A COURSE IN HOMOLOGICAL ALGEBRA

Ali Reza Naghipour ${ }^{1}$
Department of Mathematics
Shahrekord University
P.O. Box: 115, Shahrekord, IRAN.

[^0]
Contents

1 HOMOLOGY 3
1.1 Homology Functors 3
2 DERIVED FUNCTORS 24
2.1 Covariant Left Derived Functors 24
2.2 Right Derived Functors 33
3 Tor AND Ext 38
3.1 Elementary Properties 38
3.2 Natural Isomorphisms 45
3.3 Tor and Torsion 49
4 DIMENSIONS 55
4.1 Homological Dimensions 55
4.2 Change of Rings Theorems 63
4.3 Global and Weak Dimension 68

Chapter 1

HOMOLOGY

1.1 Homology Functors

Definition 1.1.1. Let R be a ring. By a (chain) complex $\left(\mathbf{X}, d^{\mathbf{x}}\right)$ of R modules we mean a sequence

$$
\left(\mathbf{X}, d^{\mathbf{X}}\right)=: \ldots \longrightarrow X_{n+1} \xrightarrow{d_{n+1}^{X}} X_{n} \xrightarrow{d_{n}^{\mathbf{X}}} X_{n-1} \longrightarrow \ldots
$$

of R-modules $\left\{X_{n}\right\}$ and R-module homomorphisms $\left\{d_{n}^{X}: X_{n} \longrightarrow X_{n-1}\right\}$ such that $d_{n}^{\mathbf{X}} d_{n+1}^{\mathbf{X}}=0$ for all $n \in \mathbb{Z} . X_{n}$ and $d_{n}^{\mathbf{X}}$ are called the module in degree n and the n-th differential of $\left(\mathbf{X}, d^{\mathbf{X}}\right)$, respectively.

We usually simplify the notation and write \mathbf{X} instead of $\left(\mathbf{X}, d^{\mathbf{X}}\right)$.
Remark 1.1.2. An R-module M is considered as the complex

$$
\ldots \longrightarrow 0 \longrightarrow 0 \longrightarrow M \longrightarrow 0 \longrightarrow 0 \longrightarrow \ldots
$$

where the module M is sitting in degree 0 .

Definition 1.1.3. Suppose \mathbf{X} and \mathbf{Y} are two complexes. Then we can define a morphism between them, $f: \mathbf{X} \longrightarrow \mathbf{Y}$, as a family of homomorphisms
$f_{n}: X_{n} \longrightarrow Y_{n}$ such that for all $n \in \mathbb{Z}$, the following diagram commutes:

It is easy to see that the collection of complexes and their morphisms (with the obvious composition) forms a category. We denote this category by ${ }_{R}$ Comp (or Comp).

Definition 1.1.4. If $\left(\mathbf{X}, d^{\mathbf{X}}\right)$ is a complex, define

$$
\begin{aligned}
n \text {-cycle } & =Z_{n}(\mathbf{X})
\end{aligned}=\operatorname{ker} d_{n}^{\mathbf{X}}, ~ \begin{aligned}
& \\
& n \text {-boundaries }=B_{n}(\mathbf{X}) \\
&=\operatorname{im} d_{n+1}^{\mathbf{X}}, \\
& n \text {-homology }=H_{n}(\mathbf{X})
\end{aligned}=Z_{n}(\mathbf{X}) / B_{n}(\mathbf{X}) . ~ \$
$$

Since the equation $d_{n}^{\mathbf{X}} d_{n+1}^{\mathbf{X}}=0$ in the complex \mathbf{X} is equivalent to the condition $\operatorname{im} d_{n+1}^{\mathbf{X}} \subseteq \operatorname{ker} d_{n}^{\mathbf{X}}$, we have $B_{n}(\mathbf{X}) \subseteq Z_{n}(\mathbf{X})$, and so the quotient module $Z_{n}(\mathbf{X}) / B_{n}(\mathbf{X})$ does make sense. An element of $H_{n}(\mathbf{X})$ is a coset $z_{n}+B_{n}(\mathbf{X})$; we call this element a homology class, and often denote it by $\left[z_{n}\right]$.

Lemma 1.1.5. Let $f: \mathbf{X} \longrightarrow \mathbf{Y}$ be a morphism of complexes. Then
(1) $f_{n}\left(Z_{n}(\mathbf{X})\right) \subseteq Z_{n}(\mathbf{Y})$,
(2) $f_{n}\left(B_{n}(\mathbf{X})\right) \subseteq B_{n}(\mathbf{Y})$.

Proof. Consider the commutative diagram

(1): Let $x \in Z_{n}(\mathbf{X})$. Then $d_{n}^{\mathbf{X}}(x)=0$. By commutativity of the above diagram, $d_{n}^{\mathbf{Y}} f_{n}(x)=f_{n-1} d_{n}^{\mathbf{X}}(x)=f_{n-1}(0)=0$, so that $f_{n}(x) \in Z_{n}(\mathbf{Y})$. Thus $f_{n}\left(Z_{n}(\mathbf{X})\right) \subseteq Z_{n}(\mathbf{Y})$.
(2): Let $y \in B_{n}(\mathbf{X})$. Then there exists $x \in X_{n+1}$ such that $d_{n+1}^{\mathbf{X}}(x)=y$. By commutativity of the above diagram, $f_{n}(y)=f_{n} d_{n+1}^{\mathbf{X}}(x)=d_{n+1}^{\mathbf{Y}} f_{n+1}(x)$, so that $f_{n}(y) \in B_{n}(\mathbf{Y})$. Thus $f_{n}\left(B_{n}(\mathbf{X})\right) \subseteq B_{n}(\mathbf{Y})$.

Theorem 1.1.6. Let $f: \mathbf{X} \longrightarrow \mathbf{Y}$ be a morphism of complexes and let $n \in \mathbb{Z}$. Define

$$
\begin{aligned}
H_{n}(f): H_{n}(X) & \longrightarrow H_{n}(Y) \\
{\left[z_{n}\right] } & \longmapsto\left[f_{n} z_{n}\right] .
\end{aligned}
$$

Then $H_{n}:{ }_{R} \operatorname{Comp} \longrightarrow{ }_{R}$ Mod is an additive functor.

Proof. First of all, we show that $H_{n}(f)$ is well defined. Let $[z]=[y]$. Then $z-y \in B_{n}(X)$ and so there exists $x \in X_{n+1}$ such that $z-y=d_{n+1}^{X}(x)$. By the part (2) of the above lemma we have

$$
f_{n} z-f_{n} y=f_{n}(z-y) \in B_{n}(Y)
$$

Therefore $\left[f_{n} z\right]=\left[f_{n} y\right]$, and hence $H_{n}(f)$ is well defined.
Now, we show that H_{n} is a functor. It is clear that $H_{n}\left(1_{X}\right)$ is the identity. If f and g are morphisms whose composite $g f$ is defined, then
$\left.H_{n}(g f)[z]=\left[(g f)_{n} z\right]=\left[\left(g_{n} f_{n}\right) z\right]\right)=\left[g_{n}\left(f_{n} z\right)\right]=H_{n}(g)\left[f_{n} z\right]=H_{n}(g) H_{n}(f)[z]$.
Finally, we show that H_{n} is additive. If $f, g: \mathbf{X} \longrightarrow \mathbf{Y}$ are two morphisms of complexes, then
$H_{n}(f+g)[z]=\left[(f+g)_{n} z\right]=\left[\left(f_{n}+g_{n}\right) z\right]=\left[f_{n} z\right]+\left[g_{n} z\right]=H_{n}(f)[z]+H_{n}(g)[z]$.

Definition 1.1.7. We say that the sequence

$$
0 \longrightarrow \mathbf{X} \xrightarrow{f} \mathbf{Y} \xrightarrow{g} \mathbf{W} \longrightarrow 0
$$

is an exact sequence of complexes if the sequences

$$
0 \longrightarrow X_{n} \xrightarrow{f_{n}} Y_{n} \xrightarrow{g_{n}} W_{n} \longrightarrow 0
$$

are exact for every $n \in \mathbb{Z}$.

Theorem 1.1.8. (Connecting Homomorphism). If $0 \longrightarrow \mathbf{X} \xrightarrow{f} \mathbf{Y} \xrightarrow{g}$ $\mathbf{W} \longrightarrow 0$ is an exact sequence of complexes, then, for each $n \in \mathbb{Z}$, there is a homomorphism

$$
\begin{aligned}
\partial_{n}: H_{n}(\mathbf{W}) & \longrightarrow H_{n-1}(\mathbf{X}) \\
{\left[w_{n}\right] } & \longmapsto\left[x_{n-1}\right] \quad\left(x_{n-1} \in f_{n-1}^{-1} d_{n}^{Y} g_{n}^{-1}\left(w_{n}\right)\right) .
\end{aligned}
$$

Proof. Consider the commutative diagram with exact rows:

We only show that ∂_{n} is well defined; the other verifications are also routine and are left to the reader. For this, we first show that $f_{n-1}^{-1} d_{n}^{Y} g_{n}^{-1}\left(w_{n}\right) \neq \emptyset$, where $w_{n} \in \operatorname{ker} d_{n}^{\mathbf{W}}$. Let $y_{n} \in g_{n}^{-1}\left(w_{n}\right)$. Then $g_{n}\left(y_{n}\right)=w_{n}$. By commutativity of the above diagram,

$$
g_{n-1} d_{n}^{\mathbf{Y}}\left(y_{n}\right)=d_{n}^{\mathbf{W}} g_{n}\left(y_{n}\right)=d_{n}^{\mathbf{W}}\left(w_{n}\right)=0
$$

It follows that $d_{n}^{\mathbf{Y}}\left(y_{n}\right) \in \operatorname{ker} g_{n-1}=\operatorname{im} f_{n-1}$. Thus $d_{n}^{\mathbf{Y}} g_{n}^{-1}\left(w_{n}\right) \subseteq \operatorname{im} f_{n-1}$ and hence $f_{n-1}^{-1} d_{n}^{Y} g_{n}^{-1}\left(w_{n}\right) \neq \emptyset$. Let $w_{n} \in \operatorname{ker} d_{n}^{\mathbf{W}}$ and $x_{n-1} \in f_{n-1}^{-1} d_{n}^{Y} g_{n}^{-1}\left(w_{n}\right)$. We must show that $\left[x_{n-1}\right] \in H_{n-1}(\mathbf{X})$. Suppose that $f_{n-1}\left(x_{n-1}\right)=d_{n}^{\mathbf{Y}}\left(y_{n}\right)$ for some $y_{n} \in g_{n}^{-1}\left(w_{n}\right)$. By commutativity of the above diagram,

$$
f_{n-2} d_{n-1}^{\mathbf{X}}\left(x_{n-1}\right)=d_{n-1}^{\mathbf{Y}} f_{n-1}\left(x_{n-1}\right)=d_{n-1}^{\mathbf{Y}} d_{n}^{\mathbf{Y}} y_{n}=0
$$

Since f_{n-2} is injective, we have $d_{n-1}^{\mathbf{X}}\left(x_{n-1}\right)=0$ and hence $\left[x_{n-1}\right] \in H_{n-1}(\mathbf{X})$.
Now let $x_{n-1}, \bar{x}_{n-1} \in f_{n-1}^{-1} d_{n}^{\mathbf{Y}} g_{n}^{-1}\left(w_{n}\right)$. Then there exist $y_{n}, \bar{y}_{n} \in g_{n}^{-1}\left(w_{n}\right)$ such that $x_{n-1}=f_{n-1}^{-1} d_{n}^{\mathbf{Y}}\left(y_{n}\right)$ and $\bar{x}_{n-1}=f_{n-1}^{-1} d_{n}^{\mathbf{Y}}\left(\bar{y}_{n}\right)$. Since $g_{n}\left(y_{n}\right)=g_{n}\left(\bar{y}_{n}\right)$, we have $y_{n}-\bar{y}_{n} \in \operatorname{ker} g_{n}=\operatorname{im} f_{n}$ and hence there exists $x_{n} \in X_{n}$ such that $y_{n}-\bar{y}_{n}=f_{n}\left(x_{n}\right)$. Therefore

$$
\begin{aligned}
{\left[x_{n-1}\right] } & =\left[f_{n-1}^{-1} d_{n}^{\mathbf{Y}}\left(y_{n}\right)\right]=\left[f_{n-1}^{-1} d_{n}^{\mathbf{Y}}\left(\bar{y}_{n}+f_{n}\left(x_{n}\right)\right)\right] \\
& =\left[f_{n-1}^{-1} d_{n}^{\mathbf{Y}}\left(\bar{y}_{n}\right)+f_{n-1}^{-1} d_{n}^{\mathbf{Y}}\left(f_{n}\left(x_{n}\right)\right)\right] \\
& =\left[\bar{x}_{n-1}\right]+\left[f_{n-1}^{-1} f_{n-1} d_{n}^{\mathbf{X}}\left(x_{n}\right)\right]=\left[\bar{x}_{n-1}\right]+\left[d_{n}^{\mathbf{X}}\left(x_{n}\right)\right] \\
& =\left[\bar{x}_{n-1}\right] .
\end{aligned}
$$

This proves that ∂_{n} is well defined.

Definition 1.1.9. The homomorphisms $\partial_{n}: H_{n}(W) \longrightarrow H_{n-1}(X)$ are called connecting homomorphisms.

Theorem 1.1.10. (Long Exact Sequence). If $0 \longrightarrow \mathbf{X} \xrightarrow{f} \mathbf{Y} \xrightarrow{g} \mathbf{W} \longrightarrow 0$ is a sequence of complexes, then there is an exact sequence of modules

$$
\cdots \longrightarrow H_{n}(\mathbf{X}) \xrightarrow{H_{n}(f)} H_{n}(\mathbf{Y}) \xrightarrow{H_{n}(g)} H_{n}(\mathbf{W}) \xrightarrow{\partial_{n}} H_{n-1}(\mathbf{X}) \xrightarrow{H_{n-1}(f)} H_{n-1}(\mathbf{Y}) \longrightarrow \cdots .
$$

Proof. Consider the commutative diagram with exact rows:

There are six inclusions to verify.
(1) $\operatorname{im} H_{n}(f) \subseteq \operatorname{ker} H_{n}(g):$ Because $H_{n}(g) H_{n}(f)=H_{n}(g f)=0$, we have $\operatorname{im} H_{n}(f) \subseteq \operatorname{ker} H_{n}(g)$.
(2) $\operatorname{ker} H_{n}(g) \subseteq \operatorname{im} H_{n}(f)$: Let $\left[y_{n}\right] \in \operatorname{ker} H_{n}(g)$. Then $g_{n} y_{n} \in B_{n}(\mathbf{W})$ and hence there is $w_{n+1} \in W_{n+1}$ such that $g_{n} y_{n}=d_{n+1}^{\mathbf{W}}\left(w_{n+1}\right)$. Since g_{n+1} is surjective, there exists $y_{n+1} \in Y_{n+1}$ such that $g_{n+1} y_{n+1}=w_{n+1}$. Therefore, by commutativity of the above diagram,

$$
\begin{aligned}
g_{n}\left(y_{n}-d_{n+1}^{\mathbf{Y}}\left(y_{n+1}\right)\right) & =g_{n} y_{n}-g_{n} d_{n+1}^{\mathbf{Y}}\left(y_{n+1}\right) \\
& =g_{n} y_{n}-d_{n+1}^{\mathbf{W}} g_{n+1} y_{n+1} \\
& =g_{n} y_{n}-d_{n+1}^{\mathbf{W}}\left(w_{n+1}\right)=0 .
\end{aligned}
$$

It follows that there exists $x_{n} \in X_{n}$ such that $y_{n}-d_{n+1}^{\mathbf{Y}}\left(y_{n+1}\right)=f_{n}\left(x_{n}\right)$. Hence

$$
H_{n}(f)\left[x_{n}\right]=\left[f_{n}\left(x_{n}\right)\right]=\left[y_{n}-d_{n+1}^{\mathbf{Y}}\left(y_{n+1}\right)\right]=\left[y_{n}\right] .
$$

(3) $\operatorname{im} H_{n}(g) \subseteq \operatorname{ker} \partial_{n}$: Let $H_{n}(g)\left[y_{n}\right]=\left[g_{n} y_{n}\right] \in \operatorname{im} H_{n}(g)$. Then $\partial_{n}\left[g_{n} y_{n}\right]=$ $\left[x_{n-1}\right]$, where $x_{n-1}=f_{n-1}^{-1} d_{n}^{\mathbf{Y}} y_{n} \in f_{n-1}^{-1} d_{n}^{\mathbf{Y}} g_{n}^{-1} g_{n} y_{n}$. Therefore $f_{n-1} x_{n-1}=$ $d_{n}^{\mathbf{Y}} y_{n}=0$, and hence $x_{n-1}=0$, because f_{n-1} is injective. It follows that $H_{n}(g)\left[y_{n}\right] \in \operatorname{ker} \partial_{n}$.
(4) $\operatorname{ker} \partial_{n} \subseteq \operatorname{im} H_{n}(g)$: Let $\partial_{n}\left[w_{n}\right]=0$. Since g_{n} is surjective, there exists $y_{n} \in Y_{n}$ such that $w_{n}=g_{n}\left(y_{n}\right)$. Let $x_{n-1}=f_{n-1}^{-1} d_{n}^{\mathbf{Y}} y_{n} \in f_{n-1}^{-1} d_{n}^{\mathbf{Y}} g_{n}^{-1}\left(w_{n}\right)$. By definition of ∂_{n}, we have $\partial_{n}\left[w_{n}\right]=\left[x_{n-1}\right]=0$. Hence there exists $x_{n} \in X_{n}$ such that $x_{n-1}=d_{n}^{\mathbf{X}} x_{n}$. We have

$$
d_{n}^{\mathbf{Y}}\left(y_{n}-f_{n}\left(x_{n}\right)\right)=d_{n}^{\mathbf{Y}}\left(y_{n}\right)-f_{n-1} d_{n}^{\mathbf{X}} x_{n}=0 .
$$

Therefore $y_{n}-f_{n}\left(x_{n}\right) \in \operatorname{ker} d_{n}^{\mathbf{Y}}$ and

$$
H_{n}(g)\left[y_{n}-f_{n}\left(x_{n}\right)\right]=\left[g_{n} y_{n}-g_{n} f_{n}\left(x_{n}\right)\right]=\left[g_{n} y_{n}\right]=\left[w_{n}\right] .
$$

(5) $\operatorname{im} \partial_{n} \subseteq \operatorname{ker} H_{n-1}(f):$ Let $\partial_{n}\left[w_{n}\right] \in \operatorname{im} \partial_{n}$. Then there exists $y_{n} \in g_{n}^{-1}\left(w_{n}\right)$ such that $\partial_{n}\left[w_{n}\right]=\left[x_{n-1}\right]$, where $x_{n-1}=f_{n-1}^{-1} d_{n}^{\mathbf{Y}} y_{n} \in f_{n-1}^{-1} d_{n}^{\mathbf{Y}} g_{n}^{-1}\left(w_{n}\right)$. Therefore

$$
H_{n-1}(f)\left[x_{n-1}\right]=\left[f_{n-1} x_{n-1}\right]=\left[f_{n-1} f_{n-1}^{-1} d_{n}^{\mathbf{Y}} y_{n}\right]=\left[d_{n}^{\mathbf{Y}} y_{n}\right]=0 .
$$

(6) $\operatorname{ker} H_{n-1}(f) \subseteq \operatorname{im} \partial_{n}$: Let $H_{n-1}(f)\left[x_{n-1}\right]=\left[f_{n-1} x_{n-1}\right]=0$. Then there exists $y_{n} \in Y_{n}$ such that $f_{n-1} x_{n-1}=d_{n}^{\mathbf{Y}} y_{n}$. Therefore $x_{n-1}=f_{n-1}^{-1} d_{n}^{\mathbf{Y}} y_{n} \in$ $f_{n-1}^{-1} d_{n}^{\mathbf{Y}} g_{n}^{-1}\left(g_{n} y_{n}\right)$ and hence $\partial_{n}\left[g_{n} y_{n}\right]=\left[x_{n-1}\right]$.

Theorem 1.1.11. (Naturality of ∂_{n}). Consider the commutative diagram with exact rows:

Then there is a commutative diagram of modules with exact rows:

Proof. Exactness of the rows is Theorem 1.0.12 (Long Exact Sequence). The first two squares commute because H_{n} is a functor. Now we show that the commutativity of the square involving the connecting homomorphism. Consider the commutative three-dimensional diagram:

Let $\left[w_{n}\right] \in H_{n}(\mathbf{W})$. We show that $H_{n-1}(\alpha) \partial_{n}\left[w_{n}\right]=\partial_{n}^{\prime} H_{n}(\gamma)\left[w_{n}\right]$. Let $y_{n} \in$ $g_{n}^{-1}\left(w_{n}\right)$ and $x_{n-1}=f_{n-1}^{-1} d_{n}^{\mathbf{Y}} y_{n}$. Then

$$
H_{n-1}(\alpha) \partial_{n}\left[w_{n}\right]=H_{n-1}(\alpha)\left[x_{n-1}\right]=\left[\alpha_{n-1} x_{n-1}\right] .
$$

Let $x_{n-1}^{\prime}=f_{n-1}^{\prime-1} d_{n}^{\mathbf{Y}^{\prime}} \beta_{n} y_{n}$. Since $\gamma_{n}\left(w_{n}\right)=\gamma_{n}\left(g_{n} y_{n}\right)=g_{n}^{\prime} \beta_{n} y_{n}$, we have

$$
\partial_{n}^{\prime} H_{n}(\gamma)\left[w_{n}\right]=\partial_{n}^{\prime}\left[\gamma_{n} w_{n}\right]=\left[x_{n-1}^{\prime}\right] .
$$

On the other hand,

$$
f_{n-1}^{\prime}\left(\alpha_{n-1} x_{n-1}\right)=\beta_{n-1} f_{n-1} x_{n-1}=\beta_{n-1} d_{n}^{\mathbf{Y}} y_{n}=d_{n}^{\mathbf{Y}^{\prime}} \beta_{n} y_{n}=f_{n-1}^{\prime} x_{n-1}^{\prime}
$$

Since f_{n-1}^{\prime} is injective, it follows that $\alpha_{n-1} x_{n-1}=x_{n-1}^{\prime}$, which completes the proof.

