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Chapter 1

HOMOLOGY

1.1 Homology Functors

Definition 1.1.1. Let R be a ring. By a (chain) complex (X, dX) of R-

modules we mean a sequence

(X, dX) =: . . . - Xn+1

dX
n+1- Xn

dX
n- Xn−1

- . . .

of R-modules {Xn} and R-module homomorphisms {dX
n : Xn −→ Xn−1} such

that dX
n dX

n+1 = 0 for all n ∈ Z. Xn and dX
n are called the module in degree

n and the n-th differential of (X, dX), respectively.

We usually simplify the notation and write X instead of (X, dX).

Remark 1.1.2. An R-module M is considered as the complex

. . . −→ 0 −→ 0 −→ M −→ 0 −→ 0 −→ . . . ,

where the module M is sitting in degree 0.

Definition 1.1.3. Suppose X and Y are two complexes. Then we can define

a morphism between them, f : X −→ Y, as a family of homomorphisms

3
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fn : Xn −→ Yn such that for all n ∈ Z, the following diagram commutes:

Xn
dX

n- Xn−1

Yn

fn

? dY
n- Yn−1

fn−1

?

It is easy to see that the collection of complexes and their morphisms (with

the obvious composition) forms a category. We denote this category by RComp

(or Comp).

Definition 1.1.4. If (X, dX) is a complex, define

n-cycle = Zn(X) = kerdX
n ,

n-boundaries = Bn(X) = imdX
n+1,

n-homology = Hn(X) = Zn(X)/Bn(X).

Since the equation dX
n dX

n+1 = 0 in the complex X is equivalent to the condi-

tion imdX
n+1 ⊆ kerdX

n , we have Bn(X) ⊆ Zn(X), and so the quotient module

Zn(X)/Bn(X) does make sense. An element of Hn(X) is a coset zn + Bn(X);

we call this element a homology class, and often denote it by [zn].

Lemma 1.1.5. Let f : X −→ Y be a morphism of complexes. Then

(1) fn(Zn(X)) ⊆ Zn(Y),

(2) fn(Bn(X)) ⊆ Bn(Y).

Proof. Consider the commutative diagram

. . . - Xn+1

dX
n+1- Xn

dX
n- Xn−1

- . . .

. . . - Yn+1

fn+1

? dY
n+1- Yn

fn

? dY
n- Yn−1

fn−1

?
- . . .

(1): Let x ∈ Zn(X). Then dX
n (x) = 0. By commutativity of the above dia-

gram, dY
n fn(x) = fn−1d

X
n (x) = fn−1(0) = 0, so that fn(x) ∈ Zn(Y). Thus

fn(Zn(X)) ⊆ Zn(Y).
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(2): Let y ∈ Bn(X). Then there exists x ∈ Xn+1 such that dX
n+1(x) = y. By

commutativity of the above diagram, fn(y) = fndX
n+1(x) = dY

n+1fn+1(x), so

that fn(y) ∈ Bn(Y). Thus fn(Bn(X)) ⊆ Bn(Y).

Theorem 1.1.6. Let f : X −→ Y be a morphism of complexes and let n ∈ Z.

Define

Hn(f) : Hn(X) −→ Hn(Y )

[zn] 7−→ [fnzn].

Then Hn : RComp −→ RMod is an additive functor.

Proof. First of all, we show that Hn(f) is well defined. Let [z] = [y]. Then

z− y ∈ Bn(X) and so there exists x ∈ Xn+1 such that z− y = dX
n+1(x). By the

part (2) of the above lemma we have

fnz − fny = fn(z − y) ∈ Bn(Y ).

Therefore [fnz] = [fny], and hence Hn(f) is well defined.

Now, we show that Hn is a functor. It is clear that Hn(1X) is the identity.

If f and g are morphisms whose composite gf is defined, then

Hn(gf)[z] = [(gf)nz] = [(gnfn)z]) = [gn(fnz)] = Hn(g)[fnz] = Hn(g)Hn(f)[z].

Finally, we show that Hn is additive. If f, g : X −→ Y are two morphisms

of complexes, then

Hn(f + g)[z] = [(f + g)nz] = [(fn + gn)z] = [fnz]+ [gnz] = Hn(f)[z]+Hn(g)[z].

Definition 1.1.7. We say that the sequence

0 −→ X
f−→ Y

g−→ W −→ 0

is an exact sequence of complexes if the sequences

0 −→ Xn
fn−→ Yn

gn−→ Wn −→ 0
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are exact for every n ∈ Z.

Theorem 1.1.8. (Connecting Homomorphism). If 0 −→ X
f−→ Y

g−→

W −→ 0 is an exact sequence of complexes, then, for each n ∈ Z, there is a

homomorphism

∂n : Hn(W) −→ Hn−1(X)

[wn] 7−→ [xn−1] (xn−1 ∈ f−1
n−1d

Y
n g−1

n (wn)).

Proof. Consider the commutative diagram with exact rows:

X Y W

...
...

...

0 - Xn+1

? fn+1- Yn+1

? gn+1- Wn+1

?
- 0

0 - Xn

dX
n+1

? fn - Yn

dY
n+1

? gn - Wn

dW
n+1

?
- 0

0 - Xn−1

dX
n

? fn−1- Yn−1

dY
n

? gn−1- Wn−1

dW
n

?
- 0

...

?
...

?
...

?

We only show that ∂n is well defined; the other verifications are also routine and

are left to the reader. For this, we first show that f−1
n−1d

Y
n g−1

n (wn) 6= ∅, where

wn ∈ kerdW
n . Let yn ∈ g−1

n (wn). Then gn(yn) = wn. By commutativity of the

above diagram,

gn−1d
Y
n (yn) = dW

n gn(yn) = dW
n (wn) = 0.
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It follows that dY
n (yn) ∈ kergn−1 = imfn−1. Thus dY

n g−1
n (wn) ⊆ imfn−1 and

hence f−1
n−1d

Y
n g−1

n (wn) 6= ∅. Let wn ∈ kerdW
n and xn−1 ∈ f−1

n−1d
Y
n g−1

n (wn). We

must show that [xn−1] ∈ Hn−1(X). Suppose that fn−1(xn−1) = dY
n (yn) for

some yn ∈ g−1
n (wn). By commutativity of the above diagram,

fn−2d
X
n−1(xn−1) = dY

n−1fn−1(xn−1) = dY
n−1d

Y
n yn = 0.

Since fn−2 is injective, we have dX
n−1(xn−1) = 0 and hence [xn−1] ∈ Hn−1(X).

Now let xn−1, xn−1 ∈ f−1
n−1d

Y
n g−1

n (wn). Then there exist yn, yn ∈ g−1
n (wn)

such that xn−1 = f−1
n−1d

Y
n (yn) and xn−1 = f−1

n−1d
Y
n (yn). Since gn(yn) = gn(yn),

we have yn − yn ∈ kergn = imfn and hence there exists xn ∈ Xn such that

yn − yn = fn(xn). Therefore

[xn−1] = [f−1
n−1d

Y
n (yn)] = [f−1

n−1d
Y
n (yn + fn(xn))]

= [f−1
n−1d

Y
n (yn) + f−1

n−1d
Y
n (fn(xn))]

= [xn−1] + [f−1
n−1fn−1d

X
n (xn)] = [xn−1] + [dX

n (xn)]

= [xn−1].

This proves that ∂n is well defined.

Definition 1.1.9. The homomorphisms ∂n : Hn(W ) −→ Hn−1(X) are called

connecting homomorphisms.

Theorem 1.1.10. (Long Exact Sequence). If 0 −→ X
f−→ Y

g−→ W −→ 0

is a sequence of complexes, then there is an exact sequence of modules

· · · −→ Hn(X)
Hn(f)−→ Hn(Y)

Hn(g)−→ Hn(W) ∂n−→ Hn−1(X)
Hn−1(f)−→ Hn−1(Y) −→ · · · .
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Proof. Consider the commutative diagram with exact rows:

X Y W

...
...

...

0 - Xn+1

? fn+1- Yn+1

? gn+1- Wn+1

?
- 0

0 - Xn

dX
n+1

? fn - Yn

dY
n+1

? gn - Wn

dW
n+1

?
- 0

0 - Xn−1

dX
n

? fn−1- Yn−1

dY
n

? gn−1- Wn−1

dW
n

?
- 0

...

?
...

?
...

?

There are six inclusions to verify.

(1) imHn(f) ⊆ kerHn(g): Because Hn(g)Hn(f) = Hn(gf) = 0, we have

imHn(f) ⊆ kerHn(g).

(2) kerHn(g) ⊆ imHn(f): Let [yn] ∈ kerHn(g). Then gnyn ∈ Bn(W) and

hence there is wn+1 ∈ Wn+1 such that gnyn = dW
n+1(wn+1). Since gn+1 is

surjective, there exists yn+1 ∈ Yn+1 such that gn+1yn+1 = wn+1. Therefore, by

commutativity of the above diagram,

gn(yn − dY
n+1(yn+1)) = gnyn − gndY

n+1(yn+1)

= gnyn − dW
n+1gn+1yn+1

= gnyn − dW
n+1(wn+1) = 0.

It follows that there exists xn ∈ Xn such that yn−dY
n+1(yn+1) = fn(xn). Hence

Hn(f)[xn] = [fn(xn)] = [yn − dY
n+1(yn+1)] = [yn].
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(3) imHn(g) ⊆ ker∂n: Let Hn(g)[yn] = [gnyn] ∈ imHn(g). Then ∂n[gnyn] =

[xn−1], where xn−1 = f−1
n−1d

Y
n yn ∈ f−1

n−1d
Y
n g−1

n gnyn. Therefore fn−1xn−1 =

dY
n yn = 0, and hence xn−1 = 0, because fn−1 is injective. It follows that

Hn(g)[yn] ∈ ker∂n.

(4) ker∂n ⊆ imHn(g): Let ∂n[wn] = 0. Since gn is surjective, there exists

yn ∈ Yn such that wn = gn(yn). Let xn−1 = f−1
n−1d

Y
n yn ∈ f−1

n−1d
Y
n g−1

n (wn). By

definition of ∂n, we have ∂n[wn] = [xn−1] = 0. Hence there exists xn ∈ Xn such

that xn−1 = dX
n xn. We have

dY
n (yn − fn(xn)) = dY

n (yn)− fn−1d
X
n xn = 0.

Therefore yn − fn(xn) ∈ kerdY
n and

Hn(g)[yn − fn(xn)] = [gnyn − gnfn(xn)] = [gnyn] = [wn].

(5) im∂n ⊆ kerHn−1(f): Let ∂n[wn] ∈ im∂n. Then there exists yn ∈ g−1
n (wn)

such that ∂n[wn] = [xn−1], where xn−1 = f−1
n−1d

Y
n yn ∈ f−1

n−1d
Y
n g−1

n (wn). There-

fore

Hn−1(f)[xn−1] = [fn−1xn−1] = [fn−1f
−1
n−1d

Y
n yn] = [dY

n yn] = 0.

(6) kerHn−1(f) ⊆ im∂n: Let Hn−1(f)[xn−1] = [fn−1xn−1] = 0. Then there

exists yn ∈ Yn such that fn−1xn−1 = dY
n yn. Therefore xn−1 = f−1

n−1d
Y
n yn ∈

f−1
n−1d

Y
n g−1

n (gnyn) and hence ∂n[gnyn] = [xn−1].

Theorem 1.1.11. (Naturality of ∂n). Consider the commutative diagram

with exact rows:

0 - X
f - Y

g - W - 0

0 - X′

α

? f ′ - Y′

β

? g′ - W′

γ

?
- 0

Then there is a commutative diagram of modules with exact rows:
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· · · - Hn(X)
Hn(f)- Hn(Y)

Hn(g)- Hn(W)
∂n- Hn−1(X)

Hn−1(f)- · · ·

· · · - Hn(X′)

Hn(α)

? Hn(f ′)- Hn(Y′)

Hn(β)

? Hn(g′)- Hn(W′)

Hn(γ)

? ∂′n- Hn−1(X′)

Hn−1(α)

? Hn−1(f ′)- · · ·

Proof. Exactness of the rows is Theorem 1.0.12 (Long Exact Sequence). The

first two squares commute because Hn is a functor. Now we show that the

commutativity of the square involving the connecting homomorphism. Consider

the commutative three-dimensional diagram:

Xn
fn - Yn

gn - Wn

Xn−1
fn−1 -

d X
n

-

βn

Yn−1
gn−1 -

d Y
n

-

γn

Wn−1

d W
n

-

X ′
n

αn

? f ′n - Y ′
n

? g′n - W ′
n

?

X ′
n−1

αn−1

? f ′n−1 -

d X ′n
-

Y ′
n−1

βn−1

? g′n−1 -

d Y ′n
-

W ′
n−1

γn−1

?

d W
′n

-

Let [wn] ∈ Hn(W). We show that Hn−1(α)∂n[wn] = ∂′nHn(γ)[wn]. Let yn ∈

g−1
n (wn) and xn−1 = f−1

n−1d
Y
n yn. Then

Hn−1(α)∂n[wn] = Hn−1(α)[xn−1] = [αn−1xn−1].

Let x′n−1 = f
′−1
n−1d

Y′

n βnyn. Since γn(wn) = γn(gnyn) = g′nβnyn, we have

∂′nHn(γ)[wn] = ∂′n[γnwn] = [x′n−1].

On the other hand,

f ′n−1(αn−1xn−1) = βn−1fn−1xn−1 = βn−1d
Y
n yn = dY′

n βnyn = f ′n−1x
′
n−1
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Since f ′n−1 is injective, it follows that αn−1xn−1 = x′n−1, which completes the

proof.

Theorem 1.1.12. (Snake Lemma). Consider the commutative diagram of

modules with exact rows:

M ′ f - M
g - M ′′ - 0

0 - N ′

α

? f ′ - N

β

? g′ - N ′′

γ

?

