\mathfrak{q}_{2}\right)=f^{-1}\left(f(A) \cap \mathfrak{q}_{2}\right)$. This means that $\mathfrak{p}_{2}=f(A) \cap \mathfrak{q}_{2}$. Therefore, B and $f(A)$ satisfy the conclusions of the going-up theorem, showing that f has the going-up property.

Now suppose that f has the going up-property. Notice that $\operatorname{Spec}(B / \mathfrak{b})$ is homeomorphic with $V(\mathfrak{b})$. So $V(\mathfrak{b})$ a Noetherian space, since it is a subspace of the Noetherian space $\operatorname{Spec}(B)$. Exercise 6.9 tells us that there are finitely many prime ideals in B containing \mathfrak{b} minimal with respect to inclusion. Label these primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ and write $\mathfrak{q}_{i}=\mathfrak{p}_{i}^{c}$. If $\mathfrak{r} \in f^{*}(V(\mathfrak{b}))$ then $\mathfrak{r}=\mathfrak{p}^{c}$ for some \mathfrak{p} containing \mathfrak{b}, so that $\mathfrak{r}=\mathfrak{p}_{i}$ for some i. In other words, $f^{*}(V(\mathfrak{b})) \subseteq \bigcup_{i=1}^{n} V\left(\mathfrak{q}_{i}\right)$. Now suppose that $\mathfrak{r} \in V\left(\mathfrak{q}_{i}\right)$ for some i. Then $f\left(\mathfrak{q}_{i}\right) \subseteq f(\mathfrak{r})$ is a chain of prime ideals in $f(A)$ with $f(A) \cap \mathfrak{p}_{i}=f\left(\mathfrak{q}_{i}\right)$. So we can choose a prime ideal \mathfrak{p} containing \mathfrak{p}_{i} so that $f(A) \cap \mathfrak{p}=f(\mathfrak{r})$. But now $\mathfrak{r}=f^{-1}(\mathfrak{p})$ with $\mathfrak{p} \in V(\mathfrak{b})$, so that $\mathfrak{r} \in f^{*}(V(\mathfrak{b}))$. Thus, $f^{*}(V(\mathfrak{b}))=\bigcup_{i=1}^{n} V\left(\mathfrak{q}_{i}\right)$ is a closed set, so that f^{*} is a closed mapping.
6.12. Let A be a ring such that $\operatorname{Spec}(A)$ is a Noetherian space. Show that the set of prime ideals of A satisfies the ascending chain condition. Is the converse true?

Let $\mathfrak{p}_{1} \subseteq \mathfrak{p}_{2} \subseteq \ldots$ be an ascending sequence of prime ideals in A. Then $V\left(\mathfrak{p}_{1}\right) \supseteq V\left(\mathfrak{p}_{2}\right) \supseteq \ldots$ is a descending sequence of closed subset in $\operatorname{Spec}(A)$. Choose N with $V\left(\mathfrak{p}_{n}\right)=V\left(\mathfrak{p}_{N}\right)$ for all $n \geq N$. It follows immediately that $\mathfrak{p}_{n}=\mathfrak{p}_{N}$ for all $n \geq N$.

The converse does not hold. As a counterexample, take $A=\prod_{i=0}^{\infty} \mathbb{Z}_{2}\left(e_{i}\right)$. Suppose $\mathfrak{p} \subsetneq \mathfrak{q}$ are prime ideals in A, and let $x \in \mathfrak{q}-\mathfrak{p}$. Then $x^{2}=x$ so that $x(1-x)=0 \in \mathfrak{p}$, and hence $1-x \in \mathfrak{p}$. But then $1-x \in \mathfrak{q}$ so that $1 \in \mathfrak{q}$, a contradiction. This means that every prime ideal in A is maximal, so that the prime ideals in A satisfy the ascending chain condition. Now define an ideal \mathfrak{a}_{n} in A by $\mathfrak{a}_{n}=\prod_{i=1}^{n} \mathbb{Z}_{2}\left(e_{i}\right)$ so that $\mathfrak{a}_{1} \subseteq \mathfrak{a}_{2} \subseteq \ldots$ and hence $V\left(\mathfrak{a}_{1}\right) \supseteq V\left(\mathfrak{a}_{2}\right) \supseteq \ldots$ is a descending sequence of closed subsets of $\operatorname{Spec}(A)$. Now $\prod_{j \neq n+1} \mathbb{Z}_{2}\left(e_{i}\right)$ is a prime ideal in A containing \mathfrak{a}_{n} but not containing \mathfrak{a}_{n+1} so that $V\left(\mathfrak{a}_{n}\right) \supsetneq V\left(\mathfrak{a}_{n+1}\right)$ for all n. This shows that $\operatorname{Spec}(A)$ is not a Noetherian space.

Chapter 7 : Noetherian Rings

7.1. Suppose A is a non-Noetherian ring and let Σ consist of all ideals in A that are not finitely generated, so that $\Sigma \neq \emptyset$. Show that Σ has maximal elements and that every maximal element is a prime ideal. So if every prime ideal is finitely generated, then A is Noetherian.
A straightforward application of Zorn's Lemma tells us that Σ has maximal elements since Σ is chain complete. Let \mathfrak{a} be a maximal element in Σ and suppose that there are $x, y \notin \mathfrak{a}$ for which $x y \in \mathfrak{a}$. Then $\mathfrak{a} \subsetneq \mathfrak{a}+(x)$. By maximality, $\mathfrak{a}+(x)$ is finitely generated, by elements of the form $a_{i}+b_{i} x$, where a_{i} are elements of \mathfrak{a} and b_{i} are elements of A. Let \mathfrak{a}_{0} be the ideal of \mathfrak{a} generated by the a_{i}. Clearly $\mathfrak{a}_{0}+(x)=\mathfrak{a}+(x)$. Also clear is that $\mathfrak{a}_{0}+x(\mathfrak{a}: x) \subseteq \mathfrak{a}$. So suppose that $a \in \mathfrak{a}$. Then $a+x=\sum c_{i}\left(a_{i}+b_{i} x\right)$ for appropriate $c_{i} \in A$. Hence, $a=\sum c_{i} a_{i}+x\left(\sum b_{i} c_{i}-1\right)$ where $\sum b_{i} c_{i}-1$ is in $(\mathfrak{a}: x)$. Consequently $\mathfrak{a}=\mathfrak{a}_{0}+x(\mathfrak{a}: x)$. Observe that ($\left.\mathfrak{a}: x\right)$ strictly contains \mathfrak{a} since $y \in(\mathfrak{a}: x)-\mathfrak{a}$. By maximality of \mathfrak{a} we see that $(\mathfrak{a}: x)$ is finitely generated. But then $\mathfrak{a}=\mathfrak{a}_{0}+x(\mathfrak{a}: x)$ is itself finitely generated; a contradiction. So every maximal element in Σ is prime. Therefore, a ring in which every prime ideal is finitely generated must be Noetherian.
7.2. Suppose A is a Noetherian ring and let $f=\sum_{i=0}^{\infty} a_{i} x^{i} \in A[[x]]$. Show that f is nilpotent if and only if each a_{i} is nilpotent.

From exercise 1.5 each a_{i} is nilpotent if f is nilpotent. So suppose that each a_{i} is nilpotent. Then each $a_{i} \in \mathfrak{N}(A)$. Since A is Noetherian there is $n>0$ for which $\mathfrak{N}(A)^{n}=0$. By induction each coefficient of f^{n} is an element of $\mathfrak{N}(A)^{n}$, so that $f^{n}=0$. Hence, f is nilpotent.
7.3. Let \mathfrak{a} be a proper irreducible ideal in a ring A. Prove that the following are equivalent.
a. The ideal \mathfrak{a} is \mathfrak{p}-primary for some prime ideal \mathfrak{p}.
b. For every S the saturation $S(\mathfrak{a})=(\mathfrak{a}: s)$ for some $s \in S$.
c. The sequence $\left(\mathfrak{a}: x^{n}\right)$ is stationary for every $x \in A$.
(a $\Rightarrow \mathrm{b}$) If it occurs that $r(\mathfrak{a}) \cap S=\emptyset$, then since $r(\mathfrak{a})$ is a prime ideal, we can deduce that $S(\mathfrak{a})=\mathfrak{a}$ with of course $\mathfrak{a}=(\mathfrak{a}: 1)$. So suppose then that $s \in r(\mathfrak{a}) \cap S$. Choose $n>0$ for which $s^{n} \in \mathfrak{a}$. Then $S(\mathfrak{a})=(1)$ and $\mathfrak{a}=\left(\mathfrak{a}: s^{n}\right)$ with $s^{n} \in S$. So we are done.
$(\mathrm{b} \Rightarrow \mathrm{c})$ Let $x \in A$ and define $S=\left\{1, x, x^{2}, \ldots\right\}$. Then $\bigcup_{n=0}^{\infty}\left(\mathfrak{a}: x^{n}\right)=S(\mathfrak{a})=\left(\mathfrak{a}: x^{N}\right)$ for some N. Thus $\left(\mathfrak{a}: x^{N}\right)=\left(\mathfrak{a}: x^{n}\right)$ for $n \geq N$.
$(c \Rightarrow a)$ We can imitate the proof of Lemma 7.12, noting that the ascending chain of ideals becomes stationary by hypothesis (instead of assuming that the ring A is Noetherian).
7.4. Which of the following rings A are Noetherian?
a. The ring A of rational functions having no pole on S^{1}.

Let S be the set of all $f \in \mathbb{C}[z]$ so that f has no zero on S^{1}. It is clear that S is a multiplicatively closed subset of $\mathbb{C}[z]$, and that $A=S^{-1} \mathbb{C}[z]$. Since $\mathbb{C}[z]$ is a Noetherian ring, we see that A is a Noetherian ring.
b. The ring A of powers series in z with a positive radius of convergence.

Notice that A is the ring of germs of functions defined at 0 . Let \mathfrak{a} be an ideal in A. If $0 \neq f \in \mathfrak{a}$ then write $f(z)=\sum_{i=n}^{\infty} a_{i} z^{i}$ with $n \geq 0$ and $a_{n} \neq 0$. Define $g(z)=\sum_{i=0}^{\infty} a_{i+n} z^{i}$ so that $f(z)=z^{n} g(z)$ and $g(0)=a_{n} \neq 0$. Complex analysis tells us that $g \in A$ and $1 / g \in A$, so that g is invertible in A. In particular, $z^{n}=f \cdot 1 / g \in \mathfrak{a}$. Assume n is the smallest number satisfying $z^{n} \in \mathfrak{a}$. From what we have shown, $\mathfrak{a}=\left(z^{n}\right)$. So the ideals in A are $A \supset(z) \supset\left(z^{2}\right) \supset \ldots \supset(0)$. We see that A is Noetherian.
c. The ring A of power series in z with an infinite radius of convergence.

Notice that A is the same as the ring of entire functions on \mathbb{C}. More precisely, an element of A yields an entire function on \mathbb{C} via evaluation, and every entire function on \mathbb{C} yields an element of A by taking the Taylor expansion of the function at the origin. Now by Weierstrass' Theorem for complex analysis, there is, for every $n \in \mathbb{N}$, an entire function f_{n} defined on \mathbb{C} having simple zeros precisely at $n, n+1, n+2, \ldots$ and no zeros elsewhere. Suppose that g is an entire function with zeros at $n, n+1, n+2, \ldots$ Then g / f_{n} is an entire function, so that $g \in\left(f_{n}\right)$ and hence $\left(f_{n}\right)$ is the set of all entire functions that vanish at $n, n+1, n+2, \ldots$. Defining $\mathfrak{a}_{n}=\left(f_{n}\right)$, we have $\mathfrak{a}_{0} \subsetneq \mathfrak{a}_{1} \subsetneq \mathfrak{a}_{2} \subsetneq \ldots$ is a properly ascending sequence of ideals in A, showing that A is non-Noetherian.
d. The ring A of polynomials in z whose first k derivatives vanish at the origin, where k is a fixed natural number.

