Representations of Finite Groups

20/10/2007

Andrew Baker
Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland.
E-mail address: a.baker@maths.gla.ac.uk
URL: http://www.maths.gla.ac.uk/~ajb

Contents

Chapter 1. Linear and multilinear algebra 1
1.1. Basic linear algebra 1
1.2. Class functions and the Cayley-Hamilton Theorem 5
1.3. Separability 8
1.4. Basic notions of multilinear algebra 9
Exercises on Chapter 1 11
Chapter 2. Representations of finite groups 13
2.1. Linear representations 13
2.2. G-homomorphisms and irreducible representations 15
2.3. New representations from old 19
2.4. Permutation representations 20
2.5. Properties of permutation representations 22
2.6. Calculating in permutation representations 24
2.7. Generalized permutation representations 25
Exercises on Chapter 2 27
Chapter 3. Character theory 29
3.1. Characters and class functions on a finite group 29
3.2. Properties of characters 31
3.3. Inner products of characters 32
3.4. Character tables 35
3.5. Examples of character tables 38
3.6. Reciprocity formulæ 43
3.7. Representations of semi-direct products 45
Exercises on Chapter 3 46
Chapter 4. Some applications to group theory 49
4.1. Characters and the structure of groups 49
4.2. A result on representations of simple groups 51
4.3. A Theorem of Frobenius 52
Exercises on Chapter 4 54
Appendix A. Some group theory 57
A.1. The Isomorphism and Correspondence Theorems 57
A.2. Some definitions and notation 58
A.3. Group actions 58
A.4. The Sylow theorems 61
A.5. Solvable groups 61
A.6. Product and semi-direct product groups 62
A.7. Some useful groups 62
A.8. Some useful Number Theory 63
Bibliography 65
Solutions 67
Chapter 1 67
Chapter 2 69
Chapter 3 71
Chapter 4 74

CHAPTER 1

Linear and multilinear algebra

In this chapter we will study the linear algebra required in representation theory. Some of this will be familiar but there will also be new material, especially that on 'multilinear' algebra.

1.1. Basic linear algebra

Throughout the remainder of these notes \mathbb{k} will denote a field, i.e., a commutative ring with unity 1 in which every non-zero element has an inverse. Most of the time in representation theory we will work with the field of complex numbers \mathbb{C} and occasionally the field of real numbers \mathbb{R}. However, a lot of what we discuss will work over more general fields, including those of finite characteristic such as $\mathbb{F}_{p}=\mathbb{Z} / p$ for a prime p. Here, the characteristic of the field \mathbb{k} is defined to be the smallest natural number $p \in \mathbb{N}$ such that

$$
p 1=\underbrace{1+\cdots+1}_{p \text { summands }}=0,
$$

provided such a number exists, in which case \mathbb{k} is said to have finite or positive characteristic, otherwise \mathbb{k} is said to have characteristic 0 . When the characteristic of \mathbb{k} is finite it is actually a prime number.
1.1.1. Bases, linear transformations and matrices. Let V be a finite dimensional vector space over \mathbb{k}, i.e., a \mathbb{k}-vector space. Recall that a basis for V is a linearly independent spanning set for V. The dimension of V (over \mathbb{k}) is the number of elements in any basis, and is denoted $\operatorname{dim}_{\mathbb{k}} V$. We will often view \mathbb{k} itself as a 1 -dimensional \mathbb{k}-vector space with basis $\{1\}$ or indeed any set $\{x\}$ with $x \neq 0$.

Given two \mathbb{k}-vector spaces V, W, a linear transformation (or linear mapping) from V to W is a function $\varphi: V \longrightarrow W$ such that

$$
\begin{aligned}
\varphi\left(v_{1}+v_{2}\right) & =\varphi\left(v_{1}\right)+\varphi\left(v_{2}\right) & & \left(v_{1}, v_{2}, v \in V\right) \\
\varphi(t v) & =t \varphi(v) & & (t \in \mathbb{k})
\end{aligned}
$$

The set of all linear transformations $V \longrightarrow W$ will be denoted $\operatorname{Hom}_{\mathbb{k}}(V, W)$. This is a \mathbb{k}-vector space with the operations of addition and scalar multiplication given by

$$
\begin{aligned}
(\varphi+\theta)(u) & =\varphi(u)+\theta(u) & \left(\varphi, \theta \in \operatorname{Hom}_{\mathbb{k}}(V, W)\right), \\
(t \varphi)(u) & =t(\varphi(u))=\varphi(t u) & (t \in \mathbb{k}) .
\end{aligned}
$$

An important property of a basis is the following extension property.
Proposition 1.1. Let V, W be \mathbb{k}-vector spaces with V finite dimensional, and $\left\{v_{1}, \ldots, v_{m}\right\}$ a basis for V where $m=\operatorname{dim}_{\mathbb{k}} V$. Given a function $\varphi:\left\{v_{1}, \ldots, v_{m}\right\} \longrightarrow W$, there is a unique linear transformation $\tilde{\varphi}: V \longrightarrow W$ such that

$$
\tilde{\varphi}\left(v_{j}\right)=\varphi\left(v_{j}\right) \quad(1 \leqslant j \leqslant m)
$$

We can express this with the aid of the commutative diagram

in which the dotted arrow is supposed to indicate a (unique) solution to the problem of filling in the diagram

with a linear transformation so that composing the functions corresponding to the horizontal and right hand sides agrees with the functions corresponding to left hand side.

Proof. The formula for $\tilde{\varphi}$ is

$$
\tilde{\varphi}\left(\sum_{j=1}^{m} \lambda_{j} v_{j}\right)=\sum_{j=1}^{m} \lambda_{j} \varphi\left(v_{j}\right) .
$$

The linear transformation $\tilde{\varphi}$ is known as the linear extension of φ and is often just denoted by φ.

Let V, W be finite dimensional \mathbb{k}-vector spaces with bases $\left\{v_{1}, \ldots, v_{m}\right\}$ and $\left\{w_{1}, \ldots, w_{n}\right\}$, where $m=\operatorname{dim}_{k} V$ and $n=\operatorname{dim}_{k} W$. By Proposition 1.1, for $1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$, the function

$$
\varphi_{i j}:\left\{v_{1}, \ldots, v_{m}\right\} \longrightarrow W ; \quad \varphi_{i j}\left(v_{k}\right)=\delta_{i k} w_{j} \quad(1 \leqslant k \leqslant m)
$$

has a unique extension to a linear transformation $\varphi_{i j}: V \longrightarrow W$.
Proposition 1.2. The collection of functions $\varphi_{i j}: V \longrightarrow W(1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n)$ forms a basis for $\operatorname{Hom}_{\mathbf{k}}(V, W)$. Hence

$$
\operatorname{dim}_{\mathfrak{k}} \operatorname{Hom}_{\mathfrak{k}}(V, W)=\operatorname{dim}_{\mathfrak{k}} V \operatorname{dim}_{\mathfrak{k}} W=m n .
$$

A particular and important case of this is the dual space of V,

$$
V^{*}=\operatorname{Hom}(V, \mathbb{k}) .
$$

Notice that $\operatorname{dim}_{\mathbb{k}} V^{*}=\operatorname{dim}_{\mathbb{k}} V$. Given any basis $\left\{v_{1}, \ldots, v_{m}\right\}$ of V, define elements $v_{i}^{*} \in V^{*}$ ($i=1, \ldots, m$) by

$$
v_{i}^{*}\left(v_{k}\right)=\delta_{i k},
$$

where $\delta_{i j}$ is the Kronecker δ-function for which

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Then the set of functions $\left\{v_{1}^{*}, \ldots, v_{m}^{*}\right\}$ forms a basis of V^{*}. There is an associated isomorphism $V \longrightarrow V^{*}$ under which

$$
v_{j} \longleftrightarrow v_{j}^{*} .
$$

If we set $V^{* *}=\left(V^{*}\right)^{*}$, the double dual of V, then there is an isomorphism $V^{*} \longrightarrow V^{* *}$ under which

$$
v_{j}^{*} \longleftrightarrow\left(v_{j}^{*}\right)^{*} .
$$

Here we use the fact that the v_{j}^{*} form a basis for V^{*}. Composing these two isomorphisms we obtain a third $V \longrightarrow V^{* *}$ given by

$$
v_{j} \longleftrightarrow\left(v_{j}^{*}\right)^{*}
$$

In fact, this does not depend on the basis of V used, although the factors do! This is sometimes called the canonical isomorphism $V \longrightarrow V^{* *}$.

The set of all $(\mathbb{k}$-) endomorphisms of V is

$$
\operatorname{End}_{\mathbb{k}}(V)=\operatorname{Hom}_{\mathbb{k}}(V, V)
$$

This is a ring (actually a \mathbb{k}-algebra, and also non-commutative if $\operatorname{dim}_{\mathbb{k}} V>1$) with addition as above, and composition of functions as its multiplication. There is a ring monomorphism

$$
\mathbb{k} \longrightarrow \operatorname{End}_{\mathbb{k}}(V) ; \quad t \longmapsto t \mathrm{Id}_{V}
$$

which embeds \mathbb{k} into $\operatorname{End}_{\mathbb{k}}(V)$ as the subring of scalars. We also have

$$
\operatorname{dim}_{\mathbb{k}} \operatorname{End}_{\mathbb{k}}(V)=\left(\operatorname{dim}_{\mathbb{k}} V\right)^{2}
$$

Let $\mathrm{GL}_{\mathbb{k}}(V)$ denote the group of all invertible \mathbb{k}-linear transformations $V \longrightarrow V$, i.e., the group of units in $\operatorname{End}_{\mathbb{k}}(V)$. This is usually called the general linear group of V or the group of linear automorphisms of V and denoted $\mathrm{GL}_{\mathbb{k}}(V)$ or $\operatorname{Aut}_{\mathbb{k}}(V)$.

Now let $\mathbf{v}=\left\{v_{1}, \ldots, v_{m}\right\}$ and $\mathbf{w}=\left\{w_{1}, \ldots, w_{n}\right\}$ be bases for V and W. Then given a linear transformation $\varphi: V \longrightarrow W$ we may define the matrix of φ with respect to the bases \mathbf{v} and \mathbf{w} to be the $n \times m$ matrix with coefficients in \mathbb{k},

$$
\mathbf{w}[\varphi]_{\mathbf{v}}=\left[a_{i j}\right]
$$

where

$$
\varphi\left(v_{j}\right)=\sum_{k=1}^{n} a_{k j} w_{k}
$$

Now suppose we have a second pair of bases for V and W, say $\mathbf{v}^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right\}$ and $\mathbf{w}^{\prime}=$ $\left\{w_{1}^{\prime}, \ldots, w_{n}^{\prime}\right\}$. Then we can write

$$
v_{j}^{\prime}=\sum_{r=1}^{m} p_{r j} v_{r}, \quad w_{j}^{\prime}=\sum_{s=1}^{n} q_{s j} w_{s}
$$

for some $p_{i j}, q_{i j} \in \mathbb{k}$. If we form the $m \times m$ and $n \times n$ matrices $P=\left[p_{i j}\right]$ and $Q=\left[q_{i j}\right]$, then we have the following standard result.

Proposition 1.3. The matrices $\mathbf{w}[\varphi]_{\mathbf{v}}$ and $\mathbf{w}^{\prime}[\varphi]_{\mathbf{v}^{\prime}}$ are related by the formula

$$
\mathbf{w}^{\prime}[\varphi]_{\mathbf{v}^{\prime}}=Q_{\mathbf{w}}[\varphi]_{\mathbf{v}} P^{-1}=Q\left[a_{i j}\right] P^{-1}
$$

In particular, if $W=V, \mathbf{w}=\mathbf{v}$ and $\mathbf{w}^{\prime}=\mathbf{v}^{\prime}$, then

$$
\mathbf{v}^{\prime}[\varphi]_{\mathbf{v}^{\prime}}=P_{\mathbf{v}}[\varphi]_{\mathbf{v}} P^{-1}=P\left[a_{i j}\right] P^{-1}
$$

1.1.2. Quotients and complements. Let $W \subseteq V$ be a vector subspace. Then we define the quotient space V / W to be the set of equivalence classes under the equivalence relation \sim on V defined by

$$
u \sim v \quad \text { if and only if } \quad v-u \in W
$$

We denote the class of v by $v+W$. This set V / W becomes a vector space with operations

$$
\begin{aligned}
(u+W)+(v+W) & =(u+v)+W \\
\lambda(v+W) & =(\lambda v)+W
\end{aligned}
$$

and zero element $0+W$. There is a linear transformation, usually called the quotient map $q: V \longrightarrow V / W$, defined by

$$
q(v)=v+W
$$

Then q is surjective, has $\operatorname{kernel} \operatorname{ker} q=W$ and has the following universal property.
THEOREM 1.4. Let $f: V \longrightarrow U$ be a linear transformation with $W \subseteq \operatorname{ker} f$. Then there is a unique linear transformation $\bar{f}: V / W \longrightarrow U$ for which $f=\bar{f} \circ q$. This can be expressed in the diagram

in which all the sides represent linear transformations.
Proof. We define \bar{f} by

$$
\bar{f}(v+W)=f(v)
$$

which makes sense since if $v^{\prime} \sim v$, then $v^{\prime}-v \in W$, hence

$$
f\left(v^{\prime}\right)=f\left(\left(v^{\prime}-v\right)+v\right)=f\left(v^{\prime}-v\right)+f(v)=f(v)
$$

The uniqueness follows from the fact that q is surjective.
Notice also that

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{k}} V / W=\operatorname{dim}_{\mathbb{k}} V-\operatorname{dim}_{\mathbb{k}} W \tag{1.1}
\end{equation*}
$$

A linear complement (in V) of a subspace $W \subseteq V$ is a subspace $W^{\prime} \subseteq V$ such that the restriction $q_{\left.\right|_{W^{\prime}}}: W^{\prime} \longrightarrow V / W$ is a linear isomorphism. The next result sums up properties of linear complements and we leave the proofs as exercises.

THEOREM 1.5. Let $W \subseteq V$ and $W^{\prime} \subseteq V$ be vector subspaces of the \mathbb{k}-vector space V with $\operatorname{dim}_{\mathbb{k}} V=n$. Then the following conditions are equivalent.
(a) W^{\prime} is a linear complement of W in V.
(b) Let $\left\{w_{1}, \ldots, w_{r}\right\}$ be a basis for W, and $\left\{w_{r+1}, \ldots, w_{n}\right\}$ a basis for W^{\prime}. Then

$$
\left\{w_{1}, \ldots, w_{n}\right\}=\left\{w_{1}, \ldots, w_{r}\right\} \cup\left\{w_{r+1}, \ldots, w_{n}\right\}
$$

is a basis for V.
(c) Every $v \in V$ has a unique expression of the form

$$
v=v_{1}+v_{2}
$$

for some elements $v_{1} \in W, v_{2} \in W^{\prime}$. In particular, $W \cap W^{\prime}=\{0\}$.
(d) Every linear transformation $h: W^{\prime} \longrightarrow U$ has a unique extension to a linear transformation $H: V \longrightarrow U$ with $W \subseteq$ ker H.
(e) W is a linear complement of W^{\prime} in V.
(f) There is a linear isomorphism $J: V \stackrel{\cong}{\cong} W \times W^{\prime}$ for which $\operatorname{im} J_{\left.\right|_{W}}=W \times\{0\}$ and $\operatorname{im} J_{\left.\right|_{W^{\prime}}}=\{0\} \times W^{\prime}$.
(g) There are unique linear transformations $p: V \longrightarrow V$ and $p^{\prime}: V \longrightarrow V$ having images $\operatorname{im} p=W, \operatorname{im} p^{\prime}=W^{\prime}$ and which satisfy

$$
p^{2}=p \circ p=p, \quad p^{\prime 2}=p^{\prime} \circ p^{\prime}=p^{\prime}, \quad \mathrm{Id}_{V}=p+p^{\prime}
$$

We often write $V=W \oplus W^{\prime}$ whenever W^{\prime} is a linear complement of W. The maps p, p^{\prime} of Theorem $1.5(\mathrm{~g})$ are often called the (linear) projections onto W and W^{\prime}. This can be extended to the situation where there are r subspaces $V_{1}, \ldots, V_{r} \subseteq V$ for which

$$
V=V_{1}+\cdots+V_{r}=\left\{\sum_{j=1}^{r} v_{j}: v_{j} \in V_{j}\right\}
$$

and we inductively have that V_{k} is a linear complement of $\left(V_{1} \oplus \cdots \oplus V_{k-1}\right)$ in $\left(V_{1}+\cdots+V_{k}\right)$.

A linear complement for a subspace $W \subseteq V$ always exists since we can extend a basis $\left\{w_{1}, \ldots, w_{r}\right\}$ of W to a basis $\left\{w_{1}, \ldots, w_{r}, w_{r+1}, \ldots, w_{n}\right\}$ for V and then take W^{\prime} to be the subspace spanned by $\left\{w_{r+1}, \ldots, w_{n}\right\}$. Theorem $1.5(\mathrm{~b})$ implies that W^{\prime} is a linear complement.

1.2. Class functions and the Cayley-Hamilton Theorem

In this section \mathbb{k} can be any field. Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix over \mathbb{k}.
Definition 1.6. The characteristic polynomial of A is the polynomial (in the variable X)

$$
\operatorname{char}_{A}(X)=\operatorname{det}\left(X I_{n}-\left[a_{i j}\right]\right)=\sum_{k=0}^{n} c_{k}(A) X^{k} \in \mathbb{k}[X]
$$

where I_{n} is the $n \times n$ identity matrix.
Notice that $c_{n}(A)=1$, so this polynomial in X is monic and has degree n. The coefficients $c_{k}(A) \in \mathbb{k}$ are polynomial functions of the entries $a_{i j}$. The following is an important result about the characteristic polynomial.

Theorem 1.7 (Cayley-Hamilton Theorem: matrix version). The matrix A satisfies the polynomial identity

$$
\operatorname{char}_{A}(A)=\sum_{k=0}^{n} c_{k}(A) A^{k}=0 .
$$

Example 1.8. Let

$$
A=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \in \mathbb{R}[X]
$$

Then

$$
\operatorname{char}_{A}(X)=\operatorname{det}\left[\begin{array}{rr}
X & 1 \\
-1 & X
\end{array}\right]=X^{2}+1
$$

By calculation we find that $A^{2}+I_{2}=O_{2}$ as claimed.
Lemma 1.9. Let $A=\left[a_{i j}\right]$ and P be an $n \times n$ matrix with coefficients in \mathbb{k}. Then if P is invertible,

$$
\operatorname{char}_{P A P^{-1}}(X)=\operatorname{char}_{A}(X)
$$

Thus each of the coefficients $c_{k}(A)(0 \leqslant k \leqslant n)$ satisfies

$$
c_{k}\left(P A P^{-1}\right)=c_{k}(A)
$$

Proof. We have

$$
\begin{aligned}
\operatorname{char}_{P A P^{-1}}(X) & =\operatorname{det}\left(X I_{n}-P A P^{-1}\right) \\
& =\operatorname{det}\left(P\left(X I_{n}\right) P^{-1}-P A P^{-1}\right) \\
& =\operatorname{det}\left(P\left(X I_{n}-A\right) P^{-1}\right) \\
& =\operatorname{det} P \operatorname{det}\left(X I_{n}-A\right) \operatorname{det} P^{-1} \\
& =\operatorname{det} P \operatorname{char}_{A}(X)(\operatorname{det} P)^{-1} \\
& =\operatorname{char}_{A}(X)
\end{aligned}
$$

Comparing coefficients we obtain the result.
This result shows that as functions of A (and hence of the $a_{i j}$), the coefficients $c_{k}(A)$ are invariant or class functions in the sense that they are invariant under conjugation,

$$
c_{r}\left(P A P^{-1}\right)=c_{r}(A)
$$

Recall that for an $n \times n$ matrix $A=\left[a_{i j}\right]$, the trace of $A, \operatorname{tr} A \in \mathbb{k}$, is defined by

$$
\operatorname{tr} A=\sum_{j=1}^{n} a_{j j}
$$

Proposition 1.10. For any $n \times n$ matrix over \mathbb{k} we have

$$
c_{n-1}(A)=-\operatorname{tr} A \quad \text { and } \quad c_{n}(A)=(-1)^{n} \operatorname{det} A .
$$

Proof. The coefficient of X^{n-1} in $\operatorname{det}\left(X I_{n}-\left[a_{i j}\right]\right)$ is

$$
-\sum_{r=1}^{n} a_{r r}=-\operatorname{tr}\left[a_{i j}\right]=-\operatorname{tr} A
$$

giving the formula for $c_{n-1}(A)$. Putting $X=0$ in $\operatorname{det}\left(X I_{n}-\left[a_{i j}\right]\right)$ gives

$$
c_{n}(A)=\operatorname{det}\left(\left[-a_{i j}\right]\right)=(-1)^{n} \operatorname{det}\left[a_{i j}\right]=(-1)^{n} \operatorname{det} A
$$

Now let $\varphi: V \longrightarrow V$ be a linear transformation on a finite dimensional \mathbb{k}-vector space with a basis $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$. Consider the matrix of φ relative to \mathbf{v},

$$
[\varphi]_{\mathbf{v}}=\left[a_{i j}\right],
$$

where

$$
\varphi\left(v_{j}\right)=\sum_{r=1}^{n} a_{r j} v_{r} .
$$

Then the trace of φ with respect to the basis \mathbf{v} is

$$
\operatorname{tr}_{\mathbf{v}} \varphi=\operatorname{tr}[\varphi]_{\mathbf{v}}
$$

If we change to a second basis \mathbf{w} say, there is an invertible $n \times n$ matrix $P=\left[p_{i j}\right]$ such that

$$
w_{j}=\sum_{r=1}^{n} p_{r j} v_{r},
$$

and then

$$
[\varphi]_{\mathbf{w}}=P[\varphi]_{\mathbf{v}} P^{-1} .
$$

Hence,

$$
\operatorname{tr}_{\mathbf{w}} \varphi=\operatorname{tr}\left(P[\varphi]_{\mathbf{v}} P^{-1}\right)=\operatorname{tr}_{\mathbf{v}} \varphi
$$

Thus we see that the quantity

$$
\operatorname{tr} \varphi=\operatorname{tr}_{\mathbf{v}} \varphi
$$

only depends on φ, not the basis \mathbf{v}. We call this the trace of φ. Similarly, we can define $\operatorname{det} \varphi=\operatorname{det} A$.

More generally, we can consider the polynomial

$$
\operatorname{char}_{\varphi}(X)=\operatorname{char}_{[\varphi]_{\mathbf{v}}}(X)
$$

which by Lemma 1.9 is independent of the basis \mathbf{v}. Thus all of the coefficients $c_{k}(A)$ are functions of φ and do not depend on the basis used, so we may write $c_{k}(\varphi)$ in place of $c_{k}(A)$. In particular, an alternative way to define $\operatorname{tr} \varphi$ and $\operatorname{det} \varphi$ is by setting

$$
\operatorname{tr} \varphi=-c_{n-1}(\varphi)=\operatorname{tr} A, \quad \operatorname{det} \varphi=(-1)^{n} c_{0}(\varphi)=\operatorname{det} A
$$

We also call char $_{\varphi}(X)$ the characteristic polynomial of φ. The following is a formulation of the Cayley-Hamilton Theorem for a linear transformation.

Theorem 1.11 (Cayley-Hamilton Theorem: linear transformation version).
If $\varphi: V \longrightarrow V$ is a \mathbb{k}-linear transformation on the finite dimensional \mathbb{k}-vector space V, then φ satisfies the polynomial identity

$$
\operatorname{char}_{\varphi}(\varphi)=0 .
$$

More explicitly, if

$$
\operatorname{char}_{\varphi}(X)=\sum_{r=0}^{n} c_{r}(\varphi) X^{r}
$$

then writing $\varphi^{0}=\mathrm{Id}_{V}$, we have

$$
\sum_{r=0}^{n} c_{r}(\varphi) \varphi^{r}=0
$$

There is an important connection between class functions of matrices (such as the trace and determinant) and eigenvalues. Recall that if \mathbb{k} is an algebraically closed field then any non-constant monic polynomial with coefficients in \mathbb{k} factors into d linear factors over \mathbb{k}, where d is the degree of the polynomial.

Proposition 1.12. Let \mathbb{k} be an algebraically closed field and let A be an $n \times n$ matrix with entries in \mathbb{k}. Then the eigenvalues of A in \mathbb{k} are the roots of the characteristic polynomial $\operatorname{char}_{A}(X)$ in \mathbb{k}. In particular, A has at most n distinct eigenvalues in \mathbb{k}.

On factoring $\operatorname{char}_{A}(X)$ into linear factors over \mathbb{k} we may find some repeated linear factors corresponding to 'repeated' or 'multiple' roots. If a linear factor $(X-\lambda)$ appears to degree m say, we say that λ is an eigenvalue of multiplicity m. If every eigenvalue of A has multiplicity 1 , then A is diagonalisable in the sense that there is an invertible matrix P satisfying

$$
P A P^{-1}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right),
$$

the diagonal matrix with the n distinct diagonal entries λ_{k} down the leading diagonal. More generally, let

$$
\begin{equation*}
\operatorname{char}_{A}(X)=\left(X-\lambda_{1}\right) \cdots\left(X-\lambda_{n}\right), \tag{1.2}
\end{equation*}
$$

where now we allow some of the λ_{j} to be repeated. Then we can describe $\operatorname{tr} A$ and $\operatorname{det} A$ in terms of the eigenvalues λ_{j}.

Proposition 1.13. The following identities hold:

$$
\operatorname{tr} A=\sum_{j=1}^{n} \lambda_{j}=\lambda_{1}+\cdots+\lambda_{n}, \quad \operatorname{det} A=\lambda_{1} \cdots \lambda_{n} .
$$

Proof. These can be verified by considering the degree $(n-1)$ and constant terms in Equation (1.2) and using Proposition 1.10.

Remark 1.14. More generally, the coefficient $(-1)^{n-k} c_{k}(A)$ can be expressed as the k-th elementary symmetric function in $\lambda_{1}, \ldots, \lambda_{n}$.

We can also apply the above discussion to a linear transformation $\varphi: V \longrightarrow V$, where an eigenvector for the eigenvalue $\lambda \in \mathbb{C}$ is a non-zero vector $v \in V$ satisfying $\varphi(v)=\lambda v$.

The characteristic polynomial may not be the polynomial of smallest degree satisfied by a matrix or a linear transformation. By definition, a minimal polynomial of an $n \times n$ matrix A or linear transformation $\varphi: V \longrightarrow V$ is a (non-zero) monic polynomial $f(X)$ of smallest possible degree for which $f(A)=0$ or $f(\varphi)=0$.

Lemma 1.15. For an $n \times n$ matrix A or a linear transformation $\varphi: V \longrightarrow V$, let $f(X)$ be a minimal polynomial and $g(X)$ be any other polynomial for which $g(A)=0$ or $g(\varphi)=0$. Then $f(X) \mid g(X)$. Hence $f(X)$ is unique.

Proof. We only give the proof for matrices, the proof for a linear transformation is similar. Suppose that $f(X) \nmid g(X)$. Then we have

$$
g(X)=q(X) f(X)+r(X)
$$

where $\operatorname{deg} r(X)<\operatorname{deg} f(X)$. Since $r(A)=0$ and $r(X)$ has degree less than $f(X)$, we have a contradiction. Hence $f(X) \mid g(X)$. In particular, if $g(X)$ has the same degree as $f(X)$, the minimality of $g(X)$ also gives $g(X) \mid f(X)$. As these are both monic polynomials, this implies $f(X)=g(X)$.

We write $\min _{A}(X)$ or $\min _{\varphi}(X)$ for the minimal polynomial of A or φ. Note also that $\min _{A}(X) \mid \operatorname{char}_{A}(X)$ and $\min _{\varphi}(X) \mid \operatorname{char}_{\varphi}(X)$.

1.3. Separability

Lemma 1.16. Let V be a finite dimensional vector space over \mathbb{C} and let $\varphi: V \longrightarrow V$ be a linear transformation. Suppose that

$$
0 \neq f(X)=\sum_{r=0}^{m} c_{r} X^{r} \in \mathbb{C}[X]
$$

is a polynomial with no repeated linear factors over \mathbb{C} and that φ satisfies the relation

$$
\sum_{r=0}^{m} c_{r} \varphi^{r}=0
$$

i.e., for every $v \in V$,

$$
\sum_{r=0}^{m} c_{r} \varphi^{r}(v)=0 .
$$

Then V has a basis $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$ consisting of eigenvectors of φ.
Proof. By multiplying by the inverse of the leading coefficient of $f(X)$ we can replace $f(X)$ by a monic polynomial with the same properties, so we will assume that $f(X)$ is monic, i.e., $c_{m}=1$. Factoring over \mathbb{C}, we obtain

$$
f(X)=f_{m}(X)=\left(X-\lambda_{1}\right) \cdots\left(X-\lambda_{m}\right),
$$

where the $\lambda_{j} \in \mathbb{C}$ are distinct. Put

$$
f_{m-1}(X)=\left(X-\lambda_{1}\right) \cdots\left(X-\lambda_{m-1}\right) .
$$

Notice that $f_{m}(X)=f_{m-1}(X)\left(X-\lambda_{m}\right)$, hence $\left(X-\lambda_{m}\right)$ cannot divide $f_{m-1}(X)$, since this would lead to a contradiction to the assumption that $f_{m}(X)$ has no repeated linear factors.

Using long division of $\left(X-\lambda_{m}\right)$ into $f_{m-1}(X)$, we see that

$$
f_{m-1}(X)=q_{m}(X)\left(X-\lambda_{m}\right)+r_{m},
$$

where the remainder $r_{m} \in \mathbb{C}$ cannot be 0 since if it were then $\left(X-\lambda_{m}\right)$ would divide $f_{m-1}(X)$. Dividing by r_{m} if necessary, we see that for some non-zero $s_{m} \in \mathbb{C}$,

$$
s_{m} f_{m-1}(X)-q_{m}(X)\left(X-\lambda_{m}\right)=1 .
$$

Substituting $X=\varphi$, we have for any $v \in V$,

$$
s_{m} f_{m-1}(\varphi)(v)-q_{m}(\varphi)\left(\varphi-\lambda_{m} \operatorname{Id}_{V}\right)(v)=v
$$

Notice that we have

$$
\left(\varphi-\lambda_{m} \operatorname{Id}_{V}\right)\left(s_{m} f_{m-1}(\varphi)(v)\right)=s_{m} f_{m}(\varphi)(v)=0
$$

and

$$
f_{m-1}(\varphi)\left(q_{m}(\varphi)\left(\varphi-\lambda_{m} \operatorname{Id}_{V}\right)(v)\right)=q_{m}(\varphi) f_{m}(\varphi)(v)=0
$$

Thus we can decompose v into a $\operatorname{sum} v=v_{m}+v_{m}^{\prime}$, where

$$
\left(\varphi-\lambda_{m} \operatorname{Id}_{V}\right)\left(v_{m}\right)=0=f_{m-1}(\varphi)\left(v_{m}^{\prime}\right)
$$

Consider the following two subspaces of V :

$$
V_{m}=\left\{v \in V:\left(\varphi-\lambda_{m} \operatorname{Id}_{V}\right)(v)=0\right\}, \quad V_{m}^{\prime}=\left\{v \in V: f_{m-1}(\varphi)(v)=0\right\}
$$

Thus we have shown that $V=V_{m}+V_{m}^{\prime}$. If $v \in V_{m} \cap V_{m}^{\prime}$, then from above we would have

$$
v=s_{m} f_{m-1}(\varphi)(v)-q_{m}(\varphi)\left(\varphi-\lambda_{m} \operatorname{Id}_{V}\right)(v)=0
$$

So $V_{m} \cap V_{m}^{\prime}=\{0\}$, hence $V=V_{m} \oplus V_{m}^{\prime}$. We can now consider V_{m}^{\prime} in place of V, noticing that for $v \in V_{m}^{\prime}, \varphi(v) \in V_{m}^{\prime}$, since

$$
f_{m-1}(\varphi)(\varphi(v))=\varphi\left(f_{m-1}(\varphi)(v)\right)=0
$$

Continuing in this fashion, we eventually see that

$$
V=V_{1} \oplus \cdots \oplus V_{m}
$$

where for $v \in V_{k}$,

$$
\left(\varphi-\lambda_{k}\right)(v)=0
$$

If we choose a basis $\mathbf{v}_{(k)}$ of V_{k}, then the (disjoint) union

$$
\mathbf{v}=\mathbf{v}_{(1)} \cup \cdots \cup \mathbf{v}_{(m)}
$$

is a basis for V, consisting of eigenvectors of φ.
The condition on φ in this result is sometimes referred to as the separability or semisimplicity of φ. We will make use of this when discussing characters of representations.