Then there is the following exact sequence

kerα
f−→ kerβ

g−→ kerγ ∂−→ cokerα
f ′−→ cokerβ

g′−→ cokerγ

Proof. It is easy to see that f = f |ker α : kerα −→ kerβ, g = g|ker β : kerβ −→

kerγ,

f ′ : cokerα −→ cokerβ

n′ + imα 7−→ f ′(n′) + imβ

and

g′ : cokerβ −→ cokerγ

n + imβ 7−→ g′(n) + imγ

are well defined. There are eight inclusions to verify.

(1) imf ⊆ kerg: Let m′ ∈ M ′, then

gf(m′) = gf(m′) = gf(m′) = 0.

Hence imf ⊆ kerg.

(2) kerg ⊆ imf : Let m ∈ kerg. Then m ∈ ker β and g(m) = 0. Therefore

there exists m′ ∈ M ′ such that m = f(m′). Since f ′α(m′) = βf(m′) = β(m) =

0, we have m′ ∈ ker α and hence m = f(m′) = f(m′) ∈ imf .
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Define

∂ : kerγ −→ cokerα

m′′ 7−→ n′ + imα (n′ ∈ f ′
−1

βg−1(m′′)).

We show that ∂ is well defined. Let n′1, n
′
2 ∈ f ′

−1
βg−1(m′′). Then there are

m1,m2 ∈ g−1(m′′) such that f ′(n′1) = β(m1) and f ′(n′2) = β(m2). Therefore

g(m1) = g(m2) = m′′ and hence m1 − m2 ∈ kerg = imf . Hence there exists

m′ ∈ M ′ such that f(m′) = m1−m2. By commutativity of the above diagram,

f ′(n′1 − n′2) = β(m1 −m2) = βf(m′) = f ′α(m′).

Hence n′1 − n′2 = α(m′) and so n′1 + imα = n′1 + imα.

(3) ker∂ ⊆ img: Let λ ∈ ker∂. Then λ ∈ kerγ ⊆ M ′′. Therefore there

exists m ∈ M such that m ∈ g−1(λ). Since 0 = ∂(λ) = f ′
−1

β(m) + imα, there

exists m′ ∈ M ′ such that f ′
−1

β(m) = α(m′). By commutativity of the above

diagram,

βf(m′) = f ′α(m′) = β(m).

Hence m−f(m′) ∈ kerβ. Now we have g(m−f(m′)) = g(m−f(m′)) = g(m) = λ

and hence ker∂ ⊆ img.

(4) img ⊆ ker∂: Let g(m) ∈ img, where m ∈ kerβ. Then ∂(g(m)) = n′+imα,

where n′ = f ′
−1

β(m) ∈ f ′
−1

βg−1(g(m)). Therefore ∂(g(m)) = f ′
−1

β(m) +

imα = imα. and hence img ⊆ ker∂.

(5) im∂ ⊆ kerf ′: Let ∂(λ) = f ′
−1

β(m) + imα ∈ im∂, where m ∈ g−1(λ).

Then

f ′∂(λ) = f ′(f ′−1
β(m) + imα) = f ′f ′

−1
β(m) + imβ = imβ.

It follows that im∂ ⊆ kerf ′.

(6) kerf ′ ⊆ im∂: Let f ′(n′+imα) = 0. Then f ′(n′)+ imβ = imβ. Therefore

there exists m ∈ M such that f ′(n′) = β(m). By commutativity of the above

diagram,

γg(m) = g′β(m) = g′f ′(n′) = 0.
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Therefore g(m) ∈ kerγ. Since n′ = f ′
−1

β(m) ∈ f ′
−1

βg−1(g(m)), we have

∂(g(m)) = n′ + imα. Thus kerf ′ ⊆ im∂.

(7) imf ′ ⊆ kerg′: Let n′ ∈ N ′. Then

g′ f ′(n′ + imα) = g′(f ′(n′) + imβ) = g′f ′(n′) + imγ = 0.

Hence imf ′ ⊆ kerg′.

(8) kerg′ ⊆ imf ′: Let n + imβ ∈ kerg′. Then g′(n) ∈ imγ. Therefore there

exists m′′ ∈ M ′′ such that g′(n) = γ(m′′). Since g in surjective, there exists

m ∈ M such that g(m) = m′′. By commutativity of the above diagram,

g′(n) = γ(m′′) = γg(m) = g′β(m).

Hence n−β(m) ∈ kerg′ = imf ′ and so there exists n′ ∈ N ′ such that n−β(m) =

f ′(n′). It follows that n+imβ = f ′(n′)+imβ ∈ imf ′ and hence kerg′ ⊆ imf ′.

Remark 1.1.13. The snake is

f g

0

j

f g

N N ′′

cokerα

0

f ′ g′

f ′ g′

- - -

- -

- -

-

- -

? ? ?

? ?

? ? ?

kerα kerβ

M M ′′

N ′

cokerβ cokerγ

α β
γ

?

M ′

kerγ

Definition 1.1.14. Two morphisms f, g : X −→ Y are homotopic, denoted

by f ' g, if for all n ∈ Z, there are homomorphism sn : Xn −→ Yn+1 so that

fn − gn = dY
n+1sn + sn−1d

X
n ,

as illustrated in the diagram below:
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. . . - Xn+1

dX
n+1 - Xn

dX
n- Xn−1

- . . .

	..
...

...
...

...

sn
	..
...

...
...

...

sn−1

. . . - Yn+1

θn+1

? dY
n+1 - Yn

x θn

?

y

dY
n- Yn−1

θn−1

?
- . . .

where θn = fn − gn.

Theorem 1.1.15. (Homotopic Morphisms Theorem). If f, g : X −→ Y

are homotopic morphisms, then

Hn(f) = Hn(g) for all n ∈ Z.

Proof. Let zn ∈ kerdX
n . Then

Hn(f)[zn] = [fnzn] = [(gn + dY
n+1sn + sn−1d

X
n )zn]

= [gnzn] + [dY
n+1snzn] + [sn−1d

X
n zn]

= Hn(g)[zn].

This completes the proof.

Definition 1.1.16. A Free resolution of a module M is an exact sequence

F : · · · −→ F2
d2−→ F1

d1−→ F0
ε−→ M −→ 0

in which each Fi is free. Also then the sequence (no longer exact at F0)

FM : · · · −→ F2
d2−→ F1

d1−→ F0
d0−→ 0

is called the deleted free resolution of the resolution F.

Projective resolution and flat resolution are defined similarly.

Definition 1.1.17. An injective resolution of a module M is an exact sequence

E : 0 −→ M
ε−→ E0 d0

−→ E1 d1

−→ E2 −→ · · ·

in which each Ei is injective. Also then the sequence (no longer exact at E0)

EM : 0 −→ E0 d0

−→ E1 d1

−→ E2 −→ · · ·

is called the deleted injective resolution of the resolution E.
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We may, in fact, define the deleted complex of any complex:

Definition 1.1.18. Let X be a complex of the form

X : · · · −→ X2
d2−→ X1

d1−→ X0
ε−→ M −→ 0.

Then the complex

XM : · · · −→ X2
d2−→ X1

d1−→ X0
d0−→ 0

is called the deleted complex of the complex X. Similarly, if Y is a complex

of the form

Y : 0 −→ N
ε−→ Y 0 d0

−→ Y 1 d1

−→ Y 2 −→ · · · ,

then the complex

YN : 0 −→ Y 0 d0

−→ Y 1 d1

−→ Y 2 −→ · · ·

is called the deleted complex of the complex Y.

Theorem 1.1.19. Every module M has a free resolution (which is necessarily

a projective resolution and a flat resolution).

Proof. There is a free module F0 and an exact sequence

0 −→ K1
i1−→ F0

ε−→ M −→ 0.

Similarly, there is a free module F1, and an exact sequence

0 −→ K2
i2−→ F1

ε1−→ K1 −→ 0,

and, by induction, a free module Fn, and an exact sequence

0 −→ Kn+1
in+1−→ Fn

εn−→ Kn −→ 0

Assemble all these sequences into the diagram

- - - - -· · · F3 F2 F1 F0 M 0
εd1d2d3

K1

�
RR

�

K3
-0

i1
ε3

K2

R �ε2 i2i3 ε1
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where dn : Fn −→ Fn−1 is the composite inεn. Because kerε = K1 = imd1,

and for every n, kerdn = Kn+1 and imdn = Kn, we have that the top row is

exact.

Theorem 1.1.20. Every module M has an injective resolution.

Proof. Every module can be imbedded as a submodule of an injective module.

Thus, there is an injective module E0, an injection ε : M −→ E0 and an exact

sequence

0 −→ M
ε−→ E0 π0

−→ C0 −→ 0.

Similarly, there is an injective module E1, and an exact sequence

0 −→ C0 ε1

−→ E1 π1

−→ C1 −→ 0,

and, by induction, an injective module En, and an exact sequence

0 −→ Cn−1 εn

−→ En πn

−→ Cn −→ 0,

Assemble all these sequences into the diagram

- - - -0 M E0 E1 E2 · · ·ε d0 d1

C0 C1
R

�
R

�
π0 ε1

π1 ε2

-0

where dn : En −→ En+1 is the composite εn+1πn. Because imε = M = kerd0,

and for every n, kerdn = Cn−1 and imdn = Cn, we have that the top row is

exact.

Theorem 1.1.21. (Comparison Theorem). Consider the diagram

P : . . . - Pn+1

dP
n+1- Pn

- . . . - P0
dP
0 - M −→ 0

Q : . . . - Qn+1

αn+1

? dQ
n+1- Qn

αn

?
- . . . - Q0

α0

? dQ
0 - N

f

?
−→ 0

where the rows are complexes. If each Pn in the top row is projective, and if

the bottom row is exact, then there exists a morphism α : PM −→ QN (the
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dashed arrows) making the completed diagram commute. Moreover, any two

such morphisms are homotopic.

Proof. (1) The existence of α. We prove the existence of α = {αn} by induction

on n ≥ 0. For the base step n = 0, consider the diagram

P0

	..
...

...
...

...

α0

Q0
dQ
0 - N

fdP
0

?
- 0

Since P0 is projective and dQ
0 is surjective, there exists an R-module homomor-

phism α0 : P0 −→ Q0 such that dQ
0 α0 = fdP

0 . Suppose that n ≥ 0 and that

we have already constructed R-homomorphisms αi : Pi −→ Qi, 0 ≤ i ≤ n such

that

dQ
i+1αi+1 = αid

P
i+1 for 0 ≤ i ≤ n− 1.

We have dQ
n αndP

n+1 = αn−1d
P
n dP

n+1 = 0. Therefore imαndP
n+1 ⊆ kerdQ

n =

imdQ
n+1 and hence we have the following diagram.

Pn+1

	..
...

...
...

...

αn+1

Qn+1

dQ
n+1- imdQ

n+1

αndP
n+1

?
- 0

Since Pn+1 is projective, there exists an R-module homomorphism αn+1 :

Pn+1 −→ Qn+1 such that dQ
n+1αn+1 = αndP

n+1. This completes induction and

therefore, the existence of a morphism α = {αn} is achieved.

(2) Uniqueness of α to homotopy. Assume β = {βn} : PM −→ QN is

another morphism satisfying dQ
0 β0 = fdP

0 and

dQ
n+1βn+1 = βndP

n+1 for n ≥ 0.

We construct a homotopy s by induction. Let P−1 = Q−1 = 0. Take s−1 :
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P−1 −→ Q0 to be the zero map. Now consider the following diagram.

. . . - Pn+1

dP
n+1- Pn

- . . . P1
- P0

dP
0- P−1 = 0

	..
...

...
...

...

sn

	..
...

...
...

...

s0

	..
...

...
...

...

s−1

. . . - Qn+1

dQ
n+1- Qn

- . . . Q1
- Q0

dQ
0- Q−1 = 0

Since P0 is projective, there exists an R-module homomorphism s0 : P0 −→

Q1 such that α0 − β0 = dQ
1 s0 and hence α0 − β0 = dQ

1 s0 + s−1d
P
0 . We have

dQ
n+1(αn+1 − βn+1 − sndP

n+1) = αndP
n+1 − βndP

n+1 − dQ
n+1sndP

n+1 =

(αn − βn)dP
n+1 − dQ

n+1sndP
n+1 = (dQ

n+1sn − sn−1d
P
n )dP

n+1 − dQ
n+1sndP

n+1 = 0

Therefore im(αn+1−βn+1−sndP
n+1) ⊆ imdQ

n+2 and hence we have the following

diagram.

Pn+1

	..
...

...
...

...

sn+1

Qn+2

dQ
n+2 - imdQ

n+2

αn+1 − βn+1 − sndP
n+1

?
- 0

Since Pn+1 is projective, there exists an R-module homomorphism sn+1 : Pn+1 −→

Qn+2 such that αn − βn − sndP
n+1 = dQ

n+2sn+1 or αn+1 − βn+1 = dQ
n+2sn+1 +

sndP
n+1. This completes induction and hence α ' β.

Theorem 1.1.22. (Horseshoe Lemma). Let 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0

be a short exact sequence and let P′, P′′ be projective resolutions for M ′ and
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M ′′ respectively, as shown in the diagram:

...
...

P ′
1

?
P ′′

1

?

P ′
0

?
P ′′

0

?

0 - M ′

ε

?

′

f - M
g - M ′′

ε

?

′′

- 0

0
?

0
?

Then there exists a projective resolution P of M and morphisms α : PM ′ −→

PM and β : PM −→ PM ′′ such that 0 −→ PM ′
α−→ PM

β−→ PM ′′ −→ 0 is an

exact sequence of complexes.

Proof. We show first that there is a projective P0 and a commutative 3 × 3
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diagram with exact columns and rows:

0 0 0

0 - K ′
0

?
- K0

?
- K ′′

0

?
- 0

0 - P ′
0

? α0 - P0

? β0 - P ′′
0

?
- 0

	..
...