It is easy to see that A is the set of all polynomials $c+z^{k+1} p(z)$ where $c \in \mathbb{C}$ and $p \in \mathbb{C}[z]$. Therefore, A is generated over \mathbb{C} by $\left\{1, z^{k+1}, z^{k+2}, \ldots, z^{2 k+1}\right\}$. In other words, A is finitely generated over the Noetherian ring \mathbb{C}, and therefore A is itself Noetherian.
e. The ring A of polynomials in z and w all of whose partial derivatives with respect to w vanish at $z=0$.

Define $B=\mathbb{C}\left[z, z w, z w^{2}, z w^{3}, \ldots\right]$ so that B is a subring of $\mathbb{C}[z, w]$. It is clear that $z w^{i} \in A$ for every $i \geq 0$. Since A is a ring containing \mathbb{C}, we see that $B \subseteq A$. On the other hand, let p be a general element of A. We can choose $n \in \mathbb{N}$ and $p_{0}, \ldots, p_{n} \in \mathbb{C}[z]$ satisfying

$$
p(z, w)=p_{0}(z)+p_{1}(z) w+p_{2}(z) w^{2}+\cdots+p_{n}(z) w^{n}
$$

Notice that

$$
\frac{\partial p}{\partial w}(z, w)=p_{1}(z)+2 p_{2}(z) w+\cdots+n p_{n}(z) w^{n-1}
$$

Our condition on p is that

$$
p_{1}(0)+2 p_{2}(0) w+\cdots+n p_{n}(0) w^{n-1}=0
$$

Since this holds for all $w \in \mathbb{C}$ we conclude that $p_{1}(0)=p_{2}(0)=\ldots=p_{n}(0)=0$. In other words, $z \mid p_{i}(z)$ for $1 \leq i \leq n$. From this we see that $p \in B$, and hence $B=A$. Now let I_{n} be the ideal generated by $z, z w, z w^{2}, \ldots, z w^{n}$. Then $I_{1} \subseteq I_{2} \subseteq \ldots$ is a sequence of ideals in A. Suppose, for the sake of contradiction, that $z w^{n+1} \in I_{n}$. Then we can write

$$
z w^{n+1}=\sum_{j=0}^{n} \lambda_{j}(z, w) z w^{j} \quad \text { for some } \lambda_{j}(z, w) \in B
$$

Now we can write

$$
\lambda_{j}(z, w)=q_{0}(z)+z r_{0}(z) t_{0}(w)
$$

Combining these relations yields

$$
z w^{n+1}=\sum_{j=0}^{n} q_{0}(z) z w^{j}+z^{2} \sum_{j=0}^{n} r_{0}(z) t_{0}(w) w^{j}
$$

This equality is impossible by inspection. So $I_{1} \subsetneq I_{2} \subsetneq I_{3} \subsetneq \ldots$ is a properly ascending sequence of ideals in A. This means that A is non-Noetherian.
7.5. Let A be a Noetherian ring, B a finitely generated A-algebra, and G a finite group of A automorphisms of B. Show that B^{G} is a finitely generated A-algebra as well.

Suppose $f: A \rightarrow B$ induces the A-algebra structure of B. Notice that B^{G} is an A-subalgebra of B containing $f(A)$. By exercise 5.12 we know that B is integral over B^{G}. So we have the sequence $f(A) \subseteq B^{G} \subseteq B$ with $f(A)$ a Noetherian ring, B a finitely generated $f(A)$-algebra, and B integral over B^{G}. So proposition 7.8 tells us that B^{G} is finitely generated as an $f(A)$-algebra, and hence as an A-algebra, as desired.

7.6. Show that a finitely generated field K is finite.

Suppose that $\operatorname{char}(K)=0$ so that $\mathbb{Z} \subset \mathbb{Q} \subseteq K$. Then K is finitely generated over \mathbb{Q} since K is finitely generated over \mathbb{Z} by hypothesis. So K is finitely generated as a \mathbb{Q}-module by proposition 7.9. Since \mathbb{Z} is Noetherian, proposition 7.8 tells us that \mathbb{Q} is finitely generated over \mathbb{Z}, say by $\left\{a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right\}$. But if p is a prime number not dividing any b_{i}, then $1 / p$ is not in $\mathbb{Z}\left[a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right] \subseteq \mathbb{Z}\left[1 / b_{1} \cdots b_{n}\right]$. Hence, the characteristic of K is a prime number p. Again, proposition 7.9 tells us that K is finitely generated as an \mathbb{F}_{p}-module, so that K is a finite field.
7.7. Suppose k is an algebraically closed field and I an ideal of $k\left[x_{1}, \ldots, x_{n}\right]$. Let $X \subset k^{n}$ consist of all x so that $f(x)=0$ for every $f \in I$. Show that there is a finite subset $I_{0} \subset I$ so that $x \in X$ if and only if $f(x)=0$ for every $x \in I_{0}$.

Obviously k is Noetherian, so that $k\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian. Hence, I is a finitely generated ideal. Suppose I is generated by f_{1}, \ldots, f_{n}. If $x \in X$ then $f_{i}(x)=0$ for every i. Conversely, let $f \in I$ and write $f=\sum_{1}^{n} g_{i} f_{i}$ with $g_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$. Then $f(x)=0$ provided that $f_{i}(x)=0$ for every i. Hence, $I_{0}=\left\{f_{i}\right\}_{1}^{n}$ is the desired subset of I.
7.8. If $A[x]$ is Noetherian, must A be Noetherian as well?

Define a ring homomorphism $A[x] \rightarrow A$ by $\sum_{0}^{n} a_{k} x^{k} \mapsto a_{0}$. Since this map is surjective, A is Noetherian.

7.9. Show that the ring A is Noetherian if the following hold

a. For each maximal ideal \mathfrak{m}, the ring $A_{\mathfrak{m}}$ is Noetherian.
b. For each $x \neq 0$ in A, there are finitely many maximal ideals in A containing x.

Let $\mathfrak{a} \neq 0$ be any ideal in A and suppose $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{r}$ are the maximal ideals in A containing \mathfrak{a}. Suppose $x_{0} \in \mathfrak{a}$ is nonzero and let $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{r}, \ldots, \mathfrak{m}_{r+s}$ be the maximal ideals in A containing x. Since $\mathfrak{a} \nsubseteq \mathfrak{m}_{r+j}$ for $j>0$ there is $x_{j} \in \mathfrak{a}-\mathfrak{m}_{r+j}$. Now $\mathfrak{a}=\mathfrak{a}_{\mathfrak{m}_{i}}^{c}$ for $1 \leq i \leq r$ since $\mathfrak{a} \cap\left(A-\mathfrak{m}_{i}\right)=\emptyset$. But each $\mathfrak{a}_{\mathfrak{m}_{i}}$ is an ideal in $A_{\mathfrak{m}_{i}}$ and so is finitely generated, since $A_{\mathfrak{m}_{i}}$ is Noetherian. If $\mathfrak{a}_{\mathfrak{m}_{i}}$ is generated by $\xi_{1}^{(i)}, \ldots, \xi_{q}^{(i)}$ then we can choose $a_{1}^{(i)}, \ldots, a_{q}^{(i)} \in \mathfrak{a}$ with $a_{j}^{(i)} / 1=\xi_{i}^{(j)}$ so that $\mathfrak{a}_{\mathfrak{m}_{i}}$ is generated by the images of $a_{1}^{(i)}, \ldots, a_{q}^{(i)}$ in $A_{\mathfrak{m}_{i}}$. Now choose some $t>0$ and some $x_{s+1}, \ldots, x_{t} \in \mathfrak{a}$ so that

$$
\left\{x_{s+1}, \ldots, x_{t}\right\}=\left\{\xi_{j}^{(i)} \mid 1 \leq j \leq q \quad \text { and } \quad 1 \leq i \leq r\right\}
$$

So the images of x_{s+1}, \ldots, x_{t} in $A_{\mathfrak{m}_{i}}$ generate $\mathfrak{a}_{\mathfrak{m}_{i}}$ for every $1 \leq i \leq r$. Now define $\mathfrak{b}=\left(x_{0}, x_{1}, \ldots, x_{t}\right)$. We have the inclusion map $\phi: \mathfrak{b} \rightarrow \mathfrak{a}$. To show that $\mathfrak{b}=\mathfrak{a}$ it is enough to show that ϕ is surjective. So it suffices to show that $\phi_{\mathfrak{m}}: \mathfrak{b}_{\mathfrak{m}} \rightarrow \mathfrak{a}_{\mathfrak{m}}$ is surjective whenever \mathfrak{m} is a maximal ideal in A. That is, it suffices to show that $\mathfrak{b}_{\mathfrak{m}}=\mathfrak{a}_{\mathfrak{m}}$. We already know this to be true when \mathfrak{m} contains \mathfrak{a}. So suppose that $\mathfrak{a} \nsubseteq \mathfrak{m}$. If $x_{0} \in \mathfrak{m}$ then $\mathfrak{m}=\mathfrak{m}_{r+i}$ for some $i>0$ so that $\mathfrak{b}_{\mathfrak{m}}=A_{\mathfrak{m}}$ (since $x_{i} / 1 \in \mathfrak{b}_{\mathfrak{m}}$ is a unit in $A_{\mathfrak{m}}$) and hence $\mathfrak{b}_{\mathfrak{m}}=\mathfrak{a}_{\mathfrak{m}}$. If $x_{0} \notin \mathfrak{m}$ then $\mathfrak{b}_{\mathfrak{m}}=A_{\mathfrak{m}}$ (since $x_{0} / 1 \in \mathfrak{b}_{\mathfrak{m}}$ is a unit in $A_{\mathfrak{m}}$) so that $\mathfrak{b}_{\mathfrak{m}}=\mathfrak{a}_{\mathfrak{m}}$. Therefore, $\mathfrak{a}=\mathfrak{b}$ is finitely generated, proving that A is a Noetherian ring.
7.10. Let M be a Noetherian A-module. Show that $M[x]$ is a Noetherian $A[x]$-module.

Suppose N is an $A[x]$-submodule of $M[x]$. For $n \geq 0$, let M_{n} be the set of all $m \in M$ so that $m x^{n}+p \in N$ where $p \in M[x]$ is some polynomial of degree at most $n-1$. Then M_{n} is an A-submodule of M, so that $M_{0} \subseteq M_{1} \subseteq \ldots$ is an ascending sequence of submodules. Since M is a Noetherian A-module, there is N^{*} such that $M_{n}=M_{N^{*}}$ for all $n \geq N^{*}$. Again since M is Noetherian, there are $m_{i, j} \in M_{i}$ such that $\left\{m_{i, 1}, \ldots, m_{i, r}\right\}$ generates M_{i} for $1 \leq i \leq N$. Clearly, $\left\{m_{N^{*}, 1}, \ldots, m_{N^{*}, r}\right\}$ generates M_{n} for $n \geq N^{*}$. For each i, j choose $p_{i, j}$ of degree at most $i-1$ so that $m_{i, j} x^{i}+p_{i, j} \in N$ and define $q_{i, j}=m_{i, j} x^{i}+p_{i, j}$.

Assume $0 \neq p \in N$ has degree d and let m be the leading coefficient of p. Suppose $d>N^{*}$, and let $m=\sum_{i=1}^{r} a_{i} m_{N^{*}, i}$ with $a_{i} \in A$. Then defining $p^{\prime}=p-\sum_{i=1}^{r} a_{i} x^{d-N^{*}} q_{N^{*}, i}$ yields $p^{\prime} \in N$ with p^{\prime} having degree less than d. By induction, there is $p^{\prime} \in N$ with $\operatorname{deg}\left(p-p^{\prime}\right) \leq N^{*}$. Now we proceed analogously to write $p-p^{\prime}$ as an A-linear sum of the $q_{i, j}$. So p is an $A[x]$-linear sum of the $q_{i, j}$. This means that $\left\{q_{i, j}\right\}$ generates N as an $A[x]$-module, and hence N is finitely generated. Consequently, $M[x]$ is a Noetherian $A[x]$-module.
7.11. Let A be a ring such that each local ring $A_{\mathfrak{p}}$ is Noetherian. Must A itself be Noetherian?