1.4. Basic notions of multilinear algebra

In this section we will describe the tensor product of r vector spaces. We will most often consider the case where $r=2$, but give the general case for completeness. Multilinear algebra is important in differential geometry, relativity, electromagnetism, fluid mechanics and indeed much of advanced applied mathematics where tensors play a rôle.

Let V_{1}, \ldots, V_{r} and W be \mathbb{k}-vector spaces. A function

$$
F: V_{1} \times \cdots \times V_{r} \longrightarrow W
$$

is \mathbb{k}-multilinear if it satisfies
(ML-1)
$F\left(v_{1}, \ldots, v_{k-1}, v_{k}+v_{k}^{\prime}, v_{k+1}, \ldots, v_{r}\right)=F\left(v_{1}, \ldots, v_{k}, \ldots, v_{r}\right)+F\left(v_{1}, \ldots, v_{k-1}, v_{k}^{\prime}, v_{k+1}, \ldots, v_{r}\right)$,
(ML-2)
$F\left(v_{1}, \ldots, v_{k-1}, t v_{k}, v_{k+1}, \ldots, v_{r}\right)=t F\left(v_{1}, \ldots, v_{k-1}, v_{k}, v_{k+1}, \ldots, v_{r}\right)$
for $v_{j}, v_{j}^{\prime} \in V$ and $t \in \mathbb{k}$. It is symmetric if for any permutation $\sigma \in S_{r}$ (the permutation group on r objects),
(ML-S)

$$
F\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}, \ldots, v_{\sigma(r)}\right)=F\left(v_{1}, \ldots, v_{k}, \ldots, v_{r}\right)
$$

and is alternating or skew-symmetric if
(ML-A)

$$
F\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}, \ldots, v_{\sigma(r)}\right)=\operatorname{sign}(\sigma) F\left(v_{1}, \ldots, v_{k}, \ldots, v_{r}\right)
$$

where $\operatorname{sign}(\sigma) \in\{ \pm 1\}$ is the sign of σ.
The tensor product of V_{1}, \ldots, V_{r} is a \mathbb{k}-vector space $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{r}$ together with a function $\tau: V_{1} \times \cdots \times V_{r} \longrightarrow V_{1} \otimes V_{2} \otimes \cdots \otimes V_{r}$ satisfying the following universal property.

UP-TP: For any \mathbb{k}-vector space W and multilinear map $F: V_{1} \times \cdots \times V_{r} \longrightarrow W$, there is a unique linear transformation $F^{\prime}: V_{1} \otimes \cdots \otimes V_{r} \longrightarrow W$ for which $F^{\prime} \circ \tau=F$.

In diagram form this becomes

where the dotted arrow represents a unique linear transformation making the diagram commute.
When $V_{1}=V_{2}=\cdots=V_{r}=V$, we call $V \otimes \cdots \otimes V$ the r th tensor power and write $\mathrm{T}^{r} V$.
Our next result provides an explicit description of a tensor product.
Proposition 1.17. If the finite dimensional \mathbb{k}-vector space $V_{k}(1 \leqslant k \leqslant r)$ has a basis

$$
\mathbf{v}_{k}=\left\{v_{k, 1}, \ldots, v_{k, n_{k}}\right\}
$$

where $\operatorname{dim}_{\mathbb{k}} V_{k}=n_{k}$, then $V_{1} \otimes \cdots \otimes V_{r}$ has a basis consisting of the vectors

$$
v_{1, i_{1}} \otimes \cdots \otimes v_{r, i_{r}}=\tau\left(v_{1, i_{1}}, \ldots, v_{r, i_{r}}\right)
$$

where $1 \leqslant i_{k} \leqslant n_{k}$. Hence we have

$$
\operatorname{dim}_{\mathbb{k}} V_{1} \otimes \cdots \otimes V_{r}=n_{1} \cdots n_{r}
$$

More generally, for any sequence $w_{1} \in V_{1}, \ldots w_{r} \in V_{r}$, we set

$$
w_{1} \otimes \cdots \otimes w_{r}=\tau\left(w_{1}, \ldots, w_{r}\right)
$$

These satisfy the multilinearity formula
(MLF-1) $\quad w_{1} \otimes \cdots \otimes w_{k-1} \otimes\left(w_{k}+w_{k}^{\prime}\right) \otimes w_{k+1} \otimes \cdots \otimes w_{r}=$

$$
w_{1} \otimes \cdots \otimes w_{k} \otimes \cdots \otimes w_{r}+w_{1} \otimes \cdots \otimes w_{k-1} \otimes w_{k}^{\prime} \otimes w_{k+1} \otimes \cdots \otimes w_{r}
$$

(MLF-2)
$w_{1} \otimes \cdots \otimes w_{k-1} \otimes t w_{k} \otimes w_{k+1} \otimes \cdots \otimes w_{r}=t\left(w_{1} \otimes \cdots \otimes w_{k-1} \otimes w_{k} \otimes w_{k+1} \otimes \cdots \otimes w_{r}\right)$.
We will see later that the tensor power $\mathrm{T}^{r} V$ can be decomposed as a direct sum $\mathrm{T}^{r} V=$ $\operatorname{Sym}^{r} V \oplus \mathrm{Alt}^{r} V$ consisting of the symmetric and antisymmetric or alternating tensors $\operatorname{Sym}^{r} V$ and $\mathrm{Alt}^{r} V$.

We end with some useful results.
Proposition 1.18. Let V_{1}, \ldots, V_{r} be finite dimensional \mathbb{k}-vector spaces. Then there is a linear isomorphism

$$
V_{1}^{*} \otimes \cdots \otimes V_{r}^{*} \cong\left(V_{1} \otimes \cdots \otimes V_{r}\right)^{*}
$$

In particular,

$$
\mathrm{T}^{r}\left(V^{*}\right) \cong\left(\mathrm{T}^{r} V\right)^{*}
$$

Proof. Use the universal property to construct a linear transformation with suitable properties.

Proposition 1.19. Let V, W be finite dimensional \mathbb{k}-vector spaces. Then there is a \mathbb{k}-linear isomorphism

$$
W \otimes V^{*} \cong \operatorname{Hom}_{\mathbb{k}}(V, W)
$$

under which for $\alpha \in V^{*}$ and $w \in W$,

$$
w \otimes \alpha \longleftrightarrow w \alpha
$$

where by definition, $w \alpha: V \longrightarrow W$ is the function determined by $w \alpha(v)=\alpha(v) w$ for $v \in V$.

Proof. The function $W \times V^{*} \longrightarrow \operatorname{Hom}_{k}(V, W)$ given by $(w, \alpha) \mapsto w \alpha$ is bilinear, and hence factors uniquely through a linear transformation $W \otimes V^{*} \longrightarrow \operatorname{Hom}_{\mathbb{k}}(V, W)$. But for bases $\mathbf{v}=\left\{v_{1}, \ldots, v_{m}\right\}$ and $\mathbf{w}=\left\{w_{1}, \ldots, w_{n}\right\}$ of V and W, then the vectors $w_{j} \otimes v_{i}^{*}$ form a basis of $W \otimes V^{*}$. Under the above linear mapping, $w_{j} \otimes v_{i}^{*}$ gets sent to the function $w_{j} v_{i}^{*}$ which maps v_{k} to w_{j} if $k=i$ and 0 otherwise. Using Propositions 1.2 and 1.17, it is now straightforward to verify that these functions are linearly independent and span $\operatorname{Hom}_{\mathbb{k}}(V, W)$.

Proposition 1.20. Let $V_{1}, \ldots, V_{r}, W_{1}, \ldots, W_{r}$ be finite dimensional \mathbb{k}-vector spaces, and for each $1 \leqslant k \leqslant r$, let $\varphi_{k}: V_{k} \longrightarrow W_{k}$ be a linear transformation. Then there is a unique linear transformation

$$
\varphi_{1} \otimes \cdots \otimes \varphi_{r}: V_{1} \otimes \cdots \otimes V_{r} \longrightarrow W_{1} \otimes \cdots \otimes W_{r}
$$

given on each tensor $v_{1} \otimes \cdots \otimes v_{r}$ by the formula

$$
\varphi_{1} \otimes \cdots \otimes \varphi_{r}\left(v_{1} \otimes \cdots \otimes v_{r}\right)=\varphi_{1}\left(v_{1}\right) \otimes \cdots \otimes \varphi_{1}\left(v_{r}\right) .
$$

Proof. This follows from the universal property UP-TP.

Exercises on Chapter 1

1-1. Consider the 2-dimensional \mathbb{C}-vector space $V=\mathbb{C}^{2}$. Viewing V as a 4 -dimensional \mathbb{R}-vector space, show that

$$
W=\left\{(z, w) \in \mathbb{C}^{2}: z=-\bar{w}\right\}
$$

is an \mathbb{R}-vector subspace of V. Is it a \mathbb{C}-vector subspace?
Show that the function $\theta: W \longrightarrow \mathbb{C}$ given by

$$
\theta(z, w)=\operatorname{Re} z+\operatorname{Im} w
$$

is an \mathbb{R}-linear transformation. Choose \mathbb{R}-bases for W and \mathbb{C} and determine the matrix of θ with respect to these. Use these bases to extend θ to an \mathbb{R}-linear transformation $\Theta: V \longrightarrow \mathbb{C}$ agreeing with θ on W. Is there an extension which is \mathbb{C}-linear?

1 -2. Let $V=\mathbb{C}^{4}$ as a \mathbb{C}-vector space. Suppose that $\sigma: V \longrightarrow V$ is the function defined by

$$
\sigma\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(z_{3}, z_{4}, z_{1}, z_{2}\right) .
$$

Show that σ is a \mathbb{C}-linear transformation. Choose a basis for V and determine the matrix of σ relative to it. Hence determine the characteristic and minimal polynomials of σ and show that there is basis for V consisting of eigenvectors of σ.
$1-3$. For the matrix

$$
A=\left[\begin{array}{rrr}
18 & 5 & 15 \\
-6 & 5 & -9 \\
-2 & -1 & 5
\end{array}\right]
$$

show that the characteristic polynomial is $\operatorname{char}_{A}(X)=(X-12)(X-8)^{2}$ and find a basis for \mathbb{C}^{3} consisting of eigenvectors of A. Determine the minimal polynomial of A.

1-4. For each of the \mathbb{k}-vector spaces V and subspaces W, find a linear complement W^{\prime}.
(i) $\mathbb{k}=\mathbb{R}, V=\mathbb{R}^{3}, W=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{2}-2 x_{3}=0\right\}$;
(ii) $\mathbb{k}=\mathbb{R}, V=\mathbb{R}^{4}$, $W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{2}-2 x_{3}=0=x_{1}+x_{4}\right\}$;
(iii) $\mathbb{k}=\mathbb{C}, V=\mathbb{C}^{3}, W=\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}\right): z_{2}-i z_{3}=0=z_{1}+4 i z_{4}\right\}$.
(iv) $\mathbb{k}=\mathbb{R}, V=\left(\mathbb{R}^{3}\right)^{*}, W=\left\{\alpha: \alpha\left(e_{3}\right)=0\right\}$.
$1-5$. Let V be a 2 -dimensional \mathbb{C}-vector space with basis $\left\{v_{1}, v_{2}\right\}$. Describe a basis for the tensor square $\mathrm{T}^{2} V=V \otimes V$ and state the universal property for the natural function $\tau: V \times V \longrightarrow \mathrm{~T}^{2} V$.

Let $F: V \times V \longrightarrow \mathbb{C}$ be a non-constant \mathbb{C}-bilinear function for which

$$
F(v, u)=-F(u, v) \quad(u, v \in V)
$$

(Such a function is called alternating or odd.) Show that F factors through a linear transformation $F^{\prime}: \mathrm{T}^{2} V \longrightarrow \mathbb{C}$ and find $\operatorname{ker} F^{\prime}$.

If $G: V \times V \longrightarrow \mathbb{C}$ is a second such function, show that there is a $t \in \mathbb{C}$ for which $G(u, v)=$ $t F(u, v)$ for all $u, v \in V$.
1 -6. Let V be a finite dimensional \mathbb{k}-vector space where char $\mathbb{k}=0(e . g ., \mathbb{k}=\mathbb{Q}, \mathbb{R}, \mathbb{C})$ and $\operatorname{dim}_{\mathbb{k}} V=n$ where n is even.

Let $F: V \times V \longrightarrow \mathbb{k}$ be an alternating \mathbb{k}-bilinear function which is non-degenerate in the sense that for each $v \in V$, there is a $w \in V$ such that $F(v, w) \neq 0$.

Show that there is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for V for which

$$
\begin{aligned}
F\left(v_{2 r-1}, v_{2 r}\right)=-F\left(v_{2 r}, v_{2 r-1}\right) & =1, & & (r=1, \ldots, n / 2), \\
F\left(v_{i}, v_{j}\right) & =0, & & \text { whenever }|i-j| \neq 1 .
\end{aligned}
$$

[Hint:Try using induction on $m=n / 2$, starting with $m=1$.]

CHAPTER 2

Representations of finite groups

2.1. Linear representations

In discussing representations, we will be mainly interested in the situations where $\mathbb{k}=\mathbb{R}$ or $\mathbb{k}=\mathbb{C}$. However, other cases are important and unless we specifically state otherwise we will usually assume that \mathbb{k} is an arbitrary field of characteristic 0 . For fields of finite characteristic dividing the order of the group, Representation Theory becomes more subtle and the resulting theory is called Modular Representation Theory. Another important property of the field \mathbb{k} required in many situations is that it is algebraically closed in the sense that every polynomial over \mathbb{k} has a root in \mathbb{k}; this is true for \mathbb{C} but not for \mathbb{R}, however, the latter case is important in many applications of the theory. Throughout this section, G will denote a finite group.

A homomorphism of groups $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{k}}(V)$ defines a \mathbb{k}-linear action of G on V by

$$
g \cdot v=\rho_{g} v=\rho(g)(v),
$$

which we call a \mathbb{k}-representation or \mathbb{k}-linear representation of G in (or on) V. Sometimes V together with ρ is called a G-module, although we will not use that terminology. The case where $\rho(g)=\mathrm{Id}_{V}$ is called the trivial representation in V. Notice that we have the following identities:

$$
\begin{equation*}
(h g) \cdot v=\rho_{h g} v=\rho_{h} \circ \rho_{g} v=h \cdot(g \cdot v) \quad(h, g \in G, v \in V), \tag{Rep-1}
\end{equation*}
$$

(Rep-2) $\quad g \cdot\left(v_{1}+v_{2}\right)=\rho_{g}\left(v_{1}+v_{2}\right)=\rho_{g} v_{1}+\rho_{g} v_{2}=g \cdot v_{1}+g \cdot v_{2} \quad\left(g \in G, v_{i} \in V\right)$,
(Rep-3)

$$
g \cdot(t v)=\rho_{g}(t v)=t \rho_{g}(v)=t(g \cdot v) \quad(g \in G, v \in V, t \in \mathbb{k}) .
$$

A vector subspace W of V which is closed under the action of elements of G is called a G submodule or G-subspace; we sometimes say that W is stable under the action of G. It is usual to view W as being a representation in its own right, using the 'restriction' $\rho_{\left.\right|_{W}}: G \longrightarrow \mathrm{GL}_{\mathbb{k}}(W)$ defined by

$$
\rho_{\mid W}(g)(w)=\rho_{g}(w) .
$$

The pair consisting of W and $\rho_{\left.\right|_{W}}$ is called a subrepresentation of the original representation.
Given a basis $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$ for V with $\operatorname{dim}_{k} V=n$, for each $g \in G$ we have the associated matrix of $\rho(g)$ relative to $\mathbf{v},\left[r_{i j}(g)\right]$ which is defined by
(Rep-Mat)

$$
\rho_{g} v_{j}=\sum_{k=1}^{n} r_{k j}(g) v_{k} .
$$

Example 2.1. Let $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{k}}(V)$ where $\operatorname{dim}_{\mathfrak{k}} V=1$. Given any non-zero element $v \in V$ (which forms a basis for V) we have for each $g \in G$ a $\lambda_{g} \in \mathbb{k}$ satisfying $g \cdot v=\lambda_{g} v$. By Equation (Rep-1), for $g, h \in G$ we have

$$
\lambda_{h g} v=\lambda_{h} \lambda_{g} v,
$$

and hence

$$
\lambda_{h g}=\lambda_{h} \lambda_{g} .
$$

From this it is easy to see that $\lambda_{g} \neq 0$. Thus there is a homomorphism $\Lambda: G \longrightarrow \mathbb{k}^{\times}$given by

$$
\Lambda(g)=\lambda_{g} .
$$

Although this appears to depend on the choice of v, in fact it is independent of it (we leave this as an exercise). As G is finite, every element $g \in G$ has a finite order $|g|$, and it easily follows that

$$
\lambda_{g}^{|g|}=1,
$$

so λ_{g} is a $|g|$-th root of unity. Hence, given a 1-dimensional representation of a group, we can regard it as equivalent to such a homomorphism $G \longrightarrow \mathbb{k}^{\times}$.

Here are two illustrations of Example 2.1.
Example 2.2. Take $\mathbb{k}=\mathbb{R}$. Then the only roots of unity in \mathbb{R} are ± 1, hence we can assume that for a 1 -dimensional representation over $\mathbb{R}, \Lambda: G \longrightarrow\{1,-1\}$, where the codomain is a group under multiplication. The sign function sign: $S_{n} \longrightarrow\{1,-1\}$ provides an interesting and important example of this.

Example 2.3. Now take $\mathbb{k}=\mathbb{C}$. Then for each $n \in \mathbb{N}$ we have n distinct n-th roots of unity in \mathbb{C}^{\times}. We will denote the set of all n-th roots of unity by μ_{n}, and the set of all roots of unity by

$$
\mu_{\infty}=\bigcup_{n \in \mathbb{N}} \mu_{n},
$$

where we use the inclusions $\mu_{m} \subseteq \mu_{n}$ whenever $m \mid n$. These are abelian groups under multiplication.

Given a 1 -dimensional representation over \mathbb{C}, the function Λ can be viewed as a homomorphism $\Lambda: G \longrightarrow \mu_{\infty}$, or even $\Lambda: G \longrightarrow \mu_{|G|}$ by Lagrange's Theorem.

For example, if $G=C$ is cyclic of order N say, then we must have for any 1-dimensional representation of C that $\Lambda: C \longrightarrow \mu_{N}$. Note that there are exactly N of such homomorphisms.

Example 2.4. Let G be a simple group which is not abelian. Then given a 1-dimensional representation $\rho: G \longrightarrow \mathrm{GL}_{\mathfrak{k}}(V)$ of G, the associated homomorphism $\Lambda: G \longrightarrow \mu_{|G|}$ has abelian image, hence ker Λ has to be bigger than $\left\{e_{G}\right\}$. Since G has no proper normal subgroups, we must have ker $\Lambda=G$. Hence, $\rho(g)=\mathrm{Id}_{V}$.

Indeed, for any representation $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{k}}(V)$ we have $\operatorname{ker} \rho=G$ or $\operatorname{ker} \rho=\left\{e_{G}\right\}$. Hence, either the representation is trivial or ρ is an injective homomorphism, which therefore embeds G into $\mathrm{GL}_{\mathfrak{k}}(V)$. This severely restricts the smallest dimension of non-trivial representations of non-abelian simple groups.

Example 2.5. Let $G=\{e, \tau\} \cong \mathbb{Z} / 2$ and let V be any representation over any field not of characteristic 2. Then there are \mathbb{k}-vector subspaces V_{+}, V_{-}of V for which $V=V_{+} \oplus V_{-}$and the action of G is given by

$$
\tau \cdot v=\left\{\begin{aligned}
v & \text { if } v \in V_{+} \\
-v & \text { if } v \in V_{-}
\end{aligned}\right.
$$

Proof. Define linear transformations $\varepsilon_{+}, \varepsilon_{-}: V \longrightarrow V$ by

$$
\varepsilon_{+}(v)=\frac{1}{2}(v+\tau \cdot v), \quad \varepsilon_{-}(v)=\frac{1}{2}(v-\tau \cdot v) .
$$

It is easily verified that

$$
\varepsilon_{+}(\tau \cdot v)=\varepsilon_{+}(v), \quad \varepsilon_{-}(\tau \cdot v)=-\varepsilon_{-}(v) .
$$

We take $V_{+}=\operatorname{im} \varepsilon_{+}$and $V_{-}=\operatorname{im} \varepsilon_{-}$and the direct sum decomposition follows from the identity

$$
v=\varepsilon_{+}(v)+\varepsilon_{-}(v) .
$$

The decomposition in this example corresponds to the two distinct irreducible representations of $\mathbb{Z} / 2$. Later we will see (at least over the complex numbers \mathbb{C}) that there is always such a decomposition of a representation of a finite group G with factors corresponding to the distinct irreducible representations of G.

Example 2.6. Let $D_{2 n}$ be the dihedral group of order $2 n$ described in Section A.7.2. This group is generated by elements α of order n and β of order 2 , subject to the relation

$$
\beta \alpha \beta=\alpha^{-1} .
$$

We can realise $D_{2 n}$ as the symmetry group of the regular n-gon centred at the origin and with vertices on the unit circle (we take the first vertex to be (1,0)). It is easily checked that relative the standard basis $\left\{e_{1}, e_{2}\right\}$ of \mathbb{R}^{2}, we get

$$
\alpha^{r}=\left[\begin{array}{rr}
\cos 2 r \pi / n & -\sin 2 r \pi / n \\
\sin 2 r \pi / n & \cos 2 r \pi / n
\end{array}\right] \quad \beta \alpha^{r}=\left[\begin{array}{rr}
\cos 2 r \pi / n & -\sin 2 r \pi / n \\
-\sin 2 r \pi / n & -\cos 2 r \pi / n
\end{array}\right]
$$

for $r=0, \ldots,(n-1)$.
Thus we have a 2 -dimensional representation $\rho^{\mathbb{R}}$ of $D_{2 n}$ over \mathbb{R}, where the matrices of $\rho^{\mathbb{R}}\left(\alpha^{r}\right)$ and $\rho^{\mathbb{R}}\left(\beta \alpha^{r}\right)$ are given by the above. We can also view \mathbb{R}^{2} as a subset of \mathbb{C}^{2} and interpret these matrices as having coefficients in \mathbb{C}. Thus we obtain a 2 -dimensional complex representation $\rho^{\mathbb{C}}$ of $D_{2 n}$ with the above matrices relative to the \mathbb{C}-basis $\left\{e_{1}, e_{2}\right\}$.

2.2. G-homomorphisms and irreducible representations

Suppose that we have two representations $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{k}}(V)$ and $\sigma: G \longrightarrow \mathrm{GL}_{\mathbb{k}}(W)$. Then a linear transformation $f: V \longrightarrow W$ is called G-equivariant, G-linear or a G-homomorphism with respect to ρ and σ, if for each $g \in G$ the diagram

commutes, i.e., $\sigma_{g} \circ f=f \circ \rho_{g}$ or equivalently, $\sigma_{g} \circ f \circ \rho_{g^{-1}}=f$. A G-homomorphism which is a linear isomorphism is called a G-isomorphism or G-equivalence and we say that the representations are G-isomorphic or G-equivalent.

We define an action of G on $\operatorname{Hom}_{\mathbb{k}}(V, W)$, the vector space of \mathbb{k}-linear transformations $V \longrightarrow W$, by

$$
(g \cdot f)(v)=\sigma_{g} f\left(\rho_{g^{-1}} v\right) \quad\left(f \in \operatorname{Hom}_{\mathbb{k}}(V, W)\right)
$$

This is another G-representation. The G-invariant subspace $\operatorname{Hom}_{G}(V, W)=\operatorname{Hom}_{\mathbb{k}}(V, W)^{G}$ is then equal to the set of all G-homomorphisms.

If the only G-subspaces of V are $\{0\}$ and V, ρ is called irreducible or simple.
Given a subrepresentation $W \subseteq V$, the quotient vector space V / W also admits a linear action of $G, \bar{\rho}_{W}: G \longrightarrow \mathrm{GL}_{\mathbb{k}}(V / W)$, the quotient representation, where

$$
\bar{\rho}_{W}(g)(v+W)=\rho(g)(v)+W
$$

which is well defined since whenever $v^{\prime}-v \in W$,

$$
\left.\rho(g)\left(v^{\prime}\right)+W=\rho(g)\left(v+\left(v^{\prime}-v\right)\right)+W=\left(\rho(g)(v)+\rho(g)\left(v^{\prime}-v\right)\right)\right)+W=\rho(g)(v)+W
$$

Proposition 2.7. If $f: V \longrightarrow W$ is a G-homomorphism, then
(a) $\operatorname{ker} f$ is a G-subspace of V;
(b) $\operatorname{im} f$ is a G-subspace of W.

Proof. (a) Let $v \in \operatorname{ker} f$. Then for $g \in G$,

$$
f\left(\rho_{g} v\right)=\sigma_{g} f(v)=0,
$$

so $\rho_{g} v \in \operatorname{ker} f$. Hence $\operatorname{ker} f$ is a G-subspace of V
(b) Let $w \in \operatorname{im} f$ with $w=f(u)$ for some $u \in V$. Now

$$
\sigma_{g} w=\sigma_{g} f(u)=f\left(\rho_{g} u\right) \in \operatorname{im} f,
$$

hence $\operatorname{im} f$ is a G-subspace of W.
Theorem 2.8 (Schur's Lemma). Let $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(V)$ and $\sigma: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(W)$ be irreducible representations of G over the field \mathbb{C}, and let $f: V \longrightarrow W$ be a G-linear map.
(a) If f is not the zero map, then f is an isomorphism.
(b) If $V=W$ and $\rho=\sigma$, then for some $\lambda \in \mathbb{C}, f$ is given by

$$
f(v)=\lambda v \quad(v \in V)
$$

Remark 2.9. Part (a) is true for any field \mathbb{k} in place of \mathbb{C}.
Proof. (a) Proposition 2.7 implies that $\operatorname{ker} f \subseteq V$ and $\operatorname{im} f \subseteq W$ are G-subspaces. By the irreducibility of V, either ker $f=V$ (in which case f is the zero map) or $\operatorname{ker} f=\{0\}$ in which case f is injective. Similarly, irreducibility of W implies that $\operatorname{im} f=\{0\}$ (in which case f is the zero map) or $\operatorname{im} f=W$ in which case f is surjective. Thus if f is not the zero map it must be an isomorphism.
(b) Let $\lambda \in \mathbb{C}$ be an eigenvalue of f, with eigenvector $v_{0} \neq 0$. Let $f_{\lambda}: V \longrightarrow V$ be the linear transformation for which

$$
f_{\lambda}(v)=f(v)-\lambda v \quad(v \in V) .
$$

For each $g \in G$,

$$
\begin{aligned}
\rho_{g} f_{\lambda}(v) & =\rho_{g} f(v)-\rho_{g} \lambda v \\
& =f\left(\rho_{g} v\right)-\lambda \rho_{g} v, \\
& =f_{\lambda}\left(\rho_{g} v\right),
\end{aligned}
$$

showing that f_{λ} is G-linear. Since $f_{\lambda}\left(v_{0}\right)=0$, Proposition 2.7 shows that $\operatorname{ker} f_{\lambda}=V$. As

$$
\operatorname{dim}_{\mathbb{C}} V=\operatorname{dim}_{\mathbb{C}} \operatorname{ker} f_{\lambda}+\operatorname{dim}_{\mathbb{C}} \operatorname{im} f_{\lambda}
$$

we see that $\operatorname{im} f_{\lambda}=\{0\}$ and so

$$
f_{\lambda}(v)=0 \quad(v \in V)
$$

A linear transformation $f: V \longrightarrow V$ is sometimes called a homothety if it has the form

$$
f(v)=\lambda v \quad(v \in V) .
$$

In this proof, it is essential that we take $\mathbb{k}=\mathbb{C}$ rather than $\mathbb{k}=\mathbb{R}$ for example, since we need the fact that every polynomial over \mathbb{C} has a root to guarantee that linear transformations $V \longrightarrow V$ always have eigenvalues. This theorem can fail to hold for representations over \mathbb{R} as the next example shows.

Example 2.10. Let $\mathbb{k}=\mathbb{R}$ and $V=\mathbb{C}$ considered as a 2 -dimensional \mathbb{R}-vector space. Let

$$
G=\mu_{4}=\{1,-1, i,-i\}
$$

be the group of all 4th roots of unity with $\rho: \mu_{4} \longrightarrow \mathrm{GL}_{\mathbb{k}}(V)$ given by

$$
\rho_{\alpha} z=\alpha z
$$

Then this defines a 2 -dimensional representation of G over \mathbb{R}. If we use the basis $\{u=1, v=i\}$, then

$$
\rho_{i} u=v, \quad \rho_{i} v=-u
$$

From this we see that any G-subspace of V containing a non-zero element $w=a u+b v$ also contains $-b u+a v$, and hence it must be all of V (exercise). So V is irreducible.

But the linear transformation $\varphi: V \longrightarrow V$ given by

$$
\varphi(a u+b v)=-b u+a v=\rho_{i}(a u+b v)
$$

is G-linear, but not the same as multiplication by a real number (this is left as an exercise).
Theorem 2.11 (Maschke's Theorem). Let V be $a \mathbb{k}$-vector space and $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{k}}(V) a$ \mathbb{k}-representation. Let $W \subseteq V$ be a G-subspace of V. Then there is a projection onto W which is G-equivariant. Equivalently, there is a linear complement W^{\prime} of W which is also a G-subspace.

Proof. Let $p: V \longrightarrow V$ be a projection onto W. Define a linear transformation $p_{0}: V \longrightarrow$ V by

$$
p_{0}(v)=\frac{1}{|G|} \sum_{g \in G} \rho_{g} \circ p \circ \rho_{g}^{-1}(v) .
$$

Then for $v \in V$,

$$
\rho_{g} \circ p \circ \rho_{g}^{-1}(v) \in W
$$

since $\operatorname{im} p=W$ and W is a G-subspace; hence $p_{0}(v) \in W$. We also have

$$
\begin{aligned}
p_{0}\left(\rho_{g} v\right) & =\frac{1}{|G|} \sum_{h \in G} \rho_{h} p\left(\rho_{h}^{-1} \rho_{g} v\right) \\
& =\frac{1}{|G|} \sum_{h \in G} \rho_{g} \rho_{g^{-1} h} p\left(\rho_{g^{-1} h}^{-1} v\right) \\
& =\rho_{g}\left(\frac{1}{|G|} \sum_{h \in G} \rho_{g^{-1} h} p\left(\rho_{g^{-1} h}^{-1} v\right)\right) \\
& =\rho_{g}\left(\frac{1}{|G|} \sum_{h \in G} \rho_{h} p\left(\rho_{h^{-1}} v\right)\right) \\
& =\rho_{g} p_{0}(v),
\end{aligned}
$$

which shows that p_{0} is G-equivariant. If $w \in W$,

$$
\begin{aligned}
p_{0}(w) & =\frac{1}{|G|} \sum_{g \in G} \rho_{g} p\left(\rho_{g^{-1}} w\right) \\
& =\frac{1}{|G|} \sum_{g \in G} \rho_{g} \rho_{g^{-1}} w \\
& =\frac{1}{|G|} \sum_{g \in G} w \\
& =\frac{1}{|G|}(|G| w)=w .
\end{aligned}
$$

Hence $p_{\left.0\right|_{W}}=\operatorname{Id}_{W}$, showing that p_{0} has image W.
Now consider $W^{\prime}=\operatorname{ker} p_{0}$, which is a G-subspace by part (a) of Proposition 2.7. This is a linear complement for W since given the quotient map $q: V \longrightarrow V / W$, if $v \in W^{\prime}$ then $q(v)=0+W$ implies $v \in W \cap W^{\prime}$ and hence $0=p_{0}(v)=v$.

Theorem 2.12. Let $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{k}}(V)$ be a linear representation of a finite group with V non-trivial. Then there are G-spaces $U_{1}, \ldots, U_{r} \subseteq V$, each of which is a non-trivial irreducible subrepresentation and

$$
V=U_{1} \oplus \cdots \oplus U_{r} .
$$

Proof. We proceed by Induction on $n=\operatorname{dim}_{\mathbb{k}} V$. If $n=1$, the result is true with $U_{1}=V$.
So assume that the result holds whenever $\operatorname{dim}_{\mathbb{k}} V<n$. Now either V is irreducible or there is a proper G-subspace $U_{1} \subseteq V$. By Theorem 2.11, there is a G-complement U_{1}^{\prime} of U_{1} in V with $\operatorname{dim}_{\mathbb{k}} U_{1}^{\prime}<n$. By the Inductive Hypothesis there are irreducible G-subspaces $U_{2}, \ldots, U_{r} \subseteq U_{1}^{\prime} \subseteq V$ for which

$$
U_{1}^{\prime}=U_{2} \oplus \cdots \oplus U_{r}
$$

and so we find

$$
V=U_{1} \oplus U_{2} \oplus \cdots \oplus U_{r}
$$

We will see later that given any two such collections of non-trivial irreducible subrepresentations U_{1}, \ldots, U_{r} and W_{1}, \ldots, W_{s}, we have $s=r$ and for each k, the number of $W_{j} G$-isomorphic to U_{k} is equal to the number of $U_{j} G$-isomorphic to U_{k}. The proof of this will use characters, which give further information such as the multiplicity of each irreducible which occurs as a summand in V. The irreducible representations U_{k} are called the irreducible factors or summands of the representation V.