...
...

...

h

0 - M ′

ε

?

′

f - M

ε

? g - M ′′

ε

?

′′

- 0

0
?

0
?

0
?

Take P0 = P ′
0 ⊕ P ′′

0 and define α0 : P ′
0 −→ P0 by x′ 7−→ (x′, 0), and

β0 : P0 −→ P ′′
0 by (x′, x′′) 7−→ x′′. It is clear that P0 is projective and that

0 −→ P ′
0

α0−→ P0
β0−→ P ′′

0 −→ 0

is exact. Since P ′′
0 is projective and g is surjective, there exists an R-module

homomorphism h : P ′′
0 −→ M such that gh = ε′′. Now define

ε : P0 −→ M

(x′, x′′) 7−→ fε′x′ + hx′′.

Surjectivity of ε follows from the Five Lemma. It is an easy verification that, if

K0 = kerε, K ′
0 = kerε′, and K ′′

0 = kerε′′, the resulting 3×3 diagram commutes.

Exactness of the top row is the 3× 3 Lemma.

We now prove, by induction on n ≥ 0, that the bottom n rows of the desired

diagram can be constructed. Consider the following commutative diagrams with
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exact rows and columns:
0 0 0

0 - K ′
n

?
- Kn

?
- K ′′

n

?
- 0

0 - P ′
n

? αn - Pn

? βn - P ′′
n

?
- 0

0 - K ′
n−1

?
- Kn−1

?
- K ′′

n−1

?
- 0

0
?

0
?

0
?

and
0 0 0

0 - K ′
n+1

?
- Kn+1

?
- K ′′

n+1

?
- 0

0 - P ′
n+1

? αn+1- Pn+1

? βn+1- P ′′
n+1

?
- 0

0 - K ′
n

?
- Kn

?
- K ′′

n

?
- 0

0
?

0
?

0
?

Combining the above diagrams, we get the following commutative diagram with
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exact rows and columns:

0 - P ′
n+1

- Pn+1
- P ′′

n+1
- 0

0 - K ′
n

?
- Kn

?
- K ′′

n

?
- 0

0 - P ′
n

?
- Pn

?
- P ′′

n

?
- 0

By defining dP
n+1 : Pn+1 −→ Pn as the as the composite Pn+1 −→ Kn −→ Pn,

we get the following commutative diagram with exact rows:

0 - P ′
n+1

- Pn+1
- P ′′

n+1
- 0

0 - P ′
n

?
- Pn

dP
n+1

?
- P ′′

n

?
- 0

It is easy to see that imdP
n+1 = kerdP

n and hence the proof is completed.

We finally make some remarks about the dual notion.

Definition 1.1.23. Let R be a ring. By a cochain complex (X, dX) of R-

modules we mean a sequence

(X, dX) =: . . . - Xn−1 dn−1
X- Xn dn

X- Xn+1 - . . .

of R-modules {Xn} and R-module homomorphisms {dn
X : Xn −→ Xn+1} such

that dn
Xdn−1

X = 0 for all n ∈ Z. Xn and dn
X are called the module in degree n and

the n-th differential of (X, dX), respectively. We usually simplify the notation

and write X instead of (X, dX). Morphisms of cochain complexes are defined

analogously to chain complexes. Given a cochain complex (X, dX) we define its

cohomology Hn(X) by
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Hn(X) = kerdn/imdn−1 for all n ∈ Z

With the obvious definition of induced maps, Hn(−) then becomes a functor,

the cohomology functor. In case of a cochain complex we will speak of co-

cycles, coboundaries, cohomology classes. All the theorems we have established

for homology therefore work for cohomology without requiring separate proofs.

Indeed, given a chain complex (X, dX) we obtain a cochain complex (Y, δY) by

setting Y n = X−n, δn = d−n. Conversely given a cochain complex we obtain a

chain complex by this procedure.

Exercises

1. (i) Let T : RMod −→ RMod be an exact covariant functor. For each n ∈ Z

and every complex X of R-modules, prove that Hn(TX) ∼= THn(X).

(ii) Let T : RMod −→ RMod be an exact contravariant functor. For

each n ∈ Z and every complex X of R-modules, prove that Hn(TX) ∼=

TH−n(X).

2. State and prove the dual of Comparison Theorem.

3. State and prove the dual of Horseshoe Lemma.



Chapter 2

DERIVED FUNCTORS

2.1 Covariant Left Derived Functors

Suppose for the time being that for every R-module M we have chosen exactly

one deleted projective resolution PM.

Definition 2.1.1. Let S be another ring and T : RMod −→ SMod be a covari-

ant functor. For n ∈ Z, define

(LnT )M = Hn(TPM) = kerTdn/imTdn+1.

To complete the definition of LnT , we must describe its action on homomor-

phism f : M −→ N . By the Comparison Theorem, there is a morhism

α : PM −→ PN over f . Then Tα : TPM −→ TPN is also a morphism,

and we define (LnT )f : (LnT )M −→ (LnT )N by

(LnT )f = Hn(Tα).

In more detail,

(LnT )f : (LnT )M −→ (LnT )N

[z] 7−→ [(Tαn)z]

24
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In pictures, look at the chosen projective resolutions:

. . . - Pn+1

dP
n+1- Pn

- . . . - P0
dP
0 - M - 0

. . . - P ′
n+1

αn+1

? dP′

n+1- P ′
n

αn

?
- . . . - P ′

0

α0

? dP′

0 - N

f

?
- 0

Fill in the dashed arrows, delete M and N , apply T to this diagram, and then

take the map induced by Tα in homology.

Theorem 2.1.2. Let S be another ring and T : RMod −→ SMod be an additive

covariant functor. Then

LnT : RMod −→ SMod

is an additive covariant functor for every n ∈ Z.

Proof. We will prove that (LnT )f is well defined on homorphism f . If β :

PM −→ PN is another morphism over f , then the Comparison Theorem says

that α ' β, so that Tα ' Tβ (Exercise 1). It follows from Homotopic Morphism

Theorem that Hn(Tα) = Hn(Tβ). Thus (LnT )f is independent of the choice

of the morphim α.

By taking 1Pn
: Pn −→ Pn, the identity map for every n ∈ Z, we get a

morphism 1PM
= {1Pn} : PM −→ PM and we have

(LnT )(1M ) = Hn(T (1PM
)) = Hn(1TPM

) = 1Hn(TPM
) = 1(LnT )M .

Let g : N −→ L be an R-homomorphism and {βn} : PN −→ PL be a morphism

over g. Then {βnαn} : PM −→ PL is a morphism over gf : M −→ L. By

definition, we have

(LnT )(gf)[x] = [T (βnαn)(x)] = [(T (βn)T (αn))(x)]

= [T (βn)(T (αn))(x)] = (LnT )g[T (αn)(x)]

= (LnT )g((LnT )f [x]) = ((LnT )g(LnT )f)[x]

This implies that (LnT )(gf) = (LnT )g(LnT )f . Therefore LnT is a covariant

functor. Finally, we show that LnT is an additive covariant functor. Let h :
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M −→ N be another R-homomorphism and {γn} : PM −→ PN be a morphism

over h. Then {αn + γn} : PM −→ PN is a morphism over f + h. By definition,

we have

LnT (f + h)[x] = [T (αn + γn)(x)] = [(T (αn) + T (γn))(x)]

= [T (αn)(x) + T (γn)(x)] = [T (αn)(x)] + [T (γn)(x)]

= (LnT )f [x] + (LnT )h[x] = ((LnT )f + (LnT )h)[x]

which implies that LnT (f + h) = LnT (f) + LnT (h).

Definition 2.1.3. LnT is called the nth left derived functor of T .

Definition 2.1.4. Let C and D be two categories and T,U : C −→ D be two

covariant functors. We say that τ : T −→ U is a natural transformation (of

functors) if for every object M ∈ C there is a morphism τM : T (M) −→ U(M)

in D such that for every morphism f : M −→ N in C, the diagram

T (M) τM−−−−→ U(M)

T (f)

y yU(f)

T (N) τN−−−−→ U(N)

is commutative. There is a similar definition if both T and U are contravariant.

If for each M ∈ C, τM : T (M) −→ U(M) is an equivalence, then τ is called

naturallly equivalence. Also then T and U are called naturally equivalent

functors and we write T ≈ U .

Assume that new choices

. . . −→ P 2 −→ P 1 −→ P 0 −→ M −→ 0

of projective resolutions (one for each module M) have been made, and denote

the left derived functors arising from these new choices by LnT . our next project

is to show that LnT and LnT are essentially the same.

Theorem 2.1.5. Given an additive covariant functor T : RMod −→ SMod,

where R and S are rings, then the functors LnT and LnT are naturally equiv-

alent. In particular, for each M ,

(LnT )M ∼= (LnT )M.
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i.e., there modules are independent of the choice of projective resolution of M .

Proof. Consider the diagram

. . . - Pn+1
- Pn

- . . . - P0
- M - 0

. . . - Pn+1

in+1

?
- Pn

in

?
- . . . - P 0

i0

?
- M

1M

?
- 0

where the top row is the chosen projective resolution of M used to define LnT

and the bottom is that used to define LnT . By the Comparison Theorem,

there is a morphism i : PM −→ PM over 1M . Similarly, there is a morphism

j : PM −→ PM over 1M . Therefore ji : PM −→ PM and ij : PM −→ PM

are morphisms over 1M . Since 1PM
: PM −→ PM and 1PM

: PM −→ PM

are also morphisms over 1M , we have ji ' 1PM
and ij ' 1PM

. It follows

that T (j)T (i) = T (ji) ' 1TPM
and T (i)T (j) = T (ij) ' 1TPM

. Since Hn :

RComp −→ RMod is an additive functor for every n ≥ 0;

1LnT (M) = 1Hn(TPM ) = Hn(1TPM
) = Hn(T (ji)) = Hn(T (j))Hn(T (i)),

1LnT (M) = 1Hn(TP M ) = Hn(1TP M
) = Hn(T (ij)) = Hn(T (i))Hn(T (j)).

If we define

τM = Hn(T (i)) : (LnT )M −→ (LnT )M,

then τM is an isomorphism with Hn(T (j)) as its inverse.

We now prove that the isomorphisms τM constitute a natural isomorphism:

if f : M −→ N , we must show commutativity of

(LnT )M
τM- (LnT )M

(LnT )N

(LnT )f

? τN- (LnT )N

(LnT )f

?

Consider the diagrams
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. . . - Pn+1
- Pn

- . . . - P0
- M - 0

. . . - Qn+1

αn+1

?
- Qn

αn

?
- . . . - Q0

α0

?
- N

f

?
- 0

. . . - Qn+1

kn+1

?
- Qn

kn+1

?
- . . . - Q0

k0

?
- N

1N

?
- 0,

and

. . . - Pn+1
- Pn

- . . . - P0
- M - 0

. . . - Pn+1

in+1

?
- Pn

in

?
- . . . - P 0

i0

?
- M

1M

?
- 0

. . . - Qn+1

αn+1

?
- Qn

αn

?
- . . . - Q0

α0

?
- N

f

?
- 0

Applying the Comparison Theorem yields morphisms α : PM −→ PN and

α : PM −→ PN over the homomorphism f . Let k : PN −→ PN be a morphism

over 1N . Then we have morphism kα : PM −→ PN over 1Nf = f and αi :

PM −→ PN over f1M = f . Therefore kα ' αi and so T (kα) ' T (αi). Hence

HnT (k)HnT (α) = HnT (kα) = HnT (αi) = HnT (α)HnT (i).

It follows that τN (LnT )f = (LnT )fτM . This completes the proof.

Theorem 2.1.6. Let 0 −→ K −→ P
ε−→ M −→ 0 be an exact sequence of

R-modules, where P is projective. Then if T is covariant

(Ln+1T )M ∼= (LnT )K (n ≥ 0)

Proof. Let

P : · · · −→ P2
d2−→ P1

d1−→ P0 = P
ε−→ M −→ 0
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be a projective resolution for M . By exactness of P, we have K = kerε = imd1,

and so

· · · −→ P3
d3−→ P2

d2−→ P1
d1−→ K −→ 0

is a projective resolution of K. Since the indices are no longer correct, relabel

the indices, and define Qn = Pn+1 (n ≥ 0), ∆n = dn+1 (n ≥ 1). Therefore we

have the following projective resolution for K.

· · · −→ Q2
∆2−→ Q1

∆1−→ Q0
d1−→ K −→ 0.

By definition, we have

(Ln+1T )M ∼= kerTdn+1/imTdn+2 = kerT∆n/imT∆n+1
∼= (LnT )K.

This completes the proof.

Corollary 2.1.7. Let

· · · −→ P2
d2−→ P1

d1−→ P0
ε−→ M −→ 0

be a projective resolution of M , and define K0 = kerε and Kn = kerdn for all

n ≥ 1. Then if T is covariant,

(Ln+1T )M ∼= (LnT )K0
∼= (Ln−1T )K1

∼= . . . ∼= (L1T )Kn−1.

Proof. Let K−1 = M . Consider the following short exact sequences

0 −→ Ki −→ Pi −→ Ki−1 −→ 0 (i ≥ 0)

In view of the above theorem, we have

(Ln+1T )Ki−1
∼= (LnT )Ki (n ≥ 0, i ≥ 0)

This completes the proof.

Theorem 2.1.8. Let 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0 be an exact sequence of

modules. If T : RMod −→ SMod is an additive covariant functor, then there is

a long exact sequence:

· · · −→ (LnT )M ′ (LnT )f−→ (LnT )M
(LnT )g−→ (LnT )M ′′ ∂n−→ · · ·

−→ (L0T )M ′ (L0T )f−→ (L0T )M
(L0T )g−→ (L0T )M ′′ −→ 0
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Proof. Let PM′ and PM′′ be the chosen deleted projective resolutions of M ′ and

of M ′′, respectively. By the Horseshoe Lemma, there is a projective resolution

PM of M with

0 −→ PM′
α−→ PM

β−→ PM′′ −→ 0.