Theorem 1.1.12. (Snake Lemma). Consider the commutative diagram of modules with exact rows:

Then there is the following exact sequence

$$
\operatorname{ker} \alpha \xrightarrow{\bar{f}} \operatorname{ker} \beta \xrightarrow{\bar{g}} \operatorname{ker} \gamma \xrightarrow{\partial} \operatorname{coker} \alpha \xrightarrow{\overline{f^{\prime}}} \operatorname{coker} \beta \xrightarrow{\overline{g^{\prime}}} \operatorname{coker} \gamma
$$

Proof. It is easy to see that $\bar{f}=\left.f\right|_{\operatorname{ker} \alpha}: \operatorname{ker} \alpha \longrightarrow \operatorname{ker} \beta, \bar{g}=\left.g\right|_{\operatorname{ker} \beta}: \operatorname{ker} \beta \longrightarrow$ ker γ,

$$
\begin{aligned}
\overline{f^{\prime}}: \operatorname{coker} \alpha & \longrightarrow \operatorname{coker} \beta \\
n^{\prime}+\operatorname{im} \alpha & \longmapsto f^{\prime}\left(n^{\prime}\right)+\operatorname{im} \beta
\end{aligned}
$$

and

$$
\begin{aligned}
\overline{g^{\prime}}: \operatorname{coker} \beta & \longrightarrow \text { coker } \gamma \\
n+\operatorname{im} \beta & \longmapsto g^{\prime}(n)+\mathrm{im} \gamma
\end{aligned}
$$

are well defined. There are eight inclusions to verify.
(1) $\operatorname{im} \bar{f} \subseteq \operatorname{ker} \bar{g}:$ Let $m^{\prime} \in M^{\prime}$, then

$$
\bar{g} \bar{f}\left(m^{\prime}\right)=\bar{g} f\left(m^{\prime}\right)=g f\left(m^{\prime}\right)=0 .
$$

Hence $\operatorname{im} \bar{f} \subseteq \operatorname{ker} \bar{g}$.
(2) $\operatorname{ker} \bar{g} \subseteq \operatorname{im} \bar{f}$: Let $m \in \operatorname{ker} \bar{g}$. Then $m \in \operatorname{ker} \beta$ and $g(m)=0$. Therefore there exists $m^{\prime} \in M^{\prime}$ such that $m=f\left(m^{\prime}\right)$. Since $f^{\prime} \alpha\left(m^{\prime}\right)=\beta f\left(m^{\prime}\right)=\beta(m)=$ 0 , we have $m^{\prime} \in \operatorname{ker} \alpha$ and hence $m=f\left(m^{\prime}\right)=\bar{f}\left(m^{\prime}\right) \in \operatorname{im} \bar{f}$.

Define

$$
\partial: \operatorname{ker} \gamma \quad \longrightarrow \quad \text { coker } \alpha
$$

$$
m^{\prime \prime} \longmapsto n^{\prime}+\operatorname{im} \alpha \quad\left(n^{\prime} \in f^{\prime-1} \beta g^{-1}\left(m^{\prime \prime}\right)\right)
$$

We show that ∂ is well defined. Let $n^{\prime}{ }_{1}, n^{\prime}{ }_{2} \in f^{\prime-1} \beta g^{-1}\left(m^{\prime \prime}\right)$. Then there are $m_{1}, m_{2} \in g^{-1}\left(m^{\prime \prime}\right)$ such that $f^{\prime}\left(n^{\prime}{ }_{1}\right)=\beta\left(m_{1}\right)$ and $f^{\prime}\left(n^{\prime}{ }_{2}\right)=\beta\left(m_{2}\right)$. Therefore $g\left(m_{1}\right)=g\left(m_{2}\right)=m^{\prime \prime}$ and hence $m_{1}-m_{2} \in \operatorname{ker} g=\operatorname{im} f$. Hence there exists $m^{\prime} \in M^{\prime}$ such that $f\left(m^{\prime}\right)=m_{1}-m_{2}$. By commutativity of the above diagram,

$$
f^{\prime}\left(n^{\prime}{ }_{1}-n^{\prime}{ }_{2}\right)=\beta\left(m_{1}-m_{2}\right)=\beta f\left(m^{\prime}\right)=f^{\prime} \alpha\left(m^{\prime}\right) .
$$

Hence $n^{\prime}{ }_{1}-n^{\prime}{ }_{2}=\alpha\left(m^{\prime}\right)$ and so $n^{\prime}{ }_{1}+\operatorname{im} \alpha=n^{\prime}{ }_{1}+\operatorname{im} \alpha$.
(3) $\operatorname{ker} \partial \subseteq \operatorname{im} \bar{g}:$ Let $\lambda \in \operatorname{ker} \partial$. Then $\lambda \in \operatorname{ker} \gamma \subseteq M^{\prime \prime}$. Therefore there exists $m \in M$ such that $m \in g^{-1}(\lambda)$. Since $0=\partial(\lambda)=f^{\prime-1} \beta(m)+\operatorname{im} \alpha$, there exists $m^{\prime} \in M^{\prime}$ such that $f^{\prime-1} \beta(m)=\alpha\left(m^{\prime}\right)$. By commutativity of the above diagram,

$$
\beta f\left(m^{\prime}\right)=f^{\prime} \alpha\left(m^{\prime}\right)=\beta(m)
$$

Hence $m-f\left(m^{\prime}\right) \in \operatorname{ker} \beta$. Now we have $\bar{g}\left(m-f\left(m^{\prime}\right)\right)=g\left(m-f\left(m^{\prime}\right)\right)=g(m)=\lambda$ and hence ker $\partial \subseteq \operatorname{im} \bar{g}$.
(4) $\operatorname{im} \bar{g} \subseteq \operatorname{ker} \partial:$ Let $\bar{g}(m) \in \operatorname{im} \bar{g}$, where $m \in \operatorname{ker} \beta$. Then $\partial(\bar{g}(m))=n^{\prime}+\operatorname{im} \alpha$, where $n^{\prime}=f^{\prime-1} \beta(m) \in f^{\prime-1} \beta g^{-1}(\bar{g}(m))$. Therefore $\partial(\bar{g}(m))=f^{\prime-1} \beta(m)+$ $\operatorname{im} \alpha=\operatorname{im} \alpha$. and hence $\operatorname{im} \bar{g} \subseteq \operatorname{ker} \partial$.
(5) $\operatorname{im} \partial \subseteq \operatorname{ker} \overline{f^{\prime}}:$ Let $\partial(\lambda)=f^{\prime-1} \beta(m)+\operatorname{im} \alpha \in \operatorname{im} \partial$, where $m \in g^{-1}(\lambda)$. Then

$$
\overline{f^{\prime}} \partial(\lambda)=\overline{f^{\prime}}\left(f^{\prime-1} \beta(m)+\operatorname{im} \alpha\right)=f^{\prime} f^{\prime-1} \beta(m)+\operatorname{im} \beta=\operatorname{im} \beta .
$$

It follows that $\operatorname{im} \partial \subseteq \operatorname{ker} \overline{f^{\prime}}$.
(6) $\operatorname{ker} \overline{f^{\prime}} \subseteq \operatorname{im} \partial$: Let $\overline{f^{\prime}}\left(n^{\prime}+\operatorname{im} \alpha\right)=0$. Then $f^{\prime}\left(n^{\prime}\right)+\operatorname{im} \beta=\operatorname{im} \beta$. Therefore there exists $m \in M$ such that $f^{\prime}\left(n^{\prime}\right)=\beta(m)$. By commutativity of the above diagram,

$$
\gamma g(m)=g^{\prime} \beta(m)=g^{\prime} f^{\prime}\left(n^{\prime}\right)=0 .
$$

Therefore $g(m) \in \operatorname{ker} \gamma$. Since $n^{\prime}=f^{\prime-1} \beta(m) \in f^{\prime-1} \beta g^{-1}(g(m))$, we have $\partial(g(m))=n^{\prime}+\mathrm{im} \alpha$. Thus $\operatorname{ker} \overline{f^{\prime}} \subseteq \operatorname{im} \partial$.
(7) $\operatorname{im} \overline{f^{\prime}} \subseteq \operatorname{ker} \overline{g^{\prime}}:$ Let $n^{\prime} \in N^{\prime}$. Then

$$
\overline{g^{\prime}} \overline{f^{\prime}}\left(n^{\prime}+\operatorname{im} \alpha\right)=\overline{g^{\prime}}\left(f^{\prime}\left(n^{\prime}\right)+\operatorname{im} \beta\right)=g^{\prime} f^{\prime}\left(n^{\prime}\right)+\operatorname{im} \gamma=0 .
$$

Hence $\operatorname{im} \overline{f^{\prime}} \subseteq \operatorname{ker} \overline{g^{\prime}}$.
(8) $\operatorname{ker} \overline{g^{\prime}} \subseteq \operatorname{im} \overline{f^{\prime}}:$ Let $n+\operatorname{im} \beta \in \operatorname{ker} \overline{g^{\prime}}$. Then $g^{\prime}(n) \in \operatorname{im} \gamma$. Therefore there exists $m^{\prime \prime} \in M^{\prime \prime}$ such that $g^{\prime}(n)=\gamma\left(m^{\prime \prime}\right)$. Since g in surjective, there exists $m \in M$ such that $g(m)=m^{\prime \prime}$. By commutativity of the above diagram,

$$
g^{\prime}(n)=\gamma\left(m^{\prime \prime}\right)=\gamma g(m)=g^{\prime} \beta(m) .
$$

Hence $n-\beta(m) \in \operatorname{ker} g^{\prime}=\operatorname{im} f^{\prime}$ and so there exists $n^{\prime} \in N^{\prime}$ such that $n-\beta(m)=$ $f^{\prime}\left(n^{\prime}\right)$. It follows that $n+\operatorname{im} \beta=f^{\prime}\left(n^{\prime}\right)+\operatorname{im} \beta \in \operatorname{im} \overline{f^{\prime}}$ and hence $\operatorname{ker} \overline{g^{\prime}} \subseteq \operatorname{im} \overline{f^{\prime}}$.

Remark 1.1.13. The snake is

Definition 1.1.14. Two morphisms $f, g: \mathbf{X} \longrightarrow \mathbf{Y}$ are homotopic, denoted by $f \simeq g$, if for all $n \in \mathbb{Z}$, there are homomorphism $s_{n}: X_{n} \longrightarrow Y_{n+1}$ so that

$$
f_{n}-g_{n}=d_{n+1}^{\mathbf{Y}} s_{n}+s_{n-1} d_{n}^{\mathbf{X}}
$$

as illustrated in the diagram below:

where $\theta_{n}=f_{n}-g_{n}$.
Theorem 1.1.15. (Homotopic Morphisms Theorem). If $f, g: \mathbf{X} \longrightarrow \mathbf{Y}$ are homotopic morphisms, then

$$
H_{n}(f)=H_{n}(g) \text { for all } n \in \mathbb{Z}
$$

Proof. Let $z_{n} \in \operatorname{ker} d_{n}^{\mathbf{X}}$. Then

$$
\begin{aligned}
H_{n}(f)\left[z_{n}\right] & =\left[f_{n} z_{n}\right]=\left[\left(g_{n}+d_{n+1}^{\mathbf{Y}} s_{n}+s_{n-1} d_{n}^{\mathbf{X}}\right) z_{n}\right] \\
& =\left[g_{n} z_{n}\right]+\left[d_{n+1}^{\mathbf{Y}} s_{n} z_{n}\right]+\left[s_{n-1} d_{n}^{\mathbf{X}} z_{n}\right] \\
& =H_{n}(g)\left[z_{n}\right] .
\end{aligned}
$$

This completes the proof.
Definition 1.1.16. A Free resolution of a module M is an exact sequence

$$
\mathbf{F}: \cdots \longrightarrow F_{2} \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{\varepsilon} M \longrightarrow 0
$$

in which each F_{i} is free. Also then the sequence (no longer exact at F_{0})

$$
\mathbf{F}_{\mathbf{M}}: \cdots \longrightarrow F_{2} \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} 0
$$

is called the deleted free resolution of the resolution \mathbf{F}.

Projective resolution and flat resolution are defined similarly.
Definition 1.1.17. An injective resolution of a module M is an exact sequence

$$
\mathbf{E}: 0 \longrightarrow M \xrightarrow{\varepsilon} E^{0} \xrightarrow{d^{0}} E^{1} \xrightarrow{d^{1}} E^{2} \longrightarrow \cdots
$$

in which each E^{i} is injective. Also then the sequence (no longer exact at E^{0})

$$
\mathbf{E}_{\mathbf{M}}: 0 \longrightarrow E^{0} \xrightarrow{d^{0}} E^{1} \xrightarrow{d^{1}} E^{2} \longrightarrow \cdots
$$

is called the deleted injective resolution of the resolution \mathbf{E}.

We may, in fact, define the deleted complex of any complex:
Definition 1.1.18. Let \mathbf{X} be a complex of the form

$$
\mathbf{X}: \cdots \longrightarrow X_{2} \xrightarrow{d_{2}} X_{1} \xrightarrow{d_{1}} X_{0} \xrightarrow{\varepsilon} M \longrightarrow 0 .
$$

Then the complex

$$
\mathbf{X}_{\mathbf{M}}: \cdots \longrightarrow X_{2} \xrightarrow{d_{2}} X_{1} \xrightarrow{d_{1}} X_{0} \xrightarrow{d_{0}} 0
$$

is called the deleted complex of the complex \mathbf{X}. Similarly, if \mathbf{Y} is a complex of the form

$$
\mathbf{Y}: 0 \longrightarrow N \xrightarrow{\varepsilon} Y^{0} \xrightarrow{d^{0}} Y^{1} \xrightarrow{d^{1}} Y^{2} \longrightarrow \cdots,
$$

then the complex

$$
\mathbf{Y}_{\mathbf{N}}: 0 \longrightarrow Y^{0} \xrightarrow{d^{0}} Y^{1} \xrightarrow{d^{1}} Y^{2} \longrightarrow \cdots
$$

is called the deleted complex of the complex \mathbf{Y}.
Theorem 1.1.19. Every module M has a free resolution (which is necessarily a projective resolution and a flat resolution).

Proof. There is a free module F_{0} and an exact sequence

$$
0 \longrightarrow K_{1} \xrightarrow{i_{1}} F_{0} \xrightarrow{\varepsilon} M \longrightarrow 0
$$

Similarly, there is a free module F_{1}, and an exact sequence

$$
0 \longrightarrow K_{2} \xrightarrow{i_{2}} F_{1} \xrightarrow{\varepsilon_{1}} K_{1} \longrightarrow 0,
$$

and, by induction, a free module F_{n}, and an exact sequence

$$
0 \longrightarrow K_{n+1} \xrightarrow{i_{n+1}} F_{n} \xrightarrow{\varepsilon_{n}} K_{n} \longrightarrow 0
$$

Assemble all these sequences into the diagram

where $d_{n}: F_{n} \longrightarrow F_{n-1}$ is the composite $i_{n} \varepsilon_{n}$. Because $\operatorname{ker} \varepsilon=K_{1}=\operatorname{im} d_{1}$, and for every $n, \operatorname{ker} d_{n}=K_{n+1}$ and $\operatorname{im} d_{n}=K_{n}$, we have that the top row is exact.

Theorem 1.1.20. Every module M has an injective resolution.
Proof. Every module can be imbedded as a submodule of an injective module. Thus, there is an injective module E^{0}, an injection $\varepsilon: M \longrightarrow E^{0}$ and an exact sequence

$$
0 \longrightarrow M \xrightarrow{\varepsilon} E^{0} \xrightarrow{\pi^{0}} C^{0} \longrightarrow 0 .
$$

Similarly, there is an injective module E^{1}, and an exact sequence

$$
0 \longrightarrow C^{0} \xrightarrow{\varepsilon^{1}} E^{1} \xrightarrow{\pi^{1}} C^{1} \longrightarrow 0,
$$

and, by induction, an injective module E^{n}, and an exact sequence

$$
0 \longrightarrow C^{n-1} \xrightarrow{\varepsilon^{n}} E^{n} \xrightarrow{\pi^{n}} C^{n} \longrightarrow 0,
$$

Assemble all these sequences into the diagram

where $d^{n}: E^{n} \longrightarrow E^{n+1}$ is the composite $\varepsilon^{n+1} \pi^{n}$. Because im $\varepsilon=M=\operatorname{ker} d^{0}$, and for every $n, \operatorname{ker} d^{n}=C^{n-1}$ and $\operatorname{im} d^{n}=C^{n}$, we have that the top row is exact.

Theorem 1.1.21. (Comparison Theorem). Consider the diagram

where the rows are complexes. If each P_{n} in the top row is projective, and if the bottom row is exact, then there exists a morphism $\alpha: \mathbf{P}_{\mathbf{M}} \longrightarrow \mathbf{Q}_{\mathbf{N}}$ (the
dashed arrows) making the completed diagram commute. Moreover, any two such morphisms are homotopic.

Proof. (1) The existence of α. We prove the existence of $\alpha=\left\{\alpha_{n}\right\}$ by induction on $n \geq 0$. For the base step $n=0$, consider the diagram

Since P_{0} is projective and $d_{0}^{\mathbf{Q}}$ is surjective, there exists an R-module homomorphism $\alpha_{0}: P_{0} \longrightarrow Q_{0}$ such that $d_{0}^{\mathbf{Q}} \alpha_{0}=f d_{0}^{\mathbf{P}}$. Suppose that $n \geq 0$ and that we have already constructed R-homomorphisms $\alpha_{i}: P_{i} \longrightarrow Q_{i}, 0 \leq i \leq n$ such that

$$
d_{i+1}^{\mathbf{Q}} \alpha_{i+1}=\alpha_{i} d_{i+1}^{\mathbf{P}} \text { for } 0 \leq i \leq n-1
$$

We have $d_{n}^{\mathbf{Q}} \alpha_{n} d_{n+1}^{\mathbf{P}}=\alpha_{n-1} d_{n}^{\mathbf{P}} d_{n+1}^{\mathbf{P}}=0$. Therefore $\operatorname{im} \alpha_{n} d_{n+1}^{\mathbf{P}} \subseteq \operatorname{ker} d_{n}^{\mathbf{Q}}=$ $\operatorname{im} d_{n+1}^{\mathbf{Q}}$ and hence we have the following diagram.

Since P_{n+1} is projective, there exists an R-module homomorphism α_{n+1} : $P_{n+1} \longrightarrow Q_{n+1}$ such that $d_{n+1}^{\mathbf{Q}} \alpha_{n+1}=\alpha_{n} d_{n+1}^{\mathbf{P}}$. This completes induction and therefore, the existence of a morphism $\alpha=\left\{\alpha_{n}\right\}$ is achieved.
(2) Uniqueness of α to homotopy. Assume $\beta=\left\{\beta_{n}\right\}: \mathbf{P}_{\mathbf{M}} \longrightarrow \mathbf{Q}_{\mathbf{N}}$ is another morphism satisfying $d_{0}^{\mathbf{Q}} \beta_{0}=f d_{0}^{\mathbf{P}}$ and

$$
d_{n+1}^{\mathbf{Q}} \beta_{n+1}=\beta_{n} d_{n+1}^{\mathbf{P}} \text { for } n \geq 0 .
$$

We construct a homotopy s by induction. Let $P_{-1}=Q_{-1}=0$. Take s_{-1} :
$P_{-1} \longrightarrow Q_{0}$ to be the zero map. Now consider the following diagram.

Since P_{0} is projective, there exists an R-module homomorphism $s_{0}: P_{0} \longrightarrow$ Q_{1} such that $\alpha_{0}-\beta_{0}=d_{1}^{\mathbf{Q}} s_{0}$ and hence $\alpha_{0}-\beta_{0}=d_{1}^{\mathbf{Q}} s_{0}+s_{-1} d_{0}^{\mathbf{P}}$. We have

$$
\begin{aligned}
& d_{n+1}^{\mathbf{Q}}\left(\alpha_{n+1}-\beta_{n+1}-s_{n} d_{n+1}^{\mathbf{P}}\right)=\alpha_{n} d_{n+1}^{\mathbf{P}}-\beta_{n} d_{n+1}^{\mathbf{P}}-d_{n+1}^{\mathbf{Q}} s_{n} d_{n+1}^{\mathbf{P}}= \\
& \left(\alpha_{n}-\beta_{n}\right) d_{n+1}^{\mathbf{P}}-d_{n+1}^{\mathbf{Q}} s_{n} d_{n+1}^{\mathbf{P}}=\left(d_{n+1}^{\mathbf{Q}} s_{n}-s_{n-1} d_{n}^{\mathbf{P}}\right) d_{n+1}^{\mathbf{P}}-d_{n+1}^{\mathbf{Q}} s_{n} d_{n+1}^{\mathbf{P}}=0
\end{aligned}
$$

Therefore $\operatorname{im}\left(\alpha_{n+1}-\beta_{n+1}-s_{n} d_{n+1}^{\mathbf{P}}\right) \subseteq \operatorname{im} d_{n+2}^{\mathbf{Q}}$ and hence we have the following diagram.