An important example of a G-subspace of any representation ρ on V is the G-invariant subspace

$$
V^{G}=\left\{v \in V: \rho_{g} v=v \forall g \in G\right\}
$$

We can construct a projection map $V \longrightarrow V^{G}$ which is G-linear, provided that the characteristic of \mathbb{k} does not divide $|G|$. In practice, we will be mainly interested in the case where $\mathbb{k}=\mathbb{C}$, so in this section from now on, we will assume that \mathbb{k} has characteristic 0 .

Proposition 2.13. Let $\varepsilon: V \longrightarrow V$ be the \mathbb{k}-linear transformation defined by

$$
\varepsilon(v)=\frac{1}{|G|} \sum_{g \in G} \rho_{g} v
$$

Then
(a) For $g \in G$ and $v \in V, \rho_{g} \varepsilon(v)=\varepsilon(v)$;
(b) ε is G-linear;
(c) for $v \in V^{G}, \varepsilon(v)=v$ and so $\operatorname{im} \varepsilon=V^{G}$.

Proof. (a) Let $g \in G$ and $v \in V$. Then

$$
\rho_{g} \varepsilon(v)=\rho_{g}\left(\frac{1}{|G|} \sum_{h \in G} \rho_{h} v\right)=\frac{1}{|G|} \sum_{h \in G} \rho_{g} \rho_{h} v=\frac{1}{|G|} \sum_{h \in G} \rho_{g h} v=\frac{1}{|G|} \sum_{h \in G} \rho_{h} v=\varepsilon(v)
$$

(b) Similarly, for $g \in G$ and $v \in V$,

$$
\varepsilon\left(\rho_{g} v\right)=\frac{1}{|G|} \sum_{h \in G} \rho_{h}\left(\rho_{g} v\right)=\frac{1}{|G|} \sum_{h \in G} \rho_{h g} v=\frac{1}{|G|} \sum_{k \in G} \rho_{k} v=\varepsilon(v)
$$

By (a), this agrees with $\rho_{g} \varepsilon(v)$. Hence, ε is G-linear.
(c) For $v \in V^{G}$,

$$
\varepsilon(v)=\frac{1}{|G|} \sum_{g \in G} \rho_{g} v=\frac{1}{|G|} \sum_{g \in G} v=\frac{1}{|G|}|G| v=v
$$

Notice that this also shows that $\operatorname{im} \varepsilon=V^{G}$.

2.3. New representations from old

Let G be a finite group and \mathbb{k} a field. In this section we will see how new representations can be manufactured from existing ones. As well as allowing interesting new examples to be constructed, this sometimes gives ways of understanding representations in terms of familiar ones. This will be important when we have learnt how to decompose representations in terms of irreducibles and indeed is sometimes used to construct the latter.

Let V_{1}, \ldots, V_{r} be \mathbb{k}-vector spaces admitting representations $\rho_{1}, \ldots, \rho_{r}$ of G. Then for each $g \in G$ and each j, we have the corresponding linear transformation $\rho_{j_{g}}: V_{j} \longrightarrow V_{j}$. By Proposition 1.20 there is a unique linear transformation

$$
\rho_{1_{g}} \otimes \cdots \otimes \rho_{r_{g}}: V_{1} \otimes \cdots \otimes V_{r} \longrightarrow V_{1} \otimes \cdots \otimes V_{r}
$$

It is easy to verify that this gives a representation of G on the tensor product $V_{1} \otimes \cdots \otimes V_{r}$, called the tensor product of the original representations. By Proposition 1.20 we have the formula

$$
\begin{equation*}
\rho_{1_{g}} \otimes \cdots \otimes \rho_{r g}\left(v_{1} \otimes \cdots \otimes v_{r}\right)=\rho_{1_{g}} v_{1} \otimes \cdots \otimes \rho_{r_{g}} v_{r} \tag{2.1}
\end{equation*}
$$

for $v_{j} \in V_{j}(j=1, \ldots, r)$.
Let V, W be \mathbb{k}-vector spaces supporting representations $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{k}}(V)$ and $\sigma: G \longrightarrow$ $\mathrm{GL}_{\mathbb{k}}(W)$. Recall that $\operatorname{Hom}_{\mathbb{k}}(V, W)$ is the set of all linear transformations $V \longrightarrow W$ which is a \mathbb{k}-vector space whose addition and multiplication are given by the following formulæ for $\varphi, \theta \in \operatorname{Hom}_{\mathbb{k}}(V, W)$ and $t \in \mathbb{k}:$

$$
\begin{aligned}
(\varphi+\theta)(u) & =\varphi(u)+\theta(u) \\
(t \varphi)(u) & =t(\varphi(u))=\varphi(t u)
\end{aligned}
$$

There is an action of G on $\operatorname{Hom}_{\mathbb{k}}(V, W)$ defined by

$$
\left(\tau_{g} \varphi\right)(u)=\sigma_{g} \varphi\left(\rho_{g^{-1}} u\right)
$$

This turns out to be a linear representation of G on $\operatorname{Hom}_{\mathbb{k}}(V, W)$.
As a particular example of this, taking $W=\mathbb{k}$ with the trivial action of G (i.e., $\sigma_{g}=\mathrm{Id}_{\mathbb{k}}$), we obtain an action of G on the dual of V,

$$
V^{*}=\operatorname{Hom}_{\mathbb{k}}(V, \mathbb{k})
$$

This action determines the contragredient representation ρ^{*}. Explicitly, this satisfies

$$
\rho_{g}^{*} \varphi=\varphi \circ \rho_{g^{-1}}
$$

Proposition 2.14. Let $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{k}}(V)$ be a representation, and $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V. Suppose that relative to \mathbf{v},

$$
\left[\rho_{g}\right]_{\mathbf{v}}=\left[r_{i j}(g)\right] \quad(g \in G)
$$

Then relative to the dual basis $\mathbf{v}^{*}=\left\{v_{1}^{*}, \ldots, v_{n}^{*}\right\}$, we have

$$
\left[\rho_{g}^{*}\right]_{\mathbf{v}^{*}}=\left[r_{j i}\left(g^{-1}\right)\right] \quad(g \in G),
$$

or equivalently,

$$
\left[\rho_{g}^{*}\right]_{\mathbf{v}^{*}}=\left[\rho_{g^{-1}}\right]^{T}
$$

Proof. If we write

$$
\left[\rho_{g}^{*}\right]_{\mathbf{v}^{*}}=\left[t_{i j}(g)\right]
$$

then by definition,

$$
\rho_{g}^{*} v_{s}^{*}=\sum_{r=1}^{n} t_{r s}(g) v_{r}^{*}
$$

Now for each $i=1, \ldots, n$,

$$
\left(\rho_{g}^{*} v_{j}^{*}\right)\left(v_{i}\right)=\sum_{r=1}^{n} t_{r j}(g) v_{r}^{*}\left(v_{i}\right),
$$

which gives

$$
v_{j}^{*}\left(\rho_{g^{-1}} v_{i}\right)=t_{i j}(g),
$$

and hence

$$
t_{i j}(g)=v_{j}^{*}\left(\sum_{k=1}^{n} r_{k i}\left(g^{-1}\right) v_{i}\right)=r_{j i}\left(g^{-1}\right) .
$$

Another perspective on the above is provided by the next result, whose proof is left as an exercise.

Proposition 2.15. The \mathbb{k}-linear isomorphism

$$
\operatorname{Hom}_{\mathbb{k}}(V, W) \cong W \underset{\mathbb{k}}{\otimes} V^{*}
$$

is a G-isomorphism where the right hand side carries the tensor product representation $\sigma \otimes \rho^{*}$.
Using these ideas together with Proposition 2.13 we obtain the following useful result
Proposition 2.16. For \mathbb{k} of characteristic 0, the G-homomorphism

$$
\varepsilon: \operatorname{Hom}_{\mathbb{k}}(V, W) \longrightarrow \operatorname{Hom}_{\mathfrak{k}}(V, W)
$$

of Proposition 2.13 has image equal to the set of G-homomorphisms $V \longrightarrow W, \operatorname{Hom}_{\mathbb{k}}(V, W)^{G}$ which is also G-isomorphic to $\left(W \otimes_{\mathfrak{k}} V^{*}\right)^{G}$.

Now let $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{k}}(V)$ be a representation of G and let $H \leqslant G$. We can restrict ρ to H and obtain a representation $\rho_{\left.\right|_{H}}: H \longrightarrow \mathrm{GL}_{\mathbb{k}}(V)$ of H, usually denoted $\rho \downarrow_{H}^{G}$ or $\operatorname{Res}_{H}^{G} \rho$; the H-module V is also denoted $V \downarrow_{H}^{G}$ or $\operatorname{Res}_{H}^{G} V$.

Similarly, if $G \leqslant K$, then we can form the induced representation $\rho \uparrow_{G}^{K}: K \longrightarrow \mathrm{GL}_{\mathbb{k}}\left(V \uparrow_{G}^{K}\right)$ as follows. Take K_{R} to be the G-set consisting of the underlying set of K with the G-action

$$
g \cdot x=x g^{-1} .
$$

Define

$$
V \uparrow_{G}^{K}=\operatorname{Ind}_{G}^{K} V=\operatorname{Map}\left(K_{R}, V\right)^{G}=\left\{f: K \longrightarrow V: f(x)=\rho_{g} f(x g) \forall x \in K\right\} .
$$

Then K acts linearly on $V \uparrow_{G}^{K}$ by

$$
(k \cdot f)(x)=f(k x),
$$

and so we obtain a linear representation of K. The induced representation is often denoted $\rho \uparrow_{G}^{K}$ or $\operatorname{Ind}_{G}^{K} \rho$. The dimension of $V \uparrow_{G}^{K}$ is $\operatorname{dim}_{\mathfrak{k}} V \uparrow_{G}^{K}=|K / G| \operatorname{dim}_{k} V$. Later we will meet Reciprocity Laws relating these induction and restriction operations.

2.4. Permutation representations

Let G be a finite group and X a finite G-set, i.e., a finite set X equipped with an action of G on X, written $g x$. A finite dimensional G-representation $\rho: G \longrightarrow \operatorname{GL}_{\mathbb{C}}(V)$ over \mathbb{k} is a permutation representation on X if there is an injective G-map $j: X \longrightarrow V$ and $\operatorname{im} j=j(X) \subseteq V$ is a \mathbb{k}-basis for V. Notice that a permutation representation really depends on the injection j. We frequently have situations where $X \subseteq V$ and j is the inclusion of the subset X. The condition that j be a G-map amounts to the requirement that

$$
\rho_{g}(j(x))=j(g x) \quad(g \in G, x \in X) .
$$

DEFINITION 2.17. A homomorphism from a permutation representation $j_{1}: X_{1} \longrightarrow V_{1}$ to a second $j_{2}: X_{2} \longrightarrow V_{2}$ is a G-linear transformation $\Phi: V_{1} \longrightarrow V_{2}$ such that

$$
\Phi\left(j_{1}(x)\right) \in \operatorname{im} j_{2} \quad\left(x \in X_{1}\right)
$$

A G-homomorphism of permutation representations which is a G-isomorphism is called a G isomorphism of permutation representations.

Notice that by the injectivity of j_{2}, this implies the existence of a unique G-map $\varphi: X_{1} \longrightarrow$ X_{2} for which

$$
j_{2}(\varphi(x))=\Phi\left(j_{1}(x)\right) \quad\left(x \in X_{1}\right)
$$

Equivalently, we could specify the G-map $\varphi: X_{1} \longrightarrow X_{2}$ and then $\Phi: V_{1} \longrightarrow V_{2}$ would be the unique linear extension of φ restricted to $\operatorname{im} j_{2}$ (see Proposition 1.1). In the case where Φ is a G-isomorphism, it is easily verified that $\varphi: X_{1} \longrightarrow X_{2}$ is a G-equivalence.

To show that such permutations representations exist in abundance, we proceed as follows. Let X be a finite set equipped with a G-action. Let $\mathbb{k}[X]=\operatorname{Map}(X, \mathbb{k})$, the set of all functions $X \longrightarrow \mathbb{k}$. This is a finite dimensional \mathbb{k}-vector space with addition and scalar multiplication defined by

$$
\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x), \quad(t f)(x)=t(f(x))
$$

for $f_{1}, f_{2}, f \in \operatorname{Map}(X, \mathbb{k}), t \in \mathbb{k}$ and $x \in X$. There is an action of G on $\operatorname{Map}(X, \mathbb{k})$ given by

$$
(g \cdot f)(x)=f\left(g^{-1} x\right)
$$

If Y is a second finite G-set, and $\varphi: X \longrightarrow Y$ a G-map, then we define the induced function $\varphi_{*}: \mathbb{k}[X] \longrightarrow \mathbb{k}[Y]$ by

$$
\left(\varphi_{*} f\right)(y)=\sum_{x \in \varphi^{-1}\{y\}} f(x)=\sum_{\varphi(x)=y} f(x)
$$

Theorem 2.18. Let G be a finite group.
(a) For a finite G-set $X, \mathbb{k}[X]$ is a finite dimensional permutation representation of dimension $\operatorname{dim}_{\mathbb{k}} \mathbb{k}[X]=|X|$.
(b) For a G-map $\varphi: X \longrightarrow Y$, the induced function $\varphi_{*}: \mathbb{k}[X] \longrightarrow \mathbb{k}[Y]$ is a G-linear transformation.

Proof.
a) For each $x \in X$ we have a function $\delta_{x}: X \longrightarrow \mathbb{k}$ given by

$$
\delta_{x}(y)= \begin{cases}1 & \text { if } y=x \\ 0 & \text { otherwise }\end{cases}
$$

The map $j: X \longrightarrow \mathbb{k}[X]$ given by

$$
j(x)=\delta_{x}
$$

is easily seen to be an injection. It is also a G-map, since

$$
\delta_{g x}(y)=1 \quad \Longleftrightarrow \quad \delta_{x}\left(g^{-1} y\right)=1
$$

and hence

$$
j(g x)(y)=\delta_{g x}(y)=\delta_{x}\left(g^{-1} y\right)=\left(g \cdot \delta_{x}\right)(y)
$$

Given a function $f: X \longrightarrow \mathbb{k}$, consider

$$
f-\sum_{x \in X} f(x) \delta_{x} \in \mathbb{k}[X]
$$

Then for $y \in X$,

$$
f(y)-\sum_{x \in X} f(x) \delta_{x}(y)=f(y)-f(y)=0
$$

hence $f-\sum_{x \in X} f(x) \delta_{x}$ is the constant function taking the value 0 on X. So the functions δ_{x} $(x \in X)$ span $\mathbb{k}[X]$. They are also linearly independent, since if the 0 valued constant function is expressed in the form

$$
\sum_{x \in X} t_{x} \delta_{x}
$$

for some $t_{x} \in \mathbb{k}$, then for each $y \in X$,

$$
0=\sum_{x \in X} t_{x} \delta_{x}(y)=t_{y}
$$

hence all the coefficients t_{x} must be 0 .
b) The \mathbb{k}-linearity of φ_{*} is easily checked. To show it is a G-map, for $g \in G$,

$$
\begin{aligned}
\left(g \cdot \varphi_{*} f\right)(y) & =\left(\varphi_{*} f\right)\left(g^{-1} y\right) \\
& =\sum_{x \in \varphi^{-1}\left\{g^{-1} y\right\}} f(x) \\
& =\sum_{x \in \varphi^{-1}\{y\}} f\left(g^{-1} x\right),
\end{aligned}
$$

since

$$
\begin{aligned}
\varphi^{-1}\left\{g^{-1} y\right\} & =\{x \in X: g \varphi(x)=y\} \\
& =\{x \in X: \varphi(g x)=y\} \\
& =\left\{g^{-1} x: x \in X, x \in \varphi^{-1}\{y\}\right\}
\end{aligned}
$$

Since by definition

$$
(g \cdot f)(x)=f\left(g^{-1} x\right)
$$

we have

$$
\left(g \cdot \varphi_{*} f\right)=\varphi_{*}(g \cdot f)
$$

Given a permutation representation $\mathbb{k}[X]$, we will often use the injection j to identify X with a subset of $\mathbb{k}[X]$. If $\varphi: X \longrightarrow Y$ is a G-map, notice that

$$
\varphi_{*}\left(\sum_{x \in X} t_{x} \delta_{x}\right)=\sum_{x \in X} t_{x} \delta_{\varphi(x)}
$$

We will sometimes write x instead of δ_{x}, and a typical element of $\mathbb{k}[X]$ as $\sum_{x \in X} t_{x} x$, where each $t_{x} \in \mathbb{k}$, rather than $\sum_{x \in X} t_{x} \delta_{x}$. Another convenient notational device is to list the elements of X as $x_{1}, x_{2}, \ldots, x_{n}$ and then identify $\mathbf{n}=\{1,2, \ldots, n\}$ with X via the correspondence $k \longleftrightarrow$ x_{k}. Then we can identify $\mathbb{k}[\mathbf{n}] \cong \mathbb{k}^{n}$ with $\mathbb{k}[X]$ using the correspondence

$$
\left(t_{1}, t_{2}, \ldots, t_{n}\right) \longleftrightarrow \sum_{k=1}^{n} t_{k} x_{k}
$$

2.5. Properties of permutation representations

Let X be a finite G-set. The result shows how to reduce an arbitrary permutation representation to a direct sum of those induced from transitive G-sets.

Proposition 2.19. Let $X=X_{1} \amalg X_{2}$ where $X_{1}, X_{2} \subseteq X$ are closed under the action of G. Then there is a G-isomorphism

$$
\mathbb{k}[X] \cong \mathbb{k}\left[X_{1}\right] \oplus \mathbb{k}\left[X_{2}\right] .
$$

Proof. Let $j_{1}: X_{1} \longrightarrow X$ and $j_{2}: X_{2} \longrightarrow X$ be the inclusion maps, which are G-maps. By Theorem 2.18(b), there are G-linear transformations $j_{1 *}: \mathbb{k}\left[X_{1}\right] \longrightarrow \mathbb{k}[X]$ and $j_{2 *}: \mathbb{k}\left[X_{2}\right] \longrightarrow$ $\mathbb{k}[X]$. For

$$
f=\sum_{x \in X} t_{x} x \in \mathbb{k}[X],
$$

we have the 'restrictions'

$$
f_{1}=\sum_{x \in X_{1}} t_{x} x, \quad f_{2}=\sum_{x \in X_{2}} t_{x} x .
$$

We define our linear map $\mathbb{k}[X] \cong \mathbb{k}\left[X_{1}\right] \oplus \mathbb{k}\left[X_{2}\right]$ by

$$
f \longmapsto\left(f_{1}, f_{2}\right) .
$$

It is easily seen that this is a linear transformation, and moreover has an inverse given by

$$
\left(h_{1}, h_{2}\right) \longmapsto j_{1 *} h_{1}+j_{2 *} h_{2} .
$$

Finally, this is a G-map since the latter is the sum of two G-maps, so its inverse is a G-map.
Let X_{1} and X_{2} be G-sets. Then $X=X_{1} \times X_{2}$ can be made into a G-set with action given by

$$
g \cdot\left(x_{1}, x_{2}\right)=\left(g x_{1}, g x_{2}\right) .
$$

Proposition 2.20. Let X_{1} and X_{2} be G-sets. Then there is a G-isomorphism

$$
\mathbb{k}\left[X_{1}\right] \otimes \mathbb{k}\left[X_{2}\right] \cong \mathbb{k}\left[X_{1} \times X_{2}\right] .
$$

Proof. The function $F: \mathbb{k}\left[X_{1}\right] \times \mathbb{k}\left[X_{2}\right] \longrightarrow \mathbb{k}\left[X_{1} \times X_{2}\right]$ defined by

$$
F\left(\sum_{x \in X_{1}} s_{x} x, \sum_{y \in X_{2}} t_{y} y\right)=\sum_{x \in X_{1}} \sum_{y \in X_{2}} s_{x} t_{y}(x, y)
$$

is \mathbb{k}-bilinear. Hence by the universal property of the tensor product (Section 1.4, UP-TP), there is a unique linear transformation $F^{\prime}: \mathbb{k}\left[X_{1}\right] \otimes \mathbb{k}\left[X_{2}\right] \longrightarrow \mathbb{k}\left[X_{1} \times X_{2}\right]$ for which

$$
F^{\prime}(x \otimes y)=(x, y) \quad\left(x \in X_{1}, y \in X_{2}\right) .
$$

This is easily seen to to be a G-linear isomorphism.
Definition 2.21. Let G be a finite group. The regular representation over \mathbb{k} is the G representation $\mathbb{k}[G]$. This has dimension $\operatorname{dim}_{\mathbb{k}} \mathbb{k}[G]=|G|$.

Proposition 2.22. The regular representation of a finite group G over a field \mathbb{k} is a ring (in fact $a \mathbb{k}$-algebra). Moreover, this ring is commutative if and only if G is abelian.

Proof. Let $a=\sum_{g \in G} a_{g} g$ and $b=\sum_{g \in G} b_{g} g$ where $a_{g}, b_{g} \in G$. Then we define the product of a and b by

$$
a b=\sum_{g \in G}\left(\sum_{h \in G} a_{h} b_{h^{-1} g}\right) g .
$$

Note that for $g, h \in G$ in $\mathbb{k}[G]$ we have

$$
(1 g)(1 h)=g h .
$$

For commutativity, each such product $(1 g)(1 h)$ must agree with $(1 h)(1 g)$, which happens if and only if G is abelian. The rest of the details are left as an exercise.

The ring $\mathbb{k}[G]$ is called the group algebra or group ring of G over \mathbb{k}. The next result is left as an exercise for those who know about modules. It provides a link between the study of modules over $\mathbb{k}[G]$ and G-representations, and so the group ring construction provides an important source of non-commutative rings and their modules.

Proposition 2.23. Let V be $a \mathbb{k}$ vector space. Then if V carries a G-representation, it admits the structure of $a \mathbb{k}[G]$ module defined by

$$
\left(\sum_{g \in G} a_{g} g\right) v=\sum_{g \in G} a_{g} g v .
$$

Conversely, if V is a $\mathbb{k}[G]$-module, then it admits a G-representation with action defined by

$$
g \cdot v=(1 g) v
$$

2.6. Calculating in permutation representations

In this section, we determine how the permutation representation $\mathbb{k}[X]$ looks in terms of the basis consisting of elements $x(x \in X)$. We know that $g \in G$ acts by sending x to $g x$. Hence, if we label the rows and columns of a matrix by the elements of X, the $|X| \times|X|$ matrix $[g]$ of g with respect to this basis has $x y$ entry

$$
[g]_{x y}=\delta_{x, g y}= \begin{cases}1 & \text { if } x=g y \tag{2.2}\\ 0 & \text { otherwise }\end{cases}
$$

where $\delta_{a, b}$ denotes the Kronecker δ function which is 0 except for when $a=b$ and it then takes the value 1 . Thus there is exactly one 1 in each row and column, and 0 's everywhere else. The following is an important example.

Let $X=\mathbf{n}=\{1,2, \ldots, n\}$ and $G=S_{n}$, the symmetric group of degree n, acting on \mathbf{n} in the usual way. We may take as a basis for $\mathbb{k}[\mathbf{n}]$, the functions $\delta_{j}(1 \leqslant j \leqslant n)$ given by

$$
\delta_{j}(k)= \begin{cases}1 & \text { if } k=j \\ 0 & \text { otherwise }\end{cases}
$$

Relative to this basis, the action of $\sigma \in S_{n}$ is given by the $n \times n$ matrix [σ] whose $i j$-th entry is

$$
[\sigma]_{i j}= \begin{cases}1 & \text { if } i=\sigma(j), \tag{2.3}\\ 0 & \text { otherwise } .\end{cases}
$$

Taking $n=3$, we get

As expected, we also have

$$
\left[\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right][(13)]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[(\begin{array} { l l }
{ 1 } & { 2 }
\end{array}) \left(\begin{array}{ll}
1 & 3)] .
\end{array}\right.\right.
$$

An important fact about permutation representations is the following, which makes their characters easy to calculate.

Proposition 2.24. Let X be a finite G-set, and $\mathbb{k}[X]$ the associated permutation representation. Let $g \in G$ and $\rho_{g}: \mathbb{k}[X] \longrightarrow \mathbb{k}[X]$ be the linear transformation induced by g. Then

$$
\operatorname{tr} \rho_{g}=\left|X^{g}\right|=|\{x \in X: g x=x\}|=\text { number of elements of } X \text { fixed by } g .
$$

Proof. Take the elements of X to be a basis for $\mathbb{k}[X]$. Then $\operatorname{tr} \rho_{g}$ is the sum of the diagonal terms in the matrix $\left[\rho_{g}\right]$ relative to this basis. Now making use of Equation (2.2) we see that $\operatorname{tr} \rho_{g}=$ number of non-zero diagonal terms in $\left[\rho_{g}\right]=$ number of elements of X fixed by g.
Our next result shows that permutation representations are self-dual.

Proposition 2.25. Let X be a finite G-set, and $\mathbb{k}[X]$ the associated permutation representation. Then there is a G-isomorphism $\mathbb{k}[X] \cong \mathbb{k}[X]^{*}$.

Proof. Take as a basis of $\mathbb{k}[X]$ the elements $x \in X$. Then a basis for the dual space $\mathbb{k}[X]^{*}$ consists of the elements x^{*}. By definition of the action of G on $\mathbb{k}[X]^{*}=\operatorname{Hom}_{\mathbb{k}}(\mathbb{k}[X], \mathbb{k})$, we have

$$
\left(g \cdot x^{*}\right)(y)=x^{*}\left(g^{-1} x\right) \quad(g \in G, y \in X)
$$

A familiar calculation shows that $g \cdot x^{*}=(g x)^{*}$, and so this basis is also permuted by G. Now define a function $\varphi: \mathbb{k}[X] \longrightarrow \mathbb{k}[X]^{*}$ by

$$
\varphi\left(\sum_{x \in X} a_{x} x\right)=\sum_{x \in X} a_{x} x^{*} .
$$

This is a \mathbb{k}-linear isomorphism also satisfying

$$
\varphi\left(g \sum_{x \in X} a_{x} x\right)=\varphi\left(\sum_{x \in X} a_{x}(g x)\right)=\sum_{x \in X} a_{x}(g x)^{*}=g \cdot \varphi\left(\sum_{x \in X} a_{x} x\right) .
$$

Hence φ is a G-isomorphism.

2.7. Generalized permutation representations

It is useful to generalize the notion of permutation representation somewhat. Let V be a finite dimensional \mathbb{k}-vector space with a representation of $G, \rho: G \longrightarrow \mathrm{GL}_{\mathbb{k}}(V)$; we will usually write $g v=\rho_{g} v$. We can consider the set of all functions $X \longrightarrow V, \operatorname{Map}(X, V)$, and this is also a finite dimensional \mathbb{k}-vector space with addition and scalar multiplication defined by

$$
\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x), \quad(t f)(x)=t(f(x)),
$$

for $f_{1}, f_{2}, f \in \operatorname{Map}(X, V), t \in \mathbb{k}$ and $x \in X$. There is a representation of G on $\operatorname{Map}(X, V)$ given by

$$
(g \cdot f)(x)=g f\left(g^{-1} x\right)
$$

We call this a generalized permutation representation of G.
Proposition 2.26. Let $\operatorname{Map}(X, V)$ be a permutation representation of G, where V has basis $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$. Then the functions $\delta_{x, j}: X \longrightarrow V(x \in X, 1 \leqslant j \leqslant n)$ given by

$$
\delta_{x, j}(y)= \begin{cases}v_{j} & \text { if } y=x \\ 0 & \text { otherwise }\end{cases}
$$

for $y \in X$, form a basis for $\operatorname{Map}(X, V)$. Hence,

$$
\operatorname{dim}_{\mathbb{k}} \operatorname{Map}(X, V)=|X| \operatorname{dim}_{\mathbb{k}} V
$$

Proof. Let $f: X \longrightarrow V$. Then for any $y \in X$,

$$
f(y)=\sum_{j=1}^{n} f_{j}(y) v_{j},
$$

where $f_{j}: X \longrightarrow \mathbb{k}$ is a function. It suffices now to show that any function $h: X \longrightarrow \mathbb{k}$ has a unique expression as

$$
h=\sum_{x \in X} h_{x} \delta_{x}
$$

where $h_{x} \in \mathbb{k}$ and $\delta_{x}: X \longrightarrow \mathbb{k}$ is given by

$$
\delta_{x}(y)= \begin{cases}1 & \text { if } y=x \\ 0 & \text { otherwise }\end{cases}
$$

But for $y \in X$,

$$
h(y)=\sum_{x \in X} h_{x} \delta_{x}(y) \quad \Longleftrightarrow \quad h(y)=h_{y}
$$

Hence $h=\sum_{x \in X} h(x) \delta_{x}$ is the unique expansion of this form. Combining this with the above we have

$$
f(y)=\sum_{j=1}^{n} f_{j}(y) v_{j}=\sum_{j=1}^{n} \sum_{x \in X} f_{j}(x) \delta_{x}(y) v_{j}
$$

and so

$$
f=\sum_{j=1}^{n} \sum_{x \in X} f_{j}(x) \delta_{x j}
$$

is the unique such expression, since $\delta_{x j}(y)=\delta_{x}(y) v_{j}$.
Proposition 2.27. If $V=V_{1} \oplus V_{2}$ is a direct sum of representations V_{1}, V_{2}, then there is a G-isomorphism

$$
\operatorname{Map}(X, V) \cong \operatorname{Map}\left(X, V_{1}\right) \oplus \operatorname{Map}\left(X, V_{2}\right)
$$

Proof. Recall that every $v \in V$ has a unique expression of the form $v=v_{1}+v_{2}$. Define a function

$$
\operatorname{Map}(X, V) \longrightarrow \operatorname{Map}\left(X, V_{1}\right) \oplus \operatorname{Map}\left(X, V_{2}\right) ; \quad f \longrightarrow f_{1}+f_{2}
$$

where $f_{1}: X \longrightarrow V_{1}$ and $f_{2}: X \longrightarrow V_{2}$ satisfy

$$
f(x)=f_{1}(x)+f_{2}(x) \quad(x \in X)
$$

This is easily seen to be both a linear isomorphism and a G-homomorphism, hence a G isomorphism.

Proposition 2.28. Let $X=X_{1} \coprod X_{2}$ where $X_{1}, X_{2} \subseteq X$ are closed under the action of G. Then there is a G-isomorphism

$$
\operatorname{Map}(X, V) \cong \operatorname{Map}\left(X_{1}, V\right) \oplus \operatorname{Map}\left(X_{2}, V\right)
$$

Proof. Let $j_{1}: X_{1} \longrightarrow X$ and $j_{2}: X_{2} \longrightarrow X$ be the inclusion maps, which are G-maps. Then given $f: X \longrightarrow V$, we have two functions $f_{k}: X \longrightarrow V(k=1,2)$ given by

$$
f_{k}(x)= \begin{cases}f(x) & \text { if } x \in X_{k} \\ 0 & \text { otherwise }\end{cases}
$$

Define a function

$$
\operatorname{Map}(X, V) \cong \operatorname{Map}\left(X_{1}, V\right) \longrightarrow \operatorname{Map}\left(X_{2}, V\right) ; \quad f \longmapsto f_{1}+f_{2}
$$

This is easily seen to be a linear isomorphism. Using the fact that X_{k} is closed under the action of G, we see that

$$
(g \cdot f)_{k}=g \cdot f_{k}
$$

so

$$
g \cdot\left(f_{1}+f_{2}\right)=g \cdot f_{1}+g \cdot f_{2}
$$

Therefore this map is a G-isomorphism.
These results tell us how to reduce an arbitrary generalized permutation representation to a direct sum of those induced from a transitive G-set X and an irreducible representation V.

Exercises on Chapter 2

2-1. Consider the function $\sigma: D_{2 n} \longrightarrow \mathrm{GL}_{\mathbb{C}}\left(\mathbb{C}^{2}\right)$ given by

$$
\sigma_{\alpha^{r}}\left(x e_{1}+y e_{2}\right)=\zeta^{r} x e_{1}+\zeta^{-r} y e_{2}, \quad \sigma_{\alpha^{r} \beta}\left(x e_{1}+y e_{2}\right)=\zeta^{r} y e_{1}+\zeta^{-r} x e_{2}
$$

where $\sigma_{g}=\sigma(g)$ and $\zeta=e^{2 \pi i / n}$. Show that this defines a 2-dimensional representation of $D_{2 n}$ over \mathbb{C}. Show that this representation is irreducible and determine $\operatorname{ker} \sigma$.