Applying T gives another exact sequence of complexes (because, additive func-

tors preserve split short exact sequences)

0 −→ TPM′
Tα−→ TPM

Tβ−→ TPM′′ −→ 0.

Thus there is a long exact sequence

· · · −→ Hn(TPM′)
Hn(Tα)−→ Hn(TPM)

Hn(Tβ)−→ (Hn(TPM′′) ∂n−→ · · · ;

that is, there is an exact sequence

· · · −→ (LnT )M ′ (LnT )f−→ (LnT )M
(LnT )g−→ (LnT )M ′′ ∂n−→ · · · ;

Notice that we have (LnT )M instead of (LnT )M for the projective resolution of

M constructed with the Horseshoe Lemma need not be the projective resolution

originally chosen.

There are morphisms i : PM −→ PM and j : PM −→ PM, where both i, j

are morphisms over 1M in opposite directions. In fact, Hn(Ti) : Hn(TPM) −→

Hn(TPM) is the inverse of Hn(Tj) : Hn(TPM) −→ Hn(TPM). Therefore, by

Exercise 3, we have the following exact sequence

· · · - Hn(TPM′) Hn(Tj)Hn(Tα)- Hn(TPM) Hn(Tβ)Hn(Ti)- (Hn(TPM′′) ∂n- · · · ;

Let δ : PM′ −→ PM and ε : PM −→ PM′′ be morphisms over f : M ′ −→ M

and g : M −→ M ′′, respectively. Now TjTα ' Tδ , because both are morphisms

over Tf . Similarly, TβT i ' Tε. Then we have exact sequence

· · · - Hn(TPM′) Hn(Tδ)- Hn(TPM) Hn(Tε)- (Hn(TPM′′) ∂n- · · · .

We conclude there is an exact sequence

· · · −→ (LnT )M ′ (LnT )f−→ (LnT )M
(LnT )g−→ (LnT )M ′′ ∂n−→ · · · .
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Finally, the sequence does terminate at 0, for LnT = 0 for negative n. Indeed,

every Pn, hence every TPn, is 0 for negative n.

Corollary 2.1.9. Let T : RMod −→ SMod be an additive covariant functor.

Then L0T is right exact.

Proof. We have just seen that exactness of M ′ −→ M −→ M ′′ −→ 0 yields the

exactness of (L0T )M ′ −→ (L0T )M −→ (L0T )M ′′ −→ 0.

Theorem 2.1.10. Let T : RMod −→ SMod be an additive covariant functor.

Then L0T ≈ T if and only if T is right exact.

Proof. The “only if” parts comes from the right exactness of L0T . For the

converse, let

P : · · · −→ P2
d2−→ P1

d1−→ P0
ε−→ M −→ 0

be the chosen projective resolution of M . But right exactness of T gives an

exact sequence

TP1
Td1−→ TP0

Tε−→ TM −→ 0.

This exact sequences induce isomorphism

τM : TP0/kerTε −→ TM.

By definition

(L0T )M = kerTd0/imTd1 = TP0/imTd1 = TP0/kerTε ∼= TM.

Let N be another R-module and f : M −→ N be a homomorphism. Let

Q : · · · −→ Q2 −→ Q1 −→ Q0
ε′−→ N −→ 0

be a projective resolution of N . By the Comparison Theorem, there is a mor-

phism α : PM −→ PN over f . We then get commutative diagram with exact

rows.

TP1
- TP0

Tε- TM - 0

TQ1

Tα1

?
- TQ0

Tα0

? Tε′- TN

Tf

?
- 0
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This commutative diagram induces commutative diagram

(L0T )M ∼= TP0/kerTε
τM - TM - 0

(L0T )N ∼= TQ0/kerTε′

(L0T )f

? τN - TN

Tf

?
- 0

This completes the proof that L0T is naturally equivalent to T .

Definition 2.1.11. Let M be an R-module and a ∈ C(R). Then a� : M −→ M

defined by x 7−→ ax is an R-module homomorphism, called multiplication by

a (or homothety). We say that a functor T : RMod −→ RMod preserves

multiplications if T (a�) = a� for all a ∈ C(R).

Theorem 2.1.12. If T : RMod −→ RMod is an additive covariant functor

which preserves multiplications, then LnT : RMod −→ RMod also preserves

multiplications.

Proof. Let

P : · · · −→ P2 −→ P1 −→ P0
ε−→ M −→ 0

be a projective resolution of M . Let a ∈ C(R) and consider the commutative

diagram

. . . - P1
- P0

ε - M - 0

. . . - P1

a�

?
- P0

a�

? ε - M

a�

?
- 0

Applying T gives

. . . - TP1
- TP0

Tε- TM - 0

. . . - TP1

a�

?
- TP0

a�

? Tε- TM

a�

?
- 0
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Now we have

(LnT )(a�) : Hn(TPM) −→ Hn(TPM)

[zn] 7−→ [azn] = a[zn].

That is (LnT )(a�) = a�.

As you would expect, the case for contravariant functors is done similarly

and the process produces contravariant left derived functors.

2.2 Right Derived Functors

We are now going to define right derived functors RnT , where T : RMod −→

SMod is an additive covariant (contravariant) functor.

Definition 2.2.1. Let S be another ring and T : RMod −→ SMod be a covari-

ant functor. For n ∈ Z, define

(RnT )M = Hn(TEM) = kerTdn/imTdn−1.

To complete the definition of RnT , we must describe its action on homomor-

phism f : M −→ N . By the dual of the Comparison Theorem, there is a

morphism α : EM −→ EN over f . Then Tα : TEM −→ TEN is also a mor-

phism, and we define

(RnT )f : (RnT )M −→ (RnT )N

[z] 7−→ [(Tαn)z].

Definition 2.2.2. Let S be another ring and T : RMod −→ SMod be a con-

travariant functor. For n ∈ Z, define

(RnT )M = Hn(TPM) = kerTdn+1/imTdn.

To complete the definition of RnT , we must describe its action on homomor-

phism f : M −→ N . By the Comparison Theorem, there is a morphism
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α : PM −→ PN over f . Then Tα : TPN −→ TPM is also a morphism,

and we define

(RnT )f : (RnT )N −→ (RnT )M

[z] 7−→ [(Tαn)z].

Let T : RMod −→ SMod be an additive covariant (contravariant) functor.

Then the proof of the following results are dual (similar) to the proof of results

in previous section.

Theorem 2.2.3. Let T : RMod −→ SMod be an additive covariant (contravari-

ant) functor, where R and S are rings, then

RnT : RMod −→ SMod

is an additive covariant (contravariant) functor for every n ∈ Z.

Definition 2.2.4. Let T : RMod −→ SMod be an additive covariant (con-

travariant) functor, where R and S are rings. Then RnT is called the nth right

derived functor of T .

Theorem 2.2.5. If T : RMod −→ SMod is an additive covariant (contravari-

ant) functor which preserves multiplications, then RnT : RMod −→ SMod also

preserves multiplications.

Theorem 2.2.6. Let 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0 be an exact sequence of

modules.

(1) If T : RMod −→ SMod is an additive covariant functor, then there is a

long exact sequence:

0 −→ (R0T )M ′ (R0T )f−→ (R0T )M
(R0T )g−→ (R0T )M ′′ −→ · · ·

· · · −→ (RnT )M ′ (RnT )f−→ (RnT )M
(RnT )g−→ (RnT )M ′′ −→ · · ·

(2) If T : RMod −→ SMod is an additive contravariant functor, then there
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is a long exact sequence:

0 −→ (R0T )M ′′ (R0T )g−→ (R0T )M
(R0T )f−→ (R0T )M ′ −→ · · ·

· · · −→ (RnT )M ′′ (RnT )g−→ (RnT )M
(RnT )f−→ (RnT )M ′ −→ · · ·

Corollary 2.2.7. If T : RMod −→ SMod is an additive covariant (contravari-

ant) functor, then the functor R0T is left exact.

Theorem 2.2.8. Let T : RMod −→ SMod be an additive covariant (contravari-

ant) functor. Then R0T ≈ T if and only if T is left exact.

Theorem 2.2.9. (1) Let

0 −→ M
ε−→ E −→ V −→ 0

be an exact sequence of R-modules, where E is injective. Then if T is covariant,

(Rn+1T )M ∼= (RnT )V (n ≥ 0)

(2) Let

0 −→ K −→ P
ε−→ M −→ 0

be an exact sequence of R-modules, where P is projective. Then if T is con-

travariant,

(Rn+1T )M ∼= (RnT )K.

Corollary 2.2.10. (1) Let

0 −→ M
ε−→ E0 d0

−→ E1 d1

−→ E2 −→ . . .

be an injective resolution of M , and define V0 = imε and Vn = imdn−1 for all

n ≥ 1. Then if T is covariant,

(Rn+1T )M ∼= (RnT )V0
∼= (Rn−1T )V1

∼= . . . ∼= (R1T )Vn−1.

(2) Let

· · · −→ P2
d2−→ P1

d1−→ P0
ε−→ M −→ 0
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be a projective resolution of M , and define K0 = kerε and Kn = kerdn for all

n ≥ 1. Then if T is contravariant,

(Rn+1T )M ∼= (RnT )K0
∼= (Rn−1T )K1

∼= . . . ∼= (R1T )Kn−1.

Exercises

1. Let f, g : X −→ Y be morphisms, and let T : RComp −→ RComp be an

additive functor. If f ' g, prove that Tf ' Tg.

2. Let T : RMod −→ SMod be a covariant functor. Show that the following

are equivalent:

(1) T is additive,

(2) T (M ⊕N) ∼= T (M)⊕ T (N) for all M,N ∈ RMod,

(3) T (M ⊕M) ∼= T (M)⊕ T (M) for all M ∈ RMod.

3. Consider the exact sequence

A
f−→ B

g−→ C.

If i : B −→ B′ is an isomorphism with inverse j : B′ −→ B, prove

exactness of

A
if−→ B′ gj−→ C.

4. Let T : RMod −→ RMod be an additive functor and n ≥ 1.

(1) If T is covariant, prove that (LnT )P = 0 for all projective P ∈ RMod,

(2) If T is covariant, prove that (RnT )E = 0 for all injective E ∈ RMod,

(3) If T is contravariant, prove that (RnT )P = 0 for all projective P ∈

RMod.

5. Let T : RMod −→ SMod be a covariant functor.

(1) Show that Ln(LmT ) = 0 if m > 0,

(2) Show that Ln(L0T )M ∼= (LnT )M for all M ∈ RMod.
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6. Set R = Z4, S = Z and

T : RMod −→ SMod

M 7−→ Hom(Z2,M).

Write down a projective resolution of Z2 and compute (LnT )Z2.



Chapter 3

Tor AND Ext

3.1 Elementary Properties

Definition 3.1.1. Let M be a right R-module and N be a left R-module. Then

(1) If T (−) = M ⊗R −, then TorR
n (M,−) := LnT (−).

(2) If T (−) = −⊗R N , then torR
n (−, N) := LnT (−).

(3) If T (−) = Hom(N,−), then Extn
R(N,−) := RnT (−).

(4) If T (−) = Hom(−, N), then extn
R(−, N) := RnT (−).

Proposition 3.1.2. Let M be a right R-module and N be a left R-module.

Then the following hold.

(1) TorR
0 (M,−) ≈ M ⊗R −.

(2) torR
0 (−, N) ≈ −⊗R N.

(3) Ext0R(N,−) ≈ Hom(N,−).

(4) ext0R(−, N) ≈ Hom(−, N).

Proof. Follows from Theorem 2.1.10 and Theorem 2.2.8.

Proposition 3.1.3. (1) Let M and P are right R-modules with P projective,

and let N and Q are left R-modules with Q projective. Then

TorR
n (M,Q) = torR

n (P,N) = 0.

38
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(2) Let N , P and E are left R-modules with P projective and E injective.

Then

ExtnR(N,E) = extnR(P,N) = 0.

Proof. Follows from Exercise 4 of Chapter 2.

Proposition 3.1.4. The following hold.

(1) Let · · · −→ P2
d2−→ P1

d1−→ P0
ε−→ N −→ 0 be a projective resolution of

a left R-module N , and define K0 = kerε and Kn = kerdn for all n ≥ 1. If M

is a right R-module, then

TorR
n+1(M,N) ∼= TorR

n (M,K0) ∼= . . . ∼= TorR
1 (M,Kn−1).

(2) Let · · · −→ P2
d2−→ P1

d1−→ P0
ε−→ M −→ 0 be a projective resolution of a

right R-module M , and define K0 = kerε and Kn = kerdn for all n ≥ 1. If N

is a left R-module, then

torR
n+1(M,N) ∼= torR

n (K0, N) ∼= . . . ∼= torR
1 (Kn−1, N).

(3) Let 0 −→ M
ε−→ E0 d0

−→ E1 d1

−→ E2 −→ . . . be an injective resolution of a

left R-module N , and define V0 = imε and Vn = imdn−1 for all n ≥ 1. If M is

a left R-module, then

Extn+1
R (M,N) ∼= ExtnR(M,V0) ∼= . . . ∼= Ext1R(M,Vn−1).

(4) Let · · · −→ P2
d2−→ P1

d1−→ P0
ε−→ M −→ 0 be a projective resolution of a

left R-module M , and define K0 = kerε and Kn = kerdn for all n ≥ 1. If N is

a left R-module, then

extn+1
R (M,N) ∼= extnR(K0, N) ∼= . . . ∼= ext1R(Kn−1, N).

Proof. Follows from Corollary 2.1.7 and Corollary 2.2.10.