Since P_{n+1} is projective, there exists an R-module homomorphism $s_{n+1}: P_{n+1} \longrightarrow$ Q_{n+2} such that $\alpha_{n}-\beta_{n}-s_{n} d_{n+1}^{\mathbf{P}}=d_{n+2}^{\mathbf{Q}} s_{n+1}$ or $\alpha_{n+1}-\beta_{n+1}=d_{n+2}^{\mathbf{Q}} s_{n+1}+$ $s_{n} d_{n+1}^{\mathbf{P}}$. This completes induction and hence $\alpha \simeq \beta$.

Theorem 1.1.22. (Horseshoe Lemma). Let $0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0$ be a short exact sequence and let $\mathbf{P}^{\prime}, \mathbf{P}^{\prime \prime}$ be projective resolutions for M^{\prime} and
$M^{\prime \prime}$ respectively, as shown in the diagram:

Then there exists a projective resolution \mathbf{P} of M and morphisms $\alpha: \mathbf{P}_{M^{\prime}} \longrightarrow$ \mathbf{P}_{M} and $\beta: \mathbf{P}_{M} \longrightarrow \mathbf{P}_{M^{\prime \prime}}$ such that $0 \longrightarrow \mathbf{P}_{M^{\prime}} \xrightarrow{\alpha} \mathbf{P}_{M} \xrightarrow{\beta} \mathbf{P}_{M^{\prime \prime}} \longrightarrow 0$ is an exact sequence of complexes.

Proof. We show first that there is a projective P_{0} and a commutative 3×3
diagram with exact columns and rows:

Take $P_{0}=P_{0}^{\prime} \oplus P_{0}^{\prime \prime}$ and define $\alpha_{0}: P_{0}^{\prime} \longrightarrow P_{0}$ by $x^{\prime} \longmapsto\left(x^{\prime}, 0\right)$, and $\beta_{0}: P_{0} \longrightarrow P_{0}^{\prime \prime}$ by $\left(x^{\prime}, x^{\prime \prime}\right) \longmapsto x^{\prime \prime}$. It is clear that P_{0} is projective and that

$$
0 \longrightarrow P_{0}^{\prime} \xrightarrow{\alpha_{0}} P_{0} \xrightarrow{\beta_{0}} P_{0}^{\prime \prime} \longrightarrow 0
$$

is exact. Since $P_{0}^{\prime \prime}$ is projective and g is surjective, there exists an R-module homomorphism $h: P_{0}^{\prime \prime} \longrightarrow M$ such that $g h=\varepsilon^{\prime \prime}$. Now define

$$
\begin{aligned}
\varepsilon: P_{0} & \longrightarrow M \\
\left(x^{\prime}, x^{\prime \prime}\right) & \longmapsto f \varepsilon^{\prime} x^{\prime}+h x^{\prime \prime}
\end{aligned}
$$

Surjectivity of ε follows from the Five Lemma. It is an easy verification that, if $K_{0}=\operatorname{ker} \varepsilon, K_{0}^{\prime}=\operatorname{ker} \varepsilon^{\prime}$, and $K_{0}^{\prime \prime}=\operatorname{ker} \varepsilon^{\prime \prime}$, the resulting 3×3 diagram commutes. Exactness of the top row is the 3×3 Lemma.

We now prove, by induction on $n \geq 0$, that the bottom n rows of the desired diagram can be constructed. Consider the following commutative diagrams with
exact rows and columns:

and

Combining the above diagrams, we get the following commutative diagram with
exact rows and columns:

By defining $d_{n+1}^{\mathbf{P}}: P_{n+1} \longrightarrow P_{n}$ as the as the composite $P_{n+1} \longrightarrow K_{n} \longrightarrow P_{n}$, we get the following commutative diagram with exact rows:

It is easy to see that $\operatorname{im} d_{n+1}^{\mathbf{P}}=\operatorname{ker} d_{n}^{\mathbf{P}}$ and hence the proof is completed.

We finally make some remarks about the dual notion.

Definition 1.1.23. Let R be a ring. By a cochain complex $\left(\mathbf{X}, d_{\mathbf{X}}\right)$ of R modules we mean a sequence

$$
\left(\mathbf{X}, d_{\mathbf{X}}\right)=: \ldots \longrightarrow X^{n-1} \xrightarrow{d_{X}^{n-1}} X^{n} \xrightarrow{d_{\mathbf{X}}^{n}} X^{n+1} \longrightarrow \ldots
$$

of R-modules $\left\{X^{n}\right\}$ and R-module homomorphisms $\left\{d_{X}^{n}: X^{n} \longrightarrow X^{n+1}\right\}$ such that $d_{\mathbf{X}}^{n} d_{\mathbf{X}}^{n-1}=0$ for all $n \in \mathbb{Z} . X^{n}$ and $d_{\mathbf{X}}^{n}$ are called the module in degree n and the n-th differential of $\left(\mathbf{X}, d_{\mathbf{X}}\right)$, respectively. We usually simplify the notation and write \mathbf{X} instead of $\left(\mathbf{X}, d_{\mathbf{X}}\right)$. Morphisms of cochain complexes are defined analogously to chain complexes. Given a cochain complex $\left(\mathbf{X}, d_{\mathbf{X}}\right)$ we define its cohomology $H^{n}(\mathbf{X})$ by

$$
H^{n}(\mathbf{X})=\operatorname{ker} d^{n} / \operatorname{im} d^{n-1} \quad \text { for all } n \in \mathbb{Z}
$$

With the obvious definition of induced maps, $H^{n}(-)$ then becomes a functor, the cohomology functor. In case of a cochain complex we will speak of cocycles, coboundaries, cohomology classes. All the theorems we have established for homology therefore work for cohomology without requiring separate proofs. Indeed, given a chain complex $\left(\mathbf{X}, d^{\mathbf{X}}\right)$ we obtain a cochain complex $\left(\mathbf{Y}, \delta_{\mathbf{Y}}\right)$ by setting $Y^{n}=X_{-n}, \delta^{n}=d_{-n}$. Conversely given a cochain complex we obtain a chain complex by this procedure

Exercises

1. (i) Let $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{R} \operatorname{Mod}$ be an exact covariant functor. For each $n \in \mathbb{Z}$ and every complex \mathbf{X} of R-modules, prove that $H_{n}(T \mathbf{X}) \cong T H_{n}(\mathbf{X})$.
(ii) Let $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{R} \operatorname{Mod}$ be an exact contravariant functor. For each $n \in \mathbb{Z}$ and every complex \mathbf{X} of R-modules, prove that $H_{n}(T \mathbf{X}) \cong$ $T H_{-n}(\mathbf{X})$.
2. State and prove the dual of Comparison Theorem.
3. State and prove the dual of Horseshoe Lemma.

Chapter 2

DERIVED FUNCTORS

2.1 Covariant Left Derived Functors

Suppose for the time being that for every R-module M we have chosen exactly one deleted projective resolution $\mathbf{P}_{\mathbf{M}}$.

Definition 2.1.1. Let S be another ring and $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S} \operatorname{Mod}$ be a covariant functor. For $n \in \mathbb{Z}$, define

$$
\left(L_{n} T\right) M=H_{n}\left(T \mathbf{P}_{\mathbf{M}}\right)=\operatorname{ker} T d_{n} / \operatorname{im} T d_{n+1} .
$$

To complete the definition of $L_{n} T$, we must describe its action on homomor$\operatorname{phism} f: M \longrightarrow N$. By the Comparison Theorem, there is a morhism $\alpha: \mathbf{P}_{\mathbf{M}} \longrightarrow \mathbf{P}_{\mathbf{N}}$ over f. Then $T \alpha: T \mathbf{P}_{\mathbf{M}} \longrightarrow T \mathbf{P}_{\mathbf{N}}$ is also a morphism, and we define $\left(L_{n} T\right) f:\left(L_{n} T\right) M \longrightarrow\left(L_{n} T\right) N$ by

$$
\left(L_{n} T\right) f=H_{n}(T \alpha) .
$$

In more detail,

$$
\begin{aligned}
\left(L_{n} T\right) f:\left(L_{n} T\right) M & \longrightarrow\left(L_{n} T\right) N \\
{[z] } & \longmapsto\left[\left(T \alpha_{n}\right) z\right]
\end{aligned}
$$

In pictures, look at the chosen projective resolutions:

Fill in the dashed arrows, delete M and N, apply T to this diagram, and then take the map induced by $T \alpha$ in homology.

Theorem 2.1.2. Let S be another ring and $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S}$ Mod be an additive covariant functor. Then

$$
L_{n} T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S} \operatorname{Mod}
$$

is an additive covariant functor for every $n \in \mathbb{Z}$.
Proof. We will prove that $\left(L_{n} T\right) f$ is well defined on homorphism f. If β : $\mathbf{P}_{\mathbf{M}} \longrightarrow \mathbf{P}_{\mathbf{N}}$ is another morphism over f, then the Comparison Theorem says that $\alpha \simeq \beta$, so that $T \alpha \simeq T \beta$ (Exercise 1). It follows from Homotopic Morphism Theorem that $H_{n}(T \alpha)=H_{n}(T \beta)$. Thus $\left(L_{n} T\right) f$ is independent of the choice of the morphim α.

By taking $1_{P_{n}}: P_{n} \longrightarrow P_{n}$, the identity map for every $n \in \mathbb{Z}$, we get a morphism $1_{P_{M}}=\left\{1_{P_{n}}\right\}: \mathbf{P}_{\mathbf{M}} \longrightarrow \mathbf{P}_{\mathbf{M}}$ and we have

$$
\left.\left(L_{n} T\right)\left(1_{M}\right)=H_{n}\left(T\left(1_{\mathbf{P}_{\mathbf{M}}}\right)\right)=H_{n}\left(1_{\mathbf{T P}_{\mathbf{M}}}\right)=1_{H_{n}\left(T \mathbf{P}_{\mathrm{M}}\right.}\right)=1_{\left(L_{n} T\right) M} .
$$

Let $g: N \longrightarrow L$ be an R-homomorphism and $\left\{\beta_{n}\right\}: \mathbf{P}_{\mathbf{N}} \longrightarrow \mathbf{P}_{\mathbf{L}}$ be a morphism over g. Then $\left\{\beta_{n} \alpha_{n}\right\}: \mathbf{P}_{\mathbf{M}} \longrightarrow \mathbf{P}_{\mathbf{L}}$ is a morphism over $g f: M \longrightarrow L$. By definition, we have

$$
\begin{aligned}
\left(L_{n} T\right)(g f)[x] & =\left[T\left(\beta_{n} \alpha_{n}\right)(x)\right]=\left[\left(T\left(\beta_{n}\right) T\left(\alpha_{n}\right)\right)(x)\right] \\
& =\left[T\left(\beta_{n}\right)\left(T\left(\alpha_{n}\right)\right)(x)\right]=\left(L_{n} T\right) g\left[T\left(\alpha_{n}\right)(x)\right] \\
& =\left(L_{n} T\right) g\left(\left(L_{n} T\right) f[x]\right)=\left(\left(L_{n} T\right) g\left(L_{n} T\right) f\right)[x]
\end{aligned}
$$

This implies that $\left(L_{n} T\right)(g f)=\left(L_{n} T\right) g\left(L_{n} T\right) f$. Therefore $L_{n} T$ is a covariant functor. Finally, we show that $L_{n} T$ is an additive covariant functor. Let h :
$M \longrightarrow N$ be another R-homomorphism and $\left\{\gamma_{n}\right\}: \mathbf{P}_{\mathbf{M}} \longrightarrow \mathbf{P}_{\mathbf{N}}$ be a morphism over h. Then $\left\{\alpha_{n}+\gamma_{n}\right\}: \mathbf{P}_{\mathbf{M}} \longrightarrow \mathbf{P}_{\mathbf{N}}$ is a morphism over $f+h$. By definition, we have

$$
\begin{aligned}
L_{n} T(f+h)[x] & =\left[T\left(\alpha_{n}+\gamma_{n}\right)(x)\right]=\left[\left(T\left(\alpha_{n}\right)+T\left(\gamma_{n}\right)\right)(x)\right] \\
& =\left[T\left(\alpha_{n}\right)(x)+T\left(\gamma_{n}\right)(x)\right]=\left[T\left(\alpha_{n}\right)(x)\right]+\left[T\left(\gamma_{n}\right)(x)\right] \\
& =\left(L_{n} T\right) f[x]+\left(L_{n} T\right) h[x]=\left(\left(L_{n} T\right) f+\left(L_{n} T\right) h\right)[x]
\end{aligned}
$$

which implies that $L_{n} T(f+h)=L_{n} T(f)+L_{n} T(h)$.
Definition 2.1.3. $L_{n} T$ is called the nth left derived functor of T.
Definition 2.1.4. Let \mathcal{C} and \mathcal{D} be two categories and $T, U: \mathcal{C} \longrightarrow \mathcal{D}$ be two covariant functors. We say that $\tau: T \longrightarrow U$ is a natural transformation (of functors) if for every object $M \in \mathcal{C}$ there is a morphism $\tau_{M}: T(M) \longrightarrow U(M)$ in \mathcal{D} such that for every morphism $f: M \longrightarrow N$ in \mathcal{C}, the diagram

is commutative. There is a similar definition if both T and U are contravariant. If for each $M \in \mathcal{C}, \tau_{M}: T(M) \longrightarrow U(M)$ is an equivalence, then τ is called naturallly equivalence. Also then T and U are called naturally equivalent functors and we write $T \approx U$.

Assume that new choices

$$
\ldots \longrightarrow \bar{P}_{2} \longrightarrow \bar{P}_{1} \longrightarrow \bar{P}_{0} \longrightarrow M \longrightarrow 0
$$

of projective resolutions (one for each module M) have been made, and denote the left derived functors arising from these new choices by $\bar{L}_{n} T$. our next project is to show that $L_{n} T$ and $\bar{L}_{n} T$ are essentially the same.

Theorem 2.1.5. Given an additive covariant functor $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S} \operatorname{Mod}$, where R and S are rings, then the functors $L_{n} T$ and $\bar{L}_{n} T$ are naturally equivalent. In particular, for each M,

$$
\left(L_{n} T\right) M \cong\left(\bar{L}_{n} T\right) M
$$

i.e., there modules are independent of the choice of projective resolution of M.

Proof. Consider the diagram

where the top row is the chosen projective resolution of M used to define $L_{n} T$ and the bottom is that used to define $\bar{L}_{n} T$. By the Comparison Theorem, there is a morphism $i: \mathbf{P}_{\mathbf{M}} \longrightarrow \overline{\mathbf{P}}_{\mathbf{M}}$ over 1_{M}. Similarly, there is a morphism $j: \overline{\mathbf{P}}_{\mathbf{M}} \longrightarrow \mathbf{P}_{\mathbf{M}}$ over 1_{M}. Therefore $j i: \mathbf{P}_{\mathbf{M}} \longrightarrow \mathbf{P}_{\mathbf{M}}$ and $i j: \overline{\mathbf{P}}_{\mathbf{M}} \longrightarrow \overline{\mathbf{P}}_{\mathbf{M}}$ are morphisms over 1_{M}. Since $1_{\mathbf{P}_{M}}: \mathbf{P}_{\mathbf{M}} \longrightarrow \mathbf{P}_{\mathbf{M}}$ and $1_{\overline{\mathbf{P}}_{\mathbf{M}}}: \overline{\mathbf{P}}_{\mathbf{M}} \longrightarrow \overline{\mathbf{P}}_{\mathbf{M}}$ are also morphisms over 1_{M}, we have $j i \simeq 1_{\mathbf{P}_{M}}$ and $i j \simeq 1_{\overline{\mathbf{P}}_{\mathrm{M}}}$. It follows that $T(j) T(i)=T(j i) \simeq 1_{\mathbf{T P}_{\mathbf{M}}}$ and $T(i) T(j)=T(i j) \simeq 1_{\mathbf{T} \overline{\mathbf{P}}_{\mathbf{M}}}$. Since H_{n} : ${ }_{R} \operatorname{Comp} \longrightarrow{ }_{R} \operatorname{Mod}$ is an additive functor for every $n \geq 0 ;$

$$
\begin{aligned}
& 1_{L_{n} T(M)}=1_{H_{n}\left(T P_{M}\right)}=H_{n}\left(1_{T P_{M}}\right)=H_{n}(T(j i))=H_{n}(T(j)) H_{n}(T(i)), \\
& 1_{\bar{L}_{n} T(M)}=1_{H_{n}\left(T \bar{P}_{M}\right)}=H_{n}\left(1_{T \bar{P}_{M}}\right)=H_{n}(T(i j))=H_{n}(T(i)) H_{n}(T(j)) .
\end{aligned}
$$

If we define

$$
\tau_{M}=H_{n}(T(i)):\left(L_{n} T\right) M \longrightarrow\left(\bar{L}_{n} T\right) M
$$

then τ_{M} is an isomorphism with $H_{n}(T(j))$ as its inverse.
We now prove that the isomorphisms τ_{M} constitute a natural isomorphism: if $f: M \longrightarrow N$, we must show commutativity of

Consider the diagrams

Applying the Comparison Theorem yields morphisms $\alpha: \mathbf{P}_{\mathbf{M}} \longrightarrow \mathbf{P}_{\mathbf{N}}$ and $\bar{\alpha}: \overline{\mathbf{P}}_{\mathbf{M}} \longrightarrow \overline{\mathbf{P}}_{\mathbf{N}}$ over the homomorphism f. Let $k: \mathbf{P}_{\mathbf{N}} \longrightarrow \overline{\mathbf{P}}_{\mathbf{N}}$ be a morphism over 1_{N}. Then we have morphism $k \alpha: \mathbf{P}_{\mathbf{M}} \longrightarrow \overline{\mathbf{P}}_{\mathbf{N}}$ over $1_{N} f=f$ and $\bar{\alpha} i$: $\mathbf{P}_{\mathbf{M}} \longrightarrow \overline{\mathbf{P}}_{\mathbf{N}}$ over $f 1_{M}=f$. Therefore $k \alpha \simeq \bar{\alpha} i$ and so $T(k \alpha) \simeq T(\bar{\alpha} i)$. Hence

$$
H_{n} T(k) H_{n} T(\alpha)=H_{n} T(k \alpha)=H_{n} T(\bar{\alpha} i)=H_{n} T(\bar{\alpha}) H_{n} T(i)
$$

It follows that $\tau_{N}\left(L_{n} T\right) f=\left(\bar{L}_{n} T\right) f \tau_{M}$. This completes the proof.
Theorem 2.1.6. Let $0 \longrightarrow K \longrightarrow P \xrightarrow{\varepsilon} M \longrightarrow 0$ be an exact sequence of R-modules, where P is projective. Then if T is covariant

$$
\left(L_{n+1} T\right) M \cong\left(L_{n} T\right) K \quad(n \geq 0)
$$

Proof. Let

$$
\mathbf{P}: \cdots \longrightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0}=P \xrightarrow{\varepsilon} M \longrightarrow 0
$$

be a projective resolution for M. By exactness of \mathbf{P}, we have $K=\operatorname{ker} \varepsilon=\operatorname{im} d_{1}$, and so

$$
\cdots \longrightarrow P_{3} \xrightarrow{d_{3}} P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} K \longrightarrow 0
$$

is a projective resolution of K. Since the indices are no longer correct, relabel the indices, and define $Q_{n}=P_{n+1}(n \geq 0), \Delta_{n}=d_{n+1}(n \geq 1)$. Therefore we have the following projective resolution for K.

$$
\cdots \longrightarrow Q_{2} \xrightarrow{\Delta_{2}} Q_{1} \xrightarrow{\Delta_{1}} Q_{0} \xrightarrow{d_{1}} K \longrightarrow 0 .
$$

By definition, we have

$$
\left(L_{n+1} T\right) M \cong \operatorname{ker} T d_{n+1} / \operatorname{im} T d_{n+2}=\operatorname{ker} T \Delta_{n} / \operatorname{im} T \Delta_{n+1} \cong\left(L_{n} T\right) K
$$

This completes the proof.
Corollary 2.1.7. Let

$$
\cdots \longrightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\varepsilon} M \longrightarrow 0
$$

be a projective resolution of M, and define $K_{0}=\operatorname{ker} \varepsilon$ and $K_{n}=\operatorname{ker} d_{n}$ for all $n \geq 1$. Then if T is covariant,

$$
\left(L_{n+1} T\right) M \cong\left(L_{n} T\right) K_{0} \cong\left(L_{n-1} T\right) K_{1} \cong \ldots \cong\left(L_{1} T\right) K_{n-1} .
$$

Proof. Let $K_{-1}=M$. Consider the following short exact sequences

$$
0 \longrightarrow K_{i} \longrightarrow P_{i} \longrightarrow K_{i-1} \longrightarrow 0 \quad(i \geq 0)
$$

In view of the above theorem, we have

$$
\left(L_{n+1} T\right) K_{i-1} \cong\left(L_{n} T\right) K_{i} \quad(n \geq 0, i \geq 0)
$$

This completes the proof.
Theorem 2.1.8. Let $0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0$ be an exact sequence of modules. If $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S}$ Mod is an additive covariant functor, then there is a long exact sequence:

$$
\begin{aligned}
\cdots \longrightarrow & \left(L_{n} T\right) M^{\prime} \xrightarrow{\left(L_{n} T\right) f}\left(L_{n} T\right) M \xrightarrow{\left(L_{n} T\right) g}\left(L_{n} T\right) M^{\prime \prime} \xrightarrow{\partial_{n}} \cdots \\
& \longrightarrow\left(L_{0} T\right) M^{\prime} \xrightarrow{\left(L_{0} T\right) f}\left(L_{0} T\right) M \xrightarrow{\left(L_{0} T\right) g}\left(L_{0} T\right) M^{\prime \prime} \longrightarrow 0
\end{aligned}
$$

Proof. Let $\mathbf{P}_{\mathbf{M}^{\prime}}$ and $\mathbf{P}_{\mathbf{M}^{\prime \prime}}$ be the chosen deleted projective resolutions of M^{\prime} and of $M^{\prime \prime}$, respectively. By the Horseshoe Lemma, there is a projective resolution $\overline{\mathbf{P}}_{\mathbf{M}}$ of M with

$$
0 \longrightarrow \mathbf{P}_{\mathbf{M}^{\prime}} \xrightarrow{\alpha} \overline{\mathbf{P}}_{\mathbf{M}} \xrightarrow{\beta} \mathbf{P}_{\mathbf{M}^{\prime \prime}} \longrightarrow 0 .
$$

Applying T gives another exact sequence of complexes (because, additive functors preserve split short exact sequences)

$$
0 \longrightarrow T \mathbf{P}_{\mathbf{M}^{\prime}} \xrightarrow{T \alpha} T \overline{\mathbf{P}}_{\mathbf{M}} \xrightarrow{T \beta} T \mathbf{P}_{\mathbf{M}^{\prime \prime}} \longrightarrow 0
$$

Thus there is a long exact sequence

$$
\cdots \longrightarrow H_{n}\left(T \mathbf{P}_{\mathbf{M}^{\prime}}\right) \xrightarrow{H_{n}(T \alpha)} H_{n}\left(T \overline{\mathbf{P}}_{\mathbf{M}}\right) \xrightarrow{H_{n}(T \beta)}\left(H_{n}\left(T \mathbf{P}_{\mathbf{M}^{\prime \prime}}\right) \xrightarrow{\partial_{n}} \cdots ;\right.
$$

that is, there is an exact sequence

$$
\cdots \longrightarrow\left(L_{n} T\right) M^{\prime} \xrightarrow{\left(L_{n} T\right) f}\left(\bar{L}_{n} T\right) M \xrightarrow{\left(L_{n} T\right) g}\left(L_{n} T\right) M^{\prime \prime} \xrightarrow{\partial_{n}} \cdots ;
$$

Notice that we have $\left(\bar{L}_{n} T\right) M$ instead of $\left(L_{n} T\right) M$ for the projective resolution of M constructed with the Horseshoe Lemma need not be the projective resolution originally chosen.