Define A to be the internal direct product $A=\prod_{k=1}^{\infty} \mathbb{Z}_{2}\left(e_{k}\right)$. Let \mathfrak{a}_{n} be the ideal generated by $e_{1}, \ldots, e_{n} \in A$. Then A is not Noetherian since we have a countable properly increasing sequence of ideals in A

$$
\mathfrak{a}_{1} \subsetneq \mathfrak{a}_{2} \subsetneq \mathfrak{a}_{3} \subsetneq
$$

Let \mathfrak{p} be any prime ideal in A. Suppose $x \in \mathfrak{p}$ so that $1-x \notin \mathfrak{p}$, for otherwise $1 \in \mathfrak{p}$. Then $x / 1=0 / 1$ in $A_{\mathfrak{p}}$ since $(1-x) x=x-x^{2}=0$. Therefore, $A_{\mathfrak{p}}$ is a local ring whose maximal ideal $\mathfrak{p}_{\mathfrak{p}}=0$. This means that $A_{\mathfrak{p}}$ is a field, and is hence Noetherian. This shows that A need not be Noetherian even if each of its localizations is Noetherian, so that being Noetherian is not a local property.
7.12. Let A be a ring and B a faithfully flat A-algebra. If B is Noetherian, show that A is Noetherian.

Suppose that $\mathfrak{a}_{1} \subseteq \mathfrak{a}_{2} \subseteq \ldots$ is an ascending chain of ideals in A. Since extension is order preserving, $\mathfrak{a}_{1}^{e} \subseteq \mathfrak{a}_{2}^{e} \subseteq \ldots$ is an ascending chain of ideals in B. But then there is N for which $\mathfrak{a}_{n}^{e}=\mathfrak{a}_{N}^{e}$ whenever $n \geq N$. Because B is faithfully flat we see that $\mathfrak{a}_{n}=\mathfrak{a}_{n}^{e c}=\mathfrak{a}_{N}^{e c}=\mathfrak{a}_{N}$ whenever $n \geq N$. Hence, A is Noetherian as well.
7.13. Let $f: A \rightarrow B$ be a ring homomorphism of finite type. Show that the fibers of f^{*} are Noetherian subspaces of B.

Let \mathfrak{p} be a prime ideal in B. By hypothesis, B is a finitely generated A-algebra. So $B \otimes_{A} k(\mathfrak{p})$ is a finitely generated $k(\mathfrak{p})$-algebra. But this means that $B \otimes_{A} k(\mathfrak{p})$ is a Noetherian ring since $k(\mathfrak{p})$ is a field. Hence, $\operatorname{Spec}\left(B \otimes_{A} k(\mathfrak{p})\right)$ is a Noetherian topological space by exercise 6.8. So we are done.
7.14. Suppose k is an algebraically closed field and \mathfrak{a} is an ideal in the ring $A=k\left[t_{1}, \ldots, t_{n}\right]$. Show that $I(V(\mathfrak{a}))=r(\mathfrak{a})$.

Suppose that $f \in r(\mathfrak{a})$ so that $f^{n} \in \mathfrak{a}$ for some $n>0$. If $x \in V(\mathfrak{a})$ then $0=f^{n}(x)=f(x)^{n}$, so that $f(x)=0$. We see that $f \in I(V(\mathfrak{a}))$, and hence $r(\mathfrak{a}) \subseteq I(V(\mathfrak{a}))$.

Now suppose that $f \notin r(\mathfrak{a})$ and choose a prime ideal \mathfrak{p} containing \mathfrak{a} so that $f \notin \mathfrak{p}$. Let $\bar{f} \neq 0$ be the image of f in $B=A / \mathfrak{p}$, and define $C=B_{\bar{f}}$. Notice that $C \neq 0$ since B is an integral domain and $\bar{f} \neq 0$. Let \mathfrak{m} be a maximal ideal in C. Now A is generated as a k-algebra by $\left\{t_{1}, \ldots, t_{n}\right\}$ so that B is generated as a k-algebra by $\left\{\overline{t_{1}}, \ldots, \overline{t_{n}}\right\}$. We see that C is generated as a k-algebra by $\left\{\overline{1} / \bar{f}, \overline{t_{1}} / \overline{1}, \ldots, \overline{t_{n}} / \overline{1}\right\}$. In particular, C is a finitely generated k-algebra. Since k is algebraically closed, we have $C / \mathfrak{m} \cong k$. More precisely, $1+\mathfrak{m}$ generates C / \mathfrak{m} as a k-vector space. Now we have a series of maps

$$
A \xrightarrow{\pi_{A}} B \xrightarrow{\varphi} C \xrightarrow{\pi_{C}} C / \mathfrak{m} \cong k
$$

Let ψ denote the composition of these maps, and let $x_{i}=\psi\left(t_{i}\right)$. Then we can consider $x=\left(x_{1}, \ldots, x_{n}\right)$ as being a point in k^{n}. More precisely, we choose x_{i} to be the unique point in k satisfying $x_{i}+\mathfrak{m}=\psi\left(t_{i}\right)$. Let g be any element in A, so that $\psi(g)$ can be considered as a point in k^{n} as well. I claim that $\psi(g)=g(x)$. This holds for each of $t_{1}, \ldots, t_{n} \in A$ and so it holds for any $g \in A$ since all maps involved are maps of k-algebras, including valuation at the point x.

Now let g be any element of \mathfrak{a}. Then $g \in \mathfrak{p}$ so that $\pi_{A}(g)=0$, and hence $g(x)=\psi(g)=0$. This means that $x \in V(\mathfrak{a})$. On the other hand, $\varphi\left(\pi_{A}(f)\right)=\bar{f} / \overline{1}$ is a unit in C so that $\varphi\left(\pi_{A}(f)\right) \notin \mathfrak{m}$, and hence $\psi(f) \neq 0$. This means that $f(x) \neq 0$, and hence $f \notin I(V(\mathfrak{a}))$. Consequently, $I(V(\mathfrak{a})) \subseteq r(\mathfrak{a})$, and therefore $I(V(\mathfrak{a}))=r(\mathfrak{a})$.
7.15. Let (A, \mathfrak{m}, k) be a Noetherian local ring and M a finitely generated A-module. Show that the following four conditions on M are equivalent
a. M is free.
b. M is flat.
c. The map $\mathfrak{m} \otimes_{A} M \rightarrow A \otimes_{A} M$ is injective.
d. $\operatorname{Tor}_{1}^{A}(k, M)=0$.
($\mathrm{a} \Rightarrow \mathrm{b}$) O.K.
$(\mathrm{b} \Rightarrow \mathrm{c})$ O.K.
$(c \Rightarrow d)$ From the short exact sequence

$$
0 \longrightarrow \mathfrak{m} \xrightarrow{i} A \longrightarrow k \longrightarrow 0
$$

we get the long exact sequence

$$
\operatorname{Tor}_{1}^{A}(A, M) \longrightarrow \operatorname{Tor}_{1}^{A}(k, M) \longrightarrow \mathfrak{m} \otimes_{A} M \stackrel{i \otimes \operatorname{Id}}{\longrightarrow} A \otimes_{A} M
$$

But $\operatorname{Tor}_{1}^{A}(A, M)=0$ and so $\operatorname{Tor}_{1}^{A}(k, M)$ is isomorphic with $\operatorname{Ker}(i \otimes \mathrm{Id})=0$. Hence, d holds.
$(\mathrm{d} \Rightarrow \mathrm{a})$ Since M is finitely generated, $M / \mathfrak{m} M$ is finitely generated as an A-module, and thus finite dimensional as a k-vector space. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis of $M / \mathfrak{m} M$. Then M is generated by $\left\{x_{1}, \ldots, x_{n}\right\}$ and $k \otimes_{A} M \cong M / \mathfrak{m} M$ is an n-dimensional vector space over k. Now let F be the free A-module of rank n with basis $\left\{e_{1}, \ldots, e_{n}\right\}$ and define a map $\phi: F \rightarrow M$ by $\phi\left(e_{i}\right)=x_{i}$. If E is the kernel of this map, then we have a short exact sequence

$$
0 \longrightarrow E \longrightarrow F \xrightarrow{\phi} M \longrightarrow
$$

Since $\operatorname{Tor}_{1}^{A}(k, M)=0$, we have the short exact sequence

$$
0 \longrightarrow k \otimes_{A} E \longrightarrow k \otimes_{A} F \xrightarrow{\mathrm{id} \otimes \phi} k \otimes_{A} M \longrightarrow 0
$$

But $k \otimes_{A} F \cong \bigoplus_{1}^{n} k$ is an n-dimensional k-vector space. Since id $\otimes \phi$ is surjective, we see that $\operatorname{id} \otimes \phi$ is an isomorphism. Therefore, $k \otimes_{A} E=0$. Since A is a Noetherian ring, E is a finitely generated A-module. Exercise 2.3 now tells us that $E=0$. This means that $F \cong M$ and so M is a free A-module.
7.16. Let A be a Noetherian ring and M a finitely generated A-module. Show that the following are equivalent
a. M is flat.
b. $M_{\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$-module whenever \mathfrak{p} is a prime ideal.
c. $M_{\mathfrak{m}}$ is a free $A_{\mathfrak{m}}$-module whenever \mathfrak{m} is a maximal ideal.

Notice that $S^{-1} M$ is a finitely generated $S^{-1} A$-module for every multiplicatively closed subset S of A, since M is a finitely generated A-module. Also, $A_{\mathfrak{p}}$ is a local Noethering ring for every prime ideal \mathfrak{p} in A. Finally, Proposition 3.10 tells us that flatness is a local condition.
$(\mathrm{a} \Rightarrow \mathrm{b})$ Each $M_{\mathfrak{p}}$ is a flat $A_{\mathfrak{p}}$-module and so is a free $A_{\mathfrak{p}}$-module by exercise 7.15.
($\mathrm{b} \Rightarrow \mathrm{c}$) O.K.
($\mathrm{c} \Rightarrow$ a) Each $M_{\mathfrak{m}}$ is a flat $A_{\mathfrak{m}}$-module by exercise 5.15 , and so M is a flat A-module.
7.17. Let A be a ring and M a Noetherian A-module. Show that every submodule $N \neq M$ of M has a primary decomposition.

A submodule P of M is said to be irreducible if it cannot be expressed as the intersection of two submodules of M properly containing P. Since M is Noetherian, every submodule of M is the intersection of finitely many irreducible submodules (the proof of 7.11 easily carries over to modules). So it suffices to show that every proper irreducible submodule of M is primary.