Proposition 3.1.5. Let 0 −→ K ′ −→ K −→ K ′′ −→ 0 be an exact sequence

of modules. Then there are the long exact sequences

(1) · · · −→ TorR
n (M,K ′) −→ TorR

n (M,K) −→ TorR
n (M,K ′′) −→ · · ·

−→ M ⊗R K ′ −→ M ⊗R K −→ M ⊗R K ′′ −→ 0
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(2) · · · −→ torR
n (K ′, N) −→ torR

n (K, N) −→ torR
n (K ′′, N) −→ · · ·

−→ K ′ ⊗R N −→ K ⊗R N −→ K ′′ ⊗R N −→ 0

(3) 0 −→ Hom(N,K ′) −→ Hom(N,K) −→ Hom(N,K ′′) −→ · · ·

· · · −→ ExtnR(N,K ′) −→ ExtnR(N,K) −→ ExtnR(N,K ′′) −→ · · ·

(4) 0 −→ Hom(K ′′, N) −→ Hom(K, N) −→ Hom(K ′, N) −→ · · ·

· · · −→ extnR(K ′′, N) −→ extnR(K, N) −→ extnR(K ′, N) −→ · · ·

Proof. Follows from Theorem 2.1.8 and Theorem 2.2.6.

Theorem 3.1.6. (1) Let M be a right R-module, let N be a left R-module.

Then TorR
n (M,N) ∼= torR

n (M,N) for all n ≥ 0.

(2) Let M and N be left R-modules. Then ExtnR(M,N) ∼= extnR(M,N) for

all n ≥ 0.

Proof. We only prove (1); the proof of the dual (2) is similar.

(1): The proof is by induction on n ≥ 0. By Theorem 2.1.10, TorR
0 (M,−) ≈

M ⊗R − and torR
0 (−, N) ≈ −⊗R N . Therefore

TorR
0 (M,N) ∼= M ⊗R N ∼= torR

0 (M,N).

We now suppose that n ≥ 1. Let

· · · −→ P2
d2−→ P1

d1−→ P0
ε−→ M −→ 0

be a projective resolution of M and

· · · −→ Q2
d′2−→ Q1

d′1−→ Q0
ε′−→ N −→ 0

be a projective resolution of N . Set

K−1 = M, K0 = kerε, Ki = kerdi (i ≥ 1),

H−1 = N, H0 = kerε′, Hi = kerd′i (i ≥ 1).
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Since tensor is a bifunctor the exact sequences

0 −→ Ki −→ Pi
di−→ Ki−1 −→ 0,

0 −→ Hj −→ Qj

d′j−→ Hj−1 −→ 0.

give a commutative diagram

0 0
?
?
y

?
?
y

X 0 W
?
?
y

?
?
y

?
?
y

0 −−−−−→ Y −−−−−→ Ki ⊗Hj −−−−−→ Ki ⊗Qj −−−−−→ Ki ⊗Hj−1 −−−−−→ 0
?
?
y

?
?
y

?
?
y

0 −−−−−→ Pi ⊗Hj −−−−−→ Pi ⊗Qj −−−−−→ Pi ⊗Hj−1 −−−−−→ 0
?
?
y

?
?
y

?
?
y

0 −−−−−→ Z −−−−−→ Ki−1 ⊗Hj −−−−−→ Ki−1 ⊗Qj −−−−−→ Ki−1 ⊗Hj−1 −−−−−→ 0
?
?
y

?
?
y

?
?
y

0 0 0

where X = torR
1 (Ki−1,Hj), Y = TorR

1 (Ki,Hj−1), W = torR
1 (Ki−1,Hj−1), and

Z = TorR
1 (Ki−1,Hj−1). By Exercise 1, we conclude, for all i, j ≥ 0,

torR
1 (Ki−1,Hj) ∼= TorR

1 (Ki,Hj−1),

torR
1 (Ki−1,Hj−1) ∼= TorR

1 (Ki−1,Hj−1).

Therefore the theorem has been proved for n = 1. By Theorem 2.1.6, we have

TorR
n+1(M,N) ∼= TorR

n (M,H0) ∼= . . . ∼= TorR
1 (M,Hn−1) = TorR

1 (K−1,Hn−1),

torR
n+1(M,N) ∼= torR

n (K0, N) ∼= . . . ∼= torR
1 (Kn−1, N) = torR

1 (Kn−1,H−1).
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Then

TorR
n+1(M,N) ∼= TorR

1 (K−1,Hn−1),

torR
1 (K−1,Hn−1) ∼= TorR

1 (K0,Hn−2),
...

torR
1 (Kn−2,H0) ∼= TorR

1 (Kn−1,H−1),

torR
1 (Kn−1,H−1) ∼= torR

n+1(M,N).

This completes the proof.

Remark 3.1.7. In view of the above theorem, we have

(1)

TorR
n (M,N) ∼= Hn(PM ⊗R N) ∼= Hn(M ⊗R PN),

where PM is a deleted projective resolution of a right R-module M and PN

is a deleted projective resolution of a left R-module N .

(2)

Extn
R(M,N) ∼= Hn(Hom(PM, N)) ∼= Hn(Hom(M,EN)),

where PM is a deleted projective resolution of a left R-module M and EN

is a deleted injective resolution of a left R-module N .

Theorem 3.1.8. Let R be a commutative ring and M,N be R-modules. Then

(1) TorR
n (M,N) is an R-module,

(2) ExtnR(M,N) is an R-module.

Proof. We only prove (1); the proof of the dual (2) is similar.

(1): Since TorR
0 (M,N) ∼= M ⊗R N is an R-module, we may assume that

n ≥ 1. Let · · · −→ P2
d2−→ P1

d1−→ P0
ε−→ M −→ 0 be a projective resolution of

M . For any n ≥ 1, Pn ⊗R N is an R-module. Also for n ≥ 1, x ∈ Pn, y ∈ N

and a ∈ R,

(dn ⊗ 1)(a(x⊗ y)) = (dn ⊗ 1)((ax)⊗ y) = dn(ax)⊗ y = adn(x)⊗ y

= a(dn(x)⊗ y) = a(dn ⊗ 1)(x⊗ y)
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which proves that dn ⊗ 1 is an R-homomorphism. Therefore ker(dn ⊗ 1) and

im(dn+1 ⊗ 1) are R-submodule of Pn ⊗R N and hence

TorR
n (M,N) ∼= ker(dn ⊗ 1)/im(dn+1 ⊗ 1)

is an R-module.

Theorem 3.1.9. (1) If R is a ring, M is a right R-module, and N is a left

R-module, then

TorR
n (M,N) ∼= TorRop

n (N,M)

for all n ≥ 0, where Rop is the opposite ring of R.

(2) If R is a commutative ring and M and N are R-modules, then for all

n ≥ 0,

TorR
n (M,N) ∼= TorR

n (N,M).

Proof. (1): Choose a deleted projective resolution PM of the right R-module

M . Then PM is also a deleted projective resolution of the left Rop-module M .

Now the morphism α : PM ⊗R N −→ N ⊗Rop PM given by

αn : Pn ⊗R N −→ N ⊗Rop Pn

xn ⊗ b 7−→ b⊗ xn

is an isomorphism of compelexes, because each αn is an isomorphism of abelian

groups (its inverse is b⊗ xn 7−→ xn ⊗ b). Since isomorphic complexes have the

same homology,

Hn(PM ⊗R N) ∼= Hn(N ⊗Rop PM).

Hence TorR
n (M,N) ∼= TorRop

n (N,M) for all n ≥ 0.

(2): This is obvious from part (1).

Theorem 3.1.10. Let R be a commutative ring and N an R-module, and {Mi}

a family of R-modules. Then

(1) TorR
n (

∐
i Mi, N) ∼=

∐
i TorR

n (Mi, N),

(2) ExtnR(
∐

i Mi, N) ∼=
∏

i ExtnR(Mi, N),

(3) ExtnR(N,
∏

i Mi) ∼=
∏

i ExtnR(N,Mi),
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Proof. We shall prove (1); the proofs of (2) and (3) are similar.

(1): We use induction on n. The case n = 0 is Corollary 3.1.2. For each i,

construct an exact sequence

0 - Ki
- Pi

- Mi
- 0,

where Pi is projective. There is an exact sequence

0 -
∐

i

Ki
-

∐
i

Pi
-

∐
i

Mi
- 0,

in which
∐

i Pi being direct sum of projective modules is projective. There is a

commutative diagram with exact rows:

0 = TorR
1 (

∐
i

Pi, N) - TorR
1 (

∐
i

Mi, N) - (
∐

i

Ki)⊗N - (
∐

i

Pi)⊗N

0 =
∐

i

TorR
1 (Pi, N) -

∐
i

TorR
1 (Mi, N)

h

?
-

∐
i

(Ki ⊗N)

g

?
-

∐
i

(Pi ⊗N)

f

?

Where the vertical arrows are the isomorphisms and the maps in the bottom row

are the maps of Corollary 3.1.5 at each coordinate. Now TorR
1 (

∐
i Pi, N) = 0 =∐

i TorR
1 (Pi, N), because

∐
i Pi and each Pi are projective; and so by Exercise

4, there exists an isomorphism TorR
1 (

∐
i Mi, N) -

∐
i TorR

1 (Mi, N) making

the augmented diagram commute. Thus the theorem is true for n = 1. Suppose

that n > 1 and that TorR
n (

∐
i Li, N) ∼=

∐
i TorR

n (Li, N) for every family of

R-modules {Li}. Then by Corollary 3.1.4, we have

TorR
n+1(

∐
i

Mi, N) ∼= TorR
n (

∐
i

Ki, N) ∼=
∐

i

TorR
n (Ki, N) ∼=

∐
i

TorR
n+1(Mi, N).

This completes induction.

Theorem 3.1.11. Let N be a left R-module, and (Mi, fji) be a direct system

of right R-modules. Then

TorR
n (lim−→Mi, N) ∼= lim−→TorR

n (Mi, N).
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Proof. We use induction on n. The case n = 0 is Corollary 3.1.2. For each i,

construct an exact sequence

0 - Ki
- Pi

- Mi
- 0,

where Pi is projective. There is an exact sequence

0 −→ lim−→Ki −→ lim−→Pi −→ lim−→Mi
- 0,

Now lim−→Pi is flat, for every projective module is flat, and a direct limit of flat

modules is flat. Therefore Exercise 2 implies that

TorR
1 (lim−→Pi, N) = 0 = lim−→TorR

1 (Pi, N).

So, there is a commutative diagram with exact rows

0 = TorR
1 (lim−→Pi, N) - TorR

1 (lim−→Mi, N) - (lim−→Ki)⊗N - (lim−→Pi)⊗N

0 = lim−→TorR
1 (Pi, N) - lim−→TorR

1 (Mi, N)

h

?
- lim−→(Ki ⊗N)

g

?
- lim−→(Pi ⊗N)

f

?

where the vertical arrows are the isomorphisms and the maps in the bottom row

are the maps of Corollary 3.1.5 at each coordinate. By Exercise 4, there exists

an isomorphism TorR
1 (lim−→Mi, N) h−→ lim−→TorR

1 (Mi, N) making the augmented

diagram commute. Thus the theorem is true for n = 1. Suppose that n > 1

and that TorR
n (lim−→Li, N) ∼= lim−→TorR

n (Li, N) for every family of R-modules {Li}.

Then by Corollary 3.1.4, we have

TorR
n+1(lim−→Mi, N) ∼= TorR

n (lim−→Ki, N) ∼= lim−→TorR
n (Ki, N) ∼= lim−→TorR

n+1(Mi, N).

This completes induction.

3.2 Natural Isomorphisms

Various natural isomorphisms involving tensor and Hom can be extended to

isomorphisms involving Tor and Ext.
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Theorem 3.2.1. Let R and S be commutative rings, and let ϕ : R −→ S be

a homomorphism. Let M be a finitely generated free R-module. If N is an

R-module, then

HomR(M,N)⊗R S ∼= HomS(M ⊗R S, N ⊗R S).

Proof. Exercise.

Theorem 3.2.2. Let R and S be commutative rings.

(1) (Adjoint Isomorphism) Consider the situation (LR, RMS , NS). Then

there is a natural isomorphism

ϕ : HomS(M ⊗R L,N) −→ HomR(L,HomS(M,N)),

defined for each f : M ⊗R L −→ N by (ϕ(f)l)(m) = f(m⊗ l).

(2) Consider the situation (RL, RMS , NS). If L is a finitely generated free

R-module, then there is a natural isomorphism

ϕ : HomS(M,N)⊗R L −→ HomS(HomR(L,M), N),

defined by ϕ(f ⊗ l)(g) = f(g(l)).

(3) (Associativity) Consider the situation (LR, RMS , SN). Then there is

a natural isomorphism

L⊗R (M ⊗S N) −→ (L⊗R M)⊗S N,

defined by l ⊗ (m⊗ n) −→ (l ⊗ m)⊗ n.

(4) Consider the situation (RL, RMS , NS). If L is a finitely generated free

R-module, then there is a natural isomorphism

ϕ : HomR(L,M)⊗S N −→ HomR(L,M ⊗S N),

defined by ϕ(f ⊗ n)(l) = f(l)⊗ n.

Proof. Exercise.
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Theorem 3.2.3. Let R and S be commutative rings, and let ϕ : R −→ S be a

flat homomorphism. If M is an R-module and N is an S-module, then

TorR
n (M,N) ∼= TorS

n(M ⊗R S, N).

Proof. Since PM ⊗R S is a deleted projective resolution for M ⊗R S, Theorem

3.2.2(3), implies that

TorR
n (M,N) ∼= Hn(PM ⊗R S) ∼= Hn(PM ⊗R (S ⊗S N))

∼= Hn((PM ⊗R S)⊗S N) ∼= TorS
n(M ⊗R S, N).

This completes the proof.

Theorem 3.2.4. Let R and S be commutative rings, and let ϕ : R −→ S be a

flat homomorphism. If M and N are R-modules, then

S ⊗R TorR
n (M,N) ∼= TorS

n(M ⊗R S, N ⊗R S).