There are morphisms $i: \mathbf{P}_{\mathbf{M}} \longrightarrow \overline{\mathbf{P}}_{\mathbf{M}}$ and $j: \overline{\mathbf{P}}_{\mathbf{M}} \longrightarrow \mathbf{P}_{\mathbf{M}}$, where both i, j are morphisms over 1_{M} in opposite directions. In fact, $H_{n}(T i): H_{n}\left(T \mathbf{P}_{\mathbf{M}}\right) \longrightarrow$ $H_{n}\left(T \overline{\mathbf{P}}_{\mathbf{M}}\right)$ is the inverse of $H_{n}(T j): H_{n}\left(T \overline{\mathbf{P}}_{\mathbf{M}}\right) \longrightarrow H_{n}\left(T \mathbf{P}_{\mathbf{M}}\right)$. Therefore, by Exercise 3, we have the following exact sequence
$\cdots \longrightarrow H_{n}\left(T \mathbf{P}_{\mathbf{M}^{\prime}}\right){ }^{H_{n}(T j) H_{n}}(T \alpha) H_{n}\left(T \mathbf{P}_{\mathbf{M}}\right) \xrightarrow{H_{n}(T \beta) H_{n}(T i)}\left(H_{n}\left(T \mathbf{P}_{\mathbf{M}^{\prime \prime}}\right) \xrightarrow{\partial_{n}} \cdots ;\right.$
Let $\delta: \mathbf{P}_{\mathbf{M}^{\prime}} \longrightarrow \mathbf{P}_{\mathbf{M}}$ and $\epsilon: \mathbf{P}_{\mathbf{M}} \longrightarrow \mathbf{P}_{\mathbf{M}^{\prime \prime}}$ be morphisms over $f: M^{\prime} \longrightarrow M$ and $g: M \longrightarrow M^{\prime \prime}$, respectively. Now $T j T \alpha \simeq T \delta$, because both are morphisms over $T f$. Similarly, $T \beta T i \simeq T \epsilon$. Then we have exact sequence

$$
\cdots \longrightarrow H_{n}\left(T \mathbf{P}_{\mathbf{M}^{\prime}}\right) \xrightarrow{H_{n}(T \delta)} H_{n}\left(T \mathbf{P}_{\mathbf{M}}\right) \xrightarrow{H_{n}(T \epsilon)}\left(H_{n}\left(T \mathbf{P}_{\mathbf{M}^{\prime \prime}}\right) \xrightarrow{\partial_{n}} \cdots .\right.
$$

We conclude there is an exact sequence

$$
\cdots \longrightarrow\left(L_{n} T\right) M^{\prime} \xrightarrow{\left(L_{n} T\right) f}\left(L_{n} T\right) M \xrightarrow{\left(L_{n} T\right) g}\left(L_{n} T\right) M^{\prime \prime} \xrightarrow{\partial_{n}} \cdots
$$

Finally, the sequence does terminate at 0 , for $L_{n} T=0$ for negative n. Indeed, every P_{n}, hence every $T P_{n}$, is 0 for negative n.

Corollary 2.1.9. Let $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S} M o d$ be an additive covariant functor. Then $L_{0} T$ is right exact.

Proof. We have just seen that exactness of $M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0$ yields the exactness of $\left(L_{0} T\right) M^{\prime} \longrightarrow\left(L_{0} T\right) M \longrightarrow\left(L_{0} T\right) M^{\prime \prime} \longrightarrow 0$.

Theorem 2.1.10. Let $T:{ }_{R}$ Mod $\longrightarrow{ }_{S}$ Mod be an additive covariant functor. Then $L_{0} T \approx T$ if and only if T is right exact.

Proof. The "only if" parts comes from the right exactness of $L_{0} T$. For the converse, let

$$
\mathbf{P}: \cdots \longrightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\varepsilon} M \longrightarrow 0
$$

be the chosen projective resolution of M. But right exactness of T gives an exact sequence

$$
T P_{1} \xrightarrow{T d_{1}} T P_{0} \xrightarrow{T \varepsilon} T M \longrightarrow 0 .
$$

This exact sequences induce isomorphism

$$
\tau_{M}: T P_{0} / \operatorname{ker} T \varepsilon \longrightarrow T M
$$

By definition

$$
\left(L_{0} T\right) M=\operatorname{ker} T d_{0} / \mathrm{im} T d_{1}=T P_{0} / \mathrm{im} T d_{1}=T P_{0} / \operatorname{ker} T \varepsilon \cong T M
$$

Let N be another R-module and $f: M \longrightarrow N$ be a homomorphism. Let

$$
\mathbf{Q}: \cdots \longrightarrow Q_{2} \longrightarrow Q_{1} \longrightarrow Q_{0} \xrightarrow{\varepsilon^{\prime}} N \longrightarrow 0
$$

be a projective resolution of N. By the Comparison Theorem, there is a morphism $\alpha: \mathbf{P}_{\mathbf{M}} \longrightarrow \mathbf{P}_{\mathbf{N}}$ over f. We then get commutative diagram with exact rows.

This commutative diagram induces commutative diagram

This completes the proof that $L_{0} T$ is naturally equivalent to T.

Definition 2.1.11. Let M be an R-module and $a \in C(R)$. Then $a .: M \longrightarrow M$ defined by $x \longmapsto a x$ is an R-module homomorphism, called multiplication by a (or homothety). We say that a functor $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{R} \operatorname{Mod}$ preserves multiplications if $T(a)=$.$a . for all a \in C(R)$.

Theorem 2.1.12. If $T:{ }_{R}$ Mod $\longrightarrow{ }_{R}$ Mod is an additive covariant functor which preserves multiplications, then $L_{n} T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{R}$ Mod also preserves multiplications.

Proof. Let

$$
\mathbf{P}: \cdots \longrightarrow P_{2} \longrightarrow P_{1} \longrightarrow P_{0} \xrightarrow{\varepsilon} M \longrightarrow 0
$$

be a projective resolution of M. Let $a \in C(R)$ and consider the commutative diagram

Applying T gives

Now we have

$$
\begin{aligned}
\left(L_{n} T\right)(a .): H_{n}\left(T \mathbf{P}_{\mathbf{M}}\right) & \longrightarrow H_{n}\left(T \mathbf{P}_{\mathbf{M}}\right) \\
{\left[z_{n}\right] } & \longmapsto\left[a z_{n}\right]=a\left[z_{n}\right] .
\end{aligned}
$$

That is $\left(L_{n} T\right)(a)=.a .$.

As you would expect, the case for contravariant functors is done similarly and the process produces contravariant left derived functors.

2.2 Right Derived Functors

We are now going to define right derived functors $R^{n} T$, where $T:{ }_{R} \operatorname{Mod} \longrightarrow$ ${ }_{S} \mathrm{Mod}$ is an additive covariant (contravariant) functor.

Definition 2.2.1. Let S be another ring and $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S} \operatorname{Mod}$ be a covariant functor. For $n \in \mathbb{Z}$, define

$$
\left(R^{n} T\right) M=H^{n}\left(T \mathbf{E}_{\mathbf{M}}\right)=\operatorname{ker} T d^{n} / \operatorname{im} T d^{n-1}
$$

To complete the definition of $R^{n} T$, we must describe its action on homomorphism $f: M \longrightarrow N$. By the dual of the Comparison Theorem, there is a morphism $\alpha: \mathbf{E}_{\mathbf{M}} \longrightarrow \mathbf{E}_{\mathbf{N}}$ over f. Then $T \alpha: T \mathbf{E}_{\mathbf{M}} \longrightarrow T \mathbf{E}_{\mathbf{N}}$ is also a morphism, and we define

$$
\begin{aligned}
\left(R^{n} T\right) f:\left(R^{n} T\right) M & \longrightarrow\left(R^{n} T\right) N \\
{[z] } & \longmapsto\left[\left(T \alpha_{n}\right) z\right] .
\end{aligned}
$$

Definition 2.2.2. Let S be another ring and $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S} \operatorname{Mod}$ be a contravariant functor. For $n \in \mathbb{Z}$, define

$$
\left(R^{n} T\right) M=H^{n}\left(T \mathbf{P}_{\mathbf{M}}\right)=\operatorname{ker} T d_{n+1} / \operatorname{im} T d_{n} .
$$

To complete the definition of $R^{n} T$, we must describe its action on homomor$\operatorname{phism} f: M \longrightarrow N$. By the Comparison Theorem, there is a morphism
$\alpha: \mathbf{P}_{\mathbf{M}} \longrightarrow \mathbf{P}_{\mathbf{N}}$ over f. Then $T \alpha: T \mathbf{P}_{\mathbf{N}} \longrightarrow T \mathbf{P}_{\mathbf{M}}$ is also a morphism, and we define

$$
\begin{aligned}
\left(R^{n} T\right) f:\left(R^{n} T\right) N & \longrightarrow\left(R^{n} T\right) M \\
{[z] } & \longmapsto\left[\left(T \alpha_{n}\right) z\right] .
\end{aligned}
$$

Let $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S} \operatorname{Mod}$ be an additive covariant (contravariant) functor. Then the proof of the following results are dual (similar) to the proof of results in previous section.

Theorem 2.2.3. Let $T:{ }_{R}$ Mod $\longrightarrow{ }_{S}$ Mod be an additive covariant (contravariant) functor, where R and S are rings, then

$$
R^{n} T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S} \operatorname{Mod}
$$

is an additive covariant (contravariant) functor for every $n \in \mathbb{Z}$.
Definition 2.2.4. Let $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S} \operatorname{Mod}$ be an additive covariant (contravariant) functor, where R and S are rings. Then $R^{n} T$ is called the nth right derived functor of T.

Theorem 2.2.5. If $T:{ }_{R} M o d \longrightarrow{ }_{S} M o d$ is an additive covariant (contravariant) functor which preserves multiplications, then $R^{n} T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S} \operatorname{Mod}$ also preserves multiplications.

Theorem 2.2.6. Let $0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0$ be an exact sequence of modules.
(1) If $T:{ }_{R}$ Mod $\longrightarrow{ }_{S}$ Mod is an additive covariant functor, then there is a long exact sequence:

$$
\begin{gathered}
0 \longrightarrow\left(R^{0} T\right) M^{\prime} \xrightarrow{\left(R^{0} T\right) f}\left(R^{0} T\right) M \xrightarrow{\left(R^{0} T\right) g}\left(R^{0} T\right) M^{\prime \prime} \longrightarrow \cdots \\
\cdots \longrightarrow\left(R^{n} T\right) M^{\prime} \xrightarrow{\left(R^{n} T\right) f}\left(R^{n} T\right) M \xrightarrow{\left(R^{n} T\right) g}\left(R^{n} T\right) M^{\prime \prime} \longrightarrow \cdots
\end{gathered}
$$

(2) If $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S}$ Mod is an additive contravariant functor, then there
is a long exact sequence:

$$
\begin{gathered}
0 \longrightarrow\left(R^{0} T\right) M^{\prime \prime} \xrightarrow{\left(R^{0} T\right) g}\left(R^{0} T\right) M \xrightarrow{\left(R^{0} T\right) f}\left(R^{0} T\right) M^{\prime} \longrightarrow \cdots \\
\cdots \longrightarrow\left(R^{n} T\right) M^{\prime \prime} \xrightarrow{\left(R^{n} T\right) g}\left(R^{n} T\right) M \xrightarrow{\left(R^{n} T\right) f}\left(R^{n} T\right) M^{\prime} \longrightarrow \cdots
\end{gathered}
$$

Corollary 2.2.7. If $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S} M o d$ is an additive covariant (contravariant) functor, then the functor $R^{0} T$ is left exact.

Theorem 2.2.8. Let $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S}$ Mod be an additive covariant (contravariant) functor. Then $R^{0} T \approx T$ if and only if T is left exact.

Theorem 2.2.9. (1) Let

$$
0 \longrightarrow M \xrightarrow{\varepsilon} E \longrightarrow V \longrightarrow 0
$$

be an exact sequence of R-modules, where E is injective. Then if T is covariant,

$$
\left(R^{n+1} T\right) M \cong\left(R^{n} T\right) V \quad(n \geq 0)
$$

(2) Let

$$
0 \longrightarrow K \longrightarrow P \xrightarrow{\varepsilon} M \longrightarrow 0
$$

be an exact sequence of R-modules, where P is projective. Then if T is contravariant,

$$
\left(R^{n+1} T\right) M \cong\left(R^{n} T\right) K
$$

Corollary 2.2.10. (1) Let

$$
0 \longrightarrow M \xrightarrow{\varepsilon} E^{0} \xrightarrow{d^{0}} E^{1} \xrightarrow{d^{1}} E^{2} \longrightarrow \ldots
$$

be an injective resolution of M, and define $V_{0}=i m \varepsilon$ and $V_{n}=i m d^{n-1}$ for all $n \geq 1$. Then if T is covariant,

$$
\left(R^{n+1} T\right) M \cong\left(R^{n} T\right) V_{0} \cong\left(R^{n-1} T\right) V_{1} \cong \ldots \cong\left(R^{1} T\right) V_{n-1}
$$

(2) Let

$$
\cdots \longrightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\varepsilon} M \longrightarrow 0
$$

be a projective resolution of M, and define $K_{0}=\operatorname{ker} \varepsilon$ and $K_{n}=\operatorname{ker} d_{n}$ for all $n \geq 1$. Then if T is contravariant,

$$
\left(R^{n+1} T\right) M \cong\left(R^{n} T\right) K_{0} \cong\left(R^{n-1} T\right) K_{1} \cong \ldots \cong\left(R^{1} T\right) K_{n-1} .
$$

Exercises

1. Let $f, g: \mathbf{X} \longrightarrow \mathbf{Y}$ be morphisms, and let $T:{ }_{R} \operatorname{Comp} \longrightarrow{ }_{R}$ Comp be an additive functor. If $f \simeq g$, prove that $T f \simeq T g$.
2. Let $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S} \operatorname{Mod}$ be a covariant functor. Show that the following are equivalent:
(1) T is additive,
(2) $T(M \oplus N) \cong T(M) \oplus T(N)$ for all $M, N \in{ }_{R} \operatorname{Mod}$,
(3) $T(M \oplus M) \cong T(M) \oplus T(M)$ for all $M \in{ }_{R} \operatorname{Mod}$.
3. Consider the exact sequence

$$
A \xrightarrow{f} B \xrightarrow{g} C .
$$

If $i: B \longrightarrow B^{\prime}$ is an isomorphism with inverse $j: B^{\prime} \longrightarrow B$, prove exactness of

$$
A \xrightarrow{i f} B^{\prime} \xrightarrow{g j} C .
$$

4. Let $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{R} \operatorname{Mod}$ be an additive functor and $n \geq 1$.
(1) If T is covariant, prove that $\left(L_{n} T\right) P=0$ for all projective $P \in{ }_{R} \operatorname{Mod}$,
(2) If T is covariant, prove that $\left(R^{n} T\right) E=0$ for all injective $E \in{ }_{R} \operatorname{Mod}$,
(3) If T is contravariant, prove that $\left(R^{n} T\right) P=0$ for all projective $P \in$ ${ }_{R}$ Mod.
5. Let $T:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S} \operatorname{Mod}$ be a covariant functor.
(1) Show that $L_{n}\left(L_{m} T\right)=0$ if $m>0$,
(2) Show that $L_{n}\left(L_{0} T\right) M \cong\left(L_{n} T\right) M$ for all $M \in{ }_{R} \operatorname{Mod}$.
6. Set $R=\mathbb{Z}_{4}, S=\mathbb{Z}$ and

$$
\begin{aligned}
T:{ }_{R} \operatorname{Mod} & \longrightarrow{ }_{S} \operatorname{Mod} \\
M & \longmapsto \operatorname{Hom}\left(\mathbb{Z}_{2}, M\right) .
\end{aligned}
$$

Write down a projective resolution of \mathbb{Z}_{2} and compute $\left(L_{n} T\right) \mathbb{Z}_{2}$.

Chapter 3

Tor AND Ext

3.1 Elementary Properties

Definition 3.1.1. Let M be a right R-module and N be a left R-module. Then
(1) If $T(-)=M \otimes_{R}-$, then $\operatorname{Tor}_{n}^{R}(M,-):=L_{n} T(-)$.
(2) If $T(-)=-\otimes_{R} N$, then $\operatorname{tor}_{n}^{R}(-, N):=L_{n} T(-)$.
(3) If $T(-)=\operatorname{Hom}(N,-)$, then $\operatorname{Ext}_{R}^{n}(N,-):=R^{n} T(-)$.
(4) If $T(-)=\operatorname{Hom}(-, N)$, then $\operatorname{ext}_{R}^{n}(-, N):=R^{n} T(-)$.

Proposition 3.1.2. Let M be a right R-module and N be a left R-module.
Then the following hold.
(1) $\operatorname{Tor}_{0}^{R}(M,-) \approx M \otimes_{R}-$.
(2) $\operatorname{tor}_{0}^{R}(-, N) \approx-\otimes_{R} N$.
(3) $E x t_{R}^{0}(N,-) \approx \operatorname{Hom}(N,-)$.
(4) $\operatorname{ext}_{R}^{0}(-, N) \approx \operatorname{Hom}(-, N)$.

Proof. Follows from Theorem 2.1.10 and Theorem 2.2.8.

Proposition 3.1.3. (1) Let M and P are right R-modules with P projective, and let N and Q are left R-modules with Q projective. Then

$$
\operatorname{Tor}_{n}^{R}(M, Q)=\operatorname{tor}_{n}^{R}(P, N)=0
$$

(2) Let N, P and E are left R-modules with P projective and E injective. Then

$$
E x t_{R}^{n}(N, E)=\operatorname{ext}_{R}^{n}(P, N)=0
$$

Proof. Follows from Exercise 4 of Chapter 2.