Let $Q \neq M$ be an irreducible submodule. Then 0 is an irreducible submodule of M / Q. If 0 is primary in M / Q, then Q is primary in M. So we may take $Q=0$. Suppose $a x=0$ with $0 \neq x \in M$. Let M_{n} consist of all $y \in M$ so that $a^{n} y=0$. Then $M_{1} \subseteq M_{2} \subseteq \ldots$ is a chain of submodules in M. Since M is Noetherian, we can choose N such that $M_{n}=M_{N}$ for $n \geq N$. Now suppose that $y \in a^{N} M \cap A x$. Then $a y=0$ since $y \in A x$, and $y=a^{N} x^{\prime}$ for some $x^{\prime} \in M$, so that $0=a y=a^{N+1} x^{\prime}$. Since $x^{\prime} \in M_{N+1}=M_{N}$, we must have $0=a^{N} x^{\prime}=y$. In other words, $a^{N} M \cap A x=0$. Since $A x \neq 0$ and 0 is an irreducible submodule of M, we conclude that $a^{N} M=0$, so that a is nilpotent. This shows that 0 is primary in M.
7.18. Let A be a Noetherian ring, \mathfrak{p} a prime ideal of A, and M a finitely generated A-module. Show that the following are equivalent
a. The ideal \mathfrak{p} belongs to 0 in M.
b. There exists $x \in M$ so that $\operatorname{Ann}(x)=\mathfrak{p}$.
c. There exists a submodule N of M isomorphic with A / \mathfrak{p}.
$(a \Rightarrow b)$ Let $\bigcap_{i=1}^{n} Q_{i}=0$ be a minimal primary decomposition of 0 . We may assume that Q_{1} is \mathfrak{p}-primary, and we can choose a nonzero $x \in \bigcap_{i=2}^{n} Q_{i}$. Then clearly $\operatorname{Ann}(x)=\left(Q_{1}: x\right)$. But $\left(Q_{1}: M\right)$ is a p-primary ideal in A, and so $\mathfrak{p}^{n} M \subseteq Q_{1}$ for some $n>0$. This implies that $\mathfrak{p}^{n} x=0$. Take $n \geq 0$ to be such that $\mathfrak{p}^{n+1} x=0$ and $\mathfrak{p}^{n} x \neq 0$, and choose $y \in \mathfrak{p}^{n} x$. Then $\mathfrak{p} \subseteq \operatorname{Ann}(y)$ and $y \notin Q_{1}$ since $y \in \bigcap_{i=2}^{n} Q_{i}$. Now if $a \in \operatorname{Ann}(y)$ then a annihilates $0 \neq y+Q_{1} \in M / Q_{1}$ so that $a \in \mathfrak{p}$. This means that $\mathfrak{p}=\operatorname{Ann}(y)$.
$(b \Rightarrow a)$
$(b \Rightarrow c)$ The submodule $A x$ of M is isomorphic with $A / \operatorname{Ann}(x) \cong A / \mathfrak{p}$.
$(c \Rightarrow b)$ Let $x \in N$ correspond with $1_{A / \mathfrak{p}}=1+\mathfrak{p} \in A / \mathfrak{p}$. Then $\operatorname{Ann}(x)=\operatorname{Ann}\left(1_{A / \mathfrak{p}}\right)=\mathfrak{p}$.
Deduce that there exists a chain of submodules $0=M_{0} \subset M_{1} \subset \ldots \subset M_{n}=M$ of M with each M_{i+1} / M_{i} isomorphic with A / \mathfrak{p}_{i}, for some prime ideal \mathfrak{p}_{i} in A.
7.19? Let \mathfrak{a} be an ideal in the Noetherian ring A. Let

$$
\mathfrak{a}=\bigcap_{i=1}^{r} \mathfrak{b}_{i}=\bigcap_{i=1}^{s} \mathfrak{c}_{i}
$$

be two minimal decompositions of \mathfrak{a} as intersections of irreducible ideals. Prove that $r=s$ and that $r\left(\mathfrak{b}_{i}\right)=r\left(\mathfrak{c}_{i}\right)$ after reindexing. State and prove analogous results for modules.
7.20. Let X be a topological space and let \mathcal{F} be the smallest collection of subsets of X which contains all open subsets of X and is closed with respect to the formation of finite intersections and complements. Show the following.
a. A subset E of X belongs to \mathcal{F} iff E is a finite union of sets of the form $U \cap C$, where U is open and C is closed.

Let \mathbb{F} consist of all sets expressible as the finite union of sets of the form $U \cap C$, where U is open and C is closed. By DeMorgan's Law \mathcal{F} is closed under finite unions. As the complement of an open set is closed, and as \mathcal{F} contains all open sets, we see that \mathcal{F} contains all closed sets. So \mathcal{F} contains all sets that are finite unions of sets of the form $U \cap C$, where U is open and C is closed. Hence, $\mathbb{F} \subseteq \mathcal{F}$. Now \mathbb{F} contains all open sets since $U \cap X=U$ and X. \mathbb{F} is closed under complements since

$$
\left[\bigcup_{k=1}^{n}\left(U_{k} \cap C_{k}\right)\right]^{c}=\bigcap_{k=1}^{n}\left(U_{k}^{c} \cup C_{k}^{c}\right)=\bigcup_{s+t=n}\left[\bigcap_{i_{1}, \ldots, i_{s}} C_{i_{k}}^{c} \cap \bigcap_{j_{1}, \ldots, j_{t}} U_{j_{k}}^{c}\right]
$$

It is obvious that \mathbb{F} is closed under finite unions, and so \mathbb{F} is also closed under finite intersections. Therefore $\mathbb{F}=\mathcal{F}$.
b. If X is irreducible and $E \in \mathcal{F}$, then E is dense in X if and only if E contains a non-empty open subset of X.

If E contains a non-empty open subset of X, then E is dense in X since X is irreducible. So suppose that $E=\bigcup_{1}^{n}\left(U_{i} \cap C_{i}\right)$ satisfies $\mathrm{Cl}(E)=X$. Then $\mathrm{Cl}(E)=\bigcup_{1}^{n} \mathrm{Cl}\left(U_{i} \cap C_{i}\right)=X$ so that $\mathrm{Cl}\left(U_{i} \cap C_{i}\right)=X$ for some i, since X is irreducible. But then $X=\mathrm{Cl}\left(U_{i} \cap C_{i}\right) \subseteq \mathrm{Cl}\left(U_{i}\right) \cap \mathrm{Cl}\left(C_{i}\right)=C_{i}$ so that $U_{i} \cap C_{i}=U_{i}$ is open in X. Thus, E contains a non-empty open subset of X.
7.21. Let X be a Noetherian space and $E \subseteq X$. Show that $E \in \mathcal{F}$ iff, for each irreducible closed $X_{0} \subseteq X$, either $\mathrm{Cl}\left(E \cap X_{0}\right) \neq X_{0}$ or $E \cap X_{0}$ contains a non-empty open subset of X_{0}.

Suppose that $E \in \mathcal{F}$ and let X_{0} be a closed irreducible subspace of X such that $\operatorname{Cl}\left(E \cap X_{0}\right)=X_{0}$. Notice that $E \cap X_{0}$ is a union of locally closed subspaces of X_{0}. So by exercise 7.21 , we conclude that $E \cap X_{0}$ contains a non-empty open subset of X_{0}.

Now suppose that $E \notin \mathcal{F}$. Define Σ as the set of all closed subsets X^{\prime} of X such that $E \cap X^{\prime} \notin \mathcal{F}$. Then Σ is non-empty since $X \in \Sigma$. Since X is a Noetherian space, there is a minimal element X_{0} of Σ. Suppose, for the sake of contradiction, that X_{0} is reducible, with $X_{0}=C_{1} \cup C_{2}$ and each C_{i} a proper closed subset of X_{0}. Then $E \cap C_{i} \in \mathcal{F}$ so that $E \cap X_{0}=\left(E \cap C_{1}\right) \cup\left(E \cap C_{2}\right)$ is an element of \mathcal{F}; a contradiction. This means that X_{0} is a closed irreducible subspace of X. Now suppose that $\operatorname{Cl}\left(E \cap X_{0}\right)=X_{0}$.
7.22. Let X be a Noetherian space and E a subset of X. Show that E is open in X iff, for each irreducible closed X_{0} in X, either $E \cap X_{0}=\emptyset$ or $E \cap X_{0}$ contains a non-empty open subset of X_{0}.

Suppose E is open in X and let X_{0} be an irreducible closed subset of X. Either $E \cap X_{0}=\emptyset$ or $E \cap X_{0}$ is a non-empty open subset of X_{0}. Now suppose that E is not an open subspace of X. Then the collection Σ of
all closed $X^{\prime} \subseteq X$ such that $E \cap X^{\prime}$ is not open in X^{\prime} is non-empty, since $X \in \Sigma$. Since X is a Noetherian space, we can choose a minimal $X_{0} \in \Sigma$. Suppose $X_{0}=C_{1} \cup C_{2}$ where each C_{i} is a proper closed subset of X_{0}. Then $E \cap X_{0}=\left(E \cap C_{1}\right) \cup\left(E \cap C_{2}\right)$ is open in X_{0} by minimality; a contradiction.
7.23? Let A be a Noetherian ring and $f: A \rightarrow B$ a homomorphism of finite type. Show that $f^{*}: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ maps constructible sets into constructible sets.

We can write $E=\bigcup_{1}^{n}\left(U_{i} \cap C_{i}\right)$ so that $f^{*}(E)=\bigcup_{1}^{n} f^{*}\left(U_{i} \cap C_{i}\right)$. If each $f^{*}\left(U_{i} \cap C_{i}\right)$ is a constructible subset of $\operatorname{Spec}(A)$, then $f^{*}(E)$ is a constructible subset of $\operatorname{Spec}(A)$. So assume that $E=U \cap C$.
7.24? Let A be a Noetherian ring and $f: A \rightarrow B$ be a homomorphism of finite type. Show that f^{*} is an open mapping if and only if f^{*} has the going-down property.
7.25 ? Let A be a Noetherian ring and $f: A \rightarrow B$ a flat homomorphism of finite type. Show that $f^{*}: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ is an open mapping.
7.26. Suppose A is Noetherian and let $F(A)$ denote the set of all isomorphism classes of finitely generated A-modules. Let C be the free abelian group generated by $F(A)$. With each short exact sequence of finitely generated A-modules

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0
$$

we associate the element $\left[M^{\prime}\right]-[M]+\left[M^{\prime \prime}\right]$ of C. Let D be the subgroup of C generated by these elements. The quotient group C / D is called the Grothendieck group of A, and is denoted by $K(A)$. If M is a finitely generated A-module, let $\gamma_{A}(M)$ or $\gamma(M)$ denote the image of $[M]$ in $K(A)$. Prove the following concerning $K(A)$.
a. For each additive function λ defined on $F(A)$ with values in the abelian group G, there is a unique homomorphism $\lambda_{0}: K(A) \rightarrow G$ satisfying $\lambda_{0} \circ \gamma=\lambda$.

We can obviously extend $\lambda: F(A) \rightarrow G$ to a map $\lambda: C \rightarrow G$ of abelian groups in the obvious way. Since λ is additive, we know that $D \subseteq \operatorname{Ker}(\lambda)$. So λ induces a map $\lambda_{0}: C / D \rightarrow G$ satisfying $\lambda_{0} \circ \gamma=\lambda$. Clearly this λ_{0} is unique since $K(A)$ is generated by $\gamma(F(A))$ as an abelian group.
b. The elements $\gamma(A / \mathfrak{p})$ with \mathfrak{p} a prime ideal generate $K(A)$.

Let M be a finitely generated A-module and choose a chain of submodules

$$
0=M_{0} \subset M_{1} \subset \ldots \subset M_{r}=M
$$

so that M_{i+1} / M_{i} is isomorphic with A / \mathfrak{p}_{i} for some prime ideal \mathfrak{p}_{i}. Then we have the short exact sequence

$$
0 \longrightarrow M_{r-1} \longrightarrow M \longrightarrow M / M_{r-1} \longrightarrow 0
$$

of finitely generated A-modules, so that $[M]=\left[M_{r-1}\right]+\left[A / \mathfrak{p}_{r}\right]$. By induction $[M]=\sum_{i=1}^{r}\left[A / \mathfrak{p}_{i}\right]$. Applying γ yields $\gamma(M)=\sum_{i=1}^{r} \gamma\left(A / \mathfrak{p}_{i}\right)$. So we are done.
c. If $A \neq 0$ is a principal ideal domain, then $K(A) \cong \mathbb{Z}$.

Let $\mathfrak{p}=(a)$ be a non-zero prime ideal in A. Define $f: A \rightarrow \mathfrak{p}$ by $f(b)=a b$. Then f is a surjective homomorphism of A-modules. If $f(b)=0$ then $a=0$ or $b=0$, so that $b=0$ since $\mathfrak{p} \neq 0$. This means that f is an isomorphism of A-modules. From the short exact sequence

$$
0 \longrightarrow \mathfrak{p} \longrightarrow A \longrightarrow A / \mathfrak{p} \longrightarrow 0
$$

we see that $[A / \mathfrak{p}]=[A]-[\mathfrak{p}]=0$. The only other prime ideal of A is 0 , with $[A / 0]=[A]$. So C is the abelian group generated by $[A]$, and hence $C \cong \mathbb{Z}$. Since $[A]$ has infinite order, we get $K(A) \cong \mathbb{Z}$.
d. Let $f: A \rightarrow B$ be a finite ring homomorphism. The restriction of scalars yields a homomorphism $f_{!}: K(B) \rightarrow K(A)$ such that $f_{!}\left(\gamma_{B}(N)\right)=\gamma_{A}(N)$ for every finitely generated B-module N. If $g: B \rightarrow C$ is another finite ring homomorphism, then $(g \circ f)_{!}=f_{!} \circ g_{!}$.