2-2. Show that there is a 3-dimensional real representation $\theta: Q_{8} \longrightarrow \mathrm{GL}_{\mathbb{R}}\left(\mathbb{R}^{3}\right)$ of the quaternion group Q_{8} for which

$$
\theta_{\mathbf{i}}\left(x e_{1}+y e_{2}+z e_{3}\right)=x e_{1}-y e_{2}-z e_{3}, \quad \theta_{\mathbf{j}}\left(x e_{1}+y e_{2}+z e_{3}\right)=-x e_{1}+y e_{2}-z e_{3}
$$

Show that this representation is not irreducible and determine $\operatorname{ker} \theta$.
2-3. Consider the 2-dimensional complex vector space

$$
V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{C}^{3}: x_{1}+x_{2}+x_{3}=0\right\}
$$

Show that the symmetric group S_{3} has a representation ρ on V defined by

$$
\rho_{\sigma}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, x_{\sigma^{-1}(3)}\right)
$$

for $\sigma \in S_{3}$. Show that this representation is irreducible.
$2-4$. If p is a prime and G is a non-trivial finite p-group, show that there is a non-trivial 1-dimensional representation of G. More generally show this holds for a finite solvable group.

2-5. Let $X=\{1,2,3\}=\mathbf{3}$ with the usual action of the symmetric group S_{3}. Consider the complex permutation representation of S_{3} associated to this with underlying vector space $V=\mathbb{C}[3]$.
(i) Show that the invariant subspace

$$
V^{S_{3}}=\left\{v \in V: \sigma \cdot v=v \forall \sigma \in S_{3}\right\}
$$

is 1-dimensional.
(ii) Find a 2-dimensional S_{3}-subspace $W \subseteq V$ such that $V=V^{S_{3}} \oplus W$.
(iii) Show that W of (ii) is irreducible.
(iv) Show that the restriction $W \downarrow_{H}^{S_{3}}$ of the representation of S_{3} on W to the subgroup $H=\{e,(12)\}$ is not irreducible.
(v) Show that the restriction of the representation $W \downarrow_{K}^{S_{3}}$ of S_{3} on W to the subgroup $K=\{e,(123),(132)\}$ is not irreducible.

2-6. Let the finite group G act on the finite set X and let $\mathbb{C}[X]$ be the associated complex permutation representation.
(i) If the action of G on X is transitive (i.e., there is exactly one orbit), show that there is a 1-dimensional G-subspace $\mathbb{C}\left\{v_{X}\right\}$ with basis vector $v_{X}=\sum_{x \in X} x$. Find a G-subspace $W_{X} \subseteq \mathbb{C}[X]$ for which $\mathbb{C}[X]=\mathbb{C}\left\{v_{X}\right\} \oplus W_{X}$
(ii) For a general G-action on X, for each G-orbit Y in X use (a) to find a 1-dimensional G-subspace V_{Y} and another W_{Y} of dimension $(|Y|-1)$ such that

$$
\mathbb{C}[X]=V_{Y_{1}} \oplus W_{Y_{1}} \oplus \cdots \oplus V_{Y_{r}} \oplus W_{Y_{r}}
$$

where Y_{1}, \ldots, Y_{r} are the distinct G-orbits of X.

2-7. If $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{k}}(V)$ is an irreducible representation, prove that the contragredient representation $\rho^{*}: G \longrightarrow \mathrm{GL}_{\mathbb{k}}\left(V^{*}\right)$ is also irreducible.
$2-8$. Let \mathbb{k} be a field of characteristic different from 2 . Let G be a finite group of even order and let $C \leqslant G$ be a subgroup of order 2 with generator γ. Consider the regular representation of G, which comes from the natural left action of G on $\mathbb{k}[G]$.

Now consider the action of the generator γ by multiplication of basis vectors on the right. Denote the $+1,-1$ eigenspaces for this action by $\mathbb{k}[G]^{+}, \mathbb{k}[G]^{-}$respectively.

Show that the subspaces $\mathbb{k}[G]^{ \pm}$are G-subspaces and that

$$
\operatorname{dim}_{\mathbb{k}} \mathbb{k}[G]^{+}=\operatorname{dim}_{\mathbb{k}} \mathbb{k}[G]^{-}=\frac{|G|}{2}
$$

Deduce that $\mathbb{k}[G]=\mathbb{k}[G]^{+} \oplus \mathbb{k}[G]^{-}$as G-representations.

CHAPTER 3

Character theory

3.1. Characters and class functions on a finite group

Let G be a finite group and let $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(V)$ be a finite dimensional \mathbb{C}-representation of dimension $\operatorname{dim}_{\mathbb{C}} V=n$. For $g \in G$, the linear transformation $\rho_{g}: V \longrightarrow V$ will sometimes be written g. or g. The character of g in the representation ρ is the trace of g on V, i.e.,

$$
\chi_{\rho}(g)=\operatorname{tr} \rho_{g}=\operatorname{tr} g .
$$

We can view χ_{ρ} as a function $\chi_{\rho}: G \longrightarrow \mathbb{C}$, the character of the representation ρ.
Definition 3.1. A function $\theta: G \longrightarrow \mathbb{C}$ is a class function if for all $g, h \in G$,

$$
\theta\left(h g h^{-1}\right)=\theta(g),
$$

i.e., θ is constant on each conjugacy class of G.

Proposition 3.2. For all $g, h \in G$,

$$
\chi_{\rho}\left(h g h^{-1}\right)=\chi_{\rho}(g) .
$$

Hence $\chi_{\rho}: G \longrightarrow \mathbb{C}$ is a class function on G.
Proof. We have

$$
\rho_{h g h^{-1}}=\rho_{h} \circ \rho_{g} \circ \rho_{h^{-1}}=\rho_{h} \circ \rho_{g} \circ \rho_{h}^{-1}
$$

and so

$$
\chi_{\rho}\left(h g h^{-1}\right)=\operatorname{tr} \rho_{h} \circ \rho_{g} \circ \rho_{h}^{-1}=\operatorname{tr} \rho_{g}=\chi_{\rho}(g) .
$$

Example 3.3. Let $G=S_{3}$ act on the set $\mathbf{3}=\{1,2,3\}$ in the usual way. Let $V=\mathbb{C}[\mathbf{3}]$ be the associated permutation representation over \mathbb{C}, where we take as a basis $\mathbf{e}=\left\{e_{1}, e_{2}, e_{3}\right\}$ with action

$$
\sigma \cdot e_{j}=e_{\sigma(j)}
$$

Let us determine the character of this representation $\rho: S_{3} \longrightarrow \mathrm{GL}_{\mathbb{C}}(V)$.
The elements of S_{3} written using cycle notation are the following:
1, (1 2), (2 3), (13), (123), (132).

The matrices of these elements with respect to \mathbf{e} are

$$
I_{3},\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] .
$$

Taking traces we obtain

$$
\chi_{\rho}(1)=3, \chi_{\rho}\left(\begin{array}{l}
1
\end{array} 2\right)=\chi_{\rho}\left(\begin{array}{ll}
2 & 3
\end{array}\right)=\chi_{\rho}\left(\begin{array}{ll}
1 & 3
\end{array}\right)=1, \chi_{\rho}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\chi_{\rho}\left(\begin{array}{lll}
1 & 3
\end{array}\right)=0 .
$$

Notice that we have $\chi_{\rho}(g) \in \mathbb{Z}$. Indeed, by Proposition 2.24 we have
Proposition 3.4. Let X be a G-set and ρ the associated permutation representation on $\mathbb{C}[X]$. Then

$$
\chi_{\rho}(g)=\left|X^{g}\right|=|\{x \in X: g \cdot x=x\}|=\text { the number of elements of } X \text { fixed by } g .
$$

The next result sheds further light on the significance of the character of a G-representation over the complex number field \mathbb{C} and makes use of linear algebra developed in Section 1.3 of Chapter 1.

THEOREM 3.5. For $g \in G$, there is a basis $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$ of V consisting of eigenvectors of the linear transformation g.

Proof. Let $d=|g|$, the order of g. For $v \in V$,

$$
\left(g^{d}-\operatorname{Id}_{V}\right)(v)=0
$$

Now we can apply Lemma 1.16 with the polynomial $f(X)=X^{d}-1$, which has d distinct roots in \mathbb{C}.

There may well be a smaller degree polynomial identity satisfied by the linear transformation g on V. However, if a polynomial $f(X)$ satisfied by g has $\operatorname{deg} f(X) \leqslant d$ and no repeated linear factors, then $f(X) \mid\left(X^{d}-1\right)$.

Corollary 3.6. The distinct eigenvalues of the linear transformation g on V are dth roots of unity. More precisely, if d_{0} is the smallest natural number such that for all $v \in V$,

$$
\left(g^{d_{0}}-\operatorname{Id}_{V}\right)(v)=0
$$

then the distinct eigenvalues of g are d_{0} th roots of unity.
Proof. An eigenvalue λ (with eigenvector $v_{\lambda} \neq 0$) of g satisfies

$$
\left(g^{d}-\operatorname{Id}_{V}\right)\left(v_{\lambda}\right)=0
$$

hence

$$
\left(\lambda^{d}-1\right) v_{\lambda}=0
$$

Corollary 3.7. For any $g \in G$ we have

$$
\chi_{\rho}(g)=\sum_{j=1}^{n} \lambda_{j}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the n eigenvalues of ρ_{g} on V, including repetitions.
Corollary 3.8. For $g \in G$ we have

$$
\chi_{\rho}\left(g^{-1}\right)=\overline{\chi_{\rho}(g)}=\chi_{\rho^{*}}(g)
$$

Proof. If the eigenvalues of ρ_{g} including repetitions are $\lambda_{1}, \ldots, \lambda_{n}$, then the eigenvalues of $\rho_{g^{-1}}$ including repetitions are easily seen to be $\lambda_{1}^{-1}, \ldots, \lambda_{n}^{-1}$. But if ζ is a root of unity, then $\zeta^{-1}=\bar{\zeta}$, and so $\chi_{\rho}\left(g^{-1}\right)=\overline{\chi_{\rho}(g)}$. The second equality follows from Proposition 2.14.

Now let us return to the idea of functions on a group which are invariant under conjugation. Denote by G_{c} the set G and let G act on it by conjugation,

$$
g \cdot x=g x g^{-1}
$$

The set of all functions $G_{c} \longrightarrow \mathbb{C}, \operatorname{Map}\left(G_{c}, \mathbb{C}\right)$ has an action of G given by

$$
(g \cdot \alpha)(x)=\alpha\left(g x g^{-1}\right)
$$

for $\alpha \in \operatorname{Map}\left(G_{c}, \mathbb{C}\right), g \in G$ and $x \in G_{c}$. Then the class functions are those which are invariant under conjugation and hence form the set $\operatorname{Map}\left(G_{c}, \mathbb{C}\right)^{G}$ which is a \mathbb{C}-vector subspace of $\operatorname{Map}\left(G_{c}, \mathbb{C}\right)$.

Proposition 3.9. The \mathbb{C}-vector space $\operatorname{Map}\left(G_{c}, \mathbb{C}\right)^{G}$ has as a basis the set of all functions $\Delta_{C}: G_{c} \longrightarrow \mathbb{C}$ for C a conjugacy class in G, defined by

$$
\Delta_{C}(x)= \begin{cases}1 & \text { if } x \in C \\ 0 & \text { if } x \notin C\end{cases}
$$

Thus $\operatorname{dim}_{\mathbb{C}} \operatorname{Map}\left(G_{c}, \mathbb{C}\right)^{G}$ is the number of conjugacy classes in G.
Proof. From the proof of Theorem 2.18, we know that a class function $\alpha: G_{c} \longrightarrow \mathbb{C}$ has a uniquely expression of the form

$$
\alpha=\sum_{x \in G_{c}} a_{x} \delta_{x}
$$

for suitable $a_{x} \in G_{c}$. But

$$
g \cdot \alpha=\sum_{x \in G_{c}} a_{x}\left(g \cdot \delta_{x}\right)=\sum_{x \in G_{c}} a_{x} \delta_{g x g^{-1}}=\sum_{x \in G_{c}} a_{g x g^{-1}} \delta_{x} .
$$

Hence by uniqueness and the definition of class function, we must have

$$
a_{g x g^{-1}}=a_{x} \quad\left(g \in G, x \in G_{c}\right) .
$$

Hence,

$$
\alpha=\sum_{C} a_{C} \sum_{x \in C} \delta_{x}
$$

where for each conjugacy class C we choose any element $c_{0} \in C$ and put $a_{C}=a_{c_{0}}$. Here the outer sum is over all the conjugacy classes C of G. We now find that

$$
\Delta_{C}=\sum_{x \in C} \delta_{x}
$$

and the rest of the proof is straightforward.
We will see that the characters of non-isomorphic irreducible representations of G also form a basis of $\operatorname{Map}\left(G_{c}, \mathbb{C}\right)^{G}$. We set $\mathcal{C}(G)=\operatorname{Map}\left(G_{c}, \mathbb{C}\right)^{G}$.

3.2. Properties of characters

In this section we will see some other important properties of characters.
Theorem 3.10. Let G be a finite group with finite dimensional complex representations $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(V)$ and $\sigma: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(W)$. Then
(a) $\chi_{\rho}(e)=\operatorname{dim}_{\mathbb{C}} V$ and for $g \in G,\left|\chi_{\rho}(g)\right| \leqslant \chi_{\rho}(e)$.
(b) The tensor product representation $\rho \otimes \sigma$ has character

$$
\chi_{\rho \otimes \sigma}=\chi_{\rho} \chi_{\sigma},
$$

i.e., for each $g \in G$,

$$
\chi_{\rho \otimes \sigma}(g)=\chi_{\rho}(g) \chi_{\sigma}(g) .
$$

(c) Let $\tau: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(U)$ be a representation which is G-isomorphic to the direct sum of ρ and σ, so $U \cong V \oplus W$. Then

$$
\chi_{\tau}=\chi_{\rho}+\chi_{\sigma},
$$

i.e., for each $g \in G$,

$$
\chi_{\tau}(g)=\chi_{\rho}(g)+\chi_{\sigma}(g) .
$$

Proof. (a) The first statement is immediate from the definition. For the second, using Theorem 3.5, we may choose a basis $\mathbf{v}=\left\{v_{1}, \ldots, v_{r}\right\}$ of V for which $\rho_{g} v_{k}=\lambda_{k} v_{k}$, where λ_{k} is a root of unity (hence satisfies $\left|\lambda_{k}\right|=1$). Then

$$
\left|\chi_{\rho}(g)\right|=\left|\sum_{k=1}^{r} \lambda_{k}\right| \leqslant \sum_{k=1}^{r}\left|\lambda_{k}\right|=r=\chi_{\rho}(e)
$$

(b) Let $g \in G$. By Theorem 3.5, there are bases $\mathbf{v}=\left\{v_{1}, \ldots, v_{r}\right\}$ and $\mathbf{w}=\left\{w_{1}, \ldots, w_{s}\right\}$ for V and W consisting of eigenvectors for ρ_{g} and σ_{g} with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ and μ_{1}, \ldots, μ_{s}. The elements $v_{i} \otimes w_{j}$ form a basis for $V \otimes W$ and by the formula of Equation (2.1), the action of g on these vectors is given by

$$
(\rho \otimes \sigma)_{g} \cdot\left(v_{i} \otimes w_{j}\right)=\lambda_{i} \mu_{j} v_{i} \otimes w_{j}
$$

Finally Corollary 3.7 implies

$$
\operatorname{tr}(\rho \otimes \sigma)_{g}=\sum_{i, j} \lambda_{i} \mu_{j}=\chi_{\rho}(g) \chi_{\sigma}(g)
$$

(c) For $g \in G$, choose bases $\mathbf{v}=\left\{v_{1}, \ldots, v_{r}\right\}$ and $\mathbf{w}=\left\{w_{1}, \ldots, w_{s}\right\}$ for V and W consisting of eigenvectors for ρ_{g} and σ_{g} with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ and μ_{1}, \ldots, μ_{s}. Then $\mathbf{v} \cup \mathbf{w}=\left\{v_{1}, \ldots, v_{r}, w_{1}, \ldots, w_{s}\right\}$ is a basis for U consisting of eigenvectors for τ_{g} with the above eigenvalues. Then

$$
\chi_{\tau}(g)=\operatorname{tr} \tau_{g}=\lambda_{1}+\cdots+\lambda_{r}+\mu_{1}+\cdots+\mu_{s}=\chi_{\rho}(g)+\chi_{\sigma}(g)
$$

3.3. Inner products of characters

In this section we will discuss a way to 'compare' characters, using a scalar or inner product on the vector space of class functions $\mathcal{C}(G)$. In particular, we will see that the character of a representation determines it up to a G-isomorphism. We will again work over the field of complex numbers \mathbb{C}.

We begin with the notion of scalar or inner product on a finite dimensional \mathbb{C}-vector space V. A function $(\mid): V \times V \longrightarrow \mathbb{C}$ is called a hermitian inner or scalar product on V if for $v, v_{1}, v_{2}, w \in V$ and $z_{1}, z_{2} \in \mathbb{C}$,

$$
\begin{equation*}
\left(z_{1} v_{1}+z_{2} v_{2} \mid w\right)=z_{1}\left(v_{1} \mid w\right)+z_{2}\left(v_{2} \mid w\right) \tag{LLin}
\end{equation*}
$$

(Symm)

$$
\begin{equation*}
\left(w \mid z_{1} v_{1}+z_{2} v_{2}\right)=\overline{z_{1}}\left(w \mid v_{1}\right)+\overline{z_{2}}\left(w \mid v_{2}\right) \tag{RLin}
\end{equation*}
$$

$$
(v \mid w)=\overline{(w \mid v)}
$$

(PoDe)

$$
0 \leqslant(v \mid v) \in \mathbb{R} \text { with equality if and only if } v=0
$$

A set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is said to be orthonormal if

$$
\left(v_{i} \mid v_{j}\right)=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { else }\end{cases}
$$

We will define an inner product $(\mid)_{G}$ on $\mathcal{C}(G)=\operatorname{Map}\left(G_{C}, \mathbb{C}\right)^{G}$, often writing (\mid) when the group G is clear from the context.

Definition 3.11. For $\alpha, \beta \in \mathcal{C}(G)$, let

$$
(\alpha \mid \beta)_{G}=\frac{1}{|G|} \sum_{g \in G} \alpha(g) \overline{\beta(g)}
$$

Proposition 3.12. $(\mid)=(\mid)_{G}$ is an hermitian inner product on $\mathcal{C}(G)$.

Proof. The properties LLin, RLin and Symm are easily checked. We will show that PoDe holds. We have

$$
(\alpha \mid \alpha)=\frac{1}{|G|} \sum_{g \in G} \alpha(g) \overline{\alpha(g)}=\frac{1}{|G|} \sum_{g \in G}|\alpha(g)|^{2} \geqslant 0
$$

with equality if and only if $\alpha(g)=0$ for all $g \in G$. Hence $(\alpha \mid \alpha)$ satisfies PoDe.
Now let $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(V)$ and $\theta: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(W)$ be finite dimensional representations over \mathbb{C}. We know how to determine $\left(\chi_{\rho} \mid \chi_{\theta}\right)_{G}$ from the definition. Here is another interpretation of this quantity. Recall from Proposition 2.15 the representations of G on $W \otimes V^{*}$ and $\operatorname{Hom}_{\mathbb{C}}(V, W)$; in fact these are G-isomorphic, $W \otimes V^{*} \cong \operatorname{Hom}_{\mathbb{C}}(V, W)$. By Proposition 2.16, the G-invariant subspaces $\left(W \otimes V^{*}\right)^{G}$ and $\operatorname{Hom}_{\mathbb{C}}(V, W)^{G}$ are subrepresentations and are images of G-homomorphisms $\varepsilon_{1}: W \otimes V^{*} \longrightarrow W \otimes V^{*}$ and $\varepsilon_{2}: \operatorname{Hom}_{\mathbb{C}}(V, W) \longrightarrow \operatorname{Hom}_{\mathbb{C}}(V, W)$.

Proposition 3.13. We have

$$
\left(\chi_{\theta} \mid \chi_{\rho}\right)_{G}=\operatorname{tr} \varepsilon_{1}=\operatorname{tr} \varepsilon_{2}
$$

Proof. Let $g \in G$. By Theorem 3.5 and Corollary 3.7 we can find bases $\mathbf{v}=\left\{v_{1}, \ldots, v_{r}\right\}$ for V and $\mathbf{w}=\left\{w_{1}, \ldots, w_{s}\right\}$ for W consisting of eigenvectors with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ and μ_{1}, \ldots, μ_{s}. The elements $w_{j} \otimes v_{i}^{*}$ form a basis for $W \otimes V^{*}$ and moreover g acts on these by

$$
\left(\theta \otimes \rho^{*}\right)_{g}\left(w_{j} \otimes v_{i}^{*}\right)=\mu_{j} \overline{\lambda_{i}} w_{j} \otimes v_{i}^{*},
$$

using Proposition 2.14. By Corollary 3.7 we have

$$
\operatorname{tr}\left(\theta \otimes \rho^{*}\right)_{g}=\sum_{i, j} \mu_{j} \overline{\lambda_{i}}=\left(\sum_{j} \mu_{j}\right)\left(\sum_{i} \overline{\lambda_{i}}\right)=\chi_{\theta}(g) \overline{\chi_{\rho}(g)} .
$$

By definition of ε_{1}, we have

$$
\operatorname{tr} \varepsilon_{1}=\frac{1}{|G|} \sum_{g \in G} \operatorname{tr}\left(\theta \otimes \rho^{*}\right)_{g}=\frac{1}{|G|} \sum_{g \in G} \chi_{\theta}(g) \overline{\chi_{\rho}(g)}=\left(\chi_{\theta} \mid \chi_{\rho}\right) .
$$

Since ε_{2} corresponds to ε_{1} under the G-isomorphism

$$
W \otimes V^{*} \cong \operatorname{Hom}_{\mathbb{C}}(V, W)
$$

we obtain $\operatorname{tr} \varepsilon_{1}=\operatorname{tr} \varepsilon_{2}$.
Corollary 3.14. For irreducible representations ρ and θ,

$$
\left(\chi_{\theta} \mid \chi_{\rho}\right)= \begin{cases}1 & \text { if } \rho \text { and } \theta \text { are } G \text {-equivalent } \\ 0 & \text { otherwise }\end{cases}
$$

Proof. By Schur's Lemma, Theorem 2.8,

$$
\operatorname{dim}_{\mathbb{k}} \operatorname{Hom}_{\mathbb{k}}(V, W)^{G}= \begin{cases}1 & \text { if } \rho \text { and } \theta \text { are } G \text {-equivalent } \\ 0 & \text { otherwise }\end{cases}
$$

Since ε_{2} is the identity on $\operatorname{Hom}_{\mathbb{k}}(V, W)^{G}$, the result follows.
Thus if we take a collection of non-equivalent irreducible representations $\left\{\rho_{1}, \ldots, \rho_{r}\right\}$, their characters form an orthonormal set $\left\{\chi_{\rho_{1}}, \ldots, \chi_{\rho_{r}}\right\}$ in $\mathcal{C}(G)$, i.e.,

$$
\left(\chi_{\rho_{i}} \mid \chi_{\rho_{j}}\right)=\delta_{i j} .
$$

By Proposition 3.9 we know that $\operatorname{dim}_{\mathbb{C}} \mathcal{C}(G)$ is equal to the number of conjugacy classes in G. We will show that the characters of the distinct inequivalent irreducible representations form a basis for $\mathcal{C}(G)$, thus there must be $\operatorname{dim}_{\mathbb{C}} \mathcal{C}(G)$ such distinct inequivalent irreducibles.

Theorem 3.15. The characters of all the distinct inequivalent irreducible representations of G form an orthonormal basis for $\mathcal{C}(G)$.

Proof. Suppose $\alpha \in \mathcal{C}(G)$ and for every irreducible ρ we have $\left(\alpha \mid \chi_{\rho}\right)=0$. We will show that $\alpha=0$.

Suppose that $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(V)$ is any representation of G. Then define $\rho_{\alpha}: V \longrightarrow V$ by

$$
\rho_{\alpha}(v)=\sum_{g \in G} \alpha(g) \rho_{g} v
$$

For any $h \in G$ and $v \in V$ we have

$$
\begin{aligned}
\rho_{\alpha}\left(\rho_{h} v\right) & =\sum_{g \in G} \alpha(g) \rho_{g}\left(\rho_{h} v\right) \\
& =\rho_{h}\left(\sum_{g \in G} \alpha(g) \rho_{h^{-1} g h} v\right) \\
& =\rho_{h}\left(\sum_{g \in G} \alpha\left(h^{-1} g h\right) \rho_{h^{-1} g h} v\right) \\
& =\rho_{h}\left(\sum_{g \in G} \alpha(g) \rho_{g} v\right) \\
& =\rho_{h} \rho_{\alpha}(v)
\end{aligned}
$$

Hence $\rho_{\alpha} \in \operatorname{Hom}_{\mathbb{C}}(V, V)^{G}$, i.e., ρ_{α} is G-linear.
Now applying this to an irreducible ρ with $\operatorname{dim} \rho=n$, by Schur's Lemma, Theorem 2.8, we see that there must be a $\lambda \in \mathbb{C}$ for which $\rho_{\alpha}=\lambda \operatorname{Id}_{V}$.

Taking traces, we have $\operatorname{tr} \rho_{\alpha}=n \lambda$. Also

$$
\operatorname{tr} \rho_{\alpha}=\sum_{g \in G} \alpha(g) \operatorname{tr} \rho_{g}=\sum_{g \in G} \alpha(g) \chi_{\rho}(g)=|G|\left(\alpha \mid \chi_{\rho^{*}}\right)
$$

Hence we obtain

$$
\lambda=\frac{|G|}{\operatorname{dim}_{\mathbb{C}} V}\left(\alpha \mid \chi_{\rho^{*}}\right)
$$

If $\left(\alpha \mid \chi_{\rho}\right)=0$ for all irreducible ρ, then as ρ^{*} is irreducible whenever ρ is, we must have $\rho_{\alpha}=0$ for every such irreducible ρ.

Since every representation ρ decomposes into a sum of irreducible subrepresentations, it is easily verified that for every ρ we also have $\rho_{\alpha}=0$ for such an α.

Now apply this to the regular representation $\rho=\rho_{\text {reg }}$ on $V=\mathbb{C}[G]$. Taking the basis vector $e \in \mathbb{C}[G]$ we have

$$
\rho_{\alpha}(e)=\sum_{g \in G} \alpha(g) \rho_{g} e=\sum_{g \in G} \alpha(g) g e=\sum_{g \in G} \alpha(g) g
$$

But this must be 0, hence we have

$$
\sum_{g \in G} \alpha(g) g=0
$$

in $\mathbb{C}[G]$ which can only happen if $\alpha(g)=0$ for every $g \in G$, since the $g \in G$ form a basis of $\mathbb{C}[G]$. Thus $\alpha=0$ as desired.

Now for any $\alpha \in \mathcal{C}(G)$, we can form the function

$$
\alpha^{\prime}=\alpha-\sum_{i=1}^{r}\left(\alpha \mid \chi_{\rho_{i}}\right) \chi_{\rho_{i}}
$$

where $\rho_{1}, \rho_{2}, \ldots, \rho_{r}$ is a complete set of non-isomorphic irreducible representation of G. For each k we have

$$
\begin{aligned}
\left(\alpha^{\prime} \mid \chi_{\rho_{k}}\right) & =\left(\alpha \mid \chi_{\rho_{k}}\right)-\sum_{i=1}^{r}\left(\alpha \mid \chi_{\rho_{i}}\right)\left(\chi_{\rho_{i}} \mid \chi_{\rho_{k}}\right) \\
& =\left(\alpha \mid \chi_{\rho_{k}}\right)-\sum_{i=1}^{r}\left(\alpha \mid \chi_{\rho_{i}}\right) \delta_{i k} \\
& =\left(\alpha \mid \chi_{\rho_{k}}\right)-\left(\alpha \mid \chi_{\rho_{k}}\right)=0
\end{aligned}
$$

hence $\alpha^{\prime}=0$. So the characters $\chi_{\rho_{i}}$ span $\mathcal{C}(G)$, and orthogonality shows that they are linearly independent, hence they form a basis.

Recall Theorem 2.12 which says that any representation V can be decomposed into irreducible G-subspaces,

$$
V=V_{1} \oplus \cdots \oplus V_{m}
$$

ThEOREM 3.16. Let $V=V_{1} \oplus \cdots \oplus V_{m}$ be a decomposition into irreducible subspaces. If $\rho_{k}: G \longrightarrow \mathrm{GL}_{\mathbb{C}}\left(V_{k}\right)$ is the representation on V_{k} and $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(V)$ is the representation on V, then $\left(\chi_{\rho} \mid \chi_{\rho_{k}}\right)=\left(\chi_{\rho_{k}} \mid \chi_{\rho}\right)$ is equal to the number of the factors $V_{j} G$-equivalent to V_{k}.

More generally, if also $W=W_{1} \oplus \cdots \oplus W_{n}$ is a decomposition into irreducible subspaces with $\sigma_{k}: G \longrightarrow \mathrm{GL}_{\mathbb{C}}\left(W_{k}\right)$ the representation on W_{k} and $\sigma: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(W)$ is the representation on W, then

$$
\left(\chi_{\sigma} \mid \chi_{\rho_{k}}\right)=\left(\chi_{\rho_{k}} \mid \chi_{\sigma}\right)
$$

is equal to the number of the factors $W_{j} G$-equivalent to V_{k}, and

$$
\begin{aligned}
\left(\chi_{\rho} \mid \chi_{\sigma}\right) & =\left(\chi_{\sigma} \mid \chi_{\rho}\right) \\
& =\sum_{k}\left(\chi_{\sigma} \mid \chi_{\rho_{k}}\right) \\
& =\sum_{\ell}\left(\chi_{\sigma_{\ell}} \mid \chi_{\rho}\right) .
\end{aligned}
$$

3.4. Character tables

The character table of a finite group G is the array formed as follows. Its columns correspond to the conjugacy classes of G while its rows correspond to the characters χ_{i} of the inequivalent irreducible representations of G. The j th conjugacy class C_{j} is indicated by displaying a representative $c_{j} \in C_{j}$. In the (i, j) th entry we put $\chi_{i}\left(c_{j}\right)$.

	c_{1}	c_{2}	\cdots	c_{n}
χ_{1}	$\chi_{1}\left(c_{1}\right)$	$\chi_{1}\left(c_{2}\right)$	\cdots	$\chi_{1}\left(c_{n}\right)$
χ_{2}	$\chi_{2}\left(c_{1}\right)$	$\chi_{2}\left(c_{2}\right)$	\cdots	$\chi_{2}\left(c_{n}\right)$
\vdots		\ddots		
χ_{n}	$\chi_{n}\left(c_{1}\right)$	$\chi_{n}\left(c_{2}\right)$	\cdots	$\chi_{n}\left(c_{n}\right)$

Conventionally we take $c_{1}=e$ and χ_{1} to be the trivial character corresponding to the trivial 1-dimensional representation. Since $\chi_{1}(g)=1$ for $g \in G$, the top of the table will always have the form

$$
\begin{array}{c|cccc}
& e & c_{2} & \cdots & c_{n} \\
\hline \chi_{1} & 1 & 1 & \cdots & 1
\end{array}
$$

Also, the first column will consist of the dimensions of the irreducibles $\rho_{i}, \chi_{i}(e)$.
For the symmetric group S_{3} we have

	e	(12)	(123)
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

The representations corresponding to the χ_{j} will be discussed later. Once we have the character table of a group G we can decompose an arbitrary representation into its irreducible constituents, since if the distinct irreducibles have characters $\chi_{j}(1 \leqslant j \leqslant r)$ then a representation ρ on V has a decomposition

$$
V \cong n_{1} V_{1} \oplus \cdots \oplus n_{r} V_{r}
$$

where $n_{j} V_{j} \cong V_{j} \oplus \cdots \oplus V_{j}$ means a G-subspace isomorphic to the sum of n_{j} copies of the irreducible representation corresponding to χ_{j}. Theorem 3.16 now gives $n_{j}=\left(\chi_{\rho} \mid \chi_{j}\right)$. The non-negative integer n_{j} is called the multiplicity of the irreducible V_{j} in V. The following irreducibility criterion is very useful.

Proposition 3.17. If $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(V)$ is a non-zero representation, then V is irreducible if and only if $\left(\chi_{\rho} \mid \chi_{\rho}\right)=1$.