Proposition 3.1.4. The following hold.
(1) Let $\cdots \longrightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\varepsilon} N \longrightarrow 0$ be a projective resolution of a left R-module N, and define $K_{0}=\operatorname{ker} \varepsilon$ and $K_{n}=\operatorname{ker} d_{n}$ for all $n \geq 1$. If M is a right R-module, then

$$
\operatorname{Tor}_{n+1}^{R}(M, N) \cong \operatorname{Tor}_{n}^{R}\left(M, K_{0}\right) \cong \ldots \cong \operatorname{Tor}_{1}^{R}\left(M, K_{n-1}\right) .
$$

(2) Let $\cdots \longrightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\varepsilon} M \longrightarrow 0$ be a projective resolution of a right R-module M, and define $K_{0}=\operatorname{ker} \varepsilon$ and $K_{n}=\operatorname{ker} d_{n}$ for all $n \geq 1$. If N is a left R-module, then

$$
\operatorname{tor}_{n+1}^{R}(M, N) \cong \operatorname{tor}_{n}^{R}\left(K_{0}, N\right) \cong \ldots \cong \operatorname{tor}_{1}^{R}\left(K_{n-1}, N\right)
$$

(3) Let $0 \longrightarrow M \xrightarrow{\varepsilon} E^{0} \xrightarrow{d^{0}} E^{1} \xrightarrow{d^{1}} E^{2} \longrightarrow \ldots$ be an injective resolution of a left R-module N, and define $V_{0}=$ ime and $V_{n}=i m d^{n-1}$ for all $n \geq 1$. If M is a left R-module, then

$$
E x t_{R}^{n+1}(M, N) \cong E x t_{R}^{n}\left(M, V_{0}\right) \cong \ldots \cong E x t_{R}^{1}\left(M, V_{n-1}\right)
$$

(4) Let $\cdots \longrightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\varepsilon} M \longrightarrow 0$ be a projective resolution of a left R-module M, and define $K_{0}=\operatorname{ker} \varepsilon$ and $K_{n}=\operatorname{ker} d_{n}$ for all $n \geq 1$. If N is a left R-module, then

$$
\operatorname{ext}_{R}^{n+1}(M, N) \cong \operatorname{ext}_{R}^{n}\left(K_{0}, N\right) \cong \ldots \cong \operatorname{ext}_{R}^{1}\left(K_{n-1}, N\right)
$$

Proof. Follows from Corollary 2.1.7 and Corollary 2.2.10.

Proposition 3.1.5. Let $0 \longrightarrow K^{\prime} \longrightarrow K \longrightarrow K^{\prime \prime} \longrightarrow 0$ be an exact sequence of modules. Then there are the long exact sequences
(1) $\quad \cdots \longrightarrow \operatorname{Tor}_{n}^{R}\left(M, K^{\prime}\right) \longrightarrow \operatorname{Tor}_{n}^{R}(M, K) \longrightarrow \operatorname{Tor}_{n}^{R}\left(M, K^{\prime \prime}\right) \longrightarrow \cdots$

$$
\longrightarrow M \otimes_{R} K^{\prime} \longrightarrow M \otimes_{R} K \longrightarrow M \otimes_{R} K^{\prime \prime} \longrightarrow 0
$$

(2) $\cdots \longrightarrow \operatorname{tor}_{n}^{R}\left(K^{\prime}, N\right) \longrightarrow \operatorname{tor}_{n}^{R}(K, N) \longrightarrow \operatorname{tor}_{n}^{R}\left(K^{\prime \prime}, N\right) \longrightarrow \cdots$

$$
\longrightarrow K^{\prime} \otimes_{R} N \longrightarrow K \otimes_{R} N \longrightarrow K^{\prime \prime} \otimes_{R} N \longrightarrow 0
$$

(3) $0 \longrightarrow \operatorname{Hom}\left(N, K^{\prime}\right) \longrightarrow \operatorname{Hom}(N, K) \longrightarrow \operatorname{Hom}\left(N, K^{\prime \prime}\right) \longrightarrow \cdots$

$$
\cdots \longrightarrow \operatorname{Ext}_{R}^{n}\left(N, K^{\prime}\right) \longrightarrow \operatorname{Ext}_{R}^{n}(N, K) \longrightarrow \operatorname{Ext}_{R}^{n}\left(N, K^{\prime \prime}\right) \longrightarrow \cdots
$$

(4) $0 \longrightarrow \operatorname{Hom}\left(K^{\prime \prime}, N\right) \longrightarrow \operatorname{Hom}(K, N) \longrightarrow \operatorname{Hom}\left(K^{\prime}, N\right) \longrightarrow \cdots$

$$
\cdots \longrightarrow e x t_{R}^{n}\left(K^{\prime \prime}, N\right) \longrightarrow \operatorname{ext}_{R}^{n}(K, N) \longrightarrow \operatorname{ext}_{R}^{n}\left(K^{\prime}, N\right) \longrightarrow \cdots
$$

Proof. Follows from Theorem 2.1.8 and Theorem 2.2.6.

Theorem 3.1.6. (1) Let M be a right R-module, let N be a left R-module. Then $\operatorname{Tor}_{n}^{R}(M, N) \cong \operatorname{tor}_{n}^{R}(M, N)$ for all $n \geq 0$.
(2) Let M and N be left R-modules. Then $E x t_{R}^{n}(M, N) \cong e x t_{R}^{n}(M, N)$ for all $n \geq 0$.

Proof. We only prove (1); the proof of the dual (2) is similar.
(1): The proof is by induction on $n \geq 0$. By Theorem 2.1.10, $\operatorname{Tor}_{0}^{R}(M,-) \approx$ $M \otimes_{R}-$ and $\operatorname{tor}_{0}^{R}(-, N) \approx-\otimes_{R} N$. Therefore

$$
\operatorname{Tor}_{0}^{R}(M, N) \cong M \otimes_{R} N \cong \operatorname{tor}_{0}^{R}(M, N)
$$

We now suppose that $n \geq 1$. Let

$$
\cdots \longrightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\varepsilon} M \longrightarrow 0
$$

be a projective resolution of M and

$$
\cdots \longrightarrow Q_{2} \xrightarrow{d_{2}^{\prime}} Q_{1} \xrightarrow{{d_{1}^{\prime}}^{\prime}} Q_{0} \xrightarrow{\varepsilon^{\prime}} N \longrightarrow 0
$$

be a projective resolution of N. Set

$$
\begin{aligned}
& K_{-1}=M, K_{0}=\operatorname{ker} \varepsilon, K_{i}=\operatorname{ker} d_{i}(i \geq 1) \\
& H_{-1}=N, H_{0}=\operatorname{ker} \varepsilon^{\prime}, H_{i}=\operatorname{ker} d_{i}^{\prime}(i \geq 1)
\end{aligned}
$$

Since tensor is a bifunctor the exact sequences

$$
\begin{gathered}
0 \longrightarrow K_{i} \longrightarrow P_{i} \stackrel{d_{i}}{\longrightarrow} K_{i-1} \longrightarrow 0 \\
0 \longrightarrow H_{j} \longrightarrow Q_{j} \xrightarrow{d_{j}^{\prime}} H_{j-1} \longrightarrow 0
\end{gathered}
$$

give a commutative diagram

where $X=\operatorname{tor}_{1}^{R}\left(K_{i-1}, H_{j}\right), Y=\operatorname{Tor}_{1}^{R}\left(K_{i}, H_{j-1}\right), W=\operatorname{tor}_{1}^{R}\left(K_{i-1}, H_{j-1}\right)$, and $Z=\operatorname{Tor}_{1}^{R}\left(K_{i-1}, H_{j-1}\right)$. By Exercise 1, we conclude, for all $i, j \geq 0$,

$$
\begin{aligned}
\operatorname{tor}_{1}^{R}\left(K_{i-1}, H_{j}\right) & \cong \operatorname{Tor}_{1}^{R}\left(K_{i}, H_{j-1}\right) \\
\operatorname{tor}_{1}^{R}\left(K_{i-1}, H_{j-1}\right) & \cong \operatorname{Tor}_{1}^{R}\left(K_{i-1}, H_{j-1}\right)
\end{aligned}
$$

Therefore the theorem has been proved for $n=1$. By Theorem 2.1.6, we have

$$
\begin{aligned}
& \operatorname{Tor}_{n+1}^{R}(M, N) \cong \operatorname{Tor}_{n}^{R}\left(M, H_{0}\right) \cong \ldots \cong \operatorname{Tor}_{1}^{R}\left(M, H_{n-1}\right)=\operatorname{Tor}_{1}^{R}\left(K_{-1}, H_{n-1}\right) \\
& \operatorname{tor}_{n+1}^{R}(M, N) \cong \operatorname{tor}_{n}^{R}\left(K_{0}, N\right) \cong \ldots \cong \operatorname{tor}_{1}^{R}\left(K_{n-1}, N\right)=\operatorname{tor}_{1}^{R}\left(K_{n-1}, H_{-1}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{Tor}_{n+1}^{R}(M, N) & \cong \operatorname{Tor}_{1}^{R}\left(K_{-1}, H_{n-1}\right) \\
\operatorname{tor}_{1}^{R}\left(K_{-1}, H_{n-1}\right) & \cong \operatorname{Tor}_{1}^{R}\left(K_{0}, H_{n-2}\right) \\
& \vdots \\
\operatorname{tor}_{1}^{R}\left(K_{n-2}, H_{0}\right) & \cong \operatorname{Tor}_{1}^{R}\left(K_{n-1}, H_{-1}\right), \\
\operatorname{tor}_{1}^{R}\left(K_{n-1}, H_{-1}\right) & \cong \operatorname{tor}_{n+1}^{R}(M, N)
\end{aligned}
$$

This completes the proof.

Remark 3.1.7. In view of the above theorem, we have
(1)

$$
\operatorname{Tor}_{n}^{R}(M, N) \cong H_{n}\left(\mathbf{P}_{\mathrm{M}} \otimes_{R} N\right) \cong H_{n}\left(M \otimes_{R} \mathbf{P}_{\mathrm{N}}\right)
$$

where $\mathbf{P}_{\mathbf{M}}$ is a deleted projective resolution of a right R-module M and $\mathbf{P}_{\mathbf{N}}$ is a deleted projective resolution of a left R-module N.
(2)

$$
\operatorname{Ext}_{R}^{n}(M, N) \cong H^{n}\left(\operatorname{Hom}\left(\mathbf{P}_{\mathbf{M}}, N\right)\right) \cong H^{n}\left(\operatorname{Hom}\left(M, \mathbf{E}_{\mathbf{N}}\right)\right)
$$

where $\mathbf{P}_{\mathbf{M}}$ is a deleted projective resolution of a left R-module M and $\mathbf{E}_{\mathbf{N}}$ is a deleted injective resolution of a left R-module N.

Theorem 3.1.8. Let R be a commutative ring and M, N be R-modules. Then
(1) $\operatorname{Tor}_{n}^{R}(M, N)$ is an R-module,
(2) $E x t_{R}^{n}(M, N)$ is an R-module.

Proof. We only prove (1); the proof of the dual (2) is similar.
(1): Since $\operatorname{Tor}_{0}^{R}(M, N) \cong M \otimes_{R} N$ is an R-module, we may assume that $n \geq 1$. Let $\cdots \longrightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\varepsilon} M \longrightarrow 0$ be a projective resolution of M. For any $n \geq 1, P_{n} \otimes_{R} N$ is an R-module. Also for $n \geq 1, x \in P_{n}, y \in N$ and $a \in R$,

$$
\begin{aligned}
\left(d_{n} \otimes 1\right)(a(x \otimes y)) & =\left(d_{n} \otimes 1\right)((a x) \otimes y)=d_{n}(a x) \otimes y=a d_{n}(x) \otimes y \\
& =a\left(d_{n}(x) \otimes y\right)=a\left(d_{n} \otimes 1\right)(x \otimes y)
\end{aligned}
$$

which proves that $d_{n} \otimes 1$ is an R-homomorphism. Therefore $\operatorname{ker}\left(d_{n} \otimes 1\right)$ and $\operatorname{im}\left(d_{n+1} \otimes 1\right)$ are R-submodule of $P_{n} \otimes_{R} N$ and hence

$$
\operatorname{Tor}_{n}^{R}(M, N) \cong \operatorname{ker}\left(d_{n} \otimes 1\right) / \operatorname{im}\left(d_{n+1} \otimes 1\right)
$$

is an R-module.

Theorem 3.1.9. (1) If R is a ring, M is a right R-module, and N is a left R-module, then

$$
\operatorname{Tor}_{n}^{R}(M, N) \cong \operatorname{Tor}_{n}^{R^{o p}}(N, M)
$$

for all $n \geq 0$, where $R^{o p}$ is the opposite ring of R.
(2) If R is a commutative ring and M and N are R-modules, then for all $n \geq 0$,

$$
\operatorname{Tor}_{n}^{R}(M, N) \cong \operatorname{Tor}_{n}^{R}(N, M)
$$

Proof. (1): Choose a deleted projective resolution $\mathbf{P}_{\mathbf{M}}$ of the right R-module M. Then $\mathbf{P}_{\mathbf{M}}$ is also a deleted projective resolution of the left $R^{o p}$-module M. Now the morphism $\alpha: \mathbf{P}_{\mathbf{M}} \otimes_{R} N \longrightarrow N \otimes_{R^{o p}} \mathbf{P}_{\mathbf{M}}$ given by

$$
\begin{aligned}
\alpha_{n}: P_{n} \otimes_{R} N & \longrightarrow N \otimes_{R^{o p}} P_{n} \\
x_{n} \otimes b & \longmapsto b \otimes x_{n}
\end{aligned}
$$

is an isomorphism of compelexes, because each α_{n} is an isomorphism of abelian groups (its inverse is $b \otimes x_{n} \longmapsto x_{n} \otimes b$). Since isomorphic complexes have the same homology,

$$
H_{n}\left(\mathbf{P}_{\mathbf{M}} \otimes_{R} N\right) \cong H_{n}\left(N \otimes_{R^{o p}} \mathbf{P}_{\mathbf{M}}\right)
$$

Hence $\operatorname{Tor}_{n}^{R}(M, N) \cong \operatorname{Tor}_{n}^{R^{o p}}(N, M)$ for all $n \geq 0$.
(2): This is obvious from part (1).

Theorem 3.1.10. Let R be a commutative ring and N an R-module, and $\left\{M_{i}\right\}$
a family of R-modules. Then
(1) $\operatorname{Tor}_{n}^{R}\left(\coprod_{i} M_{i}, N\right) \cong \coprod_{i} \operatorname{Tor}_{n}^{R}\left(M_{i}, N\right)$,
(2) $E x t_{R}^{n}\left(\coprod_{i} M_{i}, N\right) \cong \prod_{i} E x t_{R}^{n}\left(M_{i}, N\right)$,
(3) $\operatorname{Ext}_{R}^{n}\left(N, \prod_{i} M_{i}\right) \cong \prod_{i} \operatorname{Ext}_{R}^{n}\left(N, M_{i}\right)$,

Proof. We shall prove (1); the proofs of (2) and (3) are similar.
(1): We use induction on n. The case $n=0$ is Corollary 3.1.2. For each i, construct an exact sequence

$$
0 \longrightarrow K_{i} \longrightarrow P_{i} \longrightarrow M_{i} \longrightarrow 0,
$$

where P_{i} is projective. There is an exact sequence

$$
0 \longrightarrow \coprod_{i} K_{i} \longrightarrow \coprod_{i} P_{i} \longrightarrow \coprod_{i} M_{i} \longrightarrow 0
$$

in which $\coprod_{i} P_{i}$ being direct sum of projective modules is projective. There is a commutative diagram with exact rows:

$$
\begin{aligned}
& 0=\operatorname{Tor}_{1}^{R}\left(\coprod_{i} P_{i}, N\right) \rightarrow \operatorname{Tor}_{1}^{R}\left(\coprod_{i} M_{i}, N\right) \rightarrow\left(\coprod_{i} K_{i}\right) \otimes N \rightarrow\left(\coprod_{i} P_{i}\right) \otimes N \\
& \vdots \bullet g \\
& \vdots \\
& 0=\coprod_{i} \operatorname{Tor}_{1}^{R}\left(P_{i}, N\right) \rightarrow \coprod_{i} \operatorname{Tor}_{1}^{R}\left(M_{i}, N\right) \rightarrow \coprod_{i}\left(K_{i} \otimes N\right) \rightarrow \coprod_{i}\left(P_{i} \otimes N\right)
\end{aligned}
$$

Where the vertical arrows are the isomorphisms and the maps in the bottom row are the maps of Corollary 3.1.5 at each coordinate. Now $\operatorname{Tor}_{1}^{R}\left(\coprod_{i} P_{i}, N\right)=0=$ $\coprod_{i} \operatorname{Tor}_{1}^{R}\left(P_{i}, N\right)$, because $\coprod_{i} P_{i}$ and each P_{i} are projective; and so by Exercise 4, there exists an isomorphism $\operatorname{Tor}_{1}^{R}\left(\coprod_{i} M_{i}, N\right) \longrightarrow \coprod_{i} \operatorname{Tor}_{1}^{R}\left(M_{i}, N\right)$ making the augmented diagram commute. Thus the theorem is true for $n=1$. Suppose that $n>1$ and that $\operatorname{Tor}_{n}^{R}\left(\coprod_{i} L_{i}, N\right) \cong \coprod_{i} \operatorname{Tor}_{n}^{R}\left(L_{i}, N\right)$ for every family of R-modules $\left\{L_{i}\right\}$. Then by Corollary 3.1.4, we have

$$
\operatorname{Tor}_{n+1}^{R}\left(\coprod_{i} M_{i}, N\right) \cong \operatorname{Tor}_{n}^{R}\left(\coprod_{i} K_{i}, N\right) \cong \coprod_{i} \operatorname{Tor}_{n}^{R}\left(K_{i}, N\right) \cong \coprod_{i} \operatorname{Tor}_{n+1}^{R}\left(M_{i}, N\right)
$$

This completes induction.
Theorem 3.1.11. Let N be a left R-module, and $\left(M_{i}, f_{j i}\right)$ be a direct system of right R-modules. Then

$$
\operatorname{Tor}_{n}^{R}\left(\underset{\longrightarrow}{\lim } M_{i}, N\right) \cong \underline{\longrightarrow} \operatorname{Tor}_{n}^{R}\left(M_{i}, N\right)
$$

Proof. We use induction on n. The case $n=0$ is Corollary 3.1.2. For each i, construct an exact sequence

$$
0 \longrightarrow K_{i} \longrightarrow P_{i} \longrightarrow M_{i} \longrightarrow 0,
$$

where P_{i} is projective. There is an exact sequence

$$
0 \longrightarrow \xrightarrow[\longrightarrow]{\lim } K_{i} \longrightarrow \xrightarrow{\lim } P_{i} \longrightarrow M_{i} \longrightarrow 0
$$

Now $\underset{\longrightarrow}{\lim } P_{i}$ is flat, for every projective module is flat, and a direct limit of flat modules is flat. Therefore Exercise 2 implies that

$$
\operatorname{Tor}_{1}^{R}\left(\underset{\longrightarrow}{\lim P_{i}}, N\right)=0=\underset{\longrightarrow}{\lim \operatorname{Tor}_{1}^{R}}\left(P_{i}, N\right) .
$$

So, there is a commutative diagram with exact rows

where the vertical arrows are the isomorphisms and the maps in the bottom row are the maps of Corollary 3.1.5 at each coordinate. By Exercise 4, there exists an isomorphism $\operatorname{Tor}_{1}^{R}\left(\xrightarrow{\lim } M_{i}, N\right) \xrightarrow{h} \xrightarrow{\lim } \operatorname{Tor}_{1}^{R}\left(M_{i}, N\right)$ making the augmented diagram commute. Thus the theorem is true for $n=1$. Suppose that $n>1$ and that $\operatorname{Tor}_{n}^{R}\left(\underset{\longrightarrow}{\lim } L_{i}, N\right) \cong \underline{\varliminf} \operatorname{Tor}_{n}^{R}\left(L_{i}, N\right)$ for every family of R-modules $\left\{L_{i}\right\}$. Then by Corollary 3.1.4, we have
$\operatorname{Tor}_{n+1}^{R}\left(\underset{\longrightarrow}{\lim } M_{i}, N\right) \cong \operatorname{Tor}_{n}^{R}\left(\underline{(\lim } K_{i}, N\right) \cong \underset{\longrightarrow}{\lim } \operatorname{Tor}_{n}^{R}\left(K_{i}, N\right) \cong \underline{\lim _{n+1}} \operatorname{Tor}_{n+1}^{R}\left(M_{i}, N\right)$.
This completes induction.

3.2 Natural Isomorphisms

Various natural isomorphisms involving tensor and Hom can be extended to isomorphisms involving Tor and Ext.

Theorem 3.2.1. Let R and S be commutative rings, and let $\varphi: R \longrightarrow S$ be a homomorphism. Let M be a finitely generated free R-module. If N is an R-module, then

$$
\operatorname{Hom}_{R}(M, N) \otimes_{R} S \cong \operatorname{Hom}_{S}\left(M \otimes_{R} S, N \otimes_{R} S\right)
$$

Proof. Exercise.

Theorem 3.2.2. Let R and S be commutative rings.
(1) (Adjoint Isomorphism) Consider the situation $\left(L_{R},{ }_{R} M_{S}, N_{S}\right)$. Then there is a natural isomorphism

$$
\varphi: \operatorname{Hom}_{S}\left(M \otimes_{R} L, N\right) \longrightarrow \operatorname{Hom}_{R}\left(L, \operatorname{Hom}_{S}(M, N)\right)
$$

defined for each $f: M \otimes_{R} L \longrightarrow N$ by $(\varphi(f) l)(m)=f(m \otimes l)$.
(2) Consider the situation $\left({ }_{R} L,{ }_{R} M_{S}, N_{S}\right)$. If L is a finitely generated free R-module, then there is a natural isomorphism

$$
\varphi: \operatorname{Hom}_{S}(M, N) \otimes_{R} L \longrightarrow \operatorname{Hom}_{S}\left(\operatorname{Hom}_{R}(L, M), N\right),
$$

defined by $\varphi(f \otimes l)(g)=f(g(l))$.
(3) (Associativity) Consider the situation $\left(L_{R},{ }_{R} M_{S},{ }_{S} N\right)$. Then there is a natural isomorphism

$$
L \otimes_{R}\left(M \otimes_{S} N\right) \longrightarrow\left(L \otimes_{R} M\right) \otimes_{S} N
$$

defined by $l \otimes(m \otimes n) \longrightarrow(l \otimes m) \otimes n$.
(4) Consider the situation $\left({ }_{R} L,{ }_{R} M_{S}, N_{S}\right)$. If L is a finitely generated free R-module, then there is a natural isomorphism

$$
\varphi: \operatorname{Hom}_{R}(L, M) \otimes_{S} N \longrightarrow \operatorname{Hom}_{R}\left(L, M \otimes_{S} N\right)
$$

defined by $\varphi(f \otimes n)(l)=f(l) \otimes n$.