Proof. By the above theorem, we have

S ⊗R TorR
n (M,N) ∼= S ⊗R Hn(PM ⊗R N) ∼= Hn((PM ⊗R N)⊗R S)

∼= Hn(PM ⊗R (N ⊗R S)) ∼= TorR
n (M,N ⊗R S)

∼= TorS
n(M ⊗R S, N ⊗R S)

This completes the proof.

Theorem 3.2.5. Let R be a Noetherian ring and S be commutative rings and let

let ϕ : R −→ S be a flat homomorphism. If M is a finitely generated R-module

and N is a R-module, then

S ⊗R ExtnR(M,N) ∼= ExtnS(S ⊗R M,S ⊗R N).

Proof. By Theorem 3.2.2, we have

S ⊗R Extn
R(M,N) ∼= S ⊗R Hn(Hom(PM, N)) ∼= Hn(S ⊗R (HomR(PM, N)))

∼= Hn(HomS(S ⊗R PM, S ⊗R N))

∼= Extn
S(S ⊗R M,S ⊗R N).

This completes the proof.
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Theorem 3.2.6. Let R and S be commutative rings.

(1): Consider the situation (LR, RMS , ES). If E is injective, then

ExtnR(L,HomS(M,E)) ∼= HomS(TorR
n (L,M), E).

(2): Let R be a Noetherian ring. Consider the situation (LR, RMS , ES). If

L is finitely generated and E is injective, then

HomS(ExtnR(L,M), E) ∼= TorR
n (HomS(M,E), L).

(3): Consider the situation (LR, RMS , FS). If F is flat, then

TorR
n (L,M ⊗S F ) ∼= TorR

n (L,M)⊗S F.

(4): Let R be a Noetherian ring. Consider the situation (LR, RMS , FS). If

L is finitely generated and F is flat, then

ExtnR(L,M)⊗S F ∼= ExtnR(L,M ⊗S F ).

Proof. (1): It follows from Theorem 3.2.2(1) that

Extn
R(L, HomS(M,E)) ∼= HnHomR(PL,HomS(M,E))

∼= HnHomS(PL ⊗R M,E)

∼= HomS(Hn(PL ⊗R M), E)

∼= HomS(TorR
n (L,M), E).

(2): Since L is finitely generated and R is Noetherian, there exists a free

resolution

F : . . . −→ Fn −→ Fn−1 −→ . . . −→ F0 −→ L −→ 0

in which every Fn is a finitely generated free R-module. It follows from Theorem

3.2.2(2) that

HomS(Extn
R(L,M), E)) ∼= HomS(HnHomR(FL,M), E)

∼= Hn(HomS(HomR(FL,M), E))

∼= Hn(HomS(M,E)⊗R FL)

∼= TorR
n (HomS(M,E), L).
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(3): It follows from Theorem 3.2.2(3) that

TorR
n (L, M ⊗S F ) ∼= Hn(PL ⊗R (M ⊗S F ))

∼= Hn((PL ⊗R M)⊗S F )

∼= Hn(PL ⊗R M)⊗S F

∼= TorR
n (L,M)⊗S F.

(4): Since L is finitely generated and R is Noetherian, there exists a free

resolution

F : . . . −→ Fn −→ Fn−1 −→ . . . −→ F0 −→ L −→ 0

in which every Fn is a finitely generated free R-module. It follows from Theorem

3.2.2(4) that

Extn
R(L, M)⊗S F ∼= Hn(Hom(FL,M))⊗S F

∼= Hn(Hom(FL,M)⊗S F )

∼= Hn(Hom(FL,M ⊗S F ))

∼= Extn
R(L,M ⊗S F ).

3.3 Tor and Torsion

In this section, R denotes an integral domain, Q denotes its quotient field,

denotes the module K = Q/R.

Definition 3.3.1. The torsion submodule T (M) of an R-module M is de-

fined by

T (M) = {x ∈ M |rx = 0 for some nonzero r ∈ R}.

M is called torsion if T (M) = M and M is called torsion-free if T (M) = 0.

It is easy to check that M/T (M) is torsion-free and T (M) is torsion.
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Remark 3.3.2. Were R not an integral domain, then T (M) might not be a

submodule.

The torsion submodule actually defines a functor: if f : M −→ N , define

T (f) = f |T (M).

Proposition 3.3.3. If R is an integral domain with quotient field Q, then every

torsion-free R-module M can be embedded in a vector space over Q. If M is a

finitely generated torsion-free R-module, then M can be embedded in a finitely

generated free R-module.

Proof. Left to the reader as an exercise, or can be found in Rotman’s book.

Lemma 3.3.4. (1) For every R-module M , we have TorR
1 (K, T (M)) ∼= T (M).

(2) For every R-module M , we have TorR
n (K, M) = 0 for all n ≥ 2.

(3) If M is a torsion-free R-module, then TorR
1 (K, M) = 0.

Proof. (1) Exactness of 0 −→ R −→ Q −→ K −→ 0 gives exactness of

TorR
1 (Q,T (M)) −→ TorR

1 (K, T (M)) −→ R⊗R T (M) −→ Q⊗R T (M).

TorR
1 (Q,T (M)) = 0 since Q is a flat R-module, and Q ⊗R T (M) = 0 because

T (M) is torsion. It follows that TorR
1 (K, T (M)) ∼= R⊗R T (M) ∼= T (M).

(2) The sequence

TorR
n (Q,M) −→ TorR

n (K, M) −→ TorR
n−1(R,M)

is exact. Since n ≥ 2, we have n− 1 ≥ 1 and so the outside terms are, because

Q and R are flat. Thus, exactness gives TorR
n (K, M) = 0.

(3) By Proposition 3.3.3 there is a vector space V over Q containing M as a

submodule. Since every vector space has a basis, V is a direct sum of copies of

Q. We conclude that V is a flat R-module. Exactness of 0 −→ M −→ V −→

V/M −→ 0 gives exactness of

TorR
2 (K, V/M) −→ TorR

1 (K, M) −→ TorR
1 (K, V ).
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Now TorR
2 (K, V/M) = 0, by part (2), and TorR

1 (K, V ) = 0, because V is flat.

We conclude from exactness that TorR
1 (K, M) = 0.

The reason for the name Tor is:

Theorem 3.3.5. TorR
1 (K, M) ∼= T (M) for all R-modules M .

Proof. Exactness of 0 −→ T (M) −→ M −→ M/T (M) −→ 0 gives exactness of

TorR
2 (K, M/T (M)) −→ TorR

1 (K, T (M)) −→ TorR
1 (K, M) −→ TorR

1 (K, M/T (M)).

The first term is 0 by Lemma 3.3.4 (2); the last term is 0 by Lemma 3.3.4 (3).

It follows that TorR
1 (K, M) ∼= TorR

1 (K, T (M)) ∼= T (M).

As an immediate consequence of Theorem 3.3.5, we have the following

Corollary 3.3.6. (1) For every module A, there is an exact sequence

0 −→ T (M) −→ M −→ Q⊗R M −→ K ⊗R M −→ 0.

(2) A module M is torsion if and only if Q⊗R M = 0.
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Exercises

1. Consider the commutative diagram with exact rows and columns

0 0y y
X 0 Wy y y

0 −−−−→ Y −−−−→ L′ −−−−→ M ′ −−−−→ N ′ −−−−→ 0y y y
0 −−−−→ L −−−−→ M −−−−→ N −−−−→ 0y y y

0 −−−−→ Z −−−−→ L′′ −−−−→ M ′′ −−−−→ N ′′ −−−−→ 0y y y
0 0 0

Prove that X ∼= Y and W ∼= Z.

2. If a right R-module F is flat, prove that TorR
1 (F,N) = 0 for all n ≥ 1

and every left R-module N . Conversely, if TorR
1 (F,N) = 0 for every left

R-module N , prove that F is flat.

The following exercise shows that we may use flat resolutions, not merely

projective resolutions, to compute Tor.

3. Let FM be a deleted flat resolution of a right R-module M and FN a

deleted flat resolution of a left R-module N . If n ≥ 0, prove that

Hn(FM ⊗R N) ∼= TorR
n (M,N) ∼= Hn(M ⊗R FN).

4. Given a commutative diagram with exact rows,

0 - L - M - N

0 - L′

h

?
- M ′

g

?
- N ′

f

?
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there exists a unique map h : L −→ L′ making the augmented diagram

commute. Moreover, h is an isomorphism if f and g are isomorphisms.

5. Compute TorZ8
n (Z4, Z4).

6. If I is a right ideal in a ring R and J a left ideal, then

(1) TorR
1 (R/I,R/J) ∼= (I ∩ J)/IJ,

(2) TorR
n (R/I,R/J) ∼= TorR

n−2(I, J) for all n > 2,

(3) TorR
2 (R/I,R/J) ∼= ker(I ⊗ J 7−→ IJ).

7. Let M be an R-module and a ∈ R. Show that

TorR
1 (R/(a),M) ∼=R/(a) {x ∈ M |ax = 0}.

8. Let R be an integral domain with quotient field Q, and let K = Q/R.

Show that

TorR
1 (K,−) ≈ T (−).

9. (Axioms for Tor). Let {Tn : RMod −→ ZMod}n≥0 be a sequence of

additive covariant functors. If,

(1) for every short exact sequence 0 −→ A −→ B −→ C −→ 0 of left

R-modules, there is a long exact sequence with natural connecting homo-

morphisms

−→ Tn+1(C)
∂n+1−→ Tn(A) −→ Tn(B) −→ Tn(C) ∂n−→ Tn−1(A) −→,

(2) T0(−) is naturally isomorphic to M ⊗R (−) for some right R-module

M , (3) Tn(P ) = 0 for all projective left R-modules P and all n ≥ 1,

show that Tn(−) is naturally isomorphic to TorR
n (M,−) for all n ≥ 0.

10. (Axioms for Covariant Ext). Let {Fn : RMod −→ ZMod}n≥0 be a

sequence of additive covariant functors. If,

(1) for every short exact sequence 0 −→ A −→ B −→ C −→ 0 of left
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R-modules, there is a long exact sequence with natural connecting homo-

morphisms

−→ Fn−1(C)
∂n−1−→ Fn(A) −→ Fn(B) −→ Fn(C) ∂n−→ Fn−1(A) −→,

(2) there is a left R-module M such that F 0(−) is naturally isomorphic

to HomR(M,−),

(3) Fn(E) = 0 for all injective left R-modules E and all n ≥ 1,

show that Fn(−) is naturally isomorphic to Extn
R(M,−) for all n ≥ 0.

11. (Axioms for Contravariant Ext). Let {Gn : RMod −→ ZMod}n≥0 be

a sequence of additive covariant functors. If,

(1) for every short exact sequence 0 −→ A −→ B −→ C −→ 0 of left

R-modules, there is a long exact sequence with natural connecting homo-

morphisms

−→ Gn−1(C)
∂n−1−→ Gn(A) −→ Fn(B) −→ Fn(C) ∂n−→ Gn−1(A) −→,

(2) there is a left R-module M such that G0(−) is naturally isomorphic

to HomR(−,M),

(3) Gn(P ) = 0 for all projective left R-modules P and all n ≥ 1,

show that Gn(−) is naturally isomorphic to Extn
R(−,M) for all n ≥ 0.
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DIMENSIONS

4.1 Homological Dimensions

Definition 4.1.1. A projective resolution

0 −→ Pn −→ Pn−1 −→ · · · −→ P0 −→ M −→ 0

of the R-module M is said to be of length n. The projective dimension of

R-module M is denoted by pdRM and is defined by

pdRM = min{n|M has a projective resolusion of length n}.

If M has no finite projective resolution, we set pdRM = ∞.

Definition 4.1.2. An injective resolution

0 −→ M −→ E0 −→ · · · −→ En−1 −→ En −→ 0

of the R-module M is said to be of length n. The injective dimension of

R-module M is denoted by idRM and is defined by

idRM = min{n|M has an injective resolusion of length n}.

If M has no finite injective resolution, we set idRM = ∞.

55
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Definition 4.1.3. A flat resolution

0 −→ Fn −→ Fn−1 −→ · · · −→ F0 −→ M −→ 0

of the R-module M is said to be of length n. The flat dimension of R-module

M is denoted by fdRM and is defined by

fdRM = min{n|M has a flat resolusion of length n}.

If M has no finite flat resolution, we set fdRM = ∞.

Example 4.1.4. (1) pd(M) = 0 if and only if M is projective,

(2) id(M) = 0 if and only if M is injective,

(3) fd(M) = 0 if and only if M is flat.

Theorem 4.1.5. The following are equivalent for a left R-module P :

(1) P is projective,

(2) ExtnR(P,N) = 0 for all modules N and all n ≥ 1,

(3) Ext1R(P,N) = 0 for all modules N .

Proof. (1) =⇒ (2) : Follows from Corollary 3.1.3(2).

(2) =⇒ (3) : Trivial.

(3) =⇒ (1) : Let 0 −→ L −→ M −→ N −→ 0 be a short exact sequence

of R-modules. Then by Corollary 3.1.5(3), we have the following long exact

sequence

0 −→ Hom(P,L) −→ Hom(P,M) −→ Hom(P,N) −→ Ext1R(P,L)︸ ︷︷ ︸
0

−→ · · · .

Therefore P is projective.

Lemma 4.1.6. A left R-module E is injective if and only if Ext1R(R/I,E) = 0

for all left ideals I.

Proof. Use Baer criterion.

As an immediate consequence of the above lemma, we have the following
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Theorem 4.1.7. The following are equivalent for a left R-module E:

(1) E is injective,

(2) ExtnR(M,E) = 0 for all modules M and all n ≥ 1,

(3) Ext1R(M,E) = 0 for all modules M ,

(4) Ext1R(R/I,E) = 0 for all left ideals I.

Lemma 4.1.8. A left R-module F is flat if and only if TorR
1 (R/I, F ) = 0 for

every finitely generated right ideal I.

Proof. Exercise.