Proof. If $V=n_{1} V_{1} \oplus \cdots \oplus n_{r} V_{r}$, then by orthonormality of the χ_{j},

$$
\left(\chi_{\rho} \mid \chi_{\rho}\right)=\left(\sum_{i} n_{i} \chi_{i} \mid \sum_{j} n_{j} \chi_{j}\right)=\sum_{i} \sum_{j} n_{i} n_{j}\left(\chi_{i} \mid \chi_{j}\right)=\sum_{j} n_{j}^{2}
$$

So $\left(\chi_{\rho} \mid \chi_{\rho}\right)=1$ if and only if $n_{1}^{2}+\cdots+n_{r}^{2}=1$. Remembering that the n_{j} are non-negative integers we see that $\left(\chi_{\rho} \mid \chi_{\rho}\right)=1$ if and only if all but one of the n_{j} is zero and for some k, $n_{k}=1$. Thus $V \cong V_{k}$ and so is irreducible.

Notice that for the character table of S_{3} we can check that the characters satisfy this criterion and are also orthonormal. Provided we believe that the rows really do represent characters we have found an orthonormal basis for the class functions $\mathcal{C}\left(S_{3}\right)$. We will return to this problem later.

Example 3.18. Let us assume that the above character table for S_{3} is correct and let $\rho=\rho_{\text {reg }}$ be the regular representation of S_{3} on the vector space $V=\mathbb{C}\left[S_{3}\right]$. Let us take as a basis for V the elements of S_{3}. Then

$$
\rho_{\sigma} \tau=\sigma \tau
$$

hence the matrix $\left[\rho_{\sigma}\right]$ of ρ_{σ} relative to this basis has 0's down its main diagonal, except when $\sigma=e$ for which it is the 6×6 identity matrix. The character is χ given by

$$
\chi(\sigma)=\operatorname{tr}\left[\rho_{\sigma}\right]= \begin{cases}6 & \text { if } \sigma=e \\ 0 & \text { otherwise }\end{cases}
$$

Thus we obtain

$$
\begin{aligned}
& \left(\chi_{\rho} \mid \chi_{1}\right)=\frac{1}{6} \sum_{\sigma \in S_{3}} \chi_{\rho}(\sigma) \overline{\chi_{1}(\sigma)}=\frac{1}{6} \times 6=1 \\
& \left(\chi_{\rho} \mid \chi_{2}\right)=\frac{1}{6} \sum_{\sigma \in S_{3}} \chi_{\rho}(\sigma) \overline{\chi_{2}(\sigma)}=\frac{1}{6} \times 6=1 \\
& \left(\chi_{\rho} \mid \chi_{3}\right)=\frac{1}{6} \sum_{\sigma \in S_{3}} \chi_{\rho}(\sigma) \overline{\chi_{3}(\sigma)}=\frac{1}{6}(6 \times 2)=2
\end{aligned}
$$

Hence we have

$$
\mathbb{C}\left[S_{3}\right] \cong V_{1} \oplus V_{2} \oplus V_{3} \oplus V_{3}=V_{1} \oplus V_{2} \oplus 2 V_{3}
$$

In fact we have seen the representation V_{3} already in Problem Sheet $2, \mathrm{Qu} .5(\mathrm{~b})$. It is easily verified that the character of that representation is χ_{3}.

Of course, in order to use character tables, we first need to determine them! So far we do not know much about this beyond the fact that the number of rows has to be the same as the number of conjugacy classes of the group G and the existence of the 1-dimensional trivial character which we will always denote by χ_{1} and whose value is $\chi_{1}(g)=1$ for $g \in G$. The characters of the distinct complex irreducible representations of G are the irreducible characters of G.

THEOREM 3.19. Let G be a finite group. Let $\chi_{1}, \ldots, \chi_{r}$ be the distinct complex irreducible characters and $\rho_{\text {reg }}$ the regular representation of G on $\mathbb{C}[G]$.
(a) Every complex irreducible representation of G occurs in $\mathbb{C}[G]$. Equivalently, for each irreducible character $\chi_{j},\left(\chi_{\rho_{\mathrm{reg}}} \mid \chi_{j}\right) \neq 0$.
(b) The multiplicity n_{j} of the irreducible V_{j} with character χ_{j} in $\mathbb{C}[G]$ is given by

$$
n_{j}=\operatorname{dim}_{\mathbb{C}} V_{j}=\chi_{j}(e)
$$

So to find all the irreducible characters, we only have to decompose the regular representation!

Proof. Using the formualæ

$$
\chi_{\rho_{\mathrm{reg}}}(g)= \begin{cases}|G| & \text { if } g=e \\ 0 & \text { if } g \neq e\end{cases}
$$

we have

$$
n_{j}=\left(\chi_{\rho_{\mathrm{reg}}} \mid \chi_{j}\right)=\frac{1}{|G|} \sum_{g \in G} \chi_{\rho_{\mathrm{reg}}}(g) \overline{\chi_{j}(g)}=\frac{1}{|G|} \chi_{\rho_{\mathrm{reg}}}(e) \overline{\chi_{j}(e)}=\chi_{j}(e)
$$

Corollary 3.20. We have

$$
|G|=\sum_{j=1}^{r} n_{j}^{2}=\sum_{j=1}^{r}\left(\chi_{\rho_{\mathrm{reg}}} \mid \chi_{j}\right)^{2}
$$

The following result also holds but the proof requires some Algebraic Number Theory.
Proposition 3.21. For each irreducible character $\chi_{j}, n_{j}=\left(\chi_{\rho_{\mathrm{reg}}} \mid \chi_{j}\right)$ divides the order of G, i.e., $n_{j}| | G \mid$.

The following row and column orthogonality relations for the character table of a group G are very important.

THEOREM 3.22. Let $\chi_{1}, \ldots, \chi_{r}$ be the distinct complex irreducible characters of G and $e=$ g_{1}, \ldots, g_{r} be a collection of representatives for the conjugacy classes of G and for each k, let $\mathrm{C}_{G}\left(g_{k}\right)$ be the centralizer of g_{k}.
(a) Row orthogonality: For $1 \leqslant i, j \leqslant r$,

$$
\sum_{k=1}^{r} \frac{\chi_{i}\left(g_{k}\right) \overline{\chi_{j}\left(g_{k}\right)}}{\left|\mathrm{C}_{G}\left(g_{k}\right)\right|}=\left(\chi_{i} \mid \chi_{j}\right)=\delta_{i j}
$$

(b) Column orthogonality: For $1 \leqslant i, j \leqslant r$,

$$
\sum_{k=1}^{r} \frac{\chi_{k}\left(g_{i}\right) \overline{\chi_{k}\left(g_{j}\right)}}{\left|\mathrm{C}_{G}\left(g_{i}\right)\right|}=\delta_{i j}
$$

Proof.
(a) We have

$$
\begin{aligned}
\delta_{i j}=\left(\chi_{i} \mid \chi_{j}\right) & =\frac{1}{|G|} \sum_{g \in G} \chi_{i}(g) \overline{\chi_{j}(g)} \\
& =\frac{1}{|G|} \sum_{k=1}^{r} \frac{|G|}{\left|\mathrm{C}_{G}\left(g_{k}\right)\right|} \chi_{i}\left(g_{k}\right) \overline{\chi_{j}\left(g_{k}\right)}
\end{aligned}
$$

[since the conjugacy class of g_{k} contains $|G| /\left|\mathrm{C}_{G}\left(g_{k}\right)\right|$ elements]

$$
=\sum_{k=1}^{r} \frac{\chi_{i}\left(g_{k}\right) \overline{\chi_{j}\left(g_{k}\right)}}{\left|\mathrm{C}_{G}\left(g_{k}\right)\right|}
$$

(b) Let $\psi_{s}: G \longrightarrow \mathbb{C}$ be the function given by

$$
\psi_{s}(g)= \begin{cases}1 & \text { if } g \text { is conjugate to } g_{s} \\ 0 & \text { if } g \text { is not conjugate to } g_{s}\end{cases}
$$

By Theorem 3.15, there are $\lambda_{k} \in \mathbb{C}$ such that

$$
\psi_{s}=\sum_{k=1}^{r} \lambda_{k} \chi_{k}
$$

But then $\lambda_{j}=\left(\psi_{s} \mid \chi_{j}\right)$. We also have

$$
\begin{aligned}
\left(\psi_{s} \mid \chi_{j}\right) & =\frac{1}{|G|} \sum_{g \in G} \psi_{s}(g) \overline{\chi_{j}(g)} \\
& =\sum_{k=1}^{r} \frac{\psi_{s}\left(g_{k}\right) \overline{\chi_{j}\left(g_{k}\right)}}{\left|\mathrm{C}_{G}\left(g_{k}\right)\right|} \\
& =\frac{\overline{\chi_{j}\left(g_{s}\right)}}{\left|\mathrm{C}_{G}\left(g_{s}\right)\right|}
\end{aligned}
$$

hence

$$
\psi_{s}=\sum_{j=1}^{r} \frac{\overline{\chi_{j}\left(g_{s}\right)}}{\left|\mathrm{C}_{G}\left(g_{s}\right)\right|} \chi_{j}
$$

Thus we have the required formula

$$
\delta_{s t}=\psi_{s}\left(g_{t}\right)=\sum_{j=1}^{r} \frac{\chi_{j}\left(g_{t}\right) \overline{\chi_{j}\left(g_{s}\right)}}{\left|\mathrm{C}_{G}\left(g_{s}\right)\right|}
$$

3.5. Examples of character tables

Equipped with the results of the last section, we can proceed to find some character tables. For abelian groups we have the following result which follows from what we have seen already together with the fact that in an abelian group every conjugacy class has exactly one element.

Proposition 3.23. Let G be a finite abelian group. Then there are $|G|$ distinct complex irreducible characters, each of which is 1-dimensional. Moreover, in the regular representation each irreducible occurs with multiplicity 1, i.e.,

$$
\mathbb{C}[G] \cong V_{1} \oplus \cdots \oplus V_{|G|}
$$

Example 3.24. Let $G=\left\langle g_{0}\right\rangle \cong \mathbb{Z} / n$ be cyclic of order n. Let $\zeta_{n}=e^{2 \pi i / n}$, the 'standard' primitive n-th root of unity. Then for each $k=0,1, \ldots,(n-1)$ we may define a 1 -dimensional representation $\rho_{k}: G \longrightarrow \mathbb{C}^{\times}$by

$$
\rho_{k}\left(g_{0}^{r}\right)=\zeta_{n}^{r k}
$$

The character of ρ_{k} is χ_{k} given by

$$
\chi_{k}\left(g_{0}^{r}\right)=\zeta_{n}^{r k} .
$$

Clearly these are all irreducible and non-isomorphic.
Let us consider the orthogonality relations for these characters. We have

$$
\begin{aligned}
\left(\chi_{k} \mid \chi_{k}\right) & =\frac{1}{n} \sum_{r=0}^{n-1} \chi_{k}\left(g_{0}^{r}\right) \overline{\chi_{k}\left(g_{0}^{r}\right)} \\
& =\frac{1}{n} \sum_{r=0}^{n-1} \zeta_{n}^{k r} \overline{\zeta_{n}^{k r}} \\
& =\frac{1}{n} \sum_{r=0}^{n-1} 1=\frac{n}{n}=1 .
\end{aligned}
$$

For $0 \leqslant k<\ell \leqslant(n-1)$ we have

$$
\begin{aligned}
\left(\chi_{k} \mid \chi_{\ell}\right) & =\frac{1}{n} \sum_{r=0}^{n-1} \chi_{k}\left(g_{0}^{r}\right) \overline{\chi_{\ell}\left(g_{0}^{r}\right)} \\
& =\frac{1}{n} \sum_{r=0}^{n-1} \zeta_{n}^{k r} \overline{\zeta_{n}^{\ell r}} \\
& =\frac{1}{n} \sum_{r=0}^{n-1} \zeta_{n}^{(k-\ell) r} .
\end{aligned}
$$

By row orthogonality this sum is 0 . This is a special case of the following identity which is often used in many parts of Mathematics.

Lemma 3.25. Let $d \in \mathbb{N}, m \in \mathbb{Z}$ and $\zeta_{d}=e^{2 \pi i / d}$. Then

$$
\sum_{r=0}^{d-1} \zeta_{d}^{m r}= \begin{cases}d & \text { if } d \mid m \\ 0 & \text { otherwise }\end{cases}
$$

Proof. We give a proof which does not use character theory!
If $d \nmid m$, then $\zeta_{d}^{m} \neq 1$. Then we have

$$
\begin{aligned}
\zeta_{d}^{m} \sum_{r=0}^{d-1} \zeta_{d}^{m r} & =\sum_{r=0}^{d-1} \zeta_{d}^{m(r+1)} \\
& =\sum_{s=1}^{d} \zeta_{d}^{m s} \\
& =\sum_{r=0}^{d-1} \zeta_{d}^{m r}
\end{aligned}
$$

hence

$$
\left(\zeta_{d}^{m}-1\right) \sum_{r=0}^{d-1} \zeta_{d}^{m r}=0
$$

and so

$$
\sum_{r=0}^{d-1} \zeta_{d}^{m r}=0
$$

If $d \mid m$ then

$$
\sum_{r=0}^{d-1} \zeta_{d}^{m r}=\sum_{r=0}^{d-1} 1=d
$$

As a special case of Exercise 3.24, consider the case where $n=3$ and $G=\left\langle g_{0}\right\rangle \cong \mathbb{Z} / 3$. The character table of G is

	e	g_{0}	g_{0}^{2}
χ_{1}	1	1	1
χ_{2}	1	ζ_{3}	ζ_{3}^{2}
χ_{3}	1	ζ_{3}^{2}	ζ_{3}

Example 3.26. Let $G=\left\langle a_{0}, b_{0}\right\rangle$ be abelian of order 4 , so $G \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2$. The character table of G is as follows.

	e	a_{0}	b_{0}	$a_{0} b_{0}$
$\chi_{1}=\chi_{00}$	1	1	1	1
χ_{10}	1	-1	1	-1
χ_{01}	1	1	-1	-1
χ_{11}	1	-1	-1	1

Example 3.27. The character table of the quaternion group of order $8, Q_{8}$, is as follows.

	$\mathbf{1}$	$-\mathbf{1}$	\mathbf{i}	\mathbf{j}	\mathbf{k}
χ_{1}	1	1	1	1	1
$\chi_{\mathbf{i}}$	1	1	1	-1	-1
$\chi_{\mathbf{j}}$	1	1	-1	1	-1
$\chi_{\mathbf{k}}$	1	1	-1	-1	1
χ_{2}	2	-2	0	0	0

Proof. There are 5 conjugacy classes:

$$
\{\mathbf{1}\},\{-\mathbf{1}\},\{\mathbf{i},-\mathbf{i}\},\{\mathbf{j},-\mathbf{j}\},\{\mathbf{k},-\mathbf{k}\} .
$$

As always we have the trivial character χ_{1}. There are 3 homomorphisms $Q_{8} \longrightarrow \mathbb{C}^{\times}$given by

$$
\begin{array}{rll}
\rho_{\mathbf{i}}\left(\mathbf{i}^{r}\right)=1 & \text { and } & \rho_{\mathbf{i}}(\mathbf{j})=\rho_{\mathbf{i}}(\mathbf{k})=-1, \\
\rho_{\mathbf{j}}\left(\mathbf{j}^{r}\right)=1 & \text { and } & \rho_{\mathbf{j}}(\mathbf{i})=\rho_{\mathbf{i}}(\mathbf{k})=-1, \\
\rho_{\mathbf{k}}\left(\mathbf{k}^{r}\right)=1 & \text { and } & \rho_{\mathbf{k}}(\mathbf{i})=\rho_{\mathbf{k}}(\mathbf{j})=-1
\end{array}
$$

These provide three 1-dimensional representations with characters $\chi_{\mathbf{i}}, \chi_{\mathbf{j}}, \chi_{\mathbf{k}}$ taking values

$$
\begin{array}{rll}
\chi_{\mathbf{i}}\left(\mathbf{i}^{r}\right)=1 & \text { and } & \chi_{\mathbf{i}}(\mathbf{j})=\chi_{\mathbf{i}}(\mathbf{k})=-1, \\
\chi_{\mathbf{j}}\left(\mathbf{j}^{r}\right)=1 & \text { and } & \chi_{\mathbf{j}}(\mathbf{i})=\chi_{\mathbf{i}}(\mathbf{k})=-1 \\
\chi_{\mathbf{k}}\left(\mathbf{k}^{r}\right)=1 & \text { and } & \chi_{\mathbf{k}}(\mathbf{i})=\chi_{\mathbf{k}}(\mathbf{j})=-1
\end{array}
$$

Since $\left|Q_{8}\right|=8$, we might try looking for a 2-dimensional complex representation. But the definition of Q_{8} provides us with the inclusion homomorphism $j: Q_{8} \longrightarrow \mathrm{GL}_{\mathbb{C}}\left(\mathbb{C}^{2}\right)$, where we interpret the matrices as taken in terms of the standard basis. The character of this representation is χ_{2} given by

$$
\chi_{2}(\mathbf{1})=2, \chi_{2}(-\mathbf{1})=-2, \chi_{2}(\pm \mathbf{i})=\chi_{2}(\pm \mathbf{j})=\chi_{2}(\pm \mathbf{k})=0 .
$$

This completes the determination of the character table of Q_{8}.

Example 3.28. The character table of the dihedral group of order $8, D_{8}$, is as follows.

	e	α^{2}	α	β	$\alpha \beta$
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	1	-1	1	-1
χ_{4}	1	1	-1	-1	1
χ_{5}	2	-2	0	0	0

Proof. The elements of D_{8} are

$$
e, \alpha, \alpha^{2}, \alpha^{3}, \beta, \alpha \beta, \alpha^{2} \beta, \alpha^{3} \beta
$$

and these satisfy the relations

$$
\alpha^{4}=e=\beta^{2}, \quad \beta \alpha \beta=\alpha^{-1} .
$$

The conjugacy classes are the sets

$$
\{e\},\left\{\alpha^{2}\right\},\left\{\alpha, \alpha^{3}\right\},\left\{\beta, \alpha^{2} \beta\right\},\left\{\alpha \beta, \alpha^{3} \beta\right\} .
$$

There are two obvious 1-dimensional representations, namely the trivial one ρ_{1} and also ρ_{2}, where

$$
\rho_{2}(\alpha)=1, \quad \rho_{2}(\beta)=-1 .
$$

The character of ρ_{2} is determined by

$$
\chi_{2}\left(\alpha^{r}\right)=1, \quad \chi_{2}\left(\beta \alpha^{r}\right)=-1 .
$$

A third 1-dimensional representation comes from the homomorphism $\rho_{3}: D_{8} \longrightarrow \mathbb{C}^{\times}$given by

$$
\rho_{3}(\alpha)=-1, \quad \rho_{3}(\beta)=1 .
$$

The fourth 1-dimensional representation comes from the homomorphism $\rho_{4}: D_{8} \longrightarrow \mathbb{C}^{\times}$for which

$$
\rho_{4}(\alpha)=-1, \quad \rho_{4}(\beta)=-1 .
$$

The characters $\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}$ are clearly distinct and thus orthonormal.
Before describing χ_{5} as the character of a 2-dimensional representation, we will determine it up to a scalar factor. Suppose that

$$
\chi_{5}(e)=a, \chi_{5}\left(\alpha^{2}\right)=b, \chi_{5}(\alpha)=c, \chi_{5}(\beta)=d, \chi_{5}(\beta \alpha)=e
$$

for $a, b, c, d, e \in \mathbb{C}$. The orthonormality conditions give $\left(\chi_{5} \mid \chi_{j}\right)=\delta_{j 5}$. For $j=1,2,3,4$, we obtain the following linear system:

$$
\left[\begin{array}{rrrrr}
1 & 1 & 2 & 2 & 2 \tag{3.1}\\
1 & 1 & 2 & -2 & -2 \\
1 & 1 & -2 & 2 & -2 \\
1 & 1 & -2 & -2 & 2
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d \\
e
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

which has solutions

$$
b=-a, \quad c=d=e=0 .
$$

If χ_{5} is an irreducible character we must also have $\left(\chi_{5} \mid \chi_{5}\right)=1$, giving

$$
1=\frac{1}{8}\left(a^{2}+a^{2}\right)=\frac{a^{2}}{4},
$$

and so $a= \pm 2$. So we must have the stated bottom row. The corresponding representation appears in Example 2.6 where it is viewed as a complex representation which is easily seen to have character χ_{5}.

Remark 3.29. The groups Q_{8} and D_{8} have identical character tables even though they are non-isomorphic! This shows that character tables do not always distinguish non-isomorphic groups.

Example 3.30. The character table of the symmetric group S_{4}, is as follows.

	e	(12)	$(12)(34)$	(123)	(1234)
	$[1]$	$[6]$	$[3]$	$[8]$	$[6]$
χ_{1}	1	1	1	1	1
χ_{2}	1	-1	1	1	-1
χ_{3}	3	1	-1	0	-1
χ_{4}	3	-1	-1	0	1
χ_{5}	2	0	2	-1	0

Proof. Recall that the conjugacy classes correspond to the different cycle types which are represented by the elements in the following list, where the numbers in brackets [] give the sizes of the conjugacy classes:

$$
e[1],(12)[6],(12)(34)[3],(123)[8],(1234)[6] .
$$

So there are 5 rows and columns in the character table. The sign representation sign: $S_{4} \longrightarrow \mathbb{C}^{\times}$ is 1 -dimensional and has character

$$
\chi_{2}(e)=\chi_{2}((12)(34))=\chi_{2}(123)=1 \quad \text { and } \quad \chi_{2}(12)=\chi_{2}(1234)=-1 .
$$

The 4-dimensional permutation representation $\tilde{\rho}_{4}$ corresponding to the action on $\mathbf{4}=\{1,2,3,4\}$ has character $\chi_{\tilde{\rho}_{4}}$ given by

$$
\chi_{\tilde{\rho}_{4}}(\sigma)=\text { number of fixed points of } \sigma .
$$

So we have

$$
\chi_{\tilde{\rho}_{4}}(e)=4, \chi_{\tilde{\rho}_{4}}((12)(34))=\chi_{\tilde{\rho}_{4}}(1234)=0, \chi_{\tilde{\rho}_{4}}(123)=1, \chi_{\tilde{\rho}_{4}}(12)=2 .
$$

We know that this representation has the form

$$
\mathbb{C}[4]=\mathbb{C}[4]^{S_{4}} \oplus W
$$

where W is a 3 -dimensional S_{4}-subspace whose character χ_{3} is determined by

$$
\chi_{1}+\chi_{3}=\chi_{\tilde{\rho}_{4}},
$$

hence

$$
\chi_{3}=\chi_{\tilde{\rho}_{4}}-\chi_{1} .
$$

So we obtain the following values for χ_{3}

$$
\chi_{3}(e)=3, \chi_{3}((12)(34))=\chi_{3}(1234)=-1, \chi_{3}(123)=0, \chi_{3}(12)=1 .
$$

Calculating the inner product of this with itself gives

$$
\left(\chi_{3} \mid \chi_{3}\right)=\frac{1}{24}(9+6+3+0+6)=1
$$

and so χ_{3} is the character of an irreducible representation.
From this information we can deduce that the two remaining irreducibles must have dimensions n_{4}, n_{5} for which

$$
n_{4}^{2}+n_{5}^{2}=24-1-1-9=13,
$$

and thus we can take $n_{4}=3$ and $n_{5}=2$, since these are the only possible values up to order.
If we form the tensor product $\rho_{2} \otimes \rho_{3}$ we get a character χ_{4} given by

$$
\chi_{4}(g)=\chi_{2}(g) \chi_{3}(g),
$$

hence the 4 -th line in the table. Then $\left(\chi_{4} \mid \chi_{4}\right)=1$ and so χ_{4} really is an irreducible character.

For χ_{5}, recall that the regular representation $\rho_{\text {reg }}$ has character $\chi_{\rho_{\text {reg }}}$ decomposing as

$$
\chi_{\rho_{\mathrm{reg}}}=\chi_{1}+\chi_{2}+3 \chi_{3}+3 \chi_{4}+2 \chi_{5}
$$

hence we have

$$
\chi_{5}=\frac{1}{2}\left(\chi_{\rho_{\mathrm{reg}}}-\chi_{1}-\chi_{2}-3 \chi_{3}-3 \chi_{4}\right),
$$

which gives the last row of the table.
Notice that in this example, the tensor product $\rho_{3} \otimes \rho_{5}$ which is a 6 -dimensional representation that cannot be irreducible. Its character $\chi_{\rho_{3} \otimes \rho_{5}}$ must be a linear combination of the irreducibles,

$$
\chi_{\rho_{3} \otimes \rho_{5}}=\sum_{j=1}^{5}\left(\chi_{\rho_{3} \otimes \rho_{5}} \mid \chi_{j}\right) \chi_{j} .
$$

Recall that for $g \in S_{4}$,

$$
\chi_{\rho_{3} \otimes \rho_{5}}(g)=\chi_{\rho_{3}}(g) \chi_{\rho_{5}}(g) .
$$

For the values of the coefficients we have

$$
\begin{aligned}
& \left(\chi_{\rho_{3} \otimes \rho_{5}} \mid \chi_{1}\right)=\frac{1}{24}(6+0-6+0+0)=0 \\
& \left(\chi_{\rho_{3} \otimes \rho_{5}} \mid \chi_{2}\right)=\frac{1}{24}(6+0-6+0+0)=0 \\
& \left(\chi_{\rho_{3} \otimes \rho_{5}} \mid \chi_{3}\right)=\frac{1}{24}(18+0+6+0+0)=1, \\
& \left(\chi_{\rho_{3} \otimes \rho_{5}} \mid \chi_{4}\right)=\frac{1}{24}(18+0+6+0+0)=1, \\
& \left(\chi_{\rho_{3} \otimes \rho_{5}} \mid \chi_{5}\right)=\frac{1}{24}(12+0-12+0+0)=0 .
\end{aligned}
$$

Thus we have

$$
\chi_{\rho_{3} \otimes \rho_{5}}=\chi_{3}+\chi_{4} .
$$

In general it is hard to predict how the tensor product of representations decomposes in terms of irreducibles.

3.6. Reciprocity formulæ

Let $H \leqslant G$, let $\rho: G \longrightarrow \operatorname{GL}_{\mathbb{C}}(V)$ be a representation of G and let $\sigma: H \longrightarrow \mathrm{GL}_{\mathbb{C}}(W)$ be a representation of H. Recall that the induced representation $\sigma \uparrow_{H}^{G}$ is of dimension $|G / H| \operatorname{dim}_{\mathbb{C}} W$, while the restriction $\rho \downarrow_{H}^{G}$ has dimension $\operatorname{dim}_{\mathbb{C}} V$. We will write $\chi_{\rho} \downarrow_{H}^{G}$ and $\chi_{\sigma} \uparrow_{H}^{G}$ for the characters of these representations. First we show how to calculate the character of an induced representation.

Lemma 3.31. The character of the induced representation $\sigma \uparrow_{H}^{G}$ is given by

$$
\chi_{\sigma} \uparrow_{H}^{G}(g)=\frac{1}{|H|} \sum_{\substack{x \in G \\ g \in x H x^{-1}}} \chi_{\sigma}\left(x^{-1} g x\right) .
$$

Proof. See [1, §16].
Example 3.32. Let $H=\left\{e, \alpha, \alpha^{2}, \alpha^{3}\right\} \leqslant D_{8}$ and let $\sigma: H \longrightarrow \mathbb{C}^{\times}$be the 1-dimensional representation of H for which

$$
\sigma\left(\alpha^{k}\right)=i^{k}
$$

Decompose the induced representation $\sigma \uparrow_{H}^{D_{8}}$ into its irreducible summands over the group D_{8}.

Proof. We will use the character table of D_{8} given in Example 3.28. Notice that $H \triangleleft D_{8}$, hence for $x \in D_{8}$ we have $x H x^{-1}=H$. Let $\chi=\chi_{\sigma} \uparrow_{H}^{D_{8}}$ be the character of this induced representation. We have

$$
\begin{aligned}
\chi(g) & =\frac{1}{4} \sum_{\substack{x \in D_{8} \\
g \in x H x^{-1}}} \chi_{\sigma}\left(x^{-1} g x\right) \\
& = \begin{cases}\frac{1}{4} \sum_{x \in D_{8}} \chi_{\sigma}\left(x^{-1} g x\right) & \text { if } g \in H \\
0 & \text { if } g \notin H\end{cases}
\end{aligned}
$$

Thus if $g \in H$ we find that

$$
\chi(g)= \begin{cases}\frac{1}{4}\left(4 \chi_{\sigma}(\alpha)+4 \chi_{\sigma}\left(\alpha^{3}\right)\right) & \text { if } g=\alpha, \alpha^{3} \\ \frac{1}{4}\left(8 \chi_{\sigma}\left(\alpha^{2}\right)\right) & \text { if } g=\alpha^{2} \\ \frac{1}{4}\left(8 \chi_{\sigma}(e)\right) & \text { if } g=e\end{cases}
$$

Hence we have

$$
\chi(g)= \begin{cases}i+i^{3}=0 & \text { if } g=\alpha, \alpha^{3} \\ -2 & \text { if } g=\alpha^{2} \\ 2 & \text { if } g=e \\ 0 & \text { if } g \notin H\end{cases}
$$

Taking inner products with the irreducible characters χ_{j} we obtain the following.

$$
\begin{aligned}
& \left(\chi \mid \chi_{1}\right)_{D_{8}}=\frac{1}{8}(2-2+0+0+0)=0 \\
& \left(\chi \mid \chi_{2}\right)_{D_{8}}=\frac{1}{8}(2-2+0+0+0)=0 \\
& \left(\chi \mid \chi_{3}\right)_{D_{8}}=\frac{1}{8}(2-2+0+0+0)=0 \\
& \left(\chi \mid \chi_{4}\right)_{D_{8}}=\frac{1}{8}(2-2+0+0+0)=0 \\
& \left(\chi \mid \chi_{5}\right)_{D_{8}}=\frac{1}{8}(4+4+0+0+0)=1
\end{aligned}
$$

Hence we must have $\chi=\chi_{5}$, giving another derivation of the representation ρ_{5}.
ThEOREM 3.33 (Frobenius Reciprocity). There is a linear isomorphism

$$
\operatorname{Hom}_{G}\left(W \uparrow_{H}^{G}, V\right) \cong \operatorname{Hom}_{H}\left(W, V \downarrow_{H}^{G}\right)
$$

Equivalently on characters we have

$$
\left(\chi_{\sigma} \uparrow_{H}^{G} \mid \chi_{\rho}\right)_{G}=\left(\chi_{\sigma} \mid \chi_{\rho} \downarrow_{H}^{G}\right)_{H}
$$

Proof. See [1, §16].
Example 3.34. Let σ be the irreducible representation of S_{3} with character χ_{3} and underlying vector space W. Decompose the induced representation $W \uparrow_{S_{3}}^{S_{4}}$ into its irreducible summands over the group S_{4}.

Proof. Let

$$
W \uparrow_{S_{3}}^{S_{4}} \cong n_{1} V_{1} \oplus n_{2} V_{2} \oplus n_{3} V_{3} \oplus n_{4} V_{4} \oplus n_{5} V_{5}
$$

Then

$$
n_{j}=\left(\chi_{j} \mid \chi_{\sigma} \uparrow_{S_{3}}^{S_{4}}\right)_{S_{4}}=\left(\chi_{j} \downarrow \stackrel{S}{S}_{S_{4}}^{S_{4}} \mid \chi_{\sigma}\right)_{S_{3}}
$$

To evaluate the restriction $\chi_{j} \downarrow_{S_{3}}^{S_{4}}$ we take only elements of S_{4} lying in S_{3}. Hence we have

$$
\begin{aligned}
& n_{1}=\left(\chi_{1} \downarrow_{S_{3}}^{S_{4}} \mid \chi_{\sigma}\right)_{S_{3}}=\frac{1}{6}(2+0-2)=0, \\
& n_{2}=\left(\chi_{2} \downarrow_{S_{3}}^{S_{4}} \mid \chi_{\sigma}\right)_{S_{3}}=\frac{1}{6}(1 \cdot 2+0+1 \cdot(-2))=0, \\
& n_{3}=\left(\chi_{3} \downarrow_{S_{3}}^{S_{4}} \mid \chi_{\sigma}\right)_{S_{3}}=\frac{1}{6}(3 \cdot 2+0+0 \cdot(-2))=1, \\
& n_{4}=\left(\chi_{4} \downarrow_{S_{3}}^{S_{4}} \mid \chi_{\sigma}\right)_{S_{3}}=\frac{1}{6}(3 \cdot 2+0+0 \cdot(-2))=1, \\
& n_{5}=\left(\chi_{5} \downarrow_{S_{3}}^{S_{4}} \mid \chi_{\sigma}\right)_{S_{3}}=\frac{1}{6}(2 \cdot 2+0+-2 \cdot(-1))=\frac{6}{6}=1 .
\end{aligned}
$$

Hence we have

$$
W \uparrow_{S_{3}}^{S_{4}} \cong V_{3} \oplus V_{4} \oplus V_{5}
$$

3.7. Representations of semi-direct products

Recall the notion of a semi-direct product $G=N \rtimes H$; this has $N \triangleleft G, H \leqslant G, H \cap N=\{e\}$ and $H N=N H=G$. We will describe a way to produce the irreducible characters of G from those of the groups $N \triangleleft G$ and $H \leqslant G$.