Proof. Exercise.

Theorem 3.2.3. Let R and S be commutative rings, and let $\varphi: R \longrightarrow S$ be a flat homomorphism. If M is an R-module and N is an S-module, then

$$
\operatorname{Tor}_{n}^{R}(M, N) \cong \operatorname{Tor}_{n}^{S}\left(M \otimes_{R} S, N\right)
$$

Proof. Since $\mathbf{P}_{\mathbf{M}} \otimes_{R} S$ is a deleted projective resolution for $M \otimes_{R} S$, Theorem 3.2.2(3), implies that

$$
\begin{aligned}
\operatorname{Tor}_{n}^{R}(M, N) & \cong H_{n}\left(\mathbf{P}_{\mathbf{M}} \otimes_{R} S\right) \cong H_{n}\left(\mathbf{P}_{\mathbf{M}} \otimes_{R}\left(S \otimes_{S} N\right)\right) \\
& \cong H_{n}\left(\left(\mathbf{P}_{\mathbf{M}} \otimes_{R} S\right) \otimes_{S} N\right) \cong \operatorname{Tor}_{n}^{S}\left(M \otimes_{R} S, N\right)
\end{aligned}
$$

This completes the proof.
Theorem 3.2.4. Let R and S be commutative rings, and let $\varphi: R \longrightarrow S$ be a flat homomorphism. If M and N are R-modules, then

$$
S \otimes_{R} \operatorname{Tor}_{n}^{R}(M, N) \cong \operatorname{Tor}_{n}^{S}\left(M \otimes_{R} S, N \otimes_{R} S\right)
$$

Proof. By the above theorem, we have

$$
\begin{aligned}
S \otimes_{R} \operatorname{Tor}_{n}^{R}(M, N) & \cong S \otimes_{R} H_{n}\left(\mathbf{P}_{\mathbf{M}} \otimes_{R} N\right) \cong H_{n}\left(\left(\mathbf{P}_{\mathbf{M}} \otimes_{R} N\right) \otimes_{R} S\right) \\
& \cong H_{n}\left(\mathbf{P}_{\mathbf{M}} \otimes_{R}\left(N \otimes_{R} S\right)\right) \cong \operatorname{Tor}_{n}^{R}\left(M, N \otimes_{R} S\right) \\
& \cong \operatorname{Tor}_{n}^{S}\left(M \otimes_{R} S, N \otimes_{R} S\right)
\end{aligned}
$$

This completes the proof.
Theorem 3.2.5. Let R be a Noetherian ring and S be commutative rings and let let $\varphi: R \longrightarrow S$ be a flat homomorphism. If M is a finitely generated R-module and N is a R-module, then

$$
S \otimes_{R} E x t_{R}^{n}(M, N) \cong \operatorname{Ext}_{S}^{n}\left(S \otimes_{R} M, S \otimes_{R} N\right)
$$

Proof. By Theorem 3.2.2, we have

$$
\begin{aligned}
S \otimes_{R} \operatorname{Ext}_{R}^{n}(M, N) & \cong S \otimes_{R} H^{n}\left(\operatorname{Hom}\left(\mathbf{P}_{\mathbf{M}}, N\right)\right) \cong H^{n}\left(S \otimes_{R}\left(\operatorname{Hom}_{R}\left(\mathbf{P}_{\mathbf{M}}, N\right)\right)\right) \\
& \cong H^{n}\left(\operatorname{Hom}_{S}\left(S \otimes_{R} \mathbf{P}_{\mathbf{M}}, S \otimes_{R} N\right)\right) \\
& \cong \operatorname{Ext}_{S}^{n}\left(S \otimes_{R} M, S \otimes_{R} N\right)
\end{aligned}
$$

This completes the proof.

Theorem 3.2.6. Let R and S be commutative rings.
(1): Consider the situation $\left(L_{R},{ }_{R} M_{S}, E_{S}\right)$. If E is injective, then

$$
\operatorname{Ext}_{R}^{n}\left(L, \operatorname{Hom}_{S}(M, E)\right) \cong \operatorname{Hom}_{S}\left(\operatorname{Tor}_{n}^{R}(L, M), E\right)
$$

(2): Let R be a Noetherian ring. Consider the situation $\left(L_{R},{ }_{R} M_{S}, E_{S}\right)$. If L is finitely generated and E is injective, then

$$
\operatorname{Hom}_{S}\left(\operatorname{Ext}_{R}^{n}(L, M), E\right) \cong \operatorname{Tor}_{n}^{R}\left(\operatorname{Hom}_{S}(M, E), L\right)
$$

(3): Consider the situation $\left(L_{R},{ }_{R} M_{S}, F_{S}\right)$. If F is flat, then

$$
\operatorname{Tor}_{n}^{R}\left(L, M \otimes_{S} F\right) \cong \operatorname{Tor}_{n}^{R}(L, M) \otimes_{S} F
$$

(4): Let R be a Noetherian ring. Consider the situation $\left(L_{R},{ }_{R} M_{S}, F_{S}\right)$. If L is finitely generated and F is flat, then

$$
\operatorname{Ext}_{R}^{n}(L, M) \otimes_{S} F \cong E x t_{R}^{n}\left(L, M \otimes_{S} F\right)
$$

Proof. (1): It follows from Theorem 3.2.2(1) that

$$
\begin{aligned}
\operatorname{Ext}_{R}^{n}\left(L, \operatorname{Hom}_{S}(M, E)\right) & \cong H^{n} \operatorname{Hom}_{R}\left(\mathbf{P}_{\mathbf{L}}, \operatorname{Hom}_{S}(M, E)\right) \\
& \cong H^{n} \operatorname{Hom}_{S}\left(\mathbf{P}_{\mathbf{L}} \otimes_{R} M, E\right) \\
& \cong \operatorname{Hom}_{S}\left(H_{n}\left(\mathbf{P}_{\mathbf{L}} \otimes_{R} M\right), E\right) \\
& \cong \operatorname{Hom}_{S}\left(\operatorname{Tor}_{n}^{R}(L, M), E\right)
\end{aligned}
$$

(2): Since L is finitely generated and R is Noetherian, there exists a free resolution

$$
\mathbf{F}: \quad \ldots \longrightarrow F_{n} \longrightarrow F_{n-1} \longrightarrow \ldots \longrightarrow F_{0} \longrightarrow L \longrightarrow 0
$$

in which every F_{n} is a finitely generated free R-module. It follows from Theorem 3.2.2(2) that

$$
\begin{aligned}
\left.\operatorname{Hom}_{S}\left(\operatorname{Ext}_{R}^{n}(L, M), E\right)\right) & \cong \operatorname{Hom}_{S}\left(H^{n} \operatorname{Hom}_{R}\left(\mathbf{F}_{\mathbf{L}}, M\right), E\right) \\
& \cong H_{n}\left(\operatorname{Hom}_{S}\left(\operatorname{Hom}_{R}\left(\mathbf{F}_{\mathbf{L}}, M\right), E\right)\right) \\
& \cong H_{n}\left(\operatorname{Hom}_{S}(M, E) \otimes_{R} \mathbf{F}_{\mathbf{L}}\right) \\
& \cong \operatorname{Tor}_{n}^{R}\left(\operatorname{Hom}_{S}(M, E), L\right)
\end{aligned}
$$

(3): It follows from Theorem 3.2.2(3) that

$$
\begin{aligned}
\operatorname{Tor}_{n}^{R}\left(L, M \otimes_{S} F\right) & \cong H_{n}\left(\mathbf{P}_{\mathbf{L}} \otimes_{R}\left(M \otimes_{S} F\right)\right) \\
& \cong H_{n}\left(\left(\mathbf{P}_{\mathbf{L}} \otimes_{R} M\right) \otimes_{S} F\right) \\
& \cong H_{n}\left(\mathbf{P}_{\mathbf{L}} \otimes_{R} M\right) \otimes_{S} F \\
& \cong \operatorname{Tor}_{n}^{R}(L, M) \otimes_{S} F
\end{aligned}
$$

(4): Since L is finitely generated and R is Noetherian, there exists a free resolution

$$
\mathbf{F}: \quad \ldots \longrightarrow F_{n} \longrightarrow F_{n-1} \longrightarrow \ldots \longrightarrow F_{0} \longrightarrow L \longrightarrow 0
$$

in which every F_{n} is a finitely generated free R-module. It follows from Theorem 3.2.2(4) that

$$
\begin{aligned}
\operatorname{Ext}_{R}^{n}(L, M) \otimes_{S} F & \cong H^{n}\left(\operatorname{Hom}\left(\mathbf{F}_{\mathbf{L}}, M\right)\right) \otimes_{S} F \\
& \cong H^{n}\left(\operatorname{Hom}\left(\mathbf{F}_{\mathbf{L}}, M\right) \otimes_{S} F\right) \\
& \cong H^{n}\left(\operatorname{Hom}\left(\mathbf{F}_{\mathbf{L}}, M \otimes_{S} F\right)\right) \\
& \cong \operatorname{Ext}_{R}^{n}\left(L, M \otimes_{S} F\right)
\end{aligned}
$$

3.3 Tor and Torsion

In this section, R denotes an integral domain, Q denotes its quotient field, denotes the module $K=Q / R$.

Definition 3.3.1. The torsion submodule $T(M)$ of an R-module M is defined by

$$
T(M)=\{x \in M \mid r x=0 \text { for some nonzero } r \in R\} .
$$

M is called torsion if $T(M)=M$ and M is called torsion-free if $T(M)=0$.

It is easy to check that $M / T(M)$ is torsion-free and $T(M)$ is torsion.

Remark 3.3.2. Were R not an integral domain, then $T(M)$ might not be a submodule.

The torsion submodule actually defines a functor: if $f: M \longrightarrow N$, define $T(f)=\left.f\right|_{T(M)}$.

Proposition 3.3.3. If R is an integral domain with quotient field Q, then every torsion-free R-module M can be embedded in a vector space over Q. If M is a finitely generated torsion-free R-module, then M can be embedded in a finitely generated free R-module.

Proof. Left to the reader as an exercise, or can be found in Rotman's book.
Lemma 3.3.4. (1) For every R-module M, we have $\operatorname{Tor}_{1}^{R}(K, T(M)) \cong T(M)$.
(2) For every R-module M, we have $\operatorname{Tor}_{n}^{R}(K, M)=0$ for all $n \geq 2$.
(3) If M is a torsion-free R-module, then $\operatorname{Tor}_{1}^{R}(K, M)=0$.

Proof. (1) Exactness of $0 \longrightarrow R \longrightarrow Q \longrightarrow K \longrightarrow 0$ gives exactness of

$$
\operatorname{Tor}_{1}^{R}(Q, T(M)) \longrightarrow \operatorname{Tor}_{1}^{R}(K, T(M)) \longrightarrow R \otimes_{R} T(M) \longrightarrow Q \otimes_{R} T(M)
$$

$\operatorname{Tor}_{1}^{R}(Q, T(M))=0$ since Q is a flat R-module, and $Q \otimes_{R} T(M)=0$ because $T(M)$ is torsion. It follows that $\operatorname{Tor}_{1}^{R}(K, T(M)) \cong R \otimes_{R} T(M) \cong T(M)$.
(2) The sequence

$$
\operatorname{Tor}_{n}^{R}(Q, M) \longrightarrow \operatorname{Tor}_{n}^{R}(K, M) \longrightarrow \operatorname{Tor}_{n-1}^{R}(R, M)
$$

is exact. Since $n \geq 2$, we have $n-1 \geq 1$ and so the outside terms are, because Q and R are flat. Thus, exactness gives $\operatorname{Tor}_{n}^{R}(K, M)=0$.
(3) By Proposition 3.3.3 there is a vector space V over Q containing M as a submodule. Since every vector space has a basis, V is a direct sum of copies of Q. We conclude that V is a flat R-module. Exactness of $0 \longrightarrow M \longrightarrow V \longrightarrow$ $V / M \longrightarrow 0$ gives exactness of

$$
\operatorname{Tor}_{2}^{R}(K, V / M) \longrightarrow \operatorname{Tor}_{1}^{R}(K, M) \longrightarrow \operatorname{Tor}_{1}^{R}(K, V)
$$

Now $\operatorname{Tor}_{2}^{R}(K, V / M)=0$, by part (2), and $\operatorname{Tor}_{1}^{R}(K, V)=0$, because V is flat. We conclude from exactness that $\operatorname{Tor}_{1}^{R}(K, M)=0$.

The reason for the name Tor is:

Theorem 3.3.5. $\operatorname{Tor}_{1}^{R}(K, M) \cong T(M)$ for all R-modules M.

Proof. Exactness of $0 \longrightarrow T(M) \longrightarrow M \longrightarrow M / T(M) \longrightarrow 0$ gives exactness of
$\operatorname{Tor}_{2}^{R}(K, M / T(M)) \longrightarrow \operatorname{Tor}_{1}^{R}(K, T(M)) \longrightarrow \operatorname{Tor}_{1}^{R}(K, M) \longrightarrow \operatorname{Tor}_{1}^{R}(K, M / T(M))$.

The first term is 0 by Lemma 3.3.4 (2); the last term is 0 by Lemma 3.3.4 (3). It follows that $\operatorname{Tor}_{1}^{R}(K, M) \cong \operatorname{Tor}_{1}^{R}(K, T(M)) \cong T(M)$.

As an immediate consequence of Theorem 3.3.5, we have the following

Corollary 3.3.6. (1) For every module A, there is an exact sequence

$$
0 \longrightarrow T(M) \longrightarrow M \longrightarrow Q \otimes_{R} M \longrightarrow K \otimes_{R} M \longrightarrow 0
$$

(2) A module M is torsion if and only if $Q \otimes_{R} M=0$.

Exercises

1. Consider the commutative diagram with exact rows and columns

Prove that $X \cong Y$ and $W \cong Z$.
2. If a right R-module F is flat, prove that $\operatorname{Tor}_{1}^{R}(F, N)=0$ for all $n \geq 1$ and every left R-module N. Conversely, if $\operatorname{Tor}_{1}^{R}(F, N)=0$ for every left R-module N, prove that F is flat.

The following exercise shows that we may use flat resolutions, not merely projective resolutions, to compute Tor.
3. Let $\mathbf{F}_{\mathbf{M}}$ be a deleted flat resolution of a right R-module M and $\mathbf{F}_{\mathbf{N}}$ a deleted flat resolution of a left R-module N. If $n \geq 0$, prove that

$$
H_{n}\left(\mathbf{F}_{\mathbf{M}} \otimes_{R} N\right) \cong \operatorname{Tor}_{n}^{R}(M, N) \cong H_{n}\left(M \otimes_{R} \mathbf{F}_{\mathbf{N}}\right)
$$

4. Given a commutative diagram with exact rows,

there exists a unique map $h: L \longrightarrow L^{\prime}$ making the augmented diagram commute. Moreover, h is an isomorphism if f and g are isomorphisms.
5. Compute $\operatorname{Tor}_{n}^{\mathbb{Z}_{8}}\left(\mathbb{Z}_{4}, \mathbb{Z}_{4}\right)$.
6. If I is a right ideal in a ring R and J a left ideal, then
(1) $\operatorname{Tor}_{1}^{R}(R / I, R / J) \cong(I \cap J) / I J$,
(2) $\operatorname{Tor}_{n}^{R}(R / I, R / J) \cong \operatorname{Tor}_{n-2}^{R}(I, J)$ for all $n>2$,
(3) $\operatorname{Tor}_{2}^{R}(R / I, R / J) \cong \operatorname{ker}(I \otimes J \longmapsto I J)$.
7. Let M be an R-module and $a \in R$. Show that

$$
\operatorname{Tor}_{1}^{R}(R /(a), M) \cong_{R /(a)}\{x \in M \mid a x=0\} .
$$

8. Let R be an integral domain with quotient field Q, and let $K=Q / R$.

Show that

$$
\operatorname{Tor}_{1}^{R}(K,-) \approx T(-)
$$

9. (Axioms for Tor). Let $\left\{T_{n}:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{\mathbb{Z}} \operatorname{Mod}\right\}_{n \geq 0}$ be a sequence of additive covariant functors. If,
(1) for every short exact sequence $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ of left R-modules, there is a long exact sequence with natural connecting homomorphisms

$$
\longrightarrow T_{n+1}(C) \xrightarrow{\partial_{n+1}} T_{n}(A) \longrightarrow T_{n}(B) \longrightarrow T_{n}(C) \xrightarrow{\partial_{n}} T_{n-1}(A) \longrightarrow,
$$

(2) $T_{0}(-)$ is naturally isomorphic to $M \otimes_{R}(-)$ for some right R-module $M,(3) T_{n}(P)=0$ for all projective left R-modules P and all $n \geq 1$, show that $T_{n}(-)$ is naturally isomorphic to $\operatorname{Tor}_{n}^{R}(M,-)$ for all $n \geq 0$.
10. (Axioms for Covariant Ext). Let $\left\{F^{n}:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{\mathbb{Z}} \operatorname{Mod}\right\}_{n \geq 0}$ be a sequence of additive covariant functors. If,
(1) for every short exact sequence $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ of left
R-modules, there is a long exact sequence with natural connecting homomorphisms

$$
\longrightarrow F^{n-1}(C) \xrightarrow{\partial_{n-1}} F^{n}(A) \longrightarrow F^{n}(B) \longrightarrow F^{n}(C) \xrightarrow{\partial_{n}} F^{n-1}(A) \longrightarrow,
$$

(2) there is a left R-module M such that $F^{0}(-)$ is naturally isomorphic to $\operatorname{Hom}_{R}(M,-)$,
(3) $F^{n}(E)=0$ for all injective left R-modules E and all $n \geq 1$,
show that $F^{n}(-)$ is naturally isomorphic to $\operatorname{Ext}_{R}^{n}(M,-)$ for all $n \geq 0$.
11. (Axioms for Contravariant Ext). Let $\left\{G^{n}:{ }_{R} \operatorname{Mod} \longrightarrow \mathbb{Z}^{\operatorname{Mod}}\right\}_{n \geq 0}$ be a sequence of additive covariant functors. If,
(1) for every short exact sequence $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ of left R-modules, there is a long exact sequence with natural connecting homomorphisms

$$
\longrightarrow G^{n-1}(C) \xrightarrow{\partial_{n-1}} G^{n}(A) \longrightarrow F^{n}(B) \longrightarrow F^{n}(C) \xrightarrow{\partial_{n}} G^{n-1}(A) \longrightarrow,
$$

(2) there is a left R-module M such that $G^{0}(-)$ is naturally isomorphic to $\operatorname{Hom}_{R}(-, M)$,
(3) $G^{n}(P)=0$ for all projective left R-modules P and all $n \geq 1$, show that $G^{n}(-)$ is naturally isomorphic to $\operatorname{Ext}_{R}^{n}(-, M)$ for all $n \geq 0$.

Chapter 4

DIMENSIONS

4.1 Homological Dimensions

Definition 4.1.1. A projective resolution

$$
0 \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0
$$

of the R-module M is said to be of length n. The projective dimension of R-module M is denoted by $\operatorname{pd}_{R} M$ and is defined by

$$
\operatorname{pd}_{R} M=\min \{n \mid M \text { has a projective resolusion of length } n\}
$$

If M has no finite projective resolution, we set $\mathrm{pd}_{R} M=\infty$.
Definition 4.1.2. An injective resolution

$$
0 \longrightarrow M \longrightarrow E^{0} \longrightarrow \cdots \longrightarrow E^{n-1} \longrightarrow E^{n} \longrightarrow 0
$$

of the R-module M is said to be of length n. The injective dimension of R-module M is denoted by $\operatorname{id}_{R} M$ and is defined by

$$
\operatorname{id}_{R} M=\min \{n \mid M \text { has an injective resolusion of length } n\} .
$$

If M has no finite injective resolution, we set $\operatorname{id}_{R} M=\infty$.

Definition 4.1.3. A flat resolution

$$
0 \longrightarrow F_{n} \longrightarrow F_{n-1} \longrightarrow \cdots \longrightarrow F_{0} \longrightarrow M \longrightarrow 0
$$

of the R-module M is said to be of length n. The flat dimension of R-module M is denoted by $\mathrm{fd}_{R} M$ and is defined by

$$
\operatorname{fd}_{R} M=\min \{n \mid M \text { has a flat resolusion of length } n\} .
$$

If M has no finite flat resolution, we set $\mathrm{fd}_{R} M=\infty$.

Example 4.1.4. (1) $\operatorname{pd}(M)=0$ if and only if M is projective,
(2) $\operatorname{id}(M)=0$ if and only if M is injective,
(3) $\operatorname{fd}(M)=0$ if and only if M is flat.