Let N be a finitely generated B-module so that N is a finitely generated A-module. If N and N^{\prime} are isomorphic B-modules, then $f_{!}(N)$ and $f_{!}\left(N^{\prime}\right)$ are isomorphic as well. Also, a short exact sequence of B-modules turns into a short exact sequence of A-modules under restriction. Therefore, there is a $\operatorname{map} f_{!}: K(B) \rightarrow K(A)$ satisfying $f_{!}\left(\gamma_{B}(N)\right)=\gamma_{A}(N)$. Suppose $g: B \rightarrow C$ is another finite ring homomorphism and let P be a finitely generated C-module. The pullback of P along $g \circ f$ is the same as the pullback of N along f, where N is the pullback of P along g. From this it follows that $(g \circ f)_{!}=f_{!} \circ g_{!}$.
7.27 ? Let A be a Noetherian ring and let $F_{1}(A)$ denote the set of all isomorphism classes of finitely generated flat A-modules. Repeating the construction of exercise 7.26, we obtain a group $K_{1}(A)$. Let $\gamma_{1}(M)$ denote the image (M) in $K_{1}(A)$, when M is a finitely generated flat A-module. Prove the following concerning $K_{1}(A)$.
a. The tensor product induces a commutative ring structure on $K_{1}(A)$ such that $\gamma_{1}(M) \cdot \gamma_{1}(N)=$ $\gamma_{1}\left(M \otimes_{A} N\right)$. The identity element is $\gamma_{1}(A)$.

The tensor product of two finitely generated flat A-modules is clearly a finitely generated flat A-module. The tensor product is commutative, associative, respects direct sums, and has identity A. We get a multiplicative structure on $F_{1}(A)$ since $M \cong M^{\prime}$ and $N \cong N^{\prime}$ implies that $M \otimes_{A} N \cong M^{\prime} \otimes_{A} N^{\prime}$. By linearity we get a multiplicative structure on $C_{1}(A)$, where $C_{1}(A)$ is the free abelian group generated by $F_{1}(A)$. Let $D_{1}(A)$ be the subgroup of $C_{1}(A)$ generated by all elements of the form $(M)-\left(M^{\prime}\right)-\left(M^{\prime \prime}\right)$ where M^{\prime}, M, and $M^{\prime \prime}$ fit into the obvious short exact sequence. To get a multiplicative structure on $K_{1}(A)$, we need to verify that $x \cdot y=x^{\prime} \cdot y^{\prime}$ whenever $x-x^{\prime}, y-y^{\prime} \in D_{1}(A)$. By linearity, we simply need to check that $(N) \cdot\left((M)-\left(M^{\prime}\right)-\left(M^{\prime \prime}\right)\right) \in D_{1}(A)$ whenever $(N) \in C_{1}(A)$ and $(M)-\left(M^{\prime}\right)-\left(M^{\prime \prime}\right) \in D_{1}(A)$. But this is immediate since N is a flat A-module. So $K_{1}(A)$ is a commutative ring, with identity $\gamma_{1}(A)$, and γ_{1} satisfies the desired relation.
b. Show that the tensor product induces a $K_{1}(A)$-module structure on $K(A)$ such that $\gamma_{1}(M)$. $\gamma(N)=\gamma(M \otimes N)$.

We see that $C(A)$ has a $K_{1}(A)$-module structure induced from the tensor product. Also, $K_{1}(A)$ annihilates $D(A)$ since all modules in $F_{1}(A)$ are flat over A. So $K_{1}(A)$ induces the desired module structure on $K(A)$.
c. If (A, \mathfrak{m}) is a Noetherian local ring, then $K_{1}(A) \cong \mathbb{Z}$.
d. Let $f: A \rightarrow B$ be a ring homomorphism with B Noetherian. Prove that extension of scalars gives rise to a ring homomorphism $f^{!}: K_{1}(A) \rightarrow K_{1}(B)$ such that $f^{!}\left(\gamma_{1}(M)\right)=\gamma_{1}\left(M \otimes_{A} B\right)$. If $g: B \rightarrow C$ with C Noetherian, then $(g \circ f)^{!}=g^{!} \circ f^{!}$.

If M is a finitely generated flat A-module, then $M_{B}=M \otimes_{A} B$ is a finitely generated flat B-module. Also, if $M \cong N$ then $M_{B} \cong N_{B}$. So there is a map $F_{1}(A) \rightarrow F_{1}(B)$ that extends to a group homomorphism $C_{1}(A) \rightarrow C_{1}(B)$. In fact, this is a ring homomorphism since $M_{B} \cdot N_{B}=\left(M \otimes_{A} B\right) \otimes_{B}\left(N \otimes_{A} B\right) \cong$ $\left(M \otimes_{A} N\right) \otimes_{B} B=(M \cdot N)_{B}$.
e. If $f: A \rightarrow B$ is a finite ring homomorphism then $f_{!}\left(f^{!}(x) y\right)=x f_{!}(y)$ for $x \in K_{1}(A)$ and $y \in K(B)$.

Chapter 8 : Artin Rings

8.1. Assume A is Noetherian and that 0 has the minimal primary decomposition $0=\bigcap_{i=1}^{n} \mathfrak{q}_{i}$, with $\mathfrak{p}_{i}=r\left(\mathfrak{q}_{i}\right)$. Show that for every i there is $r_{i}>0$ with $\mathfrak{p}_{i}^{\left(r_{i}\right)} \subseteq \mathfrak{q}_{i}$. Suppose \mathfrak{q}_{i} is an isolated primary component. Show that $A_{\mathfrak{p}_{i}}$ is a local Artin ring, and that if \mathfrak{m}_{i} is the maximal ideal of $A_{\mathfrak{p}_{i}}$, then $\mathfrak{m}_{i}^{r}=0$ for some r. Also prove that $\mathfrak{q}_{i}=\mathfrak{p}_{i}^{(r)}$ for all large r.

Let \mathfrak{q} be any \mathfrak{p}-primary ideal. Since A is Noetherian, there is $r>0$ with $\mathfrak{p}^{r} \subseteq \mathfrak{q}$. Then $\left(\mathfrak{p}^{r}\right)_{\mathfrak{p}} \subseteq \mathfrak{q}_{\mathfrak{p}}$ so that $\mathfrak{p}^{(r)}=\left(\mathfrak{p}^{r}\right)_{\mathfrak{p}}^{c} \subseteq \mathfrak{q}_{\mathfrak{p}}^{c}=\mathfrak{q}$ (after all, $\mathfrak{p} \cap S_{\mathfrak{p}}=\emptyset$). This holds in particular with $\mathfrak{q}=\mathfrak{q}_{i}$ for some i. Now suppose that \mathfrak{q}_{i} is one of the isolated primary components of 0 . Clearly $A_{\mathfrak{p}_{i}}$ is a Noetherian ring. Any prime ideal in $A_{\mathfrak{p}_{i}}$ is of the form $\mathfrak{p}_{\mathfrak{p}_{i}}$ where \mathfrak{p} is a prime ideal in A contained in \mathfrak{p}_{i}. But \mathfrak{p}_{i} is a minimal element in the set of all prime ideals in A. This means that $A_{\mathfrak{p}_{i}}$ has precisely one prime ideal, namely $\mathfrak{m}_{i}=\left(\mathfrak{p}_{i}\right)_{\mathfrak{p}_{i}}$. Therefore, $A_{\mathfrak{p}_{i}}$ is a local Artin ring. Since $\mathfrak{N}\left(A_{\mathfrak{p}_{i}}\right)=\mathfrak{m}_{i}$ we see that $\mathfrak{m}_{i}^{r}=0$ for all sufficiently large r. Finally, $\mathfrak{p}_{i}^{(r)} \subseteq \mathfrak{q}_{i}$ for all large r, so that $0=\mathfrak{p}_{i}^{(r)} \cap \bigcap_{j \neq i} \mathfrak{q}_{j}$. Since isolated components are uniquely determined, we see that $\mathfrak{p}_{i}^{(r)}=\mathfrak{q}_{i}$ for all large r.
8.2. Let A be Noetherian. Prove that the following are equivalent.
a. A is Artinian.
b. $\operatorname{Spec}(A)$ is discrete and finite.
c. $\operatorname{Spec}(A)$ is discrete.
($\mathrm{a} \Rightarrow \mathrm{b}$) Notice that $\operatorname{Spec}(A)$ is Hausdorff since each prime ideal in A is maximal. Also, $\operatorname{Spec}(A)$ is finite since there are finitely many maximal ideals in A. Hence, $\operatorname{Spec}(A)$ has the discrete topology.
($\mathrm{b} \Rightarrow \mathrm{c}$) O.K.
(c \Rightarrow a) Each prime ideal in A is maximal since $\operatorname{Spec}(A)$ is discrete. Therefore, A has Krull dimension 0 . Hence, A is Artinian.
8.3. Let k be a field and A a finitely generated k-algebra. Prove that the following two conditions are equivalent.
a. A is Artinian.
b. A is a finite k-algebra.
($\mathrm{a} \Rightarrow \mathrm{b}$) Write $A=\prod_{j=1}^{n} A_{j}$, where each A_{j} is an Artin local ring, and let $\pi_{j}: A \rightarrow A_{j}$ be the canonical projection. Notice that there is a unique way to make each A_{j} into a k-algebra in such that a way that π_{j} is a homomorphism of k-algebras. Also observe that if A is finitely generated as a k-algebra by $\left\{x_{i}\right\}_{i=1}^{m}$ then A_{j} is finitely generated as a k-algebra by $\left\{\pi_{j}\left(x_{i}\right)\right\}_{i=1}^{m}$. So if we prove that the result holds for the local Artin rings A_{j}, then the result holds for A since $\operatorname{dim}_{k}(A)=\sum_{j=1}^{n} \operatorname{dim}_{k}\left(A_{j}\right)$.

So assume that (A, \mathfrak{m}) is an Artin local ring. Then A / \mathfrak{m} is a finite algebraic extension of k since A / \mathfrak{m} is a finitely generated field extension of k. Since A is Noetherian, we see that \mathfrak{m} is a finitely generated A-module, and since \mathfrak{m} is the only prime ideal in A, we know by exercise 7.18 that there is a chain of ideals

$$
0=\mathfrak{m}_{0} \subset \mathfrak{m}_{1} \subset \ldots \subset \mathfrak{m}_{r}=\mathfrak{m}
$$

in A with each $\mathfrak{m}_{i+1} / \mathfrak{m}_{i} \cong A / \mathfrak{m}$. Since each $\mathfrak{m}_{i+1} / \mathfrak{m}_{i}$ is a finite-dimensional k-vector space, the same is true for \mathfrak{m}, and therefore the same can be said about A.
($\mathrm{b} \Rightarrow \mathrm{a}$) If \mathfrak{a} is an ideal in A, then $k \mathfrak{a} \subseteq \mathfrak{a}$, where we identify k with its isomorphic image in A. So \mathfrak{a} is a k-vector subspace of A. Since A is finite dimensional as a k-vector space, the vector subspaces of A satisfy the d.c.c. This means that ideals in A satisfy the d.c.c. In other words, A is an Artin ring.
8.4. Let $f: A \rightarrow B$ be a ring homomorphism of finite type. Consider the following conditions and show that $a \Rightarrow b \Leftrightarrow c \Rightarrow d$. Also, if $f: A \rightarrow B$ is integral and the fibers of f^{*} are finite, is f finite?
a. The $\operatorname{map} f$ is finite.
b. The fibers of f^{*} are discrete subspaces of $\operatorname{Spec}(B)$.
c. For prime \mathfrak{p} in A, the ring $B \otimes_{A} k(\mathfrak{p})$ is a finite $k(\mathfrak{p})$-algebra.
d. The fibers of f^{*} are finite.