Proposition 3.35. Let $\varphi: Q \longrightarrow G$ be a homomorphism and let $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(V)$ be a representation of G. Then the composite $\varphi^{*} \rho=\rho \circ \varphi$ is a representation of Q on V. Moreover, if $\varphi^{*} \rho$ is irreducible over Q, then ρ is irreducible over G.

Proof. The first part is clear.
For the second, suppose that $W \subseteq V$ is a G-subspace. Then for $h \in Q$ and $w \in W$ we have

$$
\left(\varphi^{*} \rho\right)_{h} w=\rho_{\varphi(h)} w \in W
$$

Hence W is a Q-subspace. By irreducibility of $\varphi^{*} \rho, W=\{0\}$ or $W=V$, hence V is irreducible over G.

The representation $\varphi^{*} \rho$ is called the representation on V induced by φ and we often denote the underlying Q-module by $\varphi^{*} V$. If $j: Q \longrightarrow G$ is the inclusion of a subgroup, then $j^{*} \rho=\rho \downarrow_{Q}^{G}$, the restriction of ρ to Q.

In the case of $G=N \rtimes H$, there is a surjection $\pi: G \longrightarrow H$ given by

$$
\pi(n h)=h \quad(n \in N, h \in H)
$$

as well as the inclusions $i: N \longrightarrow G$ and $j: H \longrightarrow G$. We can apply the above to each of these homomorphisms.

Now let $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(V)$ be an irreducible representation of the semi-direct product $G=$ $N \rtimes H$. Then $i^{*} V$ decomposes as

$$
i^{*} V=W_{1} \oplus \cdots \oplus W_{m}
$$

where W_{k} is a non-zero irreducible N-subspace. For each $g \in G$, notice that if $x \in N$ and $w \in W_{1}$, then

$$
\rho_{x}\left(\rho_{g} w\right)=\rho_{x g} w=\rho_{g} \rho_{g^{-1} x g} w=\rho_{g} w^{\prime}
$$

for $w^{\prime}=\rho_{g^{-1} x g} w$. Since $g^{-1} x g \in g^{-1} N g=N$,

$$
g W_{1}=\left\{\rho_{g} w: w \in W_{1}\right\}
$$

is an N-subspace of $i^{*} V$. If we take

$$
\tilde{W}_{1}=\left\{\sum_{g \in G} \rho_{g} w_{g}: w_{g} \in W_{1}\right\}
$$

then we can verify that \tilde{W}_{1} is a non-zero N-subspace of $i^{*} V$ and in fact is also a G-subspace of V. Since V is irreducible, this shows that $V=\tilde{W}_{1}$.

Now let

$$
H_{1}=\left\{h \in H: h W_{1}=W_{1}\right\} \subseteq H
$$

Then we can verify that $H_{1} \leqslant H \leqslant G$. The semidirect product

$$
G_{1}=N \rtimes H_{1}=\left\{n h \in G: n \in N, h \in H_{1}\right\} \leqslant G
$$

also acts on W_{1} since for $n h \in G_{1}$ and $w \in W_{1}$,

$$
\rho_{n h} w=\rho_{n} \rho_{h} w=\rho_{n} w^{\prime \prime} \in W_{1}
$$

where $w^{\prime \prime}=\rho_{h} w$; hence W_{1} is a G_{1}-subspace of $V \downarrow_{G_{1}}^{G}$. Notice that by the second part of Proposition 3.35, W_{1} is irreducible over G_{1}.

Lemma 3.36. There is a G-isomorphism

$$
W_{1} \uparrow_{G_{1}}^{G} \cong V
$$

Proof. See the books $[\mathbf{3}, 4]$.
Thus every irreducible of $G=N \rtimes H$ arises from an irreducible representation of N which extends to a representation (actually irreducible) of such a subgroup $N \rtimes K \leqslant N \rtimes H=G$ for $K \leqslant H$ but to no larger subgroup.

Example 3.37. Let $D_{2 n}$ be the dihedral group of order $2 n$. Then every irreducible representation of $D_{2 n}$ has dimension 1 or 2 .

Proof. We have $D_{2 n}=N \rtimes H$ where $N=\langle\alpha\rangle \cong \mathbb{Z} / n$ and $H=\{e, \beta\}$. The n distinct irreducibles ρ_{k} of N are all 1-dimensional by Example 3.24. Hence for each of these we have a subgroup $H_{k} \leqslant H$ such that the action of N extends to $N \rtimes H_{k}$ and so the corresponding induced representation $V_{k} \uparrow_{H_{k}}^{D_{2} n}$ is irreducible and has dimension $\left|D_{2 n} /\left(N \rtimes H_{k}\right)\right|=2 /\left|H_{k}\right|$. Every irreducible of $D_{2 n}$ occurs this way.

For $n=4$, it is a useful exercise to identify the irreducibles in the character table in this way.

Exercises on Chapter 3

3-1. Determine the characters of the representations in Questions 1,2,3 of Chapter 2.
3-2. Let $\rho_{c}: G \longrightarrow \mathrm{GL}_{\mathbb{C}}\left(\mathbb{C}\left[G_{c}\right]\right)$ denote the permutation representation associated to the conjugation action of G on its own underlying set G_{c}, i.e., $g \cdot x=g x g^{-1}$. Let $\chi_{c}=\chi_{\rho_{c}}$ be the character of ρ_{c}.
(i) For $x \in G$ show that the vector subspace V_{x} spanned by all the conjugates of x is a G-subspace. What is $\operatorname{dim} V_{x}$?
(ii) For $g \in G$ show that $\chi_{c}(g)=\left|\mathrm{C}_{G}(g)\right|$ where $\mathrm{C}_{G}(g)$ is the centralizer of g in G.
(iii) For any class function $\alpha \in \mathcal{C}(G)$ determine $\left(\alpha \mid \chi_{c}\right)$.
(iv) If $\chi_{1}, \ldots, \chi_{r}$ are the distinct irreducible characters of G and $\rho_{1}, \ldots, \rho_{r}$ are the corresponding irreducible representations, determine the multiplicity of ρ_{j} in $\mathbb{C}\left[G_{c}\right]$.
(v) Carry out these calculations for the groups $S_{3}, S_{4}, A_{4}, D_{8}, Q_{8}$.

3-3. Let G be a finite group and $H \leqslant G$ a subgroup. Consider the set of cosets G / H as a G-set with action given by $g \cdot x H=g x H$ and let ρ be the associated permutation representation on $\mathbb{C}[G / H]$.
(i) Show that for $g \in G$,

$$
\chi_{\rho}(g)=\left|\left\{x H \in G / H: g \in x H x^{-1}\right\}\right| .
$$

(ii) If $H \triangleleft G$ (i.e., H is a normal subgroup), show that

$$
\chi_{\rho}(g)= \begin{cases}0 & \text { if } g \notin H, \\ |G / H| & \text { if } g \in H .\end{cases}
$$

(iii) Determine the character χ_{ρ} when $G=S_{4}$ (the permutation group of the set $\{1,2,3,4\}$) and $H=S_{3}$ (viewed as the subgroup of all permutations fixing 4).

3-4. Let $\rho: G \longrightarrow \operatorname{GL}_{\mathbb{C}}(W)$ be a representation and let $\rho_{j}: G \longrightarrow \mathrm{GL}_{\mathbb{C}}\left(V_{j}\right)(j=1, \ldots, r)$ be the distinct irreducible representations of G with characters $\chi_{j}=\chi_{\rho_{j}}$.
(i) For each i, show that $\varepsilon_{i}: W \longrightarrow W$ is a G-linear transformation, where

$$
\varepsilon_{i}(w)=\frac{\chi_{i}(e)}{|G|} \sum_{g \in G} \overline{\chi_{i}(g)} \rho_{g} w .
$$

(ii) Let $W_{j, k} \subseteq W$ be non-zero G-subspaces such that

$$
W=W_{1,1} \oplus \cdots \oplus W_{1, s_{1}} \oplus W_{2,1} \oplus \cdots \oplus W_{2, s_{2}} \oplus \cdots \oplus W_{r, 1} \oplus \cdots \oplus W_{r, s_{r}}
$$

and $W_{j, k}$ is G-isomorphic to V_{j}. Show that if $w \in W_{j, k}$ then $\varepsilon_{i}(w) \in W_{j, k}$.
(iii) By considering for each pair j, k the restriction of ε_{i} to a G-linear transformation $\varepsilon_{i}^{\prime}: W_{j, k} \longrightarrow W_{j, k}$, show that if $w \in W_{j, k}$ then

$$
\varepsilon_{i}(w)= \begin{cases}w & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Deduce that im $\varepsilon_{i}=W_{i, 1} \oplus \cdots W_{i, s_{i}}$.
[Remark: The subspace $W_{i}=\operatorname{im} \varepsilon_{i}$ is called the subspace associated to the irreducible ρ_{i} and depends only on ρ and ρ_{i}. Consequently, the decomposition $W=W_{1} \oplus \cdots \oplus W_{r}$ is called the canonical decomposition of W. Given each W_{j}, there are many different ways to decompose it into irreducible G-isomorphic to V_{j}, hence the original finer decomposition is non-canonical.]
(iv) Show that

$$
\varepsilon_{i} \circ \varepsilon_{j}= \begin{cases}\varepsilon_{i} & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

(v) For the group S_{3}, use these ideas to find the canonical decomposition for the regular representation $\mathbb{C}\left[S_{3}\right]$. Repeat this for some other groups and non-irreducible representations.
3-5. Let A_{4} be the alternating group and $\zeta=e^{2 \pi i / 3} \in \mathbb{C}$.
(i) Verify the orthogonality relations for the character table of A_{4} given below.

	e	$(12)(34)$	(123)	(132)
	$[1]$	$[3]$	$[4]$	$[4]$
χ_{1}	1	1	1	1
χ_{2}	1	1	ζ	ζ^{-1}
χ_{3}	1	1	ζ^{-1}	ζ
χ_{4}	3	-1	0	0

(ii) Let $\rho: A_{4} \longrightarrow \operatorname{GL}_{\mathbb{C}}(V)$ be the permutation representation of A_{4} associated to the conjugation action of A_{4} on the set $X=A_{4}$. Using the character table in (i), express V as a direct sum $n_{1} V_{1} \oplus n_{2} V_{2} \oplus n_{3} V_{3} \oplus n_{4} V_{4}$, where V_{j} denotes an irreducible representation with character χ_{j}.
(iii) For each of the representations V_{i}, determine its contragredient representation V_{i}^{*} as a direct sum $n_{1} V_{1} \oplus n_{2} V_{2} \oplus n_{3} V_{3} \oplus n_{4} V_{4}$.
(iv) For each of the representations $V_{i} \otimes V_{j}$, determine its direct sum decomposition $n_{1} V_{1} \oplus$ $n_{2} V_{2} \oplus n_{3} V_{3} \oplus n_{4} V_{4}$.

3-6. Let $A \leqslant S_{n}$ be an abelian group which acts transitively on the set \mathbf{n}.
(i) Show that for each $k \in \mathbf{n}$ the stabilizer of k is trivial. Deduce that $|A|=n$.
(ii) Show that the permutation representation $\mathbb{C}[\mathbf{n}]$ of A decomposes as

$$
\mathbb{C}[\mathbf{n}]=\rho_{1} \oplus \cdots \oplus \rho_{n}
$$

where $\rho_{1}, \ldots, \rho_{n}$ are the distinct irreducible representations of A.

CHAPTER 4

Some applications to group theory

In this chapter we will see some applications of representation theory to Group Theory.

4.1. Characters and the structure of groups

In this section we will give some results relating the character table of a finite group to its subgroup structure.

Let $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(V)$ be a representation for which $\operatorname{dim}_{\mathbb{C}} V=n$. Define the subset

$$
\operatorname{ker} \chi_{\rho}=\left\{g \in G: \chi_{\rho}(g)=\chi_{\rho}(e)\right\}
$$

Proposition 4.1. ker $\chi_{\rho}=\operatorname{ker} \rho$ and hence ker χ_{ρ} is a normal subgroup of G.
Proof. For $g \in \operatorname{ker} \chi_{\rho}$, let $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V consisting of eigenvectors of ρ_{g}, so $\rho_{g} v_{k}=\lambda_{k} v_{k}$ for suitable $\lambda_{k} \in \mathbb{C}$, and indeed each λ_{k} is a root of unity and so has the form $\lambda_{k}=e^{t_{k} i}$ for $t_{k} \in \mathbb{R}$. Then

$$
\chi_{\rho}(g)=\sum_{k=1}^{n} \lambda_{k}
$$

Recall that for $t \in \mathbb{R}, e^{t i}=\cos t+i \sin t$. Hence

$$
\chi_{\rho}(g)=\sum_{k=1}^{n} \cos t_{k}+i \sum_{k=1}^{n} \sin t_{k}
$$

Since $\chi_{\rho}(e)=n$,

$$
\sum_{k=1}^{n} \cos t_{k}=n
$$

which can only happen if each $\cos t_{k}=1$, but then $\sin t_{k}=0$. So we have all $\lambda_{k}=1$ which implies that $\rho_{g}=\operatorname{Id}_{V}$. Thus $\operatorname{ker} \chi_{\rho}=\operatorname{ker} \rho$ as claimed.

Now let $\chi_{1}, \ldots, \chi_{r}$ be the distinct irreducible characters of G and $\mathbf{r}=\{1, \ldots, r\}$.
Proposition 4.2. $\bigcap_{k=1}^{r}$ ker $\chi_{k}=\{e\}$.
Proof. Set $K=\bigcap_{k=1}^{r} \operatorname{ker} \chi_{k} \leqslant G$. By Proposition 4.1, for each k, $\operatorname{ker} \chi_{k}=\operatorname{ker} \rho_{k}$, hence $N \triangleleft G$. Indeed, since $N \leqslant \operatorname{ker} \rho_{k}$ there is a factorisation of $\rho_{k}: G \longrightarrow \mathrm{GL}_{\mathbb{C}}\left(V_{k}\right)$,

$$
G \xrightarrow{p} G / K \xrightarrow{\rho_{k}^{\prime}} \mathrm{GL}_{\mathbb{C}}\left(V_{k}\right)
$$

where $p: G \longrightarrow G / K$ is the quotient homomorphism. As p is surjective, it is easy to check that ρ_{k}^{\prime} is an irreducible representation of G / K, with character χ_{k}^{\prime}. Clearly the χ_{k}^{\prime} are distinct irreducible characters of G / K and $n_{k}=\chi_{k}(e)=\chi_{k}^{\prime}(e K)$ are the dimensions of the corresponding irreducible representations.

By Corollary 3.20, we have

$$
n_{1}^{2}+\cdots+n_{r}^{2}=|G|
$$

since the χ_{k} are the distinct irreducible characters of G. But we also have

$$
n_{1}^{2}+\cdots+n_{r}^{2} \leqslant|G / K|
$$

since the χ_{k}^{\prime} are some of the distinct irreducible characters of G / K. Combining these we have $|G| \leqslant|G / K|$ which can only happen if $|G / K|=|G|$, i.e., if $K=\{e\}$. So in fact

$$
\bigcap_{k=1}^{r} \operatorname{ker} \chi_{k}=\{e\} .
$$

Proposition 4.3. A subgroup $N \leqslant G$ is normal if and only it has the form

$$
N=\bigcap_{k \in S} \operatorname{ker} \chi_{k}
$$

for some subset $S \subseteq \mathbf{r}$.
Proof. Let $N \triangleleft G$ and suppose the quotient group G / N has s distinct irreducible representations $\sigma_{k}: G / N \longrightarrow \mathrm{GL}_{\mathbb{C}}\left(W_{k}\right)(k=1, \ldots, s)$ with characters $\tilde{\chi}_{k}$. Each of these gives rise to a composite representation of G

$$
\sigma_{k}^{\prime}: G \xrightarrow{q} G / N \xrightarrow{\sigma_{k}} \mathrm{GL}_{\mathbb{C}}\left(W_{k}\right)
$$

and again this is irreducible because the quotient homomorphism $q: G \longrightarrow G / N$ is surjective. This gives s distinct irreducible characters of G, so each $\chi_{\sigma_{k}^{\prime}}$ is actually one of the χ_{j}.

By Proposition 4.2 applied to the quotient group G / N,

$$
\bigcap_{k=1}^{s} \operatorname{ker} \sigma_{k}=\bigcap_{k=1}^{s} \operatorname{ker} \tilde{\chi}_{k}=\{e N\},
$$

hence since $\operatorname{ker} \sigma_{k}^{\prime}=q^{-1} \operatorname{ker} \sigma_{k}$, we have

$$
\bigcap_{k=1}^{s} \operatorname{ker} \chi_{\sigma_{k}^{\prime}}=\bigcap_{k=1}^{s} \operatorname{ker} \sigma_{k}^{\prime}=N .
$$

Conversely, for any $S \subseteq \mathbf{r}, \bigcap_{k \in S}$ ker $\chi_{k} \triangleleft G$ since for each k, ker $\chi_{k} \triangleleft G$.
Corollary 4.4. G is simple if and only if for every irreducible character $\chi_{k} \neq \chi_{1}$ and $e \neq g \in G, \chi_{k}(g) \neq \chi_{k}(e)$. Hence the character table can be used to decide whether G is simple.

Corollary 4.5. The character table can be used to decide whether G is solvable.
Proof. G is solvable if and only if there is a sequence of subgroups

$$
\{e\}=G_{\ell} \triangleleft G_{\ell-1} \triangleleft \cdots \triangleleft G_{1} \triangleleft G_{0}=G
$$

for which the quotient groups G_{s} / G_{s+1} are abelian. This can be seen from the character table. For a solvable group we can take the subgroups to be the lower central series given by $G_{(0)}=G$, and in general $G_{(s+1)}=\left[G_{(s)}, G_{(s)}\right]$. It is easily verified that $G_{(s)} \triangleleft G$ and $G_{(s)} / G_{(s+1)}$ is abelian. By Proposition 4.3 we can now check whether such a sequence of normal subgroups exists using the character table.

We can also define the subset

$$
\operatorname{ker}\left|\chi_{\rho}\right|=\left\{g \in G:\left|\chi_{\rho}(g)\right|=\chi_{\rho}(e)\right\} .
$$

Proposition 4.6. ker $\left|\chi_{\rho}\right|$ is a normal subgroup of G.

Proof. If $g \in \operatorname{ker}\left|\chi_{\rho}\right|$, then using the notation of the proof of Proposition 4.1, we find that

$$
\begin{aligned}
\left|\chi_{\rho}(g)\right|^{2} & =\left|\sum_{k=1}^{n} \cos t_{k}+i \sum_{k=1}^{n} \sin t_{k}\right|^{2} \\
& =\left(\sum_{k=1}^{n} \cos t_{k}\right)^{2}+\left(\sum_{k=1}^{n} \sin t_{k}\right)^{2} \\
& =\sum_{k=1}^{n} \cos ^{2} t_{k}+\sum_{k=1}^{n} \sin ^{2} t_{k}+2 \sum_{1 \leqslant k<\ell \leqslant n}\left(\cos t_{k} \cos t_{\ell}+\sin t_{k} \sin t_{\ell}\right) \\
& =n+2 \sum_{1 \leqslant k<\ell \leqslant n} \cos \left(t_{k}-t_{\ell}\right) \\
& \leqslant n+2\binom{n}{2}=n+n(n-1)=n^{2} .
\end{aligned}
$$

with equality if and only if $\cos \left(t_{k}-t_{\ell}\right)=1$ whenever $1 \leqslant k<\ell \leqslant n$. But if $\left|\chi_{\rho}(g)\right|=\chi_{\rho}(e)=n$, then we must have $n^{2} \leqslant n^{2}$ with equality if and only if $\cos \left(t_{k}-t_{\ell}\right)=1$ for all k, ℓ. Assuming that $t_{j} \in[0,2 \pi)$ for each j, we must have $t_{\ell}=t_{k}$, since we do indeed have equality here. Hence $\rho(g)=\lambda_{g} \operatorname{Id}_{V}$. In fact we have $\left|\lambda_{g}\right|=1$ since eigenvalues of ρ_{g} are roots of unity.

If $g_{1}, g_{2} \in \operatorname{ker}\left|\chi_{\rho}\right|$, then

$$
\rho_{g_{1} g_{2}}=\lambda_{g_{1}} \lambda_{g_{2}} \operatorname{Id}_{V}
$$

and so $g_{1} g_{2} \in \operatorname{ker}\left|\chi_{\rho}\right|$, hence $\operatorname{ker}\left|\chi_{\rho}\right|$ is a subgroup of G. Normality is also easily verified.

4.2. A result on representations of simple groups

Let G be a finite non-abelian simple group (hence of order $|G|>1$). We already know that G has no non-trivial 1-dimensional representations.

Theorem 4.7. An irreducible 2-dimensional representation of a finite non-abelian simple group G is trivial.

Proof. Suppose we have a non-trivial 2-dimensional irreducible representation ρ of G. By choosing a basis we can assume that we are considering a representation $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{C}}\left(\mathbb{C}^{2}\right)$. We can form the composite det $\circ \rho: G \longrightarrow \mathbb{C}^{\times}$which is a homomorphism whose kernel is a proper normal subgroup of G, hence must equal G. Hence $\rho: G \longrightarrow \mathrm{SL}_{\mathbb{C}}\left(\mathbb{C}^{2}\right)$, where

$$
\mathrm{SL}_{\mathbb{C}}\left(\mathbb{C}^{2}\right)=\left\{A \in \mathrm{GL}_{\mathbb{C}}\left(\mathbb{C}^{2}\right): \operatorname{det} A=1\right\}
$$

Now notice that since ρ is irreducible and 2 -dimensional, Proposition 3.21 tells us that $|G|$ is even (this is the only time we have actually used this result!) Now by Cauchy's Lemma, Theorem A. 13 , there is an element $t \in G$ of order 2 . Hence $\rho_{t} \in \mathrm{SL}_{\mathbb{C}}\left(\mathbb{C}^{2}\right)$ also has order 2 since ρ is injective. Since ρ_{t} satisfies the polynomial identity

$$
\rho_{t}^{2}-I_{2}=O_{2},
$$

its eigenvalues must be ± 1. By Theorem 3.5 we know that we can diagonalise ρ_{t}, hence at least one eigenvalue must be -1 . If one eigenvalue were 1 then for a suitable invertible matrix P we would have

$$
P \rho_{t} P^{-1}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

implying $\operatorname{det} \rho_{t}=-1$, which contradicts the fact that $\operatorname{det} \rho_{t}=1$. Hence we must have -1 as a repeated eigenvalue and so for suitable invertible matrix P,

$$
P \rho_{t} P^{-1}=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]=-I_{2}
$$

and hence

$$
\rho_{t}=P^{-1}\left(-I_{2}\right) P=-I_{2} .
$$

For $g \in G$,

$$
\rho_{g t g^{-1}}=\rho_{g} \rho_{t} \rho_{g}^{-1}=\rho_{g}\left(-I_{2}\right) \rho_{g}^{-1}=-I_{2}=\rho_{t},
$$

and since ρ is injective, $g t g^{-1}=t$. Thus $e \neq t \in \mathrm{Z}(G)=\{e\}$ since $\mathrm{Z}(G) \triangleleft G$. This provides a contradiction.

4.3. A Theorem of Frobenius

Let G be a finite group and $H \leqslant G$ a subgroup which has the following property:

$$
\text { For all } g \in G-H, g H g^{-1} \cap H=\{e\} \text {. }
$$

Such a subgroup H is called a Frobenius complement.
Theorem 4.8 (Frobenius's Theorem). Let $H \leqslant G$ be a Frobenius complement and let

$$
K=G-\bigcup_{g \in G} g H g^{-1} \subseteq G,
$$

the subset of G consisting of all elements of G which are not conjugate to elements of H. Then $N=K \cup\{e\}$ is a normal subgroup of G which is the semidirect product $G=N \rtimes H$.

Such a subgroup N is called a Frobenius kernel of G.
The remainder of this section will be devoted to giving a proof of this theorem using Character Theory. We begin by showing that

$$
\begin{equation*}
|K|=\frac{|G|}{|H|}-1 \tag{4.1}
\end{equation*}
$$

First observe that if $e \neq g \in x H x^{-1} \cap y H y^{-1}$, then $e \neq x^{-1} g x \in H \cap x^{-1} y H y^{-1} x$; the latter can only occur if $x^{-1} y \in H$. Notice that the normalizer $\mathrm{N}_{G}(H)$ is no bigger than H, hence $\mathrm{N}_{G}(H)=H$. Thus there are exactly $|G| /\left|\mathrm{N}_{G}(H)\right|=|G| /|H|$ distinct conjugates of H, with only one element e in common to two or more of them. So the number elements of G which are conjugate to elements of H is

$$
\frac{|G|}{|H|}(|H|-1)+1
$$

Hence,

$$
|K|=|G|-\frac{|G|}{|H|}(|H|-1)-1=\frac{|G|}{|H|}-1 .
$$

Now let $\alpha \in \mathcal{C}(H)$ be a class function on the group H. We can define a function $\tilde{\alpha}: G \longrightarrow \mathbb{C}$ by

$$
\tilde{\alpha}(g)= \begin{cases}\alpha\left(x g x^{-1}\right) & \text { if } x g x^{-1} \in H, \\ \alpha(e) & \text { if } g \in K\end{cases}
$$

This is well defined and also a class function on G. We also have

$$
\begin{equation*}
\tilde{\alpha}=\alpha \uparrow_{H}^{G}-\alpha(e)\left(\chi \xi \uparrow_{H}^{G}-\chi_{1}^{G}\right), \tag{4.2}
\end{equation*}
$$

where we use the notation of Qu .4 in the Problems. In fact, $\chi_{\xi} \uparrow_{H}^{G}-\chi_{1}^{G}$ is the character of a representation of G.

Given two class functions α, β on H,

$$
\begin{aligned}
(\tilde{\alpha} \mid \tilde{\beta})_{G} & =\frac{1}{|G|}\left(\sum_{g \in G} \tilde{\alpha}(g) \overline{\tilde{\beta}(g)}\right) \\
& =\frac{1}{|G|}\left((|K|+1) \alpha(e) \overline{\beta(e)}+\sum_{g \in G-N} \tilde{\alpha}(g) \tilde{\tilde{\beta}(g)}\right) \\
& =\frac{1}{|G|}\left(\frac{|G|}{|H|} \alpha(e) \overline{\beta(e)}+\frac{|G|}{|H|} \sum_{e \neq h \in H} \tilde{\alpha}(h) \overline{\tilde{\beta}(h)}\right)
\end{aligned}
$$

[by Equation (4.1)]

$$
\begin{aligned}
& =\frac{1}{|H|}\left(\sum_{h \in H} \tilde{\alpha}(h) \tilde{\beta}(h)\right. \\
& =(\tilde{\alpha} \mid \tilde{\beta})_{H} .
\end{aligned}
$$

For χ an irreducible character of H,

$$
(\tilde{\chi} \mid \tilde{\chi})_{G}=(\chi \mid \chi)_{H}=1
$$

by Proposition 3.17. Also, Equation (4.2) implies that

$$
\tilde{\chi}=\sum_{j} m_{j} \chi_{j}^{G}
$$

where $m_{j} \in \mathbb{Z}$ and the χ_{j}^{G} are the distinct irreducible characters of G. Using Frobenius Reciprocity 3.33 , these coefficients m_{j} are given by

$$
m_{j}=\left(\tilde{\chi} \mid \chi_{j}^{G}\right)_{G}=\left(\chi \mid \chi_{j}^{G} \downarrow_{H}^{G}\right)_{H} \geqslant 0
$$

since $\chi, \chi_{j}^{G} \downarrow_{H}^{G}$ are characters of H. As $\tilde{\chi}(e)=\chi(e)>0, \tilde{\chi}$ is itself the character of some representation ρ of G, i.e., $\tilde{\chi}=\chi_{\rho}$. Notice that

$$
N=\left\{g \in G: \chi_{\rho}(g)=\chi_{\rho}(e)\right\}=\operatorname{ker} \rho .
$$

Hence, by Proposition 4.1, N is a normal subgroup of G.
Now $H \cap N=\{e\}$ by construction. Moreover,

$$
|N H| \geqslant|H|| | N|=|G|,
$$

hence $N H=N H=G$. So $G=N \rtimes H$. This completes the proof of Theorem 4.8.
An equivalent formulation of this result is the following which can be found in [1, Chapter 6].
Theorem 4.9 (Frobenius's Theorem: group action version). Let the finite group G act transitively on the set X, and suppose that each element $g \neq e$ fixes at most one element of X, i.e., $\left|X^{g}\right| \leqslant 1$. Then

$$
N=\left\{g \in G:\left|X^{g}\right|=0\right\} \cup\{e\}
$$

is a normal subgroup of G.
Proof. Let $x \in X$ be fixed by some element of G not equal to the identity element e, and let $H=\operatorname{Stab}_{G}(x)$. Then for $k \in G-H, k \cdot x \neq x$ has

$$
\operatorname{Stab}_{G}(k \cdot x)=k \operatorname{Stab}_{G}(x) k^{-1}=k H k^{-1} .
$$

If $e \neq g \in H \cap k H k^{-1}$, then g stabilizes x and $k \cdot x$, but this contradicts the assumption on the number of fixed points of elements in G. Hence H is a Frobenius complement. Now the result follows from Theorem 4.8.

Example 4.10. The subgroup $H=\{e,(12)\} \leqslant S_{3}$ satisfies the conditions of Theorem 4.8. Then

$$
\bigcup_{g \in S_{3}} g H g^{-1}=\{e,(12),(13),(23)\}
$$

and $N=\{e,(123),(132)\}$ is a Frobenius kernel.

Exercises on Chapter 4

4-1. Let $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(V)$ be a representation.
(i) Show that the sets

$$
\begin{aligned}
\operatorname{ker} \chi_{\rho} & =\left\{g \in G: \chi_{\rho}(g)=\chi_{\rho}(e)\right\} \subseteq G \\
\operatorname{ker}\left|\chi_{\rho}\right| & =\left\{g \in G:\left|\chi_{\rho}(g)\right|=\chi_{\rho}(e)\right\} \subseteq G
\end{aligned}
$$

are normal subgroups of G for which $\operatorname{ker} \chi_{\rho} \leqslant \operatorname{ker}\left|\chi_{\rho}\right|$ and $\operatorname{ker} \chi_{\rho}=\operatorname{ker} \rho$.
[Hint: Recall that for $t \in \mathbb{R}, e^{t i}=\cos t+i \sin t$.]
(ii) Show that the commutator subgroup $\left[\operatorname{ker}\left|\chi_{\rho}\right|, \operatorname{ker}\left|\chi_{\rho}\right|\right]$ of $\operatorname{ker}\left|\chi_{\rho}\right|$ is a subgroup of ker χ_{ρ}.

4-2. Let G be a finite group and $X=G / H$ the finite G-set on which G acts transitively with action written $g \cdot k H=g k H$ for $g, k \in G$. Let ξ be the associated permutation representation on $\mathbb{C}[X]$.
(i) Using the definition of induced representations, show that ξ is G-isomorphic to $\xi_{1}^{H} \uparrow_{H}^{G}$, where ξ_{1}^{H} is the trivial 1-dimensional representation of H.
(ii) Let $W_{X} \subseteq \mathbb{C}[X]$ be the G-subspace of Qu. 2.7(i) and θ the representation on W_{X}. Show that $\chi_{\theta}=\chi_{\xi}-\chi_{1}^{G}$, where χ_{1}^{G} is the character of the trivial 1-dimensional representation of G.
(iii) Use Frobenius Reciprocity to prove that $\left(\chi_{\theta} \mid \chi_{1}^{G}\right)_{G}=0$.

4-3. Continuing with the setup in Qu. 4.3 with the additional assumption that $|X| \geqslant 2$, let $Y=X \times X$ be given the associated diagonal action $g \cdot\left(x_{1}, x_{2}\right)=\left(g \cdot x_{1}, g \cdot x_{2}\right)$ and let σ be the associated permutation representation on $\mathbb{C}[Y]$. The action on X is said to be doubly transitive or 2-transitive if, whenever $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in Y$ with $x_{1} \neq x_{2}$ and $x_{1}^{\prime} \neq x_{2}^{\prime}$, there is a $g \in G$ for which $g \cdot\left(x_{1}, x_{2}\right)=\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.
(i) Show that $\chi_{\sigma}=\chi_{\xi}{ }^{2}$, i.e., show that for every $g \in G, \chi_{\sigma}(g)=\chi_{\xi}(g)^{2}$.
(ii) Show that the action on X is 2-transitive if and only if the action on Y has exactly two orbits.
(iii) Show that the action on X is 2-transitive if and only if $\left(\chi_{\sigma} \mid \chi_{1}^{G}\right)_{G}=2$.
(iv) Show that the action on X is 2-transitive if and only if θ is irreducible.