As an immediate consequence of the above lemma, we have the following

Theorem 4.1.9. The following are equivalent for a left R-module P :

(1) F is flat,

(2) TorR
n (M,F ) = 0 for all modules M and all n ≥ 1,

(3) TorR
1 (M,F ) = 0 for all modules M ,

(4) TorR
1 (R/I, F ) = 0 for all finitely generated right ideals I.

The next theorems generalize the above theorems.

Theorem 4.1.10. (Projective Dimension Theorem) For a left R-module

M , the following conditions are equivalent:

(1) pdRM ≤ n,

(2) ExtkR(M,N) = 0 for all modules N and all k ≥ n + 1,

(3) Extn+1
R (M,N) = 0 for all modules N ,

(4) If 0 −→ Kn−1 −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ M −→ 0 is an exact

sequence of R-modules, where Pi is projective, then Kn−1 is projective.

Proof. (1) =⇒ (2) : There is a projective resolution of M with Pk = 0 for all

k ≥ n+1. Therefore Hom(Pk, N) = 0 for all k ≥ n+1, and so Extk
R(M,N) = 0

for all k ≥ n + 1.

(2) =⇒ (3) : Trivial.

(3) =⇒ (4) : We have 0 = Extn+1
R (M,N) ∼= Ext1R(Kn−1, N) for all modules

N . Then Kn−1 is projective by Theorem 4.1.5.
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(4) =⇒ (1) : Let

· · · −→ Pn
dn−→ Pn−1

dn−1−→ Pn−2 · · · −→ P1 −→ P0 −→ M −→ 0

be a projective resolution for M . If Kn−1 = kerdn−1, then by hypothesis the

sequence

0 −→ Kn−1 −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ M −→ 0

is a projective resolution of M and hence pdRM ≤ n.

We next state without proof results for injective and flat dimensions of mod-

ules corresponding to the results obtained for projective dimensions.

Theorem 4.1.11. (Injective Dimension Theorem) For a left R-module N ,

the following conditions are equivalent:

(1) idRN ≤ n,

(2) ExtkR(M,N) = 0 for all modules M and all k ≥ n + 1,

(3) Extn+1
R (M,N) = 0 for all modules M ,

(4) Extn+1
R (R/I,N) = 0 for all left ideals I,

(5) If 0 −→ N −→ E0 −→ · · · −→ En−1 −→ V n−1 −→ 0 is an exact

sequence of R-modules, where Ei is injective, then V n−1 is injective.

Theorem 4.1.12. (Flat Dimension Theorem) For a left R-module N , the

following conditions are equivalent:

(1) fdRN ≤ n,

(2) TorR
k (M,N) = 0 for all modules M and all k ≥ n + 1,

(3) TorR
n+1(M,N) = 0 for all modules M ,

(4) TorR
n+1(R/I,N) = 0 for all finitely generated right ideals I,

(5) If 0 −→ Yn−1 −→ Fn−1 −→ · · · −→ F1 −→ F0 −→ N −→ 0 is an exact

sequence of R-modules, where Fi is flat, then Yn−1 is flat.

Theorem 4.1.13. (1) Let M be an (R,S)-bimodule and E be an injective S-

module. Then

idRHomS(M,E) ≤ fdRM.
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In particular, if M is a flat R-module, then HomS(M,E) is an injective R-

module.

(2) Let R be a Noetherian ring. Let M be an (R,S)-bimodule and E be an

injective S-module. Then

fdRHomS(M,E) ≤ idRM.

In particular, if M is an injective R-module, then HomS(M,E) is a flat R-

module.

(3) Let M be an (R,S)-bimodule and F be a flat S-module. Then

fdR(M ⊗S F ) ≤ fdRM.

In particular, if M is a flat R-module, then M ⊗S F is a flat R-module.

(4) Let R be a Noetherian ring. Let M be an (R,S)-bimodule and F be a

flat S-module. Then

idR(M ⊗S F ) ≤ idRM.

In particular, if M is an injective R-module, then M ⊗S F is an injective R-

module.

Proof. (1): Let n ∈ N. If n ≤ idRHomS(M,E), then there exists an R-module

L such that Extn
R(L,HomS(M,E)) 6= 0. Therefore HomS(TorR

n (L,M), E) 6= 0,

by Theorem 3.2.6 (1) and hence TorR
n (L,M) 6= 0. It follows that n ≤ fdRM.

(2): Let n ∈ N. If n ≤ fdRHomS(M,E), then there exists a finitely generated

R-module L such that TorR
n (L,HomS(M,E)) 6= 0. Therefore HomS(Extn

R(L, M), E) 6=

0, by Theorem 3.2.6(2) and hence Extn
R(L,M) 6= 0. It follows that n ≤ idRM.

(3): Let n ∈ N. If n ≤ fdR(M ⊗S F ), then there exists an R-module L such

that TorR
n (L,M ⊗S F ) 6= 0. Therefore TorR

n (L, M) 6= 0, by Theorem 3.2.6(3).

It follows that n ≤ fdRM.

(4): Let n ∈ N. If n ≤ idR(M ⊗S F ), then there exists a finitely generated

R-module L such that Extn
R(L, M) ⊗S F 6= 0. Therefore Extn

R(L,M) 6= 0, by

Theorem 3.2.6(4). It follows that n ≤ idRM.
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Corollary 4.1.14. (1) Let M be an (R,S)-bimodule and E be a faithfully in-

jective S-module. Then

idRHomS(M,E) = fdRM.

(2) Let R be a Noetherian ring. Let M be an (R,S)-bimodule and E be a

faithfully injective S-module. Then

fdRHomS(M,E) = idRM.

(3) Let M be an (R,S)-bimodule and F be a faithfully flat S-module. Then

fdR(M ⊗S F ) = fdRM.

(4) Let R be a Noetherian ring. Let M be an (R,S)-bimodule and F be a

faithfully flat S-module. Then

idR(M ⊗S F ) = idRM.

Proof. (1): Let n ∈ N. If n ≤ fdRM , then there exists an R-module L such that

TorR
n (L,M) 6= 0. Since E is a faithfully injective R-module, HomS(TorR

n (L, M), E) 6=

0 and hence Extn
R(L, HomS(M,E)) 6= 0, by Theorem 3.2.6(1). It follows that

n ≤ idRHomS(M,E).

(2): Let n ∈ N. If n ≤ idRM , then, by Theorem 4.1.11, there exists

a finitely generated (cyclic) R-module L such that Extn
R(L,M) 6= 0. Since

E is a faithfully injective S-module, HomS(Extn
R(L,M), E) 6= 0 and hence

TorR
n (L,HomS(M,E)) 6= 0, by Theorem 3.2.6(2). It follows that n ≤ fdRHomS(M,E).

(3): Let n ∈ N. If n ≤ fdRM , then there exists an R-module L such that

TorR
n (L,M) 6= 0. Since F is a faithfully flat S-module, TorR

n (L,M) ⊗S F 6= 0

and hence TorR
n (L,M ⊗S F ) 6= 0, by Theorem 3.2.6(3). It follows that n ≤

fdR(M ⊗S F ).

(4): Let n ∈ N. If n ≤ idRM , then, by Theorem 4.1.11, there exists a

finitely generated (cyclic) R-module L such that Extn
R(L,M) 6= 0. Since F is a

faithfully flat S-module, Extn
R(L,M)⊗S F 6= 0 and hence Extn

R(L,M⊗S F ) 6= 0,

by Theorem 3.2.6(4). It follows that n ≤ idR(M ⊗S F ).
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Proposition 4.1.15. Let ϕ : R −→ S be a homomorphism of rings. Then

(1) If E is an injective S-module, then idRE ≤ fdRS. Moreover if E is a

faithfully injective S-module, then the inequality is equality.

(2) If R is a Noetherian ring and E is an injective S-module, then fdRE ≤

idRS. Moreover if E is a faithfully injective S-module, then the inequality is

equality.

(3) If F is a flat S-module, then fdRF ≤ fdRS. Moreover if F is a faithfully

flat S-module, then the inequality is equality.

(4) If R is a Noetherian ring and F is a flat S-module, then idRF ≤ idRS.

Moreover if F is a faithfully flat S-module, then the inequality is equality

Proof. Take M = S in Theorem 4.1.13.

Proposition 4.1.16. Let ϕ : R −→ S be a homomorphism of rings. Then

(1) If E is an injective R-module, then HomR(S, E) is an injective S-module.

(2) If S is a Noetherian ring and E is an injective R-module, then fdRHomR(S, E) ≤

idRS. Moreover if E is a faithfully injective S-module, then the inequality is

equality.

(3) If F is a flat R-module, then S ⊗R F is a flat S-module.

(4) If S is a Noetherian ring and F is a flat R-module, then S ⊗R F is an

injective S-module.

Proof. Take R = S, S = R and M = S in Theorem 4.1.13.
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Theorem 4.1.17. Let R be a Noetherian ring and ϕ : R −→ S be a homomor-

phism, and let M be an S-module. Then

(1) If idSM < ∞, then fdRM ≤ idRS.

(2) If fdSM < ∞, then idRM ≤ idRS.

Proof. We shall prove (1); the proof of (2) is similar.

(1): We use induction on n = idSM . If n = 0, then M is an injective S-

module and the assertion follows from Proposition 4.1.13(2). Now let n ≥ 1.

Consider the exact sequence of S-modules

0 −→ M −→ E −→ L −→ 0,

where E is an injective S-module. Since M is not an injective S-module, we

have idSL = idSM − 1. Therefore fdRL ≤ idRS, by induction hypothesis. It

suffices to show that if idRS < m for some m ∈ N, then fdR < m. Consider the

following long exact sequence

. . . −→ TorR
m+1(L,N) −→ TorR

m(M,N) −→ TorR
m(E,N) −→ TorR

m(L,N) −→ . . . .

Since fdRL ≤ idRS < m and fdRE ≤ idRS < m (by Proposition 4.1.5(2)), we

have

TorR
m+1(L, N) = 0 = TorR

m(E,N).

Therefore TorR
m(M,N) = 0 and hence fdRM < m. Thus fdRM ≤ idRS and the

proof is complete.

Corollary 4.1.18. Let R be a Noetherian ring and ϕ : R −→ S be a homomor-

phism of rings. Then the following are equivalent.

(1) idRS < ∞,

(2) if M is an S-module, then idSM < ∞ implies that fdRM < ∞,

(3) if M is an S-module, then fdSM < ∞ implies that idRM < ∞,

(4) there is a faithfully injective S-module E such that fdRE < ∞,

(5) there is a faithfully flat S-module F such that idRF < ∞.
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Proof. (1) =⇒ (2) : Follows from Theorem 4.1.17(1).

(1) =⇒ (3) : Follows from Theorem 4.1.17(2).

(4) =⇒ (1) : Follows from Proposition 4.1.15(2).

(5) =⇒ (1) : Follows from Proposition 4.1.15(4).

(2) =⇒ (4) and (3) =⇒ (5) are trivial.

Definition 4.1.19. Let R be a ring. R is Gorenstein if idRR < ∞.

Corollary 4.1.20. Let M be module over a Noetherian Gorenstein ring R.

Then idRM < ∞ if and only if fdRM < ∞.

Proof. Follows easily from the above theorem.

4.2 Change of Rings Theorems

Theorem 4.2.1. (General Change of Rings Theorem). Let ϕ : R −→ S

be a ring homomorphism, and let M be an S-module. Then

pdRM ≤ pdSM + pdRS.

Proof. If pdSM = ∞, there is nothing to prove, so we assume pdSM = n < ∞

and proceed by induction on n. If n = 0, then M is a projective S-module; thus

there exists an S-module N such that M ⊕N =
∐

S. Exercise 1(i) applies to

give

pdRM ≤ sup{pdRM,pdRN} = pdR(M ⊕N) = pdR(
∐

S) = pdRS.

Suppose n > 0. There is an exact sequence of S-modules

0 −→ K −→ F −→ M −→ 0,

where F is a free S-module. By Exercise 5(iii)

pdRM ≤ max{1 + pdRK, pdRF} = max{1 + pdRK, pdRS}.

Since M is not a projective S-module, Exercise 2(i) gives pdSK = n−1, so that

induction gives

pdRK ≤ pdSK + pdRS.
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Combining these inequalities:

pdRM ≤ max{1+pdSK +pdRS, pdRS} ≤ max{n+pdRS, pdRS} = n+pdRS.

Proposition 4.2.2. Let R be a commutative ring and a ∈ R a non-zero divisor

element which is not a unit. Then

pdRR/(a) = 1.

Proof. From the exact sequence 0 −→ R
a.−→ R −→ R/(a) −→ 0 an Exercise

3(iii), we deduce that pdRR/(a) ≤ 1. If pdRR/(a) = 0, then there exists an

R-module N such that R/(a)⊕N =
∐

R. Then since a is not a unit,

a ∈ Z(R/(a)⊕N) = Z(
∐

R) = Z(R),

which is a contradiction. Thus pdRR/(a) = 1 and the proof is complete.

Lemma 4.2.3. Let I be an ideal of a commutative ring R.

(1) If F is a free R-module, then F/IF is a free R/I-module,

(2) If P is a projective R-module, then P/IP is a projective R/I-module.

Proof. The proof is left to the reader.

The converse of Lemma 4.2.3(1) is:

Lemma 4.2.4. Let R be a commutative Noetherian ring with maximal ideal m,

and let M be a finitely generated R-module. Let a ∈ m be a non-zero divisor

element on both R and M . If M/aM is a free R/(a)-module, then M is a free

R-module.