Theorem 4.1.5. The following are equivalent for a left R-module P :
(1) P is projective,
(2) $\operatorname{Ext}_{R}^{n}(P, N)=0$ for all modules N and all $n \geq 1$,
(3) $\operatorname{Ext}_{R}^{1}(P, N)=0$ for all modules N.

Proof. $(1) \Longrightarrow(2)$: Follows from Corollary 3.1.3(2).
$(2) \Longrightarrow(3)$: Trivial.
$(3) \Longrightarrow(1):$ Let $0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$ be a short exact sequence of R-modules. Then by Corollary 3.1.5(3), we have the following long exact sequence

$$
0 \longrightarrow \operatorname{Hom}(P, L) \longrightarrow \operatorname{Hom}(P, M) \longrightarrow \operatorname{Hom}(P, N) \longrightarrow \underbrace{\operatorname{Ext}_{R}^{1}(P, L)}_{0} \longrightarrow \cdots
$$

Therefore P is projective.
Lemma 4.1.6. A left R-module E is injective if and only if $E x t_{R}^{1}(R / I, E)=0$ for all left ideals I.

Proof. Use Baer criterion.

As an immediate consequence of the above lemma, we have the following

Theorem 4.1.7. The following are equivalent for a left R-module E :
(1) E is injective,
(2) $\operatorname{Ext}_{R}^{n}(M, E)=0$ for all modules M and all $n \geq 1$,
(3) $E x t_{R}^{1}(M, E)=0$ for all modules M,
(4) $\operatorname{Ext}_{R}^{1}(R / I, E)=0$ for all left ideals I.

Lemma 4.1.8. A left R-module F is flat if and only if $\operatorname{Tor}_{1}^{R}(R / I, F)=0$ for every finitely generated right ideal I.

Proof. Exercise.

As an immediate consequence of the above lemma, we have the following

Theorem 4.1.9. The following are equivalent for a left R-module P :
(1) F is flat,
(2) $\operatorname{Tor}_{n}^{R}(M, F)=0$ for all modules M and all $n \geq 1$,
(3) $\operatorname{Tor}_{1}^{R}(M, F)=0$ for all modules M,
(4) $\operatorname{Tor}_{1}^{R}(R / I, F)=0$ for all finitely generated right ideals I.

The next theorems generalize the above theorems.

Theorem 4.1.10. (Projective Dimension Theorem) For a left R-module M, the following conditions are equivalent:
(1) $\operatorname{pd}_{R} M \leq n$,
(2) $E x t_{R}^{k}(M, N)=0$ for all modules N and all $k \geq n+1$,
(3) $E x t_{R}^{n+1}(M, N)=0$ for all modules N,
(4) If $0 \longrightarrow K_{n-1} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0$ is an exact sequence of R-modules, where P_{i} is projective, then K_{n-1} is projective.

Proof. (1) $\Longrightarrow(2)$: There is a projective resolution of M with $P_{k}=0$ for all $k \geq n+1$. Therefore $\operatorname{Hom}\left(P_{k}, N\right)=0$ for all $k \geq n+1$, and so $\operatorname{Ext}_{R}^{k}(M, N)=0$ for all $k \geq n+1$.
$(2) \Longrightarrow(3)$: Trivial.
$(3) \Longrightarrow(4):$ We have $0=\operatorname{Ext}_{R}^{n+1}(M, N) \cong \operatorname{Ext}_{R}^{1}\left(K_{n-1}, N\right)$ for all modules N. Then K_{n-1} is projective by Theorem 4.1.5.
$(4) \Longrightarrow(1):$ Let

$$
\cdots \longrightarrow P_{n} \xrightarrow{d_{n}} P_{n-1} \xrightarrow{d_{n-1}} P_{n-2} \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0
$$

be a projective resolution for M. If $K_{n-1}=\operatorname{ker} d_{n-1}$, then by hypothesis the sequence

$$
0 \longrightarrow K_{n-1} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0
$$

is a projective resolution of M and hence $\operatorname{pd}_{R} M \leq n$.
We next state without proof results for injective and flat dimensions of modules corresponding to the results obtained for projective dimensions.

Theorem 4.1.11. (Injective Dimension Theorem) For a left R-module N, the following conditions are equivalent:
(1) $\operatorname{id}_{R} N \leq n$,
(2) $E x t_{R}^{k}(M, N)=0$ for all modules M and all $k \geq n+1$,
(3) $E x t_{R}^{n+1}(M, N)=0$ for all modules M,
(4) $\operatorname{Ext}_{R}^{n+1}(R / I, N)=0$ for all left ideals I,
(5) If $0 \longrightarrow N \longrightarrow E^{0} \longrightarrow \cdots \longrightarrow E^{n-1} \longrightarrow V^{n-1} \longrightarrow 0$ is an exact sequence of R-modules, where E^{i} is injective, then V^{n-1} is injective.

Theorem 4.1.12. (Flat Dimension Theorem) For a left R-module N, the following conditions are equivalent:
(1) $\operatorname{fd}_{R} N \leq n$,
(2) $\operatorname{Tor}_{k}^{R}(M, N)=0$ for all modules M and all $k \geq n+1$,
(3) $\operatorname{Tor}_{n+1}^{R}(M, N)=0$ for all modules M,
(4) $\operatorname{Tor}_{n+1}^{R}(R / I, N)=0$ for all finitely generated right ideals I,
(5) If $0 \longrightarrow Y_{n-1} \longrightarrow F_{n-1} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow N \longrightarrow 0$ is an exact sequence of R-modules, where F_{i} is flat, then Y_{n-1} is flat.

Theorem 4.1.13. (1) Let M be an (R, S)-bimodule and E be an injective S module. Then

$$
\operatorname{id}_{R} \operatorname{Hom}_{S}(M, E) \leq \operatorname{fd}_{R} M
$$

In particular, if M is a flat R-module, then $\operatorname{Hom}_{S}(M, E)$ is an injective R module.
(2) Let R be a Noetherian ring. Let M be an (R, S)-bimodule and E be an injective S-module. Then

$$
\operatorname{fd}_{R} \operatorname{Hom}_{S}(M, E) \leq \operatorname{id}_{R} M .
$$

In particular, if M is an injective R-module, then $\operatorname{Hom}_{S}(M, E)$ is a flat R module.
(3) Let M be an (R, S)-bimodule and F be a flat S-module. Then

$$
\mathrm{fd}_{R}\left(M \otimes_{S} F\right) \leq \mathrm{fd}_{R} M
$$

In particular, if M is a flat R-module, then $M \otimes_{S} F$ is a flat R-module.
(4) Let R be a Noetherian ring. Let M be an (R, S)-bimodule and F be a flat S-module. Then

$$
\operatorname{id}_{R}\left(M \otimes_{S} F\right) \leq \operatorname{id}_{R} M
$$

In particular, if M is an injective R-module, then $M \otimes_{S} F$ is an injective R module.

Proof. (1): Let $n \in \mathbb{N}$. If $n \leq \operatorname{id}_{R} \operatorname{Hom}_{S}(M, E)$, then there exists an R-module L such that $\operatorname{Ext}_{R}^{n}\left(L, \operatorname{Hom}_{S}(M, E)\right) \neq 0$. Therefore $\operatorname{Hom}_{S}\left(\operatorname{Tor}_{n}^{R}(L, M), E\right) \neq 0$, by Theorem 3.2.6 (1) and hence $\operatorname{Tor}_{n}^{R}(L, M) \neq 0$. It follows that $n \leq \mathrm{fd}_{R} M$.
(2): Let $n \in \mathbb{N}$. If $n \leq \mathrm{fd}_{R} \operatorname{Hom}_{S}(M, E)$, then there exists a finitely generated R-module L such that $\operatorname{Tor}_{n}^{R}\left(L, \operatorname{Hom}_{S}(M, E)\right) \neq 0$. Therefore $\operatorname{Hom}_{S}\left(\operatorname{Ext}_{R}^{n}(L, M), E\right) \neq$ 0 , by Theorem 3.2.6(2) and hence $\operatorname{Ext}_{R}^{n}(L, M) \neq 0$. It follows that $n \leq \operatorname{id}_{R} M$.
(3): Let $n \in \mathbb{N}$. If $n \leq \operatorname{fd}_{R}\left(M \otimes_{S} F\right)$, then there exists an R-module L such that $\operatorname{Tor}_{n}^{R}\left(L, M \otimes_{S} F\right) \neq 0$. Therefore $\operatorname{Tor}_{n}^{R}(L, M) \neq 0$, by Theorem 3.2.6(3). It follows that $n \leq \mathrm{fd}_{R} M$.
(4): Let $n \in \mathbb{N}$. If $n \leq \operatorname{id}_{R}\left(M \otimes_{S} F\right)$, then there exists a finitely generated R-module L such that $\operatorname{Ext}_{R}^{n}(L, M) \otimes_{S} F \neq 0$. $\operatorname{Therefore~}^{\operatorname{Ext}}{ }_{R}^{n}(L, M) \neq 0$, by Theorem 3.2.6(4). It follows that $n \leq \operatorname{id}_{R} M$.

Corollary 4.1.14. (1) Let M be an (R, S)-bimodule and E be a faithfully injective S-module. Then

$$
\operatorname{id}_{R} \operatorname{Hom}_{S}(M, E)=\operatorname{fd}_{R} M
$$

(2) Let R be a Noetherian ring. Let M be an (R, S)-bimodule and E be a faithfully injective S-module. Then

$$
\mathrm{fd}_{R} \operatorname{Hom}_{S}(M, E)=\operatorname{id}_{R} M
$$

(3) Let M be an (R, S)-bimodule and F be a faithfully flat S-module. Then

$$
\mathrm{fd}_{R}\left(M \otimes_{S} F\right)=\mathrm{fd}_{R} M
$$

(4) Let R be a Noetherian ring. Let M be an (R, S)-bimodule and F be a faithfully flat S-module. Then

$$
\operatorname{id}_{R}\left(M \otimes_{S} F\right)=\operatorname{id}_{R} M
$$

Proof. (1): Let $n \in \mathbb{N}$. If $n \leq \operatorname{fd}_{R} M$, then there exists an R-module L such that $\operatorname{Tor}_{n}^{R}(L, M) \neq 0$. Since E is a faithfully injective R-module, $\operatorname{Hom}_{S}\left(\operatorname{Tor}_{n}^{R}(L, M), E\right) \neq$ 0 and hence $\operatorname{Ext}_{R}^{n}\left(L, \operatorname{Hom}_{S}(M, E)\right) \neq 0$, by Theorem 3.2.6(1). It follows that $n \leq \operatorname{id}_{R} \operatorname{Hom}_{S}(M, E)$.
(2): Let $n \in \mathbb{N}$. If $n \leq \operatorname{id}_{R} M$, then, by Theorem 4.1.11, there exists a finitely generated (cyclic) R-module L such that $\operatorname{Ext}_{R}^{n}(L, M) \neq 0$. Since E is a faithfully injective S-module, $\operatorname{Hom}_{S}\left(\operatorname{Ext}_{R}^{n}(L, M), E\right) \neq 0$ and hence $\operatorname{Tor}_{n}^{R}\left(L, \operatorname{Hom}_{S}(M, E)\right) \neq 0$, by Theorem 3.2.6(2). It follows that $n \leq \mathrm{fd}_{R} \operatorname{Hom}_{S}(M, E)$.
(3): Let $n \in \mathbb{N}$. If $n \leq \operatorname{fd}_{R} M$, then there exists an R-module L such that $\operatorname{Tor}_{n}^{R}(L, M) \neq 0$. Since F is a faithfully flat S-module, $\operatorname{Tor}_{n}^{R}(L, M) \otimes_{S} F \neq 0$ and hence $\operatorname{Tor}_{n}^{R}\left(L, M \otimes_{S} F\right) \neq 0$, by Theorem 3.2.6(3). It follows that $n \leq$ $\operatorname{fd}_{R}\left(M \otimes_{S} F\right)$.
(4): Let $n \in \mathbb{N}$. If $n \leq \operatorname{id}_{R} M$, then, by Theorem 4.1.11, there exists a finitely generated (cyclic) R-module L such that $\operatorname{Ext}_{R}^{n}(L, M) \neq 0$. Since F is a faithfully flat S-module, $\operatorname{Ext}_{R}^{n}(L, M) \otimes_{S} F \neq 0$ and hence $\operatorname{Ext}_{R}^{n}\left(L, M \otimes_{S} F\right) \neq 0$, by Theorem 3.2.6(4). It follows that $n \leq \operatorname{id}_{R}\left(M \otimes_{S} F\right)$.

Proposition 4.1.15. Let $\varphi: R \longrightarrow S$ be a homomorphism of rings. Then
(1) If E is an injective S-module, then $\operatorname{id}_{R} E \leq \operatorname{fd}_{R} S$. Moreover if E is a faithfully injective S-module, then the inequality is equality.
(2) If R is a Noetherian ring and E is an injective S-module, then $\operatorname{fd}_{R} E \leq$ $\operatorname{id}_{R} S$. Moreover if E is a faithfully injective S-module, then the inequality is equality.
(3) If F is a flat S-module, then $\mathrm{fd}_{R} F \leq \mathrm{fd}_{R} S$. Moreover if F is a faithfully flat S-module, then the inequality is equality.
(4) If R is a Noetherian ring and F is a flat S-module, then $\operatorname{id}_{R} F \leq \operatorname{id}_{R} S$.

Moreover if F is a faithfully flat S-module, then the inequality is equality

Proof. Take $M=S$ in Theorem 4.1.13.

Proposition 4.1.16. Let $\varphi: R \longrightarrow S$ be a homomorphism of rings. Then
(1) If E is an injective R-module, then $\operatorname{Hom}_{R}(S, E)$ is an injective S-module.
(2) If S is a Noetherian ring and E is an injective R-module, then $\operatorname{fd}_{R} \operatorname{Hom}_{R}(S, E) \leq$ $\operatorname{id}_{R} S$. Moreover if E is a faithfully injective S-module, then the inequality is equality.
(3) If F is a flat R-module, then $S \otimes_{R} F$ is a flat S-module.
(4) If S is a Noetherian ring and F is a flat R-module, then $S \otimes_{R} F$ is an injective S-module.

Proof. Take $R=S, S=R$ and $M=S$ in Theorem 4.1.13.

Theorem 4.1.17. Let R be a Noetherian ring and $\varphi: R \longrightarrow S$ be a homomorphism, and let M be an S-module. Then
(1) If $\operatorname{id}_{S} M<\infty$, then $\mathrm{fd}_{R} M \leq \operatorname{id}_{R} S$.
(2) If $\operatorname{fd}_{S} M<\infty$, then $\operatorname{id}_{R} M \leq \operatorname{id}_{R} S$.

Proof. We shall prove (1); the proof of (2) is similar.
(1): We use induction on $n=\operatorname{id}_{S} M$. If $n=0$, then M is an injective S module and the assertion follows from Proposition 4.1.13(2). Now let $n \geq 1$. Consider the exact sequence of S-modules

$$
0 \longrightarrow M \longrightarrow E \longrightarrow L \longrightarrow 0
$$

where E is an injective S-module. Since M is not an injective S-module, we have $\operatorname{id}_{S} L=\operatorname{id}_{S} M-1$. Therefore $\operatorname{fd}_{R} L \leq \operatorname{id}_{R} S$, by induction hypothesis. It suffices to show that if $\operatorname{id}_{R} S<m$ for some $m \in \mathbb{N}$, then $\mathrm{fd}_{R}<m$. Consider the following long exact sequence
$\ldots \longrightarrow \operatorname{Tor}_{m+1}^{R}(L, N) \longrightarrow \operatorname{Tor}_{m}^{R}(M, N) \longrightarrow \operatorname{Tor}_{m}^{R}(E, N) \longrightarrow \operatorname{Tor}_{m}^{R}(L, N) \longrightarrow \ldots$

Since $\operatorname{fd}_{R} L \leq \operatorname{id}_{R} S<m$ and $\operatorname{fd}_{R} E \leq \operatorname{id}_{R} S<m$ (by Proposition 4.1.5(2)), we have

$$
\operatorname{Tor}_{m+1}^{R}(L, N)=0=\operatorname{Tor}_{m}^{R}(E, N)
$$

Therefore $\operatorname{Tor}_{m}^{R}(M, N)=0$ and hence $\operatorname{fd}_{R} M<m$. Thus $\operatorname{fd}_{R} M \leq \operatorname{id}_{R} S$ and the proof is complete.

Corollary 4.1.18. Let R be a Noetherian ring and $\varphi: R \longrightarrow S$ be a homomorphism of rings. Then the following are equivalent.
(1) $\operatorname{id}_{R} S<\infty$,
(2) if M is an S-module, then $\operatorname{id}_{S} M<\infty$ implies that $\operatorname{fd}_{R} M<\infty$,
(3) if M is an S-module, then $\operatorname{fd}_{S} M<\infty$ implies that $\operatorname{id}_{R} M<\infty$,
(4) there is a faithfully injective S-module E such that $\mathrm{fd}_{R} E<\infty$,
(5) there is a faithfully flat S-module F such that $\mathrm{id}_{R} F<\infty$.

Proof. $(1) \Longrightarrow(2)$: Follows from Theorem 4.1.17(1).
$(1) \Longrightarrow(3)$: Follows from Theorem 4.1.17(2).
$(4) \Longrightarrow(1)$: Follows from Proposition 4.1.15(2).
$(5) \Longrightarrow(1)$: Follows from Proposition 4.1.15(4).
$(2) \Longrightarrow(4)$ and $(3) \Longrightarrow(5)$ are trivial.
Definition 4.1.19. Let R be a ring. R is Gorenstein if $\operatorname{id}_{R} R<\infty$.
Corollary 4.1.20. Let M be module over a Noetherian Gorenstein ring R. Then $\operatorname{id}_{R} M<\infty$ if and only if $\operatorname{fd}_{R} M<\infty$.

Proof. Follows easily from the above theorem.

4.2 Change of Rings Theorems

Theorem 4.2.1. (General Change of Rings Theorem). Let $\varphi: R \longrightarrow S$ be a ring homomorphism, and let M be an S-module. Then

$$
\operatorname{pd}_{R} M \leq \operatorname{pd}_{S} M+\operatorname{pd}_{R} S
$$

Proof. If $\operatorname{pd}_{S} M=\infty$, there is nothing to prove, so we assume $\operatorname{pd}_{S} M=n<\infty$ and proceed by induction on n. If $n=0$, then M is a projective S-module; thus there exists an S-module N such that $M \oplus N=\amalg S$. Exercise 1(i) applies to give

$$
\operatorname{pd}_{R} M \leq \sup \left\{\operatorname{pd}_{R} M, \operatorname{pd}_{R} N\right\}=\operatorname{pd}_{R}(M \oplus N)=\operatorname{pd}_{R}(\coprod S)=\operatorname{pd}_{R} S
$$

Suppose $n>0$. There is an exact sequence of S-modules

$$
0 \longrightarrow K \longrightarrow F \longrightarrow M \longrightarrow 0
$$

where F is a free S-module. By Exercise 5(iii)

$$
\operatorname{pd}_{R} M \leq \max \left\{1+\operatorname{pd}_{R} K, \operatorname{pd}_{R} F\right\}=\max \left\{1+\operatorname{pd}_{R} K, \operatorname{pd}_{R} S\right\}
$$

Since M is not a projective S-module, Exercise 2(i) gives $\mathrm{pd}_{S} K=n-1$, so that induction gives

$$
\operatorname{pd}_{R} K \leq \operatorname{pd}_{S} K+\operatorname{pd}_{R} S
$$

Combining these inequalities:
$\operatorname{pd}_{R} M \leq \max \left\{1+\operatorname{pd}_{S} K+\operatorname{pd}_{R} S, \operatorname{pd}_{R} S\right\} \leq \max \left\{n+\operatorname{pd}_{R} S, \operatorname{pd}_{R} S\right\}=n+\operatorname{pd}_{R} S$.

Proposition 4.2.2. Let R be a commutative ring and $a \in R$ a non-zero divisor element which is not a unit. Then

$$
\operatorname{pd}_{R} R /(a)=1
$$

Proof. From the exact sequence $0 \longrightarrow R \xrightarrow{a .} R \longrightarrow R /(a) \longrightarrow 0$ an Exercise 3 (iii), we deduce that $\operatorname{pd}_{R} R /(a) \leq 1$. If $\operatorname{pd}_{R} R /(a)=0$, then there exists an R-module N such that $R /(a) \oplus N=\amalg R$. Then since a is not a unit,

$$
a \in Z(R /(a) \oplus N)=Z(\coprod R)=Z(R)
$$

which is a contradiction. Thus $\operatorname{pd}_{R} R /(a)=1$ and the proof is complete.

Lemma 4.2.3. Let I be an ideal of a commutative ring R.
(1) If F is a free R-module, then $F / I F$ is a free R / I-module,
(2) If P is a projective R-module, then $P / I P$ is a projective R / I-module.

Proof. The proof is left to the reader.
The converse of Lemma 4.2.3(1) is:
Lemma 4.2.4. Let R be a commutative Noetherian ring with maximal ideal \mathfrak{m}, and let M be a finitely generated R-module. Let $a \in \mathfrak{m}$ be a non-zero divisor element on both R and M. If $M / a M$ is a free $R /(a)$-module, then M is a free R-module.