By hypothesis, B is a finitely generated A-algebra, so that $B \otimes_{A} k(\mathfrak{p})$ is a finitely generated $k(\mathfrak{p})$-algebra.
$(\mathrm{a} \Rightarrow \mathrm{b})$ If B is generated as an A-module by $\left\{b_{i}\right\}_{1}^{n}$, then $B \otimes_{A} k(\mathfrak{p})$ is generated as a $k(\mathfrak{p})$-vector space by $\left\{b_{i} \otimes 1\right\}_{1}^{n}$, and hence $B \otimes_{A} k(\mathfrak{p})$ is Artinian by exercise 8.3 . So by exercise $8.2, \operatorname{Spec}\left(B \otimes_{A} k(\mathfrak{p})\right)$ is discrete. This shows that every fiber of f^{*} is a discrete subspace of $\operatorname{Spec}(B)$.
$(\mathrm{b} \Rightarrow \mathrm{c})$ We know that $B \otimes_{A} k(\mathfrak{p})$ is a finitely generated $k(\mathfrak{p})$-algebra, so that $B \otimes_{A} k(\mathfrak{p})$ is a Noetherian ring. Now by hypothesis $\operatorname{Spec}\left(B \otimes_{A} k(\mathfrak{p})\right)$ is discrete, and so exercise 8.2 tells us that $B \otimes_{A} k(\mathfrak{p})$ is an Artinian ring. But exercise 8.3 nows tells us that $B \otimes_{A} k(\mathfrak{p})$ is a finite $k(\mathfrak{p})$-algebra.
$(\mathrm{c} \Rightarrow \mathrm{b})$ Whenever \mathfrak{p} is a prime ideal in A, the ring $B \otimes_{A} k(\mathfrak{p})$ is Artinian by exercise 8.3 . So by exercise 8.2 , the fiber $\operatorname{Spec}\left(B \otimes_{A} k(\mathfrak{p})\right)$ of f^{*} over \mathfrak{p} is discrete.
$(\mathrm{c} \Rightarrow \mathrm{d})$ Whenever \mathfrak{p} is a prime ideal in A, the ring $B \otimes_{A} k(\mathfrak{p})$ is Artinian, again by exercise 8.3 . So again by exercise 2, the fiber $\operatorname{Spec}\left(B \otimes_{A} k(\mathfrak{p})\right)$ of f^{*} over \mathfrak{p} is finite.
8.5? In exercise 5.16 show that X is a finite covering of L.
8.6? Let A be a Noetherian ring and \mathfrak{q} a \mathfrak{p}-primary ideal. Consider chains of primary ideals from \mathfrak{q} to \mathfrak{p}. Show that all such chains are of finite bounded length, and that all maximal chains have the same length.

If $\mathfrak{q} \subseteq \mathfrak{r} \subseteq \mathfrak{p}$ then $r(\mathfrak{r})=\mathfrak{p}$. So we can restrict attention to chains of \mathfrak{p}-primary ideals from \mathfrak{q} to \mathfrak{p}. Clearly all such chains are of finite length since A is Noetherian.

Chapter 9 : Discrete Valuation Rings and Dedekind Domains

9.1. Let A be a Dedekind domain, S a multiplicatively closed subset of A not containing 0 . Show that $S^{-1} A$ is either a Dedekind domain or the field of fractions K of A.

If $\mathfrak{p}_{0} \subset \mathfrak{p}_{1} \subset \ldots \subset \mathfrak{p}_{n}$ is a chain of prime ideals in $S^{-1} A$, then $\mathfrak{p}_{0}^{c} \subset \mathfrak{p}_{1}^{c} \subset \ldots \subset \mathfrak{p}_{n}^{c}$ is a chain of prime ideals in A. So in general, the Krull dimension of $S^{-1} A$ is less than or equal to the Krull dimension of A. Now A has dimension 1 since A is a Dedekind domain. Hence, $S^{-1} A$ has dimension equal to 1 or 0 . Since A is an integral domain and $0 \notin S$, we can consider $A \subseteq S^{-1} A \subseteq K$. If $S^{-1} A$ has dimension 0 , then $S^{-1} A$ is a field, and so $S^{-1} A=K$.

Now assume that $S^{-1} A$ has dimension 1. Clearly $S^{-1} A$ is Noetherian, and K is the field of fractions of $S^{-1} A$. Since the integral closure of A in K equals A, the integral closure of $S^{-1} A$ in $S^{-1}(K)=K$ is $S^{-1} A$. This means that $S^{-1} A$ is integrally closed as well. Therefore, $S^{-1} A$ is a Dedekind domain.

Suppose again that $0 \notin S$, and let H, H^{\prime} be the ideal class groups of A and $S^{-1} A$ respectively. Show that extension of ideals induces a surjective homomorphism $H \rightarrow H^{\prime}$.

Suppose that \mathfrak{a} is a non-zero fractional ideal of A. It is clear that $S^{-1} \mathfrak{a}$ is a non-zero ideal of $S^{-1} A$ since S has no zero-divisors. If $x \in A$ is such that $x \mathfrak{a} \subseteq A$, then $x S^{-1} \mathfrak{a} \subseteq S^{-1} A$. Hence $S^{-1} \mathfrak{a}$ is a fractional ideal of $S^{-1} A$. Therefore, if we let I be the group of non-zero fractional ideals of A, and I^{\prime} the group of non-zero fractional ideals of $S^{-1} A$, then we have a map $I \rightarrow I^{\prime}$ given by $\mathfrak{a} \mapsto S^{-1} \mathfrak{a}$. In other words, this map is given by extension. This map is a group homomorphism since localization commutes with taking finite products. Let P be the image of the canonical map $K^{*} \rightarrow I$, and P^{\prime} the image of the canonical map $K^{*} \rightarrow I^{\prime}$. If $x \in K^{*}$ then $S^{-1}(x)=(x)$, and hence the map $I \rightarrow I^{\prime}$ carries P into P^{\prime}. Consequently, the map $I \rightarrow I^{\prime}$ induces a map $H \rightarrow H^{\prime}$. If $\mathfrak{b} I^{\prime} \in H^{\prime}$ then there is $0 \neq x \in A$ satisfying $x \mathfrak{b} \subseteq S^{-1} A$. We can write $(x) \mathfrak{b}=S^{-1} \mathfrak{a}$ for some non-zero ideal \mathfrak{a} in A. Since \mathfrak{a} is an integral ideal, it is clearly a fractional ideal of A, and so is an element of I. This means that the map $H \rightarrow H^{\prime}$ is surjective.
9.2. Let A be a Dedekind domain. If $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ then the content $c(f)$ of f is defined by $c(f)=\left(a_{0}, \ldots, a_{n}\right)$. Prove Gauss's Lemma that $c(f g)=c(f) c(g)$ for all f, g.

Suppose that A is in fact a discrete valuation ring, with maximal ideal \mathfrak{m}, where $\mathfrak{m}=(y)$. Each a_{i} is of the form $u_{i} y^{v\left(a_{i}\right)}$ where u_{i} is a unit in A and v is the appropriate discrete valuation. Let $a \geq 0$ be the biggest a^{\prime} so that $y^{a^{\prime}}$ divides each a_{i}. Similarly, let $b \geq 0$ be the biggest b^{\prime} so that $y^{b^{\prime}}$ divides each coefficient of g. Then f / y^{a} and g / y^{b} are primitive polynomials since some coefficient of f and g is a unit. Exercise 1.2 tells us that $f g / y^{a+b}$ is primitive as well. Now $c(f g)=\left(y^{a+b}\right)=\left(y^{a}\right)\left(y^{b}\right)=c(f) c(g)$ so that Gauss's Lemma holds for discrete valuation rings.

Now suppose that A is a general Dedekind domain. Let \mathfrak{m} be a maximal ideal in A so that $A_{\mathfrak{m}}$ is a discrete valuation ring. The canonical map $A \rightarrow A_{\mathfrak{m}}$ extends naturally to a map $A[x] \rightarrow A_{\mathfrak{m}}[x]$. Denote this map by $f \mapsto f_{\mathfrak{m}}$. It is clear that $c\left(f_{\mathfrak{m}}\right)=c(f)_{\mathfrak{m}}$. Now there is an inclusion map $j: c(f g) \rightarrow c(f) c(g)$. We see that the map $j_{\mathfrak{m}}: c(f g)_{\mathfrak{m}} \rightarrow(c(f) c(g))_{\mathfrak{m}}=c(f)_{\mathfrak{m}} c(g)_{\mathfrak{m}}=c\left(f_{\mathfrak{m}}\right) c\left(g_{\mathfrak{m}}\right)$ is the natural inclusion map. By the work done above, we see that $j_{\mathfrak{m}}$ is the identity, and in particular is surjective. This means that j is surjective, and hence $c(f g)=c(f) c(g)$. This means that Gauss's Lemma holds for Dedekind domains.
9.3. Suppose that (A, \mathfrak{m}, K) is a valuation ring, with $A \neq K$. Show that A is Noetherian if and only if A is a discrete valuation ring.

If A is a DVR then A is clearly Noetherian. So suppose that A is Noetherian. If \mathfrak{a} is an ideal in A then we can write $\mathfrak{a}=\left(a_{1}, \ldots, a_{n}\right)$ for some a_{i}. Since A is a valuation ring, the ideals in A are totally ordered. So there is some i for which $\left(a_{j}\right) \subseteq\left(a_{i}\right)$ for all $1 \leq j \leq n$. This means that $\mathfrak{a}=\left(a_{j}\right)$, and so \mathfrak{a} is a principal ideal. This means that A is a PID. Now write $\mathfrak{m}=(x)$, where $x \neq 0$ since A is not a field. Let y be an arbitrary
non-zero element of \mathfrak{m}.

I claim that $y=u x^{k}$ for some unit u and some $k>0$. If not, then for every i there is $a_{i} \in \mathfrak{m}$ satisfying $y=a_{i} x^{i}$. Notice that $a_{i}=a_{i+1} x$ since $x \neq 0$, and so $\left(a_{i}\right) \subseteq\left(a_{i+1}\right)$. But if $\left(a_{i+1}\right)=\left(a_{i}\right)$ then there is b for which $a_{i+1}=b a_{i}$, and hence $y=a_{i+1} x^{i+1}=(x b)\left(a_{i} x^{i}\right)$ so that $x b=1$, implying that x is a unit. Consequently, we have a properly ascending sequence of ideals $\left(a_{1}\right) \subset\left(a_{2}\right) \subset \ldots$ in the Noetherian ring A, a contradiction.

Now let \mathfrak{a} be any proper ideal in A. Choose y for which $\mathfrak{a}=(y)$ and notice that $y \in \mathfrak{m}$ since y is not a unit. Write $y=u x^{k}$ as above, so that $\mathfrak{a}=\left(x^{k}\right)$. Now we argue as in $(f \Rightarrow a)$ from Proposition 9.2 to conclude that A is a discrete valuation ring (noting that this portion of Proposition 9.2 does not require the assumption that A have dimension 1).
9.4. Let A be a local domain which is not a field. Suppose the non-zero maximal ideal $\mathfrak{m}=(x)$ of A is principal and satisfies $\bigcap_{i=1}^{\infty} \mathfrak{m}^{i}=0$. Prove that A is a DVR.

If $0 \neq y \in \mathfrak{m}$ then I claim that $y=u x^{k}$ for some unit u and some $k>0$. If not, then there are $a_{i} \in \mathfrak{m}$ satisfying $y=a_{i} x^{i}$ for all i. But then $y \in \bigcap_{i=1}^{\infty} \mathfrak{m}^{i}=0$ so that $y=0$, contrary to our assumption on y. Now let \mathfrak{a} be a proper non-zero ideal in A, so that $\mathfrak{a} \subseteq \mathfrak{m}$. For every nonzero $y \in \mathfrak{a}$ write $y=u x^{k}$ as above. Let k^{*} be the minimal k that arises in this fashion. Then clearly $\mathfrak{a} \subseteq\left(x^{k^{*}}\right)$ since every nonzero $y \in \mathfrak{a}$ can be written as $y=u x^{k}$ for some unit u and some $k \geq k^{*}$. On the other hand, there is some unit u such that $u x^{k^{*}} \in \mathfrak{a}$, and hence $\left(x^{k^{*}}\right)=\mathfrak{a}$. Now we argue as in $(f \Rightarrow a)$ from Proposition 9.2 to conclude that A is a discrete valuation ring (noting that this portion of Proposition 9.2 only requires that $\mathfrak{m}^{n} \neq \mathfrak{m}^{n+1}$ for all n, and that this holds true since x is a non-unit in A).
9.5. Let M be a finitely generated module over a Dedekind domain A. Prove that M is flat if and only if M is torsion free.