Proof. If M/aM = 0 then M = 0 by Nakayama’s lemma. So, suppose M/aM 6=

0. Let {x1 + aM, x2 + aM, . . . , xn + aM} be a basis for free R/(a)-module

M/aM . We claim that {x1, x2, . . . , xn} is a basis for R-module M . Since

Rx1 + Rx2 + . . . + Rxn + aM = M , it follows from Nakayama’s lemma that
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Rx1 +Rx2 + . . .+Rxn = M . To show that xi are linearly independent, suppose

that
∑n

i=1 rixi = 0. Then
∑n

i=1(ri + (a))(xi + aM) = 0. Since xi + aM are

linearly independent over R/(a), we have ri ∈ aR for all i. As a is non-zero

divisor on R and M we can divide to get a well-defined quotient ri/a ∈ R

such that
∑n

i=1(ri/a)xi = 0 in M . Continuing this process, we get a sequence

of elements ri, ri/a, ri/a2, . . .. Now consider the following ascending chain of

ideals of R.

(ri/a) ⊆ (ri/a2) ⊆ . . . .

Since R is Noetherian there exists k ∈ N such that (ri/ak) = (ri/ak+1). There-

fore, there exists r ∈ R such that ri = rira. Therefore ri = 0, which completes

the proof of this lemma.

Theorem 4.2.5. (First Change of Rings Theorem). Let a be a central

non-zero divisor in a ring R. If M 6= 0 is a R/(a)-module with pdR/(a)M finite,

then

pdRM = 1 + pdR/(a)M.

Proof. We proceed by induction on n = pdR/(a)M . As a is a regular element

and aM = 0, it follows that M cannot be a projective R-module, so pdRM ≥

1. Let n = 0. Then by Theorem 4.2.1 and Proposition 4.2.2 we see that

pdRM = pdRR/(a) = 1. If n = 1, then pdRM ≤ 2 and strict inequality means

pdRM ≤ 1. We have already shown pdRM 6= 0; we claim that pdRM 6= 1.

Otherwise there is an exact sequence of R-modules

0 −→ K −→ F −→ M −→ 0,

where F is a free R-module and K is a projective R-module. We have an exact

sequence of R/(a)-modules

0 −→ TorR
1 (R/(a),M) −→ K/aK −→ F/aF −→ M/aM −→ 0.

Since pdR/(a)M = 1 ≤ 2, TorR
1 (R/(a),M) is a projective R/(a)-module.

But

TorR
1 (R/(a),M)∼=R/(a){x ∈ M |ax = 0} = M,
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so pdR/(a)M = 0, which is a contradiction. Now, let n ≥ 2. Consider an

exact sequence of R/(a)-modules

0 −→ K1 −→ F1 −→ M −→ 0,

where F1 is a free R/(a)-module. Since pdR/(a)M 6= 0, it follows from Lemma

4.2.3(2) and Exercise 2(i) that pdRM = 1 + pdRK1 and hence

pdRM = 1 + pdRK1 = 1 + 1 + pdR/(a)K1 = 1 + pdR/(a)M.

Theorem 4.2.6. (Second Change of Rings Theorem). Let a be a central

non-zero divisor in a ring R. If M is an R-module and a is a non-zero divisor

on M , then

pdRM ≥ pdR/(a)(M/aM).

Proof. If pdRM = ∞, there is nothing to prove, so we assume n = pdRM < ∞

and proceed by induction on n. If pdRM = 0, then M/aM is a projective

R/(a)-module, so the result is true in the case n = 0. Now suppose n ≥ 1 and

consider the the exact sequence of R-modules 0 −→ K −→ F −→ M −→ 0,

where F is free. Since TorR
1 (R/(a),M) ∼= {x ∈ M |ax = 0} = 0, we have the

following exact sequence of R/(a)-modules.

0 −→ K/aK −→ F/aF −→ M/aM −→ 0.

pdRK = pdRM − 1, by Exercise 2(i). We have a 6∈ Z(K), since Z(K) ⊆

Z(F ) = Z(R). So by the inductive hypothesis pdRK ≥ pdR/(a)(K/aK).

If pdR/(a)(M/aM) = 0, we are done. Otherwise, pdR/(a)(M/aM) = 1 +

pdR/(a)(K/aK) and therefore,

pdR/(a)(M/aM) = 1 + pdR/(a)(K/aK) ≤ 1 + pdRK = pdRM.
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If R is a ring, not necessarily commutative, then R[x] denotes the polynomial

ring in which the indeterminate x commutes with every element in R (thus, x

lies in the center of R[x]). If M is a left R-module, write

M [x] = R[x]⊗R M.

Corollary 4.2.7. For every left R-module M ,

pdR[x]M [x] = pdRM.

Proof. Let pdRM ≤ n, then there is a projective resolution of R-modules

0 −→ Pn −→ Pn−1 −→ . . . −→ P0 −→ M −→ 0.

Since R[x] is a flat (free) R-module, there is an exact sequence of R[x]-modules

0 −→ Pn[x] −→ Pn−1[x] −→ . . . −→ P0[x] −→ M [x] −→ 0,

where the module Pi[x] is projective. Therefore pdR[x]M [x] ≤ n and hence

pdR[x]M [x] ≤ pdRM . On the other hand, the Second Change of Ring Theorem

implies that

pdRM = pd R[x]
xR[x]

(
M [x]
xM [x]

) ≤ pdR[x]M [x].

Lemma 4.2.8. Let R be a commutative Noetherian local ring, and let M be a

finitely generated R-module. Then the following are equivalent.

(1) M is free,

(2) M is projective,

(3) M is flat.

Proof. The proof is left to the reader.

Theorem 4.2.9. (Third Change of Rings Theorem). Let (R,m) be a

commutative Noetherian local ring, and let M be a finitely generated R-module.

If a ∈ m is a non-zero divisor on both R and M , then

pdRM = pdR/(a)(M/aM).
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Proof. We know pdRM ≥ pdR/(a)(M/aM) by the second Change of Rings

Theorem, and we shall prove pdRM ≤ pdR/(a)(M/aM). If pdR/(a)(M/aM) =

∞, there is nothing to prove, so we assume n = pdR/(a)(M/aM) < ∞ and

proceed by induction on n. If n = 0 then M/aM is projective, hence a free

R/(a)-module since R/(a) is local. It follows from the previous Lemma that M

is a free R-module, so pdRM = 0. Now suppose n ≥ 1 and consider the the

exact sequence of R-modules 0 −→ K −→ F −→ M −→ 0, where F is free.

Since TorR
1 (R/(a),M) ∼= {x ∈ M |ax = 0} = 0, we have the following exact

sequence of R/(a)-modules.

0 −→ K/aK −→ F/aF −→ M/aM −→ 0.

By the Second Change of Ring pdRM ≥ pdR/(a)(M/aM) ≥ 1. Therefore, by

Exercise 2(i) and induction hypothesis we have

pdRM = 1 + pdRK = 1 + pdR/(a)K/aK = pdR/(a)M/aM,

Which completes the proof.

Corollary 4.2.10. Let (R,m) be a commutative Noetherian local ring, and let

M be a finitely generated R-module with pdRM < ∞. If a ∈ m is a non-zero

divisor on both R and M , then

1 + pdR/(a)M = pdR/(a)(M/aM).

Proof. Combine the first and third Change of Rings Theorems.

4.3 Global and Weak Dimension

Theorem 4.3.1. (Global Dimension Theorem) The following numbers are

the same for any ring R.

(1) a = sup{idRM |M ∈ RMod},

(2) b = sup{pdRM |M ∈ RMod},

(3) c = sup{pdRR/I|I is a left ideal of R},

(4) d = sup{d|ExtdR(M,N) 6= 0 for some left modules M,N}.
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Proof. First of all, we show that b = d. Suppose

B = {pdRM |M ∈ RMod},

D = {d|Extd
R(M,N) 6= 0 for some left modules M,N}.

If t ∈ B, then there exists M ∈ RMod such that pdRM = t. By Theorem 4.1.10,

Extt
R(M,N) 6= 0 for some N ∈ RMod. Therefore t ∈ D,a nd hence B ⊆ D.

Thus b ≤ d. Now, let t ∈ D. Then there exist M,N ∈ RMod such that Hence

Extt
R(M,N) 6= 0. Therefore pdRM ≥ t. It follows that b ≥ t. Since t was an

arbitrary element of D, we have b ≥ d. Thus b = d. A similar argument shows

that a = d. It is enough to show that a ≤ c. Suppose N ∈ RMod and consider

the following exact sequence

0 −→ N −→ E0 −→ E1 −→ . . . −→ Ec−1 −→ M −→ 0,

where Ei is injective. Then Theorem 4.1.11 implies that

0 = Extc+1
R (R/I,N) ∼= Ext1R(R/I,M),

for any left ideal I of R. This implies M is injective, and hence idRN ≤ c.

Therefore a ≤ c as required.

Definition 4.3.2. The common numbers in the above theorem is called the

left global dimension of R and is denoted `.g.dimR.

We can also similarly define right global dimension r.g.dimR of R. The two

global dimensions of R are not always equal.

Theorem 4.3.3. (Weak Dimension Theorem) The following numbers are

the same for any ring R.

(1) a = sup{fdRM |M ∈ RMod},

(2) b = sup{fdRR/I|I is a left ideal of R},

(3) c = sup{fdRN |N ∈ ModR},

(4) d = sup{fdRR/I|I is a right ideal of R},

(5) e = sup{d|TorR
d (M,N) 6= 0 for some right modules M,N}.
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Definition 4.3.4. The common numbers in the above theorem is called the

weak dimension of R and is denoted w.dimR.

Lemma 4.3.5. If M is an R[x]-module, there is an exact sequence or R[x]-

modules

0 −→ M [x] −→ M [x] −→ M −→ 0.

Theorem 4.3.6. If R is any ring, then

`.g.dimR[x] = `.g.dimR + 1.

Proof. If `.g.dimR = ∞, then Corollary 4.2.7 implies that `.g.dimR[x] = ∞.

Now suppose n = `.g.dimR < ∞. Let M be an R-module such that pdRM = n.

We can view M as an R-module by setting (a0+a1x+. . .+anxn)m = a0m. It is

a consequence of the first Change of Rings Theorem that pdR[x]M = pdRM +1.

Hence `.g.dimR[x] ≥ n + 1. Now let M be an R[x]-module and consider the

following exact sequence of R[x]-modules.

0 −→ R[x]⊗R M −→ R[x]⊗R M −→ M −→ 0.

Then by Exercise 5 and Corollary 4.2.7

pdRM ≤ sup{1 + pdR[x]M [x],pdR[x]M [x]} = 1 + pdRM ≤ n + 1.

Hence `.g.dimR[x] ≤ n + 1 as required.

Corollary 4.3.7. (Hilbert’s Theorem on Syzygies). If k is a field, then

`.g.dimk[x1, x2 . . . , xn] = n.

Proof. Follows immediately from the above theorem.

Exercises

1. Let {Mi}i∈I be a family of R-modules. Show that

(i) pdR(
∐

i∈I Mi) = sup{pdRMi|i ∈ I},

(ii) idR(
∏

i∈I Mi) = sup{idRMi|i ∈ I}.
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2. (i) If 0 −→ L −→ M −→ N −→ 0 is an exact sequence with M is

projective, prove that either all three modules are projective or pdRN =

1 + pdRL.

(ii) If 0 −→ L −→ M −→ N −→ 0 is an exact sequence with M is

injective, prove that either all three modules are injective or idRL = 1 +

idRN .

3. Let 0 −→ L −→ M −→ N −→ 0 be an exact sequence of R-modules.

Show that

(i) if pdRL < pdRM , then pdRN = pdRM,

(ii) if pdRL > pdRM , then pdRN = 1 + pdRL,

(iii) if pdRL = pdRM , then pdRN ≤ 1 + pdRL.

4. Let 0 −→ L −→ M −→ N −→ 0 be an exact sequence of R-modules.

Show that

(i) pdRM ≤ max{pdRL,pdRN} with equality unless pdRN = 1 + pdRL,

(ii) idRM ≤ max{idRL, idRN} with equality unless idRN = 1 + idRL,

(iii) fdRM ≤ max{fdRL, fdRN} with equality unless fdRN = 1 + fdRL.

5. Let 0 −→ L −→ M −→ N −→ 0 be an exact sequence of R-modules. If

any two of these modules have finite projective dimension, show that the

third does also and

(i) pdRL ≤ max{pdRM,pdRN},

(ii) pdRM ≤ max{1 + pdRL,pdRN},

(iii) pdRN ≤ max{1 + pdRL,pdRM}.

Furthermore, if pdRM = 1 and pdRN ≥ 2, prove that pdRN = 1+pdRL.

6. Let 0 −→ L −→ M −→ N −→ 0 be an exact sequence of R-modules. If

any two of these modules have finite injective dimension, show that the

third does also. Furthermore, prove that
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(i) idRL ≤ max{1 + idRM, 1 + idRN},

(ii) idRM ≤ max{idRL, 1 + idRN},

(iii) idRN ≤ max{idRL, idRM}.

7. Let R be a commutative Noetherian ring and let n be a non-negative

integer. Show that the following are equivalent.

(i) pdRM ≤ n for all R-modules M ,

(ii) idRM ≤ n for all R-modules M ,

(iii) pdRM ≤ n for all finitely generated R-modules M ,

(iv) pdRM ≤ n for all cyclic R-modules M ,

(v) idRM ≤ n for all finitely generated R-modules M ,

(vi) idRM ≤ n for all cyclic R-modules M .

8. (Change of Rings Theorems for Injective Dimension).

(i) (First Change of Rings Theorem). Let M 6= 0 be an R/(a)-module

with idR/(a)M finite. Then

idRM = 1 + idR/(a)M.

(ii) (Second Change of Rings Theorem). Let M be an R-module. If

a is a non-zero divisor on M , then M is injective (in the case M/aM = 0)

or

idRM ≥ 1 + idR/(a)(M/aM).

(iii) (Third Change of Rings Theorem). Let (R,m) be a commutative

Noetherian local ring, and let M be a finitely generated R-module. If

a ∈ m is a non-zero divisor on M , then

idRM = idR(M/aM) = 1 + idR/(a)(M/aM).
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