Proof. If $M / a M=0$ then $M=0$ by Nakayama's lemma. So, suppose $M / a M \neq$ 0. Let $\left\{x_{1}+a M, x_{2}+a M, \ldots, x_{n}+a M\right\}$ be a basis for free $R /(a)$-module $M / a M$. We claim that $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a basis for R-module M. Since $R x_{1}+R x_{2}+\ldots+R x_{n}+a M=M$, it follows from Nakayama's lemma that
$R x_{1}+R x_{2}+\ldots+R x_{n}=M$. To show that x_{i} are linearly independent, suppose that $\sum_{i=1}^{n} r_{i} x_{i}=0$. Then $\sum_{i=1}^{n}\left(r_{i}+(a)\right)\left(x_{i}+a M\right)=0$. Since $x_{i}+a M$ are linearly independent over $R /(a)$, we have $r_{i} \in a R$ for all i. As a is non-zero divisor on R and M we can divide to get a well-defined quotient $r_{i} / a \in R$ such that $\sum_{i=1}^{n}\left(r_{i} / a\right) x_{i}=0$ in M. Continuing this process, we get a sequence of elements $r_{i}, r_{i} / a, r_{i} / a^{2}, \ldots$. Now consider the following ascending chain of ideals of R.

$$
\left(r_{i} / a\right) \subseteq\left(r_{i} / a^{2}\right) \subseteq \ldots
$$

Since R is Noetherian there exists $k \in \mathbb{N}$ such that $\left(r_{i} / a^{k}\right)=\left(r_{i} / a^{k+1}\right)$. Therefore, there exists $r \in R$ such that $r_{i}=r_{i} r a$. Therefore $r_{i}=0$, which completes the proof of this lemma.

Theorem 4.2.5. (First Change of Rings Theorem). Let a be a central non-zero divisor in a ring R. If $M \neq 0$ is a $R /(a)$-module with $\operatorname{pd}_{R /(a)} M$ finite, then

$$
\operatorname{pd}_{R} M=1+\operatorname{pd}_{R /(a)} M
$$

Proof. We proceed by induction on $n=\operatorname{pd}_{R /(a)} M$. As a is a regular element and $a M=0$, it follows that M cannot be a projective R-module, so $\operatorname{pd}_{R} M \geq$ 1. Let $n=0$. Then by Theorem 4.2.1 and Proposition 4.2.2 we see that $\operatorname{pd}_{R} M=\operatorname{pd}_{R} R /(a)=1$. If $n=1$, then $\operatorname{pd}_{R} M \leq 2$ and strict inequality means $\operatorname{pd}_{R} M \leq 1$. We have already shown $\operatorname{pd}_{R} M \neq 0$; we claim that $\operatorname{pd}_{R} M \neq 1$. Otherwise there is an exact sequence of R-modules

$$
0 \longrightarrow K \longrightarrow F \longrightarrow M \longrightarrow 0
$$

where F is a free R-module and K is a projective R-module. We have an exact sequence of $R /(a)$-modules

$$
0 \longrightarrow \operatorname{Tor}_{1}^{R}(R /(a), M) \longrightarrow K / a K \longrightarrow F / a F \longrightarrow M / a M \longrightarrow 0
$$

Since $\operatorname{pd}_{R /(a)} M=1 \leq 2, \operatorname{Tor}_{1}^{R}(R /(a), M)$ is a projective $R /(a)$-module. But

$$
\operatorname{Tor}_{1}^{R}(R /(a), M) \cong_{R /(a)}\{x \in M \mid a x=0\}=M
$$

so $\operatorname{pd}_{R /(a)} M=0$, which is a contradiction. Now, let $n \geq 2$. Consider an exact sequence of $R /(a)$-modules

$$
0 \longrightarrow K_{1} \longrightarrow F_{1} \longrightarrow M \longrightarrow 0
$$

where F_{1} is a free $R /(a)$-module. Since $\operatorname{pd}_{R /(a)} M \neq 0$, it follows from Lemma 4.2.3(2) and Exercise 2(i) that $\operatorname{pd}_{R} M=1+\operatorname{pd}_{R} K_{1}$ and hence

$$
\operatorname{pd}_{R} M=1+\operatorname{pd}_{R} K_{1}=1+1+\operatorname{pd}_{R /(a)} K_{1}=1+\operatorname{pd}_{R /(a)} M
$$

Theorem 4.2.6. (Second Change of Rings Theorem). Let a be a central non-zero divisor in a ring R. If M is an R-module and a is a non-zero divisor on M, then

$$
\operatorname{pd}_{R} M \geq \operatorname{pd}_{R /(a)}(M / a M)
$$

Proof. If $\operatorname{pd}_{R} M=\infty$, there is nothing to prove, so we assume $n=\operatorname{pd}_{R} M<\infty$ and proceed by induction on n. If $\operatorname{pd}_{R} M=0$, then $M / a M$ is a projective $R /(a)$-module, so the result is true in the case $n=0$. Now suppose $n \geq 1$ and consider the the exact sequence of R-modules $0 \longrightarrow K \longrightarrow F \longrightarrow M \longrightarrow 0$, where F is free. Since $\operatorname{Tor}_{1}^{R}(R /(a), M) \cong\{x \in M \mid a x=0\}=0$, we have the following exact sequence of $R /(a)$-modules.

$$
0 \longrightarrow K / a K \longrightarrow F / a F \longrightarrow M / a M \longrightarrow 0
$$

$\operatorname{pd}_{R} K=\operatorname{pd}_{R} M-1$, by Exercise 2(i). We have $a \notin Z(K)$, since $Z(K) \subseteq$ $Z(F)=Z(R)$. So by the inductive hypothesis $\operatorname{pd}_{R} K \geq \operatorname{pd}_{R /(a)}(K / a K)$. If $\operatorname{pd}_{R /(a)}(M / a M)=0$, we are done. Otherwise, $\operatorname{pd}_{R /(a)}(M / a M)=1+$ $\operatorname{pd}_{R /(a)}(K / a K)$ and therefore,

$$
\operatorname{pd}_{R /(a)}(M / a M)=1+\operatorname{pd}_{R /(a)}(K / a K) \leq 1+\operatorname{pd}_{R} K=\operatorname{pd}_{R} M
$$

If R is a ring, not necessarily commutative, then $R[x]$ denotes the polynomial ring in which the indeterminate x commutes with every element in R (thus, x lies in the center of $R[x])$. If M is a left R-module, write

$$
M[x]=R[x] \otimes_{R} M .
$$

Corollary 4.2.7. For every left R-module M,

$$
\operatorname{pd}_{R[x]} M[x]=\operatorname{pd}_{R} M
$$

Proof. Let $\operatorname{pd}_{R} M \leq n$, then there is a projective resolution of R-modules

$$
0 \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \ldots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0
$$

Since $R[x]$ is a flat (free) R-module, there is an exact sequence of $R[x]$-modules

$$
0 \longrightarrow P_{n}[x] \longrightarrow P_{n-1}[x] \longrightarrow \ldots \longrightarrow P_{0}[x] \longrightarrow M[x] \longrightarrow 0,
$$

where the module $P_{i}[x]$ is projective. Therefore $\operatorname{pd}_{R[x]} M[x] \leq n$ and hence $\operatorname{pd}_{R[x]} M[x] \leq \operatorname{pd}_{R} M$. On the other hand, the Second Change of Ring Theorem implies that

$$
\operatorname{pd}_{R} M=\operatorname{pd}_{\frac{R[x]}{x R[x]}}\left(\frac{M[x]}{x M[x]}\right) \leq \operatorname{pd}_{R[x]} M[x] .
$$

Lemma 4.2.8. Let R be a commutative Noetherian local ring, and let M be a finitely generated R-module. Then the following are equivalent.
(1) M is free,
(2) M is projective,
(3) M is flat.

Proof. The proof is left to the reader.
Theorem 4.2.9. (Third Change of Rings Theorem). Let (R, \mathfrak{m}) be a commutative Noetherian local ring, and let M be a finitely generated R-module. If $a \in \mathfrak{m}$ is a non-zero divisor on both R and M, then

$$
\operatorname{pd}_{R} M=\operatorname{pd}_{R /(a)}(M / a M)
$$

Proof. We know $\operatorname{pd}_{R} M \geq \operatorname{pd}_{R /(a)}(M / a M)$ by the second Change of Rings Theorem, and we shall prove $\operatorname{pd}_{R} M \leq \operatorname{pd}_{R /(a)}(M / a M)$. If $\operatorname{pd}_{R /(a)}(M / a M)=$ ∞, there is nothing to prove, so we assume $n=\operatorname{pd}_{R /(a)}(M / a M)<\infty$ and proceed by induction on n. If $n=0$ then $M / a M$ is projective, hence a free $R /(a)$-module since $R /(a)$ is local. It follows from the previous Lemma that M is a free R-module, so $\operatorname{pd}_{R} M=0$. Now suppose $n \geq 1$ and consider the the exact sequence of R-modules $0 \longrightarrow K \longrightarrow F \longrightarrow M \longrightarrow 0$, where F is free. Since $\operatorname{Tor}_{1}^{R}(R /(a), M) \cong\{x \in M \mid a x=0\}=0$, we have the following exact sequence of $R /(a)$-modules.

$$
0 \longrightarrow K / a K \longrightarrow F / a F \longrightarrow M / a M \longrightarrow 0
$$

By the Second Change of Ring $\operatorname{pd}_{R} M \geq \operatorname{pd}_{R /(a)}(M / a M) \geq 1$. Therefore, by Exercise 2(i) and induction hypothesis we have

$$
\operatorname{pd}_{R} M=1+\operatorname{pd}_{R} K=1+\operatorname{pd}_{R /(a)} K / a K=\operatorname{pd}_{R /(a)} M / a M
$$

Which completes the proof.
Corollary 4.2.10. Let (R, \mathfrak{m}) be a commutative Noetherian local ring, and let M be a finitely generated R-module with $\operatorname{pd}_{R} M<\infty$. If $a \in \mathfrak{m}$ is a non-zero divisor on both R and M, then

$$
1+\operatorname{pd}_{R /(a)} M=\operatorname{pd}_{R /(a)}(M / a M)
$$

Proof. Combine the first and third Change of Rings Theorems.

4.3 Global and Weak Dimension

Theorem 4.3.1. (Global Dimension Theorem) The following numbers are the same for any ring R.
(1) $a=\sup \left\{\operatorname{id}_{R} M \mid M \in{ }_{R} M o d\right\}$,
(2) $b=\sup \left\{\operatorname{pd}_{R} M \mid M \in{ }_{R} M o d\right\}$,
(3) $c=\sup \left\{\operatorname{pd}_{R} R / I \mid I\right.$ is a left ideal of $\left.R\right\}$,
(4) $d=\sup \left\{d \mid E x t_{R}^{d}(M, N) \neq 0\right.$ for some left modules $\left.M, N\right\}$.

Proof. First of all, we show that $b=d$. Suppose

$$
\begin{aligned}
B & =\left\{\operatorname{pd}_{R} M \mid M \in{ }_{R} \operatorname{Mod}\right\} \\
D & =\left\{d \mid \operatorname{Ext}_{R}^{d}(M, N) \neq 0 \text { for some left modules } M, N\right\}
\end{aligned}
$$

If $t \in B$, then there exists $M \in{ }_{R} \operatorname{Mod}$ such that $\operatorname{pd}_{R} M=t$. By Theorem 4.1.10, $\operatorname{Ext}_{R}^{t}(M, N) \neq 0$ for some $N \in{ }_{R}$ Mod. Therefore $t \in D$, a nd hence $B \subseteq D$. Thus $b \leq d$. Now, let $t \in D$. Then there exist $M, N \in{ }_{R}$ Mod such that Hence $\operatorname{Ext}_{R}^{t}(M, N) \neq 0$. Therefore $\operatorname{pd}_{R} M \geq t$. It follows that $b \geq t$. Since t was an arbitrary element of D, we have $b \geq d$. Thus $b=d$. A similar argument shows that $a=d$. It is enough to show that $a \leq c$. Suppose $N \in{ }_{R}$ Mod and consider the following exact sequence

$$
0 \longrightarrow N \longrightarrow E^{0} \longrightarrow E^{1} \longrightarrow \ldots \longrightarrow E^{c-1} \longrightarrow M \longrightarrow 0
$$

where E^{i} is injective. Then Theorem 4.1.11 implies that

$$
0=\operatorname{Ext}_{R}^{c+1}(R / I, N) \cong \operatorname{Ext}_{R}^{1}(R / I, M)
$$

for any left ideal I of R. This implies M is injective, and hence $\operatorname{id}_{R} N \leq c$. Therefore $a \leq c$ as required.

Definition 4.3.2. The common numbers in the above theorem is called the left global dimension of R and is denoted $\ell . g . \operatorname{dim} R$.

We can also similarly define right global dimension r.g. $\operatorname{dim} R$ of R. The two global dimensions of R are not always equal.

Theorem 4.3.3. (Weak Dimension Theorem) The following numbers are

 the same for any ring R.(1) $a=\sup \left\{\operatorname{fd}_{R} M \mid M \in{ }_{R} \operatorname{Mod}\right\}$,
(2) $b=\sup \left\{\operatorname{fd}_{R} R / I \mid I\right.$ is a left ideal of $\left.R\right\}$,
(3) $c=\sup \left\{\operatorname{fd}_{R} N \mid N \in \operatorname{Mod}_{R}\right\}$,
(4) $d=\sup \left\{\mathrm{fd}_{R} R / I \mid I\right.$ is a right ideal of $\left.R\right\}$,
(5) $e=\sup \left\{d \mid \operatorname{Tor}_{d}^{R}(M, N) \neq 0\right.$ for some right modules $\left.M, N\right\}$.

Definition 4.3.4. The common numbers in the above theorem is called the weak dimension of R and is denoted $w \cdot \operatorname{dim} R$.

Lemma 4.3.5. If M is an $R[x]$-module, there is an exact sequence or $R[x]$ modules

$$
0 \longrightarrow M[x] \longrightarrow M[x] \longrightarrow M \longrightarrow 0 .
$$

Theorem 4.3.6. If R is any ring, then

$$
\ell . g \cdot \operatorname{dim} R[x]=\ell . g \cdot \operatorname{dim} R+1 .
$$

Proof. If $\ell . g \cdot \operatorname{dim} R=\infty$, then Corollary 4.2 .7 implies that $\ell . g \cdot \operatorname{dim} R[x]=\infty$. Now suppose $n=\ell . g \cdot \operatorname{dim} R<\infty$. Let M be an R-module such that $\operatorname{pd}_{R} M=n$. We can view M as an R-module by setting $\left(a_{0}+a_{1} x+\ldots+a_{n} x^{n}\right) m=a_{0} m$. It is a consequence of the first Change of Rings Theorem that $\operatorname{pd}_{R[x]} M=\operatorname{pd}_{R} M+1$. Hence $\ell . g \cdot \operatorname{dim} R[x] \geq n+1$. Now let M be an $R[x]$-module and consider the following exact sequence of $R[x]$-modules.

$$
0 \longrightarrow R[x] \otimes_{R} M \longrightarrow R[x] \otimes_{R} M \longrightarrow M \longrightarrow 0 .
$$

Then by Exercise 5 and Corollary 4.2.7

$$
\operatorname{pd}_{R} M \leq \sup \left\{1+\operatorname{pd}_{R[x]} M[x], \operatorname{pd}_{R[x]} M[x]\right\}=1+\operatorname{pd}_{R} M \leq n+1
$$

Hence $\ell . g \cdot \operatorname{dim} R[x] \leq n+1$ as required.
Corollary 4.3.7. (Hilbert's Theorem on Syzygies). If k is a field, then

$$
\ell . g \cdot \operatorname{dim} k\left[x_{1}, x_{2} \ldots, x_{n}\right]=n .
$$

Proof. Follows immediately from the above theorem.

Exercises

1. Let $\left\{M_{i}\right\}_{i \in I}$ be a family of R-modules. Show that
(i) $\operatorname{pd}_{R}\left(\coprod_{i \in I} M_{i}\right)=\sup \left\{\operatorname{pd}_{R} M_{i} \mid i \in I\right\}$,
(ii) $\operatorname{id}_{R}\left(\prod_{i \in I} M_{i}\right)=\sup \left\{\operatorname{id}_{R} M_{i} \mid i \in I\right\}$.
2. (i) If $0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$ is an exact sequence with M is projective, prove that either all three modules are projective or $\operatorname{pd}_{R} N=$ $1+\mathrm{pd}_{R} L$.
(ii) If $0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$ is an exact sequence with M is injective, prove that either all three modules are injective or $\operatorname{id}_{R} L=1+$ $\operatorname{id}_{R} N$.
3. Let $0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$ be an exact sequence of R-modules. Show that
(i) if $\operatorname{pd}_{R} L<\operatorname{pd}_{R} M$, then $\operatorname{pd}_{R} N=\operatorname{pd}_{R} M$,
(ii) if $\operatorname{pd}_{R} L>\operatorname{pd}_{R} M$, then $\operatorname{pd}_{R} N=1+\operatorname{pd}_{R} L$,
(iii) if $\operatorname{pd}_{R} L=\operatorname{pd}_{R} M$, then $\operatorname{pd}_{R} N \leq 1+\operatorname{pd}_{R} L$.
4. Let $0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$ be an exact sequence of R-modules.

Show that
(i) $\operatorname{pd}_{R} M \leq \max \left\{\operatorname{pd}_{R} L, \operatorname{pd}_{R} N\right\}$ with equality unless $\operatorname{pd}_{R} N=1+\operatorname{pd}_{R} L$,
(ii) $\operatorname{id}_{R} M \leq \max \left\{\operatorname{id}_{R} L, \operatorname{id}_{R} N\right\}$ with equality unless $\operatorname{id}_{R} N=1+\operatorname{id}_{R} L$,
(iii) $\mathrm{fd}_{R} M \leq \max \left\{\mathrm{fd}_{R} L, \mathrm{fd}_{R} N\right\}$ with equality unless $\mathrm{fd}_{R} N=1+\mathrm{fd}_{R} L$.
5. Let $0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$ be an exact sequence of R-modules. If any two of these modules have finite projective dimension, show that the third does also and
(i) $\operatorname{pd}_{R} L \leq \max \left\{\operatorname{pd}_{R} M, \operatorname{pd}_{R} N\right\}$,
(ii) $\operatorname{pd}_{R} M \leq \max \left\{1+\operatorname{pd}_{R} L, \operatorname{pd}_{R} N\right\}$,
(iii) $\operatorname{pd}_{R} N \leq \max \left\{1+\operatorname{pd}_{R} L, \operatorname{pd}_{R} M\right\}$.

Furthermore, if $\operatorname{pd}_{R} M=1$ and $\operatorname{pd}_{R} N \geq 2$, prove that $\operatorname{pd}_{R} N=1+\operatorname{pd}_{R} L$.
6. Let $0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$ be an exact sequence of R-modules. If any two of these modules have finite injective dimension, show that the third does also. Furthermore, prove that
(i) $\operatorname{id}_{R} L \leq \max \left\{1+\operatorname{id}_{R} M, 1+\operatorname{id}_{R} N\right\}$,
(ii) $\operatorname{id}_{R} M \leq \max \left\{\operatorname{id}_{R} L, 1+\operatorname{id}_{R} N\right\}$,
(iii) $\operatorname{id}_{R} N \leq \max \left\{\operatorname{id}_{R} L, \operatorname{id}_{R} M\right\}$.
7. Let R be a commutative Noetherian ring and let n be a non-negative integer. Show that the following are equivalent.
(i) $\operatorname{pd}_{R} M \leq n$ for all R-modules M,
(ii) $\operatorname{id}_{R} M \leq n$ for all R-modules M,
(iii) $\operatorname{pd}_{R} M \leq n$ for all finitely generated R-modules M,
(iv) $\operatorname{pd}_{R} M \leq n$ for all cyclic R-modules M,
(v) $\operatorname{id}_{R} M \leq n$ for all finitely generated R-modules M,
(vi) $\operatorname{id}_{R} M \leq n$ for all cyclic R-modules M.
8. (Change of Rings Theorems for Injective Dimension).
(i) (First Change of Rings Theorem). Let $M \neq 0$ be an $R /(a)$-module with $\operatorname{id}_{R /(a)} M$ finite. Then

$$
\operatorname{id}_{R} M=1+\operatorname{id}_{R /(a)} M
$$

(ii) (Second Change of Rings Theorem). Let M be an R-module. If a is a non-zero divisor on M, then M is injective (in the case $M / a M=0$) or

$$
\operatorname{id}_{R} M \geq 1+\operatorname{id}_{R /(a)}(M / a M)
$$

(iii) (Third Change of Rings Theorem). Let (R, \mathfrak{m}) be a commutative Noetherian local ring, and let M be a finitely generated R-module. If $a \in \mathfrak{m}$ is a non-zero divisor on M, then

$$
\operatorname{id}_{R} M=\operatorname{id}_{R}(M / a M)=1+\operatorname{id}_{R /(a)}(M / a M)
$$

REFERENCES AND SUGGESTED READINGS

[1] Enochs, E. and Jenda, O.M.G. (2000), Relative Homological Algebra, de Gruyter, Berlin.
[2] Rotman, J. (1979), An Introduction to Homological Algebra, Academic Press.
[3] Vermani, L.R. (2003), An Elementary Approach to Homological Algebra,
[4] Weibel, C.A. (1994), An Introduction to Homological Algebra, Cambridge University Press.

[^0]: ${ }^{1} \overline{\text { Please send all comments and corrections to naghipourar@yahoo.com. }}$