4-4. The following is the character table of a certain group G of order 60 , where the numbers in brackets [] are the numbers in the conjugacy classes of G, χ_{k} is the character of an irreducible representation ρ_{k} and $\alpha=(1+\sqrt{5}) / 2, \beta=(1-\sqrt{5}) / 2$.

	$g_{1}=e_{G}$ $[1]$	g_{2} $[20]$	g_{3}	g_{4}	g_{5}
	$[15]$	$[12]$	$[12]$		
χ_{1}	1	1	1	1	1
χ_{2}	5	-1	1	0	0
χ_{3}	4	1	0	-1	-1
χ_{4}	3	0	-1	α	β
χ_{5}	a	b	c	d	e

(i) Determine the dimension of the representation ρ_{5}.
(ii) Use row orthogonality to determine χ_{5}.
(iii) Show that G is a simple group.
(iv) Decompose each of the contragredient representations ρ_{j}^{*} as a direct sum of the irreducible representations ρ_{k}.
(v) Decompose each of the tensor product representations $\rho_{s} \otimes \rho_{t}$ as a direct sum of the irreducible representations ρ_{k}.
(vi) Identify this group G up to isomorphism.

APPENDIX A

Some group theory

A.1. The Isomorphism and Correspondence Theorems

The three Isomorphism Theorems and the Correspondence Theorem are fundamental results of Group Theory. We will write $H \leqslant G$ and $N \triangleleft G$ to indicate that H is a subgroup and N is a normal subgroup of G.

Recall that given a normal subgroup $N \triangleleft G$ the quotient or factor group G / N has for its elements the distinct cosets

$$
g N=\{g n \in G: n \in N\} \quad(g \in G) .
$$

Then the natural homomorphism

$$
\pi: G \longrightarrow G / N ; \quad \pi(g)=g N
$$

is surjective with kernel $\operatorname{ker} \pi=N$.
Theorem A. 1 (First Isomorphism Theorem). Let $\varphi: G \longrightarrow H$ be a homomorphism with $N=\operatorname{ker} \varphi$. Then there is a unique homomorphism $\bar{\varphi}: G / N \longrightarrow H$ such that $\bar{\varphi} \circ \pi=\varphi$. Equivalently, there is a unique factorisation

$$
\varphi: G \xrightarrow{\pi} G / N \xrightarrow{\bar{\Phi}} H .
$$

In diagram form this becomes

where all the arrows represent group homomorphisms.
Theorem A. 2 (Second Isomorphism Theorem). Let $H \leqslant G$ and $N \triangleleft G$. Then there is an isomorphism

$$
H N / N \cong H /(H \cap N) ; \quad h n \longleftrightarrow h(H \cap N) .
$$

Theorem A. 3 (Third Isomorphism Theorem). Let $K \triangleleft G$ and $N \triangleleft G$ with $N \triangleleft K$. Then $K / N \leqslant G / N$ is a normal subgroup, and there is an isomorphism

$$
G / K \cong(G / N) /(K / N) ; \quad g K \longleftrightarrow(g N)(K / N)
$$

Theorem A. 4 (Correspondence Theorem). There is a one-one correspondence between subgroups of G containing N and subgroups of G / N, given by

$$
\begin{aligned}
H & \longleftrightarrow \pi(H)=H / N, \\
\pi^{-1} Q & \longleftrightarrow Q,
\end{aligned}
$$

where

$$
\pi^{-1} Q=\{g \in G: \pi(g)=g N \in Q\} .
$$

Moreover, under this correspondence, $H \triangleleft G$ if and only if $\pi(H) \triangleleft G / N$.

A.2. Some definitions and notation

Let G be a group.
Definition A.5. The centre of G is the subset

$$
\mathrm{Z}(G)=\{c \in G: g c=c g \forall g \in G\}
$$

This is a normal subgroup of G, i.e., $\mathrm{Z}(G) \triangleleft G$.
Definition A.6. Let $g \in G$, then the centralizer of g is

$$
\mathrm{C}_{G}(g)=\{c \in G: c g=g c\}
$$

This is a subgroup of G, i.e., $\mathrm{C}_{G}(g) \leqslant G$.
Definition A.7. Let $H \leqslant G$. The normalizer of H in G is

$$
\mathrm{N}_{G}(H)=\left\{c \in G: c H c^{-1}=H\right\}
$$

This is a subgroup of G containing H; moreover, H is a normal subgroup of $\mathrm{N}_{G}(H)$, i.e., $H \triangleleft \mathrm{~N}_{G}(H)$.

Definition A.8. G is simple if its only normal subgroups are G and $\{e\}$. Equivalently, it has no non-trivial proper subgroups.

Definition A.9. The order of $G,|G|$, is the number of elements in G when G is finite, and ∞ otherwise. If $g \in G$, the order of $g,|g|$, is the smallest natural number $n \in \mathbb{N}$ such $g^{n}=e$ provided such a number exists, otherwise it is ∞. Equivalently, $|g|=|\langle g\rangle|$, the order of the cyclic group generated by g. If G is finite, then every element has finite order.

Theorem A. 10 (Lagrange's Theorem). If G is a finite group, and $H \leqslant G$, then $|H|$ divides $|G|$. In particular, for any $g \in G,|g|$ divides $|G|$.

Definition A.11. Two elements $x, y \in G$ are conjugate in G if there exists $g \in G$ such that

$$
y=g x g^{-1}
$$

The conjugacy class of x is the set of all elements of G conjugate to x,

$$
x^{G}=\left\{y \in G: y=g x g^{-1} \text { for some } g \in G\right\}
$$

Conjugacy is an equivalence relation on G and the distinct conjugacy classes are the distinct equivalence classes.

A.3. Group actions

Let G be a group (with identity element $e=e_{G}$) and X be a set. Recall that an action of G on X is a rule assigning to each $g \in G$ a bijection $\varphi_{g}: X \longrightarrow X$ and satisfying the identities

$$
\begin{aligned}
\varphi_{g h} & =\varphi_{g} \circ \varphi_{h} \\
\varphi_{e_{G}} & =\operatorname{Id}_{X}
\end{aligned}
$$

We will frequently make use of the notation

$$
g \cdot x=\varphi_{g}(x)
$$

(or even just write $g x$) when the action is clear, but sometimes we may need to refer explicitly to the action. It is often useful to view an action as corresponding to a function

$$
\Phi: G \times X \longrightarrow X ; \varphi(g, x)=\varphi_{g}(x)
$$

It is also frequently important to regard an action of G as corresponding to a group homomorphism

$$
\varphi: G \longrightarrow \operatorname{Perm}(X) ; \quad g \mapsto \varphi_{g},
$$

where $\operatorname{Perm}(X)$ denotes the group of all permutations (i.e., bijections $X \longrightarrow X$) of the set X. If $\mathbf{n}=\{1,2, \ldots, n\}$, then $S_{n}=\operatorname{Perm}(\mathbf{n})$ is the symmetric group on n objects; S_{n} has order n !, i.e., $\left|S_{n}\right|=n$!.

Given such an action of G on X, we make the following definitions:

$$
\begin{aligned}
\operatorname{Stab}_{\varphi}(x) & =\left\{g \in G: \varphi_{g}(x)=x\right\}, \\
\operatorname{Orb}_{\varphi}(x) & =\left\{y \in X: \text { for some } g \in G, y=\varphi_{g}(x)\right\}, \\
X^{G} & =\{x \in X: g x=x \forall g \in G\} .
\end{aligned}
$$

Then $\operatorname{Stab}_{\varphi}(x)$ is called the stabilizer of x and is often denoted $\operatorname{Stab}_{G}(x)$ when the action is clear, while $\operatorname{Orb}_{\varphi}(x)$ is called the orbit of x and is often denoted $\operatorname{Orb}_{G}(x) . X^{G}$ is called the fixed point set of the action.

Theorem A.12. Let φ be an action of G on X, and $x \in X$.
(a) $\operatorname{Stab}_{\varphi}(x)$ is a subgroup of G. Hence if G is finite, then so is $\operatorname{Stab}_{\varphi}(x)$ and by Lagrange's Theorem, $\left|\operatorname{Stab}_{\varphi}(x)\right|||G|$.
(b) There is a bijection

$$
G / \operatorname{Stab}_{\varphi}(x) \longleftrightarrow \operatorname{Orb}_{\varphi}(x) ; \quad g \operatorname{Stab}_{\varphi}(x) \longleftrightarrow g \cdot x=\varphi_{g}(x)
$$

Furthermore, this bijection is G-equivariant in the sense that

$$
h g \operatorname{Stab}_{\varphi}(x) \leftrightarrow h \cdot(g \cdot x)
$$

In particular, if G is finite, then so is $\operatorname{Orb}_{\varphi}(x)$ and we have

$$
\left|\operatorname{Orb}_{\varphi}(x)\right|=|G| /\left|\operatorname{Stab}_{\varphi}(x)\right|
$$

(c) The distinct orbits partition X into a disjoint union of subsets,

$$
X=\coprod_{\substack{\text { distinct } \\ \text { orbits }}} \operatorname{Orb}_{\varphi}(x)
$$

Equivalently, there is an equivalence relation $\underset{G}{\widetilde{G}}$ on X for which the distinct orbits are the equivalence classes and given by

$$
x_{G}^{\sim} y \quad \Longleftrightarrow \quad \text { for some } g \in G, y=g \cdot x .
$$

Hence, when X is finite, then

$$
|X|=\sum_{\substack{\text { distinct } \\ \text { orbits }}}\left|\operatorname{Orb}_{\varphi}(x)\right|
$$

This theorem is the basis of many arguments in Combinatorics and Number Theory as well as Group Theory. Here is an important group theoretic example, often called Cauchy's Lemma.

Theorem A. 13 (Cauchy's Lemma). Let G be a finite group and let p be a prime for which $p||G|$. Then there is an element $g \in G$ of order p.

Proof. Let

$$
X=G^{p}=\left\{\left(g_{1}, g_{2}, \ldots, g_{p}\right): g_{j} \in G, g_{1} g_{2} \cdots g_{p}=e_{G}\right\}
$$

Let H be the group of all cyclic permutations of the set $\{1,2, \ldots, p\}$; this is a cyclic group of order p. Consider the following action of H on X :

$$
\gamma \cdot\left(g_{1}, g_{2}, \ldots, g_{p}\right)=\left(g_{\gamma^{-1}(1)}, g_{\gamma^{-1}(2)}, \ldots, g_{\gamma^{-1}(p)}\right) .
$$

It is easily seen that this is an action. By Theorem A.12, the size of each orbit must divide $|H|=p$, hence it must be 1 or p since p is prime. On the other hand,

$$
|X|=|G|^{p} \equiv 0 \quad(\bmod p),
$$

since $p||G|$. Again by Theorem A.12, we have

$$
|X|=\sum_{\substack{\text { distinct } \\ \text { orbits }}}\left|\operatorname{Orb}_{H}(x)\right|,
$$

and hence

$$
\sum_{\substack{\text { distinct } \\ \text { orbits }}}\left|\operatorname{Orb}_{H}(x)\right| \equiv 0 \quad(\bmod p) .
$$

But there is at least one orbit of size 1 , namely that containing $\mathbf{e}=\left(e_{G}, \ldots, e_{G}\right)$, hence,

$$
\sum_{\substack{\text { distinct } \\ \text { orbits not } \\ \text { containing }}}\left|\operatorname{Orb}_{H}(x)\right| \equiv-1 \quad(\bmod p)
$$

If all the left hand summands are p, then we obtain a contradiction, so at least one other orbit contains exactly one element. But such an orbit must have the form

$$
\operatorname{Orb}_{H}((g, g, \ldots, g)), \quad g^{p}=e_{G} .
$$

Hence g is the desired element of order p.
Later, we will meet the following type of action. Let \mathbb{k} be a field and V a vector space over \mathbb{k}. Let $\mathrm{GL}_{\mathbb{k}}(V)$ denote the group of all invertible \mathbb{k}-linear transformations $V \longrightarrow V$. Then for any group G, a group homomorphism $\rho: G \longrightarrow \mathrm{GL}_{\mathbb{k}}(V)$ defines a \mathbb{k}-linear action of G on V by

$$
g \cdot v=\rho(g)(v) .
$$

This is also called a \mathbb{k}-representation of G in (or on) V. One extreme example is provided by the case where $G=\mathrm{GL}_{\mathfrak{k}}(V)$ with $\rho=\operatorname{Id}_{\mathrm{GL}_{\mathfrak{k}}(V)}$. We will be mainly interested in the situation where G is finite and $\mathbb{k}=\mathbb{R}$ or $\mathbb{k}=\mathbb{C}$; however, other cases are important in Mathematics.

If we have actions of G on sets X and Y, a function $\varphi: X \longrightarrow Y$ is called G-equivariant or a G-map if

$$
\varphi(g x)=g \varphi(x) \quad(g \in G, x \in X) .
$$

An invertible G-map is called a G-equivalence (it is easily seen that the inverse map is itself a a G-map). We say that two G-sets are G-equivalent if there is a G-equivalence between them. Another way to understand these ideas is as follows. If $\operatorname{Map}(X, Y)$ denotes the set of all functions $X \longrightarrow Y$, then we can define an action of G by

$$
(g \cdot \varphi)(x)=g\left(\varphi\left(g^{-1} x\right)\right)
$$

Then the fixed point set of this action is

$$
\operatorname{Map}(X, Y)^{G}=\left\{\varphi: g \varphi\left(g^{-1} x\right)=\varphi(x) \forall x, g\right\}=\{\varphi: \varphi(g x)=g \varphi(x) \forall x, g\} .
$$

So $\operatorname{Map}^{G}(X, Y)=\operatorname{Map}(X, Y)^{G}$ is just the set of all G-equivariant maps.

A.4. The Sylow theorems

The Sylow Theorems provide the beginnings of a systematic study of the structure of finite groups. For a finite group G, they connect the factorisation of $|G|$ into prime powers,

$$
|G|=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{d}^{r_{d}}
$$

where $2 \leqslant p_{1}<p_{2}<\cdots<p_{d}$ with p_{k} prime, and $r_{k}>0$, to the existence of subgroups of prime power order, often called p-subgroups. They also provide a sort of converse to Lagrange's Theorem.

Here are the three Sylow Theorems. Recall that a proper subgroup $H<G$ is maximal if it is contained in no larger proper subgroup; also a subgroup $P \leqslant G$ is a p-Sylow subgroup if $|P|=p^{k}$ where $p^{k+1} \nmid|G|$.

Theorem A. 14 (Sylow's First Theorem). A p-subgroup $P \leqslant G$ is maximal if and only if it is a p-Sylow subgroup. Hence every p-subgroup is contained in a p-Sylow subgroup.

Theorem A. 15 (Sylow's Second Theorem). Any two p-Sylow subgroups $P, P^{\prime} \leqslant G$ are conjugate in G.

Theorem A. 16 (Sylow's Third Theorem). Let $P \leqslant G$ be a p-Sylow subgroup with $|P|=$ p^{k}, so $|G|=p^{k} m$ where $p \nmid m$. Also let n_{p} be the number of distinct p-Sylow subgroups of G. Then
(ii)

$$
\begin{align*}
n_{p} & \equiv 1 \tag{i}\\
m & (\bmod p) \\
\equiv 0 & \left(\bmod n_{p}\right)
\end{align*}
$$

Finally, we end with an important result on chains of subgroups in a finite p-group.
Theorem A.17. Let P be a finite p-group. Then there is a sequence of subgroups

$$
\{e\}=P_{0} \leqslant P_{1} \leqslant \cdots \leqslant P_{n}=P
$$

with $\left|P_{k}\right|=p^{k}$ and $P_{k-1} \triangleleft P_{k}$ for $1 \leqslant k \leqslant n$.
We also have the following which can be proved directly by the method in the proof of Theorem A.13. Recall that for any group G, its centre is the normal subgroup

$$
\mathrm{Z}(G)=\{c \in G: \forall g \in G, c g=g c\} \triangleleft G
$$

Theorem A.18. Let P be a non-trivial finite p-group. Then the centre of P is non-trivial, i.e., $\mathrm{Z}(P) \neq\{e\}$.

Sylow theory seemingly reduces the study of structure of a finite group to the interaction between the different Sylow subgroups as well as their internal structure. In reality, this is just the beginning of a difficult subject, but the idea seems simple enough!

A.5. Solvable groups

Definition A.19. A group G which has a sequence of subgroups

$$
\{e\}=H_{0} \leqslant H_{1} \leqslant \cdots \leqslant H_{n}=G,
$$

with $H_{k-1} \triangleleft H_{k}$ and H_{k} / H_{k-1} cyclic of prime order, is called solvable (soluble or soluable).
Solvable groups are generalizations of p-groups in that every finite p-group is solvable. A finite solvable group G can be thought of as built up from the abelian subquotients H_{k} / H_{k-1}. Since finite abelian groups are easily understood, the complexity is then in the way these subquotients are 'glued' together.

More generally, for a group G, a series of subgroups

$$
G=G_{0}>G_{1}>\cdots>G_{r}=\{e\}
$$

is called a composition series for G if $G_{j+1} \triangleleft G_{j}$ for each j, and each successive quotient group G_{j} / G_{j+1} is simple. The quotient groups G_{j} / G_{j+1} (and groups isomorphic to them) are called the composition factors of the series, which is said to have length r. Every finite group has a composition series, with solvable groups being the ones with abelian subquotients. Thus, to study a general finite group requires that we analyse both finite simple groups and also the ways that they can be glued together to appear as subquotients for composition series.

A.6. Product and semi-direct product groups

Given two groups H, K, their product $G=H \times K$ is the set of ordered pairs

$$
H \times K=\{(h, k): h \in H, k \in K\}
$$

with multiplication $\left(h_{1}, k_{1}\right) \cdot\left(h_{2}, k_{2}\right)=\left(h_{1} h_{2}, k_{1} k_{2}\right)$, identity $e_{G}=\left(e_{H}, e_{K}\right)$ and inverses given by $(h, k)^{-1}=\left(h^{-1}, k^{-1}\right)$.

A group G is the semi-direct product $G=N \rtimes H$ of the subgroups N, H if $N \triangleleft G, H \leqslant G$, $H \cap N=\{e\}$ and $H N=N H=G$. Thus, each element $g \in G$ has a unique expression $g=h n$ where $n \in N, h \in H$. The multiplication is given in terms of such factorisations by

$$
\left(h_{1} n_{1}\right)\left(h_{2} n_{2}\right)=\left(h_{1} h_{2}\right)\left(h_{2}^{-1} n_{1} h_{2} n_{2}\right)
$$

where $h_{2}^{-1} n_{1} h_{2} \in N$ by the normality of N.
An example of a semi-direct product is provided by the symmetric group on 3 letters, S_{3}. Here we can take

$$
N=\{e,(123),(132)\}, \quad H=\{e,(12)\}
$$

H can also be one of the subgroups $\{e,(13)\},\{e,(23)\}$.

A.7. Some useful groups

In this section we define various groups that will prove useful as test examples in the theory we will develop. Some of these will be familiar although the notation may vary from that in previous encounters with these groups.
A.7.1. The quaternion group. The quaternion group of order $8, Q_{8}$, has as elements the following 2×2 complex matrices:

$$
\pm \mathbf{1}, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}
$$

where

$$
\mathbf{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2}, \quad \mathbf{i}=\left[\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right], \quad \mathbf{j}=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right], \quad \mathbf{k}=\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right]
$$

A.7.2. Dihedral groups.

Definition A.20. The dihedral group of order $2 n, D_{2 n}$, is generated by two elements α, β of orders $|\alpha|=n$ and $|\beta|=2$ which satisfy the relation

$$
\beta \alpha \beta=\alpha^{-1}
$$

The distinct elements of $D_{2 n}$ are

$$
\alpha^{r}, \alpha^{r} \beta \quad(r=0, \ldots, n-1)
$$

Notice that we also have $\alpha^{r} \beta=\beta \alpha^{-r}$. A useful geometric interpretation of $D_{2 n}$ is provided by the following.

Proposition A.21. The group $D_{2 n}$ is isomorphic to the symmetry group of a regular ngon in the plane, with α corresponding to a rotation through $2 \pi / n$ about the centre and β corresponding to the reflection in a line through a vertex and the centre.
A.7.3. Symmetric and alternating groups. The symmetric group on n objects S_{n} is best handled using cycle notation. Thus, if $\sigma \in S_{n}$, then we express σ in terms of its disjoint cycles. Here the cycle ($i_{1} i_{2} \ldots i_{k}$) is the element which acts on the set $\mathbf{n}=\{1,2, \ldots, n\}$ by sending i_{r} to i_{r+1} (if $r<k$) and i_{k} to i_{1}, while fixing the remaining elements of \mathbf{n}; the length of this cycle is k and we say that it is a k-cycle. Every permutation σ has a unique expression (apart from order) as a composition of its disjoint cycles, i.e., cycles with no common entries. We usually supress the cycles of length 1 , thus $(123)(46)(5)=(123)(46)$.

It is also possible to express a permutation σ as a composition of 2 -cycles; such a decomposition is not unique, but the number of the 2 -cycles taken modulo 2 (or equivalently, whether this number is even or odd, i.e., its parity) is unique. The sign of σ is

$$
\operatorname{sign} \sigma=(-1)^{\text {number of } 2-\mathrm{cycles}}= \pm 1 .
$$

Theorem A.22. The function sign : $S_{n} \longrightarrow\{1,-1\}$ is a surjective group homomorphism.
The kernel of sign is called the alternating group A_{n} and its elements are called even permutations, while elements of S_{n} not in A_{n} are called odd permutations. Notice that $\left|A_{n}\right|=$ $\left|S_{n}\right| / 2=n!/ 2 . S_{n}$ is the disjoint union of the two cosets $e A_{n}=A_{n}$ and τA_{n} where $\tau \in S_{n}$ is any odd permutation.

Here are the elements of A_{3} and S_{3} expressed in cycle notation.

$$
\begin{array}{ll}
A_{3}: & e=(1)(2)(3),(123)=(13)(12),(132)=(12)(13) . \\
S_{3}: & e,(123),(132),(12) e=(12),(12)(123)=(1)(23),(12)(132)=(2)(13) .
\end{array}
$$

A.8. Some useful Number Theory

In the section we record some number theoretic results that are useful in studying finite groups. These should be familiar and no proofs are given. Details can be found in [2] or any other basic book on abstract algebra.

Definition A.23. Given two integers a, b, their highest common factor or greatest common divisor is the highest positive common factor, and is written (a, b). It has the property that any integer common divisor of a and b divides (a, b).

Definition A.24. Two integers a, b are coprime if $(a, b)=1$.
Theorem A.25. Let $a, b \in Z$. Then there are integers r, s such that $r a+s b=(a, b)$. In particular, if a and b are coprime, then there are integers r, s such that $r a+s b=1$.

More generally, if a_{1}, \ldots, a_{n} are pairwise coprime, then there are integers r_{1}, \ldots, r_{n} such that

$$
r_{1} a_{1}+\cdots+r_{n} a_{n}=1 .
$$

These results are consequences of the Euclidean or Division Algorithm for \mathbb{Z}.
EA: Let $a, b \in \mathbb{Z}$. Then there are unique $q, r \in \mathbb{Z}$ for which $0 \leqslant r<|b|$ and $a=q b+r$.
It can be shown that in this situation, $(a, b)=(b, r)$. This allows a determination of the highest common factor of a and b by repeatedly using EA until the remainder r becomes 0 , when the previous remainder will be (a, b).

Bibliography

[1] J. L. Alperin \& R. B. Bell, Groups and Representations, Springer-Verlag (1995).
[2] J. B. Fraleigh, A First Course in Abstract Algebra, 5th Edition, Addison-Wesley (1994).
[3] G. James \& M. Liebeck, Representations and Characters of Groups, Cambridge University Press (1993).
[4] J-P. Serre, Linear Representations of Finite Groups, Springer-Verlag (1977).
[5] S. Sternberg, Group theory and physics, Cambridge University Press (1994).

Solutions

Chapter 1

1-1. W is clearly closed under addition and multiplication by real scalars. It is not closed under multiplication by arbitrary complex scalars since for example, $(i, i) \in W$ but

$$
i(i, i)=(-1,-1) \notin W .
$$

Note that a typical element of W has the form $(x+y i,-x+y i)$ for $x, y \in \mathbb{R}$.
θ is clearly \mathbb{R}-linear. Sample bases are $A=\{(1,-1),(i, i)\}$ and $B=\{1, i\}$. Then

$$
\theta(1,-1)=1, \quad \theta(i, i)=1,
$$

hence the matrix is

$$
{ }_{B}[\theta]_{A}=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

An \mathbb{R}-basis for V is $C=\{(1,-1),(i, i),(i,-i),(-1,-1)\}$ (note that $(i,-i)=i(1,-1)$ and $(1,1)=i(i, i))$. We can take the linear extension of θ for which

$$
\Theta(i,-i)=i \theta(1,-1), \quad \Theta(-1,-1)=i \theta(i, i) .
$$

This agrees with the \mathbb{C}-linear transformation

$$
\Theta(z, w)=z-i w \quad(z, w \in \mathbb{C}) .
$$

1-2. Linearity is easy. We have the standard basis $\mathbf{e}=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ for which the matrix of σ is

$$
[\sigma]_{\mathrm{e}}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Then

$$
\operatorname{char}_{\sigma}(X)=x^{4}-2 x^{2}+1=\left(x^{2}-1\right)^{2}=(x-1)^{2}(x+1)^{2} .
$$

The eigenvalues of this are $1,-1$, each being a repeated root of the characteristic polynomial. As eigenvectors we have

$$
\text { for eigenvalue 1: }\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right] ; \quad \text { for eigenvalue }-1: \quad\left[\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
1 \\
0 \\
-1
\end{array}\right] .
$$

These form a basis for V. Moreover, the polynomial $f(X)=X^{2}-1$ satisfies $f(\sigma) v=0$ for each of these basis vectors, hence for all elements of V. Thus $\min _{\sigma}(X)=X^{2}-1$.
$1-3$. We have

$$
\operatorname{char}_{A}(X)=X^{3}-28 X^{2}+256 X-768=(X-12)(X-8)^{2},
$$

hence the eigenvalues of A are 12,8 with 8 being a repeated root of the characteristic polynomial. Eigenvectors for these are

$$
(-5,3,1),(0,-3,1),(1,-2,0),
$$

and these form a basis for \mathbb{C}^{3}. Hence the polynomial $f(X)=(X-12)(X-8)$ satisfies $f(A) v=0$ for every $v \in \mathbb{C}^{3}$ and so $\min _{A}(X)=f(X)$.
1-4. (i) The quotient space V / W is spanned by the image under the quotient map $q: V \longrightarrow$ V / W of the vector $(0,1,0)$, i.e., $q(0,1,0)=(0,1,0)+W$. Hence a complement of W is the subspace spanned by $(0,1,0)$. More generally, any vector of the form $u=(0,1,0)+w$ where $w \in W$ spans a linear complement of W.
(ii) The quotient space V / W is spanned by the images under the quotient map $q: V \longrightarrow V / W$ of the vectors $(0,0,1,0),(0,0,0,1)$, hence a complement is the subspace spanned by these two vectors which are also linearly independent.
(iii) The quotient space V / W is spanned by the images under the quotient map $q: V \longrightarrow V / W$ of the vectors $(0,0,1,0),(0,0,0,1)$, hence a complement is the subspace spanned by these two vectors which are also linearly independent.
(iv) $\mathbb{k}=\mathbb{R}, V=\left(\mathbb{R}^{3}\right)^{*}, W=\left\{\alpha: \alpha\left(e_{3}\right)=0\right\}$. W has the elements e_{1}^{*}, e_{2}^{*} as a basis. The element e_{3}^{*} spans a 1 -dimensional subspace U and $\left\{e_{1}^{*}, e_{2}^{*}, e_{3}^{*}\right\}$ is a basis for V. Hence, U is a complement of W.

1-5. For any \mathbb{C}-bilinear function $F: V \times V \longrightarrow \mathbb{C}$, there is a unique linear transformation $F^{\prime}: \mathrm{T}^{2} V \longrightarrow \mathbb{C}$ for which $F=F^{\prime} \circ \tau$. In particular, if F is alternating, then

$$
F^{\prime}(u \otimes v)=-F^{\prime}(v \otimes u) \quad(u, v \in V),
$$

and so $F^{\prime}(v \otimes v)=0$. Thus

$$
v_{1} \otimes v_{1}, v_{2} \otimes v_{2},\left(v_{1} \otimes v_{2}+v_{2} \otimes v_{1}\right) \in \operatorname{ker} F^{\prime}
$$

These three vectors are linearly independent in $V \otimes$, hence $\operatorname{dim} \operatorname{ker} F^{\prime} \geqslant 3$. But as F is not a constant function, F^{\prime} is a non-zero linear transformation into a 1 -dimensional vector space so has $\operatorname{im} F^{\prime}=\mathbb{C}$. Thus

$$
\operatorname{dim} \operatorname{ker} F^{\prime}+1=\operatorname{dim} \mathrm{T}^{2} V=4,
$$

and so $\operatorname{dim} \operatorname{ker} F^{\prime}=3$. Thus $\left\{v_{1} \otimes v_{1}, v_{2} \otimes v_{2},\left(v_{1} \otimes v_{2}+v_{2} \otimes v_{1}\right)\right\}$ is a basis for ker F^{\prime}.
Similarly, $\left\{v_{1} \otimes v_{1}, v_{2} \otimes v_{2},\left(v_{1} \otimes v_{2}+v_{2} \otimes v_{1}\right)\right\}$ is a basis for $\operatorname{ker} G^{\prime}$. If

$$
w \in \mathrm{~T}^{2} V-\operatorname{ker} G^{\prime}=\mathrm{T}^{2} V-\operatorname{ker} F^{\prime},
$$

then

$$
G^{\prime}(w)=t F^{\prime}(w)
$$

for some $t \in \mathbb{C}$. Hence we have this identity for all $w \in \mathrm{~T}^{2} V$, giving $G=t F$ as functions $V \times V \longrightarrow \mathbb{C}$.

1-6. Notice that for any $v \in V, F(v, v)=0$. Now do an Induction on m as follows.
For $m=1$, choose v_{1} to be any non-zero element of V. Then there is an element $u \in V$ for which $t=F\left(v_{1}, u\right) \neq 0$. Let $v_{2}=t^{-1} u$. Then $F\left(v_{1}, v_{2}\right)=1$. Thus the result is established for $m=1$.

Suppose that the result is true whenever $m=k$. Then if $m=k+1$, we begin by choosing any non-zero element v_{1} of V and a second element v_{2} for which $F\left(v_{1}, v_{2}\right)=1$ (see the case $m=1)$. The vectors v_{1}, v_{2} are linearly independent since if $a v_{1}+b v_{2}=0$, then

$$
b=F\left(v_{1}, a v_{1}+b v_{2}\right)=0=F\left(v_{2}, a v_{1}+b v_{2}\right)=a .
$$

Now consider

$$
W=\left\{w \in V: F\left(v_{1}, w\right)=0=F\left(v_{2}, w\right)\right\} \subseteq V .
$$

It is easy to check that W is a \mathbb{C}-subspace of V. Notice that W is a linear complement to the 2 -dimensional subspace spanned by v_{1}, v_{2}. Moreover, for each non-zero $w \in W$, there is a $u \in V$ satisfying $F(w, u) \neq 0$ and clearly $u \in W$. Hence, the $2 k$-dimensional vector space W satisfies the assumptions and by the Induction Hypothesis there is a basis $\left\{v_{3}, v_{4}, \ldots, v_{2 k+1}, v_{2 k+2}\right\}$ with the stated properties. Then $\left\{v_{1}, v_{2}, v_{3}, v_{4}, \ldots, v_{2 k+1}, v_{2 k+2}\right\}$ is a basis for V with the required properties. This demonstrates the Inductive step and proves the result by Induction.

Chapter 2

2-1. Showing that σ is a homomorphism should be routine; it is probably easiest to work with matrices with respect to the basis $\left\{e_{1}, e_{2}\right\}$.

Irreducibility is most easily shown by determining the character χ_{σ} and then verifying that $\left(\chi_{\sigma} \mid \chi_{\sigma}\right)=1$. However, the following 'hands on' approach works.