Exercise 7.16 tells us that M is a flat A-module if and only if $M_{\mathfrak{m}}$ is a free $A_{\mathfrak{m}}$-module whenever \mathfrak{m} is a maximal ideal in A. But $A_{\mathfrak{m}}$ is a principal ideal domain whenever \mathfrak{m} is a maximal ideal in A. So the structure theorem of finitely generated modules over a PID tells us that $M_{\mathfrak{m}}$ is a free $A_{\mathfrak{m}}$-module if and only if $M_{\mathfrak{m}}$ is torsion free. Exercise 3.13 now tells us that each $M_{\mathfrak{m}}$ is torsion free if and only if M is torsion free. Summarizing, M is a flat A-module if and only if M is torsion free.
9.6 ? Let M be a finitely generated torsion module over the Dedekind domain A. Prove that M is uniquely representable as a finite direct sum of modules $A / \mathfrak{p}_{i}^{n_{i}}$ where \mathfrak{p}_{i} are non-zero prime ideals in A.
9.7? Let A be a Dedekind domain and $\mathfrak{a} \neq 0$ an ideal in A. Show that every ideal in A / \mathfrak{a} is principal. Deduce that every ideal in A can be generated by at most 2 elements.

Since A is a Dedekind domain we can write $\mathfrak{a}=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{n}^{e_{n}}$ where \mathfrak{p}_{i} are distinct prime ideals in A and each $e_{i} \geq 0$. Since each \mathfrak{p}_{i} is maximal, we know that \mathfrak{p}_{i} and \mathfrak{p}_{j} are coprime for $i \neq j$. Hence, $\mathfrak{p}_{i}^{e_{i}}$ and $\mathfrak{p}_{j}^{e_{j}}$ are coprime for $i \neq j$. This means that $A / \mathfrak{a} \cong \prod_{i=1}^{n} A / \mathfrak{p}_{i}^{e_{i}}$. I claim that every ideal in $A / \mathfrak{p}_{i}^{e_{i}}$ is principal. Suppose that \mathfrak{b} is an ideal in A / \mathfrak{a}
9.8. Let $\mathfrak{a}, \mathfrak{b}$, and \mathfrak{c} be ideals in the Dedekind domain A. Prove that

$$
\mathfrak{a} \cap(\mathfrak{b}+\mathfrak{c})=\mathfrak{a} \cap \mathfrak{b}+\mathfrak{a} \cap \mathfrak{c} \quad \text { and } \quad \mathfrak{a}+\mathfrak{b} \cap \mathfrak{c}=(\mathfrak{a}+\mathfrak{b}) \cap(\mathfrak{a}+\mathfrak{c})
$$

Suppose first that A is in fact a discrete valuation ring. Let \mathfrak{m} be the maximal ideal in A and write $\mathfrak{m}=(x)$. If any of the three ideals are zero, then we clearly have equality. So we may suppose that all three ideals are non-
zero. Then we can choose $a, b, c \geq 0$ for which $\mathfrak{a}=\left(x^{a}\right), \mathfrak{b}=\left(x^{b}\right)$, and $\mathfrak{c}=\left(x^{c}\right)$. Now $\left(x^{j}\right) \cap\left(x^{k}\right)=\left(x^{\max \{j, k\}}\right)$ and $\left(x^{j}\right)+\left(x^{k}\right)=\left(x^{\min \{j, k\}}\right)$ for all $j, k \geq 0$. So the equalities that we need to verify are as follows

$$
\begin{aligned}
& \max \{a, \min \{b, c\}\}=\min \{\max \{a, b\}, \max \{a, c\}\} \\
& \min \{a, \max \{b, c\}\}=\max \{\min \{a, b\}, \min \{a, c\}\}
\end{aligned}
$$

To do this requires a straightforward case-by-case analysis, and so is omitted. Now assume that A is a general Dedekind domain. We have an inclusion map $j: \mathfrak{a} \cap \mathfrak{b}+\mathfrak{a} \cap \mathfrak{c} \rightarrow \mathfrak{a} \cap(\mathfrak{b}+\mathfrak{c})$. In the field of fractions of A we have the equality $(\mathfrak{a} \cap \mathfrak{b}+\mathfrak{a} \cap \mathfrak{c})_{\mathfrak{p}}=\mathfrak{a}_{\mathfrak{p}} \cap \mathfrak{b}_{\mathfrak{p}}+\mathfrak{a}_{\mathfrak{p}} \cap \mathfrak{c}_{\mathfrak{p}}$ of sets, and similarly $(\mathfrak{a} \cap(\mathfrak{b}+\mathfrak{c}))_{\mathfrak{p}}=\mathfrak{a}_{\mathfrak{p}} \cap\left(\mathfrak{b}_{\mathfrak{p}}+\mathfrak{c}_{\mathfrak{p}}\right)$. Further, the induced map $j_{\mathfrak{p}}$ corresponds to inclusion. Since $A_{\mathfrak{p}}$ is a PID, the work above shows that $j_{\mathfrak{p}}$ is surjective. Therefore, j is surjective, and hence $\mathfrak{a} \cap(\mathfrak{b}+\mathfrak{c})=\mathfrak{a} \cap \mathfrak{b}+\mathfrak{a} \cap \mathfrak{c}$. The second equality follows analogously.
9.9. Let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}$ be ideals and let x_{1}, \ldots, x_{n} be elements in the Dedekind domain A. Show that the system of congruences $x \equiv_{\mathfrak{a}_{i}} x_{i}$ has a solution x iff $x_{i} \equiv_{\mathfrak{a}_{i}+\mathfrak{a}_{j}} x_{j}$ whenever $i \neq j$.

Consider the following sequence

$$
A \longrightarrow \bigoplus_{i=1}^{n} A / \mathfrak{a}_{i} \xrightarrow{\psi} \bigoplus_{i<j} A /\left(\mathfrak{a}_{i}+\mathfrak{a}_{j}\right)
$$

where $\phi(x)=\left(x+\mathfrak{a}_{1}, \ldots, x+\mathfrak{a}_{n}\right)$ and $\psi\left(x_{1}+\mathfrak{a}_{1}, \ldots, x_{n}+\mathfrak{a}_{n}\right)$ has (i, j) component $x_{i}-x_{j}+\mathfrak{a}_{i}+\mathfrak{a}_{j}$. Notice first that ψ is well-defined. Suppose that this sequence is exact, and let $x_{1}, \ldots, x_{n} \in A$. If the system of congruences $x \equiv_{\mathfrak{a}_{i}} x_{i}$ has a solution x then $\left(x_{1}+\mathfrak{a}_{1}, \ldots, x_{n}+\mathfrak{a}_{n}\right)=\phi(x)$ so that $\psi\left(x_{1}+\mathfrak{a}_{1}, \ldots, x_{n}+\mathfrak{a}_{n}\right)=0$. This means that $x_{i} \equiv_{\mathfrak{a}_{i}+\mathfrak{a}_{j}} x_{j}$ whenever $i \neq j$. Conversely, if this holds then $\psi\left(x_{1}+\mathfrak{a}_{1}, \ldots, x_{n}+\mathfrak{a}_{n}\right)=0$ so that $\left(x_{1}+\mathfrak{a}_{1}, \ldots, x_{n}+\mathfrak{a}_{n}\right)=\phi(x)$ for some $x \in A$, and hence our system of congruences has a solution. So it suffices to demonstrate that the sequence is exact. To do this it suffices to show that the sequence is exact whenever it is localized at a maximal ideal \mathfrak{m} of A. Hence, we simply need to show that the sequence is exact in the special case that A is a discrete valuation ring. We may assume that the ideals are ordered by $\mathfrak{a}_{1} \subseteq \mathfrak{a}_{2} \subseteq \ldots$. Clearly $\psi \circ \phi=0$, so suppose that $\psi\left(x_{1}+\mathfrak{a}_{1}, \ldots, x_{n}+\mathfrak{a}_{n}\right)=0$. Then $x_{1}-x_{i} \in \mathfrak{a}_{1}+\mathfrak{a}_{i}=\mathfrak{a}_{i}$ for $1<i$, and hence $x_{i}+\mathfrak{a}_{i}=x_{1}+\mathfrak{a}_{i}$ for all i. But this means that $\left(x_{1}+\mathfrak{a}_{1}, \ldots, x_{n}+\mathfrak{a}_{n}\right)=\phi\left(x_{1}\right)$. Therefore, the sequence is indeed exact when A is a discrete valuation ring. Thus, we are done.

Chapter 10 : Completions

10.1. Let $\alpha_{n}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p^{n}}$ be the obvious injection, and let $\alpha: A \rightarrow B$ be the direct sum of all the α_{n}, where $A=\bigoplus_{n=1}^{\infty} \mathbb{Z}_{p}$ and $B=\bigoplus_{n=1}^{\infty} \mathbb{Z}_{p^{n}}$. Show that the p-adic completion of A is just A, but that the completion of A for the topology induced from the p-adic topology on B is $\prod_{n=1}^{\infty} \mathbb{Z}_{p}$. Deduce that the p-adic completion is not a right-exact functor on the category of all \mathbb{Z}-modules.

Let M be an arbitrary module with the filtration $M=M_{0} \supseteq M_{1} \supseteq \ldots$ Suppose that N satisfies $M_{n}=M_{N}$ for $n \geq N$. Then the maps $M / M_{n+1} \rightarrow M / M_{n}$ are the identity maps for $n \geq N$. So an element $\xi \in \hat{M} \subseteq \prod_{n=1}^{\infty} M / M_{n}$ is completely determined by ξ_{N}. This means that the canonical map $M \rightarrow \hat{M}$ given by $x \mapsto\left(x+M_{0}, x+M_{1}, \ldots\right)$ is surjective. Clearly, the kernel of this map is M_{N}. Therefore, \hat{M} and M / M_{N} are isomorphic.

Now if $A=\bigoplus_{n=1}^{\infty} \mathbb{Z}_{p}$ then $p A=0$, and so the standard p-adic filtration of A is given by $A \supset 0=0=\ldots$. By the general considerations from above, we see that the p-adic completion \hat{A} of A is isomorphic with $A / 0=A$.