If $W \subseteq \mathbb{C}^{2}$ is a $D_{2 n}$-subspace then in particular it is closed under the action of α by σ_{α}. If W is a non-trivial proper subspace then $\operatorname{dim}_{\mathbb{C}} W=1$, hence any non-zero $w \in W$ is an eigenvector of the linear transformation σ_{α}. But the eigenvalues of σ_{α} are ζ and ζ^{-1} with eigenvectors e_{1} and e_{2}. But $\sigma_{\beta} e_{1}=e_{2}$ and $\sigma_{\beta} e_{2}=e_{1}$, hence these vectors do not span 1-dimensional $D_{2 n}$-subspaces. Hence no such W can exists and therefore σ is irreducible. By inspection, ker $\sigma=\{e\}$.
2-2. Relative to the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, the corresponding matrices are easily seen to be

$$
\theta_{ \pm \mathbf{i}}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right], \quad \theta_{ \pm \mathbf{j}}=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] .
$$

Straightforward calculations using the homomorphism property of a representation together with the basic identities amongst the elements of Q_{8} now gives

$$
\theta_{ \pm \mathbf{k}}=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \theta_{ \pm 1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Each of the 1-dimensional subspaces $V_{i}=\left\{t e_{i}: t \in \mathbb{R}\right\}$ is closed under the action of all the elements of Q_{8} and $\mathbb{R}^{3}=V_{1} \oplus V_{2} \oplus V_{3}$. Thus θ is not irreducible. The kernel is

$$
\operatorname{ker} \theta=\{\mathbf{1},-\mathbf{1}\} .
$$

2-3. Linearity of each ρ_{σ} is trivial. Also, $\rho_{\sigma_{1} \sigma_{2}}=\rho_{\sigma_{1}} \rho_{\sigma_{2}}\left(\sigma_{1}, \sigma_{2} \in S_{3}\right)$ since

$$
\begin{aligned}
\rho_{\sigma_{1} \sigma_{2}}\left(x_{1}, x_{2}, x_{3}\right) & =\left(x_{\left(\sigma_{1} \sigma_{2}\right)^{-1}(1)}, x_{\left(\sigma_{1} \sigma_{2}\right)^{-1}(2)}, x_{\left(\sigma_{1} \sigma_{2}\right)^{-1}(3)}\right) \\
& =\left(x_{\sigma_{2}^{-1} \sigma_{1}^{-1}(1)}, x_{\sigma_{2}^{-1} \sigma_{1}^{-1}(2)}, x_{\sigma_{2}^{-1} \sigma_{1}^{-1}(3)}\right) \\
& =\rho_{\sigma_{1}} \rho_{\sigma_{2}}\left(x_{1}, x_{2}, x_{3}\right) .
\end{aligned}
$$

To show irreducibility, first note that any proper S_{3}-subspace has dimension 1 or 2 , but in the latter case we may find a complementary S_{3}-subspace of dimension 1 . We will show that there are no 1-dimensional S_{3}-subspaces.

Suppose that W is a 1 -dimensional S_{3}-subspace. Then for any non-zero $w \in W$, there is a $\lambda \in \mathbb{C}$ such that

$$
\rho_{(12)} w=\lambda w .
$$

It is easy to check that $\rho_{(12)}$ has eigenvalues ± 1 with corresponding eigenvectors $v_{+}=e_{1}+e_{2}-2 e_{3}$ and $v_{-}=e_{1}-e_{2}$. Thus as candidates for W we have

$$
U_{+}=\left\{t\left(e_{1}+e_{2}-2 e_{3}\right): t \in \mathbb{C}\right\}, \quad U_{-}=\left\{t\left(e_{1}-e_{2}\right): t \in \mathbb{C}\right\} .
$$

But we also have

$$
\rho_{(13)}\left(e_{1}+e_{2}-2 e_{3}\right)=\left(e_{3}+e_{2}-2 e_{1}\right) \notin U_{+}, \quad \rho_{(13)}\left(e_{1}-e_{2}\right)=e_{3}-e_{2} \notin U_{-} .
$$

So neither of these subspaces is closed under the action of (13), nor indeed under the action of S_{3}.

2-4. From the known structure of a non-trivial finite p-group, there is a normal subgroup $N \triangleleft G$ of index p, hence $G / N \cong \mathbb{Z} / p \cong \mu_{p}$, the group of p-th roots of unity in \mathbb{C}^{\times}. Hence there is a homomorphism $G \longrightarrow G / N \longrightarrow \mathbb{C}^{\times}$with image equal to μ_{p}. This is equivalent to a non-trivial 1-dimensional representation of G.

If G is solvable, then there is a non-trivial abelian quotient G / K for some $K \triangleleft G$. If a prime p divides $|G / K|$, then there is a normal subgroup $L \triangleleft G / K$ of index p and so an isomorphism $G \longrightarrow$ μ_{p} obtained as the composition of the evident homomorphisms $G \longrightarrow G / K \longrightarrow(G / K) / L \stackrel{\cong}{\rightrightarrows} \mu_{p}$. Thus there is a non-trivial 1-dimensional representation as in the case where G is a p-group.

2-5. (i) As a basis, take the S_{3}-set $X=\left\{e_{1}, e_{2}, e_{3}\right\}$ with action given by

$$
\sigma \cdot e_{j}=e_{\sigma(j)} .
$$

If $v \in V^{S_{3}}$, let $v=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}$. For each $\sigma \in S_{3}$ we have

$$
x_{\sigma^{-1}(j)}=x_{j} .
$$

Using the elements $\sigma=(12),(13),(23)$ we deduce that

$$
x_{1}=x_{2}=x_{3} .
$$

Clearly any vector of the form $t\left(e_{1}+e_{2}+e_{3}\right)(t \in \mathbb{C})$ lies in $V^{S_{3}}$. Hence $V^{S_{3}}$ is as stated and in particular is 1-dimensional.
(ii) Use the S_{3}-subspace of Qu. 3,

$$
W=\left\{x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}: x_{1}+x_{2}+x_{3}=0\right\} .
$$

(iii) This can be done by showing that the eigenspaces of an element such as (12) on W are 1-dimensional but not closed under the action of S_{3}. Alternatively, the character of the representation ρ^{\prime} on W is given by

$$
\chi_{\rho^{\prime}}=\chi_{\rho}-\chi_{1} .
$$

Hence using the formula

$$
\chi_{\rho}(\sigma)=\text { number of elements in } X \text { fixed by } \sigma
$$

we have

$$
\chi_{\rho^{\prime}}(e)=3-1=2, \quad \chi_{\rho^{\prime}}((12))=1-1=0, \quad \chi_{\rho^{\prime}}((123))=0-1=-1 .
$$

Then $\left(\chi_{\rho^{\prime}} \mid \chi_{\rho^{\prime}}\right)=1$, so by Proposition $3.17 \rho^{\prime}$ is irreducible.
(iv) The 1 -dimensional subspace spanned by vector $e_{1}-e_{2}$ is closed under the action of H.
(v) Either find an eigenspace of the linear transformation $\rho_{(123)}$ which will give a 1-dimensional K-subspace or check that the character of $W \downarrow_{K}^{S_{3}}$ is not equal to 1 , hence it cannot be irreducible by Proposition 4.17.

2-6. This question involves similar ideas to Qu. 5.
(i) It is easy to see that $\mathbb{C}\left\{v_{X}\right\}$ is a G-subspace. The vector subspace

$$
W_{X}=\left\{\sum_{x \in X} t_{x} x: \sum_{x \in X} t_{x}=0\right\} .
$$

is a complement of $\mathbb{C}\left\{v_{X}\right\}$ and also a G-subspace of $\mathbb{C}[X]$.
(ii) View each $\mathbb{C}[Y]$ as a G-subspace of $\mathbb{C}[X]$.

2-7. Let χ be the character of ρ. From Corollary 4.8, the character $\chi_{\rho^{*}}$ is given by

$$
\chi_{\rho^{*}}(g)=\overline{\chi_{\rho}(g)}=\chi_{\rho}\left(g^{-1}\right),
$$

hence

$$
\begin{aligned}
\left(\chi_{\rho^{*}} \mid \chi_{\rho^{*}}\right) & =\frac{1}{|G|} \sum_{g \in G} \overline{\chi_{\rho^{*}}(g)} \chi_{\rho^{*}}(g) \\
& =\frac{1}{|G|} \sum_{g \in G} \chi(g) \chi_{\rho^{*}}(g) \\
& =\frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\chi(g)} \\
& =\frac{1}{|G|} \sum_{g \in G} \overline{\chi(g)} \chi(g)=(\chi \mid \chi) .
\end{aligned}
$$

Since ρ is irreducible,

$$
\left(\chi_{\rho^{*}} \mid \chi_{\rho^{*}}\right)=(\chi \mid \chi)=1
$$

by Proposition 4.17, hence ρ^{*} is also irreducible. It is possible to demonstrate this without using characters.
2-8. If $\left(\sum_{g \in G} x_{g}\right) \gamma= \pm\left(\sum_{g \in G} x_{g}\right)$, then elementary linear algebra shows that

$$
x_{g \gamma}= \pm x_{g} \quad(g \in G) .
$$

Hence $\mathbb{k}[G]=\mathbb{k}[G]^{+} \oplus \mathbb{k}[G]^{-}$as \mathbb{k}-vector spaces and as the summands are G-representations, this is a splitting of G-representations.

Chapter 3

3-1. Qu. 2-1: Using the basis $\left\{e_{1}, e_{2}\right\}$, we obtain matrices

$$
\left[\sigma_{\alpha^{r}}\right]=\left[\begin{array}{cc}
\zeta^{r} & 0 \\
0 & \zeta^{-r}
\end{array}\right], \quad\left[\sigma_{\alpha^{r} \beta}\right]=\left[\begin{array}{cc}
0 & \zeta^{r} \\
\zeta^{-r} & 0
\end{array}\right] .
$$

Then taking traces we have

$$
\chi_{\sigma}\left(\alpha^{r}\right)=\operatorname{tr}\left[\sigma_{\alpha^{r}}\right]=\zeta^{r}+\zeta^{-r}=2 \cos 2 \pi r / n, \quad \chi_{\sigma}\left(\alpha^{r} \beta\right)=\operatorname{tr}\left[\sigma_{\alpha^{r} \beta}\right]=0 .
$$

Qu. 2-2: Since that $\mathbb{R} \subseteq \mathbb{C}$, we can view this as giving a complex representation $\theta: Q_{8} \longrightarrow$ $\mathrm{GL}_{\mathbb{C}}\left(\mathbb{C}^{3}\right)$. Using the standard basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ we obtain matrices

$$
[\pm \mathbf{1}]=I_{3}, \quad\left[\theta_{ \pm \mathbf{i}}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right], \quad\left[\theta_{ \pm \mathbf{j}}\right]=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\theta_{ \pm \mathbf{k}}\right]=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Taking traces we have

$$
\chi_{\theta}(\pm \mathbf{1})=3, \quad \chi_{\theta}(\pm \mathbf{i})=\chi_{\theta}(\pm \mathbf{j})=\chi_{\theta}(\pm \mathbf{k})=-1 .
$$

Qu. 2-3: Take a basis of V, e.g., $\left\{v_{1}, v_{2}\right\}$ where

$$
v_{1}=(1,-1,0), \quad v_{2}=(1,0,-1) .
$$

The elements e, (12), (123) of S_{3} give representatives of all of the conjugacy classes and so it suffices to calculate the character of ρ on these elements. Using the above basis, we have the following matrices

$$
\left[\rho_{e}\right]=I_{2}, \quad\left[\rho_{(12)}\right]=\left[\begin{array}{rr}
-1 & -1 \\
0 & 1
\end{array}\right], \quad\left[\rho_{(123)}\right]=\left[\begin{array}{rr}
-1 & -1 \\
1 & 0
\end{array}\right],
$$

which have traces

$$
\chi_{\rho}(e)=2, \quad \chi_{\rho}(12)=0, \quad \chi_{\rho}(123)=-1 .
$$

3-2. (i) The conjugates of x form a basis and the number of them is also $|G| /\left|\mathrm{C}_{G}(x)\right|$ where $\mathrm{C}_{G}(x)$ is the centralizer of x. Hence $\operatorname{dim}_{\mathbb{C}} V_{x}=|G| /\left|\mathrm{C}_{G}(x)\right|$.
(ii) $\chi_{c}(g)$ is equal to the number of elements of G_{c} fixed by g, but such elements are precisely those for which $g x g^{-1}=x$, i.e., those in $\mathrm{C}_{G}(g)$. Thus $\chi_{c}(g)=\left|\mathrm{C}_{G}(g)\right|$.
(iii) We have

$$
\begin{aligned}
\left(\alpha \mid \chi_{c}\right) & =\frac{1}{|G|} \sum_{g \in G} \alpha(g) \overline{\chi_{c}(g)} \\
& =\frac{1}{|G|} \sum_{g \in G} \alpha(g)\left|\mathrm{C}_{G}(g)\right| \\
& =\frac{1}{|G|} \sum_{j=1}^{r} \frac{|G|}{\left|\mathrm{C}_{G}\left(g_{j}\right)\right|} \cdot\left|\mathrm{C}_{G}\left(g_{j}\right)\right| \alpha\left(g_{j}\right) \\
& =\sum_{j=1}^{r} \alpha\left(g_{j}\right),
\end{aligned}
$$

where g_{1}, \ldots, g_{r} is a list of representatives of all the distinct conjugacy classes of G, with g_{j} having $|G| /\left|\mathrm{C}_{G}\left(g_{j}\right)\right|$ conjugates.
(iv) The multiplicity of ρ_{j} in $\mathbb{C}\left[G_{c}\right]$ is $\left(\chi_{j} \mid \chi_{c}\right)$ and by part (iii) this is given by

$$
\left(\chi_{j} \mid \chi_{c}\right)=\left(\chi_{c} \mid \chi_{j}\right)=\sum_{i=1}^{r} \chi_{j}\left(g_{i}\right) .
$$

(v) This is left as an exercise!
$3-3$. (i) We have

$$
g x H=x H \quad \Longleftrightarrow \quad x^{-1} g x H=e H \quad \Longleftrightarrow \quad g \in x^{-1} H x
$$

and so

$$
\chi_{\rho}(g)=|\{x H \in G / H: g x H=x H\}|=\left|\left\{x H \in G / H: g \in x H x^{-1}\right\}\right| .
$$

(ii) If $H \triangleleft G$, for each $x \in G, x H x^{-1}=H$, so part (i) gives the result.
(iii) Writing $G=S_{4}$ and $H=S_{3}$, this becomes a special case of part (i) (but not (ii)!). It suffices to calculate the character on the elements $e,(12),(12)(34),(123),(1234)$ of S_{4} which give representatives of all of the conjugacy classes of G. Here it is useful to recall the well-known formula

$$
\sigma\left(i_{1} i_{2} \ldots i_{r}\right) \sigma^{-1}=\left(\sigma\left(i_{1}\right) \sigma\left(i_{2}\right) \ldots \sigma\left(i_{r}\right)\right) .
$$

Also notice that the 4 distinct elements of $G / H=S_{4} / S_{3}$ are $e H$, (14) H, (24) H, (34) H. Then

$$
\begin{aligned}
\chi_{\rho}(e) & =\left|S_{4} / S_{3}\right|=4, \\
\chi_{\rho}((12)(34)) & =|\emptyset|=0, \\
\chi_{\rho}((123)) & =|\{e H\}|=1 .
\end{aligned}
$$

$$
\chi_{\rho}((12))=|\{e H,(34) H\}|=2,
$$

$$
\begin{aligned}
\chi_{\rho}((12) & =|\ell|=0, \\
\chi_{\rho}((1234)) & =|\emptyset|=0,
\end{aligned}
$$

3-4. (i) \mathbb{C}-linearity is obvious. Let $h \in G$ and $w \in W$. Then

$$
\begin{aligned}
\varepsilon_{i}\left(\rho_{h} w\right) & =\frac{\chi_{i}(e)}{|G|} \sum_{g \in G} \overline{\chi_{i}(g)} \rho_{g}\left(\rho_{h} w\right) \\
& =\frac{\chi_{i}(e)}{|G|} \sum_{g \in G} \overline{\chi_{i}(g)} \rho_{g h} w \\
& =\frac{\chi_{i}(e)}{|G|} \sum_{g \in G} \overline{\chi_{i}(g)} \rho_{h} \rho_{h^{-1} g h} w \\
& =\rho_{h}\left(\frac{\chi_{i}(e)}{|G|} \sum_{g \in G} \overline{\chi_{i}(g)} \rho_{h^{-1} g h} w\right) \\
& =\rho_{h}\left(\frac{\chi_{i}(e)}{|G|} \sum_{g \in G} \overline{\chi_{i}\left(h^{-1} g h\right)} \rho_{h^{-1} g h} w\right) \\
& =\rho_{h}\left(\frac{\chi_{i}(e)}{|G|} \sum_{g \in G} \overline{\chi_{i}(g)} \rho_{g} w\right) \\
& =\rho_{h} \varepsilon_{i}(w) .
\end{aligned}
$$

Thus $\varepsilon_{i}\left(\rho_{h} w\right)=\rho_{h} \varepsilon_{i}(w)$ which shows that ε_{i} is G-linear.
(ii) Since $W_{j, k}$ is a G-subspace each ρ_{g} maps $W_{j, k}$ into itself. Hence, so does ε_{i}.
(iii) The G-linear transformation $\varepsilon_{i}^{\prime}: W_{j, k} \longrightarrow W_{j, k}$ satisfies the conditions of Schur's Lemma, hence there is a $\lambda \in \mathbb{C}$ such that

$$
\varepsilon_{i}^{\prime}(w)=\lambda w \quad\left(w \in W_{j, k}\right) .
$$

We also have

$$
\varepsilon_{i}^{\prime}=\frac{\chi_{i}(e)}{|G|} \sum_{g \in G} \overline{\chi_{i}(g)} \rho_{g}^{\prime} w
$$

where $\rho_{g}^{\prime}: W_{j, k} \longrightarrow W_{j, k}$ is the restriction of ρ_{g} to $W_{j, k}$. Taking traces we have

$$
\begin{aligned}
\lambda \operatorname{dim}_{\mathbb{C}} W_{j, k}=\operatorname{tr} \varepsilon_{i}^{\prime} & =\frac{\chi_{i}(e)}{|G|} \sum_{g \in G} \overline{\chi_{i}(g)} \operatorname{tr} \rho_{g}^{\prime} \\
& =\frac{\chi_{i}(e)}{|G|} \sum_{g \in G} \overline{\chi_{i}(g)} \chi_{\rho^{\prime}}(g) \\
& =\chi_{i}(e)\left(\chi_{i} \mid \chi_{\rho^{\prime}}\right) .
\end{aligned}
$$

Since $\chi_{i}(e)=\operatorname{dim}_{\mathbb{C}} W_{j, k}$, we have

$$
\lambda=\left(\chi_{i} \mid \chi_{\rho^{\prime}}\right)=\delta_{i, j} .
$$

Thus for $w \in W_{j, k}, \varepsilon_{i}^{\prime}(w)$ is as stated.
(iv) By (iii), for any $w \in W, \varepsilon_{j}(w) \in W_{j}$, hence

$$
\varepsilon_{i} \varepsilon_{j}(w)= \begin{cases}\varepsilon_{i}(w) & \text { if } i=j, \\ 0 & \text { otherwise } .\end{cases}
$$

(v) This is a straightforward exercise.

3-5. (i) The character table shown below is deduced by calculations such as the following in which the identities $\zeta^{2}=\zeta^{-1}$ and $1+\zeta+\zeta^{2}=0$ are used:

$$
\left(\chi_{2} \mid \chi_{3}\right)=\frac{1}{12}\left[1+3 \times 1+4 \zeta \overline{\zeta^{-1}}+4 \zeta^{-1} \bar{\zeta}\right]=\frac{1}{12}\left[4+4 \zeta^{2}+4 \zeta^{-2}\right]=\frac{1}{3}\left[1+\zeta^{2}+\zeta\right]=0 .
$$

	e	$(12)(34)$	(123)	(132)
	$[1]$	$[3]$	$[4]$	$[4]$
χ_{1}	1	1	1	1
χ_{2}	1	1	ζ	ζ^{-1}
χ_{3}	1	1	ζ^{-1}	ζ
χ_{4}	3	-1	0	0

(ii) The character of this permutation representation is found using the formula $\chi_{\rho}(g)=|\mathrm{Z}(g)|$. Hence

$$
\chi_{\rho}(e)=12, \chi_{\rho}((12)(34))=4, \chi_{\rho}((123))=\chi_{\rho}\left(\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right)=3
$$

Then $n_{j}=\left(\chi_{j} \mid \chi_{\rho}\right)$, so we obtain

$$
\begin{aligned}
& n_{1}=\frac{1}{12}[12+3 \times 4+4 \times 3+4 \times 3]=\frac{4 \times 12}{12}=4 \\
& n_{2}=\frac{1}{12}\left[12+3 \times 4+4 \times 3 \zeta+4 \times 3 \zeta^{-1}\right]=\frac{12}{12}\left[2+\zeta+\zeta^{-1}\right]=1 \\
& n_{3}=\frac{1}{12}\left[12+3 \times 4+4 \times 3 \zeta^{-1}+4 \times 3 \zeta\right]=\frac{12}{12}\left[2+\zeta^{-1}+\zeta\right]=1 \\
& n_{4}=\frac{1}{12}[3 \times 12+3(-1) \times 4+0+0]=\frac{12}{12}[3-1]=2
\end{aligned}
$$

So we have $V=4 V_{1} \oplus V_{2} \oplus V_{3} \oplus 2 V_{4}$.
(iii) We have $\chi_{\rho_{j}^{*}}=\bar{\chi}_{j}$, hence $\chi_{\rho_{1}^{*}}=\bar{\chi}_{1}, \chi_{\rho_{2}^{*}}=\bar{\chi}_{3}, \chi_{\rho_{3}^{*}}=\bar{\chi}_{2}$ and $\chi_{\rho_{4}^{*}}=\bar{\chi}_{4}$. Thus $\rho_{1}^{*}=\rho_{1}$, $\rho_{2}^{*}=\rho_{3}, \rho_{3}^{*}=\rho_{2}$ and $\rho_{4}^{*}=\rho_{4}$.
(iv) Use the formula $\chi_{\rho_{i} \otimes \rho_{j}}(g)=\chi_{i}(g) \chi_{j}(g)$ to find the character of the tensor product $\rho_{i} \otimes \rho_{j}$. Then express this as a linear combination $\chi_{\rho_{i} \otimes \rho_{j}}=n_{1} \chi_{1}+\cdots+n_{4} \chi_{4}$ where $n_{k}=\left(\chi_{\rho_{i} \otimes \rho_{j}} \mid \chi_{k}\right)$. For example, when $i=j=4, \chi_{\rho_{4} \otimes \rho_{4}}(g)=\chi_{4}(g)^{2}$ and so

$$
\begin{array}{ll}
n_{1}=\frac{1}{12}\left[3^{2}+3(-1)^{2} \times 1+0+0\right]=1, & n_{2}=\frac{1}{12}\left[3^{2}+3(-1)^{2} \times 1+0+0\right]=1 \\
n_{3}=\frac{1}{12}\left[3^{2}+3(-1)^{2} \times 1+0+0\right]=1, & n_{4}=\frac{1}{12}\left[3^{3}+3(-1)^{3}+0+0\right]=2
\end{array}
$$

Hence $V_{4} \otimes V_{4}=V_{1} \oplus V_{2} \oplus V_{3} \oplus 2 V_{4}$.
There are some tricks that you may spot for reducing the amount of work, but doing all of these is extremely tedious!

3-6. (i) Since the action of A is transitive, for each such k there is a $\sigma \in A$ for which $k=\sigma(1)$, therefore

$$
\operatorname{Stab}_{A}(k)=\sigma \operatorname{Stab}_{A}(1) \sigma^{-1}=\operatorname{Stab}_{A}(1)
$$

Therefore every element of $\operatorname{Stab}_{A}(1)$ acts trivially on the elements of \mathbf{n} and so must be the identity function. So $\operatorname{Stab}_{A}(k)$ is trivial.
(ii) As A-sets, there is an isomorphism $A \cong \mathbf{n}$, hence there is an isomorphism of representations $\mathbb{C}[A] \cong \mathbb{C}[\mathbf{n}]$, so $\mathbb{C}[\mathbf{n}]$ agrees with the regular representation of A. By Theorem 3.19 together with Proposition 3.23, we have

$$
\mathbb{C}[\mathbf{n}] \cong \mathbb{C}[A]=\rho_{1} \oplus \cdots \oplus \rho_{n}
$$

Chapter 4

4-1. (i) See Section 4.1 of Chapter 4 where it is shown that $\operatorname{ker} \chi_{\rho}=\operatorname{ker} \rho$. From the definitions we also have $\operatorname{ker} \chi_{\rho} \leqslant \operatorname{ker}\left|\chi_{\rho}\right|$.
(ii) From the proof of Proposition 5.5 we actually have

$$
\operatorname{ker}\left|\chi_{\rho}\right|=\left\{g \in G: \exists \lambda_{g} \in \mathbb{C}^{\times} \text {s.t. } \quad \rho_{g}=\lambda_{g} \operatorname{Id}\right\}
$$

Indeed, $\lambda_{g h}=\lambda_{g} \lambda_{h}$, hence the function $\Lambda: \operatorname{ker}\left|\chi_{\rho}\right| \longrightarrow \mathbb{C}^{\times}$with $\Lambda(g)=\lambda_{g}$ is a group homomorphism. Since \mathbb{C}^{\times}is abelian, $\left[\operatorname{ker}\left|\chi_{\rho}\right|, \operatorname{ker}\left|\chi_{\rho}\right|\right] \leqslant \operatorname{ker} \Lambda$. But

$$
\operatorname{ker} \Lambda=\left\{g \in G: \rho_{g}=\operatorname{Id}\right\}=\operatorname{ker} \rho=\operatorname{ker} \chi_{\rho}
$$

hence $\left[\operatorname{ker}\left|\chi_{\rho}\right|, \operatorname{ker}\left|\chi_{\rho}\right|\right] \leqslant \operatorname{ker} \chi_{\rho}$.
4-2. (i) The underlying vector space of ξ_{1}^{H} is \mathbb{C} with the trivial action of H and so the underlying vector space of $\xi_{1}^{H} \uparrow_{H}^{G}$ is

$$
\operatorname{Map}\left(G_{R}, \mathbb{C}\right)^{H}=\{f: G \longrightarrow \mathbb{C}: f(x h)=f(x) \forall x \in G, h \in H\}
$$

This is just the set of all functions $G \longrightarrow \mathbb{C}$ which are constant on right cosets of H, which is in turn equivalent to the set of all functions $G / H \longrightarrow \mathbb{C}$. Moreover, we have for the G-action,

$$
g \cdot f(x H)=f(g x H)
$$

This shows that the induced representation $\xi_{1}^{H} \uparrow_{H}^{G}$ is essentially the contragredient representation associated to $\mathbb{C}[G / H]$. By Proposition 2.25 , there is a G-isomorphism $\mathbb{C}[G / H]^{*} \cong \mathbb{C}[G / H]$, so $\xi_{1}^{H} \uparrow_{H}^{G}$ is G-isomorphic to ξ.
(ii) By Ex. Sh. 2 Qu. 6(i), $\mathbb{C}[X]=V_{X} \oplus W_{X}$ where V_{X} is G-isomorphic to the trivial 1dimensional representation of G. Hence by Theorem 4.10(c), $\chi_{\xi}=\chi_{1}^{G}+\chi_{\theta}$.
(iii) We have

$$
\begin{array}{rlrl}
\left(\chi_{\theta} \mid \chi_{1}^{G}\right)_{G} & =\left(\chi_{\xi}-\chi_{1}^{G} \mid \chi_{1}^{G}\right)_{G} & & \\
& =\left(\chi_{\xi} \mid \chi_{1}^{G}\right)_{G}-\left(\chi_{1}^{G} \mid \chi_{1}^{G}\right)_{G} & & \\
& =\left(\chi_{\xi_{1}^{H}} \uparrow H\right. \\
& =\left(\chi_{\xi_{1}^{H}} \mid \chi_{1}^{G} \downarrow_{G}^{G}-1\right. & & \text { (by part (i) and orthonormality) } \\
& =\left(\chi_{\xi_{1}^{H}} \mid \chi_{\xi_{1}^{H}}\right)_{H}-1 & & \text { (by Frobenius Reciprocity) } \\
& =1-1=0, & & \left(\text { since } \chi_{1}^{G} \downarrow_{H}^{G}=\chi_{\xi_{1}^{H}}\right) \\
\text { (by orthonormality) }
\end{array}
$$

giving the result.
4-3. (i) This follows from Proposition 2.20 and Theorem 3.10(b).
(ii) Clearly Y has the orbit $\{(x, x): x \in X\}$ and also for every pair $\left(x_{1}, x_{2}\right) \in Y$ with $x_{1} \neq x_{2}$, the orbit

$$
\left\{g \cdot\left(x_{1}, x_{2}\right): g \in G\right\}=\left\{\left(g x_{1}, g x_{2}\right): g \in G\right\}
$$

By definition, X is 2-transitive if and only if these are the only orbits of Y.
(iii) By Qu. 4.3(iii) and Ex. Sh. 2 Qu. 6(ii), the trivial representation has multiplicity in σ equal to the number of orbits in Y.
(iv) Recall that by Corollary $3.14, \theta$ is irreducible if and only if $\left(\chi_{\theta} \mid \chi_{\theta}\right)=1$. We have

$$
\begin{aligned}
\left(\chi_{\rho} \mid \chi_{\rho}\right) & =\left(\chi_{\theta}+\chi_{1} \mid \chi_{\theta}+\chi_{1}\right) \\
& =\left(\chi_{\theta} \mid \chi_{\theta}\right)+\left(\chi_{1} \mid \chi_{\theta}\right)-\left(\chi_{\theta} \mid \chi_{1}\right)+\left(\chi_{1} \mid \chi_{1}\right) \\
& =\left(\chi_{\theta} \mid \chi_{\theta}\right)+2\left(\chi_{\theta} \mid \chi_{1}\right)+1 \\
& =\left(\chi_{\theta} \mid \chi_{\theta}\right)+1,
\end{aligned}
$$

by Ex. Sh. 2 Qu. 6(iii).
An easy calculation also shows that

$$
\left(\chi_{\rho} \mid \chi_{\rho}\right)=\left(\chi_{\rho} \chi_{\rho} \mid \chi_{1}\right)=\left(\chi_{\sigma} \mid \chi_{1}\right)
$$

So by (iii), $\left(\chi_{\rho} \mid \chi_{\rho}\right)=2$ if and only if X is 2 -transitive.
Combining these we now see that X is 2 -transitive if and only if $\left(\chi_{\theta} \mid \chi_{\theta}\right)=1$, i.e., θ is irreducible.

4-4. (i) We have

$$
1^{2}+5^{2}+4^{2}+3^{2}+a^{2}=|G|=60
$$

giving $a^{2}=9$, hence $a=3$.
(ii) Row orthogonality gives $\left(\chi_{j} \mid \chi_{5}\right)=0$ if $j=1,2,3,4$. After clearing denominators of $|G|$ and bringing constants to the right hand sides we have the system of linear equations:

$$
\begin{aligned}
20 b+15 c+12 d+12 e & =-3 \\
-20 b+15 c & =-15 \\
20 b-12 d-12 e & =-12 \\
-15 c+12 \alpha d+12 \beta e & =-9 .
\end{aligned}
$$

The first, second and third of these give

$$
40 b+15 c=-15, \quad-20 b+15 c=-15
$$

hence $b=0, c=-1$. The remaining equations now give

$$
d+e=1, \quad 2 \alpha d+2 \beta e=-4,
$$

hence

$$
\sqrt{5} d-\sqrt{5} e=-5
$$

or

$$
d-e=-\sqrt{5} .
$$

Thus we have $2 d=1-\sqrt{5}, 2 e=1+\sqrt{5}$ and so $d=\beta, e=\alpha$. This gives

$$
b=0, c=-1, d=\beta, e=\alpha .
$$

(iii) For each of the characters χ_{j}, ker $\chi_{j}=\{e\}$. Hence since every normal subgroup of G is an intersection of such normal subgroups, the only normal subgroups are $\{e\}$ and G, implying that G is simple.
(iv) $\chi_{\rho_{j}^{*}}=\bar{\chi}_{j}$, hence since all character values are real we see that $\chi_{\rho_{j}^{*}}=\chi_{j}$, i.e., $\rho_{j}^{*}=\rho_{j}$.
(v) Here is an example. Suppose that $\rho_{2} \otimes \rho_{3}=n_{1} \rho_{1}+\cdots+n_{5} \rho_{5}$. Then $n_{j}=\left(\chi_{j} \mid \chi_{2} \chi_{3}\right)$. Thus

$$
\begin{array}{ll}
n_{1}=\frac{1}{60}[20-20+0]=0, & n_{2}=\frac{1}{60}[100+20+0]=2, \\
n_{3}=\frac{1}{60}[80-20+0]=1, & n_{4}=\frac{1}{60}[60+0]=1, \\
n_{5}=\frac{1}{60}[60+0]=1 . &
\end{array}
$$

Hence $\rho_{2} \otimes \rho_{3}=2 \rho_{2}+\rho_{3}+\rho_{4}+\rho_{5}$.
(vi) Up to isomorphism, the alternating group A_{5} is the only simple group of order 60 .