On the other hand, we have an injection $\alpha: A \rightarrow B$ and we have the p-adic filtration $B \supset p B \supset p^{2} B \supset \ldots$ of B. This gives a p-adic filtration $A \supset \alpha^{-1}(p B) \supset \alpha^{-1}\left(p^{2} B\right) \supset \ldots$ of A. Now $\alpha\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, p x_{2}, p^{2} x_{3}, \ldots\right)$ so that $\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \alpha^{-1}\left(p^{n} B\right)$ if and only if $x_{i}=0$ for $1 \leq i \leq n$. We see that $A / \alpha^{-1}\left(p^{n} B\right) \cong \bigoplus_{i=1}^{n} \mathbb{Z}_{p}$ and that under these identifications the map $A / \alpha^{-1}\left(p^{n+1} B\right) \rightarrow A / \alpha^{-1}\left(p^{n} B\right)$ is given by $\left(x_{1}, \ldots, x_{n+1}\right) \mapsto$ $\left(x_{1}, \ldots, x_{n}\right)$. Now the general element of $\prod_{n=1}^{\infty} A / \alpha^{-1}\left(p^{n} B\right)$ under these identifications is of the form

$$
\left(\left(x_{11}\right),\left(x_{12}, x_{22}\right),\left(x_{13}, x_{23}, x_{33}\right),\left(x_{14}, x_{24}, x_{34}, x_{44}\right), \ldots\right)
$$

where $x_{i j}$ are arbitrary elements of \mathbb{Z}_{p}. For this element to be in \hat{A}, it is necessary and sufficient that $x_{i j}=x_{i k}$ for any $k \geq j$. So \hat{A} can be identified with $\prod_{n=1}^{\infty} \mathbb{Z}_{p}$. Now p-adic completion is an exact functor on the category of all finitely generated \mathbb{Z}-modules, but A is not finitely generated. Now we have the short exact sequence of \mathbb{Z}-modules

$$
0 \longrightarrow A \xrightarrow{\alpha} B \longrightarrow B / A \longrightarrow 0
$$

10.2. In the notation of exercise $\mathbf{1 0 . 1}$ let $A_{n}=\alpha^{-1}\left(p^{n} B\right)$. Consider the short exact sequences

$$
0 \longrightarrow A_{n} \longrightarrow A \longrightarrow A / A_{n} \longrightarrow 0
$$

to show that $\underset{\leftarrow}{\lim }$ is not right exact, and compute $\lim _{\longleftarrow}^{1} A_{n}$.
We see that $\left\{A_{n}\right\}_{1}^{\infty}$ is an inverse system with inclusion as the map $A_{m} \rightarrow A_{n}$ for $m \geq n$. Clearly $\{A\}_{1}^{\infty}$ is an inverse system with identity $A \rightarrow A$. Finally, $\left\{A / A_{n}\right\}_{1}^{\infty}$ is an inverse system with the induced maps $A / A_{m} \rightarrow A / A_{n}$ for $m \geq n$. Now we have the commutative diagrams

with exact rows. So Proposition 10.2 gives us the exact sequence

$$
0 \longrightarrow \underset{\longleftarrow}{\lim } A_{n} \longrightarrow \underset{\longleftarrow}{\lim } A \xrightarrow{f} \underset{\leftarrow}{\lim } A / A_{n}
$$

I claim that f is not surjective. Using the identification from exercise 10.1 and the isomorphism $\lim A / A_{n} \cong$ $\prod_{n=1}^{\infty} \mathbb{Z}_{p}$ we see that f can be identified with the inclusion map $\bigoplus_{n=1}^{\infty} \mathbb{Z}_{p} \rightarrow \prod_{n=1}^{\infty} \mathbb{Z}_{p}$. So f is not surjective.
10.3. Let A be a Noetherian ring, \mathfrak{a} an ideal, and M a finitely generated A-module. Prove that

$$
\bigcap_{n=1}^{\infty} \mathfrak{a}^{n} M=\bigcap_{\mathfrak{m} \supseteq \mathfrak{a}} \operatorname{Ker}\left(M \rightarrow M_{\mathfrak{m}}\right)
$$

By Krull's Theorem, the elements of $\bigcap_{n=1}^{\infty} \mathfrak{a}^{n} M$ are precisely the elements in M annihilated by some element of $1+\mathfrak{a}$. So suppose first that $x \in M$ satisfies $(1+a) x=0$ for some $a \in \mathfrak{a}$. If \mathfrak{m} is a maximal ideal in A containing \mathfrak{a}, then $a \in \mathfrak{m}$ so that $1+a \notin \mathfrak{m}$. Since $(1+a) x=0$ and $1+a \in A-\mathfrak{m}$, we see that $x / 1=0 / 1$ in $M_{\mathfrak{m}}$. This means that $\bigcap_{n=1}^{\infty} \mathfrak{a}^{n} M \subseteq \bigcap_{\mathfrak{m} \supseteq \mathfrak{a}} \operatorname{Ker}\left(M \rightarrow M_{\mathfrak{m}}\right)$. Now let $x \in \bigcap_{\mathfrak{m} \supseteq \mathfrak{a}} \operatorname{Ker}\left(M \rightarrow M_{\mathfrak{m}}\right)$ so that $(x)_{\mathfrak{m}}=0$ whenever \mathfrak{m} is a maximal ideal containing \mathfrak{a}. Then exercise 3.14 tells us that $(x)=\mathfrak{a}(x)$. So in particular we can write $x=-a x$ for some $a \in \mathfrak{a}$. This means that $(1+a) x=0$, and hence $x \in \bigcap_{n=1}^{\infty} \mathfrak{a}^{n} M$. So we are done.

Deduce that $\hat{M}=0$ if and only if $\operatorname{Supp}(M) \cap V(\mathfrak{a})=\emptyset$.
10.4. Let A be a Noetherian ring, \mathfrak{a} an ideal, and \hat{A} the \mathfrak{a}-adic completion. For any $x \in A$ let \hat{x} be the image of x in \hat{A}. Show that \hat{x} is not a zero-divisor in \hat{A} if x is not a zero-divisor in A. Does this imply that \hat{A} is an integral domain provided A is an integral domain?

If x is not a zero-divisor in A then we have a short exact sequence

$$
0 \longrightarrow A \xrightarrow{x} A \longrightarrow A / x A \longrightarrow 0
$$

Proposition 10.12 tells us that we have a new short exact sequence

$$
0 \longrightarrow \hat{A} \xrightarrow{\hat{x}} \hat{A} \longrightarrow \hat{A} / \hat{x} \hat{A} \longrightarrow 0
$$

This means that \hat{x} is not a zero-divisor in \hat{A}. Now $\mathbb{Z}_{(6)}$ is not an integral domain even though \mathbb{Z} is an integral domain.
10.5. Let A be Noetherian with ideals \mathfrak{a} and \mathfrak{b}. If M is an A-module, let $M^{\mathfrak{a}}, M^{\mathfrak{b}}$ denote the \mathfrak{a}-adic and \mathfrak{b}-adic completions of M. If M is finitely generated, prove that $\left(M^{\mathfrak{a}}\right)^{\mathfrak{b}} \cong M^{\mathfrak{a}+\mathfrak{b}}$.

For every n we have a short exact sequence

$$
0 \longrightarrow \mathfrak{b}^{n} M \longrightarrow M \longrightarrow M / \mathfrak{b}^{n} M \longrightarrow 0
$$

Since M is finitely generated and A is Noetherian, all modules in this sequence are finitely generated. So we have a new short exact sequence

$$
0 \longrightarrow\left(\mathfrak{b}^{n} M\right)^{\mathfrak{a}} \longrightarrow M^{\mathfrak{a}} \longrightarrow\left(M / \mathfrak{b}^{n} M\right)^{\mathfrak{a}} \longrightarrow 0
$$

10.6. Let A be a Noetherian ring and \mathfrak{a} an ideal in A. Prove that $\mathfrak{a} \subseteq \mathfrak{R}(A)$ if and only if every maximal ideal \mathfrak{m} in A is closed when A is given the \mathfrak{a}-adic topology.

Suppose that $\mathfrak{a} \subseteq \mathfrak{R}(A)$ and let \mathfrak{m} be a maximal ideal in A. Then the quotient topology of A / \mathfrak{m} is the same as the \mathfrak{a}-adic topology of A / \mathfrak{m}. Since A / \mathfrak{m} is a finite A-module, Corollary 10.19 tells us that the \mathfrak{a}-adic topology of A / \mathfrak{m} is Hausdorff. By the definition of the quotient topology, this means that \mathfrak{m} is closed in the \mathfrak{a}-adic topology on A.

Suppose now that \mathfrak{m} is closed in the \mathfrak{a}-adic topology on A whenever \mathfrak{m} is a maximal ideal in A. Then $\mathfrak{m}=\mathrm{Cl}(\mathfrak{m})=\bigcap_{n=1}^{\infty}\left(\mathfrak{m}+\mathfrak{a}^{n}\right)$.
10.11. Find a non-Noetherian local ring A with an ideal \mathfrak{a} such that the \mathfrak{a}-adic completion \hat{A} of A is a Noetherian ring that is finitely generated over A.

Let A be the ring of germs of C^{∞} functions of x at $x=0$, and let \mathfrak{a} be the ideal of all germs that vanish at $x=0$. Then A is a local ring with maximal ideal \mathfrak{a}. Now A is not Noetherian since we have the properly ascending sequence of ideals

$$
\left(e^{-1 / x^{2}}\right) \subset\left(e^{-1 / x^{2}} / x\right) \subset\left(e^{-1 / x^{2}} / x^{2}\right) \subset \ldots
$$

10.12? Assuming that A is Noetherian, show that $A\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is a faithfully flat A-algebra.

1. Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$ be an irreducible polynomial over the algebraically closed field k. A point P on the variety defined by (f) is said to be non-singular if not all derivatives $\partial f / \partial x_{i}$ vanish at P. Let $A=k\left[x_{1}, \ldots, x_{n}\right] /(f)$ and let \mathfrak{m} be the maximal ideal of A corresponding to the point P. Prove that P is non-singular if and only if $A_{\mathfrak{m}}$ is a regular ring.

Write $P=\left(a_{1}, \ldots, a_{n}\right)$ and define $\mathfrak{n}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ so that $\mathfrak{m}=\mathfrak{n} /(f)$. Then $A_{\mathfrak{m}} \cong k\left[x_{1}, \ldots, x_{n}\right]_{\mathfrak{n}} /(f)_{\mathfrak{n}}=$ $k\left[x_{1}, \ldots, x_{n}\right]_{\mathfrak{n}} /(f / 1)$ as rings. Now f vanishes at P so that $f \in \mathfrak{n}$, and hence $f / 1$ is in the (unique) maximal ideal $\mathfrak{n}_{\mathfrak{n}}$ of $k\left[x_{1}, \ldots, x_{n}\right]_{\mathfrak{n}}$. Also, $f / 1$ is not a zero-divisor in $k\left[x_{1}, \ldots, x_{n}\right]_{\mathfrak{n}}$ since
2.
3.
4. Give an example of a Noetherian ring A that has infinite Krull dimension.
5. Reformulate the Hilbert-Serre Theorem in terms of the Grothendieck group $K\left(A_{0}\right)$.

Let γ be the map that sends a finitely generated A_{0}-module M to its image in $K\left(A_{0}\right)$. The Hilbert-Serre Theorem states that if $\lambda: K\left(A_{0}\right) \rightarrow \mathbb{Z}$ is a homomorphism of groups then $P(M, t):=\sum_{n=0}^{\infty} \lambda\left(M_{n}\right) t^{n}$ is of the form $P(M, t)=f(t)\left\{\prod_{i=1}^{s}\left(1-t^{k_{i}}\right)\right\}^{-1}$ for some $f(t) \in \mathbb{Z}[t]$.
6. Let A be a ring and prove that $1+\operatorname{dim}(A) \leq \operatorname{dim} A[x] \leq 1+2 \operatorname{dim}(A)$.

Let $\mathfrak{p}_{0} \subsetneq \cdots \subsetneq \mathfrak{p}_{n}$ be a chain of prime ideals in A. Then $\mathfrak{p}_{i}[x]$ is a prime ideal in $A[x]$ since $A[x] / \mathfrak{p}_{i}[x] \cong$ $\left(A / \mathfrak{p}_{i}\right)[x]$ is an integral domain. So we have a chain of prime ideals $\mathfrak{p}_{0}[x] \subseteq \cdots \subseteq \mathfrak{p}_{n}[x]$ in A. But $\mathfrak{p}_{i}[x] \neq$ $\mathfrak{p}_{i+1}[x]$ since $\mathfrak{p}_{i}[x] \cap A=\mathfrak{p}_{i}$ for all i. Now $1 \notin \mathfrak{p}_{n}$ since $\mathfrak{p}_{n} \neq A$, and so $\mathfrak{p}_{n}[x] \subsetneq\left(\mathfrak{p}_{n}[x], x\right)$. Also, $\left(\mathfrak{p}_{n}[x], x\right)$ is a prime ideal in $A[x]$ since $A[x] /\left(\mathfrak{p}_{n}[x], x\right) \cong A / \mathfrak{p}_{n}$. From this we see that $\operatorname{dim} A[x] \geq \operatorname{dim} A+1$.
7. Show that $\operatorname{dim} A[x]=\operatorname{dim}(A)+1$ if A is Noetherian.

It suffices to show that $\operatorname{dim} A[x] \leq \operatorname{dim}(A)+1$.

